105 research outputs found

    Robust Control of Flapping-Wing in Micro Aerial Vehicle to have a Smooth Flapping Motion

    Get PDF
    This paper in first sections, will give a brief overview of both the purpose and the challenges facing the actuator and structure of Micromechanical Flying Insects (MFIs) and, in the last sections, an appropriate controller will developed for flapping motion. A hierarchical architecture that divides the control unit into three main levels is introduced. This approach break a complex control problem into a multi-level set of smaller control schemes, each of which is responsible for a clearly defined task. Also, the controller at each level can be designed independently of those in other levels. A fourbar mechanism for the wing displacement amplification, and a new system for fourbar mechanism actuation (wing actuation) is developed. We will develop a flexible beam with piezoelectric actuators and sensor (called Smart Beam) that will used to excite the fourbar mechanism for flapping mode of flight. The Frequency Response Function (FRF) of the smart beam was obtained from a Finite Element (FE) model and experimental system identification. The corresponding transfer function was derived from the mu synthesis and several robust controllers were then designed to control the beam to reach a smooth flapping motion. Besides excitation of the fourbar mechanism, the Smart beam will be used to control of noise and disturbance in the structure of the wing system

    Gramian-based optimal design of a dynamic stroke amplifier compliant micro-mechanism.

    Get PDF
    International audienceThis paper presents a new method developed for the optimal design of microrobotic compliant mechanisms. It is based on a flexible building block method, called FlexIn, which uses an evolutionary approach, to optimize a truss-like structure made of building blocks. From the first design step, in addition to conventional mechanical criteria, dynamic gramian-based metrics can be considered in the optimization procedure to fit expected frequency responses of the synthetized mechanisms. A planar monolithic compliant coupling structure is obtained by the optimal design method to act as a stroke amplifier for piezoelectric stacked actuators, to operate in both static and dynamic motions, and to passively filter out undesirable vibrations. Finally, performance comparisons between some of the pseudo-optimal FlexIn synthetized compliant mechanisms demonstrate the interests of the proposed optimization method for the design of dynamic operating smart microrobotic structures

    Research issues in biological inspired sensors for flying robots

    Get PDF
    Biological inspired robotics is an area experiencing an increasing research and development. In spite of all the recent engineering advances, robots still lack capabilities with respect to agility, adaptability, intelligent sensing, fault-tolerance, stealth, and utilization of in-situ resources for power when compared to biological organisms. The general premise of bio-inspired engineering is to distill the principles incorporated in successful, nature-tested mechanisms of selected features and functional behaviors that can be captured through biomechatronic designs and minimalist operation principles from nature success strategies. Based on these concepts, robotics researchers are interested in gaining an understanding of the sensory aspects that would be required to mimic nature design with engineering solutions. In this paper are analysed developments in this area and the research aspects that have to be further studied are discussed.N/

    Performance improvement of piezoelectric materials in energy harvesting in recent days – a review

    Get PDF
    Piezoelectric elements are inevitable in modern day physics playing a vital role in many applications. Any piezoelectric element requires compression to produce energy in the form of a weak electrical ac signal. Mechanical vibrations are known to cause deflections which are enough to produce energy from the piezoelectric materials. In this paper, a review of the piezoelectric materials is made on their basic modes of excitation for producing energy. Also, various mechanisms and techniques used to harvest energy recently are presented and discussed extensively. Piezoelectric energy harvesting using MEMS is emphasized much as this is the era of micromechanical systems. Most of the piezoelectric energy harvesting systems relies on cantilever-oriented deflection to produce maximum vibration. In general cantilever beams fitted with piezoelectric materials produce electrical energy from mechanical vibration when deflected; hence detailed review on the different shapes of cantilever is also submitted. Significant parameters contributing to improved performance are dealt with special importance

    Méthode des blocs sensitifs pour la synthèse optimale de mécanismes flexibles à mesure piézoélectrique intégrée.

    Get PDF
    National audienceCet article présente une méthode de synthèse optimale pour la conception préliminaire de mécanismes flexibles monolithiques piézoélectriques. La construction d'un tel mécanisme, selon cette méthode baptisée FlexIn, est basée sur l'agencement de blocs flexibles piézoélectriques élémentaires qui peuvent être structurels, actionneurs et/ou capteurs, sélectionnés respectivement dans trois bibliothèques. Cet article décrit plus particulièrement l'approche utilisée pour établir le modèle aux éléments finis multi-physiques des blocs capteurs piézoélectriques, de type treillis de poutre, en vue de son intégration dans le logiciel de synthèse optimale. Les résultats obtenus présentent un écart de quelques pourcents avec ceux issus d'un code aux éléments finis commercial. A titre d'exemple, le modèle capteur est appliqué à une micropince monolithique existante ; le résultat de mesure est d'un ordre de grandeur satisfaisant. Ces résultats permettent de dresser les perspectives de la méthode de synthèse optimale proposée dans le cadre général de la conception de structures intelligentes pour la microrobotique

    On Advancing the Topology Optimization Technique to Compliant Mechanisms and Robots

    Get PDF
    Compliant mechanisms (CMs) take advantage of the deformation of their flexible members to transfer motion, force, or energy, offering attractive advantages in terms of manufacturing and performance over traditional rigid-body mechanisms (RBMs). This dissertation aims to advance the topology optimization (TO) technique (1) to design CMs that are more effective in performing their functions while being sufficiently strong to resist yield or fatigue failure; and (2) to design CMs from the perspective of mechanisms rather than that of structures, particularly with the insight into the concepts of joints, actuations, and functions of mechanisms. The existing TO frameworks generally result in CMs that are much like load-bearing structures, limiting the applications of CMs. These CMs (1) do not have joints, (2) are actuated by a translational force, and (3) can only do simple work such as amplifying motion or gripping. Three TO frameworks for the synthesis of CMs are proposed in this dissertation and they are summarized below. First, a framework was developed for the design of efficient and strong CMs. The widely used stiffness-flexibility criterion for CM design with TO results in lumped CMs that are intrinsically efficient in transferring motion, force, or energy but are prone to high localized stress and thus weak to resist yield or fatigue failure. Indeed, distributed CMs may have a better stress distribution than lumped CMs but have the weakness of being less efficient in motion, force, or energy transfer than lumped CMs. Based on this observation, the proposed framework rendered the concept of hybrid systems, hybrid CMs in this case. Further, the hybridization was achieved by a proposed super flexure hinge element and a design criterion called input stroke criterion in addition to the traditional stiffness-flexibility criterion. Both theoretical exploration and CM design examples are presented to show the effectiveness of the proposed approach. The proposed framework has two main contributions to the field of CMs: (1) a new design philosophy, i.e., hybrid CMs through TO techniques and (2) a new design criterion—input stroke. Second, a systematic framework was developed for the integrated design of CMs and actuators for the motion generation task. Both rotary actuators and bending actuators were considered. The approach can simultaneously synthesize the optimal structural topology and actuator placement for the desired position, orientation, and shape of the target link in the system while satisfying the constraints such as buckling constraint, yield stress constraint and valid connectivity constraint. A geometrically nonlinear finite element analysis was performed for CMs driven by a bending actuator and CMs driven by a rotary actuator. Novel parameterization schemes were developed to represent the placements of both types of actuators. A new valid connectivity scheme was also developed to check whether a design has valid connectivity among regions of interest based on the concept of directed graphs. Three design examples were constructed and a compliant finger was designed and fabricated. The results demonstrated that the proposed approach is able to simultaneously determine the structure of a CM and the optimal locations of actuators, either a bending actuator or a rotary actuator, to guide a flexible link into desired configurations. Third, the concept of a module view of mechanisms was proposed to represent RBMs and CMs in a general way, particularly using five basic modules: compliant link, rigid link, pin joint, compliant joint, and rigid joint; this concept was further developed for the unified synthesis of the two types of mechanisms, and the synthesis approach was thus coined as module optimization technique—a generalization of TO. Based on the hinge element in the finite element approach developed at TU Delft (Netherlands in early 1970), a beam-hinge model was proposed to describe the connection among modules, which result in a finite element model for both RBMs and CMs. Then, the concept of TO was borrowed to module optimization, particularly to determine the “stay” or “leave” of modules that mesh a design domain. The salient merits with the hinge element include (1) a natural way to describe various types of connections between two elements or modules and (2) a provision of the possibility to specify the rotational input and output motion as a design problem. Several examples were constructed to demonstrate that one may obtain a RBM, or a partially CM, or a fully CM for a given mechanical task using the module optimization approach

    Review and Perspectives: Shape Memory Alloy Composite Systems

    Get PDF
    Following their discovery in the early 60's, there has been a continuous quest for ways to take advantage of the extraordinary properties of shape memory alloys (SMAs). These intermetallic alloys can be extremely compliant while retaining the strength of metals and can convert thermal energy to mechanical work. The unique properties of SMAs result from a reversible difussionless solid-to-solid phase transformation from austenite to martensite. The integration of SMAs into composite structures has resulted in many benefits, which include actuation, vibration control, damping, sensing, and self-healing. However, despite substantial research in this area, a comparable adoption of SMA composites by industry has not yet been realized. This discrepancy between academic research and commercial interest is largely associated with the material complexity that includes strong thermomechanical coupling, large inelastic deformations, and variable thermoelastic properties. Nonetheless, as SMAs are becoming increasingly accepted in engineering applications, a similar trend for SMA composites is expected in aerospace, automotive, and energy conversion and storage related applications. In an effort to aid in this endeavor, a comprehensive overview of advances with regard to SMA composites and devices utilizing them is pursued in this paper. Emphasis is placed on identifying the characteristic responses and properties of these material systems as well as on comparing the various modeling methodologies for describing their response. Furthermore, the paper concludes with a discussion of future research efforts that may have the greatest impact on promoting the development of SMA composites and their implementation in multifunctional structures
    • …
    corecore