1,074 research outputs found

    Planning for steerable needles in neurosurgery

    Get PDF
    The increasing adoption of robotic-assisted surgery has opened up the possibility to control innovative dexterous tools to improve patient outcomes in a minimally invasive way. Steerable needles belong to this category, and their potential has been recognised in various surgical fields, including neurosurgery. However, planning for steerable catheters' insertions might appear counterintuitive even for expert clinicians. Strategies and tools to aid the surgeon in selecting a feasible trajectory to follow and methods to assist them intra-operatively during the insertion process are currently of great interest as they could accelerate steerable needles' translation from research to practical use. However, existing computer-assisted planning (CAP) algorithms are often limited in their ability to meet both operational and kinematic constraints in the context of precise neurosurgery, due to its demanding surgical conditions and highly complex environment. The research contributions in this thesis relate to understanding the existing gap in planning curved insertions for steerable needles and implementing intelligent CAP techniques to use in the context of neurosurgery. Among this thesis contributions showcase (i) the development of a pre-operative CAP for precise neurosurgery applications able to generate optimised paths at a safe distance from brain sensitive structures while meeting steerable needles kinematic constraints; (ii) the development of an intra-operative CAP able to adjust the current insertion path with high stability while compensating for online tissue deformation; (iii) the integration of both methods into a commercial user front-end interface (NeuroInspire, Renishaw plc.) tested during a series of user-controlled needle steering animal trials, demonstrating successful targeting performances. (iv) investigating the use of steerable needles in the context of laser interstitial thermal therapy (LiTT) for maesial temporal lobe epilepsy patients and proposing the first LiTT CAP for steerable needles within this context. The thesis concludes with a discussion of these contributions and suggestions for future work.Open Acces

    Computer-Assisted Planning and Robotics in Epilepsy Surgery

    Get PDF
    Epilepsy is a severe and devastating condition that affects ~1% of the population. Around 30% of these patients are drug-refractory. Epilepsy surgery may provide a cure in selected individuals with drug-resistant focal epilepsy if the epileptogenic zone can be identified and safely resected or ablated. Stereoelectroencephalography (SEEG) is a diagnostic procedure that is performed to aid in the delineation of the seizure onset zone when non-invasive investigations are not sufficiently informative or discordant. Utilizing a multi-modal imaging platform, a novel computer-assisted planning (CAP) algorithm was adapted, applied and clinically validated for optimizing safe SEEG trajectory planning. In an initial retrospective validation study, 13 patients with 116 electrodes were enrolled and safety parameters between automated CAP trajectories and expert manual plans were compared. The automated CAP trajectories returned statistically significant improvements in all of the compared clinical metrics including overall risk score (CAP 0.57 +/- 0.39 (mean +/- SD) and manual 1.00 +/- 0.60, p < 0.001). Assessment of the inter-rater variability revealed there was no difference in external expert surgeon ratings. Both manual and CAP electrodes were rated as feasible in 42.8% (42/98) of cases. CAP was able to provide feasible electrodes in 19.4% (19/98), whereas manual planning was able to generate a feasible electrode in 26.5% (26/98) when the alternative generation method was not feasible. Based on the encouraging results from the retrospective analysis a prospective validation study including an additional 125 electrodes in 13 patients was then undertaken to compare CAP to expert manual plans from two neurosurgeons. The manual plans were performed separately and blindly from the CAP. Computer-generated trajectories were found to carry lower risks scores (absolute difference of 0.04 mm (95% CI = -0.42-0.01), p = 0.04) and were subsequently implanted in all cases without complication. The pipeline has been fully integrated into the clinical service and has now replaced manual SEEG planning at our institution. Further efforts were then focused on the distillation of optimal entry and target points for common SEEG trajectories and applying machine learning methods to develop an active learning algorithm to adapt to individual surgeon preferences. Thirty-two patients were prospectively enrolled in the study. The first 12 patients underwent prospective CAP planning and implantation following the pipeline outlined in the previous study. These patients were used as a training set and all of the 108 electrodes after successful implantation were normalized to atlas space to generate ‘spatial priors’, using a K-Nearest Neighbour (K-NN) classifier. A subsequent test set of 20 patients (210 electrodes) were then used to prospectively validate the spatial priors. From the test set, 78% (123/157) of the implanted trajectories passed through both the entry and target spatial priors defined from the training set. To improve the generalizability of the spatial priors to other neurosurgical centres undertaking SEEG and to take into account the potential for changing institutional practices, an active learning algorithm was implemented. The K-NN classifier was shown to dynamically learn and refine the spatial priors. The progressive refinement of CAP SEEG planning outlined in this and previous studies has culminated in an algorithm that not only optimizes the surgical heuristics and risk scores related to SEEG planning but can also learn from previous experience. Overall, safe and feasible trajectory schema were returning in 30% of the time required for manual SEEG planning. Computer-assisted planning was then applied to optimize laser interstitial thermal therapy (LITT) trajectory planning, which is a minimally invasive alternative to open mesial temporal resections, focal lesion ablation and anterior 2/3 corpus callosotomy. We describe and validate the first CAP algorithm for mesial temporal LITT ablations for epilepsy treatment. Twenty-five patients that had previously undergone LITT ablations at a single institution and with a median follow up of 2 years were included. Trajectory parameters for the CAP algorithm were derived from expert consensus to maximize distance from vasculature and ablation of the amygdalohippocampal complex, minimize collateral damage to adjacent brain structures whilst avoiding transgression of the ventricles and sulci. Trajectory parameters were also optimized to reduce the drilling angle to the skull and overall catheter length. Simulated cavities attributable to the CAP trajectories were calculated using a 5-15 mm ablation diameter. In comparison to manually planned and implemented LITT trajectories,CAP resulted in a significant increase in the percentage ablation of the amygdalohippocampal complex (manual 57.82 +/- 15.05% (mean +/- S.D.) and unablated medial hippocampal head depth (manual 4.45 +/- 1.58 mm (mean +/- S.D.), CAP 1.19 +/- 1.37 (mean +/- S.D.), p = 0.0001). As LITT ablation of the mesial temporal structures is a novel procedure there are no established standards for trajectory planning. A data-driven machine learning approach was, therefore, applied to identify hitherto unknown CAP trajectory parameter combinations. All possible combinations of planning parameters were calculated culminating in 720 unique combinations per patient. Linear regression and random forest machine learning algorithms were trained on half of the data set (3800 trajectories) and tested on the remaining unseen trajectories (3800 trajectories). The linear regression and random forest methods returned good predictive accuracies with both returning Pearson correlations of ρ = 0.7 and root mean squared errors of 0.13 and 0.12 respectively. The machine learning algorithm revealed that the optimal entry points were centred over the junction of the inferior occipital, middle temporal and middle occipital gyri. The optimal target points were anterior and medial translations of the centre of the amygdala. A large multicenter external validation study of 95 patients was then undertaken comparing the manually planned and implemented trajectories, CAP trajectories targeting the centre of the amygdala, the CAP parameters derived from expert consensus and the CAP trajectories utilizing the machine learning derived parameters. Three external blinded expert surgeons were then selected to undertake feasibility ratings and preference rankings of the trajectories. CAP generated trajectories result in a significant improvement in many of the planning metrics, notably the risk score (manual 1.3 +/- 0.1 (mean +/- S.D.), CAP 1.1 +/- 0.2 (mean +/- S.D.), p<0.000) and overall ablation of the amygdala (manual 45.3 +/- 22.2 % (mean +/- S.D.), CAP 64.2 +/- 20 % (mean +/- S.D.), p<0.000). Blinded external feasibility ratings revealed that manual trajectories were less preferable than CAP planned trajectories with an estimated probability of being ranked 4th (lowest) of 0.62. Traditional open corpus callosotomy requires a midline craniotomy, interhemispheric dissection and disconnection of the rostrum, genu and body of the corpus callosum. In cases where drop attacks persist a completion corpus callosotomy to disrupt the remaining fibres in the splenium is then performed. The emergence of LITT technology has raised the possibility of being able to undertake this procedure in a minimally invasive fashion and without the need for a craniotomy using two or three individual trajectories. Early case series have shown LITT anterior two-thirds corpus callosotomy to be safe and efficacious. Whole-brain probabilistic tractography connectomes were generated utilizing 3-Tesla multi-shell imaging data and constrained spherical deconvolution (CSD). Two independent blinded expert neurosurgeons with experience of performing the procedure using LITT then planned the trajectories in each patient following their current clinical practice. Automated trajectories returned a significant reduction in the risk score (manual 1.3 +/- 0.1 (mean +/- S.D.), CAP 1.1 +/- 0.1 (mean +/- S.D.), p<0.000). Finally, we investigate the different methods of surgical implantation for SEEG electrodes. As an initial study, a systematic review and meta-analysis of the literature to date were performed. This revealed a wide variety of implantation methods including traditional frame-based, frameless, robotic and custom-3D printed jigs were being used in clinical practice. Of concern, all comparative reports from institutions that had changed from one implantation method to another, such as following the introduction of robotic systems, did not undertake parallel-group comparisons. This suggests that patients may have been exposed to risks associated with learning curves and potential harms related to the new device until the efficacy was known. A pragmatic randomized control trial of a novel non-CE marked robotic trajectory guidance system (iSYS1) was then devised. Before clinical implantations began a series of pre-clinical investigations utilizing 3D printed phantom heads from previously implanted patients was performed to provide pilot data and also assess the surgical learning curve. The surgeons had comparatively little clinical experience with the new robotic device which replicates the introduction of such novel technologies to clinical practice. The study confirmed that the learning curve with the iSYS1 devices was minimal and the accuracies and workflow were similar to the conventional manual method. The randomized control trial represents the first of its kind for stereotactic neurosurgical procedures. Thirty-two patients were enrolled with 16 patients randomized to the iSYS1 intervention arm and 16 patients to the manual implantation arm. The intervention allocation was concealed from the patients. The surgical and research team could be not blinded. Trial management, independent data monitoring and trial steering committees were convened at four points doing the trial (after every 8 patients implanted). Based on the high level of accuracy required for both methods, the main distinguishing factor would be the time to achieve the alignment to the prespecified trajectory. The primary outcome for comparison, therefore, was the time for individual SEEG electrode implantation. Secondary outcomes included the implantation accuracy derived from the post-operative CT scan, infection, intracranial haemorrhage and neurological deficit rates. Overall, 32 patients (328 electrodes) completed the trial (16 in each intervention arm) and the baseline demographics were broadly similar between the two groups. The time for individual electrode implantation was significantly less with the iSYS1 device (median of 3.36 (95% CI 5.72 to 7.07) than for the PAD group (median of 9.06 minutes (95% CI 8.16 to 10.06), p=0.0001). Target point accuracy was significantly greater with the PAD (median of 1.58 mm (95% CI 1.38 to 1.82) compared to the iSYS1 (median of 1.16 mm (95% CI 1.01 to 1.33), p=0.004). The difference between the target point accuracies are not clinically significant for SEEG but may have implications for procedures such as deep brain stimulation that require higher placement accuracy. All of the electrodes achieved their respective intended anatomical targets. In 12 of 16 patients following robotic implantations, and 10 of 16 following manual PAD implantations a seizure onset zone was identified and resection recommended. The aforementioned systematic review and meta-analysis were updated to include additional studies published during the trial duration. In this context, the iSYS1 device entry and target point accuracies were similar to those reported in other published studies of robotic devices including the ROSA, Neuromate and iSYS1. The PAD accuracies, however, outperformed the previously published results for other frameless stereotaxy methods. In conclusion, the presented studies report the integration and validation of a complex clinical decision support software into the clinical neurosurgical workflow for SEEG planning. The stereotactic planning platform was further refined by integrating machine learning techniques and also extended towards optimisation of LITT trajectories for ablation of mesial temporal structures and corpus callosotomy. The platform was then used to seamlessly integrate with a novel trajectory planning software to effectively and safely guide the implantation of the SEEG electrodes. Through a single-blinded randomised control trial, the ISYS1 device was shown to reduce the time taken for individual electrode insertion. Taken together, this work presents and validates the first fully integrated stereotactic trajectory planning platform that can be used for both SEEG and LITT trajectory planning followed by surgical implantation through the use of a novel trajectory guidance system

    Robot Assisted Laser Osteotomy

    Get PDF
    In the scope of this thesis world\u27s first robot system was developed, which facilitates osteotomy using laser in arbitrary geometries with an overall accuracy below 0.5mm. Methods of computer and robot assisted surgery were reconsidered and composed to a workflow. Adequate calibration and registration methods are proposed. Further a methodology for transferring geometrically defined cutting trajectories into pulse sequences and optimized execution plans is developed

    Confocal Laser Endomicroscopy Image Analysis with Deep Convolutional Neural Networks

    Get PDF
    abstract: Rapid intraoperative diagnosis of brain tumors is of great importance for planning treatment and guiding the surgeon about the extent of resection. Currently, the standard for the preliminary intraoperative tissue analysis is frozen section biopsy that has major limitations such as tissue freezing and cutting artifacts, sampling errors, lack of immediate interaction between the pathologist and the surgeon, and time consuming. Handheld, portable confocal laser endomicroscopy (CLE) is being explored in neurosurgery for its ability to image histopathological features of tissue at cellular resolution in real time during brain tumor surgery. Over the course of examination of the surgical tumor resection, hundreds to thousands of images may be collected. The high number of images requires significant time and storage load for subsequent reviewing, which motivated several research groups to employ deep convolutional neural networks (DCNNs) to improve its utility during surgery. DCNNs have proven to be useful in natural and medical image analysis tasks such as classification, object detection, and image segmentation. This thesis proposes using DCNNs for analyzing CLE images of brain tumors. Particularly, it explores the practicality of DCNNs in three main tasks. First, off-the shelf DCNNs were used to classify images into diagnostic and non-diagnostic. Further experiments showed that both ensemble modeling and transfer learning improved the classifier’s accuracy in evaluating the diagnostic quality of new images at test stage. Second, a weakly-supervised learning pipeline was developed for localizing key features of diagnostic CLE images from gliomas. Third, image style transfer was used to improve the diagnostic quality of CLE images from glioma tumors by transforming the histology patterns in CLE images of fluorescein sodium-stained tissue into the ones in conventional hematoxylin and eosin-stained tissue slides. These studies suggest that DCNNs are opted for analysis of CLE images. They may assist surgeons in sorting out the non-diagnostic images, highlighting the key regions and enhancing their appearance through pattern transformation in real time. With recent advances in deep learning such as generative adversarial networks and semi-supervised learning, new research directions need to be followed to discover more promises of DCNNs in CLE image analysis.Dissertation/ThesisDoctoral Dissertation Neuroscience 201

    Robotically Steered Needles: A Survey of Neurosurgical Applications and Technical Innovations

    Get PDF
    This paper surveys both the clinical applications and main technical innovations related to steered needles, with an emphasis on neurosurgery. Technical innovations generally center on curvilinear robots that can adopt a complex path that circumvents critical structures and eloquent brain tissue. These advances include several needle-steering approaches, which consist of tip-based, lengthwise, base motion-driven, and tissue-centered steering strategies. This paper also describes foundational mathematical models for steering, where potential fields, nonholonomic bicycle-like models, spring models, and stochastic approaches are cited. In addition, practical path planning systems are also addressed, where we cite uncertainty modeling in path planning, intraoperative soft tissue shift estimation through imaging scans acquired during the procedure, and simulation-based prediction. Neurosurgical scenarios tend to emphasize straight needles so far, and span deep-brain stimulation (DBS), stereoelectroencephalography (SEEG), intracerebral drug delivery (IDD), stereotactic brain biopsy (SBB), stereotactic needle aspiration for hematoma, cysts and abscesses, and brachytherapy as well as thermal ablation of brain tumors and seizure-generating regions. We emphasize therapeutic considerations and complications that have been documented in conjunction with these applications

    Cable-driven parallel robot for transoral laser phonosurgery

    Get PDF
    Transoral laser phonosurgery (TLP) is a common surgical procedure in otolaryngology. Currently, two techniques are commonly used: free beam and fibre delivery. For free beam delivery, in combination with laser scanning techniques, accurate laser pattern scanning can be achieved. However, a line-of-sight to the target is required. A suspension laryngoscope is adopted to create a straight working channel for the scanning laser beam, which could introduce lesions to the patient, and the manipulability and ergonomics are poor. For the fibre delivery approach, a flexible fibre is used to transmit the laser beam, and the distal tip of the laser fibre can be manipulated by a flexible robotic tool. The issues related to the limitation of the line-of-sight can be avoided. However, the laser scanning function is currently lost in this approach, and the performance is inferior to that of the laser scanning technique in the free beam approach. A novel cable-driven parallel robot (CDPR), LaryngoTORS, has been developed for TLP. By using a curved laryngeal blade, a straight suspension laryngoscope will not be necessary to use, which is expected to be less traumatic to the patient. Semi-autonomous free path scanning can be executed, and high precision and high repeatability of the free path can be achieved. The performance has been verified in various bench and ex vivo tests. The technical feasibility of the LaryngoTORS robot for TLP was considered and evaluated in this thesis. The LaryngoTORS robot has demonstrated the potential to offer an acceptable and feasible solution to be used in real-world clinical applications of TLP. Furthermore, the LaryngoTORS robot can combine with fibre-based optical biopsy techniques. Experiments of probe-based confocal laser endomicroscopy (pCLE) and hyperspectral fibre-optic sensing were performed. The LaryngoTORS robot demonstrates the potential to be utilised to apply the fibre-based optical biopsy of the larynx.Open Acces

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Review of robotic technology for keyhole transcranial stereotactic neurosurgery

    Get PDF
    The research of stereotactic apparatus to guide surgical devices began in 1908, yet a major part of today's stereotactic neurosurgeries still rely on stereotactic frames developed almost half a century ago. Robots excel at handling spatial information, and are, thus, obvious candidates in the guidance of instrumentation along precisely planned trajectories. In this review, we introduce the concept of stereotaxy and describe a standard stereotactic neurosurgery. Neurosurgeons' expectations and demands regarding the role of robots as assistive tools are also addressed. We list the most successful robotic systems developed specifically for or capable of executing stereotactic neurosurgery. A critical review is presented for each robotic system, emphasizing the differences between them and detailing positive features and drawbacks. An analysis of the listed robotic system features is also undertaken, in the context of robotic application in stereotactic neurosurgery. Finally, we discuss the current perspective, and future directions of a robotic technology in this field. All robotic systems follow a very similar and structured workflow despite the technical differences that set them apart. No system unequivocally stands out as an absolute best. The trend of technological progress is pointing toward the development of miniaturized cost-effective solutions with more intuitive interfaces.This work has been partially financed by the NETT Project (FP7-PEOPLE-2011-ITN-289146), ACTIVE Project (FP7-ICT-2009-6-270460), and FCT PhD grant (ref. SFRH/BD/86499/2012)

    From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots

    No full text
    • 

    corecore