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ABSTRACT  

   

Rapid intraoperative diagnosis of brain tumors is of great importance for planning 

treatment and guiding the surgeon about the extent of resection. Currently, the standard 

for the preliminary intraoperative tissue analysis is frozen section biopsy that has major 

limitations such as tissue freezing and cutting artifacts, sampling errors, lack of immediate 

interaction between the pathologist and the surgeon, and time consuming. 

Handheld, portable confocal laser endomicroscopy (CLE) is being explored in 

neurosurgery for its ability to image histopathological features of tissue at cellular 

resolution in real time during brain tumor surgery. Over the course of examination of the 

surgical tumor resection, hundreds to thousands of images may be collected. The high 

number of images requires significant time and storage load for subsequent reviewing, which 

motivated several research groups to employ deep convolutional neural networks (DCNNs) 

to improve its utility during surgery. DCNNs have proven to be useful in natural and 

medical image analysis tasks such as classification, object detection, and image 

segmentation.  

This thesis proposes using DCNNs for analyzing CLE images of brain tumors. 

Particularly, it explores the practicality of DCNNs in three main tasks. First, off-the shelf 

DCNNs were used to classify images into diagnostic and non-diagnostic. Further 

experiments showed that both ensemble modeling and transfer learning improved the 

classifier’s accuracy in evaluating the diagnostic quality of new images at test stage. 

Second, a weakly-supervised learning pipeline was developed for localizing key features 

of diagnostic CLE images from gliomas. Third, image style transfer was used to improve 

the diagnostic quality of CLE images from glioma tumors by transforming the histology 



  ii 

patterns in CLE images of fluorescein sodium-stained tissue into the ones in conventional 

hematoxylin and eosin-stained tissue slides.  

These studies suggest that DCNNs are opted for analysis of CLE images. They 

may assist surgeons in sorting out the non-diagnostic images, highlighting the key 

regions and enhancing their appearance through pattern transformation in real time. With 

recent advances in deep learning such as generative adversarial networks and semi-

supervised learning, new research directions need to be followed to discover more 

promises of DCNNs in CLE image analysis. 
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INTRODUCTION 

 

This dissertation is focused on deep convolutional neural networks (DCNN) – an 

advanced technology with immense success in computer vision – and its applications to 

analyze confocal laser endomicroscopy (CLE) images from brain tumors. Intricacies 

involved in examining CLE images due to their unique appearance, high noise, blood and 

motion artifacts, and the enormous number of images acquired during each surgery, 

mandates a computer-aided system to support their analysis. This aid could be in the form 

of selecting important frames (e.g. diagnostic classification), highlighting interesting 

areas (e.g. segmentation, feature localization) or quality enhancement (e.g. noise 

removal). 

The rest of this thesis is organized as follows. Chapter 1 reviews the current 

studies using DCNN and other quantitative methods for analyzing CLE data from tumors 

in the brain and other organs. Chapter 2 describes an ensemble model developed for 

diagnostic classification. This model can give a diagnostic score for a given CLE image 

based on the previous examples provided during training process. Chapter 3 presents a 

novel architecture to localize diagnostic features in CLE images from glioma tumors. The 

novelty of this study is that despite supervised learning approaches that utilize pixel-level 

annotated datasets, it learns the features from an image-level annotated dataset (which is 

easier to acquire). Chapter 4 studies how DCNN based style transfer may transform CLE 

images to reduce the noise and make the histopathological features of gliomas more 

identifiable. Quality assessment of modified images (performed by neurosurgeons) 

confirmed improvement through both removing artifacts and amplifying critical 
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structures. Chapter 5 summarizes all the findings and discusses limitations and future 

directions for this research. 
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CHAPTER 1 
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CHAPTER 1 

PROSPECTS FOR THERANOSTICS IN NEUROSURGICAL IMAGING: 

EMPOWERING CONFOCAL LASER ENDOMICROSCOPY DIAGNOSTICS VIA 

DEEP LEARNING  

 

Izadyyazdanabadi M, Belykh E, Mooney M, Eschbacher J, Nakaji P, Yang Y, Preul MC 

ABSTRACT 

Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence 

imaging technology that has potential to increase intraoperative precision, extend 

resection, and tailor surgery for malignant invasive brain tumors because of its 

subcellular dimension resolution. Despite its promising diagnostic potential, interpreting 

the gray tone fluorescence images can be difficult for untrained users. CLE images can be 

distorted by motion artifacts, fluorescence signals out of detector dynamic range, or may 

be obscured by red blood cells, and thus interpreted as nondiagnostic. However, just a 

single CLE image with a detectable pathognomonic histological tissue signature can 

suffice for intraoperative diagnosis. Dealing with the abundance of images from CLE is 

not unlike sifting through a myriad of genes, proteins, or other structural or metabolic 

markers to find something of commonality or uniqueness in cancer that might indicate a 

potential treatment scheme or target. In this review we provide a detailed description of 

bioinformatical analysis methodology of CLE images that begins to assist the 

neurosurgeon and pathologist to rapidly connect on-the-fly intraoperative imaging, 

pathology, and surgical observation into a conclusionary system within the concept of 

theranostics. We present an overview and discuss deep learning models for automatic 
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detection of the diagnostic CLE images and discuss various training regimes and 

ensemble modeling effect on power of deep learning predictive models. Two major 

approaches reviewed in this paper include the models that can automatically classify CLE 

images into diagnostic/nondiagnostic, glioma/nonglioma, tumor/injury/normal categories 

and models that can localize histological features on the CLE images using weakly 

supervised methods. We also briefly review advances in the deep learning approaches 

used for CLE image analysis in other organs. Significant advances in speed and precision 

of automated diagnostic frame selection would augment the diagnostic potential of CLE, 

improve operative workflow and integration into brain tumor surgery. Such technology 

and bioinformatics analytics lend themselves to improved precision, personalization, and 

theranostics in brain tumor treatment. 

Introduction 

According to the American Cancer Society (American Cancer Society, 2018), in 

2018 nearly 24,000 patients will be diagnosed with brain or other nervous system cancer 

and about 17,000 patients will die of the disease. Gliomas represent about 25% of all 

primary brain tumors and about 80% of all malignant tumors of the central nervous 

system (Ostrom et al., 2015). Over half of gliomas are glioblastoma multiforme (GBM), 

which is the most malignant primary brain tumor. GBMs are infiltrative and normally 

lack a clear margin making complete resection nearly impossible. Maximal resection of 

gliomas has been associated with improved prognosis (Almeida, Chaichana, Rincon-

Torroella, & Quinones-Hinojosa, 2015; Sanai, Polley, McDermott, Parsa, & Berger, 

2011), although invasion and the bounds of functional cortex often limit extensive 

removal. Currently, technology for extending the limits of the tumor resection relies on 
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intraoperative image-guided surgical navigation platforms, intraoperative magnetic 

resonance imaging (MRI), and intraoperative ultrasound (Sanai & Berger, 2018). Wide-

field fluorescence illumination through the operative microscope has been utilized more 

recently in an attempt to identify the margins of infiltrating tumors (Maugeri et al., 2018). 

Regardless of the means for identifying the tumor margin, examining tissue 

samples during surgery is paramount, especially for neurosurgery. Rapid intraoperative 

assessment of tumor tissue remains key for planning the treatment and for guiding the 

surgeon to areas of suspected tumor tissue during the operation, or planning adjunct 

intraoperative or post-operative therapy. The standard for the preliminary intraoperative 

histopathological interpretation is frozen section biopsy. However, the frozen section 

biopsy method has inherent complications such as sampling error, tissue freezing and 

cutting artifacts, lack of immediate pathologist interactivity with the surgeon, time spent 

for tissue delivery, processing, and analysis reporting back to the operating room 

(Martirosyan et al., 2014; Tofte, Berger, Torp, & Solheim, 2014). 

Handheld (i.e., size of a pen), portable confocal laser endomicroscopy (CLE) is 

undergoing exploration in brain tumor surgery because of its ability to produce precise 

histopathological information of tissue with subcellular resolution in vivo in real time 

during tumor resection (Belykh et al., 2016; Charalampaki et al., 2015; Foersch et al., 

2012; Martirosyan et al., 2014, 2016; Sanai, Eschbacher, et al., 2011). CLE is a 

fluorescence imaging technology that is used with a combination of fluorescent drugs or 

probes. While a wide range of fluorophores have been used for CLE in gastroenterology 

and other medical specialties, fluorophore options are limited for in vivo human brain use 

due to potential toxicity (Belykh et al., 2016; Foersch et al., 2012; Martirosyan et al., 
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2014; Zehri et al., 2014). Fluorescent dyes currently approved for use in vivo in the 

human brain include fluorescein sodium (FNa), indocyanine green (ICG), and 5-

aminolevulinic acid (5-ALA) (Belykh et al., 2016; Liu, Meza, & Sanai, 2014; Mooney, 

Zehri, Georges, & Nakaji, 2014). Other fluorescent dyes such as acridine orange (AO), 

acriflavine (AF), cresyl violet, etc., can be used on human brain tissue ex vivo 

(Martirosyan et al., 2016, 2018). In neurosurgical oncology, CLE has been used to 

rapidly obtain optical cellular and cytoarchitectural information about tumor tissue as the 

resection progresses and to interrogate the resection cavity (Martirosyan et al., 2016; 

Sanai, Eschbacher, et al., 2011). The details of system operation have been previously 

described in detail (J. Eschbacher et al., 2012; Martirosyan et al., 2014, 2016; Sanai, 

Eschbacher, et al., 2011). Briefly, the neurosurgeon may hold the CLE probe by the hand, 

fixate it with a flexible instrument holder in place, or may glide the probe across the 

tissue surface to obtain an “optical biopsy” with an image acquisition speed ranging 

between 0.8 and 20 frames per second dependent on operation of the particular CLE 

system. The surgeon may place the probe in a resting position at any time and proceed 

with the tumor resection, then take up the probe conveniently as desired. CLE imaging is 

believed to be potentially advantageous for appraisal of tumor margin regions or to 

examine suspected invasion into functional cortex near the final phases of tumor 

resection. The images display on a touchscreen monitor attached to the system. The 

neurosurgeon uses a foot pedal module to control depth of scanning and image 

acquisition. An assistant can also control the acquisition of images using a touchscreen. 

CLE images can be processed and presented as still images, digital video loops showing 

motion, or 3-dimensional digital imaging volumes. CLE is a promising technology with 
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the strategy to optimize or maximally increase the resection of malignant infiltrating 

brain tumors and/or to increase the positive yield of tissue biopsy. CLE may be of 

especial value during surgery when interrogating tissue at the tumor border regions or 

within the surgical resection bed that may harbor remnant malignant or spreading tumor.  

Cancer is the subject of intense investigation into how theranostics may improve 

care and survival. As oncology is continually refined in its quest to understand and treat 

malignant brain tumors, such as GBMs, with which it has had very little success, 

utilization of precision and personalized surgical techniques would seem to be a logical 

step forward, especially as tumor resection is usually the first definitive treatment step. 

Dealing with the abundance of images from CLE is not unlike sifting through a myriad of 

genes, proteins, or other structural or metabolic markers to find something of 

commonality or uniqueness in cancer that might indicate a potential treatment scheme or 

target. CLE data acquisition is vast, burdened with a near-overwhelming number of 

images, many of which appear not useful at first inspection, although they may have 

unrecognized informative image subregions or characteristics. Mathematical algorithms 

and computer-based technology may rapidly assist making decisions upon an incredible 

number of images, such as CLE produces, that has never been encountered in 

neurosurgery. 

Critical success in theranostics relies on the analytical method. Finding meaning 

can be elusive, and what may seem at first meaningful may only be superficial or even a 

spurious result, thus the analytical methodology is critical. In this review we provide a 

detailed description of bioinformatical analysis methodology of CLE images that begins 

to assist the neurosurgeon and pathologist to rapidly connect on-the-fly intraoperative 
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imaging, pathology, and surgical observation into a conclusionary system within the 

concept of theranostics. We describe methodology of deep convolutional neural networks 

(DCNNs) applied to CLE imaging focusing on neurosurgical application and review 

current modeling outcomes, elaborating and discussing studies aiming to suggest a more 

precise and tailored surgical approach and workflow for brain tumor surgery.  

Demanding imaging information load of confocal laser endomicroscopy 

Although the number of non-diagnostic CLE images has been shown to be high, 

the first diagnostic frames were acquired at an average after the 14th frame (about 17 sec) 

in vivo (Martirosyan et al., 2016). This is certainly faster than an intraoperative frozen 

section biopsy preparation and diagnostic interpretation. Nevertheless, the high number 

of non-diagnostic images imposed a significant time requirement and image storage load 

for subsequent image reviews, leading us and other groups to employ deep learning 

algorithms and neural networks that could potentially sort out non-diagnostic frames, 

while retaining only the diagnostic ones (M. Izadyyazdanabadi et al., 2017; 

Mohammadhassan Izadyyazdanabadi, Belykh, Mooney, et al., 2018). Attempts to use 

advanced feature coding schemes to classify cellular CLE images of brain tumor samples 

stained ex vivo with AF have been reported (Kamen et al., 2016). Advantageously, 

acquired CLE images may be exchanged and translated for off-site digital histopathology 

review. However, large amounts of data may create an information overload that requires 

novel solutions for data CLE management and storage.  

While CLE has obvious benefits of rapid on-the-fly digital imaging of tissue that 

can obviate long wait times for tissue interpretation and be quickly communicated 

between surgeons and pathologists, there are challenges to manage the amount of 
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information provided. Current CLE systems can generate hundreds to thousands of 

images over the course of examination of the tumor or resection cavity which may take 

only a few minutes. It has been estimated that since CLE technology was put into use in 

2011 for gastrointestinal diagnosis, over 100 million images have been created, with 30 

million images created in the past year (Loiseau, 2017). The number of images may 

become rapidly overwhelming for the neurosurgeon and neuropathologist when trying to 

review and select a diagnostic or meaningful image or group of images as the surgical 

inspection progresses. CLE is designed to be used in real time while the surgeon operates 

on the brain, but overcoming the barriers of image selection for diagnosis is a key 

component for making CLE a practical and advantageous technology for the 

neurosurgical operating room. 

Other barriers for revealing underlying meaningful histology are motion and 

blood artifacts (especially) that are present in some of the CLE images, especially for 

CLE systems functioning in the blue laser range versus near-infrared (Belykh et al., 2016; 

Martirosyan et al., 2011, 2014, 2016; Sankar et al., 2010). In addition, the 

neuropathologist must begin to work in a world of fluorescence images showing shades 

of gray, black and white or artificial colorization, where before natural colored stains 

existed.  The display of suboptimal nondiagnostic frames interferes with the selection of 

and focus upon diagnostic images by the neurosurgeon and pathologist throughout the 

surgery to make a correct intraoperative interpretation. A previous study of CLE in 

human brain tumor surgeries found that about half of the acquired images were 

interpreted as nonuseful (i.e., nondiagnostic) due to an inherent nature of the handheld 

microscopic probe with a narrow field of view that is subject to motion and blood 
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artifacts or lack of discernible or characteristic features of the tissue itself (Martirosyan et 

al., 2016). These artifacts or inherent aspects of operation of the probe include unsteady 

hand movements, moving the probe while in imaging mode across the tissue surface, and 

irregularities of the tissue surface such as a tumor resection bed in the cortex that includes 

tissue crevices, surface irregularities, bleeding, movement of the cortex with arterial 

pressure and respiration, etc.  

 

Figure 1.1  

Representative Confocal Laser Endomicroscopy (CLE) images from glioma and 

meningioma acquired with Optiscan 5.1, Optiscan Pty., Ltd. (a) anaplastic 

oligodendroglioma, (b) recurrent astrocytoma, (c) glioblastoma multiforme (GBM), (d) 

fibrous meningioma (grade I), (e) chordoid meningioma (grade II), (f) atypical 

meningioma (grade II). Field of view = 475 × 475 µm, resolution = 1024 × 1024 
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pixels, bar = 100 µm.  (Glioblastomas are a brain malignancy of astrocytic cell origin, 

show wild pleomorphism, proliferation of abnormal tumor-associated vasculature, 

necrosis, and vast brain invasion. Meningiomas arise from meningothelial cells and are 

usually attached to the dura. Although of a common origin, meningiomas have 

histological pattern subtypes and more aggressive types show atypical or anaplastic 

features. They do not display malignant brain infiltration.(Louis et al., 2007)) 

Thus, although imaging is acquired on-the-fly, an image discrimination system to 

optimally sift out and identify useful images would substantially improve the 

performance of the CLE.  Manually filtering out the nondiagnostic images before making 

an intraoperative decision is challenging due to the large number of images acquired, the 

novel and frequently unfamiliar appearance of fluorescent stained tissue features 

compared to conventional histology. Interpretation of fluorescence CLE images for 

routine clinical pathology has only recently been trained and studied. Great variability 

among images from the same tumor type, and potential similarity between images from 

other tumor types for the untrained interpreter (Figure 1.1) make simple image filters and 

thresholding unreliable, thus requiring advanced computational methods.  

Theranostics and confocal laser endomicroscopy 

Investigations into cancer genetics have produced treatment pathways by the 

application of bioinformatics methods leading to the concept of theranostics. As advances 

in molecular science have enabled “fingerprinting” of individual tumor with genomic and 

proteomic profiling, personalized theranostic agents can be developed to target specific 

tumor microenvironment compartments (Stasinopoulos et al., 2011). Although 

theranostic imaging provides new opportunities for personalized cancer treatment 



  13 

through the interface of chemistry, molecular biology, and imaging, quantitative image 

analysis remains as one of its challenges (M. F. Penet, Chen, Kakkad, Pomper, & 

Bhujwalla, 2012). More sophisticated image analysis methods are required to visualize 

and target every aspect of the tumor microenvironment in combination with molecular 

agents (M.-F. Penet, Krishnamachary, Chen, Jin, & Bhujwalla, 2014). CLE technology 

potentially allows a more personalized, precise, or tailored approach to the surgical 

procedure to remove an invasive brain tumor because of its capability to image at cell 

resolution intraoperatively on-the-fly. Fluorescent stains or markers allow the imaging 

and potential targeting of cells – nearly we are at the surgery of the “cell” as specific 

stains or fluorescent markers are developed. Whether, this technology has practicality or 

yields survival benefit for malignant invasive brain tumors awaits the results of the first 

substantial in vivo explorations.  

Deep learning application in CLE brain tumor diagnostics 

Deep convolutional neural networks (DCNNs) are a subset of “deep learning” 

technology, a machine learning subfield that has achieved immense recognition in the 

field of medical image analysis. Advances in computer-aided detection (CADe) and 

diagnosis (CADx) systems in ultrasound, magnetic resonance imaging, and computed 

tomography (CT) have been reviewed previously (Greenspan, van Ginneken, & 

Summers, 2016). There have been only a few studies that investigated deep learning 

application to enhance the diagnostic utility of CLE imaging in brain tumors. The 

utilization of deep learning approaches is mainly focused around three goals: diagnostic 

image detection, tumor classification, and feature localization originating from image 

segmentation. Here we provide an overview of the basics of a deep learning methodology 
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applicable to CLE images, summarize current results of brain tumor CLE image analysis 

using DCNNs, and juxtapose these with related works in other cancers. 

A deep convolutional neural network (DCNN) consists of several layers, each 

having multiple units called feature maps (Yann LeCun, Bengio, & Hinton, 2015). The 

first layer includes the input images that will be analyzed. To produce the second layer’s 

feature maps, each pixel of layer 2 is connected to a local patch of pixels in layer 1 

through a filter bank followed by an activation function, which is usually a rectified 

linear unit (ReLU) because of its fast-to-compute property compared to other functions 

(Glorot, Bordes, & Bengio, 2011). Model parameters are learned by minimizing the loss 

(the error between model prediction and the ground truth) using an optimization 

algorithm in two steps: forward and backward propagations (Le Cun Jackel, B. Boser, J. 

S. Denker, D. Henderson, R. E. Howard, W. Hubbard, Cun, Denker, & Henderson, 1990; 

Rumelhart, Hinton, & Williams, 1986). To adjust the weights of filter banks, after each 

iteration of forward propagating the network, the derivatives of the loss function with 

respect to different weights are calculated to update the weights in a backward 

propagation (Le Cun Jackel, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. 

Hubbard et al., 1990). A pooling layer accumulates the features in a smaller region by 

replacing windows of a feature map with their maximum or the average value. By 

stacking several convolutional, pooling, and fully connected layers, a DCNN can learn a 

hierarchy of visual representations to recognize class-specific features in images (Yann 

LeCun et al., 2015). Figure 1.2 shows an example network architecture and how the 

feature maps are calculated to perform diagnostic brain tumor image classification. 
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 Figure 1.2  

Deep convolutional neural network (DCNN) architecture. A schematic diagram of 

AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), a famous DCNN architecture that was 

trained on CLE images for diagnostic classification by Izadyyazdanabadi et al. 

(Mohammadhassan Izadyyazdanabadi, Belykh, Mooney, et al., 2018), is shown in (a). 

Different feature maps of the first convolutional layer (color images) were calculated by 

convolving different filters (red squares) with the corresponding regions of the input 

image (illustrated in (b)). 

The validity of recommendations resulted from the DCNN analysis greatly 

depends upon the ground truth established by the expert professional. Unlike other 

conventional surgical tissue examination modalities like hematoxylin and eosin (H&E) 

stained histopathological slides, the CLE images are novel to neuropathologists and 

neurosurgeons. Since the beginning of CLE investigation in brain tumor surgery, the 

ground truth was established by surgical biopsy and subsequent standard histopathology 
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analysis acquired from the same location as the CLE "optical biopsy" and correlating the 

features on CLE images to the histopathological sections. Neuropathologists and 

neurosurgeons at a few select centers are correlating CLE features to histopathology in 

order to establish an expertise in reading CLE images, and such investigations are 

ongoing (Charalampaki et al., 2015; J. Eschbacher et al., 2012; Martirosyan et al., 2016). 

The experience in CLE image interpretation is imperative for meaningful DCNN 

analysis. However, as described later, delving deeper into the DCNN analysis of the CLE 

while using ground truth established by the standard histopathology, results in 

identification of novel CLE features and allows many more images that may be termed 

suboptimal to in fact become useful. The improvement in workflow and diagnostics, and 

thus theranostics in CLE, will be dependent upon robust computer learning architecture. 

Tumor classification 

One of the first deep learning approaches for making a diagnosis of a brain tumor 

type based on the CLE images was a cascaded deep decision network (DDN), a type of 

DCNN (N. Murthy et al., 2017). A network was trained for classification of glioma and 

meningioma images using their previously proposed multi-stage DDN architecture 

(Murthy, Singh, Chen, Manmatha, & Comaniciu, 2016) for developing the model. The 

training process was as follows: LeNet, a relatively shallow CNN architecture initially 

proposed by LeCun, et al. (Y. LeCun et al., 1995) for handwritten digit recognition, was 

trained on the training dataset until it produced descent classification results on validation 

images. Then, the images were divided into two categories: easy images (classified 

correctly by the model with high confidence) and challenging images (classified either 

wrongly or even correctly yet with a low confidence). The challenging images were 
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passed to the next stage for retraining. In the second stage, a convolutional stage and two 

fully connected layers and a softmax layer were stacked to the previous network and 

trained, while freezing the previous layers' parameters. After training the second stage on 

the challenging images from stage 1, the same process was repeated (finding confidence 

threshold, filtering the easy images, passing the challenging images to next stage, 

stacking the new layers to the previous network) until the model fails to improve on the 

validation dataset. After removing uninformative images using image entropy, a dataset 

was created of about 14,000 GBM and 12,000 meningioma images.  The final proposed 

DDN could classify the GBM images with 86% accuracy while outperforming other 

methods such as SVM classifier applied on manual feature extraction, pre-trained 

networks, and shallow CNNs. (Murthy et al., 2016) 

We have previously developed an architecture to classify CLE images from 

experimental brain gliomas into three classes (Belykh et al., 2018): tumor tissue, injured 

brain cortex tissue (no tumor) and normal brain cortical tissue. This study was undertaken 

to examine the ability of CLE image analysis to discriminate between tumor tissue, tissue 

subjected to the minor tissue trauma that surgical resection produces, and normal brain 

tissue. FNa may extravasate in the first two situations potentially causing surgeon 

confusion. This classification model was inspired by Inception, which is a DCNN for 

classifying generic images. (Szegedy et al., 2015) Due to the small size of our training 

dataset (663 diagnostic images selected from 1,130 images acquired), we used fine-

tuning to train the model with a learning rate of 0.001. We used a nested left-out 

validation method to estimate the model performance on images from new biopsies. 

Images were divided into 3 data sets based on biopsy level: training (n=446), validation 



  18 

(n=217), and test set (n=40).  Model performance increased to 88% when images were 

classified using 2 classes only (tumor tissue or non-tumor tissue) which was only slightly 

lower than the neuropathologists' mean accuracy (90%). The sensitivity and specificity of 

the model in discriminating a tumor region from non-tumor tissue were 78% and 100%, 

respectively. The Area Under the ROC Curve (AUC) value for tumor/non-tumor tissue 

classification was 93%. Subgroup analysis showed that the model could discriminate 

CLE images from tumor and injury with 85% accuracy (mean of accuracy for 

neuropathologists was 88%), 78% sensitivity and 100% specificity. We expect that 

performance of the model will be improved in terms of accuracy and speed by going 

forth from a small experimental data set to operation on large clinical data sets. 

Diagnostic image classification 

Entropy-based filtering is one of the simplest ways to filter out non-diagnostic 

CLE images. In a study by Kamen, et al. (Kamen et al., 2016), CLE images obtained 

from brain tumors were classified automatically. An entropy-based approach was used to 

remove the noninformative images from their dataset and two common brain tumors 

(meningioma and glioma) were differentiated using bag of words and other sparse coding 

methods. However, entropy might not be an ideal method since many nondiagnostic 

images have nearly as high entropy as diagnostic ones, as shown in Figure 1.3. Due to the 

large number of CLE images produced during surgery, importance of data pruning, as has 

been shown in a previous study (Belykh et al., 2018), and the incompetency of entropy 

method, we developed a deep learning model for reliable classification of images into 

diagnostic and non-diagnostic categories (Mohammadhassan Izadyyazdanabadi, Belykh, 

Mooney, et al., 2018).  
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Figure 1.3  

Entropy of diagnostic (orange) and nondiagnostic (blue) images. The overlap 

between the entropy of diagnostic and nondiagnostic CLE frames limits its feasibility for 

precise discrimination between the two classes(M. Izadyyazdanabadi et al., 2017). 

A blinded neuropathologist and 2 neurosurgeons proficient with CLE image 

interpretation individually annotated all the images in our dataset. We developed single 

and ensemble models using two network architectures (Mohammadhassan 

Izadyyazdanabadi, Belykh, Mooney, et al., 2018). The ensemble of DCNN models for 

detecting diagnostic CLE images achieved 85% agreement with the ground truth. These 

results indicated that when only CLE images were provided, the model could detect the 

diagnostic CLE images with better agreement to the H&E-aided annotation. The example 

CLE images assessed with our diagnostic analysis model are presented on Figure 1.4. In 

order to compare the power of deep learning models with filtering approaches used in 

other related studies, we used entropy as a baseline (Kamen et al., 2016; N. Murthy et al., 
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2017). Subsequent evaluation of our test dataset of CLE images suggested that DCNN-

based diagnostic evaluation has a higher agreement with the ground truth compared to the 

entropy-based quality assessment (Table 1.1). 

 

 Figure 1.4  

Unsupervised semantic localization of the CLE histopathological 

features(Mohammadhassan Izadyyazdanabadi, Belykh, Mooney, et al., 2018). First row 

displays the original CLE images, along with the probability of each image being 

diagnostic (D) and nondiagnostic (ND), estimated by the model. Red arrows mark the 

cellular regions recognized by a neurosurgeon. Second row shows the corresponding 

activation of neurons from the first layer (conv1, neuron 24) (shallow features learned by 

the model); it highlights some of the cellular areas (in warm colors) present in the images 

which were identified as diagnostic regions by the neurosurgeon reviewer. The color bars 

show the relative diagnostic value for each color: red marks the most diagnostic regions 
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(1.0) and blue marks the nondiagnostic regions (0.0). Field of view = 475 × 475 µm, 

resolution = 1024 × 1024 pixels, bar = 100 µm.  

 

Model Accuracy (%) AUC 

DCNN 1 78.8 0.87 

DCNN 2 81.8 0.89 

Entropy-based 57.2 0.71 

 

Table 1.1  

DCNN and entropy-based performance in diagnostic image 

classification(Mohammadhassan Izadyyazdanabadi, Belykh, Mooney, et al., 2018). 

DCNN methods showed higher agreement with the neurosurgeons’ evaluation. 

DCNN2(Szegedy et al., 2015) has a deeper architecture with fewer parameters than 

DCNN1(Krizhevsky et al., 2012). 

 

Feature localization and image segmentation 

Most of the current object localization studies in medical imaging use supervised 

learning that requires an annotated dataset for the training process. Physicians need to 

review the images and mark the location of interesting areas for each image, thus making 

it a costly and time-consuming process. Weakly supervised localization (WSL) methods 

have been proposed in computer vision to localize features using a weaker annotation, 

i.e., image-level labels instead of pixel-level labels.  

We have previously investigated feature localization on brain tumor CLE 

images.(Mohammadhassan Izadyyazdanabadi, Belykh, Mooney, et al., 2018) Following 
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the training and testing of the DCNN model for diagnostic image classification, 8 out of 

384 reviewed colored neuron activation maps from the first layer of the model were 

selected for 4 diagnostic CLE images representative for glioma. Selected activation maps 

highlighted diagnostic tissue architecture patterns in warm colors. Particularly, selected 

maps emphasized regions of optimal image contrast, where hypercellular and abnormal 

nuclear features could be identified, and could serve as diagnostic features for image 

classification (Figure 1.4, bottom row). Additionally, a sliding window method was 

successfully applied to highlight diagnostic aggregates of abnormally large malignant 

glioma cells and atypically hypercellular areas (Mohammadhassan Izadyyazdanabadi, 

Belykh, Mooney, et al., 2018) (Figure 1.4). Such feature localization from the hidden 

layers makes the interpretation of the model results more illustrative and objective, 

especially from a clinical point of view where diagnosis cannot be made without 

sufficient evidence. Additionally, model-based feature localization can be performed 

considerably faster than human inspection and interpretation. 

In another study, we applied a state of the art WSL approach (Zhou, Khosla, 

Lapedriza, Oliva, & Torralba, 2016) to localize glioma tumor features in CLE images 

(Mohammadhassan Izadyyazdanabadi, Belykh, Cavallo, et al., 2018). In this method, a 

global average pooling (GAP) layer was stacked to the convolutional layers of the 

network to create diagnostic feature maps. Representative localization and segmentation 

results are shown in Figures 1.5 and 1.6. A neurosurgeon with expertise in CLE imaging 

identified and highlighted the cellular areas in each CLE image (first column of both 

figures). By inserting the images and their labels (i.e., overall diagnostic quality: 
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diagnostic and nondiagnostic) to the network, the model automatically learns the primary 

diagnostic features of gliomas (e.g., cellular areas).  
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Figure 1.5 

Histological glioma feature localization with a weakly supervised approach: 

global average pooling (GAP)(Mohammadhassan Izadyyazdanabadi, Belykh, Cavallo, et 

al., 2018). Left column shows CLE images from glioma cases ((a, c) recurrent infiltrating 

astrocytoma (e) oligodendroglioma). Red arrows mark the cellular regions recognized by 

a neurosurgeon. Second column shows the important regions detected with the model 

(highlighted in warm colors). The color bars show the relative diagnostic value for each 

color: red marks the most diagnostic regions (1.0) and blue marks the nondiagnostic 

regions (0.0). Field of view = 475 × 475 µm, resolution = 1024 × 1024 pixels, bar = 

100 µm. 

In Figure 1.5, the first column shows three CLE images along with the annotated 

diagnostic areas (red arrows) by a neurosurgeon, while the second column presents the 

diagnostic areas that the model highlighted with warm colors. The color bar near to each 

intensity map shows the relative diagnostic value for each color -- red marks the most 

diagnostic regions and blue marks the nondiagnostic regions. In Figure 1.6, after 

producing the diagnostic feature maps, each image was then segmented into diagnostic 

and nondiagnostic regions by thresholding (highlighted in green and purple); the 

recognized diagnostic regions correlated well with the neurosurgeon’s annotation. This 

method has two potential benefits: 1) improvement of the efficiency of glioma CLE 

imaging by recognizing the present diagnostic features and guiding the surgeon in tumor 

resection; and, 2) further investigation of the detected diagnostic regions may extend the 

physician’s perceptions about the glioma appearance and its phenotypes in CLE images. 
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 Figure 1.6 

 Diagnostic image segmentation in CLE images of gliomas with GAP 

approach(Mohammadhassan Izadyyazdanabadi, Belykh, Cavallo, et al., 2018). First 

column (a, d, e) shows the original diagnostic images from glioma cases ((a) recurrent 

GBM, (d) recurrent infiltrating astrocytoma, (e) anaplastic oligodendroglioma). Red 

arrows mark the cellular regions recognized by a neurosurgeon. Second column shows 

the segmented key features highlighted in purple. Field of view = 475 × 475 µm, 

resolution = 1024 × 1024 pixels, bar = 100 µm. 

Deep learning-empowered CLE diagnostics in other cancers 

Oral squamous cell carcinoma 

Oral squamous cell carcinoma (OSCC) is a common cancer affecting 1.3 million 

cases worldwide annually (Ferlay et al., 2015). Because of the insufficient precision in 

current screening methods, most OSCC cases are unfortunately diagnosed at advanced 

stages leading to poor clinical outcome. CLE has allowed in vivo examination of OSCC 

which may lead to earlier and more effective therapeutic outcomes during examination 

(Thong et al., 2007). In a study by Aubreville, et al. (Aubreville et al., 2017), a CNN was 

trained to classify normal and carcinogenic CLE image patches. A dataset of 11,000 CLE 

images was evenly distributed between the two classes. The images were acquired from 

12 patients and images with artifact (motion, noise, mucus or blood) were excluded, 

leading to 7,894 good quality images.  Consequently, each image was divided into 21 

overlapping patches, all of which were labeled the same as the whole image. The artifact 

patches were removed from images and the remaining ones were normalized to have zero 
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mean and unit standard deviation. Image rotation was used to augment the image dataset 

size. 

LeNet was used to train the model for patch classification. This network has only 

two convolutional and one fully connected layers with drop out. The model combined the 

probability scores from each constituent patch as being carcinogenic to arrive at the final 

prediction for the whole image. The network was trained from scratch with initial 

learning rate of 0.001 and Adam optimizer to minimize the cross-entropy. 

To compare the proposed method with conventional textural feature-based 

classification approaches, two feature extraction methods (Gray-Level Co-occurrence 

Matrix (GLCM) and Local Binary Patterns (LBP)) and a classification approach 

(Random Forest (RF)) methods were combined to discriminate images at two scales (1.0 

x and 0.5 x). Furthermore, CNN transfer learning was explored by shallow fine-tuning 

the last fully connected layer of the pretrained Inception network (Szegedy, Vanhoucke, 

Ioffe, Shlens, & Wojna, 2016), using the original dataset. For cross validation, a leave-

one-patient-out cross validation was followed, meaning images were used from one 

patient for testing the model and the remaining cases for training the model. 

Both the patch-based and whole image CNN approaches outperformed the 

textural feature extraction and classification methods. The proposed CNN method could 

differentiate the normal and carcinogenic CLE images with 88% accuracy, 87% 

sensitivity and 90% specificity when applied at 0.5x scale (the 1x scale produced 

suboptimal results). The shallow fine-tuned Inception model could also achieve 87% 

accuracy, 91% sensitivity and 84% specificity. The AUC values for the two methods (the 

proposed CNN and Inception) were roughly similar (95%). The AUC values for feature 
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extraction methods and RF classifier was significantly lower than CNN methods (RF-

GLCM = 81%, RF-LBP = 89%). Interestingly, the trained model on OSCC CLE images 

was successfully applied for classification of CLE images from a different organ site, 

vocal cord squamous cell carcinoma. 

In transfer learning with pretrained Inception the authors only modified the 

weights of the last layer, while keeping the previous layers parameters stationary. 

However, studies (Mohammadhassan Izadyyazdanabadi, Belykh, Mooney, et al., 2018; 

Tajbakhsh et al., 2016) have shown that deeply fine-tuning the pretrained networks may 

help the network adapt better to the new dataset by upgrading the feature extraction 

layers as well. However, shallow fine tuning only allows updating the classification layer, 

which might not be sufficient for optimal performance. 

Vocal cord cancer 

To differentiate between healthy and cancerous tissue of vocal cords, Vo, et al. 

(Vo, Jaremenko, Bohr, Neumann, & Maier, 2017) developed a Bag of Words (BoW) 

based on textural and CNN features using a dataset of 1,767 healthy and 2,657 

carcinogenic images from five patients. Small patches with 105×105 pixel size were 

extracted and augmented (with rotation), leading to 374,972 patches. For the textural 

feature-based classification, each image was represented by the concatenation of all its 

constituent patch-driven feature descriptors. For the CNN features, a LeNet shallow CNN 

was trained on the patch dataset for a binary classification (with SGD optimizer; 

momentum = 0.9 and learning rate = 0.0005). To create the visual vocabulary, two 

feature encoding (Fisher vector(Sánchez, Perronnin, Mensink, & Verbeek, 2013) and 

Vector of Locally Aggregated Descriptors (VLAD) (Jégou, Douze, Schmid, & Pérez, 
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2010)) and two classification methods (SVM and RF) were tested for comparing their 

classification performance. 

A Leave-One-Sequence-Out (LOSO) cross-validation was used to evaluate these 

methods. The CNN features combined with VLAD encoder and RF classifier achieved an 

accuracy of 82% and sensitivity of 82% on the test images that surpassed other 

approaches. However, despite its promising accuracy, the proposed multi-stage approach 

(patch creation, feature extraction, feature encoding, clustering and classification) is 

much more complicated than the current end-to-end DCNN architectures, which have all 

these procedures embedded in their stacked layers. However even with this approach, the 

CNN features could outperform textural features extracted manually (Vo et al., 2017). 

Lung cancer 

Gil, et al. (Gil, 2017) investigated visual patterns in bronchoscopic CLE images 

for discriminating benign and malignant lesions and aiding lung cancer diagnosis. A 

pretrained network developed by the Visual Geometry Group (VGG) (Chatfield, 

Simonyan, Vedaldi, & Zisserman, 2014) on a large generic image dataset was used for 

feature extraction and reduced the resulting feature vector dimension from 4,096 to 100, 

while preserving roughly 90% of the original feature vector energy for computational 

efficiency. Three different methods (k-Means, k-Nearest Neighbor (kNN), and their 

proposed topology-based approach) were applied on the feature codes to group images 

with similar features together and intrinsically discriminate images from benign and 

malignant tissue. Model predictive power was compared with the final diagnosis on 162 

images from 12 cases (6 with malignant and 6 with benign lesions) and achieved 85% 

accuracy, 88% sensitivity, and 81% specificity. 
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Inter-observer studies were performed with three observers to compare the 

subjective visual assessment of images with the model performance (the observers were 

blinded to the final diagnosis). Interestingly, the three observers could make a correct 

diagnosis only for 60% of the selected CLE images (sensitivity: 73% for malignant and 

36% for benign images) on average. In the second experiment, two observers made a 

final diagnosis after examining all the images from each case. The model was also 

supplied with all the images from each of the 12 cases and rendered a final decision for 

each case. While the model could differentiate malignant and benign cases with 100% 

accuracy (12/12), the two observers could confirmatively make the correct diagnosis only 

in 67% (8/12) of cases. 

Although the observers’ knowledge in the domain might have affected their 

performance, the objective results suggest that the bronchoscopic CLE images contain 

enough visual information for determining the malignancy of the tumor and the VGG 

network is an excellent candidate for extracting these discriminative features. The 

proposed topology-based clustering method could outperform common clustering and 

classification methods (K-means and kNN) in differentiating the two classes of images. 

Despite its advantages, the proposed method had two limitations. First, even 

though it can differentiate images from the two classes, it cannot predict the label for 

each cluster. The method can separate the images into two groups, but it is not able to 

give information about their labels. Second, it is unclear if there was independent 

development (for determining model parameters) and test datasets to avoid bias in model 

development. 

Gastrointestinal tract cancer 
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Hong, et al. (Hong, Park, & Park, 2017) proposed a CNN architecture for 

classifying CLE images from three subcategories of Barret's esophagus: intestinal 

metaplasia (IM), gastric metaplasia (GM), and neoplasia (NPL). The network was 

composed of four convolutional layers and two max-pooling and fully connected layers. 

The size of convolutional kernels was 3×3 and zero padding was also used. Stride of 

max-pooling was 2×2 which was applied in layers two and four. Fully connected layers 

followed the fourth convolutional layer, and each had 1,024 neurons. The output label 

was determined by a softmax layer which produced 3 probabilities for each subcategory. 

The network was trained on the augmented CLE images of Barret's esophagus 

(155 IM, 26 GM and 55 NPL) for 15,000 iterations with the batch size of 20 images. 

Cross-entropy was used as a cost function in their experiment. The trained model was 

then tested on 26 independent images (17 IM, 4 GM and 5 NPL) for validation. The 

imbalance in size of different subcategories caused the model to observe more frequent 

instances of IM and NPL compared to GM during training. This created a bias in the 

model prediction which can be seen in the high accuracy for predicting IM and NPL 

instances (100% and 80%) and very low accuracy for predicting GM instances (0%). 

However, CLE is being used with increasing frequency for detecting pre-cancerous and 

cancerous lesions in the gastrointestinal (GI) tract. The highest numbers of CLE images 

have been acquired from the GI tract where such imaging technology has been approved 

for use clinically for a few years. 

CONCLUSIONS 

Precision, personalization, and improved therapeutics in medicine can only 

progress with improved technology, analysis, and logic. The science and philosophy of 
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theranostics is the nexus of these. Several studies have emphasized the importance of  

theranostic imaging in personalized treatment of cancer (M.-F. Penet et al., 2014; M. F. 

Penet et al., 2012; Stasinopoulos et al., 2011). Medical data acquired on patients has 

become more voluminous, and it will continue in such manner. The amount of data 

available and necessary for analysis has already eclipsed human capabilities. For 

example, the new technology of handheld surgical tools that can rapidly image at the 

cellular resolution on-the-fly produces more images than a pathologist can possibly 

examine. As CLE technology develops, there will not be one fluorophore, but multiple 

fluorophores applied directly to the tumor or administered to the patient varying from 

nonspecific to specifically identifying cell structures or processes used simultaneously 

and presented in a myriad of image combinations for greatly varying histopathology. 

Analytic methods for selection and interpretation of the CLE images is already being 

explored to be incorporated into CLE operating systems so that the unit display can 

differentiate tissue and label the image as well with near-on-the-fly capabilities. 

Computational hardware power and effective analytic model infrastructure are the only 

two limits. CLE systems and other related systems are being produced by several imaging 

technology companies and groups and are close to approval with European and American 

medical device regulatory agencies. However, it seems prudent given the enormous 

numbers of images already produced and those projected with adoption of such 

technology, that there is immediate exploration into such image analysis methods to 

allow the pathologist and neurosurgeon to make optimal decisions based on the CLE 

imaging, and to take advantage of the on-the-fly technology proposition. 
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Success or meaningful diagnostic and therapeutic indication in the burgeoning 

field of theranostics is only as good as the data incorporated and the methodology 

employed for analysis and to extract meaning, including its validation. In many cases 

relatively simple statistics have been used for analysis, while pattern recognition or 

neural network techniques may be used in more complicated scenarios. For images such 

as from CLE, the whole image may be important, or perhaps only certain subregions, or 

crucial data may lie in regions on cursory inspection deemed to be nonuseful, such as in 

areas of motion artifact. Complicating this situation are the overwhelming numbers of 

images yielded from the CLE application. Clinical decision environments currently 

require assistance to not only access and categorize the collection of images, but to also 

draw conclusions and inferences that have critical diagnostic and treatment 

consequences. A pathologist and neurosurgeon will not have time to inspect a thousand 

images per case, especially in the midst of CLE use intraoperatively. Therefore, a 

theranostics approach, i.e., the nexus of biological data, rapid informatics scrutiny and 

evaluation, and tailored human decision, must be employed as we venture into realms of 

ever increasing information in neurosurgery in search of personalization and precision, 

especially as we have encountered it first in the surgery and treatment of malignant 

invasive brain tumors. Additionally, pathologists and neurosurgeons will need to become 

versed in the methodology of the CLE decision making processes to have confidence in 

diagnostic labels and to base treatment decisions upon them, thus the reason for 

presenting details of analytical architectures in this review. 

Two DCNN based approaches are reviewed in this paper: models that can 

automatically classify CLE images (classifications of images that are 
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diagnostic/nondiagnostic (Mohammadhassan Izadyyazdanabadi, Belykh, Mooney, et al., 

2018) (M. Izadyyazdanabadi et al., 2017), tumor/injury/normal (Belykh et al., 2018)) and 

models that can localize histological features from diagnostic images using weakly 

supervised methods (Mohammadhassan Izadyyazdanabadi, Belykh, Cavallo, et al., 2018). 

Manually annotated in-house datasets were used to train and test these approaches in 

most of the studies. For the tumor classification purpose, data pruning could enhance the 

results for both DCNN models and outperformed manual feature extraction and 

classification (Kamen et al., 2016). Fine-tuning and ensemble modeling could enhance 

the model performance in the diagnostic image classification. The ensemble effect was 

stronger in DT and DFT than SFT developed models. 

Despite extensive research on CLE clinical application in neurosurgery (Belykh et 

al., 2016; Charalampaki et al., 2015; J. Eschbacher et al., 2012; Foersch et al., 2012; 

Martirosyan et al., 2016; Sanai, Eschbacher, et al., 2011; Zehri et al., 2014), there have 

been few attempts in the automatic analysis of these images to enhance CLE clinical 

utility.  Deep learning could be beneficial in filtering the nondiagnostic images with 

higher speed and reasonable accuracy compared to subjective assessment. (M. 

Izadyyazdanabadi et al., 2017) Our inter-rater agreement evaluation (Mohammadhassan 

Izadyyazdanabadi, Belykh, Mooney, et al., 2018) showed that the proposed model could 

achieve promising agreement with the gold-standard defined by a majority assessment by 

neurosurgeon reviewers. Overall, results suggest that DCNN-based diagnostic evaluation 

has a higher agreement with the ground truth than the entropy-based quality assessment 

used in other studies (Kamen et al., 2016; N. Murthy et al., 2017). Furthermore, such 

methods suggest that semantic histological features may be highlighted in CLE images as 
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confirmed by a neurosurgeon reviewer. This shows that the DCNN structure could learn 

semantic concepts like tumor type or diagnostic value of CLE images through different 

levels of feature representation. Early results show that WSL-based glioma feature 

localization was able to precisely mark the cells in the images. DCNNs are also much 

faster than handcrafted methods at deployment phase. Our deeply trained models could 

classify about 40 new images in a second, while the handcrafted method takes 5.4 

seconds to process single image (Kamen et al., 2016). 

Other confocal imaging techniques may be aided by such deep learning models. 

Confocal reflectance microscopy (CRM) has been studied (J. M. Eschbacher et al., 2017; 

Mooney et al., 2018) for rapid, fluorophore-free evaluation of brain biopsy specimen ex 

vivo. CRM allows preserving the biopsy tissue for future permanent analysis, 

immunohistochemical studies, and molecular studies. Proposed DCNN classification and 

localization approaches are well-suited for analysis and interpretation of CRM images as 

well as CLE. Further studies on application of DCNN on CRM images are needed to 

further validate their utility for intraoperative diagnosis.  

Continued use of unsupervised image segmentation methods to detect meaningful 

histological features from confocal brain tumor images will likely allow for more rapid 

and detailed diagnosis. With the large rate of images produced, a technology-free and 

unassisted approach to analyze the CLE images would impede the exploitation of 

maximal pathological information during surgery. Accessible databases of CLE images 

would allow various image analysis methods to be tried on large numbers of images. 

Such image collection strategies are part of the platform of the relatively new 

International Society for Endomicroscopy. DCNNs can enhance extraction and 
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recognition of CLE diagnostic features that may be integrated into the standard brain 

tumor classification protocols similarly to the current research flow in the whole-slide 

digital image analysis for personalized cancer care (Djuric, Zadeh, Aldape, & Diamandis, 

2017; Madabhushi & Lee, 2016). This may refine current diagnostic criteria and 

potentially aid the discovery of novel related features. With such technology, 

neurosurgery truly enters the realm of theranostics in the operating room itself—we are 

on the verge of highly tailored and precise surgery at the cellular level. Such an approach 

is critical for neurosurgery because surgery and treatment for an invasive brain tumor 

frequently deals with spread into eloquent cortex – the areas that make us “human.” In 

fact, even before entering the operating room the neurosurgeon can begin to discuss 

strategy with the patient if tumor is located or not located in eloquent cortex based on a 

CLE “optical biopsy”. Thus, theranostics also involves treatment strategies and decisions 

of when to “stop”, especially true when the CLE system intraoperatively reveals cells 

invading for example primary motor or language cortex. With analytical pathologists 

uniting different clinical and morphological information for an integrated diagnosis, such 

a computer-aided CLE analysis workflow would improve imaging (diagnostics) and 

achieve maximal, more precise removal of tumor mass (therapy) as the initial treatment 

goals toward greater precision, personalization and success in the surgery and treatment 

of malignant invasive brain tumors (theranostics). 
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CHAPTER 2 

CONVOLUTIONAL NEURAL NETWORKS: ENSEMBLE MODELING, FINE-

TUNING AND UNSUPERVISED SEMANTIC LOCALIZATION FOR 

NEUROSURGICAL CLE IMAGES 

 

Izadyyazdanabadi M, Belykh E, Mooney M, Martirosyan N, Eschbacher J, Nakaji P, 

Preul MC, Yang Y 

ABSTRACT 

Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence technology 

undergoing assessment for applications in brain tumor surgery. Many of the CLE images 

can be distorted and interpreted as nondiagnostic. However, just one neat CLE image 

might suffice for intraoperative diagnosis of the tumor. While manual examination of 

thousands of nondiagnostic images during surgery would be impractical, this creates an 

opportunity for a model to select diagnostic images for the pathologists or surgeons 

review.  In this study, we sought to develop a deep learning model to automatically detect 

the diagnostic images. We explored the effect of training regimes and ensemble modeling 

and localized histological features from diagnostic CLE images. The developed model 

could achieve promising agreement with the ground truth. With the speed and precision 

of the proposed method, it has potential to be integrated into the operative workflow in 

the brain tumor surgery. 

INTRODUCTION 

Handheld, portable Confocal Laser Endomicroscopy (CLE) is being explored in 

neurosurgery because of its ability to image histopathological features of tissue in real 
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time (Belykh et al., 2016; Charalampaki et al., 2015; Foersch et al., 2012; Sanai et al., 

2011). CLE provides cellular resolution imaging during brain tumor surgery and thus 

may provide the surgeon with precise histopathological information during tumor 

resection in order to interrogate regions that may harbor malignant or spreading tumor, 

especially at the tumor border.  

 

Figure 2.1 
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Typical diagnostic and nondiagnostic CLE images (field of view = 475×475µm). 

(a) A diagnostic CLE image from a glioma case (anaplastic oligodendroglioma). Red 

boxes highlight the histopathological features of gliomas such as pleomorphism and 

hypercellularity detected by our model. For more results please see Figure 2.5. (b) A 

nondiagnostic CLE image from a glioma case. (c) A diagnostic image from a 

meningioma case (transitional meningioma). (d) Another diagnostic CLE image from a 

different case with anaplastic oligodendroglioma. 

Current CLE systems are able to image more than one image per second, and thus 

over the course of examination of the surgical tumor resection or inspection area, 

hundreds to thousands of images may be collected. The number of images may become 

rapidly overwhelming for the neurosurgeon and neuropathologist when trying to quickly 

select a diagnostic or meaningful image or group of images as the surgical inspection 

progresses. CLE is designed to be used on the fly in real time while the surgeon operates 

the brain. Thus, overcoming the barriers involved in image selection is a key component 

for making CLE a practical and advantageous technology for the neurosurgical operating 

room. 

A wide range of fluorophores are able to be used for CLE in gastroenterology, but 

fluorophore options are limited for in vivo human brain use due to potential toxicity 

(Belykh et al., 2016; Foersch et al., 2012; Zehri et al., 2014). In addition, motion and 

blood artifacts that are present in many of the images acquired with CLE using 

fluorescein sodium (FNa) are a barrier for revealing underlying meaningful histology. 

The display of suboptimal images or nondiagnostic frames interferes with the selection of 

and focus upon diagnostic images by the neurosurgeon and pathologist throughout the 



  48 

operation in order to make a correct intraoperative diagnosis. Previous assessment 

(Martirosyan et al., 2016) of CLE in human brain tumor surgery found that about half of 

the acquired images  were interpreted as nondiagnostic due to abundance of motion and 

blood artifacts or lack of discernible or characteristic histopathological features.  

Filtering out the nondiagnostic images before making an intraoperative diagnosis is 

challenging due to the high number of images acquired, the novel and frequently 

unfamiliar appearance of tissue features compared to conventional histology, great 

variability among images from the same tumor type (Figure 2.1 (a, b, d)), and potential 

similarity between images from other tumor types for the untrained interpreter (Figure 

2.1 (c, d)).  

Applications of machine learning in medical imaging have greatly increased in the 

last ten years, resulting in numerous computer-aided detection (CADe) and diagnosis 

(CADx) systems in ultrasound, magnetic resonance imaging (MRI), and computed 

tomography (CT) (Greenspan, van Ginneken, & Summers, 2016). Applications of 

machine learning for CLE imaging in neurosurgery are yet to be performed. In this study, 

we developed an ensemble of deep convolutional neural networks that can automatically 

evaluate the diagnostic value of CLE frames within milliseconds. Compared to our 

previous work (Izadyyazdanabadi et al., 2017), the following contributions and 

advancements were provided: 

• Dataset. Our dataset contains CLE images which is a novel technology in 

contrast to commonly used MRI or CT scans. The dataset used includes 20,734 

CLE images from intracranial neoplasms. 
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• Patient-based nested cross-validation for testing. The model validation was 

performed in a patient-based nested cross-validation form. We divided our dataset 

into two sections: development and test. The images from patients which were 

used in the development stage were isolated from the test set. The development 

dataset is used for finding the model hyperparameters, training, initial evaluation 

of the trained models and model selection. After the final model is selected, the 

test dataset is used for the final estimation of model performance on images from 

new patients. 

• Deep training, shallow fine-tuning or deep fine-tuning? The CNN architectures 

were trained in three regimes: I. deeply trained (train the network from scratch 

with model weights randomly initialized) II. shallow fine-tuned (fine-tune only 

the fully connected layer(s) of the model which are responsible for the 

classification) III. deeply fine-tuned (fine-tune the whole network using our 

dataset).  In this study we report model accuracy on the test dataset for the best 5 

models from each network architecture and training regime. Our work is different 

from (Tajbakhsh et al., 2016) since it considers the fine tuning effect on two 

different network architectures and its effect on the ensemble models. 

• Ensemble modeling. Prior to the test phase, we created an ensemble of the best 5 

models from each network and training regime. We explored the effect of 

ensemble modeling in all circumstances by comparing the ensemble performance 

with the average of single models. Our work is different from (Kumar, Kim, 

Lyndon, Fulham, & Feng, 2017) since our ensemble generates diversity in single 

models by using different training and validation data achieved from nested-cross 
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validation. Further, we studied the effect of ensemble modeling on different 

training scenarios rather than one. 

• Unsupervised localizing of histological features. We visualized the shallow 

neurons' activation to depict the broad histological patterns; visualization of deep 

neurons’ activation could localize specific histopathological lesions for diagnostic 

images. The neural response of convolutional layers to the diagnostic images are 

visualized and analyzed by a neurosurgeon. We also extracted the CNN's deepest 

neural activation in response to patches of the diagnostic images using the sliding-

window. Qualitative assessment of the localized regions was performed by a 

neurosurgeon with further analysis of the histopathological features.  

• Interobserver study. We compared the interobserver agreement between 

physician-physician and ensemble of models-physician to compare our ensemble 

model performance with human performance. We also reported the kappa statistic 

for this observer study.  

Due to the limited number of images in our dataset, we sought to transfer learning 

benefits by using pretrained models, fine-tuning them in shallow and deep manner and 

compare results with the models trained from scratch. Our results demonstrated that a 

shallow fine-tuned model, although performs better than trained from scratch, is not 

enough for the optimal performance and that a deep fine-tuned model detects the 

diagnostic CLE frames better. We also investigated the effect of ensemble modeling by 

creating an ensemble of models which were crafted at the development stage and 

produced the minimum loss on validation dataset. Finally, we compared the performance 

among the ensemble of models and each single model. 
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RELATED WORKS 

Convolutional neural networks 

Convolutional neural networks (CNNs), a subcategory of deep learning methods, 

have proven useful in visual imagery analysis from numerous fields, including medical 

images. This is mainly due to the deep multilayer architecture of CNNs which enables 

extracting abstract discriminant features, both local and global, present in the images 

(LeCun, Bengio, & Hinton, 2015). 

In the recent years, deep learning has been vastly applied in medical image or 

exam classification. According to a recent survey (Litjens et al., 2017), exam and object 

classification together make up the number one task of interest in medical image analysis 

followed by object detection and organ segmentation (exam classification alone is the 

third task of interest). Most of these studies in medical imaging field use one of the three 

following imaging modalities: MRI, microscopy or CT.  

Histopathological microscopic images and brain MRI scans were the first two 

areas where deep learning has been explored in medical imaging (Litjens et al., 2017). In 

histopathology, deep learning has been used for mitosis detection (Ciresan, Giusti, 

Gambardella, & Schmidhuber, 2012), classification of leukocytes (J. Zhao, Zhang, Zhou, 

Chu, & Cao, 2016) and nuclei detection and classification (Sirinukunwattana et al., 

2016). In brain MRI, several studies have concluded that CNN benefits the diagnosis of 

Alzheimer’s disease (Shi, Zheng, Li, Zhang, & Ying, 2017; Suk & Shen, 2016) as well as 

brain extraction (Salehi, Erdogmus, & Gholipour, 2017) and lesion detection, 

classification, and tumor grading (Ghafoorian et al., 2017; L. Zhao & Jia, 2016).  
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No-reference image quality assessment has been formulated as a classification 

problem as employed in retinal (Mahapatra, Roy, Sedai, & Garnavi, 2016) and 

echocardiographic (Abdi et al., 2017) images. CNNs may also be exercised in the 

detection of key frames from a temporal sequence of frames in a video. Two studies 

demonstrated the use of classification scheme on ultrasound (US) stream video to label 

the frames (Gao, Maraci, & Noble, 2016; Kumar et al., 2016).  

Transfer learning vs. deep training 

One of the major limitations in medical imaging is the small size of datasets. The 

number of images employed for deep learning applications in medical imaging is usually 

much smaller than those in computer vision. Therefore, two forms of transfer learning 

have gained great interest: 1. Application of a pretrained network on large-size natural 

images (i.e. ImageNet) as a feature extractor. 2. Initializing model parameters (weights 

and biases) using the data from a pretrained model (Yosinski, Clune, Bengio, & Lipson, 

2014) instead of random initialization. A previous study (Tajbakhsh et al., 2016) showed 

that a sufficiently fine-tuned AlexNet model could produce equal or better results than a 

deeply trained one for colonoscopy image quality assessment and few other medical 

applications. Here, we'll study the fine-tuning effect by extending it to Inception network 

architectures in single and ensemble mode. 

Ensemble modeling 

Ensemble modeling is an established method for increasing the model 

performance and reducing its variance in machine learning (Ciregan, Meier, & 

Schmidhuber, 2012; Dietterich & others, 2000; Zhou, Wu, & Tang, 2002).  
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Kumar et al. A recent study (Kumar et al., 2017) created an ensemble of 5 different 

models to classify the image modality from ImageCLEF 2016 medical image dataset. 

Specifically, 2 classifiers were created by fine-tuning AlexNet and GoogLeNet with 

softmax and 3 other classifiers by training an SVM on top of the features extracted by 

AlexNet, GoogLeNet, and their combination. Their results showed the ensemble could 

improve the top-1 accuracy of the classifier compared to single models, however it is not 

clear that how much of the improvement was because of the AlexNet and GoogLeNet 

combination or the 5 classifiers ensemble. 

Another study (Christodoulidis, Anthimopoulos, Ebner, Christe, & Mougiakakou, 

2017) created an ensemble of multi-source transfer learning using an automatic model 

selection approach. After creating a pool of pretrained CNNs on several public texture 

datasets and fine-tuning them on the lung CT dataset, the top models which iterative 

grouping would produce the highest F-scores on the validation dataset were aggregated, 

creating an ensemble model. 5 ensemble models were developed and their output was 

then averaged to make the final output. Despite its computational complexity, it enhanced 

the lung disease pattern classification accuracy only by 2%. 

To generate diversity in our models while using the whole training dataset, we 

trained different neural networks on different data using cross-validation. Although 

previous studies have tried to create variant deep learning models using different network 

architectures, none of them have employed training data diversification through cross-

validation as described in (Krogh & Vedelsby, 1995). Our proposed ensemble employed 

model diversification both in the network architectures and in the training and validation 

datasets following (Krogh & Vedelsby, 1995).  
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Confocal laser endomicroscopy in neurosurgery 

Handheld, portable CLE has demonstrated its value for brain tumor surgery due to 

its ability to provide rapid intraoperative information regarding histopathological features 

of the tumor tissue (Martirosyan et al., 2016). Convenience, portability, and speed of 

CLE are significant advantages in surgery. A decision support system aiding and 

accelerating analysis of CLE images by the neuropathologist or neurosurgeon would 

improve the workflow in the neurosurgical operating room (Izadyyazdanabadi et al., 

2017). 

Potentially used at any time during the surgery, CLE interrogation of the tissue 

generates images with a speed of 0.8 - 1.2 frames per second. The frames are considered 

nondiagnostic when the histological features are obscured by the red blood cells or 

motion artifacts, are out of focus, or lack any useful histopathological information. 

Acquired images are then exported from the instrument as JPEG or TIFF files for review. 

Currently, the pathologist reviews all images, including nondiagnostic ones, trying to 

explore the diagnostic frames for the diagnosis. Manual selection and review of 

thousands of images acquired at some point in surgery by the CLE operator is tedious and 

impractical for widespread use. Previously, we have presented (Izadyyazdanabadi et al., 

2017) the first deeply trained CNN model for automatic detection of diagnostic CLE 

frames. 

METHODS 

Image acquisition 

In the following sections we briefly explain the confocal imaging instrument 

specifications and the intraoperative data collection process. 
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Instrument specifications 

The CLE image acquisition system (Optiscan 5.1, Optiscan Pty, Ltd.) included a 

rigid pen-sized optical laser scanner with a 6.3 mm outer diameter and a working length 

of 150 mm. A 488 nm diode laser provided excitation light and the fluorescent emission 

signal was detected with a ~505-585 nm band-pass filter. A single optical fiber 

acted as both the excitation pinhole and the detection pinhole for confocal isolation of the 

image plane. The detector signal was digitized synchronously with the scanning to 

construct images parallel to the tissue surface (en face optical sections). 

Laser power was typically set to 550-900 µW and maximum power was limited to 

1000 µW when applied to the brain tissue. A field of view of 475 × 475 µm was scanned 

at 1024 × 1024 (1.2/second frame rate), with a lateral resolution of 0.7 µm and an axial 

resolution (i.e., effective optical slice thickness) of approximately 4.5 µm. 

Intraoperative CLE imaging 

Seventy-four adult patients (31 male and 43 female) were enrolled in the study 

(mean age 47.5 years). Intraoperative CLE images were acquired both in vivo and ex 

vivo by 4 neurosurgeons. For in vivo imaging, multiple locations of the tissue around the 

lesion were imaged and excised from the patient. For ex vivo imaging, tissue samples 

suspicious for tumor were excised, placed on gauze and imaged on a separate work 

station in the operating room. Multiple images were obtained from each biopsy location. 

Co-registration of the CLE probe with the image guided surgical system allowed 

precise intraoperative mapping of CLE images with regard to the site of the biopsy. The 

only fluorophore administered was FNa (5 mL, 10%) that was injected intravenously 

during the surgery.  
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Precise location of the areas imaged with the CLE was marked with tissue ink. 

Imaged tissue was sent to the pathology laboratory for formalin fixation, paraffin 

embedding and histological sections preparation. Final histopathological assessment was 

performed by standard light microscopic evaluation of 10-µm-thick hematoxylin and 

eosin (H & E)-stained sections.  

Image annotation 

The image annotation process was done in two distinct stages: initial review and 

validation review. 

Initial review 

Initially all images were reviewed. A neuropathologist and 2 neurosurgeons who 

were not involved in the surgeries reviewed the CLE images. For each patient, the 

histopathological features of corresponding CLE images and H & E-stained frozen and 

permanent sections were reviewed and the diagnostic value of each image was examined. 

When CLE image revealed clear identifiable histopathological feature, it was labeled as 

diagnostic; otherwise it was labeled as nondiagnostic.  

Validation review 

  The database of images was divided into development and test datasets (explained 

in dataset preparation). Test dataset composed of 4171 CLE images randomly chosen 

from various patients. The validation review (val-review) dataset consists of 540 images 

randomly chosen from the test dataset. Following this separation, two neurosurgeons 

reviewed val-review dataset without having access to the corresponding H & E-stained 

slides and labeled them as diagnostic or nondiagnostic.  

Convolutional neural networks 
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Convolutional Neural Networks (CNNs) are multilayer learning frameworks and 

may consist of an input layer, a few convolutional layers, pooling layers, fully connected 

layers and the output. The goal of a CNN is to learn the hierarchy of underlying feature 

representations. We explain the fundamental elements of a CNN below. 

Convolutional layer 

Convolutional layers, first introduced in (LeCun & Bengio, 1998) are the 

substitute of previous hand-crafted feature extractors. At each convolutional layer three 

dimensional matrices (kernels) are slid over the input and set the dot product of kernel 

weights with the receptive field of the input as the corresponding local output. This helps 

to retain the relative position of features to each other. The multi-kernel characteristic of 

convolutional layers enables them to prospectively extract several distinct feature maps 

from the same input image. 

Activation layer 

The convolutional layer output then goes through an activation function to adjust 

the negative values. We employed the rectified linear unit (ReLU) which is usually the 

preferred choice because of its simplicity, higher speed, reduced likelihood of vanishing 

gradients (especially in deep networks) and tendency to add sparsity over other nonlinear 

functions such as sigmoid function. The output of 𝑗𝑡ℎ ReLU layer  𝑎𝑗
𝑜𝑢𝑡, given its input 

 𝑎𝑗
𝑖𝑛, was calculated in-place (to consume less memory) by following: 

𝑎𝑗
𝑜𝑢𝑡 = max (𝑎𝑗

𝑖𝑛, 0) 

Normalization layer 

Following the ReLU layer, a local response normalization (LRN) map is applied 

after the initial convolutional layers. This layer inhibits the local ReLU neurons' 
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activations since there's no bound to limit them. By using the Caffe (Jia et al., 2014) 

implemented LRN, the local regions are expanded across neighbor feature maps at each 

spatial location. The output of  𝑗𝑡ℎ LRN layer  𝑎𝑗
𝑜𝑢𝑡, given its input 𝑎𝑗

𝑖𝑛, is calculated as: 

aj
out =

aj
in

(1 +
α
L

∑ aj
in(n)2L

n=1 )
β
 

where 𝑎𝑗
𝑖𝑛(𝑛) is the 𝑛𝑡ℎ element of the 𝑎𝑗

𝑖𝑛 and L is the length of 𝑎𝑗
𝑖𝑛 vector (number of 

neighbor maps employed in the normalization). α, β, and L are the layer's 

hyperparameters and are set to their default values obtained from (Krizhevsky, Sutskever, 

& Hinton, 2012) (α=1, β=0.75 and L=5). 

Pooling layer 

After rectification and normalization of convolutional layer output, it's further 

down-sampled by pooling operations. Pooling operations accumulate values in a smaller 

region by subsampling operations such as max, min, and average sampling. Here, max 

pooling was applied with a kernel size of 3, stride 2 for network 1 and stride 1 for 

network 2. 

Fully connected layer 

Following several convolutional and pooling layers, the network lateral layers are 

fully connected. Each neuron of the layer's output is greedily connected to all the layer's 

input neurons. It can be thought of as a convolutional layer with kernel size of the layer 

input. The layer output is also passed through a ReLU layer.  

The fully connected layers are generally thought of as the classifier of a CNN 

model because they intake the most abstract features extracted in convolutional layers 

and make the output, which is the model prediction.  
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Dropout layer 

Fully connected layers are usually followed by a dropout layer, except the last 

fully connected layer that produces the class-specific probabilities. In dropout layers, a 

subset of input neurons as well as all their connections are temporarily removed from the 

network. Srivastava et al. have demonstrated this method efficiency at improving the 

CNN performance in numerous computer vision tasks through reducing the overfitting 

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). 

Learning 

The learning of a CNN is by loss minimization using an optimization algorithm in 

two steps: Forward and Back Propagation. In this study, Stochastic Gradient Descent 

(SGD) was used as the optimization algorithm. In forward propagation, the model makes 

predictions using the images in the training batch and the current model parameters. Once 

the prediction for all training images is made, the loss is calculated using the truth label 

provided by the experts in the initial review. In this work we adopt the softmax loss 

function given by: 

𝐿(𝑡, 𝑦) = −
1

𝑁
∑ ∑ 𝑡𝑘

𝑛𝑙𝑜𝑔

𝐶

𝑘=1

(
𝑒𝑦𝑘

𝑛

∑ 𝑒𝑦𝑚
𝑛𝐶

𝑚=1

)

𝑁

𝑛=1

 

where 𝑡𝑘
𝑛 is the 𝑛𝑡ℎ training image's 𝑘𝑡ℎ ground truth output, and 𝑦𝑘

𝑛  is the value of the 

𝑘𝑡ℎ output layer unit in response to the 𝑛𝑡ℎ input training image. N is the number of 

training images in the minibatch, and since we consider 2 diagnostic value categories, 

C=2.  

Through the back propagation, the loss gradient with respect to all model weights 

aids upgrading the weights as follows: 
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W(j, i + 1) = W(j, i) + μΔW(j, i) − α(j, i)
∂L

∂W(j)
 

Where 𝑊(𝑗, 𝑖), 𝑊(𝑗, 𝑖 + 1) and Δ𝑊(𝑗, 𝑖) are the weights of 𝑗𝑡ℎ convolutional layer at 

iteration i and i+1 and the weight update of iteration i, µ is the momentum and 𝛼(𝑗, 𝑖) is 

the learning rate and is dynamically lowered as the training progresses. 

Evaluation metrics 

In model performance estimation, we calculated the loss, accuracy, sensitivity, 

specificity and area under receiver operating characteristics (ROC) curve (AUC). 

Assuming the state of being a diagnostic image as positive and being nondiagnostic as 

negative, sensitivity determines the model ability to detect diagnostic images and 

specificity determines its ability to detect nondiagnostic images. Accuracy determines 

general capability of a model to detect diagnostic and nondiagnostic images correctly 

(Metz, 1978). 

EXPERIMENTAL SETUP 

Dataset preparation 

Our dataset included 20,734 CLE images from 74 brain tumor cases. For each 

CLE image, the diagnostic quality was determined by the experts in the initial review. To 

match the size of CLE images and the network input shape, images were resized to 

256×256. The dataset was then divided into two main subsets on patient level: 

development (dev) and test. All results reported in the following sections were based on 

the model prediction on images from new patients. 

The total number of patients and images used at each stage are presented in Table 

2.1. Each subset contains images from various tumor types (mainly from gliomas and 
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meningiomas). The dev set will be available online. The test set was isolated all through 

the model development and was accessed only in the test phase. 

 

Table 2.1 

The composition of images. Patient-based allocation of diagnostic and 

nondiagnostic images from various neoplasms to model development and testing. 

Number of patients for each tumor type is also provided. 

Model development 

After the initial data split, we employed a patient-based 5-fold cross validation for 

model development. Fifty-nine cases that were allocated for model development were 

divided into 5 groups. Since CNNs require a large set of hyperparameters to be defined 

optimally (i.e. initial value of the learning rate and its lowering policy, momentum, batch 

size, etc.), we used different values with grid searching throughout the model 

development process. For every set of feasible parameters, we trained the model on 4 

folds and validated on the fifth left-out group of patients. The set of hyperparameters 

which produced the minimum average loss was employed for each set of experiments. 

The small dataset size was a main limitation of our study for using CNNs, 

especially with the patient-level data preparation. Therefore, we counterbalanced this 
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limitation by fine-tuning the pretrained publicly available CNN architectures trained on 

large computer vision datasets (i.e. ImageNet).  

Though the question about how deep should we fine-tune the pretrained models 

for optimal results still remains unanswered, one study tried to answer this question using 

endoscopy and ultrasound images (Tajbakhsh et al., 2016). Due to the substantial 

intrinsic dissimilarities between the images in the 2 studies, we performed a similar 

investigation. Our confocal images have a much higher spatial resolution and are 

fluorescent images from the brain.  

In total, we developed 42 models (30 single models and 12 ensemble models) 

using two network architectures and three training regimes (deep training, shallow fine-

tuning and deep fine-tuning). The experiments are designed in order to practically find 

the optimal model development pathway that produces the highest performance in the 

considered clinical application.  

Network architectures 

Two CNN architectures that have achieved promising results in general computer 

vision challenges (Krizhevsky et al., 2012; Szegedy et al., 2015) were applied in this 

study. Other studies have used these networks for analyzing medical images for other 

applications including endoscopy, ultrasonography (Tajbakhsh et al., 2016), and CT 

(Shin et al., 2016), confirming the generality of their pretrained features. However, 

transferability of these features on brain CLE images had yet to be studied. Deeper states 

of the art networks (e.g. ResNet (He, Zhang, Ren, & Sun, 2015)) were excluded, because 

the size of our dataset is relatively small and training very deep models would result in 
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overfitting (Yosinski et al., 2014). The input layer of both networks had a size of 

256×256. 

Network 1 had 5 convolutional layers. The first two convolutional layers had 96 

and 256 filters of size 11 and 5 with maximum pooling over 3 and stride of 2. The third, 

fourth and fifth convolutional layers were connected back to back without any pooling in 

between. The third convolutional layer had 384 filters of size 3×3×256, the fourth layer 

had 384 filters of size 3×3×192 and the fifth layer had 256 filters of size 3×3×192 with 

maximum pooling. For more details please refer to (Krizhevsky et al., 2012). 

Network 2 had 22 layers with parameters and 9 inception modules. Each 

inception module was a combination of filters of size 1, 3, 5 and max pooling with a 

kernel size of 3 and stride of 1, put together in parallel and the output filter banks 

concatenated into an input single vector for the next stage. For more details please refer 

to (Szegedy et al., 2015). 

The pretrained model for network 1, exploited in fine-tuning experiments, was the 

iteration 360,000 snapshot of training the model on ImageNet classification with 1000 

classes. The pretrained model for network 2 was iteration 2,400,000 of training on 

ImageNet classification dataset. Both models are publicly available in Caffe libraries (Jia 

et al., 2014).  

Training regimes 

We exercised various training regimes to see how deep fine-tuning should be 

done in CLE image classification for optimal results. Depending on which layers of the 

network are being learned through training, we had three regimes. 
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In regime 1, deep training (DT), the whole model weights were initialized 

randomly (training from scratch) and got modified all through the training with nonzero 

learning rates.  

In regime 2, shallow fine-tuning (SFT), the whole model weights, except the last 

fully connected layer, were initialized with the corresponding values from the pretrained 

model and their values were fixed for the period of training. The last fully connected 

layer was initialized randomly and got tuned during training. 

In regime 3, deep fine-tuning (DFT), all model weights, except for the last fully 

connected layer, were initialized with the corresponding values from the pretrained model 

and last fully connected layer was initialized randomly. Throughout the training, all the 

CNN layers, including the last fully connected layer, were tuned with nonzero learning 

rates. Our hyperparameter optimization showed that the SFT and DFT experiments 

required 10 times smaller initial learning rates (0.001) compared to the DT regime (0.01).  

We used Gaussian distribution with zero mean and standard deviation of 0.01 to 

initialize the weights randomly. A previous investigation of different weight initialization 

techniques (Tajbakhsh et al., 2016) showed no significant performance gain for 

colonoscopic image classification and polyp detection. 

The training process was stopped after 3 epochs of consistent loss increment on 

the validation dataset to avoid overfitting. We also used a dropout layer (ratio=0.5) and 

L2 regularization (lambda=0.005). 

Ensemble modeling 
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Let's assume 𝑦𝑘
𝑛(𝑗) is the the value of the 𝑘𝑡ℎ output layer unit of the 𝑗𝑡ℎ CNN 

model in response to the 𝑛𝑡ℎ input test image. The linear and log-linear ensemble 

classifier output for the same input would be: 

𝐸𝑛𝑠𝑙𝑖𝑛𝑒𝑎𝑟
𝑛 = arg  max 1𝑘 ∑ 𝑦𝑘

𝑛(𝑗)

𝑙

𝑗=1

 

𝐸𝑛𝑠𝑙𝑜𝑔−𝑙𝑖𝑛𝑒𝑎𝑟
𝑛 = arg  max 1𝑘 ∏ 𝑦𝑘

𝑛(𝑗)

𝑙

𝑗=1

 

where 𝑙 is the number of CNN models combined to generate the ensemble models.   

Model selection was done in two forms: single models and ensemble of models. 

We selected the top model (with minimum loss on the validation dataset) from each fold 

of the 5-fold cross validation (Model 1-5 in Table 2.2). In each network architecture and 

training regime, we combined the top-5 developed single models to produce two 

ensembles of models using the arithmetic and geometric mean of their outputs. We 

created 12 ensemble models (2network architectures × 3 training regimes × 2ensemble types) in total and 

compared their performance with single models. 

Interobserver study 

Each solo and ensemble model developed was tested on the test dataset. The 

ensemble of network 2 models trained with DFT was also tested on the val-review 

images to compare human-human and model-human interobserver agreements. The 

resulting agreement rate (val-rater 1 and 2) was further compared with the initial image 

review results. The agreement of the model prediction with the initial review was also 

calculated. The general agreements are compared and discussed later. Kappa analysis was 

also done for further validation. 
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Gold standard ground truth for the val-review images was defined by majority 

voting (see Figure 2.3). The agreements of the third rater with the gold standard and the 

proposed ensemble model with the gold standard is calculated and compared as well in 

Table 2.3. 

Unsupervised histological feature localization 

For localization of the histological features, we examined the neural activation at 

two sites. First, the activation of neurons in the first convolutional layer of the network 1 

were visualized and the 96 feature planes were saved for review by a neurosurgeon. 

 To this end, the CLE image was given to the trained model as an input. A 

feedforward of the model was run consequently in Caffe to activate neurons at different 

layers while predicting the diagnostic value of the input image. Using Caffe Python 

interface, each neuron (feature plane) of the first layer was accessed with indexing and 

saved as a separate image for review. Neurons in the first layer that presented high 

activation to the location of cellular structures in the input image were selected and 

seemed to be consistent with diverse diagnostic images.  

Secondly, we applied a sliding window of size 227×227 pixels (size of network 1 

input after input cropping) with stride of 79 pixels over the diagnostic CLE images 

1024×1024 pixels). The result was a 10×10 matrix that provided the diagnostic value of 

different locations of the input image (diagnostic map). The locations of input images 

corresponding to the highest activations of the diagnostic map were detected and marked 

with a bounding box. The detected features using each of these two ways were further 

reviewed by a neurosurgeon. 

RESULTS AND DISCUSSION 
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We developed 42 models and tested them on 4,171 test images; accuracy rates 

(agreement with the initial review) are presented in Table 2.2. We found that network 2 

resulted in more precise predictions about the diagnostic quality of images than network 

1 when DT and DFT training regimes were used, while SFT training regime resulted in 

slightly better accuracy of network 1, compared to network 2. Therefore, network 2 

architecture is a better feature extraction tool for CLE images, since it concatenates multi-

scale features inside its inception modules. 

 

Table 2.2 

Accuracy analysis on the test dataset. For each network, the ensemble of DFT 

models makes the most accurate predictions. 

Ensemble or solo model? 

We did an ROC analysis for each of the two networks and three training regimes 

to see how the ensemble of models performed compared to the single models. Figure 2.2 

presents the ROC curves and corresponding AUC values for each ensemble model and 

the mean of single models. The AUC value increased by 2% for both networks with DT 

and DFT when the ensemble is applied instead of the single model. This effect gets 

smaller with network 1 SFT and becomes negligible with network 2 SFT. The two 
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arithmetic and geometric ensemble models produced roughly similar results (paired t-test: 

P value $<$ 0.05).  

SFT models displayed less sensitivity to the ensemble effect compared to DT and 

DFT. This is not surprising since they represented identical models except in the softmax 

layer which has been adjusted during training. This minimized the diversity of the models 

and consequently the ensemble effect compared to DT and DFT. Further, the larger 

degrees of freedom for changing the parameters in DT and DFT regimes (parameters of 

all the layers in each network) resulted in a more diverse set of models compared to SFT 

which allowed parameter tuning only for the last layer. We speculate that the larger 

diversity of DT and DFT was responsible for their higher sensitivity to ensemble 

modeling. Though, further experiments on more datasets are required to assess this 

speculation. 
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Figure 2.2 

ROC analysis of ensemble effect on different training regimes. For both networks, 

the improvement was more noticeable with DT and DFT regimes. The arithmetic and 

geometric ensemble performed similarly. Neither of the two ensembles could improve 

network 2 trained with SFT. 

 

Figure 2.3 

  A schematic diagram of interobserver study. Gold standard was defined using the 

initial review and one of the val-raters (here val-rater 1). Then, the agreement of the 

ensemble model and the other val-rater (here val-rater 2) with the gold standard is 

calculated to compare the human-human with model-human agreement. *If the initial 
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review and the val-rater 1 agreed on an image, it is added to the gold standard, otherwise 

it is disregarded.  

Which training regime: DT, SFT or DFT? 

Figure 2.4 displays the results of ROC analysis when comparing the three training 

regimes in each network architecture and single/ensemble states. In all paired 

comparisons, DFT outperformed SFT and SFT outperformed the DT regime (paired t-

test: P value $<$ 0.05).  

We traced the AUC elevation from DT to DFT regime to see how much of it 

corresponded to the transformation of DT to SFT and SFT to DFT. For network 1, 70% -

80% of the improvement occurred in the DT to SFT transformation, depending on 

whether the model is single or ensemble. For network 2 ensemble model (right bottom of 

Figure 2.4), however, the AUC improvement caused by transforming the training regime 

from DT to SFT (2%) is only 25% of the total improvement from DT to DFT. For 

network 2 single model the AUC improvement was evenly divided between the two 

transformations. 

Our results from this experiment indicated that for our dataset, fine-tuning the 

classification layer contributed the most to the improvement in network 1, and fine-

tuning feature extractor layers had a smaller contribution. However, for network 2, fine-

tuning the feature extractors contributed equally or more than modifying the 

classification layer. A previous study on thoraco-abdominal lymph node detection (Shin 

et al., 2016) observed similar results: deep fine tuning GoogLeNet produced better 

improvement in detecting lymph nodes than deep fine tuning AlexNet. The relationship 

between different training regimes and the network architectures has yet to be clarified in 
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future studies, however, the difference between how these two networks responded to 

SFT and DFT might be partially linked to their architectural differences. Yosinski et al. 

studied the transferability of CNN features and concluded that deep fine tuning a model 

with a large number of parameters on a small dataset would make the model overfit 

(Yosinski et al., 2014). Since the number of parameters in network 1 is 12 times larger 

than network 2 (Szegedy et al., 2015), it would overfit more easily on our relatively small 

dataset. Therefore, the lower performance of network 1 compared to network 2 in DT and 

DFT might be due to its overfitting.  

 

 

Figure 2.4 

ROC analysis of training regime effect on single and ensemble models. The AUC 

value for DFT was greater than the SFT and SFT is greater than DT, although the effect 

size varied. 
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Two factors may explain why network 2 produced lower performance compared 

with network 1 in SFT: fragile co-adaptation of network 2 neurons and higher generality 

of network 1 features. If neighboring neurons of a CNN become co-adapted during 

pretraining (i.e. fragile co-adaptation), the network performance drops when few layers 

are frozen and the others are fine-tuned (Yosinski et al., 2014). The generality of CNN 

features is determined by how well they transfer from one dataset/task to another 

dataset/task. This confirms previous studies on generality of network 1 features in 

previous studies (Razavian, Azizpour, Sullivan, & Carlsson, 2014; Shin et al., 2016; 

Tajbakhsh et al., 2016). However, further experiments on larger datasets and deeper 

networks are essential to verify this.  

Histological features localization 

After being reviewed by a neurosurgeon, 8 out of the total 384 reviewed colored 

neuron activation maps from the first layer were selected for 4 diagnostic CLE images 

representative for glioma. The selected activation maps were from the same neurons (i.e. 

neuron 22 and 24) and highlighted diagnostic tissue architecture patterns in warm colors. 

Particularly, several maps emphasized regions of optimal image contrast, where 

hypercellular and abnormal nuclear features could be identified, and would serve as 

diagnostic features for image classification (Figure 2.5, columns 2 and 4). Additionally, 

the sliding window method was able to identify diagnostic aggregates of abnormally 

large malignant glioma cells and atypically hypercellular areas (Figure 2.5, third column).  

Activation of the neurons 22 and 24 in the first convolutional layer (conv1) were 

found to highlight areas with increased fluorescein signal, a sign specific to brain tumor 

regions. Increased fluorescent signal on CLE images represent areas with blood brain 
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barrier disruption which correspond to the tumor areas visible on a contrast enhanced MR 

imaging. In Figure 2.5, (d) highlights the blood-brain-barrier disruption and (b) marks the 

cluster of cells which are both indicative of cancer. The red boxes in (c) identify some 

other diagnostic regions. Although these areas might have some overlaps, not everything 

detected in (b) and (d) was successfully localized in (c). 

 

Figure 2.5 

Unsupervised semantic localization of the CLE histopathological features. First 

column (a, e, i) shows the input CLE images from human glioblastoma obtained 

intraoperatively. Second column (b, f, j) displays activation of neurons from the first 
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layer (conv1, neuron 24) (shallow features); it highlights some of the cellular areas 

present in the image. Third column (c, g, k) illustrates diagnostic regions of interest 

identified with the sliding window approach. The boxed regions represent high activation 

of the deepest network neuron. Fourth column (d, h, l) contains images extracted from 

conv1 activation (neuron 22), representative of the high fluorescence signal, a diagnostic 

sign of blood-brain barrier disruption and leakage of fluorescent agent from the vessels 

into the extracellular space. 

Interestingly, the sliding window method and selected colored activation maps 

were not distracted or deceived by the red blood cells contamination, as they mostly 

highlighted tumor and brain cells rather than hypercellular areas due to bleeding. The 

proposed feature localization approach may be useful in the future to aid in the 

identification of not only the diagnostic frames, but also directing the surgeon's attention 

to the image parts containing major histopathological features. 

Inter-rater agreement 

Table 2.3 demonstrates the agreement between each of the val-raters and the 

initial review on the whole val review dataset and the gold standard subset (explained in 

Figure 2.3). The model agreement with the initial review is larger than each val-rater's 

agreement with the initial review. This suggests that the model has successfully learned 

the histological features of the CLE images that are more probable to be noticed by the 

neurosurgeons when the corresponding H & E-stained histological slides were also 

provided for reference. 

To consider images from the val review set that the majority of raters agreed on, 

that is one of the val-raters agreed on with the initial review, we used the gold standard 
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subset. The gap between the model-human and human-human agreements became even 

more evident (19% for val-rater 1 and 9% for val-rater 2) with the gold standard subset 

(Table 2.3, column 4). 

 

Table 2.3 

Interobserver study results. The model reached promising agreement with the 

ground truth both on the val review dataset and the gold standard subset. 

CONCLUSION AND FUTURE WORK 

This paper presents a deep CNN based approach that can automatically detect the 

diagnostic CLE images from brain tumor surgery. We used a manually annotated in-

house dataset to train and test this approach. Our results showed that both deep fine-

tuning and creating an ensemble of models could enhance the performance; but only their 

combination could reach the maximum accuracy. The ensemble effect was stronger in 

DT and DFT than SFT developed models. The proposed method was also able to localize 

some histological features of diagnostic images. Ultimately, Table 2.3 indicates that the 

proposed ensemble of deeply fine-tuned models could detect the diagnostic images with a 

promising agreement to the gold-standard. Other confocal imaging techniques may be 

aided by such deep learning models. Confocal reflectance microscopy (CRM) has been 

studied (Mooney et al., 2017) for rapid, fluorophore-free evaluation of pituitary adenoma 
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biopsy specimens ex vivo. CRM allows preserving the biopsy tissue for future permanent 

analysis, immunohistochemical studies, and molecular studies. 

Parallel computational frameworks (Yan, Zhang, Xu, Dai, Li, et al., 2014; Yan, 

Zhang, Xu, Dai, Zhang, et al., 2014) for high definition video coding, could speed up our 

ensemble model, especially when the ensemble contains larger number of parallel 

models. Recent studies have proposed to jointly learn different levels of abstract features 

and combine them for visual recognition (X. Zhang et al., 2016) and categorization (Yao, 

Zhang, Zhang, Li, & Tian, 2016). Supervised and unsupervised hash coding methods 

have also received increasing attention in image content analysis (Yan, Xie, Yang 

Dongbao, et al., 2017; L. Zhang, Zhang, Gu, Tang, & Tian, 2014). (Yan, Xie, Liu, et al., 

2017) proposed an effective method for text detection in images with complex 

background. In future work, we will investigate the usefulness of these methods in 

understanding CLE images. 

Continued use of unsupervised image segmentation methods to detect meaningful 

histological features from confocal brain tumor images will likely allow for more rapid 

and detailed diagnosis. 
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CHAPTER 3 

WEAKLY-SUPERVISED LEARNING-BASED FEATURE LOCALIZATION IN 

CONFOCAL LASER ENDOMICROSCOPY GLIOMA IMAGES 

 

Izadyyazdanabadi M, Belykh E, Cavallo C, Zhao X, Gandhi S, Moreira L, Eschbacher J, 

Nakaji P, Preul MC, Yang Y 

ABSTRACT 

Confocal Laser Endomicroscopy (CLE) is novel handheld fluorescence imaging 

technology that has shown promise for rapid intraoperative diagnosis of brain tumor 

tissue. Currently CLE is capable of image display only and lacks an automatic system to 

aid the surgeon in diagnostically analyzing the images. The goal of this project was to 

develop a computer-aided diagnostic approach for CLE imaging of human glioma with 

feature localization function. Despite the tremendous progress in object detection and 

image segmentation methods in recent years, most of such methods require large 

annotated datasets for training. However, manual annotation of thousands of 

histopathology images by physicians is costly and time consuming. To overcome this 

problem, we constructed a Weakly-Supervised Learning (WSL)-based model for feature 

localization that trains on image-level annotations, and then localizes incidences of a 

class-of-interest in the test image. We developed a novel convolutional neural network 

for diagnostic features localization from CLE images by employing a novel multiscale 

activation map that is laterally inhibited and collaterally integrated. To validate our 

method, we compared the model output to the manual annotation performed by four 

neurosurgeons on test images. The model achieved 88% mean accuracy and 86% mean 
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intersection over union on intermediate features and 87% mean accuracy and 88% mean 

intersection over union on restrictive fine features, while outperforming other state of the 

art methods tested. This system can improve accuracy and efficiency in characterization 

of CLE images of glioma tissue during surgery, and may augment intraoperative decision 

making regarding the tumor margin and improve brain tumor resection. 

INTRODUCTION 

Rapid intraoperative interpretation of suspected brain tumor tissue is of 

paramount importance for planning the treatment and guiding the neurosurgeon towards 

the optimal extent of tumor resection. Handheld, portable Confocal Laser 

Endomicroscopy (CLE) is being explored as a fluorescence imaging technique for its 

ability to image histopathological features of tissue at cellular resolution in real time 

during brain tumor surgery  (Belykh et al., 2016; Eschbacher et al., 2012; Foersch et al., 

2012; Martirosyan et al., 2016). CLE systems can acquire up to 20 images per second, 

with areas in the tumor resection bed interrogated as an “optical biopsy”. Hundreds of 

images may be acquired showing thousands of cells, but the images may be affected with 

artifacts such as red blood cells (for CLE systems operating in the blue laser range) and 

motion distortion, making them complicated to analyze. Although images may be 

interpreted as largely artefactual, detailed inspection often reveals image areas that may 

be diagnostic. CLE images present a new fluorescent image environment for the 

pathologist. Augmenting CLE technology with a computer aided system that can rapidly 

highlight image regions that may reveal malignant or spreading tumor would have great 

impact on intraoperative diagnosis. This is relevant for tumors such as gliomas where 

discrimination of margin regions is key to achieve maximal safe resection, which has 
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been correlated with increased patient survival duration (Almeida, Chaichana, Rincon-

Torroella, & Quinones-Hinojosa, 2015; Sanai, Polley, McDermott, Parsa, & Berger, 

2011). 

Recent studies have shown that off-the-shelf Convolutional Neural Networks 

(CNNs) can be used effectively for classifying CLE images based on their diagnostic 

value (M. Izadyyazdanabadi et al., 2017; Mohammadhassan Izadyyazdanabadi et al., 

2018)  and tumor type (N. Murthy et al., 2017). However, feature localization models 

have not been previously applied to CLE images. Feature localization models based on 

fully supervised learning require large number of images for object-level annotation of 

the features, which is expensive and time consuming. To overcome this limitation, we 

used a weakly-supervised localization (WSL) approach. A WSL approach allowed the 

model to learn and localize the class-specific features from image-level labels. 

A few groups have recently applied WSL approaches to medical images, 

including placenta scans (Qi, Collins, & Noble, 2017), whole-slide images of colorectal 

cancer (Korbar et al., 2017), diabetic retinopathy (Gondal, Köhler, Grzeszick, Fink, & 

Hirsch, 2017), microscopic cellular images (Sailem, Arias--Garcia, Bakal, Zisserman, & 

Rittscher, 2017), and lung computed tomography scans (Feng, Yang, Laine, & Angelini, 

2017). Here, we present a novel model for detection of histological features of glioma on 

CLE images trained on a dataset of CLE images acquired during brain surgery for this 

invasive tumor. The architecture included end-to-end Multi-Layer Class Activation Map 

(MLCAM) with Lateral Inhibition (LI) and Collateral Integration (CI) of the glioma 

feature localizer neurons. The model was able to segment the CLE images semantically 

by disentangling class-specific discriminative features that can complement interpretation 
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by the physicians. Performance of the model was assessed by comparing its output to 

CLE image segmentations performed by neurosurgeons and other deep learning models. 

Additionally, we validated the significance of the MLCAM, LI and CI architecture 

components on the overall performance of the model. The model localized known 

diagnostic CLE features and revealed new CLE features that correlated with the final 

classification and importantly which were not previously recognized by the expert 

reviewers. 

Unlike previous models that require patch labeling (Korbar et al., 2017) or an 

extra step for creating the activation maps during testing (Zhou, Khosla, Lapedriza, 

Oliva, & Torralba, 2016), our model is solely trained based on the whole image-level 

labels. Furthermore, we did not limit the network to localize features that are already 

known phenotypes to the physicians (Feng et al., 2017; Sailem et al., 2017). CLE images 

are relatively novel to the pathology tissue diagnosis workflow. Although the tissue 

architecture suggestive for a certain tumor type can be identified on CLE images (Belykh 

et al., 2016; Eschbacher et al., 2012; Foersch et al., 2012; Martirosyan et al., 2016), 

detailed characteristic brain tumor patterns for CLE images are not yet well described.  

Therefore, we used a more general concept (glioma diagnostic vs. nondiagnostic) that 

includes a range of known histological diagnostic elements (i.e., large nucleus, mitotic 

figures, hypercellularity, etc.) and allows for discovery of previously unrecognized 

features that may correlate with final image classification. Further investigation of 

detected features may deepen the understanding of glioma histopathological phenotypes 

in CLE images, consequently improving their theranostic implications. We intend to 
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make our dataset along with the codes publicly available online to facilitate further 

research. 

METHODS 

We constructed a WSL-based model to generate glioma Diagnostic Feature Maps 

(DFM) from CLE images, which includes three main components (Figure 3.1): 1) 

Customized CNN architecture with new design of CAM at different CNN layers. 2) 

Lateral inhibition (LI) mechanism that suppresses the activation of DFM at locations 

where its competitor, nondiagnostic feature map (NFM), also exhibit high activation. 3) 

Collateral integration (CI) mechanism that amplifies activation of DFM at locations 

where its allies at other layers also have high activations.  

For an input image 𝐼𝑚 supplied to the CNN, the class scores (𝑆D for diagnostic 

and 𝑆N for nondiagnostic) are defined from three layers via global pooling of 

discriminative regions estimated in each activation map (DFM, NFM). The class scores 

achieved from each layer, are then passed to independent softmax layers. The three 

predictions (probability of 𝐼𝑚 being diagnostic (D) and nondiagnostic (ND)) achieved 

from the softmax layers are streamed into three multinomial logistic loss layers and inject 

the weight update into the CNN during backpropagation. The total loss is calculated by 

summing the three loss values. 

New design of class activation map (CAM) 

To produce the CAM from each layer, a new convolutional layer is stacked to 

sum its weighted feature planes. Formally, the DFM and NFM at location (𝑥, 𝑦) achieved 

from layer 𝑧𝑗, are defined as: 

𝐷𝐹𝑀(𝑥, 𝑦, 𝑧𝑗) = ∑ 𝑤𝑘1
𝑧𝑗

𝑓𝑙(𝑥, 𝑦, 𝑧𝑗)𝑙 , (1) 
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𝑁𝐹𝑀(𝑥, 𝑦, 𝑧𝑗) = ∑ 𝑤𝑘0
𝑧𝑗

𝑓𝑙(𝑥, 𝑦, 𝑧𝑗)𝑙 , (2) 

where 𝑓𝑙(𝑥, 𝑦, 𝑧𝑗) is the activation of lth feature plane of layer 𝑧𝑗 at location (x, y) 

and  𝑤𝑘1
𝑧𝑗

 and 𝑤𝑘0
𝑧𝑗

 are the weights to produce the DFM and NFM, respectively. By 

applying GAP and then softmax function on DFM and NFM, the classification scores for 

different classes are calculated at each layer. Therefore, the softmax input for diagnostic 

(𝑆D) and nondiagnostic (𝑆N) class at layer 𝑧𝑗 can be formulated as: 

𝑆D =
1

𝑊𝑧𝑗
×𝐻𝑧𝑗 ∑ DFM (x, y, 𝑧𝑗)𝑥,𝑦 =

1

𝑊𝑧𝑗
×𝐻𝑧𝑗 ∑ ∑ 𝑤𝑘1

𝑧𝑗
𝑓𝑙(𝑥, 𝑦, 𝑧𝑗)𝑙𝑥,𝑦 , (3) 

𝑆N =
1

𝑊𝑧𝑗
×𝐻𝑧𝑗 ∑ NFM (x, y, 𝑧𝑗)𝑥,𝑦 =

1

𝑊𝑧𝑗
×𝐻𝑧𝑗 ∑ ∑ 𝑤𝑘0

𝑧𝑗
𝑓𝑙(𝑥, 𝑦, 𝑧𝑗)𝑙𝑥,𝑦 , (4) 

where 𝑊𝑧𝑗
 and 𝐻𝑧𝑗

 are the width and height of DFM and NFM at layer 𝑧𝑗. With 

the novel design of MLCAM, DFM, and NFM are produced in every forward pass and 

are updated through backpropagation. Furthermore, producing DFM from deeper layers 

empowers the overall predictive power of the model (i.e. labeling the detected region as 

diagnostic or nondiagnostic), while DFM from shallower layers allows larger spatial 

resolution and more precise detection of fine regions.  
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Figure 3.1 

Network architecture with Lateral Inhibition (LI) and Collateral Integration (CI) 

components for weakly supervised localization of glioma diagnostic features. Bottom 

image shows a CLE image along with the final diagnostic feature map generated by the 

model.  

Lateral inhibition and collateral integration of localizer neurons 

During the computation of DFM and NFM, some locations might be activated in 

both feature maps, which indicates the model’s confusion about the diagnostic value of 

those regions. The activation of DFM is downregulated in these regions, using NFM 

activations. This mechanism is known as neuronal lateral inhibition in neurobiology 

(Baars & Gage, 2010)). Furthermore, we upregulate the activation of regions which had 

higher recurrence of activation by integrating DFMs achieved from different layers. To 

combine these two neural interactions, we compose the following equation to produce the 

Final DFM (FDFM): 

 𝐹𝐷𝐹𝑀(𝑥, 𝑦) = ∑ [𝐷𝐹𝑀′(𝑥, 𝑦, 𝑧𝑖) −𝑧𝑖, 𝑧𝑗(𝑖≠𝑗)

𝐷𝐹𝑀′(𝑥, 𝑦, 𝑧𝑖). 𝑁𝐹𝑀′(𝑥, 𝑦, 𝑧𝑖)].  [𝐷𝐹𝑀′(𝑥, 𝑦, 𝑧𝑗) −

𝐷𝐹𝑀′(𝑥, 𝑦, 𝑧𝑗). 𝑁𝐹𝑀′(𝑥, 𝑦, 𝑧𝑗)], 

 

 

(5) 

where 𝐷𝐹𝑀′(𝑥, 𝑦, 𝑧𝑖) and 𝑁𝐹𝑀′(𝑥, 𝑦, 𝑧𝑖) are the value of normalized diagnostic 

and nodiagnostic feature maps achieved from layer 𝑧𝑖, after up-sampling to the original 

input image size. As shown in Eq. (5), the downregulation for layer 𝑧𝑖 is implemented by 

subtracting the 𝐷𝐹𝑀(𝑥, 𝑦, 𝑧𝑖). 𝑁𝐹𝑀(𝑥, 𝑦, 𝑧𝑖) term, which represents the confusing 

regions at this layer, from 𝐷𝐹𝑀(𝑥, 𝑦, 𝑧𝑖). Lastly, 𝐹𝐷𝐹𝑀(𝑥, 𝑦) is also normalized. Figure 
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3.1 presents the developed network’s architecture. The three inception modules have the 

same architecture, each combines filters of size 1 × 1, 3 × 3, 5 × 5 in parallel, and 

concatenates the outputs from each filter into a single tensor (Szegedy et al., 2015). 

EXPERIMENTAL SETUP AND RESULTS 

To train our model on image-level annotations, first, a “classification dataset” was 

created. The CLE images were acquired with an Optiscan 5.1 CLE as described 

previously (Martirosyan et al., 2016). The classification dataset included 6,287 CLE 

images (3,126 diagnostic and 3,161 nondiagnostic) from 20 patients with glioma brain 

tumors. If the CLE image depicted any distinguishable diagnostic features, it was labeled 

as diagnostic and otherwise as nondiagnostic. Table 3.1 shows the composition of the 

classification dataset and the number of images used in each stage. 

 D ND All 

Train 1714 1729 3443 

Val 487 511 998 

Test 925 921 1846 

Total 3126 3161 6287 

 

Table 3.1 

Number of Diagnostic (D) and Nondiagnostic (ND) images used for training, 

validation (Val), and test stage is presented. 

The classification dataset was divided on a patient level for model development 

and test (12 cases for training, 4 cases for validation and 4 cases isolated for testing). 

Stochastic Gradient Descent (SGD) with an initial learning rate of 0.001 and momentum 

of 0.9 was used to optimize the model’s parameters. Learning rate decay policy was set to 

step function with a gamma of 0.9 and step size of 500 iterations. Image cropping and 
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rotation were not used for augmentation because these might harm the validity of images. 

Since the diagnostic features could be very small, not every crop of a diagnostic image 

would be diagnostic. Also, there is no guarantee that the acquired CLE images are 

rotation invariant (e.g. the surgeons’ preference for holding the CLE probe). Training 

batch size was set to 15 images and it took 22,000 iterations to achieve the model with 

the minimum loss on classification of validation images. All the experiments were 

performed in Caffe (Jia et al., 2014) deep learning framework, using a GeForce GTX 980 

Ti GPU (6 GB memory). 

 The classification accuracy of the model was 84% on the test set (sensitivity = 

83.8%, specificity = 84.1%). To validate the efficacy of the WSL model, we tested the 

following three hypotheses. First, the model can correctly segment the image regions 

which have features that are indicative of glioma, confirmed by physicians at different 

scales (i.e., medium-sized intermediate and small-sized restrictive scales) and without 

much reliance on previous exposure (i.e., images from training, validation and test 

stages). Second, the new components utilized (MLCAM, LI, and CI) increase the 

performance of the model in detecting the features (especially restrictive features) 

compared to the other state of the art WSL methods that lack them and removing any of 

these would affect the model performance negatively. Third, the developed method can 

detect novel features in CLE images that were not previously recognized by the 

physicians. The three hypotheses were tested empirically, using image semantic 

segmentation task with the following evaluation metrics: mean accuracy (mean_acc), 

mean intersection over union (mean_IU), and frequency-weighted intersection over union 

(fw_IU). 
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A segmentation dataset including 310 CLE images was acquired from images 

annotated by four neurosurgeons. Each observer highlighted the diagnostic glioma 

features of each CLE images, independently. We used majority voting to process the 

annotation variations from the neurosurgeons. For rigorous assessment of the first 

hypothesis, the segmentation dataset included diagnostic regions at different scales. (145 

images were annotated for both Intermediate (Set2-I) and Restrictive (Set2-R) features). 

Also, to study the effect of previous exposure of CLE image to the model, we used 

images from all three stages: 30 images from training (Set1), 145 images form validation 

(Set2), and 135 images from test set (Set3 and Set4)). To appraise the second hypothesis, 

we sequentially altered components of the designed architecture and assessed the 

resulting performance of the model (“ablation study”). All models were trained and tested 

on the same data with the same parameters to avoid any bias. Finally, to test the third 

hypothesis, our dataset included 55 CLE images that were known to be from glioma 

tumors but were initially classified as nondiagnostic (Set4). The model generated the 

segmentation mask by creating the FDFM of the input image with one forward pass and 

then thresholding (threshold value of 0.03 for intermediate and 0.2 for restrictive 

features). 
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 Figure 3.2 

 Network architectures used for the ablation study. Top network shows the 

developed architecture without the LI and CI components. Bottom network shows the 

MLGAP architecture (Feng et al., 2017) which combines the three CAMs and then uses a 

GAP layer for classification. 

Table 3.2 shows experimental results of segmentation performance by ten 

different models with respect to the annotators. Each model constructs a DFM to create a 

segmentation map: M1, similar to (Feng et al., 2017); M2 – DFM and NFM of CAM 1,2, 

and 3 are first laterally inhibited and then collaterally integrated; M3 – CAM 1,2, and 3 

are collaterally integrated; M4, M5, M6 – by laterally inhibiting the DFM and NFM of 

CAM 1, 2, and 3, respectively; M7, M8, M9 – by using the DFMs from CAM 1, 2, and 3 

without any further processing; M10, similar to (Zhou et al., 2016). The first hypothesis 

proved to be true, since our developed model, M2, produced high mean_acc, mean_IU, 

and fw_IU for all the intermediate features from diagnostic images (Set1, Set2-I, and 

Set3). Moreover, it could segment the images from Set3 without significant change in 

mean_acc, while producing better fw_IU and mean_IU values on images that were 

previously revealed to it (Set1). Results from Set2-I and Set2-R images showed that all 

models generated much lower mean_IU and fw_IU on restrictive features compared to 

intermediate features, except for M1 and M2 models, both of which utilize shallower 

layers for enhancing the DFM's spatial resolution. In all experiments, M2 made the best 

performance for three measures (except in mean_acc for Set2-R), supporting the second 

hypothesis about the significance of the utilized components (MLCAM, LI, and CI). 

Specifically, M4-M6 models outperformed other ablated models (M7-M9), highlighting 
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the significant value of LI. The higher mean_IU value of M6 and M9 compared to M4,5 

and M7,8, respectively, indicates that more abstract features were learned by inception 3 

than by inception 1,2. In the first round of review, clinicians labeled Set4 images as 

nondiagnostic, however, after features were highlighted by the developed model, the 

clinicians re-classified Set4 images as diagnostic. The highest performance in Set4 

belonged to M2 (mean_acc = 88% and mean_IU = 89%). High mean_IU value achieved 

by the model and clinical feedback emphasize significance and novelty of the features. 

 Set M1 M2* M3 M4 M5 M6 M7 M8 M9 M10 

m
ea

n
_

a
cc

 

Set1 0.71 0.88 0.71 0.75 0.75 0.77 0.71 0.71 0.71 0.7 

Set2-I 0.76 0.85 0.74 0.76 0.76 0.77 0.74 0.74 0.74 0.74 

Set3 0.72 0.86 0.72 0.75 0.75 0.76 0.72 0.72 0.72 0.72 

Set2-R 0.78 0.87 0.79 0.88 0.88 0.85 0.78 0.79 0.81 0.78 

Set4 0.74 0.88 0.74 0.76 0.76 0.78 0.74 0.74 0.74 0.72 

m
ea

n
_

IU
 

Set1 0.65 0.9 0.61 0.69 0.69 0.72 0.61 0.61 0.61 0.63 

Set2-I 0.69 0.86 0.67 0.69 0.71 0.73 0.65 0.67 0.67 0.69 

Set3 0.57 0.82 0.56 0.59 0.61 0.63 0.56 0.56 0.56 0.59 

Set2-R 0.77 0.88 0.29 0.57 0.63 0.59 0.27 0.29 0.31 0.63 

Set4 0.48 0.89 0.48 0.52 0.55 0.57 0.48 0.48 0.48 0.5 

fw
_

IU
 

Set1 0.8 0.99 0.8 0.83 0.85 0.87 0.8 0.8 0.8 0.8 

Set2-I 0.88 0.98 0.86 0.88 0.9 0.92 0.86 0.86 0.86 0.86 

Set3 0.65 0.88 0.65 0.69 0.71 0.73 0.65 0.65 0.65 0.67 

Set2-R 0.9 0.97 0.18 0.5 0.61 0.58 0.14 0.16 0.2 0.67 

Set4 0.38 0.79 0.35 0.42 0.44 0.46 0.35 0.35 0.35 0.4 

 

 Table 3.2  

Segmentation performance by different models. M2* is the developed model. 

CONCLUSIONS 

In this study, a WSL model was developed to localize the diagnostic features of 

gliomas in CLE images. It utilizes three fundamental components for creating the final 

glioma DFM: multi-scale DFM, LI for removing confusing regions, and CI to spatially 

infuse diagnostic areas from DFMs with different spatial resolutions. The model could 
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detect the diagnostic regions with high agreement compared with annotation by 

neurosurgeon, from both diagnostic and nondiagnostic images (i.e., images that were 

initially designated as lacking diagnostic features) in intermediate and restrictive features, 

while outperforming other methods. Such an approach should be tested on larger datasets. 

Initial testing demonstrated that WSL has the potential to identify not only relevant, but 

novel or unrecognized diagnostic features in CLE images that were not previously 

discriminated by human inspection, requiring further investigation. This approach can be 

augmented with active learning and patch clustering to create an atlas of glioma 

phenotypes in CLE images. Further detailed studies correlating regular histology and 

CLE images are necessary for better understanding of glioma histopathological features 

on CLE images. 
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CHAPTER 4 

FLUORESCENCE DIGITAL IMAGE HISTOLOGY PATTERN TRANSFORMATION 

USING IMAGE STYLE TRANSFER 

 

ABSTRACT 

Fluorescein sodium (FNa) has been recently used with confocal laser 

endomicroscopy (CLE) to aid neurosurgeons differentiate between brain normal tissue 

and neoplasm during tumor dissection. FNa-driven CLE imaging has numerous 

advantages over conventional intraoperative diagnostic tools such as frozen section 

hematoxylin and eosin (H&E)-stained histology slide (e.g., more interactive, rapid, and 

portable). However, it has several limitations: CLE images are usually contaminated with 

artifacts (motion, red blood cells, noise), FNa stains the tissue architecture indistinctly, 

and neuropathologists are mainly trained on colorful stained histology slides like H&E 

while the CLE images are gray. To improve the diagnostic quality of CLE images, we 

used a micrograph of an H&E slide from a glioma tumor biopsy and image style transfer, 

a neural network method for integrating the content and style of two images. This was 

done through minimizing the deviation of the target image from both the content (CLE) 

and style (H&E) images. Five neurosurgery fellows examined how much artifacts were 

removed and how much unclear structures were enhanced to validate the quality 

enhancement in 100 pairs of original and transformed images. Average score of the 

reviewers on test images showed that 84 out of 100 transformed images had lower 

artifacts and more noticeable critical structures compared to their original form. By 

providing images that are more interpretable than the original CLE images and faster to 
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acquire than H&E slides, this method allows a real-time, cellular-level tissue examination 

toward a shorter, more accurate, and interactive surgery. 

INTRODUCTION 

Confocal laser endomicroscopy (CLE) is undergoing rigorous research for its 

potential to assist neurosurgeons to examine tissue in situ during brain surgery (Belykh et 

al., 2018; Foersch et al., 2012; Mohammadhassan Izadyyazdanabadi et al., 2018; 

Martirosyan et al., 2014, 2016). The ability to scan tissue or surgical resection bed on-

the-fly essentially producing optical biopsies, compatibility with different fluorophores, 

miniature size of the probe and the portability of the system are essential features of this 

promising technology. Currently, the most frequent technique used for neurosurgical 

intraoperative diagnosis is examination of frozen section hematoxylin and eosin (H&E)-

stained histology slides.  

Figure 4.1 (a) shows an example image from a glioma acquired by CLE (left) and 

a micrograph of an H&E slide (right), acquired by conventional light microscopy. 

Although generating CLE images is much faster than H&E slides (1 second per image 

compared to about 20 minutes per slide), many CLE images may be non-optimal and can 

be obscured with artifacts including background noise, blur, and red blood cells (M. 

Izadyyazdanabadi et al., 2017). The histopathological features of gliomas are often more 

identifiable in the H&E slide images compared to the CLE images generated using 

nonspecific fluorescent dyes such as fluorescein sodium (FNa). Neuropathologists as well 

are used to evaluating detailed histoarchitecture colorfully stained with H&E for 

diagnoses, especially for frozen section biopsies. Fluorescent images from intraoperative 

neurosurgical application present a new digital gray scale (monochrome) imaging 
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environment to the neuropathologist for diagnosis that may include hundreds of images 

from one case. Recently, the U.S. FDA has approved a blue laser range CLE system 

primarily utilizing FNa for use in neurosurgery. 

Countervailing these diagnostic and visual deficiencies in CLE images requires a 

rapid, automated transformation that can: 1) remove the occluding artifacts, and 2) add 

(amplify) the histological patterns that are difficult to recognize in the CLE images. 

Finally, this transformation should avoid removing the critical details (e.g., cell 

structures, shape) or adding unreal patterns to the image, to maintain the integrity of the 

image content. Such a method may present “transformed” CLE images to the 

neuropathologist and neurosurgeon that may resemble images based on familiar and 

standard, even colored, appearances from histology stains, such as H&E. 

One method for implementing this transformation could be supervised learning, 

however, supervised learning requires paired images (from the same object and location) 

to learn the mapping between the two domains (CLE and H&E). Creating a dataset of 

colocalized H&E and CLE images is infeasible because of problems in exact co-

localization and intrinsic tissue movements, although small, and artifacts introduced 

during H&E slide preparation.  “Image style transfer”, first introduced by Gatys et al. 

(Gatys, Ecker, & Bethge, 2016), is an image transformation technique that blends the 

content and style of two separate images to produce the target image. This process 

minimizes the distance between feature maps of the source and target images using a 

pretrained convolutional neural network (CNN).  
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 Figure 4.1 

(a) Representative CLE (Optiscan 5.1, Optiscan Pty., Ltd.) and H&E images from 

glioma tumors. (b) Original and stylized CLE images from glioma tumors, in 4 color 

coding: gray, green, red, intact H&E. 

In this study, we aimed to remove the inherent occlusions and enhance the 

structures that were problematical to recognize in CLE images. Essentially, we attempted 

to make CLE images generated from non-specific FNa application during glioma surgery 
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appear like standard H&E-stained histology and evaluate the accuracy and usefulness. 

We used the image style transfer method since it extracts abstract features from the CLE 

and H&E image that are independent of their location in the image and thus can operate 

on the images that are not from the same location. More details about the image style 

transfer algorithm and the quality assessment protocol follow in section 2. Our results 

from a test dataset showed that on average, the diagnostic quality of stylized images was 

higher than the original CLE images, although there were some cases where the 

transformed image showed new artifacts. 

METHODS 

 Image Style Transfer 

 Image style transfer takes a content and style image as input and produces a target 

image that shows the structures of the content image and the general appearance of the 

style image. This is achieved through four main components: 1) a pretrained CNN that 

extracts feature maps from source and target images, 2) quantitative calculation of the 

content and style representations for source and target images, 3) a loss function to 

capture the difference between the content and style representation of source and target 

images, and 4) an optimization algorithm to minimize the loss function. In contrast to 

CNN supervised learning, where the model parameters are updated to minimize the 

prediction error, image style transfer modifies the pixel values of the target image to 

minimize the loss function while the model parameters are fixed.  

 A 19-layer visual geometry group network (VGG-19), that is pretrained on 

ImageNet dataset, extracts feature maps from CLE, H&E, and target images. Feature 

maps in layer “Conv4_2” of VGG-19 are used to calculate the image content 
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representation, and a list of gram matrices from feature maps of five layers (“ReLU1_1”, 

“ReLU2_1”, …, “ReLU5_1”) are used to calculate the image style representation. To 

examine the difference between the target and source images, the following loss function 

was used: 

𝐿𝑜𝑠𝑠𝑇𝑜𝑡𝑎𝑙 =  
1

2
∑(𝐶𝐶𝐿𝐸 − 𝐶𝑇𝑎𝑟𝑔𝑒𝑡)

2
+ 𝛼 × ∑ 𝑤𝑖 × ∑(𝑆𝐻&𝐸

𝑖 − 𝑆𝑇𝑎𝑟𝑔𝑒𝑡
𝑖 )2

5

𝑖=1
 

 

 

 

 

 𝐶𝐶𝐿𝐸 and 𝐶𝑇𝑎𝑟𝑔𝑒𝑡 are the content representations of the CLE and target image, 𝑆𝐻&𝐸
𝑖  

and 𝑆𝑇𝑎𝑟𝑔𝑒𝑡
𝑖  are the style representations of the H&E and target image based on the 

feature maps of the 𝑖𝑡ℎ layer, and 𝑤𝑖 (weight of 𝑖𝑡ℎ layer in the style representation) 

equals 0.2. The parameter 𝛼 determines relative weight of style loss in the total loss and 

is set to 100. A limited memory optimization algorithm (L-BFGS (Zhu, Byrd, Lu, & 

Nocedal, 1997)) minimizes this loss.  

 For the experiment, 100 CLE images (from a recent study by Martirosyan et 

al.(Martirosyan et al., 2016)) were randomly selected from 15 subjects with glioma 

tumors as content images. A single micrograph of an H&E slide from a glioma tumor 

biopsy of a different patient (not one of the 15 subjects) was used as the style image 

(Figure 4.1 (a), right). For each CLE image, the optimization process was run for 1600 

iterations and the target image was saved for evaluation and referred to as the “stylized 

image” in the following sections.  

Content Loss: difference 

between content representation 

of the CLE and target image 

Style Loss: difference 

between style representation 

of the H&E and target image 
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 Evaluation 

 Although the stylized images presented the same histological patterns as H&E 

images and seemed to contain similar structures to those present in the corresponding 

original CLE images, a quantitative image quality assessment was performed to 

rigorously evaluate the stylized images. Five neurosurgeons independently assessed the 

diagnostic quality of the 100 pairs of original and stylized CLE images. For each pair, the 

reviewers sought to examine two properties in each stylized image and provided a score 

for each property: 1) “what’s removed”: whether the stylization process removed any 

critical structures (negative impact) or artifacts (positive impact) that were present in the 

original CLE image, and 2) “what’s added”: whether the stylization process added new 

structures that were not present (negative impact) or were difficult to notice (positive 

impact) in the original CLE image. The scores are between 0 and 6 with the following 

annotations: 0, extreme negative impact; 1, moderate negative impact; 2, slight negative 

impact; 3, no significant impact; 4, slight positive impact; 5, moderate positive impact; 

and 6, extreme positive impact. Further information and instructions about the quality 

assessment survey is available in Table 4.1 and 4.2. 

Score Description 

0 Negative* impact; Severe structures are removed 

1 Negative impact; Moderate structures are removed 

2 Negative impact; Slight structures are removed 

3 No significant structures are removed 
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4 Positive** impact; Slight artifacts are removed 

5 Positive impact; Moderate artifacts are removed 

6 Positive impact; Severe artifacts are removed 

 Table 4.1 

 Scoring protocol for evaluating the diagnostic quality of stylized images based on 

the “what’s removed” criterion. * Negative impact denotes that the transformed image 

has a lower diagnostic quality than the original image (e.g. removing cells or other 

preexisting diagnostic features). ** Positive impact denotes that the transformed image 

has a higher diagnostic quality than the original image. (e.g. less artifacts) 

Score Description 

0 Negative* impact; Severe artifacts are added 

1 Negative impact; Moderate artifacts are added 

2 Negative impact; Slight artifacts are added 

3 No significant structures are added 

4 Positive** impact; Slight structures are added 

5 Positive impact; Moderate structures are added 

6 Positive impact; Severe structures are added 

  Table 4.2 

 Scoring protocol for evaluating the diagnostic quality of stylized images based on 

the “what’s added” criterion. * Negative impact denotes that the transformed image has 

a lower diagnostic quality than the original image (e.g. hallucinating cells, misleading 
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structures, and artifacts). ** Positive impact denotes that the transformed image has a 

higher diagnostic quality than the original image (e.g. highlighting cells or other 

structures that were hard to notice). 

 Since the physicians were more familiar with the H&E than the CLE images, it was 

possible that the reviewers would overestimate the quality of stylized images merely due 

to their color resemblance to H&E images (during style transfer the color of CLE image 

is also changed to pink and purple). To explore how the reviewers’ scores would change 

if the stylized images were presented in a different color other than the pink and purple 

(the common color for H&E images), the stylized images were processed in four different 

ways: I) 25 stylized images were converted into gray-scale images (averaging the three 

red, green, and blue channels), II) 25 stylized images were color-coded in green (first 

converted the image to gray-scale and then set red and blue channels to zero), III) 25 

stylized images were color-coded as red (similar approach), and IV) 25 stylized images 

were used without any further changes (intact H&E). Since there are too many structures 

in each CLE image, and to examine the images more precisely, we used the center-crop 

of each original CLE and its stylized version for evaluation. Figure 4.1 (b) shows some 

example stylized images used for evaluation. 

 Results and Analysis 

 Figure 4.2 (a) shows a histogram of all reviewers’ scores for the removed artifacts 

(blue bars) and added structures (orange bars) in the stylized images with different colors.  

Overall, the number of stylized CLE images that have higher diagnostic quality than the 

original images (score greater than 3) was significantly larger than those with equal or 

lower diagnostic quality for both removed artifacts and added structures scores (one-way 
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chi square test p-value<0.001). Results from stylized images that were color-coded (gray, 

green, red) showed the same trend for the added structures scores, indicating that the 

improvement was not just because of color resemblance.  

 There was significant difference between how much the model added structures and 

removed artifacts. For all the color-coded and intact stylized images, the average of 

added structures scores was larger than the removed artifacts scores (t-test p-value 

<0.001). This suggests that the model was better at enhancing the structures that were 

challenging to recognize than removing the artifacts.  

 Figure 4.2 (b) shows the frequency of different combinations of scores for removed 

artifacts and added structures in an intensity map. Each block represents how many times 

a rater scored an image with the corresponding values on the x (improvement by added 

structures) and y (improvement by removed artifacts) axes for that block. The most 

frequent incident across all the stylized images is the coordinates (5,4), which means 

moderately adding structures and slightly removing artifacts, followed by (5,5) meaning 

moderately adding structures and removing artifacts. Although the intensity maps derived 

from different color-coded images were not exactly similar, the most frequent 

combination in each group still indicated positive impact in both properties. The most 

frequent combination of scores, for each of the color-coded images, was as follows: gray 

= (5,4), green = (5,5), red = (5,4), and intact = (5,4).  
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Figure 4.2.  

(a) Histogram of scores for added structures and removed artifacts from different 

color- coded images. (b) An intensity map showing the frequency of different 

combinations of scores for adding structures (x axis) and removing artifacts (y axis). (c) 

Two example images that the stylization process removed some critical details (top) or 

added unreal structures (bottom).  
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 As a further analysis, we counted the number of images that had an average score 

of below 3 to see how often the algorithm removed critical structures or added artifacts 

that were misleading to the neurosurgeons. From the 100 tested images, 3 images had 

only critical structures removed, 4 images had only artifacts or unreal structures added, 

and 2 images had both artifacts added and critical structures removed. On the contrary, 84 

images showed improved diagnostic quality through both removed artifacts and added 

structures that were hard to recognize, 6 images had only artifacts removed, and 5 images 

had only critical structures added. Figure 4.1 (b) shows some example stylized images 

with improved quality compared to the original CLE, and Figure 4.2 (c) shows two 

stylized images with decreased diagnostic quality through removed critical structures 

(top) and added artifacts (bottom).  

Conclusions 

 In this study, image style transfer was applied to CLE images from gliomas to 

enhance their diagnostic quality. Style transfer with an H&E-stained slide image had an 

overall positive impact on the diagnostic quality of CLE images. The improvement was 

not solely because of the colorization of CLE images; even the stylized images that were 

converted to gray, red, and green, reported improved diagnostic quality compared to the 

original CLE images. Employment of more specific clinical tasks to explore the 

advantage of stylization in diagnosing gliomas and other tumor types is underway based 

on this preliminary success. In the future, application of more advanced methods for 

transferring patterns in the histology slides to the CLE images will be used to improve 

their interpretability. Because of the high number of CLE images acquired during a single 

case, style transfer could add value to such fluorescence images and allows for computer-
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aided techniques to play a meaningful, convenient, and efficient role to aid the 

neurosurgeon and neuropathologist in analysis of CLE images and to more rapidly 

determine diagnosis.  
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CHAPTER 5 

DISCUSSION 

This dissertation studies three computer aided systems to enhance neurosurgical 

CLE imaging with deep convolutional neural networks. In the following sections, a 

discussion of methods and the significance of each task is provided. Then, the limitations 

and future works are presented. 

CONTRIBUTIONS 

First, an ensemble of deep convolutional neural networks was developed to 

evaluate the diagnostic quality of CLE images rapidly. This was critical since almost half 

of the acquired images during surgery are blurred with motion and occluded with blood 

artifacts and lack useful histopathological features for an accurate diagnosis. To 

countervail this issue, thousands of images can be fed to the model and be quantified 

based on their diagnostic quality, allowing the neurosurgeon and pathologist review 

images with highest quality much faster. Experimental results in chapter 2 showed that 

with the current size of our CLE dataset (~20,000), combining transfer learning 

(initializing the weights with a pre-trained model) and ensemble modeling (aggregating 

the outputs of diverse models) produced better classification accuracy and AUC than 

training from scratch (random weight initialization) or a single model. Ensemble 

modeling positive impact was more evident when the individual models were more 

diverse (e.g. deep fine tuning and training from scratch) and less when there was less 

diversity (shallow fine tuning). Different DCNN architectures responded differently to 

shallow fine tuning and deep fine tuning, but overall, both showed improvement from 
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training from scratch to deep fine tuning. An interesting observation was that the 

ensemble of models had higher agreement with the defined gold standard ground truth 

than the two neurosurgery fellows. This could be because the model was trained on 

images that were labeled with physicians while they had access to both CLE and H&E 

slides, and the model might have learnt to consider more details when evaluating CLE 

images than the secondary reviewers. 

Second, a weakly-supervised learning approach was adopted to train a customized 

DCNN architecture for segmenting the CLE images into regions containing features 

indicative of glioma. Image-level labels were used to train the network on classification 

task. Two feature maps representing the diagnostic and nondiagnostic areas of the input 

were produced at three different resolutions and globally averaged to produce the 

probability scores for classification. During the test stage, diagnostic feature maps were 

extracted from the images and compared with the overall annotation provided by four 

neurosurgery fellows. To lower the false positives in model output, confusing regions of 

the diagnostic feature maps (i.e. areas that were activated in both diagnostic and 

nondiagnostic feature maps) were laterally inhibited. To increase the model sensitivity 

regarding small critical structures, a consequent layer integrated the feature maps from 

the shallow layers to produce the final segmentation map. Ablation study showed that 

removing any of these three components (multi-layer feature maps, lateral inhibition, and 

collateral integration) lowered the performance and the developed model outperformed 

two states of the arts in the field of weakly supervised learning; the evaluation was based 

on two common metrics in image segmentation: accuracy and intersection over union. 

The fact that the model could detect structures in images that were tentatively labeled as 
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nondiagnostic by reviewers, suggest that such systems may aid the reviewing process of 

CLE images through marking suspicious areas that might otherwise be missed by the 

reviewer.  

Third, image style transfer was applied to CLE images to improve their quality. A 

micrograph of an H&E-stained slide obtained from a glioma tumor biopsy was used as 

the “style image” to amplify the diagnostic features and reduce the artifacts in the CLE 

image (“content image”), resulting in the “target image”. To blend the style of the H&E 

image with the structures in the CLE image, a pre-trained DCNN was used to find a 

quantitative representation of content and style properties. An optimization algorithm 

minimized the weighted sum of the distance between the content of target and CLE and 

the distance between style of target and H&E images. Five neurosurgery fellows 

evaluated the diagnostic quality of the target and CLE images and confirmed quality 

enhancement in both intact H&E and pseudo-colored target images. The rationale behind 

pseudo-coloring style transferred images was to inspect if the perceived higher quality is 

solely due to the colorization which was denied since even gray color-coded style 

transferred images showed lower artifacts and more identifiable structures than the 

original images.  

LIMITATIONS AND FUTURE WORKS 

In the first study on diagnostic classification of CLE images, the ensemble model 

averaged the outputs from five models that were trained on different portions of the 

dataset. This allowed reducing the overfitting effect and better generalization on test 

images from new cases. However, this approach intensified the computational cost and 

required longer time to process. Future studies can explore other approaches for 
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developing ensemble models that address this issue. Obtaining more CLE images and 

creating a larger dataset allows training deeper networks and learning more 

comprehensive and accurate mappings between CLE images and their diagnostic quality. 

With the introduction of new generations of CLE imaging instruments, transfer learning 

from the current models (that are based on previous generations of the instrument) can be 

used to address the low number of images available at the beginning. 

Second study showed the promise of a weakly-supervised learning approach for 

image segmentation and detecting novel features in CLE images from gliomas. A semi-

supervised approach may augment it in the future to combine the knowledge in image-

level annotated dataset with the knowledge in a smaller pixel-level annotated dataset. A 

systematic organization of the features detected by the developed model may help 

understanding of glioma phenotypes in CLE images and allow better characterization of 

CLE images with an atlas of glioma attributes. However, this requires a larger dataset 

with annotations and further experiments with supervised object detection along rigorous 

validation by neurosurgeons. Moreover, clustering algorithms (e.g. K-means) can be used 

for categorizing the glioma features in an unsupervised way.  

One of the limitations in the current study is that each frame is analyzed 

independent of the other frames. The reason for pursuing this approach in this study is the 

small size of the dataset. In future when more images are available, the whole sequence 

of frames can be fed to the network; this may aid the model to differentiate red blood 

cells from tumor cells considering that red blood cells tend to move more than tumor 

cells in a sequence of frames. An alternative could be preprocessing the images with a 
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more conventional method such as optical flow and feed the motion information along 

the frames to the network. 

Third study applied an optimization-based method for enhancing the quality of 

CLE images through reducing their artifacts and amplifying the critical structures. First 

limitation is that for every new image it needs to run the optimization to find the target 

stylized image which make it slow. The reason for choosing this approach was that due to 

the intrinsic differences between CLE and H&E image acquisition process, it is infeasible 

to acquire paired images for training an end-to-end algorithm to reconstruct H&E from 

CLE. One alternative is to first create a dataset of synthesized H&E images with style 

transfer and then train a CNN on the paired CLE-H&E images; the drawback would be 

that the new CNN will inherit any deficiencies in the current approach. Also, further 

diagnostic tasks are needed to rigorously validate the usefulness of this approach in CLE 

guided neurosurgery.  

Overall, both CLE and DCNN are powerful new technologies with promising 

achievements in the last couple of years. Future studies may reveal further benefits of 

applying DCNN to CLE for other purposes, such as: differential diagnosis of tumors with 

customized classification networks (e.g., benign versus malignant), noise removal with 

autoencoders, increasing the resolution with generative models, cell detection with 

supervised object recognition, image captioning to annotate features in the image, multi-

channel image analysis (i.e., staining the tissue with multiple fluorophores instead of 

single FNa), and categorizing diagnostic features of brain neoplasms in CLE images in 

the form of an atlas (with clustering methods). After all, since DCNN is a data-driven 

approach and acquiring large annotated datasets is time consuming, more images need to 
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be acquired from different tumors and efficient weakly-supervised and semi-supervised 

methods should be developed to resolve the annotation challenge.  
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