22,531 research outputs found

    Speech Synthesis Based on Hidden Markov Models

    Get PDF

    Wearable and mobile devices

    Get PDF
    Information and Communication Technologies, known as ICT, have undergone dramatic changes in the last 25 years. The 1980s was the decade of the Personal Computer (PC), which brought computing into the home and, in an educational setting, into the classroom. The 1990s gave us the World Wide Web (the Web), building on the infrastructure of the Internet, which has revolutionized the availability and delivery of information. In the midst of this information revolution, we are now confronted with a third wave of novel technologies (i.e., mobile and wearable computing), where computing devices already are becoming small enough so that we can carry them around at all times, and, in addition, they have the ability to interact with devices embedded in the environment. The development of wearable technology is perhaps a logical product of the convergence between the miniaturization of microchips (nanotechnology) and an increasing interest in pervasive computing, where mobility is the main objective. The miniaturization of computers is largely due to the decreasing size of semiconductors and switches; molecular manufacturing will allow for “not only molecular-scale switches but also nanoscale motors, pumps, pipes, machinery that could mimic skin” (Page, 2003, p. 2). This shift in the size of computers has obvious implications for the human-computer interaction introducing the next generation of interfaces. Neil Gershenfeld, the director of the Media Lab’s Physics and Media Group, argues, “The world is becoming the interface. Computers as distinguishable devices will disappear as the objects themselves become the means we use to interact with both the physical and the virtual worlds” (Page, 2003, p. 3). Ultimately, this will lead to a move away from desktop user interfaces and toward mobile interfaces and pervasive computing

    Chatbots for learning: A review of educational chatbots for the Facebook Messenger

    Get PDF
    With the exponential growth in the mobile device market over the last decade, chatbots are becoming an increasingly popular option to interact with users, and their popularity and adoption are rapidly spreading. These mobile devices change the way we communicate and allow ever-present learning in various environments. This study examined educational chatbots for Facebook Messenger to support learning. The independent web directory was screened to assess chatbots for this study resulting in the identification of 89 unique chatbots. Each chatbot was classified by language, subject matter and developer's platform. Finally, we evaluated 47 educational chatbots using the Facebook Messenger platform based on the analytic hierarchy process against the quality attributes of teaching, humanity, affect, and accessibility. We found that educational chatbots on the Facebook Messenger platform vary from the basic level of sending personalized messages to recommending learning content. Results show that chatbots which are part of the instant messaging application are still in its early stages to become artificial intelligence teaching assistants. The findings provide tips for teachers to integrate chatbots into classroom practice and advice what types of chatbots they can try out.Web of Science151art. no. 10386

    Human-Robot interaction with low computational-power humanoids

    Get PDF
    This article investigates the possibilities of human-humanoid interaction with robots whose computational power is limited. The project has been carried during a year of work at the Computer and Robot Vision Laboratory (VisLab), part of the Institute for Systems and Robotics in Lisbon, Portugal. Communication, the basis of interaction, is simultaneously visual, verbal, and gestural. The robot's algorithm provides users a natural language communication, being able to catch and understand the person’s needs and feelings. The design of the system should, consequently, give it the capability to dialogue with people in a way that makes possible the understanding of their needs. The whole experience, to be natural, is independent from the GUI, used just as an auxiliary instrument. Furthermore, the humanoid can communicate with gestures, touch and visual perceptions and feedbacks. This creates a totally new type of interaction where the robot is not just a machine to use, but a figure to interact and talk with: a social robot

    Immersive Composition for Sensory Rehabilitation: 3D Visualisation, Surround Sound, and Synthesised Music to Provoke Catharsis and Healing

    Get PDF
    There is a wide range of sensory therapies using sound, music and visual stimuli. Some focus on soothing or distracting stimuli such as natural sounds or classical music as analgesic, while other approaches emphasize the active performance of producing music as therapy. This paper proposes an immersive multi-sensory Exposure Therapy for people suffering from anxiety disorders, based on a rich, detailed surround-soundscape. This soundscape is composed to include the users’ own idiosyncratic anxiety triggers as a form of habituation, and to provoke psychological catharsis, as a non-verbal, visceral and enveloping exposure. To accurately pinpoint the most effective sounds and to optimally compose the soundscape we will monitor the participants’ physiological responses such as electroencephalography, respiration, electromyography, and heart rate during exposure. We hypothesize that such physiologically optimized sensory landscapes will aid the development of future immersive therapies for various psychological conditions, Sound is a major trigger of anxiety, and auditory hypersensitivity is an extremely problematic symptom. Exposure to stress-inducing sounds can free anxiety sufferers from entrenched avoidance behaviors, teaching physiological coping strategies and encouraging resolution of the psychological issues agitated by the sound

    Conversational affective social robots for ageing and dementia support

    Get PDF
    Socially assistive robots (SAR) hold significant potential to assist older adults and people with dementia in human engagement and clinical contexts by supporting mental health and independence at home. While SAR research has recently experienced prolific growth, long-term trust, clinical translation and patient benefit remain immature. Affective human-robot interactions are unresolved and the deployment of robots with conversational abilities is fundamental for robustness and humanrobot engagement. In this paper, we review the state of the art within the past two decades, design trends, and current applications of conversational affective SAR for ageing and dementia support. A horizon scanning of AI voice technology for healthcare, including ubiquitous smart speakers, is further introduced to address current gaps inhibiting home use. We discuss the role of user-centred approaches in the design of voice systems, including the capacity to handle communication breakdowns for effective use by target populations. We summarise the state of development in interactions using speech and natural language processing, which forms a baseline for longitudinal health monitoring and cognitive assessment. Drawing from this foundation, we identify open challenges and propose future directions to advance conversational affective social robots for: 1) user engagement, 2) deployment in real-world settings, and 3) clinical translation

    Who am I talking with? A face memory for social robots

    Get PDF
    In order to provide personalized services and to develop human-like interaction capabilities robots need to rec- ognize their human partner. Face recognition has been studied in the past decade exhaustively in the context of security systems and with significant progress on huge datasets. However, these capabilities are not in focus when it comes to social interaction situations. Humans are able to remember people seen for a short moment in time and apply this knowledge directly in their engagement in conversation. In order to equip a robot with capabilities to recall human interlocutors and to provide user- aware services, we adopt human-human interaction schemes to propose a face memory on the basis of active appearance models integrated with the active memory architecture. This paper presents the concept of the interactive face memory, the applied recognition algorithms, and their embedding into the robot’s system architecture. Performance measures are discussed for general face databases as well as scenario-specific datasets

    Robotics for social welfare

    Get PDF
    Supported by developments in the field of social robotics, virtual worlds and ICT tools it is possible to build new solutions in health and welfare. Two projects are described in this article. They are intended to improve efficiency and quality of current therapeutic procedures. The ESTIMULO project improves emotional and cognitive status of people with dementia using a reactive pet-robot. The ELDERTOY project modifies the classical concept from the toy industry to develop a new solution for the aged people. ELDERTOY involves a double purpose, fun and therapeutic. In a complementary way, these projects aim to be an example of the breaking of the technology gap both of seniors and of people with disabilities. Therefore, the ultimate goal is to promote and adapt scientific and technological knowledge to be applied to improve significantly the standard of quality of life in society
    corecore