112 research outputs found

    Development of a Rat-like Robot and Its Applications in Animal Behavior Research

    Get PDF
    制度:新 ; 報告番号:甲3587号 ; 学位の種類:博士(工学) ; 授与年月日:2012/3/15 ; 早大学位記番号:新592

    A future of living machines? International trends and prospects in biomimetic and biohybrid systems

    Get PDF
    Research in the fields of biomimetic and biohybrid systems is developing at an accelerating rate. Biomimetics can be understood as the development of new technologies using principles abstracted from the study of biological systems, however, biomimetics can also be viewed from an alternate perspective as an important methodology for improving our understanding of the world we live in and of ourselves as biological organisms. A biohybrid entity comprises at least one artificial (engineered) component combined with a biological one. With technologies such as microscale mobile computing, prosthetics and implants, humankind is moving towards a more biohybrid future in which biomimetics helps us to engineer biocompatible technologies. This paper reviews recent progress in the development of biomimetic and biohybrid systems focusing particularly on technologies that emulate living organisms—living machines. Based on our recent bibliographic analysis [1] we examine how biomimetics is already creating life-like robots and identify some key unresolved challenges that constitute bottlenecks for the field. Drawing on our recent research in biomimetic mammalian robots, including humanoids, we review the future prospects for such machines and consider some of their likely impacts on society, including the existential risk of creating artifacts with significant autonomy that could come to match or exceed humankind in intelligence. We conclude that living machines are more likely to be a benefit than a threat but that we should also ensure that progress in biomimetics and biohybrid systems is made with broad societal consent. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    From locomotion to cognition: Bridging the gap between reactive and cognitive behavior in a quadruped robot

    Full text link
    The cognitivistic paradigm, which states that cognition is a result of computation with symbols that represent the world, has been challenged by many. The opponents have primarily criticized the detachment from direct interaction with the world and pointed to some fundamental problems (for instance the symbol grounding problem). Instead, they emphasized the constitutive role of embodied interaction with the environment. This has motivated the advancement of synthetic methodologies: the phenomenon of interest (cognition) can be studied by building and investigating whole brain-body-environment systems. Our work is centered around a compliant quadruped robot equipped with a multimodal sensory set. In a series of case studies, we investigate the structure of the sensorimotor space that the application of different actions in different environments by the robot brings about. Then, we study how the agent can autonomously abstract the regularities that are induced by the different conditions and use them to improve its behavior. The agent is engaged in path integration, terrain discrimination and gait adaptation, and moving target following tasks. The nature of the tasks forces the robot to leave the ``here-and-now'' time scale of simple reactive stimulus-response behaviors and to learn from its experience, thus creating a ``minimally cognitive'' setting. Solutions to these problems are developed by the agent in a bottom-up fashion. The complete scenarios are then used to illuminate the concepts that are believed to lie at the basis of cognition: sensorimotor contingencies, body schema, and forward internal models. Finally, we discuss how the presented solutions are relevant for applications in robotics, in particular in the area of autonomous model acquisition and adaptation, and, in mobile robots, in dead reckoning and traversability detection

    屋外調査用自律移動型ロボットの不整地移動性能

    Get PDF
    早大学位記番号:新7829早稲田大

    An overview of waste materials for sustainable road construction

    Get PDF
    Untreated soil typically has low shear strength, swelling behavior, high compressibility and its characteristics were highly dependent on the environment. In general, such problematic soil will lead to severe damages in road construction industry such as bearing capacity failure, slope instability, and excessive settlement. Agricultural waste, construction waste, and municipal waste have recently gained considerable attention as a sustainable material in road construction application due to its availability, environmental friendly and low-cost materials. Therefore in this review, randomly distributed fiber reinforced soil and oriented distributed fiber reinforced soil will be extensively discussed based on the emerging trend. It further reviewed the feasibility of using waste materials as a reinforcement material for the road construction industry. The review also attempts to evaluate and compare the engineering properties of soil and sustainable materials in order to enhance soil performance as well as help to improve the environment affected by growing waste materials

    Evolution of Adaptive Behaviour in Robots by Means of Darwinian Selection

    Get PDF
    ii.34., humans have been intrigued by the origin and mechanisms underlying complexity in nature. Darwin suggested that adaptation and complexity could evolve by natural selection acting successively on numerous small, heritable modifications. But is this enough? Here, we describe selected studies of experimental evolution with robots to illustrate how the process of natural selection can lead to the evolution of complex traits such as adaptive behaviours. Just a few hundred generations of selection are sufficient to allow robots to evolve collision-free movement, homing, sophisticate
    corecore