4,695 research outputs found

    Mobile security and smart systems

    Get PDF

    TOWARD THE SYSTEMATIZATION OF ACTIVE AUTHENTICATION RESEARCH

    Get PDF
    Authentication is the vital link between your real self and your digital self. As our digital selves become ever more powerful, the price of failing authentication grows. The most common authentication protocols are static data and employed only once at login. This allows for authentication to be spoofed just once to gain access to an entire user session. Behaviometric protocols continuously consume a user’s behavior as a token of authentication and can be applied throughout a session, thereby eliminating a fixed token to spoof. Research into these protocols as viable forms of authentication is relatively recent and is being conducted on a variety of data sources, features and classification schemes. This work proposes an extensible research framework to aid the systemization and preservation of research in this field by standardizing the interface for raw data collection, processing and interpretation. Specifically, this framework contributes transparent management of data collection and persistence, the presentation of past research in a highly configurable and extensible form, and the standardization of data forms to enhance innovative reuse and comparative analysis of prior research

    Context-aware multi-factor authentication

    Get PDF
    Trabalho apresentado no ñmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia InformáticaAuthentication systems, as available today, are inappropriate for the requirements of ubiquitous, heterogeneous and large scale distributed systems. Some important limitations are: (i) the use of weak or rigid authentication factors as principal’s identity proofs, (ii) non flexibility to combine different authentication modes for dynamic and context-aware interaction criteria, (iii) not being extensible models to integrate new or emergent pervasive authentication factors and (iv) difficulty to manage the coexistence of multi-factor authentication proofs in a unified single sign-on solution. The objective of this dissertation is the design, implementation and experimental evaluation of a platform supporting multi-factor authentication services, as a contribution to overcome the above limitations. The devised platform will provide a uniform and flexible authentication base for multi-factor authentication requirements and context-aware authentication modes for ubiquitous applications and services. The main contribution is focused on the design and implementation of an extensible authentication framework model, integrating classic as well as new pervasive authentication factors that can be composed for different context-aware dynamic requirements. Flexibility criteria are addressed by the establishment of a unified authentication back-end, supporting authentication modes as defined processes and rules expressed in a SAML based declarative markup language. The authentication base supports an extended single sign-on system that can be dynamically tailored for multi-factor authentication policies, considering large scale distributed applications and according with ubiquitous interaction needs

    Perceiving is Believing. Authentication with Behavioural and Cognitive Factors

    Get PDF
    Most computer users have experienced login problems such as, forgetting passwords, loosing token cards and authentication dongles, failing that complicated screen pattern once again, as well as, interaction difficulties in usability. Facing the difficulties of non-flexible strong authentication solutions, users tend to react with poor acceptance or to relax the assumed correct use of authentication procedures and devices, rendering the intended security useless. Biometrics can, sort of, solve some of those problems. However, despite the vast research, there is no perfect solution into designing a secure strong authentication procedure, falling into a trade off between intrusiveness, effectiveness, contextual adequacy and security guarantees. Taking advantage of new technology, recent research onmulti-modal, behavioural and cognitive oriented authentication proposals have sought to optimize trade off towards precision and convenience, reducing intrusiveness for the same amount of security. But these solutions also fall short with respect to different scenarios. Users perform currently multiple authentications everyday, through multiple devices, in panoply of different situations, involving different resources and diverse usage contexts, with no "better authentication solution" for all possible purposes. The proposed framework enhances the recent research in user authentication services with a broader view on the problems involving each solution, towards an usable secure authentication methodology combining and exploring the strengths of each method. It will than be used to prototype instances of new dynamic multifactor models (including novel models of behavioural and cognitive biometrics), materializing the PiB (perceiving is believing) authentication. Ultimately we show how the proposed framework can be smoothly integrated in applications and other authentication services and protocols, namely in the context of SSO Authentication Services and OAuth

    Radio frequency optimization of a Global System for Mobile (GSM) network

    Get PDF
    Includes bibliographical references

    Towards Developing Grid-based Portals for E-Commerce on-Demand Services on a Utility Computing Platform

    Get PDF
    Trends and current practices in the design and development of grid-enabled portals(GeP) reveal the need to identify and fulfill certain additional relevant requirements in order to build applicable and usable grid-enabled portals for evolving computing platforms such as the utility computing (UC). This paper reports an investigation of the minimum relevant additional requirements that must be fulfilled to attain effective GeP design for UC. A GeP prototype for the Grid-based Utility Infrastructure for Small, Micro, and Medium Enterprises (SMME) Enabling Technology (GUISET) initiative – a UC platform was developed, and an analytic evaluation experiment undertaken in the study to elicit these additional requirements using a set of benchmark requirements (standards) revealed that it fulfilled the minimum requirements to be suitable for UC context. The result of the study underlines the need for more controlled experiments in portal prototyping in order to foster the practice of GeP design for UC

    Biometrics for internet‐of‐things security: A review

    Get PDF
    The large number of Internet‐of‐Things (IoT) devices that need interaction between smart devices and consumers makes security critical to an IoT environment. Biometrics offers an interesting window of opportunity to improve the usability and security of IoT and can play a significant role in securing a wide range of emerging IoT devices to address security challenges. The purpose of this review is to provide a comprehensive survey on the current biometrics research in IoT security, especially focusing on two important aspects, authentication and encryption. Regarding authentication, contemporary biometric‐based authentication systems for IoT are discussed and classified based on different biometric traits and the number of biometric traits employed in the system. As for encryption, biometric‐cryptographic systems, which integrate biometrics with cryptography and take advantage of both to provide enhanced security for IoT, are thoroughly reviewed and discussed. Moreover, challenges arising from applying biometrics to IoT and potential solutions are identified and analyzed. With an insight into the state‐of‐the‐art research in biometrics for IoT security, this review paper helps advance the study in the field and assists researchers in gaining a good understanding of forward‐looking issues and future research directions

    Android Based Behavioral Biometric Authentication via Multi-Modal Fusion

    Get PDF
    Because mobile devices are easily lost or stolen, continuous authentication is extremely desirable for them. Behavioral biometrics provides non-intrusive continuous authentication that has much less impact on usability than active authentication. However single-modality behavioral biometrics has proven less accurate than standard active authentication. This thesis presents a behavioral biometric system that uses multi-modal fusion with user data from touch, keyboard, and orientation sensors. Testing of ve users shows that fusion of modalities provides more accurate authentication than each individual modalities by itself. Using the BayesNet classification algorithm, fusion achieves False Acceptance Rate (FAR) and False Rejection Rate (FRR) values of 9.65% and 2% respectively, each of which is 8% lower than the closest individual modality

    Continuous User Authentication Using Multi-Modal Biometrics

    Get PDF
    It is commonly acknowledged that mobile devices now form an integral part of an individual’s everyday life. The modern mobile handheld devices are capable to provide a wide range of services and applications over multiple networks. With the increasing capability and accessibility, they introduce additional demands in term of security. This thesis explores the need for authentication on mobile devices and proposes a novel mechanism to improve the current techniques. The research begins with an intensive review of mobile technologies and the current security challenges that mobile devices experience to illustrate the imperative of authentication on mobile devices. The research then highlights the existing authentication mechanism and a wide range of weakness. To this end, biometric approaches are identified as an appropriate solution an opportunity for security to be maintained beyond point-of-entry. Indeed, by utilising behaviour biometric techniques, the authentication mechanism can be performed in a continuous and transparent fashion. This research investigated three behavioural biometric techniques based on SMS texting activities and messages, looking to apply these techniques as a multi-modal biometric authentication method for mobile devices. The results showed that linguistic profiling; keystroke dynamics and behaviour profiling can be used to discriminate users with overall Equal Error Rates (EER) 12.8%, 20.8% and 9.2% respectively. By using a combination of biometrics, the results showed clearly that the classification performance is better than using single biometric technique achieving EER 3.3%. Based on these findings, a novel architecture of multi-modal biometric authentication on mobile devices is proposed. The framework is able to provide a robust, continuous and transparent authentication in standalone and server-client modes regardless of mobile hardware configuration. The framework is able to continuously maintain the security status of the devices. With a high level of security status, users are permitted to access sensitive services and data. On the other hand, with the low level of security, users are required to re-authenticate before accessing sensitive service or data
    • 

    corecore