
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia

Departamento de Informática

Dissertação de Mestrado

Context-aware multi-factor authentication

Luís Henrique Fernandes Moura Miranda (aluno nº 27169)

Orientador: Prof. Doutor Henrique João Lemos Domingos

Trabalho apresentado no âmbito do Mestrado em Engenha-
ria Informática, como requisito parcial para obtenção do
grau de Mestre em Engenharia Informática.

2º Semestre de 2008/09
29 de Julho de 2009

Acknowledgements

I would like to thank Professor Henrique João L. Domingos for his supervision as teacher and
adviser, to the department of informatics of Faculdade de Ciências e Tecnologia at Universidade
Nova de Lisboa (DI-FCT-UNL) for conceding a scholarship for introduction to investigation
during the past year, to my colleagues at DI-FCT-UNL for their friendship and availability to
help me during the last five years, to my friends who were always there despite my absence and
most of all to Andreia and to my parents for their patience and unconditional support.

iii

Abstract

Authentication systems, as available today, are inappropriate for the requirements of ubiqui-
tous, heterogeneous and large scale distributed systems. Some important limitations are: (i)
the use of weak or rigid authentication factors as principal’s identity proofs, (ii) non flexibility
to combine different authentication modes for dynamic and context-aware interaction criteria,
(iii) not being extensible models to integrate new or emergent pervasive authentication factors
and (iv) difficulty to manage the coexistence of multi-factor authentication proofs in a unified
single sign-on solution. The objective of this dissertation is the design, implementation and
experimental evaluation of a platform supporting multi-factor authentication services, as a con-
tribution to overcome the above limitations. The devised platform will provide a uniform and
flexible authentication base for multi-factor authentication requirements and context-aware au-
thentication modes for ubiquitous applications and services. The main contribution is focused
on the design and implementation of an extensible authentication framework model, integrat-
ing classic as well as new pervasive authentication factors that can be composed for different
context-aware dynamic requirements. Flexibility criteria are addressed by the establishment of a
unified authentication back-end, supporting authentication modes as defined processes and rules
expressed in a SAML based declarative markup language. The authentication base supports an
extended single sign-on system that can be dynamically tailored for multi-factor authentication
policies, considering large scale distributed applications and according with ubiquitous interac-
tion needs.

Keywords: authentication, context, multi-modal, multi-factor, SSO, ubiquity

v

Resumo

Tal como são conhecidos nos dias de hoje, os sistemas de autenticação são inapropriados,
considerando os requisitos dos serviços e aplicações de sistemas distribuídos de grande es-
cala, heterogéneos e ubíquos. Algumas destas limitações são: (i) o uso de factores de auten-
ticação demasiado fracos ou rígidos como provas de identidade de principais, (ii) a falta de
flexibilidade para combinação de diferentes modos de autenticação que considerem interacções
dinâmicas e dependentes do contexto, (iii) o facto de não terem por base modelos extensíveis a
factores de autenticação novos e emergentes e (iv) a dificuldade em gerir provas de autenticação
multi-factor com base em sistemas single sign-on para autenticação uniforme e normalizada. O
objectivo desta dissertação considera o desenho, a implementação e a avaliação experimental
de uma plataforma que suporte autenticação multi-factor, como uma contribuição para superar
as limitações mencionadas. As principais contribuições passam pela implementação de um mo-
delo de autenticação extensível, que integre simultaneamente factores de autenticação clássicos
e emergentes, podendo estes ser compostos de acordo com requisitos dinâmicos e dependentes
do contexto de utilização. O critério de flexibilidade é conseguido através da concretização de
uma base uniforme de autenticação, que suporte diferentes modos de autenticação segundo um
conjunto de regras e processos expressos numa linguagem declarativa baseada na especifica-
ção SAML. A base de autenticação suporta e estende um sistema single sign-on para que este
permita a configuração dinâmica de regras e politicas de autenticação multi-factor, bem como
as necessidades de interacção ubíqua em serviços e aplicações usados em ambientes de grande
escala.

Palavras-chave: Autenticação, contexto, multi-modal, multi-factor, SSO, ubiquidade

vii

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Context 2

1.2.1 Authentication and distributed systems 2
1.2.2 Access control models 3

1.2.2.1 Discretionary access control (DAC) 3
1.2.2.2 Mandatory access control (MAC) 3
1.2.2.3 Role based access control (RBAC) 4
1.2.2.4 Access control lists 4
1.2.2.5 Capabilities 4

1.2.3 Authentication mechanisms, factors and services 5
1.2.3.1 Classic authentication factors 5
1.2.3.2 Emerging authentication factors 5
1.2.3.3 Authentication mechanisms 6

1.2.4 Uni-factor drawbacks 6
1.2.5 Multi-factor and multi-modal authentication systems 7
1.2.6 Ubiquitous systems 7
1.2.7 Single sign-on systems 8

1.3 Identified limitations 8
1.4 Contributions 10
1.5 Document structure 10

2 Related Work 11
2.1 Authentication in classic modes 11

2.1.1 Static passwords 11
2.1.2 Token based systems 13

2.1.2.1 Hardware security tokens 13
2.1.2.2 Software security tokens 14

2.1.3 Multi-modal authentication with biometrics 15
2.1.3.1 Biometric authentication system architecture 15
2.1.3.2 Issues concerning authentication trough biometrics 16
2.1.3.3 Multi-modal biometric authentication systems 18

2.2 Authentication factors for ubiquitous environments 19
2.2.1 Something the user sees 19
2.2.2 Something the user makes 20
2.2.3 Somewhere the user is 21

2.3 Multi-factor and multi-modal authentication 23
2.4 Single sign-on mechanisms and protocols 23

ix

x

2.4.1 Java authentication and authorization API 25
2.4.2 SAML 27
2.4.3 OpenID 28
2.4.4 OpenSSO 30
2.4.5 Enterprise sign-on engine 31
2.4.6 Kerberos and the PKINIT approach 32

2.5 Summary and contributions 34
2.5.1 Overview 34
2.5.2 Context based authentication and multi-factor authentication 35
2.5.3 Contribution 36

3 A context-aware multi-factor authentication system 37
3.1 Scope and requirements 37
3.2 Core concepts 37
3.3 Interaction model 39
3.4 CAM2ML 40

3.4.1 Assertions 40
3.4.2 Requests 41
3.4.3 Reference protocol 43

3.4.3.1 Security analysis 44
3.4.4 CAM2ML vs SAML 44

3.5 CAM2 identity platform 45
3.5.1 Client integration tier 46
3.5.2 Authentication logic tier 47
3.5.3 Data integration tier 48

3.6 Application scenarios 48
3.6.1 Web authentication 49
3.6.2 Mobile authentication 49
3.6.3 Spontaneous authentication 50
3.6.4 Kerberos extended by CAM2 50
3.6.5 Asynchronous authentication 51

4 Architecture for CAM2 authentication platform 53
4.1 CAM2ML Object model 53

4.1.1 CAM2MLExportable interface 53
4.1.2 Context Item 54
4.1.3 Authentication modes 55
4.1.4 Assertion 55
4.1.5 Request 56

4.2 CAM2 Identity platform 57
4.2.1 Client integration layer 57

xi

4.2.1.1 CAM2ML front end services 57
4.2.1.2 Web authentication integration module 59
4.2.1.3 SOAP authentication integration module 60
4.2.1.4 RESTful authentication integration module 61
4.2.1.5 Kerberos legacy integration modules 61
4.2.1.6 CAM2ML Extended Kerberos V5 63
4.2.1.7 Admin console integration services 64

4.2.2 Authentication logic layer 65
4.2.2.1 Policy manager 65
4.2.2.2 Authentication core 66
4.2.2.3 Platform services 68

4.2.3 Data integration layer 68
4.2.3.1 onetime passwords synchronization server 69
4.2.3.2 LDAP server 69
4.2.3.3 Kerberos data interface 69
4.2.3.4 Bluetooth token validation server 70
4.2.3.5 Movement template matcher 71
4.2.3.6 Visual proof repository 72

5 Implementation 73
5.1 Chosen technologies 73

5.1.1 J2EE Platform 73
5.1.2 J2ME 75
5.1.3 Python and Symbian C++ 75
5.1.4 JavaServer Pages 76
5.1.5 OpenSSO 76
5.1.6 GlassFish 76
5.1.7 eXist 77
5.1.8 Web services and security 77

5.2 Runtime 77
5.3 Protocol Integration modules 78

5.3.1 Web integration authentication module 78
5.3.2 Web services integration authentication modules 81
5.3.3 Kerberos integration authentication module 81

5.4 Authentication modules 81
5.5 Validators 85

5.5.1 CAM2 Secure CLIP 85
5.5.2 CAM2 Mobile payment application 87
5.5.3 CAM2 Kerberos 87
5.5.4 CAM2 Administration interface 88

xii

6 Performance evaluations 89
6.1 Workbench 89
6.2 Benchmarks 90
6.3 Local tests 92
6.4 Internet tests 97
6.5 Results overview 101

7 Requirement validations 103
Expression of dynamic context aware authentication processes 103
Multi-factor and multi-modal authentication 103
Dynamic and context-aware proof requirement 104
Extensibility for new authentication models 104
Generic usage 104
Performance 105

8 Conclusions and future work 107
8.1 Future work 109

Bibliography 115

A CAM2ML XML Schema 121
A.1 Assertion.xsd 121
A.2 Request.xsd 122
A.3 AuthenticationModes.xsd 123
A.4 Context.xsd 124
A.5 Policy.xsd 126
A.6 Principal.xsd 127

List of Figures

2.1 Hardware security tokens 14
2.2 Biometric traits comparison 16
2.3 Relation between FNMR and FMR 18
2.4 Mobile phones performing SiB protocol 20
2.5 Single sign-on middleware architecture 25
2.6 JAAS architecture 26
2.7 SAML protocol 28
2.8 OpenID interaction model. 29
2.9 OpenSSO architecture 31
2.10 ESOE architecture 32

3.1 CAM2 Utilization 39
3.2 CAM2 interaction model 39
3.3 Example of a policy assertion 42
3.4 Example of policy request 43
3.5 CAM2 Identity Provider: Reference architecture 46

4.1 Object model for CAM2ML mapping 54
4.2 Context item and context manager class diagram 55
4.3 Component diagram for CAM2 IdP architecture 58
4.4 Activity diagram for the authentication process 67

5.1 Authentication platform implementation blueprint 74
5.2 Deployment diagram 79
5.3 Bluetooth OTP authentication 83
5.4 Visual based authentication 84
5.5 Gesture Identification 84
5.6 Example of an authentication event on CAM2 version of CLIP system 86
5.7 Bank application WEB interface 87
5.8 Kerberos client GUI 88
5.9 CAM2 Web Administration console 88

6.1 OpenSSO load test with 1 client 92
6.2 CAM2 load test with 1 client 92
6.3 OpenSSO load test with 50 concurrent clients 93
6.4 CAM2 load test with 50 concurrent clients 94
6.6 CAM2 load test with 100 concurrent clients 94
6.5 OpenSSO load test with 100 concurrent clients 95
6.7 CAM2 latency distribution 95

xiii

xiv

6.8 OpenSSO load test with 1 client 97
6.9 CAM2 load test with 1 client 97
6.10 OpenSSO load test with 50 concurrent clients 98
6.11 CAM2 load test with 50 concurrent clients 99
6.12 OpenSSO load test with 100 concurrent clients 99
6.13 CAM2 load test with 100 concurrent clients 100
6.14 CAM2 latency distribution 101

1 . Introduction

1.1 Motivation

In the nowadays society, services and resources are shared between entities trough large scale
and ubiquitous distributed information systems. Many times these systems are based on het-
erogeneous and ubiquitous computer systems and devices, interconnected by different commu-
nication infrastructures including mobile and stationary communication settings. Large scale
ubiquitous systems and applications are used as services available with different context-aware
interaction requirements and specific access conditions. Today, ubiquitous and large scale sys-
tems are composed by multi-application environments or services composed by different appli-
cation components, more or less specialized for different devices, ranging from personal and
convenient devices (as mobile phones, handhelds, etc), to well-managed computers with su-
pervised security conditions in enterprises and institutions. Authentication methods became
mandatory as part of any resource sharing system. The above conditions demand new context-
aware authentication requirements that will be discussed during this dissertation.

Today, authentication systems are typically based on one of three classic factors: something

the user knows (as passwords, PINs, shared secrets, etc.) something the user has (dynamic one-
time-password tokens, smart cards, etc.) and something the user is or does (biometric factors).
However, each one of those factors has limitations. Passwords are easy to guess and users
tend to misuse them, tokens can be lost, stolen or reproduced and are difficult to manage and
biometry is an expensive solution, with possible accuracy limitations and personal intrusion
issues. Multi-factor and multi-modal authentication comes as better solution since it combines
multiple authentication factors, therefore hiding their flaws while enforcing the overall accuracy,
convenience and assurance levels. This motivates the objective of the current dissertation that
is focused in the design, implementation and experimental evaluation of a platform supporting
multi-factor authentication services, as a contribution to overcome the introduced limitations.
The devised middleware will provide a uniform and flexible authentication extension for multi-
factor authentication requirements and context-aware authentication modes for the ubiquitous
applications and services currently available.

1

2

1.2 Context

1.2.1 Authentication and distributed systems

Making ubiquitous environments secure essentially boils down to different security properties
and issues. As addressed in the classical distributed systems security vision, these properties
appear as categorizations of fundamental concepts, such as: authentication, confidentiality, in-
tegrity, availability, access-control and auditing [4].

Security properties, adversary models, attacks typology and security services (used as counter
measures against attacks to establish security properties) are extensively described in the clas-
sical approach and literature of distributed systems security [18],[50] and computer networks
security services, protocols and standards [9],[40]. Adversary models, the typology of attacks
and adversary hypothesis are usually defined, discussed and formalized in security frameworks
[47] inspiring the design of security services and standards.

Security standards also evolve according with new security conditions, new technology,
considering possible limitations and context-aware conditions, new adversary models and new
attack hypothesis.

For authentication purposes, principals are primarily defined as abstract entities, associated
to digital unique identifiers, at different abstraction levels of distributed systems. From this
viewpoint, a principal can be an interface, a device, a data-link address, a network address,
a software component or a user. Depending on the abstraction level, authentication must be
established as an essential property of secure interaction channels, from point-to-point com-
munication (establishing authenticated data-link or network-level endpoints) to end-to-end user
level (involving user’s identity authentication proofs).

New technologies require the vision of new adversary models, new adversary hypotheses
and new metrics of risk. Using the same security services with the same security assumptions
for different scenarios sometimes imply on a continuous vulnerability state or inappropriate
settings [8],[10]. New ubiquitous systems - as multi-application scenarios supported by dif-
ferent devices - present new challenges associated to different adversary model conditions and
different concerns associated to interaction modes supported. There are two important issues
directly related with these concerns. The first issue, directly related with the establishment of
secure communication channels, needs authentication services to authenticate principals asso-
ciated to end-points of communication protocols. Verifiable authentication evidences can be

3

also used as seed values to generate cryptographic keys or other shared secret values or parame-
ters to establish security associations in secure protocols protected by cryptographic algorithms
[1],[47],[21]. The second issue is concerned with access-control (based on the previous au-
thentication and evaluation of proofs or evidences of each principal identity). Access-control
addresses the problem of controlling the access to resources, objects and operations over those
resources and objects). Authentication and access-control are different security properties, even
if can be closely related and sometimes are two faces of the same coin.

Authorization is the process of granting access to a resource based on the identification of
the interested entity [47]. Access control is achieved by verifying if authentic subjects satisfy
one or more permission policies. For that, it is necessary to validate in advance the identities of
the subjects involved on the process.

1.2.2 Access control models

There are three classic models for access control: Discretionary Access Control (), Mandatory
Access Control () [35] and Role Based Access Control (RBAC) [44]. Access control models
may rely on multiple mechanisms. Access control lists and capabilities are the most common
among them.

1.2.2.1 Discretionary access control (DAC)

DAC Is an object centric model which, consists on setting permission to objects in a decen-
tralized way. A system based on this model doesn’t define any hierarchy between subjects and
objects. In this model, it is the subject who sets the access policies to his own objects. As an
example there is the UNIX’s file permission system, where an administrator can set different
policies for three groups of users: the subject himself, other users and for the work-group. A
DAC model requires that the identifiers used to map subjects to its resources must be previously
authenticated in order to warrant the security concerns related to access control.

1.2.2.2 Mandatory access control (MAC)

MAC comes in opposition to DAC. In this model, all objects are visible and controlled by one
or more policy administrators, who grant permission to all users in a centralized way. With this

4

model it is possible to apply security policies to the whole system at once, which is much more
difficult to make in systems based on DAC model. A typical example where the MAC model
can be seen is on a Database Management System. In a MAC model, the identifiers associated
to subjects representing users and policy administrators must previously authenticated in order
to warrant the security concerns associated to access control model.

1.2.2.3 Role based access control (RBAC)

Some systems must deal with different levels of granularity. While in file systems the grain
blocks are users and objects, the same may not be appropriated for large systems with large
amounts of objects and users. Considering this scenario, a system using DAC or MAC based
models is limited in what concerns to scale, since all entities must be managed independently.
An alternative is the use of Role Based Access Control Model [44]. RBAC is a neutral and flexi-
ble access control model sufficiently powerful to simulate Discretionary Access Control (DAC)
and Mandatory Access Control (MAC). With RBAC the permissions to perform certain oper-
ations are assigned to specific roles. Subjects are assigned particular roles, and through those
role assignments acquire the permissions to perform particular system functions. Since subjects
are not assigned permissions directly, but only acquire them through their role (or roles), the
management of individual user rights becomes a matter of simply setting the appropriate roles
to those subjects, which simplifies common operations such as adding a user, or changing the
user’s department.

1.2.2.4 Access control lists

ACLs are data structures that store information about objects and the operations that users are
able to perform on them [4]. Systems based on DAC model attach ACLs to objects that must
be protected, that way user centric policing is achieved. MAC based systems hold centralized
ACLs that are crosscutting to all objects.

1.2.2.5 Capabilities

In opposition to ACLs, capability based systems are user centric [4]. Each user has a set of
capabilities that may be stated on a credential. Those credentials have information about objects

5

and respective permissions for a specified user. Every time the user wants to access an object, he
must provide his capabilities, which are used by the resource holder in order to perform access
control.

1.2.3 Authentication mechanisms, factors and services

1.2.3.1 Classic authentication factors

Authentication processes require digital identities and proofs in order to validate subjects. Those
proofs are usually classified in three classes: something the subject has, something the subject
knows, or something the subject is or does [4]. The first factor relies on proofs as objects that
must be kept by subjects, such as smart cards, SIM cards or cell phones. The second factor is
related to information that must be memorized by subjects, like passwords, PINs or passphrases.
Finally the third factor depends on biometric traits such as fingertips, face, hand geometry, iris,
or voice patterns and rhythm recognition [17].

1.2.3.2 Emerging authentication factors

The widespread usage of mobile devices brings the opportunity for new authentication factors
using richer interaction models, convenience criteria and ubiquitous as well as pervasive au-
thentication requirements. Spatial location, relying in positioning identification devices such
transceivers, may be used to verify if subjects are who they claim to be assuming they have to
be present at some place [11],[13]. Context-aware information can be used as an authentication
factor. For example, if subjects have information about the same context, they can mutually
authenticate themselves by making the same gestures [26] or by seeing the same objects [27].
Recently, EEG analysis came to be used as another authentication factor. Although it can be
considered a biometric factor, EEG analysis can be used to identify brain patterns associated
with the subject’s brain conditions. Some, tasks when idealized, origin brain patterns that can
be used to identify uniquely one entity [25]. RFID technology can also be used to promote
authentication proofs associated to secure authentication protocols using RFID tags as subject
identifiers[7], [54], [5].

6

1.2.3.3 Authentication mechanisms

Authentication mechanisms are defined as abstractions which can be used as trustable base
building block components. They can be combined in different ways to implement authen-
tication services with different security properties. Examples of authentication mechanisms
are: cryptographic algorithms or primitives, authentication protocols or authentication audit-
ing tools. Authentication mechanisms can be categorized as specific mechanisms (correspond-
ing to mechanisms with verifiable formal properties that map specific security properties) and
pervasive security mechanisms (no specific to a well-defined security property) [40]. Follow-
ing the definition existing on related literature, examples of specific security mechanisms are:
encipherment based on computational cryptography, digital signatures or public-key certifica-
tion or notarization or authentication exchange protocols. Examples of pervasive mechanisms
are: event-detection evidences, security logging and audit-trails, trust-management or reputa-
tion control. According to these notions, authentication factors embrace both authenticated
proofs used as input parameters to specific authentication mechanisms as well as complemen-
tary evidences to set up pervasive mechanisms.

1.2.4 Uni-factor drawbacks

Authentication schemes uniquely based on something the user knows authentication factor have
the advantage of uniquely relying on information that it’s supposed to be known only by the
participating entities, thus being difficult to steal or to duplicate. Nevertheless what really hap-
pens is that users tend to use guessable passwords, share them with other users or even write
them down, giving origin to security vulnerabilities [4].

Systems based on security tokens can prevent most of the disadvantages previously shown,
but the utilization of objects tends to be less practical or non convenient, since they can be lost,
stolen, or reproduced. On the other hand, solutions based on security tokens in a large scale
system environment are in general difficult to manage and have high operational costs. Some
devices used as security tokens can be expensive according with their functionality.

The third factor, overcoming some of these disadvantages, is related to biometric authenti-
cation. Human traits are hard to steal and physically intrinsic to users. Besides the advantages,
biometrics have some concerns like, trait collectability, noise in sensed data, physical and social

7

intrusion and lack of accuracy that is determined by their False Rejection Rate(FRR) and False
Accepting Rate (FAR)[19, 18].

Emergent authentication factors, as introduced before, are in general application specific
and cannot be used by themselves as uni-factors for the majority of the existing scenarios.

1.2.5 Multi-factor and multi-modal authentication systems

One approach to solve the problem of uni-factor authentication is to combine multiple fac-
tors [12], [23], [55]. The multi-factor approach improves the assurance level of authentication
processes, by combining the advantages of all authentication factors and covering the draw-
backs of the remaining. For instance, one classic type of multi-factor authentication, known as
two factor authentication, is present on ATMs. Here, users introduce a card (first factor) and a
PIN code (second factor). It is considered that any access control system that uses more than
one factor supports strong authentication.

Factors can even be used in a multi-modal fashion. In this case different types of information
related to the same factor are combined to get uni-factor authentication. A typical example of
this approach is present on biometric multi-modal systems that combine two biometric modes
like iris and fingertip recognition. The usage of multi-factor and multi-modal authentication
improves the level of assurance granted by the validation processes, since the disadvantages of
each factor is overlapped by the advantages of the remaining types of proofs.

1.2.6 Ubiquitous systems

The usage of cell phones and other mobile devices is common in the nowadays society. These
devices are rapidly becoming smaller, cheaper and more powerful, acting as mini personal com-
puters with complex operating systems providing richer development primitives. Many of the
mobile phones available today have features for interaction with users such as cameras, ac-
celerometers, Bluetooth, WI-FI or GPS transceivers. All these specifications had allowed the
usage of mobile devices to access complex applications (and sometimes critic like home bank-
ing solutions) with high assurance requirements. The usage of ubiquitous devices on these
kinds of applications introduces security issues. This is due to the fact that accessing the same
application from a fixed desktop at home and do the same at a public place using a cell phone
may require different assurance levels. On the other hand, the features available on these de-
vices allow to performing multi-factor and multi-modal authentication processes based on richer

8

authentication processes. The works described on [27], [45] and [26] show alternative authen-
tication factors, namely something the user sees, somewhere the user is and some gesture the

user makes.

1.2.7 Single sign-on systems

Considering an organization where multiple authentication systems are used, the management
and validation of digital identities becomes a hard process both for users and system adminis-
trators. Users must keep multiple credentials (typically passwords) and log-in at least as many
times as the number of resources they want to access. On the other hand, administrators must
manage the identities and respective authentication data from multiple subjects.

Single sign-on systems (SSO) address these problems by supplying a centrally managed
identity provider accessed by all resources. With a single sign-on system, users only have to
pass through the login process once. Therefore, SSO systems act as a unique and uniform
authentication base used by all components in the organization. Systems like, OpenSSO [32],
Enterprise SignOn Engine (ESOE) [36] and Kerberos protocol, with a new vision using public
cryptography [56], are examples of state-of-art single sign-on based approaches. Some of these
authentication platforms support reliable extension mechanisms, such as OSID [16] and JAAS,
[24] and provide interfaces for interoperability with other systems relying on open standards
like such SAML [2] and OpenID [41].

1.3 Identified limitations

Authentication services as systems combining different authentication mechanisms - as avail-
able today - are inappropriate for the requirements of ubiquitous and heterogeneous large scale
distributed systems, applications and services.

This limitation is particularly visible in current application environments supporting ubiq-
uitous, context-aware and multi-channel interaction platforms. In these environments (like an
Internet banking and financing services platform) users are constantly accessing a wide range
of different devices based on different access criteria, such as: availability, convenience, cost,

9

functionality specialization, dynamic profiling and other context-aware conditions. These cri-
teria impose different security concerns and tradeoffs with a relevant impact on the need of
different and new authentication mechanisms.

The major drawbacks of the current authentication services are the following:

• In general, authentication services make use of weak or rigid authentication factors used
as proofs of identity of principals. Most of them are based on secret-sharing, which are
very vulnerable such as password-attacks, and social engineering [49].

• Non flexibility for multi-factor authentication purposes adapted to dynamic context-aware
interaction criteria. Available technology allows the installation of authentication plat-
forms based on the multi-factor authentication principle to overcome the limitations or
risks associated to specific factors stronger than passwords. However, these are propri-
etary systems; with a limited vision on very specific factors for specific applications and
environments (examples include two-factor schemes merging passwords and specific de-
vices such as: tokens or smart cards or biometric authentication servers including support
for a specific biometric factor, such as fingerprints). Furthermore, these systems con-
figure authentication factors in a rigid and static way in a user-centered perspective and
for a specific application. The available systems don’t have a combined vision of user
and ubiquitous context-aware centered perspective oriented for different applications and
heterogeneous devices. Finally, due to the rigid behavior of available technology, these
kinds of systems aren’t extensible to emerging pervasive factors such as something the

user sees, somewhere the user is or something the user makes.

• Difficulty to manage the coexistence of different authentication information bases when
different authentication factors need to be combined. Taking in account current single
sign-on solutions and their specifications, there is no support for the combination of mul-
tiple independent authentication systems in a uniform authentication process.

10

1.4 Contributions

Given the limitations identified on the last subsection, the objective of this dissertation is
the design, implementation and experimental evaluation of a middleware platform supporting
multi-factor and multi-modal authentication services, as a contribution to overcome the limi-
tations discussed on the previous section. The devised platform must provide a uniform and
flexible authentication base for multi-factor authentication requirements and context-aware au-
thentication modes that can be used in ubiquitous applications and services. The main goal is to
implement an extensible authentication framework model integrating classic as well as new and
emergent authentication factors. These factors must be composed according to context-aware
dynamic requirements and user interaction conditions. The flexibility criteria will be addressed
by the establishment of a unified authentication back-end, supporting authentication modes as
processes and rules expressed in a context-aware multi-factor and multi-modal markup language
(CAM2ML).

The management of multi-factor and multi-modal identities and their authentication data is
assured by the utilization of state-of-art single sign-on authentication platforms, which already
support extension mechanisms for new and emergent authentication factors as well as primitives
for interoperability with other systems, relying on open standards. Therefore, the objective of
the proposed solution is accomplished reusing the services provided by single sign-on systems,
which can be dynamically tailored to combine multi-factor authentication rules and policies for
multi-device supported applications and different interaction needs.

1.5 Document structure

The remaining parts of this document are organized in the following way: chapter 2 presents
the related work and its analysis, considering the requirements identified and the dissertation
objectives; chapter 3 is dedicated to the description of the model of the proposed authentication
platform; chapter 4 describes the architecture and components of such system; chapter 6 sum-
marizes the implementation issues; chapter 7 presents and discusses experimental result and the
evaluation of the implemented platform and finally, chapter 8 concludes the dissertation and
identifies future work directions.

2 . Related Work

This chapter presents a related work overview according with the motivations and objectives
of the current dissertation. The related work presented covers different issues and topics as
follow: first a brief overview on authentication factors and classic authentication systems is
presented, as well as a discussion on the drawbacks of these systems for the requirements of
ubiquitous context-aware and multi-channel interaction platforms; as an approach to overcome
those drawbacks, multi-factor and multi-modal authentication systems are introduced. Standard
framework specifications for integration of authentication systems are also discussed, as well
as the approach of single sign-on based systems and protocols. Finally the chapter presents a
critical analysis concerning the design of a multi-factor and multi-modal authentication plat-
form providing uniform and flexible authentication services for context-aware and ubiquitous
applications and services.

2.1 Authentication in classic modes

In this section the classic authentication factors will be discussed. Despite their individual
drawbacks, they are still used as is in the majority of authentication systems.

2.1.1 Static passwords

Most of the current authentication systems use static passwords as authentication proofs. In
these systems users must provide passwords in order to get authorization to access resources.
Validating the authenticity of an electronic component is a trivial process. However the same is
not applicable for humans. The utilization of passwords brings a set of drawbacks and vulner-
abilities associated to: user’s psychological factors, problems while entering passwords, pass-
word design and generation, and password management. In the following paragraphs, these
drawbacks are discussed.

• User’s psychological factor - The main issues concerning static passwords are related
11

12

to user’s psychology. Users can supply their passwords to a third party on purpose, ac-
cidentally or by deception. Users usually share their passwords with other people they
trust. This compromises any authentication system by granting access to users that are
eventually unknown. An unconscious way of giving a password to an undesired entity
is by being victim of Phishing, also known as social engineering [4]. Phishing is the act
of extracting secret information from an authentic user by telling a plausible untruth, for
example, a user replying his credentials to a malicious sender who pretends to be a system
administrator.

• Problems while entering passwords - Another issue that has to be considered is the
difficulty that users may experience while entering passwords that are too long or too
complex. In those cases, authentication could be a confusing and error prone process
creating many unnecessary requests to be treated by the authentication server. In critic
systems, where some operations that require authentication must be urgently executed,
this issue can bring safety implications.

• Password design and generation - Password design must be aware of the fact that user’s
memorizing capacities are limited. It is hard to remember long and strong passwords and
this is one of the main reasons for user’s complaints [38], [57]. Organizations where strict
policies are adopted ensuring that each password must respect an extensive and rigorous
list of rules, see their users either choosing “simple to guess” passwords or writing them
down making them easy to steal. On the other hand, passwords with predefined creation
rules are more difficult to memorize. With the widespread of systems that require au-
thentication, users have to manage a large number of passwords, which tempts the user
to define the same password for different systems. This can lead to vulnerabilities in all
systems at the same time if the password becomes compromised. At the same time, this
practice exposes passwords in different systems and also causes a lack on user’s privacy
control when private information is maintained by those different systems.

• Password management systems - Authentication systems are subject to attacks at pass-
word entry and storage [4]. In order to prevent eavesdropping and man-in-the-middle
attacks [47], the interfaces must be aware of some design concerns. A terminal prompt-
ing for a password might protect the user by providing the possible means to hide it from
other people while the secret is being inserted. Additionally, authentication systems must
ensure that passwords are not sent in clear throughout the communication channels. At

13

last, even the login interfaces should be authenticated in some sort of way that a user
knows he is dealing with the right system.

Other kinds of issues refer to how the password repository must be protected. Password files
must only store one-way representations of the passwords - such as message digests - instead of
maintaining them in clear. Otherwise an attacker that has access to the file-system would have
instant access to all user accounts. In fact even if the password file has the passwords protected
by a one-way-function, a dictionary attack [47] could be executed by generating random pass-
words and comparing its one-way representations with the ones present on the password file.
Therefore, password files must be somehow protected, for instance by using cryptography or
cryptographic tamper-proof devices or modules.

2.1.2 Token based systems

A security token is an electronically represented set of claims about an entity that should be
presented when certain types of authentication are requested. Representing something the user

has authentication factor, they do not force users to memorize any secret information. Instead,
this information is stored or processed by software or hardware. Both variations are presented
below.

2.1.2.1 Hardware security tokens

Hardware tokens [4] are electronic devices which can store authentication information such
as digital signatures, cryptographic keys or passwords. Relatively to their behavior, hardware
tokens can supply credentials to authentication systems by providing information such as se-
curely stored static passwords, dynamic passwords - also known as onetime Passwords (OTP)
which are regenerated periodically and must be synchronized with the authentication server -
or by responding to a challenge thrown by an authentication server. They are typically con-
nected through USB interfaces, Bluetooth or RFID technology, on other cases they are totally
disconnected, working as a isolated trust computer bases. In those cases, a built-in display such
as in RSA’s SecurID solution [42], shows the OTP that must be supplied to the authentication
system. Nowadays, this kind of tokens is designed to be small and portable objects, thus easily
accommodated by users as seen on Figure 2.1. The main disadvantages related to these devices

14

Figure 2.1 Hardware security tokens

are the deployment costs, since tokens have to be distributed among all users. On other hand,
their usage implies that users have to carry an extra object, which is suitable for being stolen or
being lost. Finally, fully disconnected tokens are limited by the batteries life time. The usage
of Smart cards is also solution that consumes less energy however it leads to poorer processing
capacities and security limitations due to the weaker structure of paper/plastic based cards [4].

2.1.2.2 Software security tokens

Software tokens [4] are stored on electronic devices such as desktop computers, laptops,
PDAs or mobile phones. As advantages we can point their lower price, human independence

15

- since users don’t need to memorize any information - and the fact that they don’t need inde-
pendent batteries - as they are inherent to the system holding them. Despite that, authentication
systems using software tokens have to deal with the common storage vulnerabilities that pass-
words do. On the other hand, these tokens are more exposed to virus and other kind of software
attacks, which makes them a weaker solution comparing with hardware tokens.

2.1.3 Multi-modal authentication with biometrics

Biometrics can be used as an authentication factor. They can identify and authenticate users
given their physiological and behavioral traits. Traditional systems rely on the evidence of
fingertips, hand geometry, iris, retina, face, hand veins, facial thermogram, signature, voice
[17] and recently EEG pattern recognition [25]. Combined with classic factors they can be used
to build stronger authentication mechanisms, however, they are not an efficient solution when
used as part of unifactor authentication. The following paragraphs will tackle the main issues
concerning authentication trough biometry.

Biometrics overcomes most of the problems noticed on systems based on the first two fac-
tors due to their intrinsic nature. Users do not have to remember any passwords. A brute force
attack to the feature space is more difficult to perform than in a password based system. That is
because it is easier to generate valid passwords than to create or capture biometric samples. On
the other hand, it’s always possible to increase security by extracting more information from
users’ traits. The same is not applicable to passwords where making them more complex makes
them harder to remember. Finally, users do not have to carry any object as they are forced
by token based authentication systems. Other great advantage over the two first factors is that
biometry is one of the few available techniques that can be used to prove negative recognition.
Negative recognition is the ability of ensuring that one person only uses one identity that is not
shared with anyone [18].

2.1.3.1 Biometric authentication system architecture

Biometric authentication systems are typically composed by four main modules: the sen-
sor module, the feature extraction module, the matcher module and the decision module. The
sensor is responsible for collecting raw data from the user. That data is supplied to the second
module which extracts meaningful features and store them on a normalized representation. The
matcher compares extracted features with stored templates and generates the comparison score.

16

H= high, M=medium, L=low

Figure 2.2 Biometric traits comparison

Finally the decision module uses the obtained score to accept or reject the user as authentic.
Thus, it’s necessary that biometric systems decide when to accept an user as authentic given
the extracted features. For scores that are higher than a specific threshold, authentication is
accepted.

2.1.3.2 Issues concerning authentication trough biometrics

Each of the mentioned biometrics has to deal with a set of concerns, which are noise in
sensed data, intra-class variations, performance, acceptability, distinctiveness, non universality,
collectability, permanence and circumvention [18].

• Noisy data - Noise in sensed data can be noticed when a fingerprint image with a scar is
collected, when the user’s voice is altered due to a cold or finally when the place where
the sensor acquire data is poorly illuminated.

• Intra-class variation - By intra-class variation are understood the cases when by some
reason there is the need of comparing features extracted by sensors that have the same
purpose but achieve it using different techniques.

• Performance - Performance is related to the set of issues related to trait extraction and
processing response time. Biometrics have a weaker performance comparing to the other

17

factors.

• Privacy and acceptability - Due to intrinsic nature relation between users and their bio-
metric traits, authentication data can be logged and used to gather personal information
that users don’t want to share. Acceptability defines whether users are comfortable using
biometrics. Some of them need physical contact, a fact that raises hygienic questions. On
the other hand the lesser collaboration is required, easier will be to forge authentication.

• Distinctiveness - It is the capacity that one trait has to identify uniquely one person. For
two of the most commonly used representations of hand geometry and face the total
recognized patterns that can be mapped on user identification are respectively 105and 103

[14].This can be critical on a system with many users.

• Universality and collectability - Is the likeliness that a specific trait has of being extracted
with the necessary quality from a single user, while collectability measures the effort
needed to extract it. For example, quality fingertip features cannot be always extracted,
the reason is that some people have low quality skin ridges.

• Permanence - Permanence is known as the likeliness of a certain trait still can be extracted
regardless the users age. A user may loose access to a certain system if the biometric trait
that is being evaluated disappears while he becomes older. On other hand, once a user
sees one of its traits compromised, it cannot be used anymore.

• Circumvention - Finally, circumvention is one of the most important issues related to
biometrics. If somehow user’s traits are reproduced by an attacker, it can be used to fool
the authentication system through spoofing attacks.

Figure 2.2 [18], shows some biometric systems and their level of resistance to the issues pre-
sented on the last paragraphs.

Due to the issues mentioned above, the biometric authentication process is limited by the
quality of the extractions and by the variability of its accuracy. Establishing the authentication
threshold is a trade-off. By setting a lower value, the likeliness of accepting false users as
authentic is bigger, on the other hand by increasing the threshold, some users that are actually
authentic may fail to enroll to the system. The first case is measured by a False Matching Rate

(FMR) and the second by a False Non-Matching Rate (FNMR) [18]. These issue are directly

18

Figure 2.3 Relation between FNMR and FMR

related concerned with the previous discussed trade-off between False Rejection Rate (FRR) and
False Accepting Rate (FAR) for each factor in current biometric technology. The optimization
of this balance is specific to each biometric factor. On the other hand, the optimization of this
trade-off for fine grained accuracy systems imply on very expensive devices that are not possible
to adopt in widespread ubiquitous applications, Figure 2.3 [18]shows how FNMR and FMR are
correlated.

2.1.3.3 Multi-modal biometric authentication systems

Most of the existent biometric systems are unimodal [19] thus suffering from the disadvan-
tages introduced above. One technique to reduce the disadvantages while maintaining to some
extent the advantages is by combining biometric extractions from different traits. Doing this
makes the system more accurate since the likelihood of two trait extractions lead to a False

Non-Matching or False Matching authentication is smaller. Universality, intra-class variation
and circumvention are easier handled with the multi-modal approach. If an user can’t provide
data from one of the requested traits, the system has the possibility of presenting an alternative.
Spoofing can be prevented by requesting a random subset of biometrics each time a user tries

19

to authenticate himself through a challenge-response based approach. It would be harder to an
attacker to spoof many traits at the same time. The design issues to take in consideration during
the conception of multi-modal biometric systems are the choice and number of traits to extract,
the methodology adopted to extract them, the level of trait integration and the cost-performance
trade-off. Traits to be available are a decision that is application driven, since it depends on
the available sensors and the application requirements. For instance, it is plausible to build a
multi-modal biometric system with voice, fingertip and face recognition to be used on a last
generation Smart Phone.

Although the accuracy is improved, multi-modal biometric systems are even more expen-
sive solutions as they have to combine many sensors.

2.2 Authentication factors for ubiquitous environments

Ubiquitous computing is concerned with the integration of processing capacity on objects
that people daily use. The vision that Mark Weiser had in 1991 [53] was ahead from his
time, however nowadays it is already available the required technology for building a word
like the one he has predicted. Wireless LANs, cell phones, Smart Phones and PDAs are already
widespread among nowadays society.

As referred before, ubiquity brings challenges and opportunities to authentication systems.
Classic mechanisms aren’t sufficient anymore as they can’t deal with context variations imposed
by users mobility. The following paragraphs illustrate alternative authentication factors that are
suited for context-aware authentication.

2.2.1 Something the user sees

In [27] the authors propose the utilization of the cameras existent on mobile phones as a
new visual channel to achieve demonstrative identification of communicating devices formerly
unattainable in an intuitive way. on

With Seeing-is-Believing (SiB) protocol, bidirectional Authentication can be accomplished
by the following procedure based on data matrices used as two dimensional bar codes.

• each user has a cell phone, which displays a data matrix that can be generated from their
public key;

20

Figure 2.4 Mobile phones performing SiB protocol

• when user A wants to communicate with user B he takes a picture from B’s data matrix;

• then user B makes the same from A’s data matrix.

• based on the obtained pictures, both users know each others public key and therefore they
can build a secure channel trough Bluetooth or WI-FI.

An example of two devices performing SiB protocol is illustrated on figure 2.4 [27].
Unidirectional authentication can also be accomplished between a cell phone and a display-

less device with a sticker containing the bar code. Users wanting to communicate with the
displayless device start by taking a picture from the sticker, then a secure channel is negotiated
trough the wireless channel.

Besides the security of the underlying cryptographic primitives, the security of SiB is based
on the assumption that an attacker is unable to perform an active attack on the visual channel,
and is unable to compromise the mobile device itself.

2.2.2 Something the user makes

A study made by Rene Mayrhofer [26] addresses the problem of spontaneous interactions
using mobile devices. The author shows an alternative to the classic authentication schemes,

21

which doesn’t force the principals to share any initial information.
Imagine two devices, A and B, trying to communicate with each other. The candidate key

protocol describes a key generation method to be used on a secure channel:

• assuming that A and B share the same environment, they use the same sensors to collect
data streams;

• the digests of the features extracted from the streams, called candidate parts, are ex-
changed and then compared, in order to select only those which are in common to both
devices.

• A key is generated from the concatenation of common parts and then their digest is ex-
changed to confirm that they are equal. Man-in-the-middle attacks are then mitigated if
a third device, say it E, tries to guess the generated key, considering that it doesn’t have
access to the context shared between A and B.

As demonstration, the author materialized the idea of sharing contexts by making two devices
shaking together. The data collected by their accelerometers was then used to generate the se-
cret key. E would not be able to generate the same key because it would have to make exactly
the same movements at the same time that A and B do. The experiments made on this type
of attack shown that imitate the exactly movements is almost impossible even when there is
cooperation between the attacker and the victim [26]. The security of the algorithm is based on
the entropy achieved trough the process of data collection and feature extraction.

2.2.3 Somewhere the user is

Location can be used as an authentication factor. Resources may have different access
control policies depending on the place from where the requests are being made. For instance,
a doctor is allowed to see the health history of his patients while he is working on the hospital,
but it would be desirable that the same was not true when he tries to do it from home. On
other hand, location based authentication is natural to the sort of applications where it is not
reasonable to distribute security keys among all the users. For those cases the system could
only provide access to users that are within a specific area, without the need of having to share
secrets.

22

Accuracy Usability Assurance TCO Performance Pervasive
usage

Applicable
domains

Passwords,
PINS

+ ++ - - ++ ++ + ++

Security
Tokens

+ - - + - - - ++

Biometry - - ++ ++ - - - - - - -
Location - ++ - - ~ - - - -

Ubiquitous
technology

~ ++ - + ~ ++ ++

++ very good behavior / ~ neutral / - - very bad behavior

Table 2.1 Comparison between authentication factors

All the work made about mobile and pervasive computing brought many improvements
on location sensing techniques. They can be divided in three categories, triangulation, scene
analysis and proximity [6].

In [11], signed geodetic information is used in combination with the classic factors to asso-
ciate a request to a physic place, then preventing an attacker of being untraceable and constrain-
ing the access to some places in the globe. For that purpose any user would have to possess a
transceiver in order to obtain his signed position.

In opposition to world wide location’s claims verification, a different approach can be taken
by setting a region where any user has access to the protected resources. For that purpose, in
[45] the authors, suggested the utilization of a validation module that only authorizes the ac-
cess to resources for users that are surrounding it at a maximum distance of R. The protocol
developed by the authors starts with the user sending a request to the validation module trough
RF communication, then the validation module challenges the user with a nonce and finally the
user replies trough ultrasound communication. The distance between the user and the verifica-
tion module is obtained by calculating the time elapsed between the sending of the challenge
and the reception of the reply. Ultrasound is preferably used due to the higher latency of sound
traveling comparing with light or RF which would require clocks with a much higher frequency.

23

2.3 Multi-factor and multi-modal authentication

The last section have provided a detailed description for the authentication factors typically
used nowadays. We can easily conclude that the utilization of any of those factors introduce dis-
advantages, which can be more or less critical considering multiple criterions. Table 2.1 makes
the comparison between the authentication factors discussed throughout the current section in
terms of the following criterions:

• Accuracy - Relation between false positives and false negatives assured by the authenti-
cation factor.

• Usability - Commodity felt by user during the authentication process.

• Assurance - Confidence and level of assurance granted by the authentication factor.

• TCO - Total cost of ownership and maintenance.

• Performance - Time consumed by the authentication process as well as resource manage-
ment.

• Pervasive usage - applicability to ubiquitous environments.

• Applicable domains - Possible situations where the authentication factor can be used as
valid proof category.

Composing authentication factors and modes is one solution for achieving higher assurance
levels. Combining multiple authentication modes enables to benefit from the advantages of
all involved factors while hiding their individual drawbacks. On the other hand, and similarly
to what happens in multi-modal biometric authentication, supplying multiple authentication
alternatives for the same operations allows to establish richer interaction models considering
security and convenience.

2.4 Single sign-on mechanisms and protocols

Single sign-on (SSO) systems are solutions that allow users to authenticate only once and ac-
cess multiple applications without reauthenthication [52]. Large organizations must deal with
multiple distributed applications and domains. The motivations for the design of SSO systems
are related to the following situations:

24

• Each application manages authentication and authorization issues independently from
the others using their own directories. The study presented [52] on shows that the in
average, the Fortune 1000 top American companies manage more than 150 directories.
Each application requires its own authentication proofs, typically based on shared secrets,
therefore forcing users to memorize multiple passwords. On section 2.1 the disadvantages
of forcing users to keep multiple passwords were already discussed.

• If the attributes of an user changes that must be replicated on all systems, which is a con-
siderable burden to system administrators. The operation costs are high. It’s estimated
that a great portion of help desk calls are related to password recovery and other authen-
tication issues [52]. The same is applied to the extension to new authentication modules
based on different factors. All directories must be synchronized and the applications re-
adapted.

• The notion of roles cannot be applied globally to the organization, since the identities for
the same subject are different and widespread among the multiple directories.

Single sign-on systems address these limitations acting as a middleware service reused by dif-
ferent applications, providing centralized management and authentication data access. Appli-
cations rely on the platform to retrieve user credentials, which are submitted only once for each
session, in order to perform context-aware multi-factor and multi-modal authentication. Fig-
ure 2.5 shows the comparison between an organization using traditional logon procedures and
other using SSO. This method allows to centrally monitoring all authentication processes and
data repositories reducing the number of different passwords. Users only authenticate once
and the credentials are reused by all applications. Operation costs are decreased since changes,
configurations and fixes are made at only one point.

As mentioned before, authentication systems are traditionally based on pairs of usernames
and passwords, however, due to the evolution of ubiquitous computation. Other authentication
factors and modes are now available. Different devices such as security tokens, one-time pass-
words, cell phones, smart cards and biometry can be included on authentication processes, as
well as different applications such as mobile applications, firewalls, virtual private networks
or extranets. Extending multiple authentication systems to accommodate these changes may
be chaotic, on the other hand, strong extension mechanisms can be included on a SSO and
therefore all changes and additions become uniform and easier. The same is applicable to inter-
operability with other organizations. SSO allows uniform interaction with other systems using

25

Figure 2.5 Single sign-on middleware architecture

a unique interface relying on well established standards.

Java Authentication and Authorization API [24] is an example of a strong extension mecha-
nism for the inclusion of multiple authentication methods. Security Assertion Markup Language
[2] and OpenID [41] are examples of interoperability standards for single sign-on authentica-
tion.

Among all single sign-on solutions, OpenSSO[32] and Enterprise Single Sign-On [36] were
chosen as fully integrated and tested platform and Kerberos V5[22] as a SSO compliant proto-
col.

These systems were chosen due to their openness. Therefore it is possible and easier to
integrate them on the authentication middleware framework devised by the current dissertation.

2.4.1 Java authentication and authorization API

Since their earlier versions, Java 2 Platforms provided code security mechanisms. Initially
they were code-centric in the sense that they only validate the code origin and whether it was
signed and by whom. This approach is suitable for the cases where there is the need to decide
if the code is legitimate and thus if it should be executed. However, most of the systems are
user-centric since they are accessed by many users that must be authenticated before they have
access to resources [15]. For that cases the latest Java versions, more precisely the J2EE plat-
form, supply ways of prompting users for login and grant access to resources based on realms

26

Figure 2.6 JAAS architecture

and user-roles which are defined either by programing or through the setting of rules on a spe-
cific file following the recommendations of Enterprise Java Beans Specification (EJB) [15].
Although these mechanisms allow the development of specific authentication modules to java
applications, they are not able to integrate existent authentication systems, which don’t have
access to Java’s security layer, neither support easily reconfiguration of the mechanisms used
in the authentication processes. This led Sun to design Java Authentication and Authorization
API (JAAS). It is an interface that provides authentication and assigns privileges to users in an
abstract way so that the applications are unaware of what authentication mechanisms are being
used.

JAAS is based on Pluggable Authentication Modules [43], which means that any kind of au-
thentication system can be plugged in simply by defining it on a configuration file. The binding
between the JAAS framework and other systems is made trough the definition of Login Mod-

ules, each one is responsible for the interaction with the external authentication system. The
authentication results are returned to JAAS which then pass them to the application modules.
Every time one java module wants to authenticate an user, it instantiates a Login Context on
JAAS framework, which is responsible for determine which Login Modules must be called.
This is set on the configuration file that not only defines what modules must be used but also
the order they must be executed. In order to handle the requests prompted by the Login Mod-
ules, applications must pass callback handlers during the Login Context Instantiation. A brief
description of this architecture is illustrated on Figure 2.6 [24].

27

Authentication is a two phase process, first all the Login Modules are called and only if all
of them succeed the authentication credentials are returned to the applications.

JAAS is then a good solution for integrating different authentication providers in Java sys-
tems. Extensibility is achieved by simply changing a configuration file, without the awareness
of the top applications.

2.4.2 SAML

Security Assertion Markup Language (SAML) [2] is an emergent standard specification de-
veloped by the OASIS Security Services Technical Committee. It is currently on version 2.0 and
it defines a set of protocols, bindings and profiles for single sign-on authentication using XML
based assertions. An assertion is a message that contains statements about subjects and other
information that may be used by applications in order to recognize them as authentic.Assertions
can be categorized as the following three types:

• Authentication assertions - which carry user credentials and information that concerns
whether the user was successfully authenticated or not by a identification provider.

• Attribute assertions - which contain information about an entity that is used in the autho-
rization decision process.

• Authorization assertions - which contain basic information about users permission to ac-
cess specified resources.

Assertions are signed by an issuer that must be trusted both by subjects and applications. By it-
self, SAML is not associated to any transport protocol or any specific technology. It only defines
the format for the messages exchanged between parties. However the specification introduces
a set of well-defined bindings between SAML and communication technologies such as HTTP
or SOAP. Finally, standard profiles are mappings between SAML protocols and real application
domains and can be easily integrated, for example, with PKI or X509v3 management solutions.
SAML Protocols define three roles executed by specific principals: the Identity Provider (IdP),
the Subject (S) and the Service Provider (SP). The interactions between roles are illustrated on
figure 2.7 ,which describes the authentication protocol considering a SAML Web Browser SSO
profile.

28

1.S→ SP : S
2.SP→ S : AuthReq(ID,S,SP), IdP
3.S→ IdP : AuthReq(ID,S,SP)
4.IdP→ S : [AuthenticationAssert(ID,S,SP)]Kid p
5.S→ SP : [AuthenticationAssert(ID,S,SP, IdP)]Kid p

R: resource identifier
LOA: level of assurance identifier
C: Context info
AM: authentication modes
AD: authentication proofs
V: validity period,

[...]Kid p: message signed by the identity provider

principal

Figure 2.7 SAML protocol

First versions of SAML did not have support for information sharing between organizations,
in such a way that SSO could be spanned to more than one authentication realm. Liberty Al-
liance proposed a federation based framework, named Liberty Identification Federation Frame-
work (ID-FF) [3], as a standard reference for communication between authentication domains.
It is a super-set of the early versions of SAML and describes a circle of trust where the orga-
nizations plug their service and identification providers. Each organization it is responsible for
managing their access control data as described on the standard. This issue was overcome by
the version 2.0, which brings integrated support for federation relying on ID-FF.

Despite being a standard protocol that improves single sign-on and interoperability between
organizations, SAML does not consider the description of dynamic mappings between muta-
ble authentication contexts and multi-factor as well as associated multi-modal authentication
credentials and proofs.

2.4.3 OpenID

OpenID [19] is a open user-centric authentication framework that permits the utilization
of just one identifier to login on many sites.Typically, users have to keep multiple identifiers
and respective credentials for each one of the websites where they must be authenticated. This
brings convinience and security problems. Convinience is an issue since each website has its
own authentication process, forcing users to pass through multiple enrollment processes. This

29

Figure 2.8 OpenID interaction model.

can be inconvenient for users, since there is no guaranty that the identification they normally
use is not already taken. On the other hand, multiple authentication systems mean multiple
login processes. Security issues are related to the way websites manage users and passwords,
some can do it more securely than others. Assuming the fact that sometimes users take the
same passwords to different services, if an user does it at a website that has poor or malicious
credentials management, he will compromise all his accounts on the other websites.

Open ID relies on global identifiers which may be an URL or an Extensible Resource Identi-
fier (XRI), a specification defining the structure and protocol for abstract identifiers [34]. Users,
also known as end-users, may obtain identifiers from two different ways, giving the address of
their own blog website or after enrollment process on a XRI compliant identity provider. In the
first case, the web server hosting the blog provides a dedicated identity provider. Let’s consider
a subject S, a relying party RP (service provider) and an identification provider denoted as IdP.

The process of authentication starts with the user accessing a website and entering its identi-
fier on the OpenID form. Then the Relying Party contacts the specified URL to get the Identity
Provider that can authenticate the user. In Open ID 1.0 this is accomplished by retrieving
directly the address of the IdP. In version 2.0 a XRDS [34] file is retrieved instead, with infor-
mation about what services can be used to authenticate the user. After knowing what provider
to contact, the relying party issues a authentication request, and establish a secret with the user
agent related to that session. The user-agent, normally a browser, is redirected to the identifica-
tion provider site which prompts the user with a login page. The user enters the requested data

30

and if it is correct the provider returns the secret shared with the relying party as an authentica-
tion credential. Finally the user-agent forwards the secret to the relying party which compares
the generated secret with the one given by the user who now can decide whether to authorize
him or not. Figure 2.8 [19] demonstrates the interaction model mentioned above.

OpenID is focused on Web authentication, namely for blog users. Despite of being a multi-
platform authentication standard, it is not suited for the representation of context-aware multi-
factor and multi-modal abstractions.

2.4.4 OpenSSO

OpenSSO [32] is an open source single sign-on framework developed by Sun Microsystems.
It can be used as a support system for web servers and other kind of systems that share multiple
resources and therefore need centralized authentication and access control mechanisms.

As it can be seen on Figure 2.9 [32], OpenSSO provides authentication, authorization, ses-
sion management, federation, and logging as base services. Its architecture is divided in six
layers, but its functionality is distributed by three tiers, the client side, the core services and the
plug-in modules or data integration. The client side is composed by policy agents. These com-
ponents are located near to the shared resources, every time a subject requests a resource, agents
intercept it. If the agent hasn’t cached any credential for that subject it prompts the subject to
login.

The core services integrate the main functionality of the system. Each service is made avail-
able to the client side trough web services. Policy agents access those services using Open SSO
Client SDK, an API relying on OpenSSO web services. Internally, Authentication and Autho-
rization services interact with specific components, which in conjunction with the OpenSSO
framework core decide when to grant access to a specified object.

Single sign-on is managed by the Session component, which maintains information about
authenticated sessions. The policy agents get the users session state through this service, this
way users only need to authenticate once.

The Federation Component manages the information about the participation of an OpenSSO
instance in a circle of trust that is composed by multiple IdPs and service providers. This
mechanism allows users to maintain authenticated even when accessing a resource placed on
other organization than the one where they did log in. For that, OpenSSO relies on SAML 2.0.

31

Figure 2.9 OpenSSO architecture

Finally the plug-in modules are systems external to the OpenSSO framework that provide
user data, policies, configuration information and autonomous authentication systems. This
way, authentication can be delegated to external systems using Service Program Interfaces (SPI)
which are made available through a JAAS back-end.

2.4.5 Enterprise sign-on engine

Enterprise sign-on engine (ESOE) [36] is an open source authentication technology for ac-
cess and data transfer management. It is currently developed by Queensland University of
Technology and its main concerns are supporting user authentication at the web tier, federa-
tion with business partners, application single sign-on, multi-factor authentication, identity data
transfer to applications in real time, access control policies enforcement, services management
and platform extensibility. ESOE relies on open standards such as SAML 2.0 for secure data
transfer and XACML [33] for standard and fine grained policy definition.

Its architecture relies on a pipe-line trough where all core modules interact. This allows
to easily change and substitute core modules and makes the system very extensible. In the
same manner as OpenSSO, ESOE enforces authentication by associating protected resources

32

Figure 2.10 ESOE architecture

to special components, which interact directly with the protected resources. These elements
are called Service Policy Enforcer Points (SPEPs) and they perform authentication requests
to the ESOE, as well as they perform caching and policy enforcement. Since all SPEPs are
connected to the same ESOE system, authentication is centrally managed. The components of
the architecture are shown on Figure 2.10 [36].

ESOE supports off-the-shelf module connection in order to plug in custom data repositories.
Multiple identity resolution sources can be combined and presented to core modules which use
them in a transparent way. Federation is limited to the integration with systems that use OpenID
and SAML. However ESOE permits the integration of custom modules that deal with different
external authentication systems.

ESOE suffers from the same limitations that OpenSSO does. It is most suited for web
authentication and doesn’t provide mechanisms for dynamic combination of authentication fac-
tors. On the other hand, it does not have native support for the integration of ubiquitous systems
and devices with specific requirements and interaction models.

2.4.6 Kerberos and the PKINIT approach

Kerberos [22] is an authentication protocol developed at the Massachusetts Institute of Tech-
nology (MIT). It is now on its 5th version and it was created in order to address the common
authentication problems on a organization with many protected resources. To some extent, Ker-
beros can be seen as single sign-on system, since authentication services are centrally managed.

Kerberos introduced a new vision over authentication mechanisms by separating users au-
thentication from service authentication, while allowing centrally management. The original

33

specification defines two main components, the authentication server (AS) and the ticket grant-
ing server (TGS). The authentication server is responsible for users initial authentication. The
ticket granting server supplies credentials for specific service providers. Separating the authen-
tication in two steps allows users to login only once on the authentication server. The access to
different services is made using different credentials created on demand.

In the first step of the protocol both the client C and the AS generate the same cryptographic
key. The authentication server uses that key to encrypt a message containing a new key for
communication between the client and the TGS. Then the client securely communicates with
the TGS retrieving a third key, for communication with the service provider V. Finally both C

and V negotiate a session key. The authentication protocol runs as follows:

1.C→ AS : Options||IDc||Realmc||IDtgs||Times||Nonce1||
2.AS→C : Realmc||IDc||Tickettgs||{IDtgs||T S2||Tickettgs}Kgc

Tickettgs = {Flags||Kc,tgs||Realmc||IDc||ADc||Times}Ktgs

3.C→T GS : Options||IDv||Times||Nonce2||Tickettgs||Authenticatorc

Authenticatorc = {IDc||ADc||T S1}Kc,tgs

4.T GS→C : Realmc||IDc||Ticketv||{Kc,v||Nonce2||Realmv||IDv}
Ticketv = {Flags||Kc,v||Realmc||IDc||ADc||Times}Kc,tgs

5.C→V : Options||Ticketv||Authenticatorc

Authenticatorc = {IDc||Realmc||T S2||Subkey||Seq#}Kc,v

6.V →C : {T S2||Subkey||Seq#}Kc,v

The client and the authentication server share a secret from what they generate the crypto-
graphic key. This secret, typically a password, is never exchanged between them. However,
passwords have the disadvantages also described on section 2.1. Thus, despite all the security
assured by the protocol, attackers would attack the secret instead. L. Zhu ET AL, have created
a mechanism for initial authentication in Kerberos using Public Key Cryptography (PKINIT)
published as RFC 4556 [56]. In this approach, the AS doesn’t share secrets with users, instead
it accepts public key certificates. If a certificate is valid, then the AS returns the first message
of the protocol encrypted with the public key that came encoded on the certificate. This way,
only the owner of the private key associated to the given public key can successfully decrypt the
message. The authentication process continues without any changes comparing with the earlier
versions. This approach requires the utilization of a public key infrastructure on the server-side
and the utilization of smart-cards and respective readers on the client-side. This method implies

34

high costs of ownership, which may not be reasonable for all situations where authentication is
required.

2.5 Summary and contributions

2.5.1 Overview

In this section, multiple authentication issues were presented. It was shown that each of
the three classic authentication factors has its own drawbacks. Systems based on shared secrets
are vulnerable due to password misusage by humans, who make them easy to guess and share
them with third parties either voluntarily or by social engineering. The utilization of security
tokens may not be convenient for users, as they are forced to carry an extra object that can
be easily lost, stolen or reproduced. Biometrics seam to overcome the problems mentioned
above due to the fact that human traits are difficult to steal and don’t force users to memorize
any information. However their considerable False Match and False Non-Match rates allied to
their intrusive nature, makes biometrics inefficient and poorly accepted. Other factors such as
somewhere the user is, something the user makes or something the user sees can be used, but
they are very application specific and typically can’t be used by themselves.

Considering the above drawbacks, a possible solution is to combine authentication factors
in a multi-factor and multi-modal way, so that it is possible to take benefit from all the advan-
tages of each factor while its flaws are overcame by the remaining factors. With this approach,
authentication processes are more reliable and higher levels of assurance can be achieved. At
the same time, this approach can introduce a high degree of flexibility for authentication man-
agement according to different systems needs, providing a more appropriate environment to
manage different authentication policies for ubiquitous and pervasive systems and applications.

Organizations with multiple users and distributed resources have special needs. Managing
the authentication of each resource independently is not practical neither for users nor system
administrators. Password synchronization, user information maintenance and integration of
multiple authentication modules and data directories significantly increases the total cost of
ownership and management. Standard single sign-on systems and frameworks already address
these issues by providing centralized authentication platforms reusable by multiple applications.
Data storage, user information management and authentication module configuration is made
at one single point and it is instantly available for all applications. Extending these systems
is easier since they rely on extensible architectures using standard frameworks like OSID or

35

JAAS. Finally, integration with applications, storage bases and other authentication platforms
is improved due to the usage of standard protocols like SAML and OpenID. On the other hand,
users don’t have to memorize multiple authentication information for each application. They
can log-on once and their credentials are accepted by all applications.

Despite of being a complete and integrated solution for most of the actual scenarios, single
sign-on systems and protocols as we know today are limited when dealing with multi-modal and
multi-factor authentication. Typically, these kind of systems adopt a one size fits all philosophy,
where the same factors, or combination of factors are used to user authentication regardless the
context of the authentication request. SSO systems allow defining static authentication process
involving the validation of multiple factors and modes, however they are not flexible to adapt
to different context criteria such as device type, location, period of the day, used network and
protocols or users and device capabilities.

Considering the new opportunities brought by ubiquitous computation, it is possible to iden-
tify a gap that it is not addressed yet. The dynamic adaptation of authentication processes to
different context conditions is not addressed by the systems and protocols that are available
today. This dissertation has the objective of designing and developing a context-aware multi-
factor and multi-modal authentication framework, acting as a middleware platform between
single sign-on systems and multi-type and multi-device applications.

2.5.2 Context based authentication and multi-factor authentication

According to the previous considerations, the approach of context based multi-factor authen-
tication seems to be an interesting direction that can be implemented in universal authentication
platforms.

Context is intended as the state of a set of properties that can be retrieved from each au-
thentication request, such as the device from where the request is being made, the location of
the user, the history of recent authentications and the period of the day. Those attributes are
important to help deciding the combination of factors required for a certain assurance level. As
example, consider an user living at London that accesses the account balance from is desktop
computer on a daily basis. The operation is not critical and the user makes it every day probably
from the same fixed device. It is reasonable to consider that the issuer is the same user that did it
before, thus a smaller subset of factors needs to be used in order to authenticate him. Now let’s
consider the same request made on the behalf of the same user located at New York, using a

36

mobile phone, in a period of the day that is not typical. Probably it was made by the correct user,
however the authentication context is different. The required assurance level doesn’t change,
since the operation is the same, however the necessary proofs to attain the same assurance level
must be different. This scenario can be assumed as more suspicious, then a larger combination
of factors must be requested.

2.5.3 Contribution

This dissertation presents an integrated authentication framework entitled Context-Aware
Multi-factor Multi-modal authentication framework (CAM2). The authentication platform de-
vised by the proposed framework is sufficiently generic to integrate any kind of application that
needs authentication services, supporting classic as well as new and emergent authentication
modes. For the interaction with the platform using

Considering multiple types of devices, contexts and authentication modes, it is necessary to
express uniform context-aware multi-factor authentication protocols and new interaction mod-
els. For this purpose, CAM2 specifies a markup language (CAM2ML) supporting SAML ab-
stractions. CAM2ML define the structure of authentication policies describing authentication
processes given different authentication contexts.

This dissertation presents the architecture and the implementation of a context-aware multi-
factor and multi-modal authentication platform, as a middleware extending the functionalities
of underlying authentication systems and protocols such as the ones presented on this chapter.
The main contribution is focused on leveraging a base SSO system to provide context-aware
multi-factor authentication abstractions and services. This can be achieved by an extensible
middleware layer approach that uses SSO base services to provide those abstractions.

The remaining parts of the document will present the model and the architecture for the
current solution, followed by details about the implementation and concluding with validations
and discussion over the results obtained.

3 . A context-aware multi-factor authentication system

3.1 Scope and requirements

This chapter proposes and presents a context aware multi–factor authentication framework
(CAM2) that introduces new interaction models and single sign-on authentication architectures.
The issues mentioned above are addressed by developing a middleware that extends the func-
tionality of the current single sign-on solutions. It introduces dynamic authentication processes
that adapt the number and type of required proofs to authentication contexts. The design of this
framework is focused on the following requirements:

• Multi-factor and multi-modal authentication - The framework must provide mechanisms
for the implementation of multi-factor and multi-modal authentication, improving the
assurance level on authentication processes.

• Dynamic and context-aware proof requirement - The framework must consider the detec-
tion and evaluation of context states, relying on that information for choosing the appro-
priate combination of authentication modes.

• Extensibility for new authentication models - The framework must provide extension
mechanisms that allow the inclusion of new authentication modes, without having to
change the authentication platform. The modes to be supported must represent the classic
factors as well as the ubiquitous and emergent ones.

• Generic usage - The framework must be usable by multiple types of base single sign-
on systems. It must be used by multiple types of applications using different interaction
models and identities.

• Acceptable performance - The logic added by the new services must have low impact on
the latency of the authentication processes, when compared with the existent solutions.

3.2 Core concepts

With the aim of implementing context aware multi-factor authentication processes, we have
to consider three key concepts: contexts, assurance levels and authentication policies.

37

38

• Context - By context, we refer to a set of generic attributes that can provide information
about the environment during the authentication events. These attributes may be the time
of the authentication request, the channel from where the request had arrived, or the type
of device that is being used as well as its features. Environment state evaluation must
be made in real time before the initiation of an authentication process. Therefore, it is
possible to dynamically choose a combination of authentication factors that is adequate
for the context given as input.

• Level of assurance - The level of assurance is the confidence on authentication that is
required by a specific operation. It may vary for different operations where security ex-
ploits have different impacts, i.e checking the balance of the bank account vs. making
a payment. The introduction of context-awareness leads to the requirement of different
combinations of authentication modes, depending on the given context. Authentication
events may occur under different environments which can be considered more or less sus-
picious. Therefore, for the same operation, with the same required assurance level, the
system must dynamically adapt the number of authentication modes to the context state
that is observed.

• Authentication policies - In order to implement context-aware multi-factor authentication,
there is the need of defining mappings between the concepts that were presented on the
last two paragraphs. CAM2 define those mappings through authentication policies that
specifies assurance levels, authentication context instances and combinations of authenti-
cation proofs. This way, every operations with specific assurance levels are associated to
multiple authentication policies, one for each different context that is expected.

CAM2 framework specifies a generic interaction model for context-aware multi-factor authen-
tication. For that interaction model, it also describes the behavior of CAM2 compliant identity
providers and specifies the data exchanged during context-aware multi-factor authentication
processes. This last item is accomplished through the definition of a context-aware multi-factor
and multi-modal authentication markup language (CAM2ML). Next sections will discuss in
detail each one of these aspects. Figure 3.1 illustrates an example of how can CAM2 be used.

39

Figure 3.1 CAM2 Utilization

3.3 Interaction model

CAM2 framework defines a generic interaction model based on single sign-on models like
the ones mentioned on section 2, namely SAML and OpenID. It is composed by three par-
ticipants: a subject (S) a service provider (SP) and a CAM2 identity provider (IdP). CAM2
interaction model defines two events, the policy registration and the authentication process. The
full interaction model is illustrated on Figure 3.2.

Figure 3.2 CAM2 interaction model

40

• Policy registration - For each combination of required assurance level and possible con-
text state, service providers must submit a specific authentication policy on the CAM2
identity provider(Step 0 on Figure 3.2). Later, the IdP will rely on these policies to en-
force context-aware multi-factor and multi-modal authentication.

• Authentication process - A subject that wants to access a resource on the service provider
must obtain the assurance level required for that operation (Step 1). Then S interacts
with CAM2 IDP, which evaluates the authentication context and returns the appropriated
authentication policy given the required assurance level (Step 2). Finally S gathers the
necessary proofs and try authentication on the IdP (Step 3), in case of success the subject
obtains an authentication credential that can be presented to the SP(Step 4).

3.4 CAM2ML

Context aware multi-factor and multi–modal markup language is as XML based language
for describing the contents exchanged during CAM2 authentication. Like SAML it relies
on assertions to declare statements that involve subjects and states of the authentication pro-
cess.However it differs from SAML since it has support for describing contexts and their respec-
tive mappings to combinations of authentication proofs. Assertions are composed by generic
and well structured fields,which allow transparent interaction between heterogeneous parties.
This allow multiple types of systems to use the same CAM2 authentication platform as a single
sign-on system.

3.4.1 Assertions

All CAM2ML assertions keep a common set of identifiers, namely for the issuer entity,
the service to be accessed and the required assurance level. The issuer entity identifies the
CAM2ML identity provider, the application identifier binds the assertion to a service provider
and finally, the assurance level points the confidence associated to that assertion. CAM2ML
assertions are signed by the issuer that identifies them. The issuer must be trusted by all parties
and can be discarded both by the subject and by the service provider. In each step of CAM2

41

authentication interaction, two types of assertions can be exchanged, namely policy assertions
and authentication assertions.

• Policy assertions - These statements express authentication processes. Each policy asser-
tion contains a set of context attributes that defines a possible environment state for an
authentication event. The assertion also carries a combination of authentication modes,
which define the proofs required for accessing the identified service provider with the
specified assurance level and context attributes. Considering the interaction model al-
ready shown on the earlier subsection, policy assertions are present during the policy
registration phase (Step 0) and on policy retrieval phase (Step 2).

• Authentication assertions - Are credentials stating that a specified subject has successfully
achieved authentication. To be more precise, they state that a specified subject success-
fully obtained authentication on a specified CAM2 identity provider for a specified assur-
ance level. Service providers must map that assurance level identifier into access control
operations and decide whether to grant access to subjects. Additionally to the common
identifiers carried by all assertions, they also contain information about the validity pe-
riod of the assertion. Authentication assertions are exchanged between the subjects and
the identity providers (Step 3) and between subjects and the service providers (Step 4).

Notice that CAM2ML does not define the message format for the retrieval of the assurance level
identifier during Step 1. This is due to the fact that the semantic of these identifiers is managed
only by the service providers and is used to perform access control decisions. CAM2ML only
specifies that assertions must carry a field that identifies the assurance level.

3.4.2 Requests

For each assertion a request message is also defined. A party involved on the authentication
process uses them to retrieve assertions from other. Requests have common field identifiers for
the subject, for the service provider and for the required assurance level. As expected, there are
two types of requests, policy requests and authentication requests.

42

Figure 3.3 Example of a policy assertion

• Policy requests - Policy requests carry a combination of context attributes that describe
the authentication environment. The CAM2ML identity provider evaluates the context
stated on the request message and returns a policy for the specified service and required
assurance level. Policy requests are present on the second step of the interaction model.

• Authentication requests - Authentication requests store authentication data gathered by
the subject. This data is the representation of multi-factor and multi-modal proofs in con-
formity to an authentication policy obtained earlier. Each proof has an identifier for the
authentication mode it represents (passwords, security tokens, fingertip recognition, etc.).
Along with the authentication proofs, authentication requests contain the context descrip-
tion. The identity provider relies on authentication requests firstly to evaluate the context
and the assurance level identifier, secondly to confirm if they correspond to any valid
authentication policy and finally to evaluate the authentication proofs. Authentication
requests are present on the third step of the interaction model.

43

Figure 3.4 Example of policy request

3.4.3 Reference protocol

CAM2ML can be applied to every possible instance of the interaction model, however it is
possible to describe a generic CAM2ML based protocol for CAM2 interaction model:

1.S→ SP : R,S

2.SP→ S : LOA

3.S→ IdP : PolicyReq(LOA,C,S,SP)
4.IdP→ S : [PolicyAssert(LOA,C,SP,AM,T S)]Kid p

5.S→ Id p : AuthenticationReq(LOA,C,S,SP,AP)
6.IdP→ S : [AuthenticationAssert(LOA,S,SP,V,T S)]Kid p

7.S→ SP : [AuthenticationAssert(LOA,S,SP,V,T S)]Kid p,R,S

R: resource identifier, LOA: level of assurance identifier, C: Context info,
AM: authentication modes AD: authentication proofs, V: validity period,

TS:time stamp, [...]Kid p: message signed by the identity provider principal

The protocol runs as follows:

1. the subject starts by requesting access to a service;

44

2. the service provider then returns the identifier of the level of assurance needed to access
that service;

3. the subject makes a policy request to CAM2 identity provider, which evaluates the assur-
ance level identifier and the authentication context of the request;

4. then it returns the appropriate policy;

5. the subject forwards an authentication request to the identity provider with the required
proofs.

6. finally, if authentication succeeds, the identity provider returns an authentication assertion
that can be presented as a credential to the service provider.

This protocol can be extended or re-adapted to be in conformity to specific instances of the
basic interaction model. For example, in some systems, the subject may store policy assertions
gathered in the past and re-utilize them without having to pass through the first four steps of the
generic protocol. Even the content of messages may be changed depending on the application
scenarios and their specific requirements.

3.4.3.1 Security analysis

CAM2ML protocol supports authentication and integrity properties for policy and authenti-
cation assertions through cryptographic signatures. Those signatures involve all the data carried
by assertions, then assuring that relying parties are able to trustfully accept or reject them. Ev-
ery assertion includes a time-stamp that must be used against replay attacks. Confidentiality,
integrity and bilateral authentication at the endpoint level is not defined by CAM2ML. Instead
those properties must be assured by transport level mechanisms such as TLS/SSL or message
level for example using WS-Secure.

3.4.4 CAM2ML vs SAML

CAM2ML and SAML have the same purpose, define standard messages to implement stan-
dard and domain independent authentication processes. The reason for creating a new language
is related the lack of expressivity of authentication contexts, multi-factor and multi-modal au-
thentication processes and dynamic levels of assurance that languages such as SAML can of-
fer nowadays. Instead of developing a new language from scratch, SAML could eventually

45

be extended to the requirements of context-aware multi-factor and multi-modal authentication,
however, one of the objectives of this work is to provide simple management and configuration
for authentication processes, which is done by definition of authentication policies through the
edition of XML documents. The simplicity of CAM2ML allows users with low technical capa-
bilities to use it. On the other hand, abstracting all the details of SAML enables focusing this
work only on context-aware multi-factor and multi-modal issues. The strengths and capabilities
of SAML are not ignored, CAM2 compliant identity providers rely on it to implement the basic
authentication mechanisms, as will be discussed on the next subsection.

3.5 CAM2 identity platform

Single sign-on systems as we know today have the limitations already described. CAM2
framework describes a reference architecture for a middleware that extends those single sign-on
systems enabling them to support context-aware multi-factor and multi-modal authentication.
Its architecture respects a three-tier architectural style. The 3rd tier (or data integration and
management tier) corresponds to the base identity management support and authentication pro-
cessing facilities that can be provided by a base single sign-on system from which CAM2 is
being extended, in order to support the integration of multi-factor validation factories. The 2nd
tier (or authentication logic tier) is represented by an authentication engine layer that evaluates
the context of each request and retrieves the combination of factors and modes required to per-
form authentication. It is also responsible for the management of context-aware authentication
policies storage and authentication delegation. Finally the 1st tier (or client integration tier)
is implemented by a unified front-end that externalizes different authentication protocols and
captures the authentication requests from the most variable kind of applications, constructing
a uniform authentication request that is forwarded to the authentication logic layer. Figure 3.5
illustrates this model. Each tier is fully described on the next subsections.

46

Figure 3.5 CAM2 Identity Provider: Reference architecture

3.5.1 Client integration tier

CAM2 framework has the objective of providing single sign-on authentication for multiple
types of systems and devices. Considering that, this tier supports different interaction types,
which are specific to the applications accessing CAM2 compliant identity providers. The client
integration tier is composed by integration modules that are responsible for adapting the client
specific authentication mechanisms to CAM2ML uniform protocol. This enables the integration
of CAM2 based authentication systems on already existing applications with a minimum of
changes to their code (applications still have to implement interfaces for gathering multi-modal

47

and multi-factor validity proofs).

The registration and management of authentication policies is externalized by this tier. Ser-
vice providers interact with this layer which keeps a set of application specific integration mod-
ules. Both for authentication and for management, the logic of the processes is implemented by
the lower layers. The communication between the client integration tier and the lower tiers is
done using a CAM2ML based protocol.

This model beneficiates the applications and devices with limited resources or specific inter-
action requirements, however, other kind of applications with more capabilities may access di-
rectly the authentication logic layer using the messages and the protocol defined by CAM2ML.

3.5.2 Authentication logic tier

Context-aware multi-factor and multi-modal authentication is implemented at this tier. CAM2ML
requests are handled at this level by three services which are responsible for policy retrieval,
validation of authentication proofs and policy management and registration.

CAM2ML authentication policies map contexts, applications and assurance levels in a com-
bination of authentication modes. For each policy request that the authentication logic tier
receives, it evaluates the context attributes contained on the message and collects an authenti-
cation policy from some repository, according with the application and assurance level that the
request caries.

Policy management and registration logic is made through an administration interface that
allows the insertion of new policies and edition of existing ones.

This tier handles CAM2ML authentication requests. It relies on the lower tiers and on the
inner policy repository to perform context-aware multi-factor and multi-modal authentication.
The process is divided in the following steps:

• Firstly the context attributes contained on the request must be evaluated. If there is any
applicable authentication policy then the process follows to the next step.

• If the first step succeeds, the authentication proofs are evaluated. Each factor is delegated
to a specific authentication module resident on the data integration tier (will be discussed
later). If, and only if, all individual authentication processes succeed, the whole multi-
factor process also succeed and a new authentication assertion is generated.

48

The evaluation of the authentication environment both during the policy retrieval and on the
authentication process is redundant, however it is necessary in order to maintain the stateless-
ness of the interaction model. This property gives subjects the possibility of retrieving a policy
only once and using it for multiple authentication events. On the other hand, online context
evaluation allows real-time impact after changes on authentication policies without the need of
any configuration.

3.5.3 Data integration tier

The first tier maintains access to a set of specific authentication modules. These modules
may perform static unifactor or multi-factor validation implemented by instances of typical
single sign-on authentication bases. Each of those systems may keep one or more authentication
methods such as LDAP[20], Biometry or UNIX’s password files. Therefore, the data integration
tier works as wrapper for multiple authentication systems externalizing an abstracted view over
them. The upper tiers only have to provide identifiers for the authentication modes and the
principal to be validated, along with the proofs he has supplied. The integration of all platforms
is centrally managed and it may rely on standard authentication specifications such as SAML
or OpenID, then taking advantage of all the benefits brought by these state-of-art technologies.

The authentication logic tier relies on data integration tier to delegate the validation of indi-
vidual proofs. This process is transparent for the upper tier, which is unaware of the details of
integration running on the background. With that abstraction is possible to change, extend and
reconfigure the underlying authentication systems without interfering with the context-aware
multi-factor authentication combined process.

3.6 Application scenarios

The methodology introduced by CAM2 framework can be instantiated in multiple domains
that has the common authentication requirements. The next subsections will introduce some
examples of the generality and applicability of context-aware multi-factor and multi-modal au-
thentication.

49

3.6.1 Web authentication

Long gone are the days when websites were only accessed from desktop computers kept on
a room. Today the web is accessible from every kind of devices such as cell phones, PDAs or
public access points. Therefore web servers are exposed to multiple interaction contexts due
to the mobile nature of ubiquitous environments. The number of validation proofs required to
achieve the same assurance level on authentication processes may vary for each state of the
environment.

The implementation of context-aware multi-factor and multi-modal authentication for the
Web can be done using CAM2 framework. Basing on the principles of specifications like SAML
and OpenID, CAM2 supports web authentication through HTTP redirection. When a user tries
to login on a website supporting CAM2 authentication, his browser redirects him to a web page
belonging to a CAM2 compliant IdP. This web page can extract some context information from
the request, such as the time it was issued, the region and the network type from where it was
invoked or the device type. After context examination, the CAM2 IdP chooses the adequate
authentication policy and the required authentication proofs are prompted through CAM2 web
page. If authentication succeeds the browser is again redirected to the service provider using an
URL that contains an authentication assertion. This assertion can be used as an authentication
credential.

3.6.2 Mobile authentication

Mobile phones are one of the greatest examples of ubiquity. The evolution of pervasive com-
putation is strongly connected to the development of new cell phones with enhanced features.
Nowadays these devices support a vast sort of technologies as for example Bluetooth, WI-FI,
UMTS , capture of video and audio, biometric recognition or movement detection. These fea-
tures bring the opportunity of implementing richer interaction models during the authentication
steps, allowing to extract multiple identity proofs from different authentication factors.

Let’s consider the example of a bank that supplies a payment service using mobile phones.
A simple application installed on the device asks the user for the payment details and next send
them to the service front-end located somewhere on the Internet. Along with that informa-
tion, the user must prove that he is the owner of the account from where the money is going
to be taken. The model described by CAM2 framework can be applied to this scenario. The

50

application installed on the mobile device can detect the context conditions and request the ade-
quate policy to a CAM2 IdP. After getting it, the application prompts the user for authentication
proofs, which can combine classic factors with the ubiquitous methods described on section 3
(Something the user sees, something the user makes, somewhere the user is). These last type of
factors potentates the commodity on the interaction while increasing the assurance level on the
authentication process.

3.6.3 Spontaneous authentication

The massive usage of mobile devices brings some issues. Users exchange digital contents
with multiple users. Some of them never had any type of interaction and do not share any pre-
vious information. CAM2 model is suitable to be applied on these scenarios. Let us consider
an user A holding a resource on his cell phone and another user B wanting to access it. User A
needs to authenticate user B in order to authorize him to access the resource. As already have
been said, the users don’t share any previous information, however they can acquire the same
context attributes, which can be a data matrix printed on users A phone, a gesture both users do
with the device or other kind of data that can be collected. Finally, user B presents the informa-
tion collected by his device to a CAM2 IdP, which use it to require a set of proofs and generate
authentication credentials that can be presented do user A. Therefore, spontaneous authentica-
tion can be addressed using a third party authentication base relying on CAM2 framework.

3.6.4 Kerberos extended by CAM2

Authentication systems are not the only suffering from the limitations when dealing with
context-aware multi-factor and multi-modal authentication. The authentication protocols and
standards used by those applications must also be adapted. As an example there is the Kerberos
protocol. As discussed on section 3, it is a protocol known by its robustness during the au-
thentication process using multiple cryptographic symmetric keys. Nevertheless it has a major
vulnerability point since the key between clients and the authentication server (AS) is generated
from a secret shared between the two parties. Those secrets are usually passwords introduced
by users. Violating the Kerberos protocol, both by brute force mechanisms or cryptanalysis,
may be hard however, as already was discussed on section 2.1, trying to guess the password
used for the generation of the first key is much more easier.

51

Context-aware multi-factor and multi-modal authentication is a possible solution for the
vulnerability presented on the last paragraph. By requesting a dynamic combination of au-
thentication modes, attackers find more difficult to guess the combination of validation proofs
inserted by the user. CAM2 interaction model can be used on Kerberos initial process by adding
one step to the protocol. Therefore, an AS working as a CAM2 compliant IdP returns an authen-
tication policy required for a certain level of assurance and context conditions provided by the
client. After gathering the authentication proofs from the user, the client application generates
a secret key from the data that was collected. The CAM2 AS generates the same key and the
first step of Kerberos protocol may take place.

3.6.5 Asynchronous authentication

In some situations single sign-on is not possible to achieve due to the the inability of client
applications to contact the authentication service. Let’s consider the example of a firm which
employees work outside the headquarters. Throughout the day, employees use their computers
to work, therefore they have to get authentication in order to create new work sessions. How-
ever their credentials are managed by a remote service located on the firm headquarters and
sometimes network connections aren’t available. In this case CAM2 model may be applied the
following way: at the beginning of the day and while the employees have access to a network
connection, an application installed on the computers retrieve one authentication policies for
each possible expected context condition. For each policy, a secure digest over the respective
validation proofs is also obtained. When employees want to get authenticated, the application
evaluates the authentication context and requests the right proofs. The digest over those proofs
is compared to the digest that were obtained earlier. If they are equal then the authentication
succeeds.

4 . Architecture for CAM2 authentication platform

The concretization of CAM2 authentication model is validated through the development
of an authentication platform supplying context-aware multi-factor and multi-modal authenti-
cation services. This section presents a detailed architecture for the implementation of CAM2
compliant authentication platforms. It will start by presenting the details about mapping CAM2ML
messages into a model of objects, and finally the architectural details for the implementation of
a identity provider that fulfills the requirements of context-aware multi-factor and multi-modal
authentication.

This architectural view includes considerations about the development of the authentication
modules that were implemented during the elaboration phase of this work. They are only a
few examples among the vast possibilities, however they were specially chosen to illustrate the
generality of the architecture.

The section ends with the presentation of the architectural model for the implementation
of some representative client integration modules, namely for web application, mobile devices,
web services integration and finally an extended version of Kerberos.

4.1 CAM2ML Object model

CAM2ML specification presents the formalization of authentication protocols and respec-
tive messages for interaction between subjects, service providers and IdPs. therefore, each party
must manipulate the concerns related to assertions and requests as entities that they can use to
get data and generate new information.

CAM2ML object model represents CAM2ML elements, as well as their dependencies,
mapped on a object hierarchy. Figure 4.1 shows an UML class diagram for CAM2ML ob-
ject model.

4.1.1 CAM2MLExportable interface

XML, is the format used for the exchange of CAM2ML messages between clients, ser-
vice providers and CAM2 IdPs. However, in order to manipulate them, the components using
CAM2ML elements must have some translation mechanism from XML to objects and vice-

versa. Considering those requirements, all CAM2ML objects inherit the CAM2MLExportable
53

54

Figure 4.1 Object model for CAM2ML mapping

interface operations. This interface provides two functionalities: the export method, that con-
verts objects into CAM2ML documents and the extract method, which imports the information
contained by a document and generates an object.

4.1.2 Context Item

A context is a set of environment attributes extracted from CAM2ML assertions. Each at-
tribute has a name and a value that can have multiple formats. Context attributes may vary dur-
ing the life-cycle of an instance of CAM2 authentication platform. The abstract class Contex-

tItem represents environment attributes, it has the common operations to all context attributes,
namely getting its name, getting its value and verifying if the attribute matches another. Every
context attributes must be represented by an object that extends the abstract class, implementing
its operations differently and accordingly to their purpose.

The context manager is an object that is able to dynamically load a ContextItem and return
it to other components. It provides an operation that, given the name of an attribute, loads the
adequate class from the file system and initializes it. By combining both the dynamic load

55

mechanism and and the match operation, it is possible to verify if the context information,
provided in a policy request, matches the context existent on a specified policy stored on CAM2
authentication platform.

Figure 4.2 Context item and context manager class diagram

4.1.3 Authentication modes

Both CAM2ML policy assertions and authentication requests must deal with the authen-
tication modes they contain. While policy assertions must contain the modes required for a
particular authentication process, authentication requests must identify the proofs they carry.
With the purpose of representing both data types, the current architecture provides two abstract
classes : the AuthDataItem and the AuthMode. The AuthMode object identifies authentication
modes and the AuthDataItem object represents authentication proofs identified by their mode
names.

4.1.4 Assertion

All CAM2ML assertions have common fields, namely the application to which they are ap-
plied, the assurance level they grant and a signature of the statement identified by his issuer.
The Assertion abstract class implements the CAM2Exportable interface, so all assertions may
be converted into CAM2ML documents and documents into assertions. Applications and as-
surance levels are handled as Strings and signatures are composed by two attributes: one for the

56

algorithm and other for the signature bytes. This representation allows the utilization of multi-
ple algorithms. The Assertion class is extended by PolicyAssertion and AuthenticationAssertion

classes:

• PolicyAssertion - Is the class that represents CAM2ML policy assertions. Additionally to
the fields inherited by the Assertion class, it keeps three more fields: a collection of Con-

textItem objects for description of the authentication context, a collection of AuthMode
objects for definition of the required proofs and finally a Date field stating the max valid-
ity period for assertions generated from that policy. These objects are stored by CAM2
IdPs, which rely on them to choose the most appropriate authentication process. Policy
management and storage will be further explained.

• AuthenticationAssertion - CAM2ML authentication assertions are represented by Authen-

ticationAssertion class. It only adds two fields to its super class, respectively for identi-
fication of the subject to whom the assertion is applied and for the validity period of the
assertion. AuthenticationAssertions may be used as authentication credentials between
subjects and service providers. The subject field uniquely identifies the authentication
principals; the application and assurance level identifiers assure that the assertion is ap-
propriate for a specified operation on a specified service provider. Finally, the validation
field may be used to determine whether a credential is still valid, accordingly to the pur-
poses of the authentication policy used to generate the assertion.

4.1.5 Request

Similarly to CAM2ML assertions, requests also have some common fields for identification
of the subject, assurance level and application to which the request applies. Also implement-
ing the CAM2Exportable interface, Request abstract class is used for the same purpose that
Assertion class. It is extended by PolicyRequest and AuthenticationRequest classes.

• PolicyRequest - This class represents the request element described on CAM2ML specifi-
cation. It extends the Request abstract class by adding a collection of ContextItem objects,
which represent the authentication context.

57

• AuthenticationRequest - Additionally to Request abstract class, Authentication Requests

contain both context items, for context description, and a collection of AuthDataItems,

which carry authentication proofs gathered from the subject they represent.

4.2 CAM2 Identity platform

4.2.1 Client integration layer

This layer represents the interface for external applications and services wanting to use
context-aware multi-factor and multi-modal authentication. CAM2ML front-end abstract com-
ponent generates uniform information and supply it to the authentication logic layer.

Applications relying on CAM2ML front-end services are grouped in four categories: Web
integration fabric, web services integration fabric, Kerberos integration fabric and Administra-
tion tools integration fabric. Each group has common functionalities that are aggregated by
specific fabrics. Then, the development of new applications is easier, since it can be done by
extension of the most appropriated fabrics. Figure 4.3 presents the UML component diagram
for the devised architecture.

4.2.1.1 CAM2ML front end services

This component is used by all integration modules providing generic tools for the creation
of CAM2ML objects and dynamic context evaluation. The evaluation of context at this point is
limited, since the only way of obtaining context attributes is by observing the arrival conditions
of the request. Stronger methods use application specific modules that acquire context data
from the devices and send it along with the authentication requests. To enforce authenticity,
context information can be signed by the client side application. CAM2ML front end services
works also as the intermediate between clients and the authentication logic layer. During their
interactions, the translating methods transform application requests in CAM2ML objects and
objects in application specific responses. The communication between the client integration
layer and the authentication logic layer is made through SOAP web services over a TLS/SSL
layer. TLS/SSL provides authenticity, confidentiality, and integrity as security properties during
the exchange of CAM2ML assertions and requests.

58

Figure 4.3 Component diagram for CAM2 IdP architecture

59

4.2.1.2 Web authentication integration module

The web integration module is a web application that externalizes context aware multi-factor
and multi-modal single sign-on authentication. It was designed to support web based authenti-
cation. The interaction with other applications is made through browser redirection, while the
interaction with users is made through the display of web pages. Considering a website that
wants to validate the identity of its users, the authentication proceeds as follows:

1. The user accesses the website and chooses to be authenticated using a CAM2 authentica-
tion platform.

2. The website redirects the user to the web integration module web application which evalu-
ates the authentication context and retrieves the right policy. Both the expected assurance
level identifier and the URL of the website are encoded on the redirected URL.

3. After knowing what are the authentication proofs that must be gathered, the web integra-
tion module prompts the user for the required data through the presentation of a sequence
of pages. Each page relates to one authentication mode.

4. Once all authentication proofs are collected and authentication succeeds, the browser is
once more redirected through a HTTP POST request to the first website.

5. Along with the URL of the redirection, an authentication assertion is encoded and finally
used as a credential. Finally, the website providing the resource to the user starts a new
session and sets a cookie on the users side.

Context is evaluated by the web integration module by analyzing the data embedded on the
request redirected by the user’s browser. The current implementation extract the requests arrival
time, the relative global location and the communication protocol (HTTP). The only non trivial
context attribute is the relative global localization of the requests, which is done with the help
of a public domain web service for global location using IP addresses.

Websites often has to maintain authenticated sessions after users identification. These ses-
sions may be totally managed by the application, however, CAM2 architecture provides a Ses-

sion object supplying operations like the management of the redirect process, the creation of

60

cookies and CAM2 credentials validation.

The management of the redirect process is made in two steps: firstly the Session object
generates an URL for the CAM2 IdP containing the assurance level identifier encoded on it.
Finally, when the service provider website receives a POST method, the Session object searches
for any CAM2 assertions it may carry and if so a new cookie is created. Cookie generation
is based on authentication assertions. Assertions are encoded and stored on the appropriate
structure. Every time users perform a operation the Session object verifies if the assertion is
still valid, if the assurance level is equal or greater than the required and if the application is the
correct. Since assertions are signed, it is possible to assure that the information stated by the
cookie is certified.

4.2.1.3 SOAP authentication integration module

Web based authentication is not suitable for all kinds of application. In some cases, there
is the need of integrating authentication services on specific application modules with a thin
grained set of operations and without any web interface. Due to the nature of this applications
and requirements, the browser redirect method is not appropriated.

Web services are a nice solution to the integration of external services during the develop-
ment of new application and extension of existing ones. At the limit, applications may only
orchestrate a combination of web services to produce their results. The advantage in the uti-
lization of a web services based solution, when compared with other architectures such as Java
RMI , CORBA or COM , is that it uses HTTP as the message transport protocol. This allows
web services to be used through NAT systems, Firewalls and other limitations imposed by the
Internet.

A SOAP web service that exports the basic authentication services described by CAM2
framework is provided by the current architecture. Along with the RESTful authentication in-
tegration module it composes the web service integration sub-layer within the client integration
layer. Two operations are provided: the policy retrieval and the authentication request. De-
velopers wanting to implement authentication using this web service must firstly invoke the
policy retrieval operation, passing a policy request CAM2ML object. The response will eventu-
ally contain a policy assertion and in that case the client application must gather the validation
proofs and create a CAM2ML authentication request object. That object is passed to CAM2

61

authentication platform through the invocation of the authentication operation. If the authenti-
cation succeeds, the response contains an authentication assertion object which can be used as
a credential.

4.2.1.4 RESTful authentication integration module

As already discussed throughout this document, it is a fact that mobile devices have limited
resources. Battery life period, communication range and processing capacity are issues that
must be taken in mind during the design of applications for pervasive devices. Some applica-
tions need simpler interaction models, for example, is not reasonable to compile SOAP based
web service stubs in some limited devices. Even some web servers does not support server-
side complex processing, thus not permitting the usage of SOAP web services or the redirect
approach presented on the previous sections.

RESTfull web services are an alternative to SOAP, since they do not require the existence
of stubs on the client side. Invocations are made through HTTP Post and GET requests and
responses are returned through HTTP responses. Each operation supplied by a REST web
service is accessed through a specific URL. Developers only have to create HTTP requests,
encode the required parameters and handle the HTTP responses to obtain the results.

The current implementation provides an authentication integration module that relies on
RESTfull web services to export CAM2 authentication services. It comprises a Java servlet
for hosting two resources(or services), namely for policy retrieval and other for authentication
request. Both resources rely on CAM2ML front-end services abstraction to perform the inter-
action with the authentication logic layer.

Similarly to SOAP authentication integration module, these services do not maintain any
state information neither support for session management. Instead, RESTfull authentication in-
tegration module must be used as a basic tool for the development of authentication interfaces
on resource limited scenarios.

4.2.1.5 Kerberos legacy integration modules

Section 2 introduced Version 5 of Kerberos as a vastly used authentication protocol. It is
used by systems like Windows, Mac OS, FreeBSD and Solaris as default method for remote
identification of principals. Still it has a critical point of failure, the usage of passwords as seeds
for the creation of cryptographic keys used on the first iteration of the protocol. The usage of

62

public key certificates (PKINIT) mitigates this problem by excluding static passwords from the
initiation process, however it forces the utilization of smart-cards and the respective readers,
significantly increasing the total cost of ownership.

The proposed architecture introduces a new approximation to Kerberos initiation process.
While presenting a different instance of CAM2 interaction model, it also shows how to miti-
gate attacks to the passwords relying on dynamic combinations of authentication modes instead.
Kerberos integration sub-layer describes the architecture both for the authentication server (AS)
and the ticket granting server (TGS). While the TGS was designed following the default proto-
col defined by version 5 of Kerberos specification, the AS had to suffer some changes which will
be discussed on the remaining paragraphs of this subsection. In order to enable comparisons
between the existent solutions and its CAM2 extended versions, three Kerberos authentication
clients where created, namely one for the default specification of Kerberos V5, other for its
PKINIT version and a third version compliant with CAM2 specification. Clients may choose
what version of Kerberos they want to use by stating it in on the first message through the option

field.

• Kerberos V5 integration services - This integration module follows the protocol defined
by Kerberos specification without any changes. Client applications must generate a cryp-
tographic symmetric key from a password which must be the same that the one generated
by the authentication server. This authentication method is seen as a subset of CAM2
authentication process only using one authentication mode. Passwords are retrieved and
validated through CAM2 authentication platform. This architecture does not introduce
any changes to already existent kerberized applications, since the protocol maintains un-
changed.

• Kerberos V5 with PKINIT integration module - Kerberos V5 PKINIT support is accom-
plished by changing the first interaction of the default protocol. The authentication server
receives the first message from clients and extracts its public key certificate. After verify-
ing its validity, it ciphers the TGS ticket with the extracted key. The client uses its private
key to decipher the information needed to interact with the ticket granting server. The
approach here described uses CAM2 authentication platform to validate the certificates
sent by client applications. Once validated, their public keys are extracted and used to
encrypt the first response.

63

4.2.1.6 CAM2ML Extended Kerberos V5

In order to show the flexibility of CAM2ML, an extended version of Kerberos protocol was
designed. In addition to the steps needed for Kerberos authentication, to achieve context-aware
multi-factor and multi-modal authentication, the client applications must obtain the policies
required for a specific authentication context. For that, the following interaction is performed:

1. The client application adds information about its context to the first message of the pro-
tocol. The options field contains a flag that warns the authentication server to use CAM2
version of Kerberos.

2. The AS verifies the context contained on the first message and relies on CAM2 front-end
services to perform two steps: getting the appropriate authentication policy and obtaining
the credential that must be generated by the client application. This credential is a digest
computed over the combination of authentication proofs that must be gathered by the
client application.

3. The iteration follows with AS replying with the policy obtained.

4. The client application receives the authentication policy and gathers the required authen-
tication proofs from the user.

5. Finally, both the authentication server and the client application also computes a digest
over the collected data. Both the client and the AS generate the same secret key from the
same computed digest.

The Kerberos protocol follows normally from here as defined on version 5 specification. Notice
that the authentication proofs are never exchanged between the AS and the client. The same
occurs with the default version of Kerberos, which is one of its strengths. However, the first
interaction differs from the original version of Kerberos by relying on a combination of authen-
tication proofs, instead of creating a cryptographic key from a static password. This behavior
improves the assurance level, since it is harder for an attacker to guess all proofs provided by
users. The extended version Kerberos is formally presented on the following protocol:

64

1.C→ AS : Options||IDc||Realmc||IDtgs||Times||Nonce1||Ctx

2.AS→C : Realmc||IDc||Tickettgs||AP||{LOA||IDtgs||T S2||Tickettgs}Kgc

Tickettgs = {Flags||Kc,tgs||Realmc||IDc||ADc||Times}Ktgs

3.C→ T GS : Options||IDv||Times||Nonce2||Tickettgs||Authenticatorc

Authenticatorc = {IDc||ADc||T S1}Kc,tgs

4.T GS→C : Realmc||IDc||Ticketv||{Kc,v||Nonce2||Realmv||IDv}
Ticketv = {Flags||Kc,v||Realmc||IDc||ADc||Times}Kc,tgs

5.C→V : Options||Ticketv||Authenticatorc

Authenticatorc = {IDc||Realmc||T S2||Subkey||Seq#}Kc,v

6.V →C : {T S2||Subkey||Seq#}Kc,v

CAM2ML Extended Kerberos protocol

The extended authentication protocol is very close to the original. The only differences
reside on the first two steps. In the first step the context ctx is passed and on the second an
authentication policy AP is returned. Already existent kerberized applications can therefore be
adapted to CAM2 with a minimum amount of changes to their structure.

CAM2 authentication platform provides an interface where Kerberized applications can re-
quest login. It supplies authentication using basic Kerberos V5 protocol authentication, Ex-
tended CAM2ML Kerberos and PKINIT Kerberos version. For basic Kerberos authentication,
the CAM2 platform acts as a proxy for a password directory plugged to the base single sign-on
system, using null contexts. For PKINIT version CAM2 platform interacts with a PKI plugged
on the single sign-on base also using null contexts. Finally, for CAM2ML authentication the
platform acts as described on Protocol 4.1.

4.2.1.7 Admin console integration services

Authentication policies must be managed by applications that use CAM2 authentication
platform. On a first step, applications must register policies for each authentication context
that is expected and each assurance level required by its operations. Once submitted, they will
eventually need to be changed to refine the authentication process. Management and registration
sub-layer provides a SOAP web service with these basic operations:

65

• Get policies - retrieval of all authentication policies registered by an user and grouped
by his applications. The result for this operation is a list of records, each containing the
policy ID, the assurance level identification, and the application to which it applies.

• Get policy by ID - retrieval of a single policy given its ID. The policy is returned in
CAM2ML format.

• Edit policy - policy edition given its ID and changed data in CAM2ML format. The old
policy is removed from the platform and the new one is inserted in its place.

• Insert policy - policy insertion given a policy in CAM2ML format.

These operations need to be authenticated, therefore, along with the operations parameters,
a CAM2 credential must be passed to the administration web service. This credential is an
authentication assertion CAM2ML object. Each operation of the administration web service
must first validate the credential and then return the results.

The typical application developed over the Admin console integration module is a Web
interface providing CAM2 registering and management systems. It uses CAM2 session object
to manage the navigation session and relies on CAM2 Web authentication integration module
to validate the identity of users wanting to view, edit or submit new policies.

4.2.2 Authentication logic layer

4.2.2.1 Policy manager

The policy manager is the component responsible for storage and retrieval of authentication
policies. It has a interface that exports operations for querying the policy repository. Policies
must be stored on persistent memory and for that purpose the policy manager is responsible for
extracting information from some repository (for instance a database or even the file system)
and provides it as CAM2ML objects to the other components. The Policy manager supports
operations for querying policies by context attributes, querying policies g by application and
assurance level and to perform edition and insertion of new policies.

66

4.2.2.2 Authentication core

The authentication core layer implements the logic of context-aware multi-factor and multi-
modal authentication. It support two operations, Policy retrieval and authentication.

The policy retrieval operation receives a PolicyRequest as argument and extracts the infor-
mation about the context. Accessing the policy manager component, it queries for any policy
which application name, assurance level and context attributes match the information contained
on the PolicyRequest. The operation returns as result a PolicyAssertion .

The authentication operation receives a AuthenticationRequest as argument and removes
both the context information and the authentication proofs. As already described in the section
discussing CAM2ML objects, authentication proofs are kept on AuthDataItem objects. For each
one of those modes, the right AuthenticationDelegator must be loaded.

An AuthenticationDelegator is an object that implements the authentication logic for a spe-
cific authentication mode. Relying on JAAS, each delegator contacts the data integration layer
and requests authentication for that mode. Much in the same manner that context items are
dynamically loaded, AuthenticationDelegators also are managed by a DelegatorManager. This
architecture enables the easy addition of new authentication modules without having to change
the authentication logic. The authentication process passes through the following steps:

1. On a first step and similarly to what happens in the policy retrieval operation, the authen-
tication core tries to get an authentication policy matching the request fields.

2. If at least one policy is returned by the policy manager, it verifies if all the required proofs
are supplied on the request.

3. If all proofs are available each one is validated by the appropriated authentication delega-
tor. Each delegator is executed on a different thread. Due to parallelization, the latency
of the process is bound to the execution time of the slowest delegator.

4. If, and only if, all delegators successfully validate their particular authentication proofs
the authentication succeeds and an authentication assertion is generated and returned.

The authentication component is used both by the authentication service and by the policy
retrieval service. Figure 4.4 illustrates in detail the authentication process.

67

Figure 4.4 Activity diagram for the authentication process

68

4.2.2.3 Platform services

The platform services export the operations found in the authentication logic layer compo-
nents. Three services are available, the authentication and policy retrieval services, which rely
on the authentication core and the management service using the policy manager component.
They provide SOAP based web services for each one of those operations. Web services are a
good solution for easy integration of CAM2 authentication services, therefore platform services
can be used directly by applications without passing by the client integration layer. For that,
applications only have to know the steps of CAM2ML reference interaction model.

Policy requests contain sensible data that is susceptible to security attacks such as replaying[47]
and eavesdropping, therefore the architecture relies on secure web services through a TLS layer
between endpoints. This grants authenticity, confidentiality and integrity as security properties
to CAM2ML interactions.

4.2.3 Data integration layer

Data integration layer is composed by a collection of single sign-on authentication sys-
tems, each providing multiple services for static-factor authentication and identity management.
Those services are used by the authentication delegators discussed on the authentication logic
layer section. Each delegator implements the specific logic to interact with the single sign-on
system hosting the authentication modules. That interaction may rely on standard specifications
such as SAML, benefiting from their advantages end enabling interoperability with other sys-
tems. Single sign-on systems, such as the ones discussed throughout the related work section,
typically provide interfaces that allow the extension by adding off-the-shelf authentication mod-
ules. In a way or or another, these systems invoke operations over the authentication modules
in order to validate factor-specific authentication proofs. A representative set of authentication
modules was implemented during the elaboration phase of this dissertation. They cover all the
classic authentication factors plus the new and emergent ubiquitous approaches. Their design
will be presented on the next subsections.

69

4.2.3.1 onetime passwords synchronization server

onetime passwords (OTP) fits in the authentication factor category related to something the

user has. The reference implementation developed during this dissertation provides a synchro-
nization service for OTP synchronization. It connects to single sign-on systems as a custom
authentication module and works as a standalone component. OTPs are represented as charac-
ter sequences which can be more complex than the usual passwords, since users do not have to
memorize any information.

It is assumed that users hold a device capable of reproducing time-synchronized passwords.
OTPs are provided to users through a LCD display built-in on the device. New passwords are
generated from a initial seed registered both on the synchronization server and on users devices.
The generation process is made by calculating the hash-values over the concatenation of the
initial seed with the current time. This method forces both the server clock and the user device
clock to be and must be internally synchronized. The generation of the OTP by the device is a
completely disconnected process.

4.2.3.2 LDAP server

Lightweight Directory Access Protocol[20] based systems are widely used as a solution
for identity management and authentication proof storage. The LDAP server component, pre-
sented on Figure 4.3, is used to query for subjects information and verify if a specified password
matches the attributes that are stored. due to the issues already discussed on the second chapter,
this authentication method is the most common among the available single sign-on authentica-
tion systems. The single sign-on system, used as base authentication platform for the reference
implementation, already has integrated this authentication module. Further explanations will be
supplied on the next chapter.

4.2.3.3 Kerberos data interface

During the first step of the Kerberos authentication protocol, the authentication service needs
to cipher data that only the client can decipher. This key is usually accomplished by using a
key generated from the password bytes (Kerberos V5) or the clients public key gathered from
a X509 certificate(Kerberos V5 w/PKINIT). In order to perform CAM2 authentication, it is
required that the authentication attributes (passwords, biometric templates, OTP seeds) can be

70

retrieved to be used as key material. Typically, the common single sign-on authentication sys-
tems doesn’t provide any interface for doing that. For that purpose, the Kerberos data interface
provides methods for authentication data extraction relying on the base repositories such as
LDAP server, OTP synchronization server or the Bluetooth token validation server.

4.2.3.4 Bluetooth token validation server

Bluetooth support is provided by most of the cell phones available today. This architecture
describes the design of a Bluetooth based security token. Users must only have a cell phone
supporting Bluetooth and CAM2 Bluetooth token application installed on it (discussed on the
next chapter). The validation server has a Bluetooth interface that interacts with mobile devices
sending a challenge. If the device replies correctly to the challenge, the event is registered and
kept in persistent memory. During the enrollment process, users register the MAC address of
their mobiles and a initial seed associated uniquely to their devices. The interaction between
client applications and CAM2 authentication platform runs as follows:

1. User tries to access a service which initiates his authentication using CAM2 authentica-
tion platform.

2. One of the requested authentication modes is a Bluetooth token. The authentication plat-
form displays a message asking the user to stay near to a Bluetooth reader certified by the
validation server and use the CAM2 Bluetooth token application.

3. The validation server sends a challenge to the user device through Bluetooth. The device
receives the request, concatenates it to the initial seed and computes a hash-value. The
result is returned also through Bluetooth.

4. The validation server receives the reply and registers the event on persistent memory.
Each event contains information that links users to the place where the Bluetooth reader
is located and the time when the operation was performed.

5. During the authentication delegation phase, the authentication logic layer queries the val-
idation server for any successful event occurred during a time period.

To some extent Bluetooth tokens may be used as location validates, since the communication
range is limited. Therefore it is possible to limit the confidence in the authentication process
to the area covered by the Bluetooth reader owned by the validation server. The utilization of
these tokens enhance the overall assurance level by adding one extra channel to the interaction
process. An attack both to the Internet connection and the Bluetooth connection is less likely.

71

4.2.3.5 Movement template matcher

cell phones supporting accelerometers can supply some basic information about their rota-
tion over coordinate axis. That information can be aggregated and used to find specific move-
ments during a specified time period. Once identified, movements can be compared to a tem-
plate database, in order to verify if those movements match the information stored. Basing on
the principles devised by Rene Mayrhofer on his article proposing the use of environment in-
formation for establishment of authenticated connections[26], it is possible to use the physical
position variations (movements) as seed for authentication proofs.

Let’s consider rX, rY and rZ as rotation quotients over respectively the X, Y and Z axis. The
value of a rotation quotient for a specific axis at a specific state represents the angle between
the previous state of the device and the current state. Templates store three rotation sequences,
namely for rX, rY and rZ. Each sequence maintains n consecutive rotations over an axis con-
secutive gathered during a time period. The following matrix aggregates the three sequence in
a matrix T.

T =

rX1 rY 1 rZ1

rX2 rY 2 rZ2

rX3 rY 3 rZ3

. . .

rXn rY n rZn

Let’s now consider the data retrieved from the mobile phone. During a time period the cell
phone is able to supply consecutive values for the rotation quotient. Three rotation quotients
sequences may also be aggregated:

S =

rX1 rY 1 rZ1

rX2 rY 2 rZ2

rX3 rY 3 rZ3

. . .

rXn rY n rZn

72

The movement sequence captured by the mobile phone is considered valid if and only if the
following happens:

∀a, t
∣∣∣Tta−Sta

∣∣∣< k, a ∈ {x,y,z},∈ ε[1,n]

with k representing a threshold that is used to calibrate the acceptance rate.
This authentication module relies on information that the user must know, however it doesn’t

forces the users to memorize complex data, they only have to remember a few movements. On
the other hand, making movements is more appropriate to some situations where the user is
not able to write a password. The movement template matcher relies on the methods described
above to implement the operation of template matching given a sequence of rotation quotients.
It maintains templates kept on persistent memory and allows the configuration of k to allow the
calibration of the acceptance rate.

4.2.3.6 Visual proof repository

Instead of combing time information with built-in seed values (like onetime passwords), it
is possible to combine it with information provided by the authentication platform, which is
richer. Bluetooth tokens already do it, however they forces the utilization of a second commu-
nication channel. It would be desirable that the process was completely disconnected, therefore
mitigating attacks to the channel. Presenting that information to the user and forcing him to in-
sert it on a disconnected device is not convenient. The use of data matrices can be applied to the
generation of authentication data as discussed on [27]. Every time visual proofs are required as
an authentication mode, data matrix is presented to user, who has to use its cell phone camera to
capture the image. The data matrix is processed and the encoded value is used in combination
with the seed initially stored on the device. An hash-value over that combination is calculated
and the user is prompted to introduce some positions of that value.

This component stores data matrices encoding random data used to the generation of visual-
proof based tokens. It has an interface that allows the authentication delegators to validate the
data inserted by the user. For that, this component simulates the same behavior that the client
and compares the data introduced with the information it has generated.

5 . Implementation

This chapter is dedicated to the implementation details of CAM2 authentication platform.
The architecture presented on the last chapter was taken as reference for the construction of
such platform. This section starts by discussing the technologies used during the implementa-
tion, followed by the description of each component construction and their runtime behavior.
Finally the chapter ends with the presentation of some applications developed for validation
purposes. The implementation blueprint is illustrated by figure 5.1.

5.1 Chosen technologies

5.1.1 J2EE Platform

J2EE oriented development is suited for the rapid integration of CAM2 components on the
structure of typical data centers. The three tier based architecture allows direct division of
CAM2 authentication platform components among different physical machines, the client inte-
gration layer is associated to front-end machines with great I/O capabilities, the authentication
logic layer may be assured by high performance machines and finally the Data integration layer
components can be installed on machines focused on database management and data retrieval.
J2EE facilities, when used at the client integration tier, enable easy deployment of new authen-
tication integrators, without time-consuming adaptations to the existent structure. The same is
applicable to the integration of new authentication modules and identity repositories.

Java was used as the basic implementation language for the majority of the components
available on CAM2 authentication platform. It was chosen due to many reasons:

• Ease of development - The Java language is simple, giving great support to developers in
what concerns to memory allocation and garbage collection. It is much focused to ob-
ject oriented paradigm, being an excellent solution for implementation of the component
based architecture shown on the last chapter.

• Extensibility - Java provides strong extension mechanisms through the usage of interfaces,
and abstract objects, which improves the definition of new context items, authentication
modules and delegators. The extension of new components is as simple as adding items
to a java properties file and deploying the required classes. Relying on Java dynamic class

73

74

Figure 5.1 Authentication platform implementation blueprint

75

loading mechanisms, the components are ready to use.

• Distributed nature - Java enhances the development of communication between compo-
nents through the network, providing native resources such as Java RMI and Web services
using Java-RPC

• XML Handling - Java provides native support for XML handling through it XPath API
and DOM representations.

• Platform independence - Relying on its virtual machine, Java is platform independent,
improving the generality of the application of CAM2 authentication concepts.

• Know how - Java is the language where we feel the most convenient. Instead of us-
ing other object-oriented languages such as, using Java has enabled the development of
CAM2 authentication platform only focusing on its components, without having to spend
time learning how to implement them.

5.1.2 J2ME

J2ME is Java technology applied to limited devices. It has a limited version of J2SE virtual
machine, supporting a subset of its operations. The current implementation relies on J2ME for
the development of mobile applications used as proof of concept. It was chosen due to its strong
integration ability with Java applications and ease of development.
5.1.3 Python and Symbian C++

Despite being easy to use and develop, J2ME is not a good solution when it is necessary
to manage low level resources. The access to features like cameras, accelerometers and native
functionalities is very limited. Due to this limitation, Python was used to gather information
from the sensors of the mobile phones.

Python [28]is a dynamic interpreted object-oriented language focused on code readability
and rapid development. It has a powerful standard library and provides easy mechanisms for
the integration of new libraries and frameworks. Python is available on some mobile phones
such as Nokia phones using Symbian operating systems.

Symbian [46] is an operating system designed for mobile systems supporting enhanced
multimedia features such as video, audio, sensors and Bluetooth. Since 2008 it is owned by

76

Nokia, which integrates it in the majority of its top line mobile phones.

Symbian C++ primitives and Python language are used for data acquisition from the sensors
of a Nokia 5800 XpressMusic1 mobile phone applications. In the current implementation, small
python components were developed to supply sensor information to the J2ME applications de-
veloped as validators.

5.1.4 JavaServer Pages

JSP is a server-side technology, mostly used in J2EE, for the construction of dynamic con-
tent web pages. It supports the integration of java code, which improves the communication
with CAM2 authentication platform. The web authentication integration module discussed on
the last chapter is a JSP web page connected to the authentication platform through the client
front-end services provided by the client integration layer.

5.1.5 OpenSSO

OpenSSO was widely described on chapter 2. It is a single sign-on platform developed by
SUN with strong extensibility mechanisms and suited for easy application integration.

The authentication delegators, used by the authentication logic layer on CAM2 authentica-
tion platform, rely on OpenSSO’s client SDK for the validation of mode specific authentication
proofs. OpenSSO supports LDAP for default authentication mode, therefore the remaining au-
thentication modes had to be implemented from scratch and plugged through the Authentication
Service SPI.

OpenSSO Enterprise 8.0 was chosen due to multiple factors, from such we can distinguish
the great availability of documentation, the integrability with Java code, an active community
that is constantly improving the capacities of this state of-art system and finally the easy of
development and extension of new authentication modules.

5.1.6 GlassFish

Glassfish [30] is an open source reference implementation of a full integrated J2EE platform.
It provides support for multiple technologies such as JSP, web services support and application
server. CAM2 components are deployed on glassfish as EAR and WAR files. Glassfish was

1http://www.nokiausa.com/find-products/phones/nokia-5800-xpressmusic

77

chosen due to its ability to deal with all required technologies at the same time and to its easy
integration with OpenSSO, the single sign-on authentication system used as base for CAM2
authentication platform.

5.1.7 eXist

eXist [29] is an open source database management system based on XML data model. It
stores XML documents and allows efficient querying relying on a dedicated XQuery index sys-
tem. This solution beneficiates CAM2 authentication platform, since the CAM2ML policies
stored on the Platform and manipulated by system administrators are XML documents. There-
fore, policies can be efficiently retrieved as XML documents and be converted to CAM2ML
Objects. eXist provides an API, known as isXML:db for connection to the database and integra-
tion in Java applications. CAM2 Policy manager relies on this API to provide Policy retrieval
services.

5.1.8 Web services and security

As described throughout the chapter about the CAM2 platform architecture, web services
were used both due to their integration in SOA based applications and to the security properties
that secure web services can provide. Security for web services is achieved through simple con-
figuration on Glassfish. A key pair and its respective X.509 certificate was generated using Java
Keytool. The keystore is used by Glassfish to implement server-side authentication for REST
web services, SOAP web services and HTTPS web access. Web services were generated and
deployed on Glassfish with AXIS [37] toolkit from Apache foundation. CAM2ML assertions
are signed using a combination of DSA and SHA1 as algorithm . The key, with 1024 bytes of
size, is associated to a X.509 certificate and respective public key generated using Java Keytool.

5.2 Runtime

At runtime, the components of CAM2 authentication platform are distributed among the
physical infrastructure as illustrated on figure 5.2.

The front end components, namely the web authentication interface, the web services, the
Kerberos servers and the web admin interface, are represented by independent applications

78

deployed on Glassfish application server.
The web services providing authentication and administration operations also are deployed

on the application server, however both the policy manager and the authentication core compo-
nent are deployed as stand-alone Java RMI servers.

Finally the instances of OpenSSO Enterprise 8.0 and eXist database are deployed as in-
dependent GlassFish applications, while the Kerberos data repository and the Bluetooth token
server runs as stand-alone Java RMI servers. Bluetooth token server also depends on Bluecove
[51], a Java library that simulates Bluetooth JSR-82 implementation, for the communication
with cell phones.

In order to provide transparent and easy extensibility, the platform relies on Java properties
files to perform dynamic configuration. The following properties are allowed to be configured:

• Server names and ports - The server names and listening ports for all Servers.

• Context items - The file names of the classes implementing the context items.

• Authentication delegators - The file names of the classes implementing the authentication
delegators.

This mechanism, in combination with dynamic policy administration, makes it possible to
change the behavior of the authentication platform without having to stop any component.

5.3 Protocol Integration modules

For demonstration, CAM2 authentication platform supplies three types of authentication
protocol integration modules, namely for Web pages, web services integration and Kerberos
based client applications. The following paragraphs present some details considering the im-
plementation of such modules.

5.3.1 Web integration authentication module

The web integration module provides an interface for the extended version of WEB POST/REDI-
RECT protocol as the one used by SAML. It was implemented as a JSP page supporting the

79

Figure 5.2 Deployment diagram

80

redirect based mechanism presented on the earlier chapters. It supports context evaluation, au-
thentication proof collection and management of the authentication process. Context evaluation
is achieved by collecting the time when the request arrived to the web server; the device type,
which is embedded on the HTTP request sent by the client; and the clients IP addresses, which
are used to give an initial hint about the relative location of the user. Authentication proofs are
gathered through a sequence of HTML pages, each collecting data relative to one authentica-
tion factor.Finally this module handles the authentication process by performing the CAM2ML
protocol with the authentication logic layer.The following listing shows the JSP code required
to integrate CAM2 authentication on a web page.

<%@page import="CAM2. Uni fo rmFron tend . W e b A u t h e n t i c a t i o n . S e s s i o n "%>

S e s s i o n s = S e s s i o n . g e t S e s s i o n (s e s s i o n) ;
i f (s == n u l l)

s= S e s s i o n . c r e a t e S e s s i o n (s e s s i o n ,
" h t t p s : / / d i164 . d i . f c t . u n l . p t / CAM2SecureClip / i n d e x . j s p " ,
" h t t p s : / / d i164 . d i . f c t . u n l . p t / WEBAuthent ica t ion / i n d e x . j s p ") ;

Cookie c =s . v a l i d a t e S e s s i o n (r e q u e s t , " l e v e l 1 ") ;
i f (c != n u l l)

r e s p o n s e . addCookie (c) ;
e l s e

s . g e t A u t h e n t i c a t i o n (r e q u e s t , " l e v e l 1 ")
%>

The Session object, discussed on the last chapter, manages the authenticated session. For
each new access to the website, a new Session object is created with information about the
CAM2 IDP and the current application identifier. After assuring that a Session already exists,
the web page verifies if the request caries any valid cookie or if the request contains any CAM2
credential (redirected from Web authentication integration website). If none of these cases suc-
ceed, the authentication process is started.

81

5.3.2 Web services integration authentication modules

SOAP and REST were used as architectures for the providence of web services as CAM2
authentication integration mechanisms. They provide the operations for authentication and pol-
icy retrieval.

The SOAP based service was developed using the API implementing JAX-RPC specifica-
tion included on Java 1.5.

The RESTful service relies on Jersey [31], which is the reference implementation for JAX-
RS. JAX-RS is a specification describing the integration and development of RESTfull web
services in Java. Jersey’s API is not available on Java 1.6 however it is open source and is
available at jersey’s web page 2.

5.3.3 Kerberos integration authentication module

Kerberos integration module provides interfaces both for the authentication server and for
the ticket granting server. Communication is implemented directly over TCP Sockets.

Despite the fact of Kerberos V5 supporting multiple cipher suites, the current implementa-
tion only uses chain based cipher Triple DES with PKCS7 padding for data encryption.

5.4 Authentication modules

Due to its extensibility capabilities, CAM2 framework can integrate all types of authentica-
tion modules for multi-factor and multi-modal authentication. The current implementation of
CAM2 platform considers some authentication modules for demonstration purposes. They rep-
resent the classic and ubiquitous authentication factors. The following table shows the relation
between the implemented modules and the existent authentication factors:

2https://jersey.dev.java.net/

82

Something the

user knows

Something the

user has

Something the

user is or does

Something the

user sees

Passwords X

Hardware
Security token

X

Bluetooth
OTP

X X

Visual based X

Gesture
Identification

X

• Static passwords -The validation of static passwords is granted indirectly by the default
LDAP module provided by the single sign-on base system (The current implementation
uses OpenSSO). For this authentication module any additional development was needed
on the single sign-on side, therefore showing that the usage of CAM2 middleware with the
current authentication platforms is easy and reuses their functionalities in a transparent
manner.

• Hardware security tokens - For the simulation of hardware security tokens, the current
implementation relies on MobileOTP [39], an open source project providing a two-factor
authentication solution for java capable mobile devices like phones or PDAs. The Mo-
bileOTP application requires a PIN code and generates a time synchronized onetime pass-
word, which is displayed on the device. Then, the generated code can be introduced on
a HTML form, or reused by other mobile application. This type of security tokens are
completely disconnected from any network or application.

• Bluetooth onetime passwords - Additionally to hardware tokens, the current implementa-
tion also provides an application connected OTP generator. It is also a mobile application
that we have specially developed for this purpose. The communication with applications
is made through Bluetooth as described on 4.2.3.4. Other modules, such as the visual
based authentication module and the gesture identification module, may reuse it to send
information to CAM2 platform.

83

Figure 5.3 Bluetooth OTP authentication

Figure 5.3 illustrates the authentication process using the Bluetooth OTP mobile applica-
tion. The user starts by being asked for sending a Bluetooth onetime password, then he
uses the mobile application installed on his device and the generated code is sent through
Bluetooth to the authentication server, which finally validates it.

• Visual based authentication - Data matrices were used to implement a visual based au-
thentication module. We have developed a mobile application that generates a onetime
password which can either be sent through trough the Internet (UMTS, GSM or WI-FI)
or using the Bluetooth onetime password module. For acquisition and processing of the
data matrices, the mobile application relies on QuickMark[48], which is a multi-device
mobile bar code reader that provides a simple API for application reutilization. As can
be seen at the Figure 5.4, users start by taking a picture of a Data Matrix. Relying on
QuickMark, the mobile application processes the image and generates a onetime pass-
word, which finally is inserted using the authentication server interface. Notice that this
OTP can also be sent using Bluetooth OTP.

• Gesture identification - Authentication based on some gesture the user makes is assured by
the Gesture Identification module. It is installed as a mobile application and is reused by

84

Figure 5.4 Visual based authentication

other applications wanting to use CAM2 authentication. The application has two blocks:
a Python component and a J2ME component. The first uses the Symbian OS primitives
to retrieve information about the state of the sensors available on the device. For this
implementation, we have only used the accelerometer sensor, which provides information
about the positioning of the device. The second provides the authentication service to
other applications. When gestural authentication is requested by some application, the
Gesture Identification module collects the values provided by the accelerometer and sends
it to CAM2 Authentication Platform, which validates the authentication proof and returns
the decision to the device. Figure 5.5 shows this interaction.

Figure 5.5 Gesture Identification

85

5.5 Validators

5.5.1 CAM2 Secure CLIP

As proof of concept, a web page supporting CAM2 authentication was implemented. It is
inspired on CLIP, a web application for management of courses and students used by Univer-
sidade Nova de Lisboa3. This application is interesting, since it is accessed by all students,
teachers and employees which access the system from multiple contexts. On the other hand,
Clip supports multiple operations which require different assurance levels.

However, CLIP only uses a static password for authentication purposes. The implementa-
tion of the version of clip website relies on CAM2 web authentication integration module to
add context-aware multi-factor and multi-modal authentication. Figure 6.1 shows an example
of the authentication process using CAM2 authentication platform.

1. The user accesses CAM2 Secure CLIP website and chooses CAM2 system for authenti-
cation by clicking the link for that purpose.

2. the page is redirected to the web authentication integration website which evaluates the
context attributes, the required assurance level and the application identifier to choose the
appropriate policy. For that example and required assurance level (subject accessing the
website using a laptop), only a password is requested.

3. The users browser is redirected once more to CAM2 Secure Clip web page, which con-
cede access to the user.

4. The user sees the index page and try to access the information relative to student 27169.
This operation requires other assurance level, then the authentication process starts again.
However this time a password is not enough, therefore a Bluetooth token is requested.

5. Finally the user gets access to the information about the student.

3https://clip.unl.pt

86

The conception of such application demonstrates that it is possible to easily adapt current work-
ing websites to the usage of context-aware multi-factor and multi-modal authentication. This
was accomplished without changing the structure of the web page. This adaptation is simply
made by assigning assurance level identifiers to the operations and registering authentication
policies on CAM2 authentication platform.

Figure 5.6 Example of an authentication event on CAM2 version of CLIP system

87

5.5.2 CAM2 Mobile payment application

Relying on REST authentication integration module, mobile payment application is a J2ME
application including context-aware multi-factor multi-modal authentication.

The purpose of the application is very simple: provide an interface for electronic service
payment given an entity, a service reference and a money amount. Transactions must be submit-
ted through the Bank service interface, available as a REST web services secured by SSL/TLS.
Before the submission of the transaction, the application must get authentication credentials
from a CAM2 authentication platform. For the cell phone using during the implementation
(Nokia 5800 Xpress Music), the application supports passwords, one-time-passwords, Blue-
tooth tokens, movement identification, and visual tokens as authentication modules.

The same application may be accessed through a web interface that also uses CAM2 au-
thentication. See Figure 6.2.

Figure 5.7 Bank application WEB interface

5.5.3 CAM2 Kerberos

A simple Swing based client application was developed to test the three variants of Kerberos
protocol provided by CAM2 authentication platform. After successfully getting valid creden-
tials, the client connects to a Time server, which returns the current time. Figure 6.3 illustrates
a snapshot of the referred application.

88

Figure 5.8 Kerberos client GUI

5.5.4 CAM2 Administration interface

The Web interface uses the administration web service to obtain results and present them to
the user through a web page. It uses CAM2 session object to manage the navigation session
and relies on CAM2 Web authentication integration module to validate the identity of users
wanting to view, edit or submit new policies. Figure 6.4 shows the list of policies managed by
user admin.

Figure 5.9 CAM2 Web Administration console

6 . Performance evaluations

CAM2 authentication platform acts like a middleware over common single sign-on authen-
tication systems, extending their functionalities to support flexible context-aware multi-factor
and multi-modal authentication. The additional logic introduces some overhead in terms of
exchanged messages and processing time. This section analyzes the performance of CAM2
authentication processes comparing it with OpenSSO Enterprise 8.0. The aim of this analysis
is to evaluate the impact of the middleware in multiple scenarios. In order to be possible to
compare results between both systems, the authentication process simulated during the tests
only considers the utilization of a password as authentication proof. OpenSSO was chosen as
comparison base since it is a stable and production ready implementation of a SSO system.

This section starts by presenting the comparison between benchmarks tests performed di-
rectly to an OpenSSO instance and over the same system extended by CAM2 platform. Finally
a discussion is presented, providing considerations about the relations between the results ob-
tained under two distinct environments, in a local area network and in a LAN

6.1 Workbench

Large organizations must handle multiple applications used by many people, demanding heavy
request processing capacity from the infrastructure. On the following benchmarks we have tried
to simulate those environments by installing CAM2 platform on a dedicated server, which ca-
pacity is comparable to the machines available on typical data centers. Table 7.1 and Table 7.2
show both software and hardware specifications.

Host Hardware
Model Info HP ProLiant Rack Server

CPU Dual Core Intel Xeon @ 2.5 GHz 8 MB Cache
RAM Memory 16 GB

Network 4 Ethernet interfaces @ 1Gbps / 100 Mbps
Virtual Environment

CPU Dual Core Intel Xeon @ 2.5 GHz 8 MB Cache
RAM Memory 2 GB

Table 6.1 Hardware specification

89

90

Host Software
Operating System VMware v. 4.0 ESXI v.4.

Guest Software
Linux version 2.6.26-2-amd64

Operating System Debian 2.6.26-19lenny1
(Debian 4.1.2-25)

Glassfish - Sun Java System
Application Server Application Server 9.1_02

(build b04-fcs)
Database eXist-1.2.6-rev9165
SSO base OpenSSO Enterprise 8.0 Build 6

Table 6.2 Software specification

As we can deduce from Table 6.1, the machine used for performance tests is a rack server
used for virtualization. The virtual machine hypervisor acts directly over the hardware perform-
ing bare metal virtualization. CAM2 was installed on a virtual server, while the single sign-on
base is assured by an instance of OpenSSO and policy storage is handled by eXist database.

6.2 Benchmarks

The goal of these benchmarks is to evaluate the performance impact of CAM2ML protocol and
CAM2 platform over current authentication systems and standards. For that, we have exposed
the OpenSSO instance to load and stress tests, both directly and using CAM2 platform. The
tests consist on performing multiple authentication requests and measuring the latency until
response is obtained. The direct test over OpenSSO considers the sending of a user/password
combination. For the test using CAM2 platform, we have defined a CAM2ML authentication
policy that requests a password given a specified context and required assurance level.

In order to perform latency measurements, we have used JMeter, a tool developed under
the Apache Jakarta project to collect and analyze the impact of load and stress over WEB
applications. The following charts were obtained with JMeter from a client computer connected
to the glassfish application server considering two scenarios:

• Local tests - where the client computer was on the same network that the server.

• Internet tests - where the client computer relied on the Internet to connect to the server.

91

For both types of tests we have measured latency for 1, 50 and 100 concurrent clients. For later
evaluation of the platform behavior, a comparison factor was established between the average
latencies measured from the two systems. Let k be the ratio between CAM2 platform and
OpenSSO latencies:

k = LOpenSSO
LCAM2

Where LOpenSSO is the average process latency obtained with OpenSSO and LCAM2 the aver-
age process latency measured with CAM2 authentication platform. When K takes values near
to 1 it means that the two systems have similar performance behaviors.

92

6.3 Local tests

Figure 6.1 OpenSSO load test with 1 client

Figure 6.2 CAM2 load test with 1 client

93

Figure 7.1 and Figure 7.2 shows the results obtained for the latency between CAM2 and OpenSSO
platforms using one client making multiple sequential requests. Here, we can conclude that au-
thentication using CAM2 platform is 3.5 times slower than when OpenSSO is used as an unique
platform. Nevertheless, the average latency using CAM2 is only 70 milliseconds.

Benchmark comparison factor: k = 0,29

Figure 6.3 OpenSSO load test with 50 concurrent clients

The second test is illustrated at Figure 7.3 and Figure 7.4. It introduces concurrency by us-
ing 50 clients at the same time. The latency increases both for CAM2 platform and OpenSSO.
Despite the values for CAM2 platform being close to 500 milliseconds, the value of k remains
nearly the same (5% greater)

Benchmark comparison factor: k = 0,34

94

Figure 6.4 CAM2 load test with 50 concurrent clients

Figure 6.6 CAM2 load test with 100 concurrent clients

Figure 7.5 and Figure 7.6 shows that for 100 concurrent clients, the server is exposed to a
great amount of load and both platforms have a similar behavior.

95

Figure 6.5 OpenSSO load test with 100 concurrent clients

Benchmark comparison factor: k = 0,94

Figure 6.7 CAM2 latency distribution

96

Finally on Figure 7.7 the charge distribution among CAM2 authentication platform compo-
nents is illustrated . Approximately 50% of the time consumed by the authentication process is
due to authentication delegation. For this request, CAM2 platform only evaluates one password
as authentication proof, relying on OpenSSO. Recall that the delegation process is parallelized,
therefore, if we consider more than one authentication module, the total time consumed by
delegation is bounded to the slowest authentication module. Querying the policy database is
the second task consuming more time (16%). Both the context evaluation and the signature
of authentication assertions consume 8% of the time while the time used for communications
between the client and the authentication platform is below 6% of the total consumed time.

97

6.4 Internet tests

Figure 6.8 OpenSSO load test with 1 client

Figure 6.9 CAM2 load test with 1 client

98

The results illustrated at Figure 7.8 and Figure 7.9 show the impact of the introduction of com-
munication latency, after connecting clients and servers through the Internet. Here we can see
that the latency measured between requests and answers for CAM2 platform is only 1.3 times
slower than with OpenSSO.

Benchmark comparison factor: k = 0,73

Figure 6.10 OpenSSO load test with 50 concurrent clients

On Figures 7.10 and 7.11 50 concurrent clients communicate through Internet. The latency
increases both for CAM2 platform and OpenSSO. When compared with the same benchmark
configuration on a local network, the measures obtained on this test are significantly more ap-
proximated than the first.

Benchmark comparison factor: k = 0,49

99

Figure 6.11 CAM2 load test with 50 concurrent clients

Figure 6.12 OpenSSO load test with 100 concurrent clients

100

Figure 6.13 CAM2 load test with 100 concurrent clients

On Figure 7.12 and 7.13 with 100 concurrent clients, the measures are identical to the first
test on these conditions on a local network.

Benchmark comparison factor: k = 0,84

Finally on Figure 7.14 the impact of communication latency is well noticed on the distribution
chart, where 57% of the time consumed by all the process is dedicated to the communication
between the client ant the application through web services (policy request , policy response,
authentication request, authentication response). Authentication delegation, that was the most
consuming task on the first benchmark, only consumes 28% of the overall time for these tests.
Finally the overhead imposed by the CAM2 authentication platform is reduced to 15%.

101

Figure 6.14 CAM2 latency distribution

6.5 Results overview

The results obtained on each benchmark are summarized on Table 7.3. As we can see, the
values of k are closer to 1 for the measures taken using the Internet. When load is increased,
the latency introduced by CAM2 platform processing rises slowly, making k even closer to 1.
When submitted to stress conditions, both systems have the same behavior with k taking values
near to 1. Considering the usage over the Internet CAM2 Platform increases 38% of latency,
while in stress conditions with multiple clients only introducing 6%.

1 client 50 clients 100 clients
Local Network

OpenSSO (ms) 20 171 843
CAM2 (ms) 70 510 896
k 0,29 0,34 0,94

Internet
OpenSSO (ms) 84 249 933
CAM2 (ms) 115 502 1054
k 0,73 0,49 0,88

Table 6.3 Summary of results

102

Therefore we can conclude that typical conditions found on the Internet, such as high la-
tencies and multi-access by multiple clients, reduce the performance gap between the authen-
tication systems as we know today and intelligent middleware such as CAM2 platform. These
conditions are also typical to the emergent architectures that are being implemented today, based
on distributed components placed on the cloud as in SOA based architectures and cloud com-
puting.

7 . Requirement validations

Throughout the document, the following requirements were proposed: multi-factor and
multi-modal authentication, expression and performing of dynamic context-aware proof re-
quirement, extensibility for new authentication models, generic usage and performance. In
order to address those requirements, CAM2 framework was designed, comprising new context-
aware dynamic interaction models. To validate the model described by the framework, a CAM2
compliant authentication system was implemented and used to collect experimental results. The
next paragraphs will discuss the objectives that were achieved by this dissertation.

Expression of dynamic context aware authentication processes

The definition of a context aware multi-factor and multi-modal authentication markup lan-
guage address this issue. CAM2ML is a markup language for the definition of authentication
processes. It support SAML abstractions by providing two types of statements, policy and
authentication assertions. Policy assertions are used to state information about the authentica-
tion methods required for a context given a required assurance level. Authentication assertions
contain statements about authentication events handled by a CAM2 compliant authentication
platform. CAM2ML protocol, when applied to the basic interaction model provided by CAM2
specification, assures uniform context aware authentication between a circle of trust with ser-
vice providers, clients and CAM2 identity providers.

Multi-factor and multi-modal authentication

Multiple authentication modules were developed in order to prove the functionalities of
CAM2 platform, namely for the validation of LDAP passwords, time-synchronized onetime
passwords, Bluetooth tokens, users gestures and visual proofs. Passwords and one-time-passwords
represent the classic authentication factors(1st and 2nd factors). The validation of Bluetooth to-
kens, visual proofs and gesture pattern recognition represent the new and emergent ubiquitous
factors. To some extent, the Bluetooth tokens can be used to implement localization aware
authentication, since base stations have a limited range. The recognition of gestures and the
utilization of visual proofs symbolize alternatives, on one hand they are convenient to users and
on the other they allow to extract data with more entropy. As explained on the early chapters

103

104

the combination of multiple factors contributes to the increasing of the assurance level of au-
thentication processes.

Dynamic and context-aware proof requirement

CAM2 authentication platform supports dynamic evaluation of authentication contexts. Au-
thentication policies map context attributes, and assurance level identifiers, in authentication
modes. Relying on those attributes, CAM2 authentication platform dynamically retrieves the
appropriate policies from the database for each request. Due to dynamic context evaluation,
any change to an authentication policy is instantly assumed by the platform, without having to
change its structure or even causing any downtime.

Extensibility for new authentication models

CAM2ML authentication policies, which are stored on the CAM2 authentication platform,
contain a combination of generic identifiers for the authentication modes, such as Hardware
security tokens, static passwords, Bluetooth tokens, Gesture identification or Data Matrix spon-
taneous authentication. The platform is completely independent from these identifiers, relying
on them only to dynamically load the appropriate authentication module. This architecture al-
lows the addition and reutilization of authentication modules without interfering with running
instances of the authentication platform.

The implementation of a extended version of Kerberos V5 and the adaptation of a WEB
Post/Redirect protocol also have shown that is possible to adapt CAM2 current authentication
protocols. CAM2ML is as flexible language that can be expressed on multiple ways, allowing
the same platform to interact with multiple systems, requiring minimal adaptations.

Generic usage

CAM2 framework must deal with multiple types of client applications, base single sign-on
systems, authentication modes and context attributes. The generality of context attributes and
authentication modes is dealt by the extensibility mechanisms provided by the authentication
platform.

Generality applied to client applications is supported by the Client Integration Tier services
defined by CAM2 framework. Various types of applications may be uniformly integrated with

105

CAM2 platform with a minimum effort amount. During this dissertation and for validation pur-
poses, three application domains were considered: Web applications, through the development
of a prototype for the integration of CLIP Web application, mobile applications through the
implementation of a simple application for bank account management, and finally a Kerberized
application, representing that is possible to integrate CAM2 authentication in a well known ans
vastly used protocol, mitigating some of its problems.

Generality applied to base single sign-on systems is addressed by relying on authentica-
tion delegators as connector modules, which hide the integration details with the base system
from the CAM2 authentication logic. In the current implementation, the communication with
OpenSSO is made through OpenSSO Client SDK, however it could easily be adapted to SAML
including the authentication platform on a federation circle of trust.

Performance

Performance is a critical issue on centric authentication systems, such as single sign-on
platforms ,since there is the need of managing requests from multiple clients and from multiple
system at one point. Typically, these systems are available through the Internet and then must be
available 24 hours per day, handling requests from every part of the globe. Data centers have an
important role on this field, assuring availability to systems like the one we propose. However,
due to the number of accesses expected, performance must be taken in consideration. If the
overhead introduced by CAM2 middleware was large enough to cause performance impact, the
model would not be viable.

The performance tests executed on this chapter had shown that on local environments, and
comparing with OpenSSO Enterprise 8.0, the CAM2 platform doubles the authentication pro-
cess time. Nevertheless, the latency added to the base single sign-on still is reduced and fairly
below one second. The same tests, now using the Internet to connect clients to CAM2 plat-
form, had shown that the process latency imposed by the middleware is much smaller than
the time spent due to communication latency, then proving that, when used on the Internet,
CAM2 authentication processes overall latency (communication and processing) is bound to
the communication latency noticed on the Internet, minimizing the impact of the introduction
of context-aware authentication mechanisms.

8 . Conclusions and future work

Nowadays, centrally managed authentication architectures present some limitations when
applied to ubiquitous, heterogeneous or large scale environments. Current authentication sys-
tems use specific authentication factors. To overcome the identified drawbacks associated to
these factors, the implementation of multi-factor authentication platforms is an interesting di-
rection. These platforms present interesting advantages such as:

• mitigation of drawbacks of individual authentication factors combining them as comple-
mentary authentication proofs;

• flexibility to use the combination of factors according to the specific access control needs
of different services and applications.

• centralized management promoting the coexistence of different authentication informa-
tion bases, when different factors are combined.

• support for different authentication processes according with the required security cri-
teria, balanced with other requirements such as high availability, convenience princi-
ples, operational costs, functionality specialization, risk or dynamic subjects profiling
and context-aware conditions

A context-aware authentication platform can be implemented leveraging the base functions that
can be provided by state-of-art single sign-on systems.

Typical single sign-on solutions maintain rigid authentication methods, without taking in
consideration multiple contexts from where the authentication can be invoked. Authentication
involving different devices, channels and usage interactions provides different assurance levels
even for the same principals and operations. Setting a fixed combination of authentication
factors is not the best solution. For instance, a small number of factors may be insufficient to
grant the required assurance levels in some situations, while uniquely requiring a large amount
of authentication proofs is not convenient for users and brings costs and performance issues
to service providers. Systems like OpenSSO and ESOE provide extension mechanisms for the
integration of multiple authentication modes, however they don’t supply dynamic adaptation of
authentication factors to mutable contexts and assurance levels.

107

108

This dissertation has addressed the limitations presented above through the specification
of a context aware multi-factor and multi-modal authentication framework that can sit as an
extensible middleware atop of a SSO base solution. The contribution provides an uniform and
flexible authentication platform for multi-factor authentication requirements and context-aware
authentication modes. The platform and its abstractions can be used by different ubiquitous
applications and services.

The proposed platform follows a context-aware authentication model based on authentica-
tion policies expressed by a defined context-aware multi-factor and multi-modal markup lan-
guage - CAM2ML - as well as a new interaction model specially tailored for the identified
requirements. Authentication processes involving those contexts, factor combinations and as-
surance levels can be defined with the expressiveness provided by CAM2ML. The protocol
defined by CAM2ML also enables interoperability between clients, service providers and iden-
tity providers , in the same way SAML already does to currently available authentication sys-
tems using federation mechanisms. However, SAML do not support extension mechanisms for
mapping authentication contexts and factors given different assurance levels, then limiting their
interaction models to static combinations of authentication proofs.

The implementation of the platform demonstrates that it is possible to develop dynamic
context-aware multi-factor and multi-modal authentication systems suitable for ubiquitous re-
quirements and flexible enough to support the addition of new and emergent authentication
factor without interfering with the system runtime.

The platform implementation was validated under three metrics: generality to ubiquitous
support, context-aware multi-factor combination and performance evaluation.

• Generality and ubiquitous support was tested and validated through the integration of
CAM2 concepts on Web applications, mobile applications and by the creation of a CAM2
version of Kerberos protocol.

• Dynamic and context-aware multi-factor combination of modes were achieved and val-
idated by the implementation of five authentication modules, representing classic and
ubiquitous authentication factors.

• Performance was validated by testing system load and authentication latency in two dis-
tinct environments: a Local Area Network environment and Internet environment. The

109

evaluation was compared with the performance metrics obtained with the OpenSSO 8.0
Enterprise in the same conditions. The overhead introduced by CAM2 middleware dou-
bles the latency of a single authentication process in OpenSSO. However the latency
introduced by the Internet attenuates the overhead, only increasing latencies from 6%
to 36%, depending on the load conditions. These results demonstrate that the proposed
architecture does not compromise the the overall latency seen by end users.

According with the contributions proposed on the beginning of this dissertation, the objectives
were achieved, demonstrating that it is possible and viable to develop flexible context-aware
multi-factor and multi-modal authentication systems, leveraging SSO systems to the challenges,
requirements and opportunities of ubiquitous computing devices and applications.

8.1 Future work

The work done around CAM2 elements is not finished and may be continued through mul-
tiple directions.

• The development and inclusion of new authentication modes is an endless process. Op-
portunities for the creation of new authentication factors, and exploration of the existing
ones, are constantly emerging due to the fast growth of ubiquitous computation. Addi-
tionally to the authentication modes implemented during this dissertation, some others
where thought, namely the recognition of fingertips, faces, voices and EEG patterns and
the addition of spontaneous authentication interaction models.

• SAML is increasingly being adopted as the standard framework for single sign-on authen-
tication when there is the need of supporting interoperability through federation. Besides
the fact that CAM2ML supports some SAML abstractions, the authentication platforms
relying on it can not be included on the circle of trust defined by SAML specification.
Two direction can be taken from here. In a first approach, CAM2ML objects could be
translated to SAML assertions and SAML assertions to CAM2ML objects. For that it
only would be necessary to create another integration module on the client integration

110

tier of CAM2 authentication platform. All the remaining process would be straight for-
ward. An alternative would be extending the SAML specification to support the concepts
introduced by this dissertation, substituting CAM2ML.

• Registering subjects and their authentication data is not considered by CAM2 specifi-
cation. Instead, it is assumed that the enrollment process is previously and coherently
performed on each base single sign-on system in order to perform authentication dele-
gation. The creation of a single-enrollment process could be integrated including users
devices information and features. That way identity management could also be made
centrally, reducing the complexity of maintaining the same data in multiple bases.

• Despite of being a simple markup language CAM2ML may not be straightforward for
users with low technical capacities. Managing policies may then become an error-prone
process. To overcome this problem a graphical programing language could be developed
on top of CAM2ML, simplifying the understanding and changeability of authentication
policies.

• CAM2ML does not have explicit support for the expression of identities representing
roles. In order to use the concepts proposed by CAM2 on systems relying on RBAC
mechanisms, it would be necessary to introduce the required extensions to CAM2ML.

• Subjects and their authentication data are intrinsically connected. This can result in pri-
vacy issues if we consider that CAM2ML assertions can be used by service providers to
delegate authentication over multiple sub-systems. The work described on [10] presents
a way of using combinations of virtual identifiers and use them on cross-layer single
sign-on. CAM2 interaction model and CAM2ML could be extended considering these
concepts.

CAM2 is far away of reaching its maturity. Multiple aspects related to ubiquitous computation
are emerging, bringing new challenges and opportunities for the enrichment of CAM2 frame-
work and authentication systems in general. The development of this work is continuous and
can always be refined to adapt to the requirements of the computational world.

Nomenclature

ACL Access Control List

API Application Programming Interface

AS Authentication Server

CAM2 Context-Aware Multi-Factor Multi-Modal Authentication Framework

CAM2ML Context-Aware Multi-Factor and Multi-Modal Markup Language

COM Component Object Model

CORBA Common Object Request Broker Architecture

DAC Discretionary Acess Control

DSA Digital Signature Algorithm

EAR Enterprise Archive. A file format used by J2EE

EEG Electroencephalography

EJB Enterprise Java Beans

FAR False Accepting Rate

FMR False Matching Rate

FNMR False Non-Matching Rate

FRR False Rejection Rate

GPS Global Positioning System (GPS)

HTTP HyperText Transfer Protocol

HTTP POST A type of HTTP request message.

HTTPS Hypertext Transfer Protocol Secure
111

112

IdP Identity Provider

J2EE Java Platform Enterprise Edition

J2ME Java Plataform Micro Edition

J2SE Java 2 Standard Edition

Java RMI Java Remote Method Invocation API

JSP JavaServer Pages

JSR-82 Java APIs for Bluetooth. Is a Java ME specification for APIs that allow Java midlets to
use Bluetooth on supporting devices

LAN Local Area Network

MAC Mandatory Access Control

OTP One Time Password

PDA Personal Digital Assistant. It is also known as a palmtop computer

PIN Personal Identification Number

PKI Public Key Infrasctructure

RBAC Role Based Access Control

RESTful Representational state transfer

RF Radio Frequency radiation. Is a subset of electromagnetic radiation with a wavelength
of 100km to 1mm

RFID Radio-frequency identification

SAML Security Assertion Markup Language

SDK Software Development Kit

SHA1 The SHA hash functions are a set of cryptographic hash functions designed by the Na-
tional Security Agency (NSA)

113

SIM Subscriber Identity Module. It securely stores the service-subscriber key (IMSI) used to
identify a subscriber on mobile telephony devices (such as mobile phones and comput-
ers)

SOAP Simple Object Access Protocol

SP Service Provider

SPEP Service Policy Enforcer Points. Used By Enterprise Sign-on Engine as authentication
agents.

SPI Service Program Interface

SSL Secure Sockets Layer

SSO Single Sign-On

TCO Total Cost of Ownership

TGS Ticket Granting Server

TLS Transport Layer Security

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications System

URL Universal Resource Locator

USB Universal Serial Bus

WAR Web application Archive. A file format used by J2EE

WI-FI Is a term for certain types of wireless local area network (WLAN) that use specifications
in the 802.11 family

X.509 An ITU-T standard for a public key infrastructure (PKI) for single sign-on (SSO) and
Privilege Management Infrastructure (PMI)

XML Extensible Markup Language

114

XPath XML Path Language

XQuery A query and functional programming language that is designed to query collections of
XML data

XRDS Extensible Resource Descriptor Sequence

XRI Extensible Resource Identifier

Bibliography

[1] M. Abadi. Access control based on execution history. In Proceedings of the 10th Annual

Network and Distributed System Security Symposium, 2003.

[2] C Adams, N. Edwards, P. Hallam-Baker, J Hodges, C Knouse, C. McLaren,
P. Mishra, R. Morgan, E. Maler, T. Moses, D Orchard, I. Reid, M. Erdos,
J. Oblix, C. Oblix, C. Netegrity, P. Netegrity, T. Entrust, and D. Bea. Asser-
tions and protocol for the oasis security assertion markup language (saml), 2001.
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf.

[3] Liberty Aliance. Liberty id-ff architecture overview, December 2008.
http://www.projectliberty.org/.

[4] J. Anderson and R Anderson. Security Engineering: A Guide to Building Dependable

Distributed Systems. Wiley, 2001.

[5] P. Bernardi, F. Gandino, B. Montrucchio, M. Rebaudengo, and E. Sanchez. Design of an
uhf rfid transponder for secure authentication. In GLSVLSI ’07: Proceedings of the 17th

ACM Great Lakes symposium on VLSI, 2007.

[6] G Borriello. A survey and taxonomy of location systems for ubiquitous computing. Tech-
nical report, IEEE Computer, 2001.

[7] M. Burmester and J. Munilla. A Flyweight RFID Authentication Protocol. In Workshop

on RFID Security, 2009.

[8] Bruce Christianson, Bruno Crispo, James A. Malcolm, and Michael Roe, editors. Secu-

rity Protocols, 13th International Workshop, Cambridge, UK, April 20-22, 2005, Revised

Selected Papers. Springer, 2007.

[9] G. Coulouris and J Dollimore. Distributed systems: concepts and design. Addison-Wesley
Longman Publishing Co., Inc., 1988.

[10] Cristiano Andre da Costa, Adenauer Correa Yamin, and Claudio Fernando Resin Geyer.
Toward a general software infrastructure for ubiquitous computing. IEEE Pervasive Com-

puting, 2008.
115

116

[11] D Denning and P MacDoran. Location-based authentication: grounding cyberspace for
better security. Internet besieged: countering cyberspace scofflaws, 1998.

[12] P. Doyle, M. Deegan, C. O’Driscoll, M. Gleeson, and B. Gillespie. Ubiquitous desktops
with multi-factor authentication. In ICDIM. IEEE, 2008.

[13] A. Durresi, V. Paruchuri, M Durresi, and L. Barolli. Secure spatial authentication using
cell phones. In ARES ’07: Proceedings of the The Second International Conference on

Availability, Reliability and Security, pages 543–549. IEEE Computer Society, 2007.

[14] M. Golfarelli, D. Maio, and D. Malton. On the error-reject trade-off in biometric verifica-
tion systems. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1997.

[15] Li Gong. Inside Java 2 platform security architecture, API design, and implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[16] The Open Knowledge Initiative. O.k.i. architectural concepts, October 2008.
http://prdownloads.sourceforge.net/okiproject/OkiArchitecturalConcepts.pdf?download.

[17] A. Jain and A. Ross. Multibiometric systems. Communication ACM, 2004.

[18] A. K. Jain, A. Ross, and S. Prabhakar. An introduction to biometric recognition. Circuits

and Systems for Video Technology, IEEE Transactions, 2004.

[19] Anil K. Jain and Arun Ross. Multimodal biometrics: An overview. In Proceedings of the

12th European Signal Processing Conference. ACM, 2004.

[20] Ed. K. Zeilenga. Lightweight directory access protocol (ldap):technical specification road
map. RFC Editor, 2006.

[21] J Kohl, B Neuman, and Y. Theodore. The evolution of the kerberos authentication service.
In EurOpen Conference. IEEE Computer Society Press, 1994.

[22] J. Kohl and C. Neuman. The kerberos network authentication service (v5). RFC Editor,
1993.

[23] T. Kwon, S. Park, and S. Shin. Multi-modal authentication for ubiquitous computing
environments. In HCI (6), pages 113–121, 2007.

117

[24] C Lai, L. Gong, L. Koved, A. Nadalin, and Schemers R. User authentication and authoriza-
tion in the java(tm) platform. In ACSAC ’99: Proceedings of the 15th Annual Computer

Security Applications Conference.

[25] S Marcel and J Millan. Person authentication using brainwaves (eeg) and maximum a
posteriori model adaptation. IEEE Trans. Pattern Anal. Mach. Intell, 2007.

[26] R. Mayrhofer. The candidate key protocol for generating secret shared keys from similar
sensor data streams. In ESAS. Springer-Verlag, 2007.

[27] J. McCune, A. Perrig, and M. Reiter. Seeing-is-believing: Using camera phones for
human-verifiable authentication. International Journal of Security and Networks, 2005.

[28] K. McDonald. The Quick Python Book. Manning Publications Co., Greenwich, CT, USA,
1999.

[29] W Meier. exist, open source native xml database - accessed july 2009, July 2009.
http://exist.sourceforge.net/.

[30] SUN Microsystems. Glassfish community website, July 2009.
https://glassfish.dev.java.net/.

[31] SUN Microsystems. Jersey community website, July 2009.
https://jersey.dev.java.net/.

[32] SUN Microsystems. SunOpenSSO Enterprise 8.0 - TechnicalOverview. July 2009.
http://docs.sun.com/app/docs/doc/820-3740/.

[33] OASIS. extensible access control markup language, December 2008.

[34] OASIS. extensible resource identifier, DECEMBER 2008.
http://www.oasis-open.org/committees/xri.

[35] United States Government Department of Defense. Trusted Computer System Evaluation

Criteria (Orange Book). US DoD, 1985.

[36] Queensland University of Technology. Enterprise sign on engine webpage, December
2008. http://www.esoeproject.org/accessed.

118

[37] S. Perera, C. Herath, J. Ekanayake, E. Chinthaka, A. Ranabahu, D. Jayasinghe, S. Weer-
awarana, and G. Daniels. Axis2, middleware for next generation web services. Web

Services, IEEE International Conference, 2006.

[38] John Podd, Julie Bunnell, and Ron Henderson. Cost-effective computer security: Cogni-
tive and associative passwords. In OZCHI ’96: Proceedings of the 6th Australian Confer-

ence on Computer-Human Interaction (OZCHI ’96). IEEE Computer Society, 1996.

[39] Source Forge project. Mobile one time passwords.
http://motp.sourceforge.net/.

[40] ITU-T Recommendation. Osi x800 security architecture. ITU-T, 1991.

[41] D. Recordon and D. Reed. Openid 2.0: a platform for user-centric identity management.
In DIM ’06: Proceedings of the second ACM workshop on Digital identity management.
ACM, 2006.

[42] RSA. Securid, October 2008.

[43] V Samar and C Lai. Making login services independent of authentication technologies.
3rd ACM Conference on Computer and Communications Security, 1996.

[44] R Sandhu, E. Coyne, H Feinstein, and C Youman. Role-based access control models.
Computer, 1996.

[45] N. Sastry, U. Shankar, and D Wagner. Secure verification of location claims. ACM, 2003.

[46] Jörgen Scheible. Mobile phone programming for multimedia. In MULTIMEDIA ’07:

Proceedings of the 15th international conference on Multimedia. ACM, 2007.

[47] R. Shirey. Internet security glossary, version 2. RFC Editor, 2007.

[48] SimpleAct. Quickmark - a multi device bar code reader, July 2009.
http://www.quickmark.com.tw.

[49] William Stallings and Lawrie Brown. Computer Security: Principles and Practice. Pren-
tice Hall Press, 2007.

119

[50] A. Tanenbaum and M. Van Steen. Distributed Systems: Principles and Paradigms. Pren-
tice Hall, 2001.

[51] Bluecove Team. Bluecove project website, July 2009.
http://www.bluecove.org/.

[52] Andrej Volchkov. Revisiting single sign-on: A pragmatic approach in a new context. IT

Professional, 2001.

[53] Mark Weiser. The computer for the 21st century. ACM SIGMOBILE Mobile Computing

and Communications Review, 1991.

[54] K. Ying Yu and L. Yiu, S.M.and Hui. Rfid forward secure authentication protocol: Flaw
and solution. Complex, Intelligent and Software Intensive Systems, International Confer-

ence, 2009.

[55] N. Zhang, J. Chin, A. Rector, C. Goble, and Y. Li. Towards an authentication middleware
to support ubiquitous web access. In COMPSAC ’04: Proceedings of the 28th Annual

International Computer Software and Applications Conference - Workshops and Fast Ab-

stracts. IEEE Computer Society, 2004.

[56] L. Zhu and B. Tung. Public key cryptography for initial authentication in kerberos (pkinit).
RFC Editor, 2006.

[57] M Zviran and W. J. Haga. A comparison of password techniques for multilevel authenti-
cation mechanisms. The Computer Journal, 1993.

A . CAM2ML XML Schema

A.1 Assertion.xsd

<? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
< xs : schema x m l n s : x s =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema"

xmlns=" h t t p : / /CAM2ML. d i . f c t . u n l . p t / B a s i c "
t a r g e t N a m e s p a c e =" h t t p : / /CAM2ML. d i . f c t . u n l . p t / B a s i c "
e l e m e n t F o r m D e f a u l t =" q u a l i f i e d "

>
< x s : i n c l u d e schemaLoca t ion =" P r i n c i p a l . xsd " / >
< x s : i n c l u d e schemaLoca t ion =" P o l i c y . xsd " / >

< x s : e l e m e n t name=" a s s e r t i o n ">
< xs :complexType >

< x s : s e q u e n c e >
< x s : e l e m e n t r e f =" i s s u e r " maxOccurs=" 1 " minOccurs=" 1 " / >
< x s : e l e m e n t name=" a p p l i c a t i o n " t y p e =" x s : s t r i n g " minOccurs=" 1 " maxOccurs=" 1 " / >
< x s : e l e m e n t name=" l e v e l O f A s s u r a n c e " t y p e =" x s : s t r i n g " minOccurs=" 1 " maxOccurs=" 1 " / >

< x s : c h o i c e >
< x s : e l e m e n t r e f =" p o l i c y _ s t a t e m e n t " / >
< x s : e l e m e n t r e f =" a u t h e n t i c a t i o n _ s t a t e m e n t " / >

< / x s : c h o i c e >
< / x s : s e q u e n c e >
< x s : a t t r i b u t e name=" t y p e " t y p e =" a s s e r t i o n _ t y p e " use =" r e q u i r e d " / >
< x s : a t t r i b u t e name=" i d " t y p e =" a s s e r t i o n _ i d _ t y p e " use =" r e q u i r e d " / >

< / xs :complexType >
< / x s : e l e m e n t >

< x s : e l e m e n t name=" a u t h e n t i c a t i o n _ s t a t e m e n t ">
< xs :complexType >

< x s : s e q u e n c e >
< x s : e l e m e n t r e f =" a u t h e n t i c a t i o n _ v a l i d i t y " minOccurs=" 1 " maxOccurs=" 1 " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >

< x s : e l e m e n t name=" p o l i c y _ s t a t e m e n t ">
< xs :complexType >

< x s : s e q u e n c e >
< x s : e l e m e n t r e f =" p o l i c y " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >

< x s : s i m p l e T y p e name=" a s s e r t i o n _ t y p e ">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : e n u m e r a t i o n v a l u e =" A u t h e n t i c a t i o n " / >
< x s : e n u m e r a t i o n v a l u e =" P o l i c y " / >

121

122

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< x s : s i m p l e T y p e name=" a s s e r t i o n _ i d _ t y p e ">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : p a t t e r n v a l u e ="ASSER−\d " / >
< / x s : r e s t r i c t i o n >

< / x s : s i m p l e T y p e >
< / xs : s chema >

A.2 Request.xsd

<?xml v e r s i o n = " 1 . 0 " e n c o d i n g ="UTF−8"?>
<xs : schema xmlns : xs =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema"

xmlns =" h t t p : / / CAM2ML. d i . f c t . u n l . p t / B a s i c "
t a r g e t N a m e s p a c e =" h t t p : / / CAM2ML. d i . f c t . u n l . p t / B a s i c "
e l e m e n t F o r m D e f a u l t =" q u a l i f i e d "

>
<xs : i n c l u d e schemaLoca t ion =" P r i n c i p a l . xsd " / >
<xs : i n c l u d e schemaLoca t ion =" C o n t e x t . xsd " / >
<xs : i n c l u d e schemaLoca t ion =" A u t h e n t i c a t i o n M o d e s . xsd " / >

<xs : e l e m e n t name=" r e q u e s t ">
<xs : complexType >

<xs : sequence >
<xs : e l e m e n t r e f =" s u b j e c t " minOccurs ="1" maxOccurs ="1" / >

<xs : e l e m e n t name=" a p p l i c a t i o n " minOccurs ="1" maxOccurs ="1" / >
<xs : e l e m e n t name=" l e v e l O f A s s u r a n c e " t y p e =" xs : s t r i n g " minOccurs ="1" maxOccurs ="1" / >
<xs : cho i ce >

<xs : e l e m e n t r e f =" p o l i c y _ r e q u e s t " / >
<xs : e l e m e n t r e f =" a u t h e n t i c a t i o n _ r e q u e s t " / >

</ xs : cho i ce >
</ xs : sequence >

</ xs : complexType >
</ xs : e lement >

<xs : e l e m e n t name=" a u t h e n t i c a t i o n _ r e q u e s t ">
<xs : complexType >

<xs : sequence >
<xs : e l e m e n t r e f =" c o n t e x t " / >
<xs : e l e m e n t r e f =" a u t h e n t i c a t i o n _ d a t a " / >

</ xs : sequence >
</ xs : complexType >

</ xs : e lement >

<xs : e l e m e n t name=" a u t h e n t i c a t i o n _ d a t a ">
<xs : complexType >

<xs : sequence >
<xs : e l e m e n t r e f =" a u t h e n t i c a t i o n _ i t e m " minOccurs ="0" maxOccurs =" unbounded " / >

123

</ xs : sequence >
</ xs : complexType >

</ xs : e lement >

<xs : e l e m e n t name=" a u t h e n t i c a t i o n _ i t e m ">
<xs : complexType >

<xs : s i m p l e C o n t e n t >
<xs : e x t e n s i o n base =" xs : s t r i n g ">

<xs : a t t r i b u t e name="mode " t y p e =" a l l _ a u t h _ m o d e s " / >
</ xs : e x t e n s i o n >
</ xs : s i m p l e C o n t e n t >

</ xs : complexType >
</ xs : e lement >

<xs : e l e m e n t name=" p o l i c y _ r e q u e s t ">
<xs : complexType >

<xs : sequence >
<xs : e l e m e n t r e f =" c o n t e x t " / >
</ xs : sequence >

</ xs : complexType >
</ xs : e lement >

</ xs : schema >

A.3 AuthenticationModes.xsd

< xs : schema x m l n s : x s =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema"
xmlns=" h t t p : / /CAM2ML. d i . f c t . u n l . p t / B a s i c "

t a r g e t N a m e s p a c e =" h t t p : / /CAM2ML. d i . f c t . u n l . p t / B a s i c "
e l e m e n t F o r m D e f a u l t =" q u a l i f i e d ">

>
< x s : e l e m e n t name=" a u t h e n t i c a t i o n _ m o d e s " >

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t r e f =" mode " maxOccurs=" unbounded " minOccurs=" 1 " / >
< / x s : s e q u e n c e >

< / xs :complexType >
< / x s : e l e m e n t >

< x s : e l e m e n t name=" mode ">
< xs :complexType >

< x s : a t t r i b u t e name=" t y p e " t y p e =" a l l _ a u t h _ m o d e s " / >
< / xs :complexType >

< / x s : e l e m e n t >

< x s : s i m p l e T y p e name=" a l l _ a u t h _ m o d e s ">
< x s : u n i o n memberTypes=" b a s i c _ s u h _ v a l u e s b a s i c _ s u i _ v a l u e s b a s i c _ s u k _ v a l u e s b a s i c _ s u m _ v a l u e s " / >

< / x s : s i m p l e T y p e >

< x s : s i m p l e T y p e name=" b a s i c _ s u k _ v a l u e s ">

124

< x s : r e s t r i c t i o n base =" x s : s t r i n g ">
< x s : e n u m e r a t i o n v a l u e ="PASSWORD" / >

< x s : e n u m e r a t i o n v a l u e =" PIN " / >
< x s : e n u m e r a t i o n v a l u e ="PASSPHRASE" / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< x s : s i m p l e T y p e name=" b a s i c _ s u h _ v a l u e s ">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : e n u m e r a t i o n v a l u e ="HW_TOKEN" / >
< x s : e n u m e r a t i o n v a l u e ="SW_TOKEN" / >
< x s : e n u m e r a t i o n v a l u e ="BT_LOC" / >
< x s : e n u m e r a t i o n v a l u e ="HW_TOKEN_WITH_SUK" / >
< x s : e n u m e r a t i o n v a l u e ="HW_TOKEN_WITH_SUH" / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< x s : s i m p l e T y p e name=" b a s i c _ s u m _ v a l u e s ">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : e n u m e r a t i o n v a l u e ="MOVEMENTS" / >
< x s : e n u m e r a t i o n v a l u e ="VISUAL_PROOF" / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< x s : s i m p l e T y p e name=" b a s i c _ s u i _ v a l u e s ">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : e n u m e r a t i o n v a l u e ="FINGERTIP" / >
< / x s : r e s t r i c t i o n >

< / x s : s i m p l e T y p e >
< / xs : s chema >

A.4 Context.xsd

<? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
< xs : schema x m l n s : x s =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema"

xmlns=" h t t p : / /CAM2ML. d i . f c t . u n l . p t / B a s i c "
t a r g e t N a m e s p a c e =" h t t p : / /CAM2ML. d i . f c t . u n l . p t / B a s i c "
e l e m e n t F o r m D e f a u l t =" q u a l i f i e d "

>

< x s : e l e m e n t name=" c o n t e x t ">
< xs :complexType >

< x s : s e q u e n c e >
< x s : e l e m e n t r e f =" t ime " minOccurs=" 0 " / >
< x s : e l e m e n t r e f =" d e v i c e " minOccurs=" 0 " / >
< x s : e l e m e n t r e f =" p r o t o c o l " minOccurs=" 0 " / >
< x s : e l e m e n t r e f =" c h a n n e l " minOccurs=" 0 " / >

125

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >

< x s : e l e m e n t name=" t ime ">
< xs :complexType >

< x s : s e q u e n c e >
< x s : c h o i c e >

< x s : e l e m e n t r e f =" i n t e r v a l " minOccurs=" 0 " maxOccurs=" unbounded " / >
< x s : e l e m e n t r e f =" v a l u e " minOccurs=" 0 " maxOccurs=" unbounded " / >

< / x s : c h o i c e >
< / x s : s e q u e n c e >

< / xs :complexType >
< / x s : e l e m e n t >

< x s : e l e m e n t name=" d e v i c e " >
< xs :complexType >

< x s : a t t r i b u t e name=" t y p e " t y p e =" b a s i c _ d e v i c e " / >
< / xs :complexType >

< / x s : e l e m e n t >

< x s : e l e m e n t name=" c h a n n e l " >
< xs :complexType >

< x s : a t t r i b u t e name=" t y p e " t y p e =" b a s i c _ c h a n n e l " / >
< / xs :complexType >

< / x s : e l e m e n t >

< x s : e l e m e n t name=" p r o t o c o l " >
< xs :complexType >

< x s : a t t r i b u t e name=" t y p e " t y p e =" b a s i c _ p r o t o c o l " / >
< / xs :complexType >

< / x s : e l e m e n t >

< x s : e l e m e n t name=" i n t e r v a l ">
< xs :complexType >

< x s : c h o i c e >
< x s : a t t r i b u t e name=" b e g i n " t y p e =" x s : t i m e " / >

< x s : a t t r i b u t e name=" end " t y p e =" x s : t i m e " / >
< x s : a t t r i b u t e name=" t ime " t y p e =" x s : t i m e " / >

< / x s : c h o i c e >
< / xs :complexType >

< / x s : e l e m e n t >

< x s : s i m p l e T y p e name=" b a s i c _ d e v i c e ">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : e n u m e r a t i o n v a l u e =" P r i v a t e Desktop Computer " / >
< x s : e n u m e r a t i o n v a l u e =" P u b l i c Desktop Computer " / >

< x s : e n u m e r a t i o n v a l u e =" P u b l i c Access P o i n t " / >
< x s : e n u m e r a t i o n v a l u e =" Laptop Computer " / >

< x s : e n u m e r a t i o n v a l u e =" C e l l Phone " / >

126

< x s : e n u m e r a t i o n v a l u e ="PDA" / >
< / x s : r e s t r i c t i o n >

< / x s : s i m p l e T y p e >

< x s : s i m p l e T y p e name=" b a s i c _ p r o t o c o l ">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : e n u m e r a t i o n v a l u e ="HTTP" / >
< x s : e n u m e r a t i o n v a l u e ="HTTP_SSL" / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< x s : s i m p l e T y p e name=" b a s i c _ c h a n n e l ">
< x s : r e s t r i c t i o n base =" x s : s t r i n g ">

< x s : e n u m e r a t i o n v a l u e =" E t h e r n e t " / >
< x s : e n u m e r a t i o n v a l u e ="WI−FI " / >
< x s : e n u m e r a t i o n v a l u e =" B l u e t o o t h " / >
< x s : e n u m e r a t i o n v a l u e ="GPRS" / >
< x s : e n u m e r a t i o n v a l u e ="UMTS" / >

< / x s : r e s t r i c t i o n >
< / x s : s i m p l e T y p e >

< / schema>

A.5 Policy.xsd

< xs : schema
x m l n s : x s =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema"
xmlns=" h t t p : / /CAM2ML. d i . f c t . u n l . p t / B a s i c "
t a r g e t N a m e s p a c e =" h t t p : / /CAM2ML. d i . f c t . u n l . p t / B a s i c "
e l e m e n t F o r m D e f a u l t =" q u a l i f i e d ">

< x s : i n c l u d e schemaLoca t ion =" C o n t e x t . xsd " / >
< x s : i n c l u d e schemaLoca t ion =" A u t h e n t i c a t i o n M o d e s . xsd " / >
< x s : e l e m e n t name=" p o l i c y ">

< xs :complexType >
< x s : s e q u e n c e >

< x s : e l e m e n t r e f =" c o n t e x t " minOccurs=" 1 " maxOccurs=" unbounded " / >
< x s : e l e m e n t r e f =" a u t h e n t i c a t i o n _ m o d e s " minOccurs=" 1 " maxOccurs=" 1 " / >
< x s : e l e m e n t r e f =" a u t h e n t i c a t i o n _ v a l i d i t y " minOccurs=" 1 " maxOccurs=" 1 " / >

< x s : e l e m e n t name=" l e v e l O f A s s u r a n c e " t y p e =" x s : s t r i n g " minOccurs=" 1 " maxOccurs=" 1 " / >
< / x s : s e q u e n c e >

< / xs :complexType >
< / x s : e l e m e n t >
< x s : e l e m e n t name=" a u t h e n t i c a t i o n _ v a l i d i t y ">

< xs :complexType >
< x s : a t t r i b u t e name=" d u r a t i o n " t y p e =" x s : t i m e " / >

< / xs :complexType >
< / x s : e l e m e n t >

< / xs : s chema >

127

A.6 Principal.xsd

<? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
< xs : schema x m l n s : x s =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema"

xmlns=" h t t p : / /CAM2ML. d i . f c t . u n l . p t / B a s i c "
t a r g e t N a m e s p a c e =" h t t p : / /CAM2ML. d i . f c t . u n l . p t / B a s i c "

e l e m e n t F o r m D e f a u l t =" q u a l i f i e d ">

< x s : e l e m e n t name=" cn " t y p e =" x s : s t r i n g " / >

< x s : e l e m e n t name=" i s s u e r ">
< xs :complexType >

< x s : s e q u e n c e >
< x s : e l e m e n t r e f =" cn " / >
< x s : e l e m e n t r e f =" s i g n a t u r e " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >

< x s : e l e m e n t name=" s u b j e c t ">
< xs :complexType >

< x s : s e q u e n c e >
< x s : e l e m e n t r e f =" cn " maxOccurs=" 1 " minOccurs=" 1 " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >

< x s : e l e m e n t name=" s i g n a t u r e ">
< xs :complexType >

< x s : s e q u e n c e >
< x s : e l e m e n t name=" a l g o r i t h m " t y p e =" x s : s t r i n g " / >
< x s : e l e m e n t name=" v a l u e " t y p e =" x s : s t r i n g " / >

< / x s : s e q u e n c e >
< / xs :complexType >

< / x s : e l e m e n t >
< / xs : s chema >

