

TOWARD THE SYSTEMATIZATION OF ACTIVE AUTHENTICATION RESEARCH

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Daniel Fleming Gerrity

June 2015

ii

© 2015

Daniel Fleming Gerrity

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: Toward the Systematization of Active Authentication

 Research

AUTHOR: Daniel Fleming Gerrity

DATE SUBMITTED: June 2015

COMMITTEE CHAIR: Zachary N J Peterson, Ph.D.

 Assistant Professor of Computer Science

COMMITTEE MEMBER: Philip Nico, Ph.D.

 Professor of Computer Science

COMMITTEE MEMBER: Foaad Khosmood, Ph.D.

 Assistant Professor of Computer Science

iv

ABSTRACT

Toward the Systematization of Active Authentication Research

Daniel Fleming Gerrity

 Authentication is the vital link between your real self and your digital self. As our

digital selves become ever more powerful, the price of failing authentication grows. The

most common authentication protocols are static data and employed only once at login.

This allows for authentication to be spoofed just once to gain access to an entire user

session. Behaviometric protocols continuously consume a user’s behavior as a token of

authentication and can be applied throughout a session, thereby eliminating a fixed token

to spoof. Research into these protocols as viable forms of authentication is relatively

recent and is being conducted on a variety of data sources, features and classification

schemes. This work proposes an extensible research framework to aid the systemization

and preservation of research in this field by standardizing the interface for raw data

collection, processing and interpretation. Specifically, this framework contributes

transparent management of data collection and persistence, the presentation of past

research in a highly configurable and extensible form, and the standardization of data

forms to enhance innovative reuse and comparative analysis of prior research.

v

ACKNOWLEDGMENTS

A special thanks to John Gerrity for assisting with data visualizations.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER

Chapter 1 – Introduction ... 1

Chapter 2 – Background ... 7

Methods of Authentication .. 7

Authentication as a Classification Problem .. 10

Machine Learning Approaches to Classification .. 11

Chapter 3 – Related Work... 15

Mono-Modal Systems ... 16

Multimodal-Systems ... 17

Policy ... 21

Chapter 4 – Requirements ... 24

Extensibility .. 24

Maximal Data Integrity ... 25

Decoupled Interpretation of Data .. 28

Decoupled Collection and Carving ... 28

Decoupled Carving and Feature Extraction .. 29

Decouple Feature Extraction and Windowing .. 29

Decoupled Windowing and Classification .. 30

Comprehensive Serialized Data Collection and Playback .. 30

Logical Consistency of Raw Data Playback and Live Streaming 31

Rapid Experiment Setup.. 31

Chapter 5 – Design.. 33

Modularity ... 33

Object Oriented (OO) Paradigm .. 34

vii

Publisher/Subscriber Pattern.. 34

Recursive Default & Top-Down Customizable Configuration 35

Extensibility .. 37

Inheritable Types ... 37

Aggregation ... 38

Interfaces Layers .. 38

Performance .. 40

Singleton Pattern.. 41

Transparent File Management ... 41

Multi-threading .. 42

Generic Architecture ... 42

Chapter 6 – Implementation.. 46

Language ... 48

AARF Publisher .. 49

Saver .. 55

Loader .. 57

Input Device .. 57

Session ... 58

Carvers .. 59

Feature Extractors ... 60

Windowers .. 63

Classifiers .. 63

Mono-Modal Systems ... 65

Multi-Modal Systems .. 68

Chapter 7 – Validation .. 70

Requirement Validation .. 70

Extensibility ... 70

Maximal Data Integrity ... 81

viii

Decoupled Interpretation of Data .. 82

Comprehensive Serialized Data Collection and Playback .. 84

Logical Consistency of Raw Data Playback and Live Streaming 84

Rapid Experiment Setup .. 85

Implementation Validation .. 88

Chapter 8 – Future Work .. 112

Chapter 9 – Conclusion ... 114

BIBLIOGRAPHY ... 116

ix

LIST OF TABLES

Table Page

Table 1 – Core Unit Test Extent ... 88

x

LIST OF FIGURES

Figure Page

Figure 1 – Framework Example Instance ..27

Figure 2 – Recursive Default and Top–Down Custom Configuration of Components36

Figure 3 – Generic Architecture ..44

Figure 4 – Core AARF ...47

Figure 5 – Publisher Instantiation ..53

Figure 6 – Subscribing to Publication ...54

Figure 7 – Saver Dataflow ...56

Figure 8 – Feature Extractor ..62

Figure 9 – MonoModal System ...67

Figure 10 – MultiModal System ..69

Figure 11 – Extending AARF Publisher Example ..71

Figure 12 – Extending Device ...74

Figure 13 – Extending AARF Feature Extractor ...76

Figure 14 – Extending AARF MonoModalSystem ...78

Figure 15 – Extending AARF MultiModalSystem ..80

Figure 16 – User's Perspective of AARF ...83

Figure 17 – Example Experiment Configuration .. 87

Figure 18 – Example Key Interval Distributions. ... 92

Figure 19 – Example KeyPress Latency Distributions ... 94

Figure 20 – Angle of Curvature Feature ... 96

Figure 21 – Example Angle of Curvature Distributions ... 97

Figure 22 – Curve Distance .. 99

Figure 23 – Angle of Curvature vs. Curve Distance ... 100

Figure 24 – Example Curve Distance Distributions ... 101

Figure 25 – Growth of Distributions with Window Duration ... 103

Figure 26 – Authentication Accuracies ... 106

Figure 27 – Average Authentication Accuracies .. 108

Figure 28 – Characteristic FAR and FRR ... 110

1

Chapter 1 - Introduction

 Authentication is the bridge between availability and two other major goals of

information security [1], confidentiality and integrity. The difficulty of constructing

effective authentication protocols contributes to frustrating situations which seemingly

admit only two out of the three goals. Information etched on a titanium plate, encased in

concrete and sunk to the bottom of the sea possesses great integrity and is highly

confidential, but is not available. The same plate displayed on a public monument is

available and has integrity, but is no longer confidential. One’s own memory is both

confidential and available, but compared to artificial records, its capacity to preserve

significant quantities of information intact is very limited. With the advent of the

information age, the need to maintain vast digital records securely has exploded. Thus

the need for effective authentication methods has become even more acute [2, 3].

 The primary approach to authentication has been, in essence, to replace the original

security problem with another, smaller and more controlled one. The clearest form of this

is the yoking of the record’s confidentiality and integrity to that of some arbitrary, but

easier to secure, object or record. This method of authentication is commonly referred to

as authentication by what you know or by what you have. Smart cards, social security

numbers, proximity badges, and the infamous password [4], are all examples of this

technique. In order to secure buildings and banks accounts we would convert the problem

to that of securing someone’s pocket and remembering 15 characters or your favorite

aunt’s dog’s name. Arbitrariness is most advantageous when a virtually unlimited number

of credentials is needed, or when compromise requires a reset. However, it is also the

2

method’s greatest weakness. An impostor can just as truly enter a password or present a

proximity badge as any authorized person.

 The opposite of an arbitrary mapping of authentication to authorized personnel is an

essential mapping, which is dominated by protocols based on what you are. A series of

technologies, such as biometrics, aims at such a mapping to respond to the shortcomings

of arbitrary secrets. Most practical applications exploit essential features of the user that

are static, such as thumb prints, iris patterns, DNA, facial features, or vocal passwords.

These offer the promise of eliminating the arbitrary nature of the smaller security

problem, immediately enhancing its availability and confidentiality. However this comes

at a cost, mostly in the form of overhead in both time and money to support specialized

interfaces that can accurately assess these features.

 Applying these protocols to a work flow is far from transparent. Furthermore, while it

is more difficult to spoof someone’s thumb print than to copy a password, any static

feature is a complete form at all times and so may be isolated and cloned (e.g. lifted

prints). What is sorely needed is an authentication protocol that is essential to the user,

transparent to the workflow, and of a strictly incomplete form.

 Behaviometrics [5] is another branch of biometrics, but its subjects are just such

incomplete forms. Behavior is the “how” of a more abstract action. Unlike the form of an

iris pattern, which at all times is present, characteristic behavior is not. Moreover, it is

fundamentally bound to other forms, which precludes a simple cloning procedure to

replicate it. We can never simply act nervousness or write complicatedness - we must be

doing some concrete thing nervously or writing with complexity. Behavior is essentially

3

bound to both our actions and our identity. Even if an attacker could capture a

representation of our behavior, he would have the problem of forging desired actions.

Behavior as an authentication token offers a protocol that is essential, transparent, and

resists counterfeiting. Given today’s advancements in computational power, this form of

embedded authentication opens the door to a novel benefit of complete transparency:

continuous authentication.

 Continuous authentication, also known as active authentication (AA), is a relatively

new field of serious investigation [6]. It intends to ascertain the practicality of systems to

continuously execute authentication protocols based on behaviors rather than static

forms. Since every user-action contains input for the authentication protocol, the protocol

need not interrupt the user. Instead, continuous authentication both relieves the user and

eliminates the single temporal point of failure, typical of static methods.

 Several behavior modalities have been tried [7, 8, 9, 10], including keystroke

dynamics, pointing device movements, writing styles, web-browsing habits, gait analysis,

and even grammar corrections. Many of these areas show promise, and some may have

the potential to reach static biometric accuracy and beyond. One study of mouse-

movements has achieved error rates of less than 2% with only 20 events [9]. But the

overarching drawback is that none of these modalities is continuously active. Multi-

modal systems are presently being designed to handle the bursty nature of mono-modal

sensors and allow for an easily extensible system to fuse the input of such sensors [10,

11, 12]. However, replication and systemization of work in the field is hampered by the

incredible diversity of modalities, features, classifiers, architectures, and test sets

employed.

4

 We propose a multi-modal framework for the Linux input subsystem to aid research in

this field by standardizing the interface for raw data collection, mono-modal modules and

central information fusion algorithms. This framework provides three distinct levels of

standardized interfaces to accelerate the consistent improvement of both mono-modal and

multi-modal classifiers:

 1) Raw Resource Layer - a simple set of interfaces presenting raw data streams

specifically optimized for active authentication for future feature development. Active

authentication requires access to fine-grained behavioral data to extract robust patterns

that are unique to individuals. Operating systems do not always aggregate or present the

level of detail required for behavioral features used in active authentication in convenient

forms. Collecting and presenting raw data streams for each input source in a standard

interface provides a consistent basis to build and compare classifiers. A universal

interface of raw inputs also allows the framework to be easily extensible.

 2) Mono-Modal Layer - a standardized interface for each mono-modal system to

comply with in order to expose minimum and useful metrics to the multi-modal system.

Since active authentication’s goal is to eliminate single points-of-failure in time by

providing continuous authentication, the ability to integrate many separate modalities of

behavior is critical to overcome gaps of input in any single modality. Establishing a

uniform interface that mono-modal authentication systems present as output, allows easy

aggregation of multiple modalities. A standard interface also allows easy addition of

novel mono-modal systems.

5

 3) Fusion Layer - an extensive interface aggregating all resources and loaded modal

modules to be presented to whatever central fusion algorithm is desired. There is yet to be

discovered an optimal algorithm by which to fuse the work of multiple mono-modal

systems advantageously into a multi-modal system. The fusion interface presents all

possible resources to researchers from the two previous layers. Computing the optimal

authentication decision from multiple modalities may require more supporting

information for each modality such as raw data flow statistics, historical accuracy, time

since last decision, etc. beyond the simple authentication acceptance or rejection.

 This framework allows researchers to add or replace modules at any of the three

levels, thereby allowing for the aggregation and refinement of diverse attempts. Resource

preprocessing, mono-modal features, and multi-modal fusion systems can now be cross

tested rapidly, as demonstrated by the four resource modules, three mono-modal

modules, and two multi-modal modules created to seed the frame work.

 In this work, we describe the design and engineering challenges of this system. Our

main contributions are 1) convenient library-style access to fine-grained data from the

Linux input subsystem, 2) standardization of data representation and serialization

specially designed for the challenges and goals of active authentication, 3) an extensible

repository of feature extractors, mono- and multi-modal systems, and 4) rapid

configuration of previous and new modalities from comparative experimentation and

hybridization.

 Ultimately, such a framework could become a standard feature of modern operating

systems. Various module configurations would be optimized for various hardware

6

platforms and then “compiled” for that system, dispensing with any extraneous data

flows to optimize performance. Hopefully, active authentication will one day be a

common security option for every device.

7

Chapter 2 – Background

 The problem of authentication is timeless. On the one hand it poses an intuitively

simply problem any child could understand. On the other hand, it demands concrete and

operational mechanisms to capture one of the most elusive notions in human thought:

identity. Often the full blown philosophical notion of human identity is not required.

Often a reasonably artificial and constrained definition regarding a certain role or

privilege is all that must be established. However, as the digital age ever more perfectly

envelopes our lives, authenticating to digital systems will increasingly need an ever more

absolute proof of identity. This chapter considers some of the current challenges of digital

authentication, the role of active authentication in meeting them, and its enabling

technologies.

Methods of Authentication

 The development of electronic information systems has been incredibly precipitate

and organic, often leaving proactive planning orders of magnitude behind the curve. The

exhaustion of the IPv4 address space is a good example of core functionality being

eclipsed by unplanned expansion. Security, no less, has seen similar trends in swift

obsolescing of once adequate protocols. Modern cipher security is quite literally an

inverse function of computational power – which is ever-increasing. The past two

decades are littered with broken security protocols.

8

 However, unlike core functionality, whose obstacles must be addressed to obtain any

functionality at all, security can often be placed aside, while the primary function carries

on. The digital world is a very large place and perhaps insecure operations will avoid

disaster by mere obscurity for a significant time. Alternately, it may be that the cost of

insuring a security failure is less than properly addressing the vulnerability. Today, the

large breaches of confidential financial information by a for-profit ecosystem of

malicious actors, would seem to indicate that we are about to exhaust the economic

wisdom of insecurity.

 Not all the worst failures of security are failures of authentication, but some of the

most popular and lucrative involve authenticating users to empower them to effect

actions (usually financial actions). The obsolescence of common authentication protocols

has become a subject of serious investigation. The venerable username and password

may have been appropriate to keep track of which faculty in a computer science

department used the mainframe. But today, many are doubting the duo’s ability to secure

bank accounts, medical records, payment vehicles, trade secrets, personal devices, or

legal identity against the planet’s array of malicious actors.

 In 2012, Bonneau et al. [13] conducted an extensive survey of alternative

authentication schemes which explored the difficulties of displacing the password, and

the security vulnerabilities inherent to its operation. Ironically, while passwords persist as

the most feasible protocol, their security is almost perfectly opposed to their usability.

Quite simply, the more character-types and the longer a password, the more secure it is.

But it is precisely these qualities that make them difficult for humans to maintain.

9

 However, computers specifically outperform humans in terms of remembering many

small arbitrary details and rapidly comparing them. Therefore, while humans show a

propensity to use horribly insecure passwords, dictionary attacks and more sophisticated

attacks are easily within computers’ reach; in short, passwords are made for computers

not humans.

 The survey considers biometrics in the static forms of fingerprints and iris scans, and

the dynamic form of voice patterns. It acknowledges that biometrics offer certain benefits

as essential authentication media (e.g. it is not possible to forget voice patterns and not

likely to lose fingerprints), but it also notes their limitations. As static (and so complete)

forms, fingerprints may be lifted and iris scans or voice password digitizations may be

replayed by an attacker. Furthermore, authenticating with such dedicated media has a

high cost in both hardware and time.

 It is precisely these drawbacks that free-from behavior biometrics overcome.

Behaviors are incomplete dynamic forms bound with innumerable actions from which

behavioral patterns are extracted. If such patterns can be extracted from everyday usage

of standard devices, the expense and usability issues disappear. Furthermore, since it is

everyday uses and not a targeted input token – a certain phrase to speak or password to

write – there is no reason why authentication cannot happen continuously throughout the

user’s session. This continuity of authentication resolves the replay attack that static and

targeted dynamic forms suffer from. With continuous authentication an attacker would

need to craft an entire session of useful actions to replay – a much more difficult task

than simply spoofing the login.

10

 But it is yet to be demonstrated that such behavior patterns can be found to reliably

indicate distinct users. Most recent investigation into such patterns rely upon viewing the

problem as whether an automated system can consistently classify samples of a behavior

patterns as belong to a certain user. If such a system can be built, then the type of patterns

selected is validated as sufficient for authentication.

Authentication as a Classification Problem

 Deciding whether or not a user is authorized can be characterized as a simply binary

classification problem of dividing authentication inputs into “authorized” and “not

authorized” categories. The evaluation of binary classification systems generally employs

the terms of false positive and false negative rates to measure qualitative performance.

 However, in the context of authentication, the false positive rate is referred to as the

false acceptance rate (FAR) and the false negative rate is referred to as the false rejection

rate (FRR) since the system is accepting or rejecting a user based on their authentication

input.

 Generally, classification problems create an inverse relationship between improving

the FAR and FRR about some third parameter or group of parameters (e.g. cost, time,

complexity, etc…). Intuitively, making a more lax authentication system will reduce the

FRR, but increase the FAR, and a stricter system will do the opposite. Thus, the essential

performance of a system with tunable parameters affecting the FAR/FRR tradeoff is often

measured in terms of the equal error rate (EER) which is the rate of misclassifications,

11

accepting or rejecting, when the system has been tuned to make the FAR equal to the

FRR.

 In the context of security, tuning to EER may or may not be appropriate, depending

upon the situation. Under certain conditions, the consequence of falsely accepting an

imposter is far worse than rejecting a legitimate user and so the authentication system is

tuned to a much lower FAR than FRR. Nevertheless, the EER is typically proportional to

the system’s penalty in FRR for maintaining a target FAR and vice-versa. This tradeoff

is discussed more fully in Chapter 3.

Machine Learning Approaches to Classification

 Many of the attempts to identify viable behaviors for active authentication exploit

fine-grain detail, measurable by standard devices (e.g. timing data down to the

millisecond). Characterizing behaviors at this level of detail supports the collection of

enough samples to drive machine learning algorithms. Such algorithms can automatically

optimize the discrimination of patterns if given a large enough data set.

 Machine learning is broadly categorized into supervised and unsupervised learning. In

supervised learning, a training set of data is tagged with the correct classification for each

unit to be classified. The machine learning algorithm then automatically builds a

correlation function between the data and the given classifications. In unsupervised

learning, no classifications are given, but rather a number (or minimum/maximum) of

desired classes is specified and the machine learning algorithm builds a clustering

12

function to classify the data according to the specified constraints. Active authentication

is primarily concerned with supervised learning insofar as the problem is to classify

between “authorized” and “unauthorized” – for which the correlation to each is different

for each individual authorized user. Since the classes are known a priori, unsupervised

learning is unnecessary. Therefore, we will only concern ourselves with briefly sketching

the supervised learning process. Deploying a machine learning algorithm for supervised

learning requires a three step pipeline:

 First, the raw data must be divided into units to be classified. Usually this follows

logically from the nature of the classification. For example, to classify the price of a

house, the unit of classification is all data related to one house, which may include data

common to two houses (e.g. the average weather data for a county). However, when the

goal is to classify a user, the unit of classification needs to capture data most likely to

exhibit values unique to the user. What these data are is still being researched, though

some excellent candidates are discussed in Chapter 3.

 The second step is to devise functions that isolate the most informative/discriminatory

forms of data from each unit of classification – often known as feature extraction. Feature

selection allows human intuition to point learning algorithms in at least a reasonable

direction. Continuing the house example, if the outside temperature for every hour was

known, it could reasonably be intuited that only the annual or monthly high and low

temperatures would be needed to gauge the impact of temperature on the house’s value.

A function defined to take the hourly data and compute the extremes or average would be

one feature extractor for temperature – potentially one among many. Similarly, other

functions could take a blueprint and extract relevant features such as the number of

13

bedrooms and bathrooms, etc… This application of human intuition to capture divisive

qualities is the heart of machine learning problems. Unsurprisingly, this step is a hotbed

of research evolving diversely and rapidly.

 The final step is the selection of a machine learning algorithm with which to classify

the features selected. Nearly every machine learning algorithm known to man has been

used for validating candidate behaviors for active authentication. Currently the most

successful attempts make use of at least one form of machine learning, if not many.

 The field of supervised machine learning is large, even considered in abstraction from

the problems it is applied to. Some algorithms, like Decision Trees, are intuitive and

whose mode of operation is simple in theory even if specific implementations and

optimizations are complex. Others, like Back Propagation in Neural Networks, require

advanced knowledge of mathematics to implement and deploy correctly. It is not possible

to give an adequate introduction of each algorithm referenced here, but a short

description and reference to fuller exposition for the major algorithms follow:

1. Naïve Bayes – a simply probabilistic method which (naively) treats all features as

independent and attempts to classify by applying Bayes’ rule of conditional

probability [14].

2. Decision Tree – a method which organizes the features’ weights by how decisive

they were in the training set [15].

3. Maximum Entropy – Similar to decision trees, this method organizes a model of

constraints based upon probabilities of features in the training data [16].

4. Linear Regression – the simple fitting of a linear function to the training data [17].

14

5. Logistic Regression – the fitting of the logistic function to the training data [18].

6. Support Vector Machine (SVM) – an optimization of logistic regression which

maps features to a higher dimension space to support linear separation of classes

[19].

7. Neural Network – a model of neuron input/output allowing for non-linear

correlation functions to be built by tuning each “neuron’s” function [20].

Some algorithms can handle real-value features, others require quantized values, some

are more efficient with smaller training sets than others, and all have different capacities

for handling the usual space-time trade-off in performance.

 The decisions determining the specific steps of the learning pipeline impact not only

the standard classification metrics of precision, recall, FAR and FRR, but also the

secondary metrics related to security, such as response time, and time coverage (i.e. the

percentage of typical session time a user can be authenticated by the system). The ideal

system will minimize FAR, FRR, response time, the amount of data needed and time to

train, and it will maximize the time coverage.

15

Chapter 3 – Related Work

 Considering behavior as a form of identification is not new. The specific application

of this idea to the problem of computer-user identification is likewise been under study

for some decades now. Nevertheless, automating this identification restricts the kinds of

behavior and performance available in the technology of the day – and that has changed

problem space significantly. In 2004, a survey of biometric identification identified the

following properties that candidate behaviors should possess [21]:

1. Universality: the behavior is exhibit by typical users.

2. Distinctiveness: any two users must be differentiable based on it alone.

3. Collectability: the behavior must be easily quantized

4. Permanence: the behavior must be consistent over a significant period of time

5. Performance: the sensors and environment necessary to capture the behavior must

be economic

6. Acceptability: user must consent to and be willing to engage the sensors

7. Circumvention: the behavior must be difficult to generate by malicious actors.

 As early as the 1970’s [22], researchers speculated that a user’s typing habits could be

used for identification. In the past decade, there have been numerous efforts to exploit

typing and other human-computer-interaction (HCI) behavior spaces. In general there

have been three roughly distinct areas of research supporting the construction of active

authentication systems.

16

Mono-Modal Systems

 First, there are Mono-modal systems, that is, systems relying on one form of HCI to

analyze behavior. The development of discriminating features in the various forms of

HCI is the foundation for proving the ability of behavior to distinguish individuals.

 By far the most popular modality for active authentication is keystroke analysis.

Initially, static keystroke analysis, that is, analyzing how the user type pre-specified text,

was investigated for use in authentication [23]. However, to enhance usability (and to

prevent replay attacks) free-form text systems began to be investigated [24, 23, 25].

Popular features of keystrokes include key transition latencies (also known as digraphs)

and dwell times of keys. From these absolute features, a number of derivative features

have been explored such as n-grams of relative timing, such n-grams relative to certain

words or n-grams of relative time values. Studies using such features have obtained very

high accuracies in identification over a data set of tens of users [26]. An excellent

overview of development in this field is given by [25].

 Mouse and other pointing device dynamics do not have as large a body of research as

keystrokes, but nevertheless have shown significant progress in recent years. Popular

features include click latencies, velocity, acceleration, jerk, angle of straight line from

beginning to end of motion, and rates of curvature. As with keystrokes, many derivative

features have been tried in various combinations. A good overview of current efforts is

given by [27].

 However the most promising pointing device results we found were three curve-based

metrics invented in 2011 [9]. Raw mouse data coordinates were grouped into actions

17

based on temporal proximity terminating in a click event. The first metric, denominated

simply as “direction”, computes the angle between the horizontal and the straight line

between each pair of consecutive points in an action. The second, labelled “angle of

curvature”, is the interior angle formed by every three consecutive points in an action.

The last, termed “curvature distance”, is the ratio of the straight-line length from the first

point to the third point, to the perpendicular length from the middle point to the straight-

line length, for every three consecutive points in an action. With only 20 actions, an SVM

based classification system was able to obtain an EER of less than 2% on a corpus of

1000+ users.

 Other attempts have tried more sophisticated media for recording behavior such as

accelerometer, face-tracking, clothes-color tracking and voice patterns. However this

work is only concerned with active authentication via the standard HCI functions of

pointing and keystrokes. A major part of active authentication’s fundamental advantage

in usability is lost if the system relies on specialized input sensors whose use is not

essential to malicious HCI.

Multimodal-Systems

 The second major area of research is the field of Multi-modal systems which combine

multiple sources of behavior metrics to produce an identification decision. The proper

weighting of diverse forms of HCI, and the methods of combining feature or decisions

made from each are addressed by these systems.

18

 In 2011, DARPA announced serious interest in promoting active authentication

research, launching a four year program recruiting multiple academic and commercial

research institutions to make robust active authentication a reality [24]. The program is

broken into three phases: 1) 2011-2013 – discover viable biometric modalities that can,

without the addition of special hardware, serve as the basis of mono-modal systems, 2)

2013-2015 – expand the discovery of biometric modalities to mobile platforms and begin

integrating with DARPA’s clients. Design the final authentication platform, which is

planned to provide open API’s to allow wide application support for both client software

and novel input sensors, 3) 2015 – combine the modalities identified and fuse them into a

robust multimodal system supporting the authentication platform specified in phase 2.

 To the best of our knowledge, the most advanced work on multi-modal systems is

being conducted by one of the DARPA participants, Drexel University. In early

September 2014, they released a preprint [28] to Computers & Electrical Engineering,

detailing unprecedented performance in the field. Their solution combines both strictly

behavioral (how the user performs an action) features with features measuring more

complete, intentional forms of behavior (what the user is doing). Eleven strictly

behavioral features used included the outstanding mouse movement features of [9], the

popular keystroke metrics of key-dwell time, and the delay between keys. Eighteen more

complete forms from stylometry included: typing habits such as the preference to

backspace repeatedly, lexical features such as the most frequent character bigrams and

average word-length, syntactic features, such as the most frequent part-of-speech (POS)

trigrams, and semantic features such as word bigrams.

19

 The data was fed to classifiers in time windows that varied from 10 to 1800 seconds.

They used different Naïve Bayes classifiers to classify each of the mouse and keystroke

features separately and a single SVM to classify all the stylometric features. They relied

upon the WEKA Machine Learning Java [29] library for their classifier implementations.

 Their evaluation data set was an impressive 67 users-worth of data, generated over a

period of 16 weeks of roughly defined blogging and topic-specific writing tasks. A new

set of 5 users was selected each week, each contributing 40 hours of session time. All

data was collected in identical hardware and software environments, to maximize the

detection of only human differences.

 The authors decided to combine the decisions of the classifiers according to the Chair-

Varshney optimal decision fusion rule [30]. The fusion of decisions allows the

classification of each feature to occur entirely independently, only requiring the final

binary decision to be forwarded to the central decision algorithm. This grants the system

modularity and scalability since little data needs to be forwarded from the classifiers. The

Chair-Varshney formulation aims at optimizing the accuracy of the multimodal decision

by taking into account the characteristic error rates of the individual mono-modal

decisions. Besides the classification decision itself, the optimization of the decision

fusion only required the characteristic FAR and FRR rates of each mono-modal classifier.

This defines a multi-modal system with an incredibly lightweight interface for each

future mono-modal module to comply with.

 To obtain characteristic FAR and FRR rates, they conducted a 4-fold cross-validation

of each classifier on 80% (time-wise) of their data. The FAR and FRR rates thus obtained

20

were used to test the multi-modal fusion rule on the final 20% of data. Multiple

experiments were run for differently sized time-windows, and the results measured in

terms of Time-to-Decision (window size) vs. FAR, Time-to-Decision (window size) vs.

FRR, and EER vs Time-to-Decision. Inside of 30 seconds their system was able to

achieve an EER of less than 1%.

 The most similar multi-modal framework to the work proposed here is the Transparent

Authentication Framework (TAF) in Java, which was proposed explicitly as an extensible

framework for mobile devices [31]. The TAF uses multiple mono-modal biometric

modules to render classification decisions on events and fuses their decisions with a

history of explicit (entering a password) attempts. Two biometric modalities were used,

keystrokes and voice verification. Both used the JaDTi decision tree classifier to render

decisions. The authors integrate the training of the classifier into the normal operation of

the system to allow multiple options for re-training to follow changes in user behavior in

controlled ways.

 The framework allows alternate configurations of mono-modal decision fusion, mono-

modal classifiers besides decision trees, biometric feature collectors, and explicit

authentication methods. The work proposed here, besides being targeted for personal

computers and not mobile devices, aims at providing a far more loosely coupled

framework. TAF accepts complete mono-modal feature collectors for customizable

classification. The work proposed here extends the frame work one more level to offer a

Raw Resource Layer providing a foundation for experimental feature design. Further

differences of fusion policy extensibility are discussed in the next section on policy.

21

Policy

 Finally, there is investigation of polices to adapt the decisions made by classification

systems, to the security goals of authentication. Correctly relating the goals, acceptable

performance standards, and desired outcomes of acting upon a decision, are necessary to

construct a practical system. But beyond sheer practicality, considering security as the

peculiar client of such systems also influences the correct manner of evaluation.

 As discussed in Chapter 2, the problem of authentication can be treated as a binary

classification problem, and many approaches to active authentication treat it as such.

Thus, most studies adopt the standard FAR/FRR/EER evaluation metrics to validate their

systems. However, achieving robust active authentication in a continuous manner may

not be verified best by the traditional application of these metrics.

 As an extension of his mono-modal work with keystroke features [24], Bours

presented an alternate evaluation arrangement specifically to address the peculiar goal of

active authentication [7]. In static authentication, he admits that it is important to measure

how often the wrong decision is made. But in continuous authentication, the proper

performance evaluation is not to see if the imposter is detected on a given classification

as much as how fast is the imposter detected. To support this shift in priority, he

introduces the notion of “trust” in the user as a metric which is increased or decreased

based upon classification decisions made on very small units of input. By setting a

threshold for minimal trust, the trust value acts as a buffer for the FRR of a system, only

locking out the user when a set number of consecutive negative decisions have been

22

made. The number of units of input needed to reliably detect an imposter, is now the

prime measure of performance, instead of the EER.

 In a way, this is nothing more than multi-modal system expanded over time rather

than across feature spaces. The trust value allows for the temporal fusion of multiple

classification decisions. The specific manner of this fusion is governed by a

penalty/reward function which may asymmetrically adjust the trust value based on

classification decisions made. Unlike reporting an EER for such a system, it is possible to

set a much higher bar for measurable performance with a trust metric. By setting the trust

threshold appropriately, the FRR can be fixed at 0% for all training data, and the resulting

average number of inputs to detect imposters is now the single metric of performance.

Indeed for some test sets, the system may require more inputs than are in the test set

before it detects any imposter. Nevertheless, for truly usable security, this evaluation

converts the tradeoff of FAR / FRR to the more useful metric of time-to-detection with

0% FRR.

 An alternate method of evaluation is that used in [28], which instead of rendering

many decisions and varying the manner of decision fusion, varies the time-window of

input data to render decisions on. The performance of the system is reported as the EER

for a given size of window1.

 Finally, in TAF from [11], events are classified with a probability that it belongs to the

authorized user. Classified events are stored in buffers per biometric along with a buffer

for the outcome of explicit authentication attempts, allowing for a short history of

1 Of course it should be noted that number of classifiable features, and not time per se, influences the EER.

23

classifications to contribute to the device’s overall confidence. The device’s overall

confidence is computed on demand from the individual buffers when the user attempts a

new task. The authors computed the confidence of each buffer by weighting each event to

favor the younger events and computing the arithmetic mean floored to 0.5 in the absence

of events. The overall device confidence was simply taken to be the greatest probability

of all buffers. Various tasks could require different overall device confidence thresholds

as configured by the user. If the device confidence is below the specified threshold for an

attempted task, the user will be required to explicitly re-authenticate.

 This embedded use of buffers is one among many design decisions that could be made

regarding multi-modal decision-fusion. The Fusion Layer of this work embeds no such

data flow choice, but rather offers researchers the largest possible potential for

experimenting with any policy, including the three described here. The benefit of

constructing them on top of the same Fusion Layer interface, is that a strict, consistent

comparison of policies can be made.

 All the current research efforts described above used different data sources, different

collection techniques, and custom code bases. Replicating, comparing and otherwise

extending their work is restricted by the diversity of their implementation ad data

representation choices. Even the abstract design choices are difficult to treat uniformly

unless re-implemented in a common environment. The work in [9] gathered data from

web forum activity in Javascript, used a SVM and majority voting fusion rule. The work

in [28] used custom desktop software to gather data, used diverse classifiers and a

Bayesian risk minimization fusion rule. Supporting the comparison of these serve as the

proper requirement motivations for this work, which are defined in Chapter 4.

24

Chapter 4 – Requirements

 The fundamental contribution a framework should provide any problem is the

masking of tedious, research-generic and system-specific tasks. A good framework will

accomplish these tasks without compromising flexibility proper to the problem space of

the user. The targeted users for this type of framework are software developers. As such

the framework is intended to be used in the construction of research experiments by

directly calling library-like functions in scripts or fully developed applications.

 As has been shown in Chapters 2 and 3, active authentication research software has

usually been organized as a pipeline of data processing, beginning with raw human

interaction data and ending with some sort of binary classifier. Since the desired time-

scale of active authentication is short, it is assumed that managing many small data points

quickly and efficiently is incumbent upon a good framework. Within and beyond this

assumption of data and time scales, there are a few peculiar problems arising in this field

which impact the desired qualities of a framework. This Chapter exposes the concrete

form framework goals take on in the realm of active authentication as well as some of the

field specific factors that must be considered.

Extensibility

 A general problem of developing good software is its ability to support continued

development. This work considers the users of the framework to be familiar with basic

programming paradigms and extension patterns. Therefore, the goal of creating an

extensible framework ought to support some well-known software paradigm, allowing

25

future researchers to easily collect and extend the functionality of any aspect of the

research.

 Concretely, this means that the framework should not bind either functionality or

configuration parameters that could conceivably be desired separately. For example, a

researcher should be able to augment an existing feature extractor and configure it to his

specific experiment’s parameters without having to modify or clone the framework’s

existing code. Similarly, a researcher should be able to easily configure the input sources

for a pre-existing mono-modal system to his experiment’s environment without having to

override the internal default sources in multiple locations throughout the mono-modal

system’s dependencies.

 Each unit of input sources, data processing modules, classifiers, and decision systems,

ought to be independent units of functionality, each of which may be extended separately.

Maximal Data Integrity

 The overarching intuition behind active authentication, is that there exists a digit

fingerprint hidden in the minute peculiarities of human interaction. Preserving this

potential fingerprint is of the utmost importance to a multimodal framework. To that end,

several qualities are needed:

a) No loss of time data at any point of processing.

Different hardware architectures present different physical limitations on how

often and accurate data can reliably be produced. But, however good or bad the

26

data offered is, the framework must handle requesting and propagating the data in

the best possible manner to avoid delay and loss. To support live experimentation

or recording for future analysis, the framework must give the researcher the best

level of data integrity.

b) No out of order data from any module to any module.

Considering that the same data source may be processed in multiple ways, and the

outputs be merged back together for classification Figure 1, care must be taken to

prevent one classification-path from receiving data from a significantly different

time, due to varying processing latencies.

27

Figure 1 – Framework Example Instance

28

Decoupled Interpretation of Data

 Data may be digitized into units from a relatively continuous stream with several

different analysis goals Figure 1. First, it may be broken into logically related blocks

(Carving). For example, the stream of mouse data comprising one intentional move by

the user, should be gathered into one data structure for the sake of more intuitive feature

analysis. Second, data may be grouped into fixed quantities simply for aggregate or

arbitrary feature dependent analysis (Feature Extraction). For example, every ten double-

clicks may be gathered to update a running average of double-click latency features.

Third, data may be broken into temporal windows of a finite duration to regularize

classification in time (Windowing). Finally, the classification scheme used to render a

decision can use a variety of interpretive models.

Decoupled Collection and Carving

 Various hardware setups will produce data with various levels of detail. The

envisioned framework will abstract away overly peculiar formats of raw data, but it must

leave as much low-level detail as possible for innovation to take place. Therefore, the

framework will preserve the smallest unit of data available and refrain from binding its

collection to any algorithm carving it into larger data structures.

29

Decoupled Carving and Feature Extraction

 Carving refers to the gathering of raw data (e.g. button-down and –up events) into

collections representing intentional actions which intuitively would contain user specific

traits (e.g. the user has typed “A”). Just as biometric matching analysis expects to be

applied to one (or at least the fragment of one) fingerprint and not multiple fingerprints

jumbled together, so the analysis of human interaction ought to consider movements

constituting one intentional mouse motion or keystroke. For this reason, carving should

occur prior to feature extraction in most cases.

Decouple Feature Extraction and Windowing

 The obvious approach to classification is to devise features whose samples should be

classified one at a time. But more subtle differences may be hidden by the amount of

noise gathered with a single feature sampling. A more robust characterization of a feature

may be gained by building a frequency distribution of its values over time or a fixed

number of samplings or some other logical unit of data. This aggregation of feature

values forms a window in time or data quantity for classification. But the parameters of

such windowing, while potentially related to, can have very different criteria from the

feature itself. The temporal division of data is useful for managing the tradeoff of

response time and accuracy. Intuitively, the more data presented to the classifier, the

more accurate the classification will be. In terms of active authentication, the nature of

this window plays an important role in balancing FRR and FAR, as well as minimum

30

data quantity thresholds for attempting a classification decision. Gathering more data also

takes more time, extending the window of interaction without authentication. Therefore,

the configuration of such windowing should be decoupled from the extraction of any

given feature.

Decoupled Windowing and Classification

 In the usual machine learning pipeline, there is always some division between forming

the unit of data for classification and the classification itself. While preparation of a

classification unit can often be specifically tailored to the type of classification chosen

(e.g. quantizing for Naïve Bayes), the envisioned framework will not bind any particular

form of unitization to the type of classification used.

Comprehensive Serialized Data Collection and Playback

 A major principle of empirical science is reproducibility. The medium of digital

information offers the researcher no excuse but to be able to show exactly the data and

methodology used in experimentation. While trivial compared to most other data forms,

the preservation of digital data in an efficient and organized manner can nevertheless be

tedious and fraught with arbitrary formatting decisions. As entirely generic in its goal, the

ability to save and load raw and processed data from any point during an experiment is a

perfect candidate for the framework’s responsibility. Standardizing, abstracting and

hiding the operation of saving experimental configurations and test corpora is a great aid

in forming uniform reproductive and comparative research, as well as accurately

31

demonstrating incremental improvements. Therefore, the framework will provide a

transparent system of saving and loading data from any arbitrary unit of processing that

may be native or extended from it.

Logical Consistency of Raw Data Playback and Live Streaming

 Similar to the above requirement for comprehensive saving and loading, the manner of

loading the data must accurately reproduce the operation of the researcher’s processing

logic, regardless of whether the input is loaded from a saved corpus or streamed live, or a

mixture of both. In general, machine learning is very reliant upon the ability to speed up

experimentation by decoupling the collection of data from its classification. Multi-modal

authentication, however, is properly targeting a live classification system. To support this

essential use case, the framework must not lead researchers astray by offering logically

exploitable differences between the playback of recorded raw data, and the live

acquisition of the same. Knowing when data is exhausted, the length of a corpus, or

depending upon a certain number of data to be acquired in a certain time are all examples

of details that are strictly unknown in live acquisition and should not be depended upon

by the framework when playing back corpora.

Rapid Experiment Setup

 A further goal of a good research framework is to organize the setup of experiments

with a minimum amount of effort. As the framework is extended with more data-sources,

32

preprocessing modules, classification algorithms and entire mono- and multi-modal

systems, the systematic empirical comparison of old, new and hybrid techniques will

bolster consistent progress in the field. To this end, the framework should define a

standard method of configuring experiments with a minimum of additional logic and

without directly altering the code of past research. New and hybrid modules should either

explicitly extend old ones or the configuration of existing ones should be easily contained

in one high-level perspective, and not require scattered tweaks.

33

Chapter 5 – Design

 Following the lead of research in the field, the Active Authentication Research

Framework (AARF) proposed in this work follows the pattern of a generic machine

learning pipeline of data classification, with auxiliary modules handling data collection,

serialization, deserialization, and comparative experimentation. At all stages of research

the framework endeavors to imbue qualities satisfying the requirements outlined in

Chapter 4. This chapter addresses the design techniques and patterns used pervasively

throughout the framework, as well as the generic architecture of the framework’s core

organization to fulfill the requirements.

Modularity

 It is generally recognized that modular design enhances the extensibility software and

promotes maintainability and conciseness of code. For a research framework, modularity

is particularly beneficial for establishing inter-purpose boundaries that standardize the

scope of functionality and thereby allow for different approaches to be mixed and

matched with a minimum of effort. To achieve the desire level of modularity, several

more concrete designs are called upon.

34

Object Oriented (OO) Paradigm

 To undergird the requirements of extensibility and data management, the OO

paradigm will be used to encapsulate the units of functionality, along with their data

definitions. This technique will achieve the required decoupling of core components

described in the Chapter 4 section 3.

Publisher/Subscriber Pattern

 All core parts of the machine learning pipeline share the common requirement of

receiving and sending streams of data to other parts. Add to this the requirements for

arbitrary save/load functionality at any point in the pipeline, chronological data integrity

and the management of stochastic input, and the need for an abstract, asynchronous

publisher becomes apparent. Thus, every component of the pipeline will inherit a suite of

functions for publishing. These functions will define a generic interface for the creation

of, consumption of, and subscription to the component’s data. This will give the user

maximum freedom to organize any set of subscribers to subscribe to different or the same

publishers at any time. Further, the publisher will provide functions to save its

publication to file, and to stream a stored publication from file.

35

Recursive Default & Top-Down Customizable Configuration

 Each publisher will recursively instantiate its own input sources with default

configurations to hide the details of earlier pipeline stages from later ones. In this way,

each stage of processing will be the user of earlier stages and will be used by later ones.

This allows future development to target any point in the pipeline, without being

concerned with the configuration of all prior stages. However, customized

experimentation may require non-standard configurations at any arbitrary point

throughout the pipeline. Researchers could meticulously alter the construction arguments

for each stage throughout the recursive decent of instantiation. However, it would be

much easier if at the stage of interest, all the needed configuration changes to earlier

stages could be executed in a simple list of instructions. This is accomplished via the

Singleton pattern, Figure 2, whereby the prior stages may be configured in a simple list of

instantiations that occur before the recursive default constructors are called. After the

novel configurations are instantiated, the recursive default instantiation will simply

retrieve the existing instance and not create the default instance. This allows the

researcher to override arbitrary configurations throughout the pipeline without having to

alter the code within each component, while maintaining the default hiding of prior

stages. Thus, the best of both worlds is obtained: minimal required configuration and

maximal flexibility to re-configure a custom run, all in one place.

36

Figure 2 – Recursive Default and Top-Down Custom Configuration of Components

37

Extensibility

 Perhaps the primary contribution of this entire work is its offer of an extensible

repository of research so that the field may systematically progress. Re-invention of the

wheel and a general lack of good comparative studies have been a problems in computer

science. As noted by Hamming “Indeed, one of my major complaints about the computer

field is that whereas Newton could say, "If I have seen a little farther than others, it is

because I have stood on the shoulders of giants," I am forced to say, "Today we stand on

each other's feet." Perhaps the central problem we face in all of computer science is how

we are to get to the situation where we build on top of the work of others rather than

redoing so much of it in a trivially different way. Science is supposed to be cumulative,

not almost endless duplication of the same kind of things.” [32] While this work does not

claim to have replicated a significant amount of research in the field, it hopes to lay the

ground work for a more effortless self-systemization of the field. Therefore, the following

techniques were selected to achieve the goal of making everything as extensible as

possible.

Inheritable Types

 A popular aspect of the OO paradigm is the notion of inheritable object types. The

pattern of inheritance is nearly identified with the notion of extensibility (e.g. Java

“extends” keyword). This supports the general purpose of a framework to abstract

pervasive functionality into one module form which others inherit. The specific details of

38

which functionality are deemed pervasive in this design are described below in section #.

Beyond propagating the common functions of the framework’s core, requiring new

modules to abide by this same typed structure (as opposed to procedural libraries or

scripts), will insure that future additions can always be extended in the same manner.

Aggregation

 Another benefit to extensibility from the OO paradigm is the design pattern of

aggregation. Aggregation allows for further optimizations of the more complex

components by defining auxiliary objects aggregated into a single larger object. This

allows complex stages of the pipeline itself to be independently improved, further

expanding opportunities for innovation. This pattern is used in the publisher to decouple

saving and loading, allowing alternate file I/O adapters to be made compatible with

AARF.

Interfaces Layers

 Three main interfaces define the major points of standardization in the pipeline. It is

speculated that these present the most popular division of effort regarding active

authentication.

a) Raw Resource Interface

39

 The peculiarities of collecting data on various hardware platforms and from

various devices are almost incidental to the goals of feature extraction, therefore,

the Raw Resource interface allows the search for features to abstract from the

problems of hardware differences, if the research so chooses. The raw resource

interface will mandate two functions: 1) the acquisition of a raw data stream, 2)

the conversion of each unit of data to a standard raw event format. The interface

will define the raw data format to include a minimum of the event’s value and

the time stamp in either a relative or absolute format.

b) Mono-modal Interface

 A mono-modal system is comprised of the desired preprocessing (Carving and

Windowing) feature extraction from sample data and the classification of the

extracted features. Because there is some potential for features to be mixed and

matched with different classifiers, a sub-interface defining the functionality of a

feature is included in this layer. The mono-modal interface will mandate three

functions: 1) the acquisition of a feature-vector and classifier(s), 2) the grading of

a single feature-vector’s sufficiency for classification (e.g. contains enough events

to merit a decision), 3) the measurement of characteristic FAR and FRR, given a

training and characterization data set. The interface will also define the format of

an extracted feature as including a minimum of the feature value and a label that

uniquely identifies the feature inside AARF. To support the standardization of

feature generation, the Mono-modal Layer will rely upon on feature extractor

modules to implement a sub-interface.

c) Feature Sub-interface

40

 The feature sub-interface will mandate three functions: 1) the acquisition of a

single sample, 2) the extraction of a feature value from a single sample, 3) the

provision of a unique feature-Label. The interface will also provide the definition

of an optional function to provide a list of possible feature-values on which to

base frequency distributions of the feature.

d) Multi-modal Interface

 Finally, the multimodal interface allows the highest level perspective of

extensibility, abstracting from even the mono-modal system’s internals. As more

mono-modal systems are added, the multi-modal interface will allow researchers

to easily extend existing multimodal systems either in quantity of modalities, or in

quality of logic via inheritance. These extensions will retain the same

interoperability with experimental evaluators and policy applications if they

consume this same interface. The multi-modal interface defines two functions: 1)

a simple getter to return a list of MonoModalSystems to be used as input, and 2) a

fusion Algorithm to be used to fuse the output of the input systems into one single

binary decision.

Performance

 The anticipated performance challenges of this framework do not immediately warrant

special attention (an average stream of cursor movement events yields less than

5MB/hr.). Nevertheless, as this framework intends to act as a repository of future efforts,

it must be considered that more data intensive inputs (e.g. cameras) may be explored with

41

it. Anticipations of future possibilities such as this, as well as some peculiarities of the

field itself, lead to the following design decisions regarding performance.

Singleton Pattern

 At each point in the pipeline, it may occur that multiple subsequent components need

to use the data produced at that layer. To conserve CPU time, it is beneficial that all

subsequent components simply register for their own subscription rather than instantiate a

new instance of the producing component. Otherwise, each publisher will instantiate

prior components it may depend on for its input and re-process the data to provide the

same output for each subscriber. Therefore, the primary components of the pipeline

should be Singletons.

Transparent File Management

 As noted above, the amount of data needed to run active authentication schemes does

not yet require special storage handling for scaling purposes. However, each publisher

will inherit a suite of file management functions to handle the automatic compression and

serialization of data. Furthermore, since multi-modal systems are likely to conduct

experiments on a corpora of multiple raw data sources, it is highly desirable that the

framework automates the process of saving and loading multiple files in the same

session. And so, a Session recorder and Session loader are required to relieve the

development of the pipeline from these issues of storage optimization.

42

Multi-threading

 In order to ensure not only good performance, but even the correct handling of

stochastic inputs, the framework will executionally isolate the publication of data from its

consumption. This is required to fulfill the requirement of logical consistence. Consider a

multimodal system fusing several mono-modal systems. If the a raw data source for one

of the mono-modal systems blocks waiting for an event, its mono-modal system should

register a null vote or otherwise signify that it has nothing to contribute to the multi-

modal system. Therefore, a single-threaded execution is not sufficient to properly

construct a multi-modal system. To simplify the amount of multithreading management

used, the suite of publishing functions will also contain the thread management logic.

Each publisher will dispatch a worker thread to process its input sources and output as

many copies of the publication as needed to give each subscribing component its own.

Generic Architecture

 Contemplating the deployment of the described design techniques gave rise to the core

generic architecture of AARF. At the center of the framework is the notion of a publisher

which takes other framework components as input streams, applies arbitrary logic to

transform the input into a publication, and serves the publication to an arbitrary number

of subscribers. Furthermore, each publisher should optionally be able to serialize its own

publication to file, as well as play a serialized publication back from the file, just as if it

43

was being computed for the first time. Finally, to prevent duplication of effort and to

maximize scalable performance, each type of publisher ought to be instantiated as a

Singleton, and spawn a worker thread to produce its publication.

44

Figure 3 – Generic Architecture

45

 Inheriting from this generic publisher, are specialized publisher types to provide

simplified and concrete APIs for extending and improving research efforts. Chief among

these types are the abstract classes defining the layered interfaces. While targeting the

Linux input subsystem, the Raw Resource Interface may potentially host more operating

systems in the future. For now it will abstract the generic form of a Linux input device

and reduce as much common logic from the collection and decoding of data as possible.

The Mono-modal Interface will support the generic tasks of integrated multiple feature-

types, manage the training of classifiers, and the computation of characteristic FAR and

FRR metrics. The Multi-modal Interface will manage the automation of training and

experimenting with Mono-Modal systems as well as the integration of user defined fusion

algorithms.

 Beyond the core machine learning pipeline components, auxiliary modules including

Session, Carving, Windowing, and Fusion Algorithms provide non-Singleton data

aggregators, adapters, and transformers that may be injected at multiple points throughout

the framework as desired. Because their tasks are either very generic (e.g. persists data to

files, or dividing into 30 sec windows) or orthogonal to the pipeline, they do not merit the

full blown performance and extension management of the publisher pattern. Concrete

examples of the rationale for these decisions are provided in Chapter 6.

46

Chapter 6 – Implementation

 The Implementation of AARF began with two pilot projects, one creating a mono-

modal system for mouse movements and the other attempting to classify StackOverflow

posts by author. Both uncovered valuable implementation techniques and data

representations for the active authentication realm, as well as some of the inconvenient

and unsustainable practices of ad-hoc scripting of research. While the AARF code base

was written entirely new, some of the logic of the two pilot projects was used to seed the

AARF system with example modules. It was precisely this experience of translating

research logic from a mass of scripts to a reusable and extensible framework that guided

the implementation of AARF. The implementation of the AARF framework, Figure 4,

executes the generic architecture put forth in Chapter 5. This Chapter details this

implementation in terms of the underlying technologies employed and the further detailed

design and formatting decisions made.

47

Figure 4 – Core AARF

48

Language

 The choice of language was made in consideration of the requirements of a

framework, the peculiar requirements of the field, the targeted level of user expertise, and

the availability of library resources. The Python language meets a great deal of these

criteria and was chosen for the following reasons:

a. Python is a relatively compact, high-level language which supports rapid

prototype development common in research. It has a minimum of peripheral

syntax and uses a nearly pseudo-code style.

b. Python supports a form of object-oriented development completed with

inheritance, virtual methods, and class/instance distinctions.

c. As an interpreted language, Python is highly portable, allowing for its widespread

use in both experimentation and data collection.

d. There exist substantial Python libraries for the analysis of human interaction

including natural language processing (NLTK) and machine learning in general

(Sci-kitLearn).

e. Python contains a native threading library.

f. Python offers a closure type of iteration pattern called “generators”. A generator

renders each element of a collection when called, while remembering an entire

execution context surrounding the formation of the collection. This allows for

pipelines of data processing to be written in an intuitive top-down consumer

perspective.

49

g. Python supports the mechanics of optional arguments. This feature is ideal to

offer the researcher invisible default management of configurations, while still

allowing targeted customization on demand.

h. Python supports a built-in unit testing framework.

 To support the longevity of AARF and some details regarding the management of

scoping, we selected Python 3.4. All development occurred under Visual Studio

Professional 2012 and 2013 using Python Tools for Visual Studio 2.1. This works

expects a basic working knowledge of the Python language, including its scoping, class

structure and module management. For more information regarding these topics, we refer

the reader to the Python documentation [33].

AARF Publisher

 The AARF Publisher is the heart of the framework’s implementation and, as such, is

tasked with making each product of the pipeline available to an arbitrary number of

subscribers, savable, and accessible in a non-redundant, global fashion. The AARF

Publisher accomplishes global, non-redundant access by inheriting from Singleton,

thereby allowing any module to instantiate an AARF Publisher and simply receives a

subscription of the singleton instance rather than truly creating another instance with all

the requisite processing threads and dependencies.

 The AARF Publisher has a very simple constructor possessing only two optional

arguments: savePath=None, loadPath=None, specifying the file path to which to

50

serialize the publication and from which to load it. AARF Publisher is an abstract class

requiring two methods to be overridden by its subclasses: generateInput(), and

getUniquePublisherLabel(). Upon construction, the AARF Publisher instantiates

its input sources via the first required overridden method generateInput(), and adds a

new Python queue to its list of subscriptions Figure 5. The method generateInput()

is expected to return a Python generator of input data from which the publisher will

compute its publication data. Construction does not actually begin publication. A

consumer must both construct, and then subscribe to an AARF Publisher instance.

 This distinction between construction and subscribing is vital to create a logical

window in which multiple consumers register their interest in a publication before the

publisher actually begins consuming its input in a separate thread. During live capture,

the late arrival of a few subscribers could be a trivial matter. But if the data is being

streamed from files, a significant part of a corpus may have passed in the time an

asynchronous subscription is made. For the sake of live addition subscriptions, the AARF

Publisher simply begins sending late subscribers whatever data it is currently processing

– it has no notion of what the “first” datum of input data was, and so cannot bring a late

subscriber up to speed.

 Not only does this window simplify the initialization logic, it also prevents the actual

recursive instantiation of the publisher’s inputs until a subscriber actually needs the

publication. This is a helpful distinction made use of by auxiliary services (see Session

below) which may indiscriminately construct publishers, but not actually activate them

all. This distinction will also allow for future a validation process to execute after

construction, but before the actual execution of pipeline. An exception to this distinction,

51

occurs when the AARF Publisher is constructed with a savePath, in which case it

begins streaming its publication to file immediately. Presumably this means the publisher

is not also loading its data from a file and so the problem of late subscribers does not

arise. During live capture, the late arrival of a few subscribers could be a trivial matter.

But if the data is being streamed from files, a significant part of a corpus may have

passed in the time an asynchronous subscription is made. For the sake of live addition

subscriptions, the AARF Publisher simply begins sending late subscribers whatever data

it is currently processing – it has no notion of what the “first” datum of input data was,

and so cannot bring a late subscriber up to speed.

 Calling the subscribe(useGen=True) method initiates the publisher’s

consumption of input data and production of publication data in a separate worker thread

Figure 6. This thread calls the optionally overridden method processInputUnit()

which transforms the input data into publication data. By default,

processInputUnit() does nothing.

 Subscribing to a publisher returns a Python generator which supplies the publication

data. Optionally, a Python queue may be returned (useGen=False), which allows the

consumer to directly manage reading the subscription queue. This option is crucial to

allow consumers to not block on the delayed publication of data or to set custom timeouts

when acquiring publication data.

 The second required overridden method, getUniquePublisherLabel(), is simply

getter that returns a string uniquely identifying the publisher. This name will be used to

annotate data saved to file and to load data. Although the class name could have been

52

used, this offered the subclass designer flexibility in augmenting the name with module-

load time configuration parameters. Since each publisher is a singleton, runtime

parameters will not differentiate publishers in the same runtime environment, but this

allows for specific configuration information to be saved when data is saved.

53

Figure 5 – Publisher Instantiation

54

Figure 6 – Subscribing to Publication

55

Saver

 The AARF Publisher aggregates two auxiliary classes: Saver and Loader. By simply

registering itself as a subscriber, the Saver mimics the Python queue, thereby tapping into the

AARF Publisher’s worker thread’s execution to drive the serialization process. The Saver class

implements a simple serialization pipeline shown in Figure 7, using the lzma compression library

and Python’s pickle serialization. Data recorded in an AARF session is formatted as

compressed text rather than the original binary structure of numeric values used by

Linux. Text is human readable when uncompressed and it is less susceptible to platform

specific data formats. This makes AARF corpora more portable and more accessible to

manual inspection.

56

Figure 7 – Saver Dataflow

57

Loader

 The Loader class assists AARF Publisher by opening serialized AARF data at the file

location specified by the publisher’s load path argument. It simply inverts the

serialization of the Saver, first decompressing the lzma file and then unpickling each data

object. The Loader automatically detects if the load path points to a single AARF file, an

AARF Session load directory (discussed below in Session) containing multiple AARF

files, or a directory containing multiple AARF Session load directories. In each case, the

Loader searches for AARF files bearing the name of its publisher. If multiples are found,

it will load that data from each file in turn.

Input Device

 The primary embodiment of the Raw Resource Interface is the InputDevice module.

We decided not to call it AARF Raw Resource or anything more generic, because it is

specifically designed to access the Linux input subsystem. The Device class is an AARF

Publisher that interfaces with the Linux input event files to decode input events from HCI

peripherals such as mice, touchpads, keyboard, touchscreens, trackballs, etc. The Device

class is easily extended by simply constructing a subclass with the desired input event file

descriptor. The InputDevice module also acts as the framework’s repository of Linux

specific data format and constant values, enabling any subclass of Device to convert the

binary event structure of type, code, value, second and microseconds into an easily

58

manipulated Python dictionary. As an AARF Publisher, any of Device’s subclasses may

be loaded or serialized and many serve an arbitrary number of subscribers.

Session

 An AARF Session refers to a group of AARF files saved from publishers running

concurrently. AARF supplies two generic modules for session management:

SerializedSessionRecorder, and SerializedSessionLoader. The SerializedSessionLoader

class has one abstract method startSessionSources(self, folderPath) , which

the subclass uses to define which publishers to include in the session recorded. The

folderPath argument specifies the savePath to construct each of the publisher instances

being returned by startSessionSources. The framework is seeded with one

Serialized Session Recorder “AllRaw” which serializes a session containing output from

the KeyEvents, PointingCoordsEvents and PointingButtonEvents or PointingCombine if

PointingCoordsEvents and PointingButtonEvents are unavailable.

SerializedSessionRecorder also expects to find a Serials.txt file containing any number of

newline delimited 10-digit serial numbers. These serial numbers are used to tag each

session with an associated authentication identity. When a SerializedSessionRecorder is

launched, it presents a simply GUI to accept a serial number typed by the user. If the

typed serial number is found among the preloaded numbers, the session recording begins.

The user may stop session recording through the GUI at any time. Once a session is

completed, the SerializedSessionRecorder collects all the generated AARF Files and adds

59

them to a single archive tar archive, which, in turn is also compressed with lzma. This

allows corpora to be easily built as a simple collection of AARF Session Archives.

 The SerializedSessionLoader class reverses the process of the Recorder, but first

creates an AARF Session load folder to which it extracts all the AARF files contained in

the session. Since AARF publishers have no knowledge of serial numbers, the

SerializedSessionLoader tags all extracted AARF files with the session’s serial number to

prevent confusion.

 A more powerful version of SerializedSessionLoader is the SerializedCorpusLoader

class, which decompresses multiple AARF Session archives and discovers all sessions

and unique serial numbers. Once the SerializedCorpusLoader has decompressed a corpus,

it may be queried to load all sessions belonging to a target serial number or all sessions

not belonging to a target serial number. This assists the automation of cross fold

validation with the minimal amount of file rearrangement.

Carvers

 There is nothing special about the implementation of a Carver in AARF, other than it

inherits from AARF Publisher. Notionally, Carvers should aim at supplying the

framework with intuitive units of data that would be suitable subjects for feature

extraction. But the concrete form such units should take on is so varied that no common

interface was defined for them. It is arguable that Cravers must always provide a standard

timestamp to identify their publication, but even this was left for future thought. The

60

framework was seeded with two Carvers: PointingActions and Keystrokes. A pointing

action is a single intentional group of pointing device events (e.g. a deliberate motion and

click to close a window). A keystroke is the constellation of events required to print a

given character to the screen. For most characters, this is a combination of SHIFT, CAPS

LOCK, or NUM LOCK, and a down event paired with an up event for the targeted key.

The implementation of both Carvers is far from comprehensive for rendering a complete

palette of possible intentional groups, but they cover most common actions.

Feature Extractors

 Feature extraction is the core human contribution to the machine learning process. As

such, it is expected that the majority of future research in active authentication will

revolve around the invention and testing of features. To support this effort, the AARF

Feature Extractor sub interface attempts to relieve the researcher from the handling of

feature labeling, representation and integration with classification logic, as shown in

Figure 8. Ideally the AARF Feature Extractor only requires the researcher to define two

methods: getSamples(self) and extract(). The former defines the framework

sources providing the samples to extract from, while the latter defines how to extract a

feature value from a sample.

 Optionally, the researcher may inform AARF that all extraction and labelling will be

accomplished in getSamples(self). However, since method is bound to the instance

of the feature extractor and expects external input source, unit testing extraction will

require a heavy weight setup. Defining extract(), on the other hand, was specifically

61

designed not to be a bound instance method. Therefore, unit testing the correctness of

extraction logic will not require the simulation of the entire feature extractor object, but

will simply test individual samples. All AARF Feature Extractors support a flag to

request every feature value to be tagged with a timestamp. If researchers do not override

extract(), it is their responsibility to tag the Linux event style time to each feature

value published.

 Finally, the researcher may optionally define a getPossibleValues() method to

return a list of values the feature should be quantized into if windowing into frequency

distributions is to be supported.

62

Figure 8 – Feature Extractor

63

Windowers

 Windowing modules simply take an AARF publication as input and generate a stream

of lists contain nothing but data from the original publication. Each list contains a

“window” of data defined by some windowing metric. We have seeded AARF with a

temporal windowing module, but the metric by which to window may be arbitrary. The

only design restriction that window modules must abide by is that they must accept an

AARF Publisher as input and generate Python lists as output. Our temporal windower

requires that input data bear time information as defined by the AARF Feature Extractor.

Windowers are not AARF Publishers since their logic is generic and does not represent a

unique or novel contribution to the field. Furthermore, since they may be interposed

between feature extractors and mono-modal systems or, in principle, any consecutive

pipeline components, meaningful loading of their serialized output would require

knowing both the publisher they were applied to as well as their own configuration. This

is a level of sophistication in the loading of serialized AARF data than was deemed

presently feasible.

Classifiers

 AARF is not intended to compete with machine learning libraries as such. Many

sophisticated, well maintained, and powerful libraries, frameworks, and even GUI

applications are readily available at no cost. WEKA [29], NLTK [34], SCIKIT-Learn

[35], JStylo [36], and others provide a vast amount of resources to research in the way of

feature management, classifier tuning, experimentation and pre-fabricated end-end

64

machine learning systems. AARF intends to be the client of such resources and provide a

repository of past experimentation built with the services such libraries provide. However

AARF also protects the researcher from two extremes.

 First, there is the tyranny of choice involved with powerful but complex libraries such

as WEKA and SCIKIT-Learn. For those willing to take on a higher learning curve or

already having expertise in machine learning, nothing stops them from dropping their

optimized classifier into their own Mono-model System. But for those more interested in

rapidly experimenting with tweaking features already classified by prior research, a

lighter-weight minimum configuration is desirable.

 Second, there is the overly targeted pre-arrangement of features, classifiers and

evaluation techniques. GUI tools like JStylo offer wonderful simplification of pipeline

configuration for writing analysis, but at the same time, the end user is not expected to be

a software designer. While both the more complex and more simplified libraries allow for

their own forms of simplification or code-level customization, AARF intends to provide

the middle ground in one consistent framework. Of all the surveyed machine learning

frameworks, we deem NLTK to have struck this balance best with its wrappers for the

SCIKIT-Learn library. Of course NLTK is targeted for natural language processing,

which, while a valuable piece of active authentication, is narrower than the data types

considered by AARF. Therefore, we decided to model our integration of classifiers after

that of NLTK. Specifically, the Mono-modal Interface integrates with the NLTK

interface for classifier interaction: training is handled internally by the classifier and

feature vectors are expected to be labelled as Python dictionaries.

65

Mono-Modal Systems

 The AARF Mono-modal System module is an AARF Publisher that supports the

creation of a trained classifier according to the NLTK style wrapper discussed above. The

researcher is responsible to define the framework source from which to acquire feature

vectors, the classifier which the system uses, and how to compose a feature vector from

the feature sources defined. After specifying these things, the researcher may load the

system with positive and negative training samples and proceed to train the system, as

shown in Figure 9.

 In keeping with the requirement for logical consistency, positive and negative training

samples are loaded through the framework itself. This requires either a live capture to be

coordinated between the call of loadPositive() and loadNegative(), or more

conveniently, load AARF Session(s) of positive data, followed by a load of AARF

Session(s) of negative data. Since these separate loads will regenerate all affected

publishers in AARF, this operation ought to be coordinated at the final stage of the

framework: either in a Multi-modal System or in a script governing the use of the entire

AARF instance.

 Once the system is loaded with positive and negative samples, the train(self,

train=3, crossVal=0, test=1, foldCycle=0) method is used to specify how to

train the system and whether to compute characteristic data on a cross-validation fold.

The values for the train, crossVal, and test arguments specify the relative quantities

of data dedicated to each set. Only train must be a non-zero integer. The rest may be

zero or some other positive integer. The foldCycle argument specifies the ordering of

66

folds throughout the three sets. If all the data were divided into 4 folds, fold-cycle 0

would allocate folds 1-3 to the training set and fold 4 to the test (nothing to cross

validation since its argument is 0). Fold-cycle 1 would allocate folds 2-4 to the training

set and fold 1 to the test. Fold-cycle 2 would allocate folds 3, 4 and 1 to the training set

and fold 2 to the test etc… This cycling of folds is not guaranteed to exhaust all

permutations, but it is deemed a suitable formula for fairly assessing the system on the

entire corpus.

 After acquiring a trained classifier with the training set, the system checks if the cross-

validation set is nonempty. If so, a characterization test of the system’s FAR and FRR are

computed on the cross-validation set. After characterization, the system is ready to accept

subscriptions to its publication of decisions on the test set if present, or if not, defaults to

classifying live data. The FAR and FRR results of characterization are cached in the

system’s instance field for the use of reporting or multi-modal logic.

67

Figure 9 – MonoModal System

68

Multi-Modal Systems

 The AARF Multi-Modal System class defines a single authentication system relying

on the output of several mono-modal systems. Since the output is relatively simple, this

class does not merit inheriting from AARF Publisher. However, it is defined as an

abstract class so that configurations will be preserved in subclasses.

 To use an AARF Multi-Modal System, the researcher specifies the location of an

AARF corpus which is merely a folder containing multiple serialized AARF Session

Archives, as a super constructor argument. The mono-modal systems to instantiate are

defined in the overridden method getMonoModalSystems(). The desired distribution

of data into train, cross-validation and test sets as super constructor arguments, and the

fusion algorithm to employ is defined in the overridden method fuseDecisions().

 Since AARF is targeting the development of multi-modal approaches, training session

data maybe defined at the multimodal level. This way a single AARF Session can be used

to train all mono-modal systems in parallel on the same training corpus, as shown in

Figure 10. The automated initialization of the system extends the training of all the mono-

modal systems to train and compute characteristic FAR and FRR values for all fold

cycles for all user serial numbers, each chosen in turn to be the “authentic” user. Once

this comprehensive testing is complete, the fully trained and characterized system

publishes its decisions on the test set if present or, if not, on live data.

69

Figure 10 – MultiModal System

70

Chapter 7 – Validation

 The validation of this work’s contributions comes in two forms. First, there is the

validation of the design of the framework itself, in light of the requirements specified in

Chapter 4. Second, there is the practical validation of the implementation of the design,

both regarding its fidelity to the design as well as the usual metrics of correctness and

performance. This chapter documents the validation techniques and tests applied to the

AARF framework.

Requirement Validation

 Chapter 4 lays out the requirements we set for ourselves as needful in the field of

active authentication and proper to the scope of responsibility of a generic framework.

Therefore, we shall consider each in turn and assess the merits and limitations of the

proposed design.

Extensibility

 AARF deploys the OO-paradigm to support the extension of core framework modules

as well as any prior research inheriting from the core. To evaluate the execution of the

design, each major AARF extension point is here considered from the perspective of an

AARF contributor.

71

 Figure 11 – Extending AARF Publisher Example

i
m
p
o
r
t

A
A
R
F
.
A
A
R
F
P
u
b
l
i
s
h
e
r

 c
l
a
s
s

M
y
A
A
R
F
P
u
b
l
i
s
h
e
r
(
A
A
R
F
.
A
A
R
F
P
u
b
l
i
s
h
e
r
.
A
A
R
F
P
u
b
l
i
s
h
e
r
)
:

"
"
"
T
h
i
s

i
s

a

t
e
m
p
l
a
t
e

o
f

a
n

i
n
s
t
a
n
t
i
a
b
l
e

A
A
R
F

p
u
b
l
i
s
h
e
r
.

C
o
p
y

t
h
i
s

b
o
i
l
e
r

p
l
a
t
e

a
n
d

r
e
m
o
v
e
/
r
e
p
l
a
c
e

e
v
e
r
y

"
m
y
X
X
X
"

i
d
e
n
t
i
f
i
e
r
.

U
s
e

c
t
r
l
-
F

"
m
y
"

c
a
s
e
-
i
n
s
e
n
s
i
t
i
v
e

t
o

m
a
k
e

s
u
r
e

y
o
u

d
o

n
o
t

l
e
a
v
e

a
n
y

p
l
a
c
e
h
o
l
d
e
r
s
"
"
"

d
e
f

_
_
n
e
w
_
_
(
c
l
s
,

m
y
R
e
q
A
r
g
1
,

m
y
R
e
q
A
r
g
2
,

s
a
v
e
P
a
t
h
=
N
o
n
e
,

l
o
a
d
P
a
t
h
=
N
o
n
e
,

m
y
O
p
t
A
r
g
1
=
N
o
n
e
,

m
y
O
p
t
A
r
g
2
=
N
o
n
e
)
:

#
M
U
S
T

P
U
T

Y
O
U
R

C
L
A
S
S

N
A
M
E

I
N

T
H
I
S

s
u
p
e
r

C
A
L
L

r
e
t
u
r
n

s
u
p
e
r
(
M
y
A
A
R
F
P
u
b
l
i
s
h
e
r
,

c
l
s
)
.
_
_
n
e
w
_
_
(
c
l
s
,

s
a
v
e
P
a
t
h
,

l
o
a
d
P
a
t
h
)

d
e
f

_
_
i
n
i
t
_
_
(
s
e
l
f
,

m
y
R
e
q
A
r
g
1
,

m
y
R
e
q
A
r
g
2
,

s
a
v
e
P
a
t
h
=
N
o
n
e
,

l
o
a
d
P
a
t
h
=
N
o
n
e
,

m
y
O
p
t
A
r
g
1
=
N
o
n
e
,

m
y
O
p
t
A
r
g
2
=
N
o
n
e
)
:

i
f

n
o
t

h
a
s
a
t
t
r
(
s
e
l
f
,

"
I
N
I
T
I
A
L
I
Z
E
D
"
)
:

#

d
o

y
o
u
r

i
n
t
i
a
l
i
z
a
t
i
o
n

l
o
g
i
c

p
r
i
o
r

t
o

p
a
r
e
n
t

i
n
i
t
i
a
l
i
z
a
t
i
o
n

h
e
r
e

s
u
p
e
r
(
)
.
_
_
i
n
i
t
_
_
(
s
a
v
e
P
a
t
h
,

l
o
a
d
P
a
t
h
)

#

d
o

y
o
u
r

i
n
t
i
a
l
i
z
a
t
i
o
n

l
o
g
i
c

a
f
t
e
r

t
o

p
a
r
e
n
t

i
n
i
t
i
a
l
i
z
a
t
i
o
n

h
e
r
e

#

M
U
S
T

I
M
P
L
E
M
E
N
T

d
e
f

g
e
t
U
n
i
q
u
e
P
u
b
l
i
s
h
e
r
L
a
b
e
l
(
s
e
l
f
)
:

"
"
"
R
e
t
u
r
n
s

a

d
e
s
c
r
i
p
t
i
v
e

s
t
r
i
n
g

t
h
a
t

u
n
i
q
u
e
l
y

i
d
e
n
t
i
f
i
e
s

t
h
i
s

p
u
b
l
i
s
h
e
r
"
"
"

r
a
i
s
e

N
o
t
I
m
p
l
e
m
e
n
t
e
d
E
r
r
o
r

#

M
U
S
T

I
M
P
L
E
M
E
N
T

d
e
f

g
e
n
e
r
a
t
e
I
n
p
u
t
(
s
e
l
f
)
:

"
"
"
M
a
k
e

g
e
n
e
r
a
t
o
r

o
f

i
n
p
u
t

d
a
t
a

f
r
o
m

o
t
h
e
r

p
u
b
l
i
s
h
e
r
s

a
n
d
/
o
r

f
i
l
e
s
.

T
o

b
e

i
m
p
l
e
m
e
n
t
e
d

b
y

s
u
b
c
l
a
s
s
e
s
.
"
"
"

r
a
i
s
e

N
o
t
I
m
p
l
e
m
e
n
t
e
d
E
r
r
o
r

#

O
P
T
I
O
N
A
L

M
E
T
H
O
D

-

w
i
l
l

b
e

c
a
l
l
e
d

o
n

e
v
e
r
y

d
a
t
u
m

g
e
n
e
r
a
t
e
d

b
y

g
e
n
e
r
a
t
e
I
n
p
u
t
(
)

d
e
f

p
r
o
c
e
s
s
I
n
p
u
t
U
n
i
t
(
s
e
l
f
,

i
n
p
u
t
U
n
i
t
)
:

"
"
"
"
D
e
f
i
n
e

t
h
e

p
r
o
c
e
s
s
i
n
g

t
o

b
e

d
o
n
e

o
n

e
a
c
h

i
n
p
u
t

u
n
i
t
"
"
"

r
e
t
u
r
n

i
n
p
u
t
U
n
i
t

#

d
e
f
a
u
l
t
:

d
o

n
o
t
h
i
n
g

72

 To add a new pipeline interface, serializable data source, or Carver, contributors ought

to extend the AARF Publisher class. As shown in Figure 11, there is a fair amount of

boilerplate Python code handling the construction and initialization of a subclass.

However, there is only one required addition to the construction code: forwarding the

subclass name in the call to super() inside __new__(). Otherwise, the contributor is free to

add as many required or optional construction arguments2, and specify initialization code

either before or after AARF Publisher’s initialization or both. The contributor must

specify a unique string identifying the new publisher to be returned by

getUniquePublisherLabel(). Arbitrary logic to collect input data for the publication is

placed inside generateInput(), which must return a Python generator which generates

each unit of input data. Optionally, processInputUnit() may be defined to be

automatically invoked on each input datum generated. Overall this extension interface

provides effective extensibility of the framework with only a moderately complex

inheritance process.

 To add a new Linux input device to AARF, the contributor should extend the Device

class. The modification of boilerplate inheritance code is trivial, as highlighted in Figure

12. First, the contributor must pass the name of the subclass in three places, two inside

the constructor __new__() and one in the initialization function __init__(). Second, the

deviceNumber argument should be exposed (for future auto-detection), and preset to

the default input event file number for the new device. This default should be set as a

constant value at the module level and ideally should be imported from the InputDevice

2 The arbitrary addition of construction and initialization arguments is valid for any extension discussed

here and so will not be illustrated again. The only requirement is that the construction and initialization

argument lists be identical and that default-valued arguments come last.

73

module so that all input constants reside in one location. Lastly, if possible, the touch()

method should be implemented to support programmatic generation of events. This

optional method is helpful for diagnostic and recording purposes.

74

Figure 12 – Extending Device

i
m
p
o
r
t

A
A
R
F
.
R
a
w
D
a
t
a
.
I
n
p
u
t
D
e
v
i
c
e

 M
Y
D
E
V
I
C
E
_
N
O

=

N
o
n
e

#
s
h
o
u
l
d

b
e

a
d
d
e
d

t
o

t
h
e

I
n
p
u
t
D
e
v
i
c
e

m
o
d
u
l
e

 c
l
a
s
s

M
y
D
e
v
i
c
e
(
A
A
R
F
.
R
a
w
D
a
t
a
.
I
n
p
u
t
D
e
v
i
c
e
.
D
e
v
i
c
e
)
:

"
"
"
P
u
b
l
i
s
h
e
s

M
y

d
e
v
i
c
e
s

e
v
e
n
t
s

d
e
v
i
c
e
N
u
m
b
e
r

-
-

t
h
e

e
v
e
n
t

f
i
l
e

n
u
m
b
e
r

(
u
s
u
a
l
l
y

=

?
)
"
"
"

d
e
f

_
_
n
e
w
_
_
(
c
l
s
,

d
e
v
i
c
e
N
u
m
b
e
r
=
M
Y
D
E
V
I
C
E
_
N
O
,

s
a
v
e
P
a
t
h
=
N
o
n
e
,

l
o
a
d
P
a
t
h
=
N
o
n
e
)
:

r
e
t
u
r
n

s
u
p
e
r
(
M
y
D
e
v
i
c
e
,

c
l
s
)
.
_
_
n
e
w
_
_
(
c
l
s
,

"
M
y
D
e
v
i
c
e
"
,

d
e
v
i
c
e
N
u
m
b
e
r
,

s
a
v
e
P
a
t
h
,

l
o
a
d
P
a
t
h
)

d
e
f

_
_
i
n
i
t
_
_
(
s
e
l
f
,

d
e
v
i
c
e
N
u
m
b
e
r
=
M
Y
D
E
V
I
C
E
_
N
O
,

s
a
v
e
P
a
t
h
=
N
o
n
e
,

l
o
a
d
P
a
t
h
=
N
o
n
e
)
:

i
f

n
o
t

h
a
s
a
t
t
r
(
s
e
l
f
,

"
I
N
I
T
I
A
L
I
Z
E
D
"
)
:

s
u
p
e
r
(
)
.
_
_
i
n
i
t
_
_
(
"
M
y
D
e
v
i
c
e
"
,

d
e
v
i
c
e
N
u
m
b
e
r
,

s
a
v
e
P
a
t
h
,

l
o
a
d
P
a
t
h
)

d
e
f

t
o
u
c
h
(
s
e
l
f
)
:

"
"
"
P
r
o
g
r
a
m
m
a
t
i
c
a
l
l
y

g
e
n
e
r
a
t
e

a
n

i
n
p
u
t

d
a
t
u
m
"
"
"

#
T
O
D
O

p
a
s
s

75

 To add a new feature extractor to AARF, the contributor should extend the AARF

Feature Extractor class. The contributor has two major options for generating a feature

value. First, all input sources, feature computation, and feature labelling may be handled

directly in the getSamples() method. If this option is chosen, a self.sendSample flag

should be set to True to inform AARF that the resulting sample should be treated as

feature values. Additionally, the self.autoLabel flag should be set to false if custom

feature labels are to be applied.

 The second option is to implement getSamples() to only generate sample data which

must, in turn, have the feature values extracted from them. This is automatically

accomplished by implementing the extract() method. The benefit of splitting the

extraction process into two methods is two-fold. First, it allows AARF to take

responsibility for packaging the feature value into the NLTK feature vector format as a

Python dictionary. The default label used by AARF is the unique publisher label. Second,

it allows for easier unit testing since extract() is not an instance method. This way the

core logic of the feature extraction may occur by simply invoking extract() on the class

object.

 Arguably these options complicate the extension process beyond an optimally usable

framework. While this interface presents a flexible and rough start, it needs further

refinement to meet the ease of extensibility originally intended.

76

Figure 13 – Extending AARF Feature Extractor

class MyFeature(AARF.AARFPublisher.AARFPublisher):
 """Provide Logic to extract a feature"""

 def __new__(cls, savePath=None, loadPath=None, tagTime=False)
 return super(MyFeature, cls).__new__(cls, savePath, loadPath)

 def __init__(self, savePath=None, loadPath=None, tagTime=False)
 if not hasattr(self, "INITIALIZED"):
 self.sendSample = ?
 self.autoLabel = ?
 super().__init__(savePath, loadPath)

 def getUniquePublisherLabel(self):
 return "MyFeature"

 def getSamples(self):
 """Define input source and formation of a sample to extract from."""

 def extract(sample):
 """Define logic to extract feature value from sample."""

 def getPossibleValues(self):
 """List of all possible values that could be returned.
 This is used for building frequency distributions."""
 values = []
 return values

77

 To add a new mono-modal system, a contributor should extend the AARF

MonoModalSystem class. The contributor need only forward the subclass name and the

classifier of choice to the parent’s constructor and initialization, shown in Figure 14.

Classifiers should comply with the NLTK style interface providing, at a minimum,

methods to train a new classifier on a list of labelled feature vectors, and a method to

classify a list of unlabeled vectors. The only special method to be implemented is

getFeatureVectors(), which defines the feature sources and returns a generator of feature

vectors to be classified.

78

Figure 14 – Extending AARF MonoModalSystem

import AARF.MonoModalSystems.AARFMonoModalSystem
Class MyMMS(AARF.MonoModalSystems.AARFMonoModalSystem.AARFMonoModalSystem):
 """A classification system based on related modalities of HCI"""

 def __new__(cls, savePath=None, loadPath=None):
 return super(MyMMS, cls).__new__(cls, nltk.classify.NaiveBayesClassifier,
savePath, loadPath)

 def __init__(self, savePath=None, loadPath=None):
 if not hasattr(self, "INITIALIZED"):
 super().__init__(nltk.classify.NaiveBayesClassifier, savePath, loadPath)

 def getUniquePublisherLabel(self):
 return "MyMMS"

 def getFeatureVectors(self):

79

 To add a new multi-modal system to AARF, the contributor extends the AARF

MultiModalSystem class. Again, the required information is minimal. Since AARF

MultiModalSystem does not inherit from AARF Publisher, there is no requirement to

specify explicit constructors or initialization logic as shown in Figure 15. However, if the

constructors are overridden, they should call their super counterparts after executing

custom logic. There are only two methods to implement. The first is

getMonoModalSystems(), which defines the mono-modal systems to draw classifications

from. This is also the place to override any component of the AARF framework. This

method will be called on every session load made during the training of the mono-modal

systems, ensuring that custom configurations remain in place. The second method to be

overridden is fuseDecisions(). This method defines the fusion algorithm to be invoked on

the stream on mono-modal classifications from the test set or from live data.

80

Figure 15 – Extending AARF MultiModalSystem

import AARF.MultiModalSystems.AARFMultiModalSystem

class MyMuMS(AARF.MultiModalSystems.AARFMultiModalSystem.AARFMultiModalSystem):
 """A system combining multiple modes of HCI classification for the same
 Decision."""

 def getMonoModalSystems(self):
 """Choose the Mono-Modal Systems you want to include.
 return as a list of AARFMonoModalSystems"""
 systems = []

 return systems

 def fuseDecisions(self):
 """Combine the output of all input systems
 to render a single binary decision per input unit"""
 raise NotImplementedError

81

 As demonstrated at each of these extension points, the requirement of extensibility is

met with a moderately complex interface. However, the benefits of retaining research

logic in an interchangeable framework is worth the overhead presented here. As with any

design execution, the ability to extend AARF could be refined, but its initial state satisfies

a first attempt.

Maximal Data Integrity

 The AARF design of forming a continuous pipeline from the raw data collection to

classification is naturally conducive to a simple series of audit points along the path of

processing to ensure data integrity. However, the windowing algorithm, seeded with the

framework, uncovered a special case which bears mentioning.

 Windowing by time will not account for latency of prior processing stage. To allow

the researcher maximum freedom to window at any stage, the TimeWindows module

may intercept data after an arbitrary number of processing steps have already occurred.

The windowing algorithm does not have any framework-wide knowledge of when raw

data was collected. The original collection timestamp is not observed until the data’s

effect reaches the stage at which the windower was inserted. Therefore, sufficient

processing latency may cause data to miss the window it belongs to based on its

collection timestamp. To avoid this, all temporal windowing modules should be made

aware of the collection times of raw data as soon as they are acquired by AARF. This

instrumentation is left for a future effort. The validation of AARF’s implementation

82

considered below does not carve windows from positive and negative data shuffled

together, thereby avoiding this drawback.

 Other than special aggregation functions like windowing, the handling of data is

primarily in the hands of the research logic, except during serialization and loading. As

mentioned above, serialization is based on compressed text data. Automated detection of

publisher shutdown warns the Saver to properly close open files, and Python thread locks

are used to protect file I/O from asynchronous disruption. Similar locks are used to

ensure that subscribers are guaranteed to receive an End-Of-Data signal no matter when

they successfully register with a publisher.

Decoupled Interpretation of Data

 The ease of acquiring a Python generator from any point in the pipeline, along with

the ability to customize each is illustrated by six example use cases in Figure 16. The core

inheritance from AARF Publisher ensures that raw data, carved data, feature values,

windows of data, and mono-modal classifications can all be streamed via generator.

83

Figure 16 – User's Perspective of AARF

#

E
X
A
M
P
L
E

#
1

A
c
q
u
i
r
e

s
t
r
e
a
m

o
f

l
i
v
e

k
e
y
e
v
e
n
t
s

i
n

2

l
i
n
e
s

k
e

=

A
A
R
F
.
R
a
w
D
a
t
a
.
K
e
y
b
o
a
r
d
.
K
e
y
E
v
e
n
t
s
(
)

k
e
y
s
t
r
o
k
e
s

=

k
e
.
s
u
b
s
c
r
i
b
e
(
)

#
g
e
t

g
e
n
e
r
a
t
o
r

 #

E
X
A
M
P
L
E

#
2

S
a
v
e

a

l
i
v
e

f
e
a
t
u
r
e

s
t
r
e
a
m

t
o

f
i
l
e

-

1

l
i
n
e

p
d

=

A
A
R
F
.
F
e
a
t
u
r
e
E
x
t
r
a
c
t
o
r
s
.
K
e
y
s
.
K
e
y
D
u
r
a
t
i
o
n
s
.
P
r
e
s
s
D
u
r
a
t
i
o
n
(
s
a
v
e
P
a
t
h
=
"
.
/
M
y
D
u
r
a
t
i
o
n
s
"
)

 #

E
X
A
M
P
L
E

#
3

L
o
a
d

c
a
r
v
e
d

d
a
t
a

f
r
o
m

f
i
l
e

-

2

l
i
n
e
s

c
h
a
r
P
u
b
l
i
s
h
e
r

=

A
A
R
F
.
C
a
r
v
e
r
s
.
K
e
y
s
t
r
o
k
e
s
.
C
h
a
r
a
c
t
e
r
s
(
l
o
a
d
P
a
t
h
=
"
.
/
C
h
a
r
a
c
t
e
r
s
_
2
0
1
5
0
4
2
2
1
5
1
0
1
1
.
a
a
r
f
"
)

c
h
a
r
a
c
t
e
r
s

=

c
h
.
s
u
b
s
c
r
i
b
e
(
)

#
g
e
t

g
e
n
e
r
a
t
o
r

 #

E
X
A
M
P
L
E

#
4

A
c
q
u
i
r
e

s
t
r
e
a
m

o
f

3
0
-
s
e
c

w
i
n
d
o
w
s

o
f

c
h
a
r
a
c
t
e
r
s

1

l
i
n
e

p
l
u
s

1

a
b
o
v
e

w
i
n
d
o
w
s

=

T
W
.
T
i
m
e
W
i
n
d
o
w
s
(
c
h
a
r
P
u
b
l
i
s
h
e
r
,
d
u
r
a
t
i
o
n
=
3
0
)
.
s
u
b
s
c
r
i
b
e
(
)

 #

E
X
A
M
P
L
E

#
5

#
L
o
a
d

a

s
e
s
s
i
o
n

i
n
t
o

A
A
R
F

-

1

l
i
n
e

(
p
r
e
-
l
o
a
d
s

m
u
l
t
i
p
l
e

p
u
b
l
i
s
h
e
r
s

t
o

r
e
a
d

f
r
o
m

f
i
l
e
s
)

s
e
s
s
i
o
n

=

A
A
R
F
.
S
e
s
s
i
o
n
.
S
e
r
i
a
l
i
z
e
d
S
e
s
s
i
o
n
L
o
a
d
e
r
.
S
e
r
i
a
l
i
z
e
d
S
e
s
s
i
o
n
L
o
a
d
e
r
(
"
a
n
g
r
y
b
i
r
d
s
_
s
e
r
i
a
l
_
.
t
a
r
.
x
z
"
)

 #

E
X
A
M
P
L
E

#
6

#
T
r
a
i
n

a

M
u
l
t
i
-
m
o
d
a
l

s
y
s
t
e
m

o
n

a

g
i
v
e
n

c
o
r
p
u
s

w
i
t
h

s
p
e
c
i
f
c

p
a
r
a
m
e
t
e
r
s

#
A
f
t
e
r

t
r
a
i
n
i
n
g

t
h
e

c
r
o
s
s
-
v
a
l
i
d
a
t
i
o
n

w
i
l
l

r
e
p
o
r
t

t
r
a
i
n
e
d

a
c
c
u
r
a
c
y

#
S
i
n
c
e

t
h
e
r
e

i
s

n
o

t
e
s
t

s
e
t
,

t
h
e

s
y
s
t
e
m

w
i
l
l

b
e
g
i
n

c
l
a
s
s
i
f
y
i
n
g

l
i
v
e

d
a
t
a

a
f
t
e
r

t
r
a
i
n
i
n
g

i
s

c
o
m
p
l
e
t
e

s
y
s
t
e
m

=

F
1
5
9
L
.
F
r
i
d
m
a
n
_
2
0
1
5
_
9
L
o
w
L
e
v
e
l
(
A
S
S
S
L
.
S
e
r
i
a
l
i
z
e
d
C
o
r
p
u
s
L
o
a
d
e
r
(
"
C
:
\
\
R
a
w
D
a
t
a
"
)
,
t
r
a
i
n
=
3
,

c
r
o
s
s
V
a
l
=
1
,

t
e
s
t
=
0
)

84

 This is the level of abstraction originally intended for AARF: access to any prior

research at any point in the pipeline with one or two lines of code. If the corpus of raw

data sources, feature extraction logic, and classifier deployment could be grown in

AARF, the effort to assemble new composite systems, compare similar performance, and

systematize prior research would be trivial.

Comprehensive Serialized Data Collection and Playback

 Also, as shown in Figure 16, any AARF publisher may be instructed to read from or

save to a file. Furthermore, the ability to coordinate the saving and loading of entire

sessions offered by the Session module makes test corpus creation and experimentation

trivial. In this respect, the intended function is well developed. The only drawback of the

current implementation is the inability to serialize windowed data, as such, for reasons

discussed in Chapter 6. This is especially inconvenient for research focused on mono-

modal systems, since the input is often windowed.

Logical Consistency of Raw Data Playback and Live Streaming

 In keeping with the requirement for logical consistency, any publisher loading data

from files publishes it to its subscribers directly, bypassing any processing logic. One

drawback to this is that publishers simply trust that the loaded data actually belongs to

them. This is loosely enforced by the Loader’s search for files bearing the name of the

publisher, but can easily be circumvented.

85

 The Session modules, and the AARF Multi-modal System ensures consistency by

reloading all needed publishers from the ground up when loading session data. This

prevents publishers from detecting file I/O latencies between session loads. The Loader

also ensures one continuous generation of input data when loading from multiple files by

nesting Python generators and intercepting the End-Of-Data signal when one file or

directory is exhausted. This allows a seamless concatenation of data from the publisher’s

perspective.

Rapid Experiment Setup

 As described in Chapters 5 and 6, AARF’s primary simplification of experiment

configuration lies in leveraging the Singleton design pattern. By making each pipeline

component recursively construct its input components, a default channel of configuration

hides pre-tuned setups. However, if the researcher wishes to alter any exposed

configuration parameter at runtime, the desired components may be constructed prior to

the default recursion channel. Since components are Singletons for the life of an AARF

session, all special construction may be executed in any code scope convenient to the

researcher. This alleviates the congestion of massive configuration objects being passed

down the default channel, and eliminates the need for scattered compile-time tweaks to

existing code.

 The validation of this design, in theory, is presented by a use case illustrated in Figure

17. Consider the most complex object in AARF: an AARF Multi-modal system.

Natively, the AARF Multi-modal system offers the researcher the choice of mono-modal

86

systems to include a fusion algorithm to employ. However, the performance of the

system is dependent upon the entire machine learning pipeline. Suppose the researcher

wanted to customize a carving operation of the raw data sources. Prior to instantiating the

mono-modal systems, which in turn, recursively execute the default instantiation of prior

components, a custom construction of the carver can be executed. Mergers, carvers and

feature extractors could all be customized prior to default initialization. Once a

component is initialized, its Singleton is merely retrieved by later initializations.

 There are two limitations of this design. First, the researcher must have prior

knowledge of which components will be used by the mono-modal systems selected. A

more streamlined process will provide automated discovery of prior components. Second,

the customized initialization of components must proceed from most prior to least prior.

If a later stage of the pipeline is customized before an earlier stage, only the later stage

will be customized, since its customization will recursively trigger the default

initialization of the earlier stage. Once initialized, the attempt at customized construction

will be ignored, as the Singleton instance already exists.

87

Figure 17 – Example Experiment Configuration

88

 Implementation Validation

 The validation of AARF’s implementation is also two-fold: unit tests and a small

experiment. A modest suite of 39 unit tests was developed, which primarily targets core

AARF functionality, but also includes inspection tests for seed modules. Table 1

summarizes the purpose and extent of tests targeting core AARF modules. Net line

coverage is a conservative estimate of the true line coverage, because it only reports the

maximum line coverage obtained in any single test run. Some abstract interface modules

were tested indirectly via seed modules which inherit from them.

Tested Module Dedicated Tests Net Line Coverage3

Singleton 3 100%

AARFPublisher 7 65%

InputDevice 0 63%

AARFFeatureExtractor 0 64%

AARFMonoModalSystem 3 43%

AARFMultiModalSystem 1 29%

Table 1 – Core Unit Test Extent

For a fuller end-to-end integration test, a proof of concept experiment was conducted

on a small corpus, using a multi-modal system which partially replicated the work of

[28].

3 While no dedicated unit tests were crafted for certain modules, their classes were tested via subclass unit

tests, thus net line coverage considers coverage from the entire AARF test suite.

89

We solicited user data from upper division computer science students, in accordance

with the following IRB approved criteria:

 No selection or recruitment based on gender or ethnicity was used. Any student

interested in participating could have.

 Students were presented with a consent form, and given ample opportunity to ask

questions or leave, should they so choose.

 A specially designed data collection tool, with clear indicators of when the tool is and

is not collecting data, was installed on each computer used.

 Students were given specific instructions on when to start and stop data collection as

well as a set of specific tasks that should be conducted during the experiment.

 Subjects were asked to not enter any personally identifiable information or visit any

personally registered services or sites (e.g. Facebook).

Twelve students volunteered. All volunteers were male computer science students of

typical college ages, with similar computer experience4. No effort was made to

maximize, minimize or otherwise arrange demographic, physical, or knowledge

differences among the volunteers. Each student was assigned a unique serial number to

identify his data, but no demographic data was bound to it. We did not record a mapping

of serial numbers to students in any form, but relied upon the students to remember their

serial number should they wish to contribute multiple sessions.

The corpus consisted of Linux input events for keyboard and mouse, containing an

average of 2500 complete (down+up) keystrokes and 150k pointing device events per

4 All these characteristics were assessed by mere inspection and were not quantified or systematically

measured.

90

individual. However, it should be noted that these averages included spacing events and

other meta-events used by Linux, so the true averages were somewhat less. The

construction of the corpus was subject to the following independent constraints:

 All data was gathered from identical WYSE thin client workstations using

identical USB unified keyboards and mice.

 During a continuous 30 minute session, the user was asked to perform three tasks:

1) Play 20 classic levels of Bejeweled (a graphical 3-match game) or play for 15

minutes, whichever was shorter, 2) summarize two news articles in 200-400

words, and 3) complete the Xrite color-vision test made up of dragging colored

tiles into hue order. Each of the tasks was chosen specifically to test heavy

skewing of the performance of each mono-modal classifier within the decision

fusion module.

 An experiment data set for each user was constructed from all classification units

for the user (positive samples) and all classification units from all other users

(negative samples). Both sample sets were divided into 5 folds of equal time

duration; 3 for training, 1 for cross-validation and 1 for testing.

 All data from the training folds were used to train the classifiers, while equal

numbers of positive and negative samples were used to construct the cross-

validation and test sets. This ensured that a baseline of most common tag accuracy

would be fixed at 50%.

 Some students recorded multiple sessions, however most only contributed one. One

user’s data had to be dropped entirely due to an unexpected interruption, which was later

discovered to have corrupted the session archive.

91

 To classify the data, we constructed a multi-modal system to partially replicate the

work of [28], using four of their nine low-level sensors: the two keystroke mono-modal

systems and mono-modal systems based on the curvature angle and distance features of

[9].

 The first keystroke feature, termed KeyInterval, measured the time between the up-

event of one key and the down-event of the next key. Since nothing prevents a second

key from being pressed before the first is released, this interval can take on negative time

values. Furthermore, the intervals of interest occur when the user is actively typing and

not the arbitrary intervals between active typing. To ensure that this feature only reported

such intervals, we only considered interval values falling between -1 and 2 seconds.

Figure 18 shows the composite relief graphs for two example users. The graph is

composed of the average distributions of values over time-windows varying from 30 to

1800 seconds with a bin size of 0.01 seconds. Each graph averages the frequencies to

integer values, thereby filtering out outliers. For this reason, the total number of samples

recorded in the final average graphs is significantly less than the total 2500 keystrokes

per user. Although, the actual classification of windows did not filter the distributions,

this method of filtering helps visualize the most determining values which rise above the

noise. The graphs presenting this and the remaining features use the same filtering

technique, but users chosen as examples may vary.

92

Figure 18 – Example Key Interval Distributions.

93

 The second keystroke feature, KeyPress, was the latency of how long each key was

held down. Linux already incorporates auto-repeat detection, but we ignored this and

simply computed the difference between the down- and up-events. Similar to

KeyInterval, we filtered the extracted values to only consider the latency range between 0

and 3 seconds. Figure 19, shows the composite relief graph of two users’ average

KeyPress distributions over their entire session duration.

94

Figure 19 – Example KeyPress Latency Distributions

95

 The first mouse feature we chose, denoted Angle of Curvature, considered the interior

angle of every triple of x-y coordinates associated with a given mouse movement as

illustrated in Figure 20. As an explicit dependent upon carved data, this feature extracts a

distribution of such angle values from a carved pointing action. We defined a pointing

action as a series of x-y coordinates consecutive in time and terminated by either a button

event, or a pause of 0.4 seconds. The pointing actions begun within a classification time

window, contributed to an average distribution which was rendered as the final unit of

classification. Figure 21 shows the composite graph of such average distributions using

the same filtered visualization as the keystroke feature visualizations above. Since most

actions form reasonably straight lines, only values between 135° and 180° were collected

in distributions with a bin size of 1°.

96

Figure 20 – Angle of Curvature Feature

97

Figure 21 – Example Angle of Curvature Distributions

98

 The final feature we used, Curve Distance, characterized cursor movements with a

similar metric, but used a distinct set of calculations. Rather than taking the interior angle

of every coordinate triple, Curve Distance computes the ratio of the line joining the first

and last points to the line drawn through the middle point and perpendicular to the line

joining the first and last, as shown in Figure 22.

 Curve Distance and Angle of Curvature are related, but are not convertible features. It

is easily shown that it is possible for two coordinate triples to have equal angles of

curvature but different curve distances and vice-versa. As illustrated in Figure 23,

consider three triples ABC, DEF, and DE′ F. Let B lie on the circumference of the circle

whose diameter is the line AC, while E lies outside the circumference of the circle whose

diameter is DF such that the line through E and perpendicular to DF meeting at Y is equal

to the line through B and perpendicular to AC meeting at X. Further let AC equal DF. We

know from [37] that the angle <ABC is equal to 90° while the angle <DEF is less than

90°, while the ratios EY : DF and BX : AC are equal since EY = BX and AC = DF.

Conversely, let EY be reduced to the point at which the circumference of the circle with

diameter DF cuts it at point E′. Since E′ Y is shorter than EY, the ratios E′ Y : DF and BX

: AC are not equal. However since E′ now lies on the circumference, both angles <ABC

and <DE′ F equal 90°. Therefore, it is possible for either feature to discriminate while the

other fails.

 Figure 24 shows example distributions of Curve Distance values from the corpus.

Manual inspection of the data determined the distance values in the range of 0 – 0.4 as

appropriate to construct distributions from. The bin size was set to 0.01.

99

Figure 22 – Curve Distance

100

Figure 23 – Angle of Curvature vs. Curve Distance

101

Figure 24 – Example Curve Distance Distributions

102

 The classification of these features assumed the presence of subtle differences in the

temporally cumulative distributions of different users. To maximize the effect of these

differences, two parameters of each mono-modal system were considered: window

duration and distribution bin size. The duration of a time window controls both how

many data points on average will be included in a distribution and the response time of

the system. Figure 25 shows how the distribution of each feature takes shape from data

collected in windows varying from 0 – 1800 seconds in length. As with the two-

dimensional visualization above, these three-dimensional graphs show the average

distribution for time windows, rounding frequencies to integer values. For all four

features, it appears that the characteristic distribution has acquired all it peaks by ~250

sec., and uniformly scales thereafter.

 Bin size controls the granularity of value discrimination with distribution. The only

drawback of reduced bin sizes is the increased processing power/time required to render

the distributions. This is not a concern for the live deployment of active authentication

systems, since real-time delay of acquiring input data eclipses the processing latency, but

for running experiments on our saved corpus, processing a net 6 hours of session time is

considerable. For our experiment, we picked the finest level of binning we could render

in a reasonable time, namely 0.01 seconds for the keystroke features, 1° for the Angle of

Curvature and 0.01 ratio differences for Curve Distance.

103

Figure 25 – Growth of Distributions with Window Duration

104

 The classification unit for all mono-modal systems was defined as the distribution of

feature values over 150 sec windows requiring a minimum of 30 values per window for a

decision. Following the methodology of [28], naïve bayes was used as the classifier for

all modalities. Each mono-modal system’s FAR and FRR for each user was pre-

characterized by a four-fold cross-validation process. The training data for each user was

divided into four folds, assigning 3 folds to a pre-training set and the remaining fold to a

cross validation set. The folds selected for cross-validation and training were cycled

without re-dividing the data so that every possible combination of consecutive folds for

training and cross-validation was executed. The average FAR and FRR for the mono-

modal systems was computed over all fold cycles for each user. The classifier trained for

the last fold cycle was used to classify the test set and send decisions to the multimodal

system for decision fusion.

 We employed the application of the optimal fusion rule given by [30] and applied in

[28], weighting each mono-modal system’s decision with its pre-characterized FAR and

FRR, according to:

𝑓 𝑢1 …𝑢𝑛 =
1, 𝑖𝑓 𝑎0 + 𝑎𝑖𝑢𝑖 > 0𝑛

𝑖=0

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

where the vector 𝑢1 …𝑢𝑛 is comprised of the decisions of the mono-modal systems, with

1 meaning authentic and -1 meaning inauthentic. The weights 𝑎0 …𝑎𝑛 are computed

from each mono-modal system’s characteristic FAR and FRR according to,

 𝑎0 =
𝑃1

𝑃−1
 (2)

and,

105

𝑎𝑖 =
𝑙𝑜𝑔

1−𝑃𝑖
𝐹𝑅𝑅

𝑃𝑖
𝐹𝐴𝑅 , 𝑖𝑓 𝑢𝑖 = 1

𝑙𝑜𝑔
1−𝑃𝑖

𝐹𝐴𝑅

𝑃𝑖
𝐹𝑅𝑅 , 𝑖𝑓 𝑢𝑖 = −1

 (3)

where 𝑃1 and 𝑃−1 are the a priori probabilities of the authentic and inauthentic cases,

both of which we defaulted to equal 50%, and where Pi
FAR and Pi

FRR equal the

characteristic FAR and FRR rates for the ith mono-modal system respectively.

 It was hypothesized that the combination of modalities would maintain a higher

accuracy than any single modality. Validation of this hypothesis consisted of a 5-fold

cross-validation experiment. The standard accuracies of each mono-modal system and the

multimodal system were used to demonstrate improved performance. The folds selected

for testing and training were cycled without re-dividing the data so that every possible

combination of consecutive folds for training and cross-validation was executed. Since

each user’s test was balanced with equal numbers of positive and negative samples,

accuracy is a valid metric to consider using 50% as a most common tag baseline. Figure

26 shows the classification accuracy of the multi-modal system and all four modalities

for each user.

106

Figure 26 – Authentication Accuracies

107

 While the multi-modal system did not always outperform the best mono-modal

system, it was the best for 8 out of 11 users. Of course these accuracy results are far less

than the state of the art, but that was entirely expected, considering the limited size of the

corpus and distribution granularity. Furthermore, since each window is non-overlapping

and therefore strictly consecutive, there is no consistent transition from authentic to

inauthentic data. This is a strict standard since each window is classified in isolation, and

cannot be affected by surrounding window data or decisions.

 Nevertheless, these results demonstrate the power of the fusion rule to optimize the

performance of multiple mono-modal systems in a single system. As shown in Figure 27,

the multi-modal system achieved an average 10% improvement over the best mono-

modal system average.

108

Figure 27 – Average Authentication Accuracies

109

 The key to this performance optimization is the information gained by the fusion

algorithm through the characteristic FAR and FRR acquired in training. As shown in

Figure 28, every user displayed a variety of FAR and FRR values for each feature in

training. When one modality performs more accurately overall or only for accepting or

only for rejecting, the fusion algorithm leverages that information to give deference to the

most reliable modalities. In a sense, this converts the modality performance itself into

features specific to the user.

110

Figure 28 – Characteristic FAR and FRR

111

 This experiment could be improved if rolling decision windows were used in place of

strictly consecutive windows. That would considerably improve the response time of the

system while testing the ability of the system to detect polluted windows. A further

extension would be the simulated live performance over a session involving real user

transitions.

 Originally we intended to investigate the precise reaction of the multimodal system to

tasks heavily skewed to certain modalities. Unfortunately, we only gathered one session

of data per user, which was minimal for a cross-fold validation. If a corpus could be built

with multiple sessions per user, training and cross-validation could use some sessions

while leaving an entire session intact for testing. That way, one continuous test of the

performance could be recorded over a data set sometimes skewed to one modality,

sometimes skewed to another. However, these improvements exceed the goal of

validating AARF with a simple proof-of-concept experiment.

 Though modest, these results show that AARF has the foundation for future

refinement. Given the benefits of abstraction and alleviation of trivial data management,

improved results should forevermore only depend upon the quality of the research ideas

themselves, and not so much on the ability to merely manage data and ad-hoc scripts.

112

Chapter 8 – Future Work

 As with any software tool, the AARF framework has a virtually unlimited capacity for

improvement in terms of compatibility, performance and convenience features. However,

there are a few features that are peculiar to the demands of this type of research.

 Many of the raw data modules will need to be manually updated as new input sources

arrive. Furthermore, differences in hardware, can change the required device files

providing the same data. A fully automated auto-configuration of inputs, making AARF

truly plug and play, would be most desirable.

 Currently, a hardcoded list of raw input publishers informs the loading modules of all

the available publishers to attempt to load. A comprehensive reflective discovery of

available publishers would allow contributors to immediately have AARF’s session

management be aware of new additions.

 While raw data corpuses have the most potential for innovative research, it may still

be needed to produce corpora of semi-processed data or feature values to save time

during experiments. Another core addition to AARF would be a generic corpus

transformer tool which takes a less processed corpus and produces a more processed

corpus according to the processing modules specified.

 Windowing and feature extraction often go hand in hand when computing feature

vectors as frequency distributions over the feature-value space. But while windowing is a

generic operation that only needs a timestamp or event count to compute, building

frequency distributions require knowledge of a specific feature’s typical value space. A

113

standardized interface for the AARF Feature Extractor may be desirable to enforce the

provisioning of floor, ceiling, and bucket size values to allow any AARF feature to be

quantized on demand.

 Since response time is a critical performance element of active authentication, it seems

reasonable that mono-modal systems should be forced to incorporate a windowing

system. Adding such a requirement to the mono-modal interface would significantly

reduce the flexibility of timestamp management and mono-modal systems design in

general. Considering the central role mono-modal systems play, the wisdom of this

design decision was left for future consideration. Perhaps there are decisions spaces that

should not be immediately bound to a regular time interval.

 Thus far the object oriented design pattern deployed in AARF has aimed at

encapsulating pipeline operations and processing modules. However, the data itself

passing through the pipeline remains relatively primitive, Python dictionaries and tuples

and are not represented by a class. Throughout the testing of AARF it became apparent

that the Linux event format, statistical manipulation functions, and timestamp handlers

would be good candidates for a data object class. However, the proper variety of generic

data classes and associated logic was not immediately clear. Furthermore, once the data is

encapsulated, the manual inspection and handling requires maintaining a whole new

interface. What this interface should be at each stage of the pipeline requires further

thought.

114

Chapter 9 – Conclusion

 Usable security remains one of the greatest challenges in the digital world. Indeed, one

of the most frequent breaches of security is the failure of usable authentication protocols.

While popular approaches involving arbitrary secrets (usable in the sense that tens of

millions of people trust their digital lives to them), are not truly usable when considering

the inverse relationship their ease of use bears to their security. Non-arbitrary secrets

have begun to reverse this relationship, but static tokens, such as fingerprints and iris

scans, still bear the problem of spoofing. Dynamic forms, such as characteristic typing or

cursor movement, would, in principle, bind the form of authentication to the useful action

of the device. This marriage of use and authentication through behavior at once

eliminates usability as a concern, and allows authentication to proceed throughout the

entire session rather than just at login.

 The goal of truly continuous, active authentication has been pursued for some decades

in a variety of modalities and on a variety of hardware technologies. However, only in the

past three years has a serious effort been launched by DARPA to make active

authentication schemes truly practicable. Contemporary research is still quite diverse and

is conducted on a wide variety of data sources, collection mediums and classification

logic. The need for systematization in this nascent field was taken up by the Active

Authentication Research Framework (AARF), proposed by this thesis. AARF organizes

research efforts broadly into extensible modules handling data collection, serialization,

pre-processing, feature extraction, classification and multi-classification management. It

115

further offers the organization of mono-modal and multi-modal systems whose parts are

standardized to be as interchangeable as possible.

 This framework provides a basis for building a repository of active authentication

research, thereby enhancing the reproducibility, traceability, and reuse of prior work.

Hopefully this will aide accelerating open progress in the field and one day make active

authentication a default capability of personal digital devices.

116

BIBLIOGRAPHY

[1] G. Stoneburner, C. Hayden and A. Feringa, "Engineering Principles for Information

__-_Technology Security (A Baseline for Achieving Security), Revision A," NIST

__Special _Publication, 2008.

[2] M. K. Evans, "Consumer Security," ECT News Network, Inc, 3 April 2006.

[Online]. __Available: _http://www.ecommercetimes.com/story/49731.html.

[Accessed 21 __October 2014].

[3] Identity Theft Resource Center, "ITRC DATA BREACH REPORT," ITRC, 2014.

[4] F. Stajano, P. C. v. Oorschot, C. Herley and J. Bonneau, "The Quest to Replace

__Passwords: A _Framework for Comparative Evaluation of Web Authentication

__Schemes," in IEEE _Symposium on Security and Privacy, 2012.

[5] M. Nisenson, I. Yariv, R. El-Yaniv and R. Meir, "Towards Behaviometric Security

__Systems: _Learning to Identify a Typist," in Knowledge Discovery in Databases:

__PKDD 2003, _Heidelberg, Springer Berlin, 2003, pp. 363-374.

[6] DARPA, "Broad Agency Announcement," 13 January 2012. [Online]. Available:

__https://www.fbo.gov/utils/view?id=65da86bb52c0f992d9631447f2a6e357. __ __

__[Accessed _21 October 2014].

[7] P. Bours, "Continuous keystroke dynamics: A different perspective towards

__biometric _evaluation," Information Security Technical Report, vol. 17, no. 1-2,

__pp. 36 - 43, 2012.

[8] I. Deutschmann, P. Nordstrom and L. Nilsson, "Continuous Authentication Using

__Behavioral _Biometrics," IT Professional, vol. 15, no. 1520-9202, pp. 12-15,

__2013.

[9] N. Zheng, A. Paloski and H. Wang, "An Efficient User Verification System via

__Mouse _Movements," in Proceedings of the 18th ACM Conference on Computer

__and _Communications Security, Chicago, Illinois, USA, 2011.

[10] A. Fridman, A. Stolerman, S. Acharya, P. Brennan, P. Juola, R. Greenstadt and M.

__Kam, _"Decision Fusion for Multimodal Active Authentication," IT Professional,

__vol. 15, no. 4, _pp. 29-33, 2013.

117

[11] H. Crawford, K. Renaud and T. Storer, "A framework for continuous, transparent

__mobile _device authentication," Computers & Security, Vols. 39, Part B, no. 0, pp.

__127-136, 2013.

[12] A. Azzini and S. Marrara, "Toward trust-based multi-modal user authentication on

__the Web: _a fuzzy approach," in Fuzzy Systems Conference, 2007. FUZZ-IEEE

__2007. IEEE _International, London, UK. , 2007.

[13] J. Bonneau, C. Herley, P. C. v. Oorschot and F. Stajano, "The Quest to Replace

__Passwords: A _Framework for Comparative Evaluation of Web Authentication

__Schemes," University of _Cambridge Computer Laboratory, Cambridge, 2012.

[14] D. D. Lewis, "Naive (Bayes) at forty: The independence assumption in information

__retrieval," _in Machine Learning: ECML-98, Springer Berlin Heidelberg, 1998,

__pp. 4-15.

[15] S. R. Safavian and D. Landgrebe, "A Survey of Decision Tree Classifier

__Methodology," IEEE _Transactions on Systems, Man, and Cybernetics, vol. Vol.

__21, no. 3, pp. 660-674, 1991.

[16] A. L. Berger, S. A. D. Pietra and V. J. D. Pietra, "A Maximum Entropy Approach to

__Natural Language Processing," Computational Linguistics, vol. 22, no. 1, pp. 39-

__72, 1996.

[17] G. A. F. Seber and A. J. Lee, Linear Regression Analysis, Hoboken: John Wiley &

__Sons, 2003.

[18] J. David W. Hosmer and S. Lemeshow, Applied Logistic Regression, Hoboken:

John __Wiley & _Sons, 2000.

[19] S. Tong and D. Koller, "Support vector machine active learning with applications to

__text classification," The Journal of Machine Learning Research, vol. 2, no.

__3/1/2002, pp. 45-_66, 2002.

[20] S. Haykin, NEURAL NETWORKS: A Comprehensive Foundation, Upper Saddle

__River: New _Jersey, 2004.

[21] J. AK and P. S. Ross A, "An Introduction to Biometric Recognition.," IEEE

__Transactions on _Circuits and Systems for Video Technology, vol. 14, no. 1, pp.

4-__20, 2004.

118

[22] G. Forsen, M. Nelson and J. R. Staron, "Personal attributes authentication

__techniques," _Rome Air Development Center, New York, 1977.

[23] D. Umphress and G. Williams, "Identity Verification through Keyboard

__Characteristics," Int’l _J. Man-Machine Studies, vol. 23, no. 3, pp. 263-273, 1985.

[24] P. Bours and H. Barghouthi, "Continuous Authentication using Biometric Keystroke

__Dynamics," in Norwegian Information Security Conference (NISK), Trondheim,

__Norway, _2009.

[25] Y. Zhong, Y. Deng and A. K. Jain, "Keystroke Dynamics for User Authentication,"

__BAE _Systems, Burlington, 2012.

[26] A. Messerman, T. Mustafic, S. Camtepe and S. Albayrak, "Continuous and non-

__intrusive identity verification in real-time environments based on free-text

__keystroke dynamics," _in Int’l Joint Conf. on Biometrics (IJCB), Washington DC,

__2011.

[27] B. Sayed, I. Traor´e, I. Woungang and M. S. Obaidat, "Biometric Authentication

__Using Mouse _Gesture Dynamics," IEEE SYSTEMS JOURNAL, vol. 7, no. 2, pp.

__262-274, 2013.

[28] A. Fridman, A. Stolerman, S. Acharya, P. Brennan, P. Juola, R. Greenstadt and M.

__Kam, _Multi-Modal Decision Fusion for Continuous Authentication, Preprint

__submitted to _Computers & Electrical Engineering, 2014.

[29] M. Hall, "The WEKA data mining software," ACM SIGKDD Explorations, vol. 11,

__no. 1, pp. 10-_18, 2009.

[30] Z. Chair and P. Varshney, "Optimal data fusion in multiple sensor detection

__systems," IEEE _Transactions on AES-22, vol. 1, no. 310699, pp. 98-101, 1986.

[31] H. Crawford, K. Renaud and T. Storer, "A framework for continuous, transparent

__mobile _device authentication," c omp u t e r s & s e c u r i t y, vol. 39, no. May,

__pp. 127-136, _2013.

[32] R. Hamming, "1968 Turing Award lecture," Journal of the ACM, vol. 16, no. 1, pp.

__3-12, 22 _Feb 1969.

[33] Python Software Foundation, [Online]. Available: https://docs.python.org/3/.

https://docs.python.org/3/

119

[34] C. Joakim, "Explore Python, machine learning , and the NLTK library," IBM

__Developer Works, _pp. 1-13, 2012.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel and B. Thirion, "Scikit-learn:

__Machine _Learning in Python," Journal of Machine Learning, vol. 12, pp. 2825-

__2830, 2012.

[36] A. Caliskan and R. Greenstadt, "Translate Once, Translate Twice, Translate Thrice

__and _Attribute: Identifying Authors and Machine Translation Tools in Translated

__Text," in _Semantic Computing (ICSC), 2012.

[37] Euclid, "Euclid's Elements," p. Book III Proposition 31.

[38] R. P. Guidorizzi, "Security: Active Authentication," IT Pro, pp. 4-7, July/August

__2013.

