13,259 research outputs found

    Towards a framework to make robots learn to dance

    Get PDF
    A key motive of human-robot interaction is to make robots and humans interact through different aspects of the real world. As robots become more and more realistic in appearance, so has the desire for them to exhibit complex behaviours. A growing area of interest in terms of complex behaviour is robot dancing. Dance is an entertaining activity that is enjoyed either by being the performer or the spectator. Each dance contain fundamental features that make-up a dance. It is the curiosity for some researchers to model such an activity for robots to perform in human social environments. From current research, most dancing robots are pre-programmed with dance motions and few have the ability to generate their own dance or alter their movements according to human responses while dancing. This thesis explores the question Can a robot learn to dance? . A dancing framework is proposed to address this question. The Sarsa algorithm and the Softmax algorithm from traditional reinforcement learning form part of the dancing framework to enable a virtual robot learn and adapt to appropriate dance behaviours. The robot follows a progressive approach, utilising the knowledge obtained at each stage of its development to improve the dances that it generates. The proposed framework addresses three stages of development of a robot s dance: learning ability; creative ability of dance motions, and adaptive ability to human preferences. Learning ability is the ability to make a robot gradually perform the desired dance behaviours. Creative ability is the idea of the robot generating its own dance motions, and structuring them into a dance. Adaptive ability is where the robot changes its dance in response to human feedback. A number of experiments have been conducted to explore these challenges, and verified that the quality of the robot dance can be improved through each stage of the robot s development

    Building artificial personalities: expressive communication channels based on an interlingua for a human-robot dance

    Get PDF
    The development of artificial personalities requires that we develop a further understanding of how personality is communicated. This can be done through developing humanrobot interaction (HRI). In this paper we report on the development of the SpiderCrab robot. This uses an interlingua based on Laban Movement Analysis (LMA) to intermediate a human-robot dance. Specifically, we developed measurements to analyse data in real time from a simple vision system and implemented a simple stochastic dancing algorithm on a custom built robot. This shows how, through some simple rules, a personality can emerge by biasing random behaviour. The system was tested with professional dancers and members of the public and the results (formal and anecdotal) are presented herein

    Journal Staff

    Get PDF
    This trembling black robot swan which sometimes moves smoothly and gently, sometimes in a dramatic and fiery manner to TchaikovskyÂŽs majestic music is inspired by Edgar Degas’ sculpture The little fourteen year old dancer (1881), and is made from wax, bobbinet and silk ribbon.  This birdlike body vibrates with electronic life and has the unattainable dream of dancing as prima ballerina on a grand stage.  The music is a re-modelling of Rothbart’s theme from the Swan lake where both the ocean and the orchestra have been caressed and yet at the same time smacked by music technology.ROBOCYGNEThis trembling black robot swan which sometimes moves smoothly and gently, sometimes in a dramatic and fiery manner to TchaikovskyÂŽs majestic music is inspired by Edgar Degas’ sculpture The little fourteen year old dancer (1881), and is made from wax, bobbinet and silk ribbon. This birdlike body vibrates with electronic life and has the unattainable dream of dancing as prima ballerina on a grand stage. The music is a re-modelling of Rothbart’s theme from the Swan lake where both the ocean and the orchestra have been caressed and yet at the same time smacked by music technology.The dance has been created by a hands - on process where the robot body parts have been manipulated one by one to the music by the choreographer, in four recordings. The body consists of two light metal wings embellished with black feathers, a torso of aluminium, black bobbinet and circuit cards, a vertically adjustable leg, a very flexible neck together with a beak made of eight servo engines. Height 130 cm. Wingspan 160 cm.Choreography and movement recording: Åsa Unander-ScharinMusic: Pjotr Tchaikovsky (from The Swan lake, 1877) /Carl Unander-Scharin Robot construction and software development: Prof. Lars Asplund and Alexander Larsson, School of Innovation, Design and Engineering at MĂ€lardalen University (MDH)Project managing: Lars Asplund and Kerstin Gauffin (MDH)Production: MĂ€lardalen University Photo: Elias LindĂ©nFirst performance at the Swedish Book Fair in Gothenburg, 2010The music has been developed through Scen- och Sinnesproduktion’s financial support from the Swedish Arts Grants CommitteeQC 20120209Extending Opera, Opera Mecatronica, KTH R1 Experimental Spac

    Embodied conversations: Performance and the design of a robotic dancing partner

    Get PDF
    This paper reports insights gained from an exploration of performance-based techniques to improve the design of relationships between people and responsive machines. It draws on the Emergent Objects project and specifically addresses notions of embodiment as employed in the field of performance as a means to prototype and develop a robotic agent, SpiderCrab, designed to promote expressive interaction of device and human dancer, in order to achieve ‘performative merging’. The significance of the work is to bring further knowledge of embodiment to bear on the development of human-technological interaction in general. In doing so, it draws on discursive and interpretive methods of research widely used in the field of performance but not yet obviously aligned with some orthodox paradigms and practices within design research. It also posits the design outcome as an ‘objectile’ in the sense that a continuous and potentially divergent iteration of prototypes is envisaged, rather than a singular final product. The focus on performative merging draws in notions of complexity and user experience. Keywords: Embodiment; Performance; Tacit Knowledge; Practice-As-Research; Habitus.</p

    Dance Teaching by a Robot: Combining Cognitive and Physical Human-Robot Interaction for Supporting the Skill Learning Process

    Full text link
    This letter presents a physical human-robot interaction scenario in which a robot guides and performs the role of a teacher within a defined dance training framework. A combined cognitive and physical feedback of performance is proposed for assisting the skill learning process. Direct contact cooperation has been designed through an adaptive impedance-based controller that adjusts according to the partner's performance in the task. In measuring performance, a scoring system has been designed using the concept of progressive teaching (PT). The system adjusts the difficulty based on the user's number of practices and performance history. Using the proposed method and a baseline constant controller, comparative experiments have shown that the PT presents better performance in the initial stage of skill learning. An analysis of the subjects' perception of comfort, peace of mind, and robot performance have shown a significant difference at the p < .01 level, favoring the PT algorithm.Comment: Presented at IEEE International Conference on Robotics and Automation ICRA-201

    Adapting robot behavior to user's capabilities: a dance instruction study.

    No full text
    The ALIZ-E1 projects goal is to design a robot companion able to maintain affective interactions with young users over a period of time. One of these interactions consists in teaching a dance to hospitalized children according to their capabilities. We propose a methodology for adapting both, the movements used in the dance based on the users cognitive and physical capabilities through a set of metrics, and the robots interaction based on the users personality traits

    Haptic dancing: human performance at haptic decoding with a vocabulary

    Get PDF
    The inspiration for this study is the observation that swing dancing involves coordination of actions between two humans that can be accomplished by pure haptic signaling. This study implements a leader-follower dance to be executed between a human and a PHANToM haptic device. The data demonstrates that the participants' understanding of the motion as a random sequence of known moves informs their following, making this vocabulary-based interaction fundamentally different from closed loop pursuit tracking. This robot leader does not respond to the follower's movement other than to display error from a nominal path. This work is the first step in an investigation of the successful haptic coordination between dancers, which will inform a subsequent design of a truly interactive robot leader

    How does peoples’ perception of control depend on the criticality of a task performed by a robot Paladyn

    Get PDF
    © 2019 Adeline Chanseau et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License.Robot companions are starting to become more common and people are becoming more familiar with devices such as Google Home, Alexa or Pepper,one must wonder what is the optimum way for people to control their devices? This paper provides presents an investigation into how much direct control people want to have of their robot companion and how dependent this is on the criticality of the tasks the robot performs. A live experiment was conducted in the University of Hertfordshire Robot House, with a robot companion performing four different type of tasks. The four tasks were: booking a doctor’s appointment, helping the user to build a Lego character, doing a dance with the user, and carrying biscuits for the user. The selection of these tasks was based on our previous research to define tasks which were relatively high and low in criticality. The main goal of the study was to find what level of direct control over their robot participants and if this was dependent on the criticality of the task performed by the robot. Fifty people took part in the study, and each experienced every task in a random order. Overall,it was found that participants’ perception of control was higher when the robot was performing a task in a semi-autonomous mode. However, for the task "carrying biscuits", although participants perceived to be more in control with the robot performing the task in a semi autonomous mode, they actually preferred to have the robot performing the task automatically (where they felt less in control). The results also show that, for the task "booking a doctor’s appointment", considered to be the most critical of all four tasks, participants did not prefer that the robot chose the date of the appointment as they felt infantilised.Peer reviewe
    • 

    corecore