4 research outputs found

    NOViSE: a virtual natural orifice transluminal endoscopic surgery simulator

    Get PDF
    Purpose: Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a novel technique in minimally invasive surgery whereby a flexible endoscope is inserted via a natural orifice to gain access to the abdominal cavity, leaving no external scars. This innovative use of flexible endoscopy creates many new challenges and is associated with a steep learning curve for clinicians. Methods: We developed NOViSE - the first force-feedback enabled virtual reality simulator for NOTES training supporting a flexible endoscope. The haptic device is custom built and the behaviour of the virtual flexible endoscope is based on an established theoretical framework – the Cosserat Theory of Elastic Rods. Results: We present the application of NOViSE to the simulation of a hybrid trans-gastric cholecystectomy procedure. Preliminary results of face, content and construct validation have previously shown that NOViSE delivers the required level of realism for training of endoscopic manipulation skills specific to NOTES Conclusions: VR simulation of NOTES procedures can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. In the context of an experimental technique, NOViSE could potentially facilitate NOTES development and contribute to its wider use by keeping practitioners up to date with this novel surgical technique. NOViSE is a first prototype and the initial results indicate that it provides promising foundations for further development

    Visualizing Big Data with augmented and virtual reality: challenges and research agenda

    Get PDF
    This paper provides a multi-disciplinary overview of the research issues and achievements in the field of Big Data and its visualization techniques and tools. The main aim is to summarize challenges in visualization methods for existing Big Data, as well as to offer novel solutions for issues related to the current state of Big Data Visualization. This paper provides a classification of existing data types, analytical methods, visualization techniques and tools, with a particular emphasis placed on surveying the evolution of visualization methodology over the past years. Based on the results, we reveal disadvantages of existing visualization methods. Despite the technological development of the modern world, human involvement (interaction), judgment and logical thinking are necessary while working with Big Data. Therefore, the role of human perceptional limitations involving large amounts of information is evaluated. Based on the results, a non-traditional approach is proposed: we discuss how the capabilities of Augmented Reality and Virtual Reality could be applied to the field of Big Data Visualization. We discuss the promising utility of Mixed Reality technology integration with applications in Big Data Visualization. Placing the most essential data in the central area of the human visual field in Mixed Reality would allow one to obtain the presented information in a short period of time without significant data losses due to human perceptual issues. Furthermore, we discuss the impacts of new technologies, such as Virtual Reality displays and Augmented Reality helmets on the Big Data visualization as well as to the classification of the main challenges of integrating the technology.publishedVersionPeer reviewe

    An Overview of Self-Adaptive Technologies Within Virtual Reality Training

    Get PDF
    This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training

    Modelling and simulation of flexible instruments for minimally invasive surgical training in virtual reality

    No full text
    Improvements in quality and safety standards in surgical training, reduction in training hours and constant technological advances have challenged the traditional apprenticeship model to create a competent surgeon in a patient-safe way. As a result, pressure on training outside the operating room has increased. Interactive, computer based Virtual Reality (VR) simulators offer a safe, cost-effective, controllable and configurable training environment free from ethical and patient safety issues. Two prototype, yet fully-functional VR simulator systems for minimally invasive procedures relying on flexible instruments were developed and validated. NOViSE is the first force-feedback enabled VR simulator for Natural Orifice Transluminal Endoscopic Surgery (NOTES) training supporting a flexible endoscope. VCSim3 is a VR simulator for cardiovascular interventions using catheters and guidewires. The underlying mathematical model of flexible instruments in both simulator prototypes is based on an established theoretical framework – the Cosserat Theory of Elastic Rods. The efficient implementation of the Cosserat Rod model allows for an accurate, real-time simulation of instruments at haptic-interactive rates on an off-the-shelf computer. The behaviour of the virtual tools and its computational performance was evaluated using quantitative and qualitative measures. The instruments exhibited near sub-millimetre accuracy compared to their real counterparts. The proposed GPU implementation further accelerated their simulation performance by approximately an order of magnitude. The realism of the simulators was assessed by face, content and, in the case of NOViSE, construct validity studies. The results indicate good overall face and content validity of both simulators and of virtual instruments. NOViSE also demonstrated early signs of construct validity. VR simulation of flexible instruments in NOViSE and VCSim3 can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. Moreover, in the context of an innovative and experimental technique such as NOTES, NOViSE could potentially facilitate its development and contribute to its popularization by keeping practitioners up to date with this new minimally invasive technique.Open Acces
    corecore