2,374 research outputs found

    Embedded Network Combining CAN, ZigBee and DC-PLC for Motorhome

    Get PDF
    International audience— Today, the number of motorhomes increases in Europe and North America as they offer greater individual freedom. As motorhome users spend the most of their time in their confined area, it seems essential to develop new solutions that make their life easier. In order to meet the new needs of customers, a new centralized architecture of a control system based on ubiquitous wired and wireless solutions is studied in this paper. The objective of this study is to verify the feasibility of ubiquitous technologies in this original environment. Different measurements have been conducted on a motorhome using Controller Area Networks (CAN), ZigBee and direct current power line communications (DC-PLC). Results have shown that these technologies may be used in a future hybrid control system in a motorhome

    Roles of Exogenous Technologies in Vehicle Innovation: Cases from a Japan’s Automotive Parts Manufacturing Firm

    Get PDF
    This paper explores the roles of technological innovations in the growth of Japan’s motor vehicle industry, mainly from technology spillover perspective from the early 2000s to today. An empirical analysis focusing on business performances, R&D investments, and patent applications taking a noteworthy unique case in Japan was attempted. Empirical analyses on the productivity of patent to technology stock, use of exogenous technologies for their own technological innovation on its Automotive Business Unit elucidated that innovation capabilities, incorporation of exogenous technologies, and profit generation makes a virtuous cycle of continuous technological innovation. Furthermore, we found that the range of technology spillovers is not only expanding along with the development of information communication technology but also superposing itself intricately between organizational (industry– firm–business unit) layers

    Design of in-vehicle networked control system architectures through the use of new design to cost and weight processes : innovation report

    Get PDF
    Over the last forty years, the use of electronic controls within the automotive industry has grown considerably. In-vehicle network technologies such as the Controller Area Network (CAN) and Local Interconnect Network (LIN) are used to connect Electronic Control Units (ECU) together, mainly to reduce the amount of wiring that would be required if hardwired integration were used. Modern passenger cars contain many networks, which means that for the architecture designer, there is an almost overwhelming number of choices on how to design/partition the system depending on factors such as cost, weight, availability of ECUs, safety, Electro-Magnetic Compatibility (EMC) etc. Despite the increasing role played by in-vehicle networks in automotive electrical architectures, its design could currently be described as a “black art”. Not only is there an almost overwhelming number of choices facing the designer, but there is currently a lack of a quantifiable process to aid decision making and there is a dearth of published literature available. NetGen is a software tool used to design CAN/J1939, LIN and FlexRay networks. For the product to remain competitive, it is desirable to have novel features over the competition. This report describes a body of work, the aim of which was to research in-vehicle network design processes, and to provide an improvement to such processes. The opportunities of customer projects and availability of customer information resulted in the scope of the research focusing on the adoption of LIN technology and whether the adoption of it could reduce the cost and weight of the target architecture. The research can therefore be seen to address two issues: firstly the general problem of network designers needing to design in-vehicle network based architectures balancing the needs of many design targets such as cost, weight etc, and secondly the commercial motivation to find novel features for the design tool, NetGen. The outcome of the research described in this report was the development of design processes that can be used for the selection of low cost and weight automotive electrical architectures using coarse information, such as that which would be easily available at the very beginning of a vehicle design programme. The key benefit of this is that a number of candidate networked architectures can be easily assessed for their ability to reduce cost and weight of the electrical architecture

    Delay analysis and time-critical protocol design for in-vehicle power line communication systems

    Get PDF
    With the emerging automated tasks in vehicle domain, the development of in-vehicle communications is increasingly important and subjected to new applications. The use of vehicular power lines has been a promising alternative to invehicle communications because of elimination of extra data cables. In this paper, we focus on the latest HomePlug Green PHY (HPGP) and explore its opportunity to support timecritical in-vehicle applications. Specifically, we apply Network Calculus to evaluate the worst access and queuing delay of various priority flows in vehicle bus networks. In order to maximize the bandwidth utility and satisfy the end-to-end hard delay requirements, we further propose a bandwidth efficient fair rate scheduling and delay sensitive traffic shaper. Performance evaluation supplemented by numerical and simulation results is also provided to show the advantage of HPGP and the proposed traffic shaper over the existing industry solutions

    X-by-wireless: a novel approach to vehicle control

    Get PDF
    As the cost of wireless devices approaches zero, it becomes more feasible to replace wires with wireless communication. Vehicle wiring harnesses are traditionally wired to communicate both power and information simultaneously, resulting in separate circuits for each vehicle device. X-By-Wireless seeks to supplant this configuration in favor of a shared power bus and wireless inter-component communication. In doing so, we can recognize a number of benefits such as reduced weight and increased reliability, flexibility, and upgradeability. However, this introduces new problems such as longer transmission delays, interference and encryption issues, fusing difficulties, and public perception regarding safety. The purpose of this thesis is to define the X-By-Wireless concept and to investigate the benefits and drawbacks in implementing X-By-Wireless. Furthermore, we do a theoretical and case study analysis to expand upon the weight reduction benefit so as to quantify the expected improvements. We also address each of the challenges presented by X-By-Wireless and integrate them into a proposed circuit that is capable of performing all the necessary functions of wireless control, wireless sensing, and fusing. We find that the proposed device can be mass-produced as an effective solution that meets the speed and security constraints necessary for most vehicle components
    • …
    corecore