161 research outputs found

    Identification of a binary gas mixture from a single resistive microsensor

    Get PDF
    Increasing concern about the rapid escalation of environmental pollution has led to strong legislation to ensure, for example, that the emission of pollutants from vehicles and industries is controlled to an acceptable level. As a consequence, there has been a rapid expansion of research into developing more efficient and low-cost gas monitoring systems. Currently, commercial solid-state atmospheric gas detection systems are based on one sensor for each gas, while research systems are an array of sensors for the detection of multiple gases. In this research, techniques are developed whereby more than one gas is detected using a single resistive gas sensor. A novel modulated temperature technique was used to enhance the selectivity of the resistive SnO2 gas sensor. Fast Fourier transforms was used to extract the Fourier coefficients. These in turn were used as input to neural networks for training and subsequently for prediction purposes. The result has shown that a single doped SnO2 resistive microsensor can be used to classify binary gas mixture in air. The research objectives have been fulfilled in that a novel way in detecting the components and the concentration level of a binary gas mixture was developed. Additionally, a low-cost low-power intelligent gas monitoring system was designed. This included the design of a novel temperature/thermometer circuit

    Integrated sensors for process monitoring and health monitoring in microsystems

    Get PDF
    This thesis presents the development of integrated sensors for health monitoring in Microsystems, which is an emerging method for early diagnostics of status or “health” of electronic systems and devices under operation based on embedded tests. Thin film meander temperature sensors have been designed with a minimum footprint of 240 m × 250 m. A microsensor array has been used successfully for accurate temperature monitoring of laser assisted polymer bonding for MEMS packaging. Using a frame-shaped beam, the temperature at centre of bottom substrate was obtained to be ~50 ºC lower than that obtained using a top-hat beam. This is highly beneficial for packaging of temperature sensitive MEMS devices. Polymer based surface acoustic wave humidity sensors were designed and successfully fabricated on 128° cut lithium niobate substrates. Based on reflection signals, a sensitivity of 0.26 dB/RH% was achieved between 8.6 %RH and 90.6 %RH. Fabricated piezoresistive pressure sensors have also been hybrid integrated and electrically contacted using a wire bonding method. Integrated sensors based on both LiNbO3 and ZnO/Si substrates are proposed. Integrated sensors were successfully fabricated on a LiNbO3 substrate with a footprint of 13 mm × 12 mm, having multi monitoring functions for simultaneous temperature, measurement of humidity and pressure in the health monitoring applications

    Microfluidics in gas sensing and artificial olfaction

    Get PDF
    SCENT-ERC-2014-STG-639123 (2015-2020) UIDB/04378/2020 PTDC/BII-BIO/28878/2017Rapid, real-time, and non-invasive identification of volatile organic compounds (VOCs) and gases is an increasingly relevant field, with applications in areas such as healthcare, agriculture, or industry. Ideal characteristics of VOC and gas sensing devices used for artificial olfaction include portability and affordability, low power consumption, fast response, high selectivity, and sensitivity. Microfluidics meets all these requirements and allows for in situ operation and small sample amounts, providing many advantages compared to conventional methods using sophisticated apparatus such as gas chromatography and mass spectrometry. This review covers the work accomplished so far regarding microfluidic devices for gas sensing and artificial olfaction. Systems utilizing electrical and optical transduction, as well as several system designs engineered throughout the years are summarized, and future perspectives in the field are discussed.publishersversionpublishe

    A Micro-Analytical System for Complex Vapor Mixtures - Development and Application to Indoor Air Contaminants.

    Full text link
    This dissertation concerns the development of two fully integrated, automatically controlled, field-deployable Si-microfabricated gas chromatograph (µGC) prototypes, and their application to indoor-air monitoring of trace-level trichloroethylene (TCE) vapor concentrations. Each µGC prototype has a pre-trap and a partially selective high-volume sampler of conventional design, a micromachined-Si focuser for injection, dual micromachined-Si columns for separation, and an integrated array of four microscale chemiresistors with functionalized gold-nanoparticle interface films for detection. Scrubbed ambient air is used as the carrier gas. Operating conditions and control settings are user-defined through a laptop computer, providing real-time data display and continuous unattended operation. A meso-scale GC employing the same detector technology as in the µGC prototypes was adapted for the same application, and the laboratory results obtained were used to guide the design and operating conditions of the µGCs. Application of a multivariate curve resolution method for deconvoluting microsensor array responses from partially overlapping interferences was also demonstrated. The µGC prototypes were characterized in the laboratory and then field tested in Utah in a house with active TCE vapor intrusion. In the laboratory, the separation of TCE from 45 other VOCs in < 60 sec, unique sensor-array response patterns, and accurate quantification of as little as 0.12 parts per billion (ppb) of TCE were demonstrated. In the field, the projected single-microsensor detection limit was 0.052 ppb for an 8-L air sample collected and analyzed in 20 min. Above the mitigation action level (MAL) of 2.3 ppb for the field-test site, accurate TCE determinations were achieved in the presence of up to 52 documented background VOCs. Below the MAL, positive biases were observed, which are attributable to background VOCs that were unresolvable chromatographically or by analysis of the sensor-array response patterns. Spatial and temporal variations in TCE concentrations, ranging from 0.23 to 56 ppb, provided by the prototypes were in good agreement with reference method values. This is the first study to validate the performance of a µGC in the field. Results demonstrate that µGC technology could provide selective, trace-level, on-site determinations of VOCs in numerous applications relevant to occupational and environmental exposure assessment.Ph.D.Environmental Health SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91391/1/airbuff_1.pd

    Novel Methods in Ball Bond Reliability Using In-Situ Sensing and On-Chip Microheaters

    Get PDF
    Wire bonding is the process of creating interconnects between the circuitry on a microchip and PCB boards or substrates so that the microchip can interact with the outside world. The materials and techniques used in this bonding process can cause a wide variation in bond quality, so wire bond reliability testing is very important in determining the quality and longevity of wire bonds. Due to the fact that microchips are encased in protective resins after bonding and their substrates attached to the larger device as a whole, once any single wire bond fails then it could jeapordize the entire device as the wire bonds cannot be individually replaced or fixed. Current methods of reliability testing are lengthy and often destroy the entire sample in the process of evaluation, so the availability of novel non-destructive, real-time monitoring methods as well as accelerated aging could reduce costs and provide realistically timed tests of novel wire bond materials which do not form Intermetallic compounds (IMCs) as rapidly as Au wire on Al substrates. In this thesis, five new chip designs for use in wire bond reliability testing are reported, focusing on the first joint made in a wire bond, called the ball bond. These chips are scaled either to test up to 55 test bonds simultaneously or just one at a time, introducing different requirements for microchip infrastructure capabilities, such as on-chip sensing/data bus, multiplexer, and switches able to operate under High Temperature Storage (HTS) which ranges from temperatures of 150-220 ºC. There are different heating requirements for each of these microchips, needing to be heated externally or containing on-chip microheaters to heat only the ball bond under test, and not the rest of the microchip or surrounding I/O pads. Of the five chip designs, sample chips were produced by an external company. Experimental studies were then carried out with two of these chip designs. They were specifically made to test novel methods of determining ball bond reliability using in-situ, non-destructive sensing, in real-time, while the ball bond undergoes thermal aging. Pad resistance as an analysis tool for ball bond reliability is proposed in this thesis as a new way of evaluating ball bond quality and allows for the testing of electrical connection without the need for specialized measurement probes or difficult bonding processes that contact resistance measurements require. Results are reported for pad resistance measurements of a ball bond under very high temperature storage (VHTS) at 250 ºC, a temperature exceeding typical HTS ranges to accelerate aging. Pad resistance measurements are taken using the four-wire measurement method from each corner of the bond pad, while reversing current direction every measurement to remove thermo-electric effects, and then calculating the average square resistance of the pad from this value. The test ball bond is aged using a novel on-chip microheater which is a N+ doped Si resistive heater located directly underneath the bond pad, and can achieve temperatures up to 300 ºC while not aging any of the I/O pads surrounding it, which are located ~180 µm away. A 50 Ω resistor is placed 60 µm away from the heater to monitor the temperature. The use of a microheater allows the aging of novel wire types at temperatures much higher than those permitted for microchip operation while thermally isolating the test bond from the sensing and power bonds, which do not need to be aged. Higher temperatures allow the aging process to be sped up considerably. The microheater is programmatically cycled between 250 ºC (for 45 min) and 25 ºC (for 15 min) for up to 200 h or until the pad resistance measurements fail due breakdown of the bonding pad. Intermetallic compounds forming between the ball bond and the pad first become visible after a few hours, and then the pad becomes almost completely consumed after a day. The pad resistance is measured every few seconds while the sample is at room temperature, and the increase in pad resistance agrees with the fact that Au/Al IMC products are known to have much higher resistance than both pure Au or Al. Also discussed are some aging results of Au wires and Pd coated Cu (PCC) wires bonded to Al bonding pads and aged at a temperature of 200 ºC in an oven for 670 h. The oven aged Au ball bonds also saw IMC formation on the surface of the bonding pad, much like the microheater tests. The PCC ball bonds became heavily oxidized due to lack of Pd on the surface of the ball, the wire portions did not oxidize much. In conclusion, the new structures have been demonstrated to age ball bonds faster than with conventional methods while obtaining non-destructive data. Specifically, the new microheater ages a test bond at an accelerated rate without having an observable effect on the I/O connections used to monitor the test bond. Pad resistance measurements correlate to the aging of the test bond and ensure the electrical integrity of the joint is checked.1 yea

    Passive and Self-Powered Autonomous Sensors for Remote Measurements

    Get PDF
    Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds

    Smart chemical sensing microsystem : towards a nose-on-a-chip

    Get PDF
    The electronic nose is a rudimentary replica of the human olfactory system. However there has been considerable commercial interest in the use of electronic nose systems in application areas such as environmental, medical, security and food industry. In many ways the existing electronic nose systems are considerable inferior when compared to their biological counterparts, lacking in terms of discrimination capability, processing time and environmental adaptation. Here, the aim is to extract biological principles from the mammalian olfactory systems to create a new architecture in order to aid the implementation of a nose-on-a-chip system. The primary feature identified in this study was the nasal chromatography phenomena which may provide significant improvement by producing discriminatory spatio-temporal signals for electronic nose systems. In this project, two different but complimentary groups of systems have been designed and fabricated to investigate the feasibility of generating spatio-temporal signals. The first group of systems include the fast-nose (channel 10 cm x 500 μm2), proto-nose I (channel 1.2 m x 500 μm2) and II (channel 2.4 m x 500 μm2) systems that were build using discrete components. The fast-nose system was used to characterise the discrete sensors prior to use. The proto-nose systems, in many ways, resembles gas chromatography systems. Each proto-nose system consists of two microchannels (with and without coating) and 40 polymer-composite sensors of 10 different materials placed along it. The second group of systems include the hybrid-nose and the aVLSI-nose microsensor arrays assembled with microchannel packages of various lengths (5 cm, 32 cm, 7lcm, 240 cm) to form nose-on-a-chip systems. The hybrid-nose sensor array consists of 80 microsensors built on a 10 mm x 10 mm silicon substrate while the aVLSI-nose sensor array consists of 70 microsensors built on a 10 mm x 5 mm silicon substrate using standard CMOS process with smart integrated circuitries. The microchannel packages were fabricated using the Perfactory microstereolithography system. The most advanced microchannel package contains a 2.4 m x 500 J.lm2 microchannel with an external size of only 36 mm x 27 mm x 7 mm. The nose-on-a-chip system achieved miniaturisation and eliminates the need for any external processing circuitries while achieving the same capability of producing spatio-temporal signals. Using a custom-designed vapour test station and data acquisition electronics, these systems were evaluated with simple analytes and complex odours. The experimental results were in-line with the simulation results. On the coated proto-nose II system, a 25 s temporal delay was observed on the toluene vapour pulse compared to ethanol vapour pulse; this is significant compared to the uncoated system where no delay difference was obtained. Further testing with 8 analyte mixtures substantiated that spatio-temporal signals can be extracted from both the coated proto-nose and nose-on-a-chip (hybrid-nose sensor array with 2.4 m long microchannel) systems. This clearly demonstrates that these systems were capable of imitating certain characteristics of the biological olfactory system. Using only the temporal data, classification was performed with principal components analysis. The results reinforced that these additional temporal signals were useful to improve discrimination analysis which is not possible with any existing sensor-based electronic nose system. In addition, fast responding polymer-composite sensors were achieved exhibiting response times of less than 100 ms. Other biological characteristics relating to stereolfaction (two nostrils sniffing at different rates), sniffing rate (flow velocity) and duration (pulse width) were also investigated. The results converge with the biological observations that stereolfaction and sniffing at higher rate and duration improve discrimination. Last but not least, the characterisation of the smart circuitries on the aVLSI-nose show that it is possible to achieve better performance through the use of smart processing circuitries incorporating a novel DC-offset cancellation technique to amplify small sensor response with large baseline voltage. The results and theories presented in this study should provide useful contribution for designing a higher-performance electronic nose incorporating biological principles

    FLEXIBLE LOW-COST HW/SW ARCHITECTURES FOR TEST, CALIBRATION AND CONDITIONING OF MEMS SENSOR SYSTEMS

    Get PDF
    During the last years smart sensors based on Micro-Electro-Mechanical systems (MEMS) are widely spreading over various fields as automotive, biomedical, optical and consumer, and nowadays they represent the outstanding state of the art. The reasons of their diffusion is related to the capability to measure physical and chemical information using miniaturized components. The developing of this kind of architectures, due to the heterogeneities of their components, requires a very complex design flow, due to the utilization of both mechanical parts typical of the MEMS sensor and electronic components for the interfacing and the conditioning. In these kind of systems testing activities gain a considerable importance, and they concern various phases of the life-cycle of a MEMS based system. Indeed, since the design phase of the sensor, the validation of the design by the extraction of characteristic parameters is important, because they are necessary to design the sensor interface circuit. Moreover, this kind of architecture requires techniques for the calibration and the evaluation of the whole system in addition to the traditional methods for the testing of the control circuitry. The first part of this research work addresses the testing optimization by the developing of different hardware/software architecture for the different testing stages of the developing flow of a MEMS based system. A flexible and low-cost platform for the characterization and the prototyping of MEMS sensors has been developed in order to provide an environment that allows also to support the design of the sensor interface. To reduce the reengineering time requested during the verification testing a universal client-server architecture has been designed to provide a unique framework to test different kind of devices, using different development environment and programming languages. Because the use of ATE during the engineering phase of the calibration algorithm is expensive in terms of ATE’s occupation time, since it requires the interruption of the production process, a flexible and easily adaptable low-cost hardware/software architecture for the calibration and the evaluation of the performance has been developed in order to allow the developing of the calibration algorithm in a user-friendly environment that permits also to realize a small and medium volume production. The second part of the research work deals with a topic that is becoming ever more important in the field of applications for MEMS sensors, and concerns the capability to combine information extracted from different typologies of sensors (typically accelerometers, gyroscopes and magnetometers) to obtain more complex information. In this context two different algorithm for the sensor fusion has been analyzed and developed: the first one is a fully software algorithm that has been used as a means to estimate how much the errors in MEMS sensor data affect the estimation of the parameter computed using a sensor fusion algorithm; the second one, instead, is a sensor fusion algorithm based on a simplified Kalman filter. Starting from this algorithm, a bit-true model in Mathworks Simulink(TM) has been created as a system study for the implementation of the algorithm on chip

    Interface Circuits for Microsensor Integrated Systems

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.

    Fast-waking and low-voltage thermoelectric and photovoltaic CMOS chargers for energy-harvesting wireless microsensors

    Get PDF
    The small size of wireless microsystems allows them to be deployed within larger systems to sense and monitor various indicators throughout many applications. However, their small size restricts the amount of energy that can be stored in the system. Current microscale battery technologies do not store enough energy to power the microsystems for more than a few months without recharging. Harvesting ambient energy to replenish the on-board battery extend the lifetime of the microsystem. Although light and thermal energy are more practical in some applications than other forms of ambient energy, they nevertheless suffer from long energy droughts. Additionally, due to the very limited space available in the microsystem, the system cannot store enough energy to continue operation throughout these energy droughts. Therefore, the microsystem must reliably wake from these energy droughts, even if the on-board battery has been depleted. The challenge here is waking a microsystem directly from an ambient source transducer whose voltage and power levels are limited due to their small size. Starter circuits must be used to ensure the system wakes regardless of the state of charge of the energy storage device. The purpose of the presented research is to develop, design, simulate, fabricate, test and evaluate CMOS integrated circuits that can reliably wake from no energy conditions and quickly recharge a depleted battery. Since the battery is depleted during startup, the system must use the low voltage produced by the energy harvesting transducer to transfer energy. The presented system has the fastest normalized wake time while reusing the inductor already present in the battery charger for startup, therefore, minimizing the overall footprint of the system.Ph.D
    corecore