26 research outputs found

    21st century manufacturing machines: Design, fabrication and controls

    Get PDF
    Advances in nanotechnology, microfabrication and new manufacturing processes, the revolution of open electronics, and the emerging internet of things will influence the design, manufacture, and control of manufacturing machines in the future. For instance, miniaturization will change manufacturing processes; additive and rapid prototyping will change the production of machine components; and open electronics offer a platform for new control architectures for manufacturing systems that are open, modular, and easy to reconfigure. Combined with the latest trends in cyber-physical systems and the internet of things, open architecture controllers for CNC systems can become platforms, oriented for numerical control as a service (NCaaS) and manufacturing as a service, tailored to the creation of cyber-manufacturing networks of shared resources and web applications. With this potential in mind, this research presents new design-for-fabrication methodologies and control strategies to facilitate the creation of next generation machine tools. It provides a discussion and examples of the opportunities that the present moment offers. The first portion of this dissertation focuses on the design of complex 3D MEMS machines realized from conventional 2.5D microfabrication processes. It presents an analysis of an example XYZ-MEMS parallel kinematics stage as well as of designs of the individual components of the manipulator, integrated into a design approach for PK-XYZ-MEMS stages. It seems likely that this design-for-fabrication methodology will enable higher functionality in MEMS micromachines and result in new devices that interact, in three full dimensions, with their surroundings. Novel and innovative research exemplifies the opportunities new and economical manufacturing technologies offer for the design and fabrication of modern machine tools. The second portion of this dissertation describes the demonstration of a new flexural joint designed with both traditional and additive manufacturing processes. It extrapolates principles based on the design of this joint that alleviate the effects of low accuracy and poor surface finishing, anisotropy, reductions in material properties of components, and small holding forces. Based on these results, the next section presents case examples of the construction of mesoscale devices and machine components using multilayered composites and hybrid flexures for precision engineering, medical training, and machine tools for reduced life applications and tests design-for-fabrication strategies. The results suggest the strategies effectively address existing problems, providing a repertory of creative solutions applicable to the design of devices with hybrid flexures. The implications for medical industry, micro robotics, soft robotics, flexible electronics, and metrology systems are positive. Chapter number five examines to positive impact of open architectures of control for CNC systems, given the current availability of micro-processing power and open-source electronics. It presents a new modular architecture controller based on open-source electronics. This component-based approach offers the possibility of adding micro-processing units and an axis of motion without modification of the control programs. This kind of software and hardware modularity is important for the reconfiguration of new manufacturing units. The flexibility of this architecture makes it a convenient testbed for the implementation of new control algorithms on different electromechanical systems. This research provides general purpose, open architecture for the design of a CNC system based on open electronics and detailed information to experiment with these platforms. This dissertation’s final chapter describes how applying the latest trends to the classical concepts of modular and open architecture controllers for CNC systems results in a control platform, oriented for numerical control as a service (NCaaS) and manufacturing as a service (MaaS), tailored to the creation of cyber-manufacturing networks of shared resources and web applications. Based on this technology, this chapter introduces new manufacturing network for numerical control (NC) infrastructure, provisioned and managed over the internet. The proposed network architecture has a hardware, a virtualization, an operating system, and a network layer. With a new operating system necessary to service and virtualize manufacturing resources, and a micro service architecture of manufacturing nodes and assets, this network is a new paradigm in cloud manufacturing

    Vision Based Automatic Calibration of Microrobotic System

    Get PDF
    During the last decade, the advancement of microrobotics has provided a powerful tool for micromanipulation in various fields including living cell manipulation, MEMS/MOEMS assembly, and micro-/nanoscale material characterization. Several dexterous micromanipulation systems have been developed and demonstrated. Nowadays, the research on micromanipulation has shifted the scope from the conceptual system development to the industrial applications. Consequently, the future development of this field lies on the industrial applicability of systems that aims to convert the micromanipulation technique to the mass manufacturing process. In order to achieve this goal, the automatic microrobotic system, as the core in the process chain, plays a significant role. This thesis focuses on the calibration procedure of the positioning control, which is one of the fundamental issues during the automatic microrobotic system development. A novel vision based procedure for three dimensional (3D) calibrations of micromanipulators is proposed. Two major issues in the proposed calibration approach - vision system calibration and manipulator kinematic calibration - are investigated in details in this thesis. For the stereo vision measurement system, the calibration principle and algorithm are presented. Additionally, the manipulator kinematic calibration is carried out in four steps: kinematic modeling, data acquisition, parameter estimation, and compensation implementation. The procedures are presented with two typical models: the matrix model and the polynomial model. Finally, verification and evaluation experiments are conducted on the microrobotic fiber characterization platform in the Micro- and Nano Systems Research Group (MST) at Tampere University of Technology. The results demonstrate that the proposed calibration models are able to reduce the prediction error below 2.59 micrometers. With those models, the pose error, compensated by the feed-forward compensator, can be reduced to be smaller than 5 µm. The proposed approach also demonstrates the feasibility in calibrating the decoupled motions, by reducing the undesired movement from 28 µm to 8 µm (For 4800 µm desired movement)

    Pjezorobotų trajektorijų valdymas nanopalydovų stabilizavimui

    Get PDF
    Rapid industrial advancement requires novel ideas, new scientific approaches and effective technologies that would ensure quality and precision. Application of piezoelectric actuators in robotics opens many possibilities to create systems with extreme precision and control. A very important step in the development of autonomous robots is the formation of motion trajectories. Classical interpolation methods used for formation of the trajectories are suitable only when robots have wheels, legs or other parts for motion transmission. Piezorobots that are analyzed in this dissertation have no additional components that create motion, only contact points with the static plane. Therefore, traditional motion formation methods are not suitable and a problem arises how to define motion trajectory of such device. The aim of this work is to create a trajectory control algorithm of multi-degrees-of-freedom piezorobot used for nanosatellite stabilization. In order to achieve the objective, the following tasks had to be solved: to analyze constructions of precise piezorobots, their operating principles and motion formation methods; to analyze stabilization problems of satellites and application of multi-degrees-of-freedom piezorobots for nanosatellite stabilization; to create piezorobots’ motion formation algorithms according to electrode excitation schemes, to perform an experimental research; to determine quantitative characteristics of the constructed piezorobots and their motion trajectories. The introduction describes the importance and novelty of this thesis, goals of this work, its practical value and defended statements. The first chapter analyses the principals of ultrasonic devices, gives a thorough review of constructions of ultrasonic devices with multi-degrees-of-freedom. The second chapter provides a review of satellite stabilization principles and how multi-degrees-of-freedom piezorobots can be applied for nanosatellite stabilization. Motion formation methods for ultrasonic devices with multi-degrees-of-freedom are presented. The third chapter presents the detailed analysis of different piezorobots. In the fourth chapter experimental results are provided. Trajectory planning of piezorobot is shown, results are compared to numerical calculations performed in the third chapter. The conclusions about applicability of piezorobots’ motion formation algorithms according to electrode excitation schemes are given. Seven articles focusing on the subject of the dissertation have been published, two presentations on the subject have been presented in conferences at international level. The research for the dissertation has been funded by the Lithuanian State Science and Studies Foundation: European Regional Development Fund, Project No. DOTSUT-234 and Research Council of Lithuania, Project No. MIP-084/2015.Dissertatio

    Vision Based Automatic Calibration of Microrobotic System

    Get PDF
    During the last decade, the advancement of microrobotics has provided a powerful tool for micromanipulation in various fields including living cell manipulation, MEMS/MOEMS assembly, and micro-/nanoscale material characterization. Several dexterous micromanipulation systems have been developed and demonstrated. Nowadays, the research on micromanipulation has shifted the scope from the conceptual system development to the industrial applications. Consequently, the future development of this field lies on the industrial applicability of systems that aims to convert the micromanipulation technique to the mass manufacturing process. In order to achieve this goal, the automatic microrobotic system, as the core in the process chain, plays a significant role. This thesis focuses on the calibration procedure of the positioning control, which is one of the fundamental issues during the automatic microrobotic system development. A novel vision based procedure for three dimensional (3D) calibrations of micromanipulators is proposed. Two major issues in the proposed calibration approach - vision system calibration and manipulator kinematic calibration - are investigated in details in this thesis. For the stereo vision measurement system, the calibration principle and algorithm are presented. Additionally, the manipulator kinematic calibration is carried out in four steps: kinematic modeling, data acquisition, parameter estimation, and compensation implementation. The procedures are presented with two typical models: the matrix model and the polynomial model. Finally, verification and evaluation experiments are conducted on the microrobotic fiber characterization platform in the Micro- and Nano Systems Research Group (MST) at Tampere University of Technology. The results demonstrate that the proposed calibration models are able to reduce the prediction error below 2.59 micrometers. With those models, the pose error, compensated by the feed-forward compensator, can be reduced to be smaller than 5 µm. The proposed approach also demonstrates the feasibility in calibrating the decoupled motions, by reducing the undesired movement from 28 µm to 8 µm (For 4800 µm desired movement)

    Micro motion stages with flexure hinges-design and control

    Get PDF
    The developments in micro and nano technologies brought the need of high precision micropositioning stages to be used in micro/nano applications such as cell manipulation, surgery, aerospace, micro fluidics, optical systems, micromachining and microassembly etc. Micro motion stages with flexible joints called compliant mechanisms are built to provide the needed accuracy and precision. This thesis aims to build compliant planar micro motion stages using flexure hinges to be used as micropositioning devices in x-y directions by applying new control methods. First 3- RRR planar parallel kinematic structure is selected which is also popular in the literature. Then the mechanism is developed to have a new structure which is a 3-PRR mechanism. The necessary geometric parameters are selected by using Finite Element Analysis (FEA). The displacement, stress and frequency behaviors of the mechanisms are compared and discussed. Modeling of the flexure based mechanisms is also studied for 3-PRR compliant stage by using Kinetostatic modeling method which combines the compliance calculations of flexure hinges with kinematics of the mechanism. Piezoelectric actuators and optical 2d position sensor which uses a laser source are used for actuation and measurement of the stages. After the experimental studies it's seen that the results are not compatible with FEA because of the unpredictable errors caused by manufacturing and assembly. We have succeeded to eliminate those errors by implementing a control methodology based on Sliding Mode Control with Disturbance Observer which is also based on Sliding Mode Control using linear piezoelectric actuator models. Finally, we have extracted experimental models for each actuation direction of the stage and used those models instead of piezoelectric actuator models which lowered our errors in the accuracy of our measurement and ready to be used as a high precision micro positioning stage for our micro system applications

    Development of a Novel Handheld Device for Active Compensation of Physiological Tremor

    Get PDF
    In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation of physiological tremor in the hand. MEMS-based accelerometers and gyroscopes have been used for sensing the motion of the hand in six degrees of freedom (DOF). An augmented state complementary Kalman filter is used to calculate 2 DOF orientation. An adaptive filtering algorithm, band-limited Multiple Fourier linear combiner (BMFLC), is used to calculate the tremor component in the hand in real-time. Ionic Polymer Metallic Composites (IPMCs) have been used as actuators for deflecting the tool-tip to compensate for the tremor

    Investigation into vibration assisted micro milling: theory, modelling and applications

    Get PDF
    PhD ThesisPrecision micro components are increasingly in demand for various engineering industries, such as biomedical engineering, MEMS, electro-optics, aerospace and communications. The proposed requirements of these components are not only in high accuracy, but also in good surface performance, such as drag reduction, wear resistance and noise reduction, which has become one of the main bottlenecks in the development of these industries. However, processing these difficult-to-machine materials efficiently and economically is always a challenging task, which stimulates the development and subsequent application of vibration assisted machining (VAM) over the past few decades. Vibration assisted machining employs additional external energy sources to generate high frequency vibration in the conventional machining process, changing the machining (cutting) mechanism, thus reducing cutting force and cutting heat and improving machining quality. The current awareness on VAM technology is incomplete and effective implementation of the VAM process depends on a wide range of technical issues, including vibration device design and setup, process parameters optimization and performance evaluation. In this research, a 2D non-resonant vibration assisted system is developed and evaluated. Cutting mechanism and relevant applications, such as functional surface generation and microfluidic chips manufacturing is studies through both experimental and finite element analysis (FEA) method. A new two-dimensional piezoelectric actuator driven vibration stage is proposed and prototyped. A double parallel four-bar linkage structure with double layer flexible hinges is designed to guide the motion and reduce the displacement coupling effect between the two directions. The compliance modelling and dynamic analysis are carried out based on the matrix method and lagrangian principle, and the results are verified by finite element analysis. A closed loop control system is developed and proposed based on LabVIEW program consisting of data acquisition (DAQ) devices and capacitive sensors. Machining experiments have been carried out to evaluate the performance of the vibration stage and the results show a good agreement with the tool tip trajectory simulation results, which demonstrates the feasibility and effectiveness of the vibration stage for vibration assisted micro milling. The textured surface generation mechanism is investigated through both modelling and experimental methods. A surface generation model based on homogenous matrices transformation is proposed by considering micro cutter geometry and kinematics of vibration assisted milling. On this basis, series of simulations are performed to provide insights into the effects of various vibration parameters (frequency, amplitude and phase difference) on the generation mechanism of typical textured surfaces in 1D and 2D vibration-assisted micro milling. Furthermore, the wettability tests are performed on the machined surfaces with various surface texture topographies. A new contact model, which considers both liquid infiltration effects and air trapped in the microstructure, is proposed for predicting the wettability of the fish scales surface texture. The following surface textures are used for T-shaped and Y-shaped microchannels manufacturing to achieve liquid one-way flow and micro mixer applications, respectively. The liquid flow experiments have been carried out and the results indicate that liquid flow can be controlled effectively in the proposed microchannels at proper inlet flow rates. Burr formation and tool wear suppression mechanisms are studied by using both finite element simulation and experiment methods. A finite element model of vibration assisted micro milling using ABAQUS is developed based on the Johnson-Cook material and damage models. The tool-workpiece separation conditions are studied by considering the tool tip trajectories. The machining experiments are carried out on Ti-6Al-4V with coated micro milling tool (fine-grain tungsten carbides substrate with ZrO2-BaCrO4 (ZB) coating) under different vibration frequencies (high, medium and low) and cutting states (tool-workpiece separation or nonseparation). The results show that tool wear can be reduced effectively in vibration assisted micro milling due to different wear suppression mechanisms. The relationship between tool wear and cutting performance is studied, and the results indicate that besides tool wear reduction, better surface finish, lower burrs and smaller chips can also be obtained as vibration assistance is added

    Design and realization of a microassembly workstation

    Get PDF
    With the miniaturization of products to the levels of micrometers and the recent developments in microsystem fabrication technologies, there is a great need for an assembly process for the formation of complex hybrid microsystems. Integration of microcomponents made up of different materials and manufactured using different micro fabrication techniques is still a primary challenge since some of the fundamental problems originating from the small size of parts to be manipulated, high precision necessity and specific problems of the microworld in that field are still not fully investigated. In this thesis, design and development of an open-architecture and reconfigurable microassembly workstation for efficient and reliable assembly of micromachined parts is presented. The workstation is designed to be used as a research tool for investigation of the problems in microassembly. The development of such a workstation includes the design of: (i) a manipulation system consisting of motion stages providing necessary travel range and precision for the realization of assembly tasks, (ii) a vision system to visualize the microworld and the determination of the position and orientation of micro components to be assembled, (iii) a robust control system and necessary fixtures for the end effectors that allow easy change of manipulation tools and make the system ready for the desired task. In addition tele-operated and semi-automated assembly concepts are implemented. The design is verified by implementing tasks in various ranges for micro-parts manipulation. The versatility of the workstation is demonstrated and high accuracy of positioning is shown

    International Workshop on MicroFactories (IWMF 2012): 17th-20th June 2012 Tampere Hall Tampere, Finland

    Get PDF
    This Workshop provides a forum for researchers and practitioners in industry working on the diverse issues of micro and desktop factories, as well as technologies and processes applicable for micro and desktop factories. Micro and desktop factories decrease the need of factory floor space, and reduce energy consumption and improve material and resource utilization thus strongly supporting the new sustainable manufacturing paradigm. They can be seen also as a proper solution to point-of-need manufacturing of customized and personalized products near the point of need
    corecore