1,238 research outputs found

    Online Bearing Remaining Useful Life Prediction Based on a Novel Degradation Indicator and Convolutional Neural Networks

    Full text link
    In industrial applications, nearly half the failures of motors are caused by the degradation of rolling element bearings (REBs). Therefore, accurately estimating the remaining useful life (RUL) for REBs are of crucial importance to ensure the reliability and safety of mechanical systems. To tackle this challenge, model-based approaches are often limited by the complexity of mathematical modeling. Conventional data-driven approaches, on the other hand, require massive efforts to extract the degradation features and construct health index. In this paper, a novel online data-driven framework is proposed to exploit the adoption of deep convolutional neural networks (CNN) in predicting the RUL of bearings. More concretely, the raw vibrations of training bearings are first processed using the Hilbert-Huang transform (HHT) and a novel nonlinear degradation indicator is constructed as the label for learning. The CNN is then employed to identify the hidden pattern between the extracted degradation indicator and the vibration of training bearings, which makes it possible to estimate the degradation of the test bearings automatically. Finally, testing bearings' RULs are predicted by using a ϵ\epsilon-support vector regression model. The superior performance of the proposed RUL estimation framework, compared with the state-of-the-art approaches, is demonstrated through the experimental results. The generality of the proposed CNN model is also validated by transferring to bearings undergoing different operating conditions

    Heavy-Duty Vehicles Modeling and Factors Impacting Fuel Consumption.

    Get PDF
    A conventional heavy-duty truck PSAT model was validated and incorporated into the Powertrain System Analysis Toolkit (PSAT). The truck that was modeled was a conventional over-the-road 1996 Peterbilt tractor, equipped with a 550 hp Caterpillar 3406E non exhaust gas circulation (EGR) engine and an 18-speed Roadranger manual transmission. A vehicle model was developed, along with the model validation processes. In the engine model, an oxides of nitrogen (NOx) emissions model and a fuel rate map for the Caterpillar 3406E engine were created based on test data. In the gearbox model, a shifting strategy was specified and transmission efficiency lookup tables were developed based on the losses information gathered from the manufacturer. As the largest mechanical accessory model, an engine cooling fan model, which estimates fan power demand, was integrated into the heavy-duty truck model. Experimental test data and PSAT simulation results pertaining to engine fuel rate, engine torque, engine speed, engine power and NOx were within 5% relative error. A quantitative study was conducted by analyzing the impacts of various parameters (vehicle weights, coefficients of rolling resistance and the aerodynamic drag) on fuel consumption (FC) for the Peterbilt truck. The vehicle was simulated over five cycles which represent typical vehicle in-use behavior. Three contributions were generated. First, contour figures provided a convenient way to estimate fuel economy (FE) of the Peterbilt truck over various cycles by interpolating within the parameter values. Second, simulation results revealed that, depending on the circumstances and the cycle, it may be more cost effective to reduce one parameter value (such as coefficient of aerodynamic drag) to increase FE, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). Third, the amount of the energy consumed by auxiliary loads was found to be highly dependent upon the driving cycles. The ratios between average auxiliary power and average engine power were found to be 71.0%, 17.1%, 15.3%, 12.4% and 11.43% for creep, transient, UDDS, cruise and HHDDT_s cycles, respectively. A hybrid electric bus (HEB) also was modeled. The HEB that was modeled was a New Flyer bus with ISE hybrid system, a Cummins ISB 260H engine and a single-reduction transmission. Information and data were acquired to describe all major components of the HEB. The engine model was validated prior to modeling of the whole vehicle model. The load-following control strategy was utilized in the energy management system. Experimental data and PSAT simulated results were compared over four driving schedules, and the relative percent of errors of the FC, FE, CO2 and NOx were all within 5% except for the FE and NOx of the Manhattan cycle, which were 6.93% and 7.13%, respectively. The high fidelity of this model makes it possible to evaluate the FE and NOx emissions of series hybrid buses for subsequent PSAT users

    INTELLIGENT VISION-BASED NAVIGATION SYSTEM

    Get PDF
    This thesis presents a complete vision-based navigation system that can plan and follow an obstacle-avoiding path to a desired destination on the basis of an internal map updated with information gathered from its visual sensor. For vision-based self-localization, the system uses new floor-edges-specific filters for detecting floor edges and their pose, a new algorithm for determining the orientation of the robot, and a new procedure for selecting the initial positions in the self-localization procedure. Self-localization is based on matching visually detected features with those stored in a prior map. For planning, the system demonstrates for the first time a real-world application of the neural-resistive grid method to robot navigation. The neural-resistive grid is modified with a new connectivity scheme that allows the representation of the collision-free space of a robot with finite dimensions via divergent connections between the spatial memory layer and the neuro-resistive grid layer. A new control system is proposed. It uses a Smith Predictor architecture that has been modified for navigation applications and for intermittent delayed feedback typical of artificial vision. A receding horizon control strategy is implemented using Normalised Radial Basis Function nets as path encoders, to ensure continuous motion during the delay between measurements. The system is tested in a simplified environment where an obstacle placed anywhere is detected visually and is integrated in the path planning process. The results show the validity of the control concept and the crucial importance of a robust vision-based self-localization process

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF
    The dynamic response of end-clamped monolithic beams and sandwich beams has been measured by loading the beams at mid-span using metal foam projectiles. The AISI 304 stainless-steel sandwich beams comprise two identical face sheets and either prismatic Y-frame or corrugated cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the beams as a function of projectile momentum. The prismatic cores are aligned either longitudinally along the beam length or transversely. It is found that the sandwich beams with a longitudinal core orientation have a higher shock resistance than the monolithic beams of equal mass. In contrast, the performance of the sandwich beams with a transverse core orientation is very similar to that of the monolithic beams. Three-dimensional finite element (FE) simulations are in good agreement with the measured responses. The FE calculations indicate that strain concentrations in the sandwich beams occur at joints within the cores and between the core and face sheets; the level of maximum strain is similar for the Y-frame and corrugated core beams for a given value of projectile momentum. The experimental and FE results taken together reveal that Y-frame and corrugated core sandwich beams of equal mass have similar dynamic performances in terms of rear-face deflection, degree of core compression and level of strain within the beam

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF

    Transient stability assessment of hybrid distributed generation using computational intelligence approaches

    Get PDF
    Includes bibliographical references.Due to increasing integration of new technologies into the grid such as hybrid electric vehicles, distributed generations, power electronic interface circuits, advanced controllers etc., the present power system network is now more complex than in the past. Consequently, the recent rate of blackouts recorded in some parts of the world indicates that the power system is stressed. The real time/online monitoring and prediction of stability limit is needed to prevent future blackouts. In the last decade, Distributed Generators (DGs) among other technologies have received increasing attention. This is because DGs have the capability to meet peak demand, reduce losses, due to proximity to consumers and produce clean energy and thus reduce the production of COâ‚‚. More benefits can be obtained when two or more DGs are combined together to form what is known as Hybrid Distributed Generation (HDG). The challenge with hybrid distributed generation (HDG) powered by intermittent renewable energy sources such as solar PV, wind turbine and small hydro power is that the system is more vulnerable to instabilities compared to single renewable energy source DG. This is because of the intermittent nature of the renewable energy sources and the complex interaction between the DGs and the distribution network. Due to the complexity and the stress level of the present power system network, real time/online monitoring and prediction of stability limits is becoming an essential and important part of present day control centres. Up to now, research on the impact of HDG on the transient stability is very limited. Generally, to perform transient stability assessment, an analytical approach is often used. The analytical approach requires a large volume of data, detailed mathematical equations and the understanding of the dynamics of the system. Due to the unavailability of accurate mathematical equations for most dynamic systems, and given the large volume of data required, the analytical method is inadequate and time consuming. Moreover, it requires long simulation time to assess the stability limits of the system. Therefore, the analytical approach is inadequate to handle real time operation of power system. In order to carry out real time transient stability assessment under an increasing nonlinear and time varying dynamics, fast scalable and dynamic algorithms are required. Transient Stability Assessment Of Hybrid Distributed Generation Using Computational Intelligence Approaches These algorithms must be able to perform advanced monitoring, decision making, forecasting, control and optimization. Computational Intelligence (CI) based algorithm such as neural networks coupled with Wide Area Monitoring System (WAMS) such as Phasor Measurement Unit (PMUs) have been shown to successfully model non-linear dynamics and predict stability limits in real time. To cope with the shortcoming of the analytical approach, a computational intelligence method based on Artificial Neural Networks (ANNs) was developed in this thesis to assess transient stability in real time. Appropriate data related to the hybrid generation (i.e., Solar PV, wind generator, small hydropower) were generated using the analytical approach for the training and testing of the ANN models. In addition, PMUs integrated in Real Time Digital Simulator (RTDS) were used to gather data for the real time training of the ANNs and the prediction of the Critical Clearing Time (CCT)
    • …
    corecore