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Abstract 

This thesis presents a complete vision-based navigation system that can plan and 

follow an obstacle-avoiding path to a desired destination on the basis of an internal map 

updated with information gathered from its visual sensor. 

For vision-based self-localization, the system uses new floor-edges-specific filters 

for detecting floor edges and their pose, a new algorithm for determining the orientation of 

the robot, and a new procedure for selecting the initial positions in the self-localization 

procedure. Self-localization is based on matching visually detected features with those 

stored in a prior map. 

For planning, the system demonstrates for the first time a real-world application of 

the neural-resistive grid method to robot navigation. The neural-resistive grid is modified 

with a new connectivity scheme that allows the representation of the collision-free space of 

a robot with finite dimensions via divergent connections between the spatial memory layer 

and the neuro-resistive grid layer. 

A new control system is proposed. It uses a Smith Predictor architecture that has 

been modified for navigation applications and for intermittent delayed feedback typical of 

artificial vision. A receding horizon control strategy is implemented using Normalised 

Radial Basis Function nets as path encoders, to ensure continuous motion during the delay 

between measurements. 

The system is tested m a simplified environment where an obstacle placed 

anywhere is detected visually and is integrated in the path plarming process. 

The results show the validity of the control concept and the crucial importance of a 

robust vision-based self-localization process. 
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Chapter 1 

Introduction 

1.1 Aim of this Project 

Research in the field of mobile robotics has received considerable attention in the 

past decade due to its wide range of potential applications. One area of special interest is 

household robotics for the disabled and the elderly persons. In general, a household robot 

needs to be able to perform several tasks. Among these, object fetching is a generic task 

which itself consists of several sub-tasks. One of the sub-tasks this research focuses on is 

goal directed navigation. 

Given the need for artificial vision in most domestic tasks, this study also uses 

vision to acquire spatial information for navigation. Designing an effective navigation 

system requires the integration of current knowledge or development of new methods in 

various fields such as object recognition, spatial vision, spatial knowledge representation, 

path planning, motion control, obstacle avoidance and power resources management. 

The scenario forming the background of this work is that of a domestic robot 

fetching an object in a room cluttered with obstacles. A number of simplifications were 

made to the scenario so that more emphasis can be placed on issues related to the 

interaction between vision, planning and navigation functions. 



The aims are to: 

1. design and demonstrate a navigation system that can plan an obstacle-avoiding 

path to a desired destination on the basis of an internal model (map), updated 

with information gathered from its visual sensors. 

2. investigate and demonstrate a control technique that addresses concurrent 

image processing and planning while the robot is in motion. 

To achieve these aims, the following simplifications were used: 

the goal is at a predefined location that can be varied by the experiment, but 

does not requires competences in visual object localization. 

obstacles are simple white rectangular blocks, each with the height of 1.5 

centimetre, small enough for 2-D approximation, that can be detected visually 

by the robot's onboard camera as 2-D forbidden areas standing out from the 

dark floor of the environment. These obstacles can be placed anywhere and 

considered during planning. 

the environment is a small-scale box of size l25x89 centimetres developed to 

emulate a room in the real world. The walls and the floor of the small-scale 

robot's environment were painted with white colour and black colour 

respectively. This setup simplifies image processing and frees time for 

exploring other issues related to the overall aim of this research. 
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a circular cross-section robot with two drive wheels (which enable the robot to 

spin around a centre point) is used as a prototype of a domestic robot. This 

cylindrical robot is free from both the geometric constraints and the piano

mover's problem (Schwartz and Sharir, 1983), therefore the 3-D planning 

problem is simplified to a 2-D planning problem. 

1.2 Method 

The work was divided into two stages. The first stage is to develop a visual system 

that informs a planner about the positions of the robot and obstacles. A simple stop-and-go 

motion controller was used to test the validity of the approach. In stage two, the motion 

control problem was addressed. The issue here was to enable uninterrupted motion of the 

robot to the goal despite long intervals (i.e. of the order of 1 second) between image 

acquisition and the delayed access to visual information. 

1.3 Overview of the Thesis 

This thesis consists of eight chapters. This chapter provides an overview of the 

research, the thesis and the research activity. 

Chapter 2 contains pointers to previous work in topics related to this project. 

Chapter 3 provides an overview of the experimental setup. This includes a Rug 

Warrior robot from the MIT modified for a remote-brained control architecture where all 

computation-intensive processes such as image processing and planning are performed on 

a remote computer. 
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Chapter 4 describes vision-based obstacles detection, self-localization and map 

updating. This chapter begins with the correction of the camera lens distortion (Fish-eye 

effect), then moves on to the design of novel task-specific floor and non-floor edges 

detectors, followed by the use of projective geometry for coordinate transformation. The 

projective geometry coordinate transformation is used to transform the processed image 

information (i.e. the detected edges and their orientation) from the camera coordinate 

system to the map coordinate system. The end of this chapter shows how map updating 

with visually detected obstacles and self-localization are done on the basis of this 

information. 

Chapter 5 deals with path planning and encoding. This chapter begins by 

describing the use of a neural-resistive grid for path planning and how sections of the 

pre-planned path are prepared for sending to the robot controller. The use of a Normalised 

Radial Basis Function (NRBF) neural network for encoding and decoding the path in the 

robot controller is described. 

Chapter 6 looks at the problem of motion control with time delays, and how it is 

solved. This chapter proposes a solution to the stop-and-go motion problem using a new 

control technique that combines traditional control methods, which are the Smith Predictor 

and the receding horizon control strategy, to overcome the problems of computational 

complexity and speed in image processing and action planning. 

Chapter 7 shows the results of a series of navigation experiments and discusses the 

problems encountered. 
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Chapter 8 contains the conclusions and describes work suggested for future 

research. 
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Chapter 2 

Literature Review 

A vision-based navigation system (i.e. a mobile robot) must be able to reach an 

assigned goal by moving and reasoning within its environment without direct human 

intervention and control. Therefore a navigation system that exhibits such autonomous 

ability must first be able to perform the sense-think-act process. Such a system is usually 

equipped with a vision system to sense its environment, a mapping module for prior map 

updating or building a new map, a planning module for path planning, and a controller for 

path following. Many different techniques and approaches for mobile robotics on vision, 

mapping, planning, control and navigation have been developed since the mid-twentieth 

century to achieve the aim of self-contained autonomy but each has its own advantages and 

disadvantages. 

In general, a vision-based navigation system (mobile robot) is complex to build, 

difficult to maintain and extremely fragile, as each part of the system depends on all others 

to function (e.g. the mapping process depends on the vision system). 
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2.1 Intelligent Vision-based Navigation in Robotics 

The ultimate aim of a vision-based navigation system is to be able to act as a 

reliable moving platform for the environment they are design for, if not for any 

environment. If this is achieved, it opens the door to a variety of possible applications such 

as household robotics, autonomous vehicles or wheelchairs, etc. A household robot and 

autonomous wheelchair must be able to recognise visual patterns, navigates around the 

environment smoothly and freely, and perform the tasks they were designed to do. This 

includes object retrieval (mainly for household robotics), goal directed navigation, etc. 

The first intelligent mobile robot that had vision capability dated back to 1969. 

Shakey was constructed at Stanford Research Institute (Nilsson, 1969). It is able to 

distinguish objects of given sizes, shapes and colours, and interacts with them to move 

them to a designated position. Shakey is equipped with two stepper motors and uses the 

differential drive method to control its steering action, and avoid any obstacles 

encountered. The name Shakey is derived from its irregular and jerky motion. Shakey 

uses STRIPS (the Stanford Research Institute Problem Solver), a logic based problem 

solving system to develop navigation plan (Fikes and Nilsson, 1971 ). STRIPS required 

symbolic information from input sensors which Shakey had difficulty generating from raw 

data. As Hans Moravec remembers, "An entire run of Shakey could involve the robot 

getting into a room, finding a block, being asked to move the block over the top of the 

platform, pushing a wedge against the platform, rolling up the ramp, and pushing the block 

up. Shakey never did this as one complete sequence. It did it in several independent 

attempts, which each had a high probability of failure. You will be able to put together a 

movie that had all the pieces in it, but it was really flaky." (Crevier, 1993). 
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The Stanford Cart (Moravec, 1983) is a mobile robot that uses stereo vision to 

locate objects and plans obstacle-avoiding paths to desired destinations on the basis of an 

internal model derived from stereo data. The robot was controlled by an off-board 

computer program and its motion was determined through comparison of images over 

time. A complete cycle of sense-think-act process with the robot moving a meter forward 

takes about I 0-15 minutes to complete. After moving a meter, the robot stops and begins a 

new sense-think-act process. This process is repeated until the robot reaches its final 

destination. It takes about 5 hours to complete a 20 meter route in an environment with 

three to four obstacles to avoid. The system exhibits a stop-and-go motion which is largely 

cause by the computationally expensive stereo vision task. This includes feature detection, 

correlation, distance estimation and localization. 

2.2 Control with Intermittent Sensing 

The stop-and-go problem is a problem of control with intermittent sensing. It is 

due to the long time required for processing the image (i.e. delayed measurement) and for 

planning the movement. Nowadays computer have become much faster but there is still a 

delay between sensing and the moment when a new control becomes effective. To 

overcome the stop-and-go motion, and enable the robot to exhibit a smooth continuous 

motion, this delay has to be handled. 

Kosaka, Meng and Kak (1993) introduced FINALE-II, an improvement over their 

earlier system FINALE (Koaska and Kak, 1992), a vision-guided mobile robot navigation 

system which had to stay static for the self-localization task (i.e. capture an image and 

processing the captured image to reduce the uncertainty of the robot position). FINALE-II 

eliminates the need for the robot to remain stationary when the vision data is being 

processed. This reduces the duration of the robot static state to the time needed for 
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capturing a new image for self-localization and the time to use the vision information 

(updated position uncertainty) to re-estimate the current robot position. Processing of the 

captured image in FINALE-I! is done while the robot is in motion, following its previously 

calculated path toward the goal. Once the self-localization task is completed, the robot 

motion is stopped and its current position is re-estimated retroactively based on the stored 

motion history. The system then re-plans a path from the newly updated position to the 

goal position and restarts its motion toward the goal. Self-localization is done by matching 

the features extracted from the images with the expected landmarks extracted from the 

prior model-based map, using the expected robot's position. The robot position 

uncertainties are then reduced with the use of a Kalman filter. 

Maeyama, Ohya and Yuta (1995) proposed a non-stop outdoor navigation system 

using retroactive positioning data fusion, the data being calculated using increments of the 

robot position vector and its covariance matrix obtain by dead reckoning. In their system, 

the robot keeps the position and the covariance at sensing time (i.e. to) for correction when 

the processing of landmark information finishes (i.e. t0+nr, where nr is the time needed to 

process landmark information) using maximum likelihood estimation. The current 

position (at time t0+nr) is then recalculated using the total increment of parameters such as 

location, heading and the covariance from time to to the current time t0+nr. 

Larsen, Andersen and Ravn (1998) proposed a simple and computational cheap 

way of compensating delays based on the extrapolation of the measurement to the present 

time using past and present estimates of the Kalman filter and calculating an optimum gain 

for this extrapolated measurement. The proposed method is a solution to the problem of 

designing discrete-time Kalman filters for systems where some results of measurements 

are delayed. 
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All these methods (Kosaka, Meng and Kak, 1993; Maeyama, Ohya and Yuta, 1995 

and Larsen, Andersen and Ravn, 1998) are essentially using the same concept, i.e. using an 

estimate of the delayed measurement, then applying a correction factor when this becomes 

available. The method proposed here is a modification of the Smith Predictor along 

similar lines (chapter 6). 

2.3 Navigation 

Navigation involves Self-localization, Map building or updating, and Path 

Planning. For a successful navigation, a robot must be able to localize itself within its 

environment, tracks its own position and use its sensor data to built an internal map or map 

the sensed data onto its internal prior map, which will be used for path planning, a process 

which searches for an obstacle-free path from the robot's initial position to the goal. 

2.3.1 Self-localization 

Self-localization is a process performed on the basis of the robot's sensory readings 

to determine the robot's actual position within its environment. In most mobile robots 

shaft encoders readings can be used to track the robot's position but, due to unavoidable 

odometry errors such as wheels slippage and drift, the error in the estimated position 

increases over time. Therefore, a self-localization process is necessary to correct this error 

and help increase the accuracy of the estimated robot's position and improve path 

planning. Apart from that, the self-localization process also helps in the mapping process 

(i.e. map updating or construct a new map), as detected obstacles relative to the robot 

position can be placed accurately into the model map. Hereafter are presented only some of 

the most interesting self-localization algorithms, as it is impossible to cover all the 

approaches to self-localization found in the literature. 
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Cox (1989) proposed a self-localization method that uses odometry and laser range 

sensing to sense the environment for pose estimation. The idea was to use odometry for 

position tracking while overcoming the shaft encoders drift by combining odometry with 

laser range sensing data for self-localization. This is done by matching the sensed data to 

the prior map. 

Janet, Gutierrez-Osuna, Chase, White and Luo (1995) proposed the use of a 

self-organizing Kohonen neural network based on a process similar to optical character 

recognition by assuming that the mapped sonar data forms a pattern unique to that room. 

The aim is to determine in which room the robot is on the basis of sensory data. The 

disadvantage of this system is that it only works in a static environment with no additional 

furniture or rearrangement of existing furniture, as this will change the characteristic 

signature of that room. 

Giuffrida, Massucco, Morasso, Vercelli and Zaccaria (1995) proposed an active 

localization system that uses triangulation-based reference guidance (i.e. active beacons are 

distributed over the operating area and an onboard rotating unit is used to pick up the 

signal) and dead reckoning for self-localization. 

Atiya and Hager (1993) proposed a real-time localization method based on visual 

landmarks. The idea of this approach is to recognise in the image those entities that stay 

invariant with respect to the position and orientation of the robot as it moves around its 

environment, I.e. landmarks (DeSouza and Kak, 2002), and determine their 

correspondence within a stored map to compute the location of the robot. A set-based 

algorithm is used for solving the matching problem and computing the location of a mobile 

robot in typical indoor environments. Interestingly, the set-based algorithm defines the 

error in position as the dimension of the overlapping areas of the tolerance zones around 
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the positions given by individual sensory measurements, instead of making assumptions 

based on distributions. 

Jensfelt and Kristensen (1999) proposed an active global localization method using 

multiple hypothesis tracking. The algorithm is based on Bayesian probability theory and 

multiple hypothesis tracking using Kalman filtering of Gaussian pose hypotheses. The 

algorithm first produces pose hypotheses based on features extracted from the sensor data. 

Then, by making more observations of features in the environment, additional support is 

given to a subset of the pose hypotheses. The idea is that the hypothesis corresponding to 

the robot true position will gain most evidence and will be selected as the robot's position. 

In this approach, the robot is initially taught by interactively leading the robot through the 

environment while having the robot actively extracting features from its sensory data and 

building a world model. This system was designed to handle incomplete and partly 

incorrect world model. According to the authors, when their global localization failed 

during the experiment, it was mostly because their exploration strategy had not been able 

to guide the robot to points where an essential feature could be seen, or that the robot got 

stuck while pursuing a wrong hypothesis. 

Kosaka and Kak ( 1992) proposed a self-localization algorithm for their system 

(Finale system), but the algorithm is implemented in such a way that it's only activated 

whenever the variances associated with the positional parameters exceed a certain 

predetermined threshold. Ohya, Kosaka and Kak (1998) adopt the Finale system 

self-localization algorithm but in their system, the self-localization algorithm is carried out 

on a continuous basis. The self-localization algorithm begins by generating an expectation 

image based on the best estimate of the robot's current position. The edges extracted from 

the expectation image are then compared with the edges extracted from the camera image 
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to find a match through an extended Kalman filter. The extended Kalman filter then 

produces updated values for the location and the orientation of the robot. 

The approach of vision-based self-localization used in thesis involves determining 

"what is being observed and where it is observed from" (Atiya and Hager, 1993). A 

similar assumption to Cox (I 989), Kosaka and Kak ( 1992) and Ohya, Kosaka and Kak 

(1998) was used, i.e. there is only a small difference between the expected view and the 

actual one. Therefore it is reasonable to attempt to match an edge found by sensors with 

the nearest edge in the map. The main difference with Cox (1989), Kosaka and Kak 

(1992) and Ohya, Kosaka and Kak (1998) is that the used edge detector can also determine 

the edge's orientation. This enables direct calculation of the difference between the 

estimated orientation and the actual orientation. 

2.3.2 Map Building 

Two of the most widely used mobile robot mapping concepts are known as the 

metric approach and the topological approach. 

In the metric approach, the robot's environment is represented in an absolute 

reference frame and numerical coordinates define where the objects are in space (Dudek 

and Jenkin, 2000). The most used metric approach was originally proposed by Moravec 

and Elfes ( 1985) which is known as the occupancy/certainty grid. The occupancy grid 

consists of cells where each cell represents an area of the environment. Each cell in the 

grid contains a certainty value representing how confident one is that the cell is being 

occupied by an obstacle. The certainty value is calculated based on sensor readings. The 

initial aim of the invention of occupancy grid was to handle sonar data with ambiguous 

angular positions. Occupancy grid approaches have the advantage of being easy to 

construct, to represent and maintain even in large scale environment (Buhrnann, Burgard, 
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Cremers, Fox, Hofmann, Schneider, Strikos and Thrun, 1995; Thrun and Bucken, 1996). 

Computation of an obstacle-free path to the goal is made possible by searching through 

obstacle-free cells within the grid. This map also allows the robot's position to be tracked 

accurately using information obtained from its sensory feedback and enables the system to 

overcome any dislocation problem due to different positions with similar sensory reading 

(Giuffrida, Massucco, Morasso, Vercelli and Zaccaria, 1995; Thrun, and Bucken, 1996; 

Thrun, 1998; Thrun, Gutmann, Fox, Burgard and Kuipers, 1998; Jensfelt, 2001). 

In the topological approach, topological graphs are used to represents the 

environment. This is done by identifying and linking distinctive places and paths in the 

environment. In the graph-like representation, each node represents a distinctive place 

identified by unique sensory readings and the connecting arcs between two nodes represent 

the existence of a path between the two corresponding pla_ces. Thus the exact metric 

relationship between the distinctive places and paths is not needed for the map building 

process. The topological map was initially proposed by Kuipers and Byun (1991) for robot 

exploration, mapping and navigation in large-scale spatial environments, where a 

large-scale spatial environment is define in their paper as an environment with a spatial 

structure that is at a significantly larger scale than the sensory horizon of the observer. 

Ko, Seneviratne and Earles (1994) proposed a method that uses the extended triangular 

algorithm for partitioning free space into triangular cells for building a topological graph 

known as the triangulation graph. In the triangulation graph representation, each node is 

representing a triangular cell, and the connectors are used to represent the edges between 

cells. 

The topological approach permits efficient planning and has low space complexity 

as its resolution depends only on the complexity of the environment. Accurate 
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detennination of the robot's position is not needed as localization with the topological 

approach only requires finding at which node the robot is located. 

However both approaches have their disadvantages, the metric approach is 

suffering from computational complexity (i.e. due to the high resolution grid map) and the 

need for accurate detennination of the robot's position. As for the topological approach, 

localization can be difficult if there is more than one node with similar sensory readings. 

Note that the sensory reading is also sensitive to the point of measurement which therefore 

has an impact on the recognition of places. Thus building and maintaining of topological 

maps can be difficult since sensory infonnation is ambiguous. 

Thus, Thrun and Bucken (1996) suggest that by integrating both the grid-based and 

the topological approaches, they gain the best of both approaches: accuracy/consistency 

and efficiency. Their proposal was first to build a grid-based map, because it is easy to 

build, represent and maintain. The grid-based map will then enable the robot's position to 

be tracked accurately. Once the grid-based map is completed, it is used to build the 

topological map, therefore overcoming the problem of ambiguous sensory infonnation. In 

their method, they employed an artificial neural network to interpret the sensory 

measurements of the environment and map into probabilities of the occupancy grid map. 

Bayes' rule was used to integrate multiple interpretations of the sensory measurements 

over time. The topological map is then built based on this occupancy grid, which is done 

by splitting the occupancy grid into coherent regions, separated by critical lines, where 

critical lines correspond to narrow passages such as doorways. This partitioned map is 

then transfonned into a topological map where each region is represented by a node while 

the critical line is represented by an arc that connects the two nodes. The newly produced 

topological map is greatly reduced in resolution compared to the occupancy grid and 

enabled fast planning and problem solving. 
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Tomatis, Nourbakhsh and Siegwart (2001) also proposed to integrate both metric 

and topological approaches for mapping to gain from the benefits of both approach in their 

simultaneous localization and map building (SLAM) process. In contrast to the approach 

of Thrun and Bucken (1996), both the topological and metric maps are built 

simultaneously. Tomatis, Nourbakhsh and Siegwart (200 1) use a topological graph to 

represent a global map (i.e. rooms in a building that are connected to a hallway) with each 

node (representing a room) being defined by a metric model. The metric model then 

contains detailed information about the room such as detected obstacles. 

In this thesis, a metric approach is used, as the robot resides in a single room of 

known dimensions. The only unknowns to be determined from sensory data are the 

position of the robot and the position of obstacles (chapter 4 ). The metric approach is well 

suited for the grid-based planning method explored in chapter 5. 

2.3.3 Path Planning 

The planning of an optimal collision-free path in high-dimensional configuration 

spaces or in dynamic environments can be a computation intensive process unsuitable for 

real-time implementation on a robot. 

Faster, but appropriate, path planning through the potential field method for 

obstacle avoidance was suggested by Andrews and Hogan (1983), Krogh (1984), and 

Khatib (1985) based on the idea of imaginary forces acting on the robot. In this approach, 

the robot experiences repulsive and attractive forces from obstacles and the goal 

respectively. The idea was to use repulsive forces to push the robot away from obstacles 

while using the attractive force to attract the robot toward the goal. The resultant force 

which is the sum of all the repulsive and attractive forces is used to determine the direction 
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of motion and the speed of navigation. The resulting obstacle-free path is not optimal as 

the robot tends to keep a maximum distance from obstacles. Murray (1997) proposed that 

by constraining the repulsive force within a fixed boundary, an optimal obstacle-free path 

can be produced. This however does not prevent the robot from being trapped in local 

minimum (i.e. a valley in the potential field that has only one way out and that is the way 

the robot came in). 

Boreinstein and Koren (1989) proposed a new real-time obstacle avoidance 

approach know as the Virtual Force Field (VFF). This approach employed certainty 

(occupancy) grids for obstacle representation, and the potential field method for 

navigation. Note that the potential field algorithm is only applied to the grids within the 

active window for path planning. The active window is a window that moves with the 

robot in a way such that the robot is always at the centre of the moving window. The VFF 

method suffers also from the local minimum problem inherent to potential field method. 

The authors proposed to solve the local minimum problem with a method know as the 

Wall-following method (WFM). Other inherent limitations of the potential field method 

are: no passage between closely spaced obstacles, oscillations in the presence of obstacles 

and oscillations in narrow passages (Boreinstein and Koren, 1991a). 

A new method know as the Vector Field Histogram (VFH) was then proposed by 

Boreinstein and Koren ( 1991 b) to overcome the inherent limitation and improve the VFF 

method. This new method uses a two-dimensional Cartesian histogram grid as a world 

model which is updated continuously with range data. A two-stage data-reduction process 

is used to determine the desired control commands for the robot. The first is to reduce the 

histogram grid within the active window into a one-dimensional polar histogram that 

contains the polar obstacle density in each direction. The second stage is to search for 

candidate valleys of the polar histogram. Candidate valleys are those that have an obstacle 
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density value that falls below a pre-set threshold value. Only the candidate valley that is 

closest to the target direction is selected for the process of detennining the best sector 

within that valley. The selected best sector is then used to generate a steering command 

for the robot. The authors consider this method as a local path planner, therefore it is 

prone to trap-states (and exhibits the cyclic behaviour), especially if the local minimum is 

larger than the active window. 

Kwon and Lee {1996) proposed to overcome the local minimum method with the 

use of obstacle vectors and via points. When the robot is in a trap-state, the via points 

algorithm produces a series of via points using a similar idea to the visibility graph method 

proposed by Latombe ( 1991) where the via points are detennined from the target point to 

the robot current position, based on available obstacle infonnation. Each of the via points 

is then used as the robot temporary target point to guide the robot out of the trap-state. 

Not suffering from local minimum problem are graph-based path planning methods 

such as spatial graphs and visibility graph (Lozano-Perez and Wesley, 1979), Voronoi 

diagram (Lee and Drysdale, 1981; O'Dunlaing and Yap, 1985; Iyengar, Jorgensen, Rao, 

and Weisbin, 1986; Takahashi and Schilling, 1989), free way (Wilfong, 1988), cell 

decomposition (Vasseur, Pin, and Taylor, 1991) and triangulation graph (Ko, Seneviratne 

and Earles, 1994 ). These methods aim at representing the free space with a topological 

graph that then allows the use of graph searching algorithm such as the A* algorithm 

(Nilsson, 1982) or the Dijkstra algorithm (Lui, Choo, Lok, Leong, Lee, Poon, and Tan, 

1994) for detennining a shortest path from a destination to the goal. 

Bugmann, Taylor and Denham (1994) proposed a neural implementation of the 

Laplacian path planning (Connolly, Burns and Weiss, 1990) known as the Neural-resistive 

grid. The Neural-resistive grid consists of a neuro-resistive grid layer and a spatial 
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memory layer. The spatial memory layer is used to record the position of detected 

obstacles, while the potential distribution of the neuro-resistive grid is calculated based on 

the target/goal point with respect to the detected obstacles recorded in the spatial memory 

layer. The advantage of this method is that it does not suffer from the local minimum 

problem and always ensures an existing path to be found if the neuro-resistive grid is 

updated a sufficient number of times. Interestingly, this method has never been applied to 

a real world navigation system. To investigate its usability in this application, and because 

of its potential advantages, the neural-resistive grid is integrated into the system design to 

handle the path planning task. Details of the neural-resistive grid will be described in 

chapter 5. 

2.4 Spatial Vision 

Vision sensing is considered the most powerful sensory devices that provide the 

richest sensory information of all the sensors used on robots to date. However the 

extraction of this information is not an easy task (Borenstein, Everett and Feng, 1996). 

Research in vision sensing had received considerable attention, especially in the field of 

robotics for the last twenty years. There had been considerable research in the area of 

obstacle detection (Molton, Se, Brady, Lee and Probert, 1988), object recognition and 

tracking (Kosaka, and Nakazawa, 1995), visual servoing (Allotta, Conticelli and Colombo, 

1998; Koreichi, Babaci, Chaumette, Fried and Pontnau, 1998; Ricardo, Michel and 

Viviane, 1998) and road extraction (Onoguchi, Takeda and Watanabe, 1995) just to name a 

few. Many of these are combined in the field of vision-based mobile robot 

self-localization, map building, updating and navigation (Moravec, 1983; Atiya and Hager, 

1993; Maeyama, Ohya and Yuta, 1995; Li, Nagata and Tsuji, 1995; Murray, and Jennings, 

1997; Ohya, Kosaka and Kak, 1998; DeSouza and Kak, 2002; Asoh, Motomura, Asano, 

Hara, Hayamizu, Itou, Kurita and Matsui, 2001). 
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Lorigo, Brooks and Grimson (1997) developed a system that deals with unknown 

environments and obstacles, utilising an environment-dependent algorithm approach to 

obstacle detection and navigation. The vision system consists of a single-camera vision 

system that uses three independent vision software modules for obstacle detection. Each of 

the vision modules uses different criteria (based on brightness gradients, RGB colour or 

HSV colour features) for detection purposes. The system assumes that anything in the 

image that is not "ground-like" is an obstacle. Only one of these modules is given the right 

to command the robot at any time, based on the confidence of their output. 

Ohya, Kosaka and Kak (1998) employed single-camera VISIOn and "Ultrasonic 

sensing for their mobile robot to perform vision-based navigation. The aim was to use the 

camera to capture an image of the robot's environment, extract the detected edges in the 

image and compare them with edges in a synthetic image of the environment produced 

from a 3-D environment model, assuming the robot's position to be the one generated by 

dead reckoning. 

Moravec ( 1983) used single-camera stereo vision in the Stanford Cart. This is done 

by having the camera capturing 9 pictures as it slides in precise steps from one side to the 

other along a 50-cm track. Atiya and Hager (1993) also used a single camera for stereo 

vision. This is done by mounting the camera on a slider in such a way that the camera 

remains perpendicular to the slider as it travels along the slider. Stereo images are 

obtained by capturing the same scene with the camera located at different locations along 

the slider. 

Murray and Jennings (1997), Murray and Little (1998) and Se, Lowe and Little 

(2001) employed the Triclops trinocular stereo vision camera module that has three 

identical wide angle cameras. Their vision system used an algorithm similar to the 
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multi-baseline stereo developed by Okutomi and Kanade (1993) for computing the depth 

maps. The authors state that the advantage of using trinocular camera over typical two 

cameras stereo is because the second pair of cameras (i.e. the pair of cameras that are in the 

vertical plane) can resolve situations that are ambiguous to the first pair (i.e. the pair of 

cameras that are in the horizontal plane). Earlier work by Wilcox, Gennery, Mishkin, 

Cooper, Lawton, Lay and Katzmann (1987) used 3 camera stereo in their Mars rover for 

resolving the images correspondence problems. This is done by back-triangulating into the 

redundant images for confirmation of a correct match. 

Apart from stereo VIsiOn systems, omnidirectional v1s1on systems have been 

receiving considerable attention recently. Asoh, Motomura, Asano, Hara, Hayamizu, Itou, 

Kurita and Matsui, (2001) employed the omnidirectional camera for its large field of view 

which lets many landmarks be simultaneously present in the scene and leads to more 

accurate localization. Vlassis, Motomura, Hara, Asoh and Matsui (2001) used an 

omnidirectional vision system for environment modelling and navigation. 

In this thesis, a single camera is used and distance information is extracted by 

projecting on the ground plane the edges of the navigable space detected by specially 

developed software filters. Details on the vision system are found in chapter 4. 
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Chapter 3 

Experimental Setup 

This chapter discusses the experimental setup which was designed to achieve the 

aims of the research. This research was fully conducted in the Robotics Laboratory of the 

School of Computing at the University of Plymouth. The experimental setup consists of a 

vision-based navigation system and a small scale environment. The vision-based 

navigation system was programmed to use its camera to guide the robot's navigation 

within its environment toward the goal while avoiding any detected obstacle. The vision

based navigation system consists of two sub-systems, the computer system and the mobile 

robot. The task of the computer system is to act as a remote brain for the mobile robot to 

help it navigate safely within its environment. 

Section 3.1 describes the details of the mobile robot which is equipped with a 

monochrome video camera, a video sender for transferring video data, two servo motors 

with a servo controller module for controlling the viewing direction of the video camera 

and a wireless serial transceiver for communication with the computer system. 

Section 3.2 describes the computer system which consists of a computer running 

Cortex-Pro - a neural network programming package. The computer, a 200MHz PC with a 

framegrabber is connected to a video receiver and a wireless serial transceiver. 
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Section 3.3 describes the robot's environment. 

3.1 The Robotic System 

3.1.1 The Modified Rug Warrior Robot 

The robot used in this project is based on the commercially available Rug Warrior 

robot (Figure 3.1), developed by researchers from the Artificial Intelligence Lab at the 

Massachusetts Institute of Technology (Jones and Flynn, 1993). The Rug Warrior is 

delivered with various sensors (two shaft encoders, three bumper switches, two infrared 

detectors, a microphone and two photocells), a Motorola MC68HC11Al microcontroller 

and its microcontroller circuit board equipped with 32 kilobytes of on-board RAM and 

some free digital and analogue input/output ports for additional sensors and modules. The 

microprocessor is programmed from a host computer. The programs are written in C 

(using the Interactive C programming environment) and downloaded to the robot via the 

host's serial line. This allows the robot to operate autonomously under the control of its 

onboard microprocessor. The technical specifications of the robot are listed in Table 3 .1. 

Figure 3.1: The commercial Rug Warrior robot. 
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Table 3.1: The commercial Rug Warrior robot's technical specifications. 

The key to the adoption of the Rug Warrior robot as the navigation base lies in its 

design that enables future expansion. For the purpose of vision-based navigation, work on 

this thesis started with fitting the commercial available Rug Warrior robot with a VISION 

VM5400S camera module, a UT -66 model wireless video sender module, two HS-80 

micro servo motors with a servo controller module and a wireless serial transceivers 

module (built by the University of Plymouth Technical Services. Additional details of 

these modules and their usages are discussed below. 

3.1.2 Video Camera 

The aim of this research is to develop a vision-based navigation system that uses 

computer vision to detect obstacles and searches for obstacle free path toward the goal. 

For that reason, a VISION VM5400S camera module was mounted on the robot and was 

used as the robot's visual sensor. This monochrome camera has a resolution of240 by 387 

pixels. Its small and lightweight characteristics enable it to be moved around (in 

pan-and-tilt motion) with the help of two servos (section 3.1.4). This allows the camera to 

scan its surrounding without the need to move the robot, although this feature was 

eventually not used. The scanned visual data from the camera are then sent to the host 
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computer (section 3.2) for image processing and analyses aimed at floor and obstacles 

detection. These results are later used for mapping and path planning. Th.is enables the 

robot to interact with its surroundings without the need of additional sensors. 

3.1.3 The Video Sender 

The UT-66 wireless video sender module is used to transmit live video signals 

from the camera on-board the robot to the remote brain. The video signals are received by 

the computer's receiver (i.e. a video player with an antenna), which then feeds the video 

signals to the video capture card mounted in the computer. These live video signals are 

digitized by the video capture card and undergo image processing. The video sender 

module mounted on the robot can be seen in figure 3.2. 

3.1.4 Micro Fast Servo 

Two micro fast servos model HS-80 Micro from Hitec are used to provide the 

video camera with pan-and-tilt motion. This allows the video camera to be directed 

remotely. These micro fast servos were chosen because of their lightweight and 

high-torque characteristics. They were used to control the vertical direction of the line of 

sight of the camera. 

3.1.5 Serial Servo Controller 

The commercial available Mini SSC (Serial Servo Controller) from Scott Edwards 

Electronics was used in this project for the purpose of controlling the HS-80 Micro servo. 

Th.is Mini SSC is able to control eight servos according to instructions received over a 

2400- or 9600- baud serial connection. In this project, the Mini SSC is directly connected 

to the robot's RS-232 serial port and the instructions are received from the microcontroller 
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using 9600- baud. The Mini SCC is used to control the two servo motors discussed above. 

These allow the video camera to be oriented to focus on a feature of interest. 

3.1.6 The Serial Transceiver (418 MHz FM -1200 Baud) 

Two wireless serial transceivers built by the University of Plymouth Technical 

Services were used in this research as communication devices. One of the transceiver was 

mounted on the robot (figure 3.2) while the other was used by the remote brain. These 

transceivers play important roles in the communication process between the robot and the 

remote brain. The robot and the "remote brain" PC communicate at 1200- baud. A 

dedicated communication protocol was designed for this experiment. 

Information such as waypoints and robot coordinates are received from the remote 

brain through these transceivers. 

Figure 3.2: The modified Rug Warrior robot. This figure shows the added upper 
platform with vision and communication equipment used in this research. 
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Figure 3.3: The architecture of the Robotic System. 

3.2 The Computer System "Remote Brain" 

The Computer System runs the user-program in a software environment called 

"CORTEX-Pro". The Computer System in this project acts as the remote brain for the 

robot. Live video signals from the robot' s camera are fed through the video player via an 

antenna, then to the computer. The remote brain samples the appropriate live video signals 

of interest into an digital image. This image is then processed and analysed in order to 

produce an obstacle free path for the robot to navigate. This path is then transformed into 

waypoints before sending to the robot via the serial transceiver. 
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Figure 3.4: The architecture of the Computer System "Remote Brain". 

3.2.1 Software "Cortex-Pro" 

Cortex-Pro is a special-purpose neural networks programming environment 

developed at King' s College, London. It is used to program the user-program that runs on 

the host computer. Cortex-Pro comes with built-in functions, corresponding to the needs 

of this research. It enables a user-program to be written in a more efficient and easy 

manner. The Graphics Interface of Cortex-Pro enables users to access objects/variables 

easily, even while the user-program is running. It can also be expanded with user-defined 

functions, as has been done here to add image processing capabilities. 

3.2.2 Win Vision Framegrabber (QUANTA) 

The WinVision Framegrabber (QUANTA) located in the remote brain is used to 

sample the live video signal from the robot camera. The framegrabber accepts CCIR-PAL 

format (I volt p-p into 75 ohms) video signals and digitizes the 320x240 pixels in the 

upper-left corner of the image, which are then compressed horizontally into an array of 

187x240 pixels with 256 grey levels. 

28 



3.3 Environment 

The robot's environment has an area of 125x89 centimetres, with white walls and a 

black floor. Object such as a small white block was inserted randomly in the robot's 

environment, acting as obstacles during the experiment (Figure 3.5). An overhead camera 

is mounted above the working area for recording the path of the robot. The motion tracking 

software was also written as part of this work, but is not described in this report. 

Figure 3.5: The modified Rug Warrior in its environment with the presence of an 
obstacle. 
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Chapter 4 

Vision-based Obstacles Detection, 
Self-localization and Map Updating 

Often the tenn "Computer Vision" is defined as a procedure that involves several 

processes, which consists of image acquisition, processing, classification, recognition, and to 

be all embracing, decision making subsequent to recognition. The aim of using a computer 

vision in this project is to detect the presence of obstacle and walls within the robot's 

environment. This allows the robot's environmental map to be updated, and supports the 

robot's self-localization and navigation tasks. 

This chapter described vision-based obstacles detection, self-localization and map 

updating. The vision-based processes are shown in figure 4.1. The robot's vision system 

consists of a video camera, a wireless video sender, a wireless video receiver, a Win Vision 

frame grabber and software components that processes and analyze images. The robot's 

video camera constantly feeds live video signals to a wireless video sender that broadcast 

these live video signals to the remote brain. The WinVision frame grabber onboard the 

remote brain samples these live video signals into a digitized image when it is needed. The 

sampled image is then processed by the image-processing and analyzing software module. 

The image-processing and analyzing software module perfonns the segmentation of the 

sampled image, dividing the sampled image into two distinct regions (walls and floor) of 
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similar attributes. The segmentation process prepares the sampled image for the filtering 

process which searches for floor edges then extracts their positions and orientations. That 

information is used in the self-localization module for localizing the robot in its prior map, 

and then in the map updating module that updates the robot's prior map with detected 

obstacles. 

The path planner which will be described in chapter 5 can then plan a non-colliding 

path to the goal based on the updated robot's map. 

r.·--------------------------------, 
The Robot's Vision Syst:;-- ((c 

~ r~ -~J~ ( 

Camera 

WinVJSion 
framegrabber 

t Image Segmentation 

/ 
Image Processing • and Analyzing 

~ 
Image Filtering 

I_ __ _ ----- ~-----------------,, 
VJS ion-based 

Self-localization 

+ 
Map Updating 

Figure 4.1: Vision-based processes for obstacles detection, self-localization and 
map updating. 

Section 4.1 begins by discussing the fish-eye lens camera calibration process and 

shows how to obtain the camera lens distortion parameters that are needed to correct the 
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distorted image. This is important as the robot's video camera exhibits the properties of 

barrel distortion (fish-eye lens effect). 

Section 4.2 describes the filtering process in a systematic way and introduces the 

floor-edges-specific filters that are used in the filtering process for detecting floor and walls 

edges. This section begins with discussing the image segmentation process ( 4.2.1) followed 

by the design of the floor-edges-specific filters (known as the vertical and the horizontal 

edge filters) used for detecting floor edges (4.2.2), and describes a new method for 

determining the detected edge's position and orientation (4.2.3). 

Section 4.3 deals with the coordinate transformation of the detected edges and their 

orientations from the image coordinate system to the map coordinate system. This process 

involves two sub-transformations; the first is to transform the coordinates of interest from the 

image coordinate system to the egocentric coordinate system using projective geometry 

(4.3.1), while the second transforms the coordinates of interest from the egocentric 

coordinate system to the map coordinate system (4.3.2). 

Section 4.4 discusses a vision-based self-localization algorithm that localizes the 

robot in its environment based on the captured image by matching the detected floor edges 

with those in the internal prior map. A new method is proposed for determining orientation 

errors. 

Section 4.5 presents tests of the vision-based self-localization algorithm and 

discusses the test results. 

Section 4.6 explains the obstacle detection and registration process that completes the 

robot's vision system. 
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In section 4. 7 the test results and encountered problems are discussed. 

4.1 Correction of Lens Distortion 

4.1.1 Fish-eye Lens Effect 

Figure 4.2: The fish-eye lens effect on a square grid. 

The robot's video camera module comes with a Chinon lens that exhibits the fish-eye 

lens effect. The lens is used to provide the robot with a large field of view. This is particular 

useful when the clearance between the object and the lens is minimal, as fish-eye lens can 

provide a full view of the object where other lens fail. The drawback of using such a lens is 

that it introduces significant distortion of the captured images. This form of distortion is 

commonly known as the fish-eye lens effect or barrel distortion (figure 4.2). The distortion 

can be corrected by a procedure that involves a transformation based on the optical centre on 

the image plane, and the lens distortion coefficients. These variables are always obtained 

through a calibration procedure which is described in section 4.1.2. 

There are many calibration methods proposed by other researchers (Beck, 1925; 

Miyamoto, 1964; Anderson, Alvertos and Hall, 1982; and Weng, Cohen and Herniou, 1992) 

for compensating the lens distortion effect. The approach used in this thesis is inspired by 

Williams and Becklund (1972). 
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4.1.2 Fish-eye Lens Effect Correction 

a) 

I 

' i 

b) c) 

Figure 4.3: This figure illustrates the fish-eye lens effect and its correction. (a) A 
sample of the calibration pattern; (b) The distorted image obtained from the robot's 
visual sensor; and (c) The distortion-free image after applying the fish-eye lens 
correction sub-routine. 

This section discussed the calibration procedure used for calibrating the robot's video 

camera. The robot's video camera is attached to a docking station with its optical axis 

perpendicular to the plane of the calibration pattern. The calibration pattern used is similar to 

the one shown in figure 4.3(a). An image of the calibration pattern taken by the robot's 

video camera is shown in figure 4.3(b). It is evident that the distortion results in a shifting of 

pixels from their original positions and creates a distorted image. This image is then used in 

the calibration process as the reference image for determining the location of the optical 

centre on the image plane and the lens distortion coefficient. Theoretically, the optical centre 

of the lens should always be directly perpendicular to the centre of the camera's CCD sensor 

array; therefore the location of the optical centre on the image plane is usually assumed to be 

at the centre of the image captured. But due to hardware limitations of the frame grabber, the 
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optical centre on the image plane is shifted from the centre of the captured image as shown 

in figure 4.4. 

384 

187 

240 

287 

Camera's Video Output 

240 

D Camera's Video Output 

D Digitized Video Data 

e Optical Centre 

Figure 4.4: The robot' s vision system image sampling process. This figure shows 
the sampling process from raw video signals to the fmal sampled image used for the 
vision processing. Note that the resolution changes during this process are mainly 
due to hardware limitations. 

When capturing the reference image, it is important to make sure that the camera's 

field of view is directly perpendicular to the calibration pattern plane (i.e. the camera lens is 

parallel with the calibration pattern plane). The reason for this is to minimize any external 

distortion of the reference image. 
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Based on these assumptions and the prior knowledge of the hardware used in the 

vision system, the search for the location of the optical centre on the image plane can be 

narrowed down. The location of the optical centre on the image plane and the lens distortion 

coefficient can then be determined using the equations 4.1-4.5 inspired by Williams and 

Becklund (1972) through a trial-and-error method . 

y 

(0,0) 

....------------.,.-----------, (xmax>Ymn.<) 

e k' 

k 

(xcenrre• Ycentre 
--------------------------. -------------------

X 

1 
I 
I 
I 
I 
I 
I 

Figure 4.5: The fish-eye lens distorted image correction model. The origin of the 
image coordinate system used in image processing is located at the bottom left of 
the image. The pixel k represent the distorted pixel of interests, while k' is its new 
position after the fish-eye lens correction. r k represent the distance from the optical 
centre on the image plane to the distorted pixel of interests, k . 

These two equations shown below are used to correct the coordinates of pixels in the 

distorted image. 

xk '= [E F X (xk - xrentre) ]+X centre 

Yk '= [EF X (yk - Y centrJ]+ Y centre 

(4.1) 

(4.2) 

The function of equations 4.1 and 4.2 is to take the distorted pixel coordinate (xk, Yk) 

and return their corrected position (xk', y/ ). The correction are based on the lens optical 

centre on the image plane (Xcentre. Ycentre), as the distortion is rotationally symmetric about the 

lens optical centre shown in figure 4.3(b ). The correction factor EF is defined as: 

(4.3) 
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where the value 1 is a scaling factor, rk represent the radial distance in pixel units of 

the pixel k from the optical centre on the image plane and F represents the lens distortion 

coefficient. 

The radial distance r k with its origin located at the lens optical centre on the image 

plane (Xcenrre. Ycenrre) is determined using equation 4.4. The coefficient F = 0.0000045 and the 

lens optical centre on the image plane (Xcenrre, Ycemre) = (93, 92) are obtained through a trials 

and errors method during the camera calibration process. 

r* = ~(xk- xcentre )
2 + (yk - Y centre )

2 

F = 0.0000045 

(4.4) 

(4.5) 

Once the optical centre of the lens on the image plane (Xcenrre, Ycenrre) and the optimum 

coefficient Fare obtained, all the distorted images from the robot's video camera can be 

transformed to their undistorted form. The distortion-free version of the distorted image 

shown in figure 4.3(b) is shown in figure 4.3(c). 

St"~' ""~"'" lm•g< 

~ Part of the corrected ~ imageused 

Figure 4.6: The selected portion of the distortion free image used for vision 
processing. The corrected distorted image captured from the video camera with 
resolution of 187x240 pixels is reduced to a rectangular image with resolution of 
186x236 pixels. This image is then used in the image coordinate to egocentric 
coordinate transformation. Here ft represents the pixel column, and ly represents the 
pixel row with respect to the lens optical centre on the image plane. 
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4.2 Floor-specific Edge Detection 

The aim of this project is to use the robot's video camera to assist the robot in 

navigation process such as obstacle detection, and self-localization. Thus the robot's vision 

system must be able to distinguish floor regions and extract useful information such as the 

edges positions and their orientations. A segmentation process based on automatic 

thresholding was implemented and will be described section 4.2.1. The result of the 

segmentation process provides the robot with knowledge of its navigation space but no 

boundary edges information (i.e. the position of the floor edges and their orientation) can be 

extracted. Therefore an edge detection process is proposed. Section 4.2.2 discusses the 

edges detection process and proposes two new floor-edges-specifics filters (i.e. the horizontal 

filter and the vertical filter) which are used to determine the presence of floor edges. If a 

floor edge is detected, the filter's outputs will be used to select the appropriate equation from 

the equations system, and are then applied to the selected equations to determine the 

orientation of the detected edge. The equations system consists of four different equations 

derived based on trigonometric rules. Details of the equations system are described in 

section 4.2.3. Section 4.2.3 also discusses how the positions of the edges are determined; the 

basic method is described in section 4.2.3.1 while a refined method which make used of 

edges orientations information is described in section 4.2.3.2. 

4.2.1 Image Segmentation (Floor/non-floor) 

The segmentation of the image captured by the robot into floor and non-floor regions 

is in general a complex process for which several methods have been proposed (Haralick and 

Shapiro, 1985; Pappas, 1992; Pal and Pal, 1993; Bezdek and Hall, 1993; More\, J.-M. and 

Solimini, 1995 and Belongie, Carson, Greenspan and Malik, 1998). 
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In the present case, the image is in a monochrome grey scale. Despite the floor being 

painted matt black and the walls being white, in the image, these appear as dark and light 

shades of grey with an intensity dependent on the illwnination conditions. To enable a 

reliable detection of floor and walls, an automatic thresholding method was designed. 

b) 

Figure 4.7: The automatic thresholding process. (a) The grey scale image, (b) the 
intensity histogram of the pixels in image (a), and (c) the binary image (after 
segmentation) with floor represented by the black colour and non-floor represented 
by the white colour. 

The automatic thresholding sub-routine first analyses the given image (i.e. figure 

4.7a) and computes the intensity histogram of that image (i.e. figure 4.7b). In the intensity 

histogram, it searches for two peaks, the left-most peak and the right-most peak. The sub-

routine then searches for the valley between these two peaks and set its intensity value to be 

the threshold value. The segmentation process segments the image based on this threshold 

value. The intensity values that are equal or less than the threshold value are the dark 

regions, which are assumed to represent the floor while the intensity values that are higher 

than the threshold value are defined as walls or obstacles (i.e. figure 4.7c). Pixels in the 

region that represents the floor have their intensity values set to -1 while the other pixels 

which represent the walls or obstacles are set to + 1. This segmentation process converts the 

original image into a binary image that will later used by the filtering sub-routine to detect 

floor edges and their orientations. 
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4.2.2 Vertical and Horizontal Edges Filter Design 

To detect the presence of edges in the image, a filtering process is performed on the 

image based on the two filters shown in figure 4.8. By using the moving window method, 

the image is divided into 784 (28x28) sub-images. Each of these sub-images is then filtered 

individually by a centred horizontal and vertical filter. 

a) b) I I -I -I 

I I -I -I 

I I -I -I 

I I -I -I 

c) d) 
I I I I 

I I 1 I 

- I -I -I -I 

-I -I -I -I 

Figure 4.8: The vertical and the horizontal filters. (a) The vertical filter. (b) The 
matrix representation of the vertical filter; (c) Horizontal filter and (d) the matrix 
representation ofthe horizontal filter. 

Input Image 

-~--,--,--

I I I I 
- -·- --- - ---I 

Filter I 

-- --I 
I I I I -_1_- J-- L- -1 
I I I I I I I 

I I 

-
Output Filtering -

Process ___,.... 
I I 
I I 

Figure 4.9: The edge filtering process for detecting edges and determining their 
positions and orientations. The input is a group of pixels from the input image that 
are passed through the filter and the output value of the filter is stored in a new grid 
that constitutes an output image. 
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The filters outputs are recorded with their coordinates. Note that these coordinate are 

the coordinate of the center of the sub-images within the image coordinate system. The 

centers of all the sub-images can be seen as the evenly space dots in figure 4.16a and 4.16c. 

In each sub-image, the presence of an edge is determined using equation 4.6 and 4 .7 

4 4 

II[I(m + j,n + k)FH (j,k)] 

A = 0 H (x, y) = ..::..i_='-*-='---------
16 

(4.6) 

4 4 

I I [!(m+ j, n + k)Fv (j, k)] 
B = Ov (x, y) = ..::...i=....:..'....:..*.-..='---------

16 
(4.7) 

Where: I(m+j,n+k) is the input image pixel value at the coordinate(m+j,n+k). 

Fv(j,k) is the vertical filterpixel value at coordinate(j,k). (see figure. 4.8.b) 

FH(j,k) is the horizontal filter pixel value at coordinate(j,k). (see figure. 4.8.d) 

(m,n) is the coordinate of the image pixel at the bottom-left of the filter. 

(j,k) is the pixel coordinate relative to (m,n). 

(x,y) is the output image pixel coordinate. 

A=OH(x,y) is the output value of the horizontal filter. 

B=Ov(x,y) is the output value of the vertical filter. 

If no edge is detected, the outputs of the horizontal filter A and vertical filter B will be 

zero. If an edge is detected, the outputs A and B are used to select an equation from the 

equations system shown in table 4.1. Its derivation is detailed in the next section. 

(90B - 180A) 
a = -=------'-

(B -A) 

(180A + 270B) 
a = -=----------"-

(A+B) 

(4.9) 

( 4.1 0) a = ...:...(3_60_A_-_2_7_0B.....:....) 
(A-B) 

Table 4.1: The equations system used to determine the orientation of the detected 
edge. A is the output from the horizontal filter while B is the output from the 
vertical ftlter. a is the orientation of the edge in degree. 
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The filters outputs A and B are then applied with the selected equation to determine 

the detected edge orientation a. The detected edges positions and orientations are then 

stored in an array that will later be used for robot self-localization and obstacles registration. 

4.2.3 Calculation of the Edge Position and Orientation 

The outputs A and B of the filtering process are used for the purpose of defining the 

orientations and positions of the detected edges in the input image. The edge's position and 

orientation information are important as they are needed to perform self-localization. 

4.2.3.1 Edge Orientation 

The edge orientation is determined using the equations system shown in table 4.1 . 

The equations system is derived based on the trigonometric properties shown in figure 4.10. 

By inspecting the horizontal and vertical filters outputs A and B, the edge orientation a can 

be narrowed down to the quadrant it belongs to and the equation for each quadrant can be 

obtained. 

B 

Case I 
0•-+90<>; A>O and B>O. 
Case2 
9()o-+ 180<>; A<O and B>O. 
Case3 
180o-+270o; A<O and B<O. 
Case4 
27()o-+360o; A>O and B<O. 

Figure 4.10: The four cases with each representing a quadrant within the circle. 

If both outputs A and B are positive, a falls into the fust quadrant, and is determined 

using equation 4.8. If A is negative while B is positive, a falls into the second quadrant, and 

is determined using equation 4.9. If both outputs A and Bare negative, a belongs to the third 

quadrant, and is determined using equation 4.1 0. If A is positive while B is negative, a 

belongs to the fourth quadrant, and is determined using equation 4.11. 
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Hereafter, each derived equation will be tested with one of the image configurations 

as seen by the filter shown in figure 4.11. 

m 
(a) (b) (c) (d) (e) 

mm 
(f) (g) (h) (i) (j) 

Figure 4.11: Examples of possible image configurations encountered during the 
filtering process. The white colour represents an obstacle or a wall, while black 
represents the floor. 
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CASE 1: A> 0 and B > 0, 

a) 

c) 1 1 

1 1 

-1 1 

1 1 

1 -1 

-1 -1 

1 1 

1 1 

b) 

d) 1 1 -1 1 

1 1 1 1 

1 -1 1 1 

-1 -1 1 1 

Figure 4.12: Edge filter in case 1. (a) Trigonometry drawing for case 1, (b) matrix 
representation of the image shown in figure 4.lle, (c) horizontal filter output and (d) 
vertical filter output. From (c) and (d) we obtain A = 0.5 and B = 0.5. By applying 
the equation system (table 4.1, equation 4.8) we obtain a = 45° 

Let 

A =(1- :O)c 
B =(:O)c 

Proof: if a.=O therefore A=C, 

therefore A=O, if a.=90 

B=O. 

B=C. 

To determine the angle a., we transform (ii) and obtain 

C= 90B 
a 

Substituting (iii) into (i) we obtain 

A= (1-~) 90B 
90 a 

a 
aA = (1-

90
)90B 

aA = (90B - aB) 

aA +aB =90B 
90B 

:. a =---
(A+B) 
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(ii) 

(iii) 

(4.8) 



CASE 2: A< 0, B > 0 

b) 

c) -1 -1 -1 -1 d) -1 -1 1 1 

-1 -1 -1 -1 -1 -1 1 1 

-1 1 1 1 1 -1 1 1 

-1 -1 1 1 1 1 1 1 

Figure 4.13: Edge filter in case 2. (a) Trigonometry drawing for case 2, (b) matrix 
representation of the image shown in figure 4.llc, (c) horizontal filter output and (d) 
vertical filter output. From (c) and (d) we obtain A = -0.375 and B = 0.375. By 
applying the equation system (table 4.1 , equation 4.9) we obtain a = 135° 

Let 

a 
A=(l-

90
)C 

B = (2- :o)C 

Proof: if a.=90 therefore A=O; B=C 

if a.=180 therefore A=-C; B=O 

To determine the angle a., we transform (ii) and obtain 

C= 90B 
(180 - a) 

Substituting (iii) into (i) we obtain 

A-(l-~) 90B 
90 (180-a) 

a 
(180-a)A = (1--

90
)90B 

180A-aA =90B-aB 
aB - aA = 90B - 180A 
a(B- A)= 90B - 180A 

90B - 180A 
:.a=----

(B - A) 
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(i) 

(ii) 

(iii) 
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CASE 3: A< 0, B < 0 

a) b) 

c) -1 -1 1 1 d) -1 -1 -1 -1 

-1 1 1 1 -1 1 -1 -1 

-1 -1 -1 -1 1 1 -1 -1 

-1 -1 -1 -1 1 1 -1 -1 

Figure 4.14: Edge filter in case 3. (a) Trigonometry drawing for case 3, (b) matrix 
representation of the image shown in figure 4.11 a, (c) horizontal filter output and (d) 
vertical filter output. From (c) and (d) we obtained A= -0.375 and B = -0.375. By 
applying the equation system (table 4.1 , equation 4.10) we obtain a= 225° 

Let 

a 
A=(--3)C 

90 
a 

B =(2-
90

)C 

Proof: if a=180 therefore A=-C; 

ifa=270 therefore A=O; 

B=O 

B=-C 

To determine the angle a, we transform (ii) and obtain 

C= 90B 
(180-a) 

Substituting (iii) into (i) we have obtain 

A-(~-3) 90B 
90 (180 - a) 

a 
(180- a)A = (

90
- 3)90B 

180A- aA =aB- 270B 
aA+aB = 180A+270B 
a(A +B)= 180A + 270B 

180A+270B 
:.a =-----

A+B 
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(i) 

(ii) 

(iii) 
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CASE 4: A> 0, B < 0 

a) b) 

c) 1 1 1 1 d) 1 1 -1 -1 

-1 1 1 1 -1 1 -1 -1 

1 1 -1 -1 -1 -1 -1 -1 

1 1 1 -1 -1 -1 1 -1 

Figure 4.15: Edge filter in case 4. (a) Trigonometry drawing for case 4, (b) matrix 
representation of the image shown in figure 4.11 b, (c) horizontal ftlter output and 
(d) vertical filter output. From (c) and (d) we obtained A = 0.5 and B = -0.5. By 
applying the equation system (table 4.1, equation 4.11) we obtain Cl= 315° 

Let 

a 
A=(--3)C 

90 
a 

B=(--4)C 
90 

Proof: if a = 270 therefore A=O; B=-C 

if a = 360 therefore A=C; B=O 

To determine the angle a, we transform (ii) and obtain 

C= 90B 
(a-360) 

Substituting (iii) into (i) we obtain 

A - (!:__- 3) 90B 
90 (a- 360) 

a 
(a-360)A = (--3)90B 

90 
(a- 360)A =(aB- 270B) 

aA- aB = (360A- 270B) 
a( A-B) = (360A- 270B) 

(360A- 270B) :. a = ....:..__ ___ ____:__ 
(A-B) 
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(i) 

(ii) 

(iii) 
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In summary, these four equations are: 

Where 

Case 1: a = 90B/(A+B) 

Case 2: a= (90B-180A)/(B-A) 

Case 3: 

Case 4: 

a= (180A+270B)/(A+B) 

a= (360A-270B)/(A-B) 

a: the edge angle in degree 

A: the output from the horizontal filter (equation 4.6) 

B: the output from the vertical filter (equation 4.7) 

4.2.3.2 Edge Positioning - Basic Method 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

Once the orientation of the edge within the filter window is obtained, the orientation 

information a is assigned to its coordinates (i.e. the coordinates x, y as shown in equation 4.6 

and 4. 7) in the image. This allows the system to know where the floor region ends and the 

edge's orientation. Using this information the system can perform a fairly accurate 

self-localization operation. 

As discussed previously, the image is divided into 784 (28x28) non-overlapping 

sub-images (the distance between the center of two sub-images is equal to the size of a sub

images) for the filtering process. This reduces the amount of information to be processed, 

hence increases the computation speed. 

The position of the detected edge within the sub-image is assumed to be the position 

of the center of that sub-image. The centers of all the sub-images can be seen as the evenly 

space dots in figure 4.16a and 4.16c. 

The drawback of this method is that the detected edge is not assigned to its actual 

position, if the detected edge does not pass through the centre of the sub-image. This 
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inaccurate positioning leads to errors in self-localization and the presence of phantom 

obstacles (i.e. observed figure 4.16a and figure 4.16b) 

(a) 

. . . . . . .. ' . . . .. 
~~ : : : : : : : : : : : : . . . . . . . . . . . ... 
~ 

. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,. " . . . . . . . . . . . . . . . . . ..... . ..... ... ...... . . . 

(c) 

(b) 

(d) 

Figure 4.16: Comparison between the basic and the reftned methods of edges 
positioning. (a) and (b) show the result of the basic method while (c) and (d) show 
the result of the refined method. Figure (b) shows that the detected edges at the top 
left corner can be mistaken for an as obstacle hence the presence of a phantom 
obstacle. Figure (d) show how this problem can be overcome by using the refined 
method. 

4.2.3.3 Edge Positioning - Refined Method 

In order to solve the problem of inaccurate positioning discussed above, firstly the 

positions ofthe detected edge within every sub-image has to be determined accurately, only 

then can its position relative to the actual image and the map be determined. 

Based on the information that the floor is represented by black pixels, fraction of area 

covered by the floor within the sub-image can be determined. By knowing the detected edge 

orientation and the fraction of floor area, the exact position of the detected edge can be 

determined. 
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Since each sub-image is sampled into a 4x4 grid for the filtering process, the fraction 

N black of black pixels occupying the grid can be determined by dividing the number of black 

pixels P black within the grid by the size of the grid (i.e. 16). This is shown in equation 4.12. 

N _ p black 
blark -

16 (4.12) 

Based on the orientation of the detected edge, the appropriate equation is chosen to 

calculate the actual edge position with respect to the image. There are four conditions with a 

total of eight equations where each condition is represented by two equations. These 

equations are shown below. 

Condition: 0° ~ 90° 

X= (1 - n black ) X Fx + (xs - Fx X 0.5) 

y = n black X Fy + (Ys- Fy X 0.5) 

Condition: 90° ~ 180° 

X = (1 - n black ) X Fx + ( xs - F.T X 0.5) 

y = (1- n black ) X Fy + (Ys - Fy X 0.5) 

Condition: 180° ~ 270° 

X = n black X F.T + (xs - Fx X 0.5) 

y = (1- n black ) X Fy + (Ys - Fy X 0.5) 

Condition: 270° ~ 360° 

X = n black X Fx + (xs - Fx X 0.5) 

y = n black X Fy + (Ys - Fy X 0.5) 

(4.13) 

(4.14) 

( 4.15) 

(4.16) 

( 4.17) 

(4.18) 

(4.19) 

(4.20) 

where Fx and Fy are the filter width (x-axis) and length (y-axis) with respect to the 

image, Xs and Ys are the coordinate of the centre of the sub-image with respect to the image 

coordinate system (i.e. the evenly space dots in figure 4.16a and 4.16c). 

Figure 4.16c shows the better positioning of the edges using this refined method. By 

comparing figure 4.16b with 4.16c, one can see that the doubling of the edge line at the top 

left of figure 4.16b is eliminated in figure 4.16c. It seems that the refined method is not as 

effective for side walls. The reasons for that are unclear at present. They are unlikely to be a 
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software implementation problem as this has been checked several times. Thus the proposed 

refined algorithm is effective in reducing the problem of phantom obstacles (section 4.5). 

The refined method is used in the self-localization process described in section 4.4. 

4.3 Coordinate Transformations for the Vision System 

The VC5400S Camera Module used in this project is attached to the top of the robot 

(figure 4.17) with height h from the ground (figure 4.18). In order to build the model map, 

the relationship between image coordinates and the real world coordinates have to be 

established. This section describes the required coordinates transformations. 

Figure 4.17: This figure shows the camera module. 

4.3.1 Image Coordinate Frame to Camera Coordinate Frame 
Transformation 

The first step in coordinate transformation is to understand the relationship between 

the two coordinate systems of interest (i.e. the image coordinate system and the camera 

coordinate system) and make a link between them. The camera coordinate system is centred 

at floor level vertically under the camera. It rotates horizontally with the camera (see e.g. 

figure 4.22). The objective is to convert the 2-D position of an object (e.g. pixel) in the 
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image into its position in the 3-D coordinate frame of the camera. Figure 4.18 and 4.19 

shows the camera geometry maps used to determine the relationship between the image 

coordinate system and the camera coordinate system. 

h 

Figure 4.18: The side view of the camera geometry map used for determining the y 
coordinates of the detected edges. The variables shown are /3: camera pitch angle, 
h: height of the camera, Py: the vertical image coordinate, dhj_Py): the imaginary 
line originating from the lens optical centre and passing through Py. /J...Py): the angle 
of dhj_Py) with respect to the line originating from the lens optical centre and 
passing through lens optical centre on the image plane (Py=O), d..Py): the 
intersection angle of the imaginary line Py and the ground plane, and d(Py): the 
distance from the camera to the intersection point of Py on the floor. 

Figure 4.18 shows the side view of the camera geometry map used for determining 

the coordinate of the pixel of interest with respect to the camera coordinate system. Based 

on the camera geometry map shown in figure 4.18, d(Py), or simply Ye, is they-coordinate of 

the pixel of interest P (i.e. whose coordinates are (Px, Py) with respect to the image 

coordinate system based on the optical centre in the image plane) with respect to the camera 

coordinate and can be determined using equation 4.22, if a(Py) is known. a(Py) can be 

determined by using equation 4.21, where f3 is the camera pitch angle, and liy{Py) is the angle 

of dhy(Py) with respect to the line originating from the lens optical centre and passing 

through the lens optical centre on the image plane (Py=O) as shown in figure 4.18. Note that 

f3 is negative as the camera is looking downward, and liy{Py) can be positive or negative 
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depends on the location of the pixel of interest P (i.e. Py is negative if it locate below the 

optical centre on the image plane). 

ay{Py) = -(/JY + 8y(Py)) 

Y -d(P)-__ h __ 
c Y tan(a/.t:)) 

(4.21) 

(4.22) 
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Figure 4.19: The camera geometry map used for determining the x coordinates of 
the detected edges. The variables defined here are fx: the horizontal image 
coordinate, dhx(lx): the imaginary line originating from the lens optical centre and 
passing through fx, K.lx): the angle of dhxUx) with respect to the line between lens 
optical centre and the lens optical centre on the image plane, and d(Jx) is the distance 
between fx and the lens optical centre on the floor plane. 

Once d(Py), the distance of the pixel of interest P with respect with the camera y axis 

is determined, d(Px) or Xc can then be determined using equation 4.23. This equation is 

derived based on figure 4.19 using similar methodologies as described above. 

d(P) 
x = d(P) = y 

c x tan(8.,) 
(4.23) 

Note that b"x(Px) and b"y(Py) are needed to determined Xc and Ye respectively. To 

determine b"x(Px) and b"y(Py) we need to find their pixel-angle relationship. 
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A similar setup as described in the section 4.1.2 on Fish-Eye Effect Correction was 

used to make sure that the camera's optical axis is perpendicular to the calibration grid as 

shown in figure 4.20 to determine the pixel-angle relationship of the camera. The calibration 

grid is used because the distance between each line in the grid is known hence this simplifies 

the measuring process. Based on the calibration grid, we determine the number of pixels 

shifted from the optical centre to the first line of the grid and calculate its angle using 

equation 4.24 for the x-axis and equation 4.25 for the y-axis. 

This pixel-angle data is recorded, and the whole process is repeated for the second 

line, the third and so on. This process was performed on all visible vertical and the horizontal 

lines of the grid in the image. 

Calibnltion Grid 

Opt/a/ C•llr 

Figure 4.20: Side view of the concept diagram used to determine the angle for each 
line in the calibration grid. 

B" = tan(::) 
B,,, = tan(:, J 

(4.24) 

(4.25) 

The recorded pixel-angle data were plotted and curve-fitted to determine their 

relationship. This pixel-angle relationship graph is show in figure 4.21 . 

54 



-90 a- -

Pixei-Angle Relationship 

40 Ange (") 

-20 ~ 
~0 j 

0 

0 

- -O-- 0 

Pixel 

120 150 

Measured Pixei-Angle Relationship Dala for Image's x-axis 

Pixei-Angle Relationship Fitted Function for Image's x-axis 

Measured Pixei-Angle Relationship Dala for Image's y-axis 

Pixei-Angle Relationship Fitted Function for Image's y-axis 

Figure 4.21: The Pixel-Angle relationship graph showing the measured data plot 
and their fitted function. 

The pixel-angle relationship equation for the image x and y axts are shown in 

equation 4.26 and equation 4.27 respectively. Px and Py each represent the column and row 

number of pixel in the x and y axis with respect to the optical centre. 

oxCPx) = 0.3022442903 Px + 0.02324956079 

oy(Py) = 0.1515357901Py - 0.2358910127 

(4.26) 

(4.27) 

Once the pixel-angle relationship equations is obtained, the location of the pixel of 

interest relative to the camera coordinate (xc, Ye) can be obtained using equation 4.22 and 

4.23. 

4.3.2 Camera Coordinate Frame to Map Coordinate Frame 
Transformation for Obstacles and Walls 

The coordinate transformation from the Camera Coordinate frame to Map Coordinate 

frame plays an important role in the process of self-localization and map updating, as it 

allows the detected edges in the image to be mapped onto the prior map. Two 

transformation processes are needed to project the pixel of interest from the camera 

coordinate frame to the map coordinate frame. The first transformation, which will be 

described in section 4.3.2.1 , transforms the pixel of interest from the camera coordinate 

frame to the robot's coordinate frame. The second transformation, which will be described 
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in section 4.3.2.2, transforms the pixel of interest from the robot's coordinate frame to the 

map coordinate frame. 

The pixels of interest (d(Lx), d(Ly)) described in prev10us section can then be 

rewritten as (xc,P,Yc,P) which indicate the coordinates of the pixel of interest P, with respect to 

the camera coordinate frame c. Figure 4.22 show the relationship between each coordinate 

frame and helps in deriving the transformation equations shown below. 

Robot's Camera 
Coordinate Frame 

Yr 
~ 

Robot 's Egocentric 
Coordinate Frame 

f t'!.•t: 

Figure 4.22: Illustration of the relationship between the camera coordinate frame, 
the robot's egocentric coordinate frame and the robot's coordinate frame. 
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4.3.2.1 Camera Coordinate Frame to Robot Coordinate Frame 
Transformation 

The pixel point shown in figure 4.22 is an example of a pixel in an image captured by 

the camera. In order to place this pixel into its relative place on the map, several 

transformations have to be made. In this section we will concentrate on the transformation 

of the coordinate of interest P from the camera coordinate frame to the robot coordinate 

frame. That is the point (xc.P. Yc.P) in the camera coordinate systJm transformed into a point 

(xr.P, Yr.P) in the robot coordinate frame. As shows in figure 4.22, a combination of rotations 

and translations is needed. A rotation of the camera coordinate system by an angle of fJc.z is 

needed for the transformation into the egocentric coordinate system. Therefore equations 

4.28 and 4.29 are used to perform the rotation transformation with angle fJc.z to bring the 

coordinate of point P from the camera coordinate system into the egocentric system 

(figure 4.23). 

Xegc.P = Xc.P COS f3c.z - y c,P sin f3c,z 

Yegc.P = x,_psinf3c.z + Yc,Pcosf3,,, 

(4.28) 

(4.29) 

Since the egocentric coordinate system is collinear with the robot coordinate system, 

only a translation is needed to convert the egocentric coordinate system into the robot 

coordinate system. Since only an offset distance dy along the y axis of the robot coordinate 

system separates the egocentric coordinate system and the robot coordinate system, we have 

y -d +y r,P - r.egc egc,P (4.30) 

The translation equation shown above is used to transform the coordinates of point P 

from the egocentric system to the robot coordinate system (figure 4.23). 
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Figure 4.23: The location of pixel Pin the robot coordinate system. 

4.3.2.2 Robot Coordinate Frame to Map Coordinate Frame 
Transformation 

To bring the origin of the robot coordinate systems onto the origin of the map 

coordinate system involves a rotation of angle BR that will bring the two coordinate systems 

parallel with each other, followed by a translation of Xr and Yr along the map Xm and Ym axes 

respectively. Therefore in order to transform the coordinate P from the robot coordinate 

system to the map coordinate system involves the same rotation and translation process that 

are represented in equation 4.31 and equation 4.32. These equations are derived based on the 

same concepts described previously: 

x, P = x, , + xr P cosB, - Y, P sin Br 
> J ' I 

Ym.P = Yr + xr,P sin ()r + Yr ,P cos B, 

58 

(4.31) 

(4.32) 



Ym,r 

Y, 

y,. 

Robot's 
Coordinate Frame 

L x.,±::::~ =======::±:::=:::::::================:::J 
x,.,, 

x,.,p=x,.,, + x,,pCosB,- y,~inO, 

Figure 4.24: This figure illustrates the transformation of coordinate from robot 
coordinate system to the map coordinate system. 

4.4 Vision-based Self-localization 

This section describes the vision-based self-localization method used in this project. 

The vision-based self-localization function is used to reposition the robot on the prior map 

based on the image captured by the robot's camera. It is important to note that the shaft 

encoders localization sub-routine does not accurately estimate the robot position as the shaft 

encoders drift with time. Thus, vision-based self-localization is employed to overcome this 

problem. 

The aim of the vision-based self-localization sub-routine is to determine where the 

robot was located when the sampled image was taken. This is done by matching the detected 

floor edges in the captured image with floor edges in the robot's environment (prior map) 

and then, by using this information, deriving the robot' s pose. 
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(a) Edges in the Prior Map (b) (c) 
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The robot 

Figure 4.25: illustration of the vision-based self-localization process. (a) 
Comparing the floor edges (horizontal and vertical) detected in the image with floor 
edges in the prior map to obtain the angular and position deviations between the 
detected edges and their nearest neighbour edges in the prior map. (b) Using the 
mean angular deviation to recalibrates the robot's orientation, and (c) the mean 
position deviation to recalibrate the robot's position. The whole process illustrates 
at a, b and c is repeated once to provide a better estimation of the robot' s pose as 
illustrate in (d). The numbers 1, 2 and 3 in the above figures indicate the sequence 
of robot positions during the steps of the vision-based self-localization process while 
the number 4 indicates the final robot's pose. 

The matching process is performed by matching the detected floor edges with the 

floor edges in the prior map. For each detected edge, a search is performed in its 

surrounding about 6cm in each direction on the prior map, to find a nearest neighbour with a 

similar orientation. During this process, the angular deviations of all the neighbours in that 

surrounding that are less than 30 degree are recorded and averaged, but only the nearest 

neighbour which is the closest to the detected edge is selected as the nearest neighbour and 

its coordinate difference is recorded for positional recalibration. 

Once the search process for all the detected edges is completed, the mean angle 

deviation of all the potential neighbours for the detected edges is used to calibrate the robot's 

orientation. The (x, y) coordinate deviations for all the nearest neighbours are then used to 
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determine the mean (x, y) coordinate deviation to recalibrate the robot's coordinates. This 

completes the robot self-localization process as illustrate in figure 4.25. 

Note that the vision-based self-localization sub-routine is implemented in this 

research by using the waypoints information to narrow down the number of possible pattern 

matching edges in the prior map hence reducing the aliasing problem. The proposed 

approach was to use 3 points along the planned path, halfway between the waypoints, and 

one point at the first waypoint (in case the robot has not moved). Chapter 5 describes how 

waypoints are defined. The self-localization algorithm is executed for each of the 4 points, 

and the pose with the most matches between the detected edges and the edges on the prior 

map then represent the best estimate of the robot's pose at the time the image is captured. 

Note that this method relies on the shaft-encoders to perform reliably as it assumes that the 

robot has followed the path within a margin of ±6cm. 

Before the vision-based self-localization procedure is implemented in the navigation 

system, an experiment was conducted to determine its performances. This is described in 

section 4.5. 
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4.5 Self-localization Tests 

4.5.1 Results 

During the experiments, the robot was physically positioned in its environment at a 

fixed position and orientation with its video camera looking forward. The idea was to change 

the assumed initial position and orientation of the robot and determine if the vision-based 

self-localization procedure were capable of correcting this error based on the image obtained 

from the video camera. The experiment is divided into two parts, with the first part dealing 

with position shifts and the second part dealing with orientation changes. 

In the first series of experiments, the robot was physically positioned at (45cm, 

16cm) with an orientation of 0 degree. The initial believe of the robot's position was 

changed by two centimetre incrementally in either the x or y direction. Four tests were 

conducted where each test was performed for a specific direction of the displaced assumed 

position (i.e. forward, backward, left and right). For each direction, the initial believe of the 

robot's position was shifted by up to 8 centimeters (figure 4.26a). For each two centimetre 

increment, 10 trials were performed. 

In the second series of experiments, again the robot was physically positioned at 

( 45cm, 16cm) with orientation of 0 degree. The initial belief of the robot's position was not 

changed but instead its orientation was changed with successive increments of 1, 1, 2, 2, 2, 2, 

5 and 5 degree in a clockwise and anticlockwise direction (figure 4.26b). Two tests were 

conducted where each test was performed for a specific direction (i.e. clockwise or anti 

clockwise). For each direction, at every angular increment 10 trials were performed. Figure 

4.2. 7 shows, as an example, the results for each of the 10 trials for shifts of 2 cm in four 

directions. Figure 4.28 shows the standard deviations of the position errors, as a summary of 

all the measurement results. 
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(a) Position Shifting forVision-based Self-localization (b) Orientation Shifting for Vision-based Self-localization 
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Figure 4.26: The postt10ns and orientations used in the vision-based 
self-localization test. (a) The positions used. (b) The orientations used. 
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Figure 4.27: Examples of vision-based self-localization tests plots. The + symbols 
represent the result of the self-localization process. The x symbol is the actual 
position. The + symbol is the initial position assumed by the self-localization 
algorithm. 
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Standard Deviation Plot of 
Self-localization Test (Left Shifting by x) 
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Figure 4.28: Standard deviation of vision-based self-localization errors. Each 
value is obtained from I 0 measurements. 
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4.5.2 Discussion of the Vision-based Self-localization Results 

The results show that self-localization along they dimension is much more accurate 

than that along the x dimension or the orientation. The reason for that behaviour will be 

cliscussed in this section. 

Figure 4.29 is an example of the image used in the vision-based self-localization 

process taken at coordinate (45, 16). Note that although the camera is looking at the same 

location throughout the test series with the same illumination conclitions, the number of 

edges detected might be slightly different due to pixel noise that effects the automatic 

thresholding process. 

Figure 4.29: Example of the image taken at coordinate (45, 16). lllustrating the 
result of edges detection, showing the smaller number of visual cues on the sides of 
the robot's environment. 

Figure 4.30 shows a test result where the initial belief of the robot position is shifted 

by a lateral offset. The picture on the left shows where the remote brain initially thinks the 

robot is, and where the edges detected in figure 4.29 should be relative to the robot's 

position. The picture on the right shows the robot's positions inclicates by + symbols after 10 

runs of vision-based self-localization. With an accurate vision-based self-localization 

process, the + symbols should end up at coordinates (45, 16), where the actual robot is 

located (symbol x). 
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Figure 4.30a shows that the vision-based self-localization performs quite well in the 

condition where there are plenty of visual cues (i.e. the detected edges). This is illustrates in 

this figure where they coordinates from the calibration results does not vary as much as the x 

coordinate, since there are plenty of detected horizontal edges to be matched. Figure 4.30b 

also illustrates this effect, showing that no calibration on the x coordinates has taken place 

since there are no detected edges that have similar orientations to the left and right edges of 

the environment. Therefore the + symbol is staying close to the • symbol. 
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Figure 4.30: Examples of the vision-based self-localization tests results. (a) 
Position shifted by 4 cm to the right. Note that there are not many detected edges 
with similar orientation to the side walls therefore the robot's x coordinate varies at 
each trial. (b) Position shifted by 8 cm to the right. Note that the results of the 
calibration process are located closed to the initial position ( +) instead of the actual 
position (x). Since there is no visual information (edges) that have the same 
orientation to both sides of the wall, this prevents recalibration from taking place for 
the robot's x coordinate. 
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4.6 Obstacle Detection and Registration 

Once the vision-based self-localization process finishes recalibrating the robot's 

coordinates in the prior map, all the detected edges that are within the room are placed into 

the map. For the detected floor and walls edges with a nearest neighbour, they are assigned 

to their nearest neighbour, while the rest of the detected edges with no nearest neighbours are 

assumed to be obstacles and are pasted into the prior map. The data structure used for the 

prior map is known as the neuro-resistive grid which has a spatial memory layer. The spatial 

memory layer is used to store information such as the robot's position, the goal's position 

and the detected obstacle positions. The neuro-resistive grid uses the spatial memory layers 

to calculate its potential field distribution that is used for path planning. Details of the neuro

resistive grid are described in chapter 5~ 

The robot's prior map (i.e. the spatial memory layer of the neural-resistive grid) is 

updated throughout the navigation process based on the latest information decoded from the 

images obtained through the robot's video camera. This information includes the latest 

position and orientation of the robot and the position of detected obstacles within the robot's 

environment. The updating process is illustrated in figure 4.31 where a) show the edges 

detected on the images, b) the position of the detected edges after self-localization and c) the 

detected edges and obstacle registered in the spatial memory layer of the neuro-resistive grid. 
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(a) (b) (c) 

Figure 4.31: The process of registering the detected obstacle into the spatial 
memory layer of the neural-resistive grid. (a) The results of the edges detection 
process on the image obtained from the robot's video camera, (b) After the vision
based self-location process, the detected edges shows a good match with the prior 
map. (c) The detected obstacle is mapped into the spatial memory of the neural
resistive grid. 

4. 7 Discussion 

The vision-based obstacles detection, self-localization and map updating processes 

used in this project have been described and tested. The results from the test of these 

procedures were shown. 

The fish-eye lens calibration procedure shows a simple way of calibrating images 

that suffer from barrel distortion. The result from the calibration process shows its reliability 

and robustness. 

The automatic thresholding method is successfully used for determining the 

threshold values for the floor and walls; this is useful as it helps the vision system to become 

less light sensitive. 

The floor edges specific filters currently work at discrete locations in the image. The 

advantage is that it reduces the computational load. The disadvantage is the difficulty of 

70 



determining accurately the position of the detected edges. The proposed refined method 

solves this problem. 

Vision-based self-localization is an important procedure in this project. It provides 

feedback for the robot's remote brain and makes other procedures such as path planning 

possible. This is a simple approach that produces acceptable results. The accuracy problems 

of this procedure are mostly caused by the positioning problem from the floor edges specific 

filters. The vision-based self-localization procedure will be more robust once the positioning 

problem is solved. The obstacle detection and registration procedure currently wasn't able to 

distinguish between real and phantom obstacles. Therefore all the detected edges were 

currently being registered into the neuro-resistive grid which is then used for path planning. 

The phantom obstacles problem will be addressed in future work. 
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Chapter 5 

Path Planning and Encoding 

Path planning is a basic function of most mobile robot or autonomous vehicle 

control systems. It involves generating a sequence of commands that will be used to 

navigate the mobile vehicle from its current position toward its final position/goal without 

colliding with obstacles. To achieve this, a map with data structures that suits the chosen 

method of path planning is needed. The data structure has to be able to store the 

information about the state of the mapped areas and enable movements from any element 

in the structure to the elements which represent adjacent areas in space. In addition, a data 

structure for storing paths that complements the map data structure, and efficient 

algorithms for locating the robot, path searching and navigation are required. Easy 

integration of sensory data for map construction, adaptation and extension is also a must. 

Based on these requirements, the neural-resistive grid method (Bugmann, Taylor and 

Denham, 1994; Althi.ifer and Bugmann, 1995) is chosen as the ideal data structure to be 

used in this project. 

This chapter is divided into two sections, the path planning through the 

neural-resistive grid and the path encoding and decoding through normalised radial basis 

functions (NRBF). Section 5.1 discusses path planning using the neural-resistive grid. 

This section begins with an introduction of the theory behind the neural-resistive grid 
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(section 5.1.1 ), followed by a description of the representation of the robot and the obstacle 

within the neural-resistive grid, and the illustration of obstacle free path planning based on 

the gradient distribution in the neural-resistive grid (section 5.1.2). 

Section 5.2 describes how the obstacle free path is represented by a waypoint data 

structure and is used in the robot navigation process. For this, the NRBF net will be 

described in section 5.2.1 followed by showing how it facilitates the path encoding in 

section 5.2.2 and the path decoding in section 5.2.3. 

5.1 Path Planning through the Neural-resistive Grid 

5.1.1 Neural-resistive Grid 

The route-finding neural net proposed by Bugmann, Taylor and Denham (1994) 

was used in this project for environment mapping and path planning. The route-finding 

neural net is a neural implementation of a resistive grid; it consists of two layers, a 

neuro-resistive grid and a spatial memory layer. In the neuro-resistive grid, every node is 

connected to its 2N neighbours. N is the dimension of the represented state space (N=2 in 

our case). Each node is also directly connected to the node corresponding to the same 

spatial location in the spatial memory layer as shows in figure 5.1. 

The neural-resistive grid holds the ideal data structure characteristic for 

environment mapping and path planning as the spatial memory is able to store goal and 

obstacles information about the mapped area which enables easy integration of sensory 

data with a simple algorithm for map construction, adaptation and extension while the 

neuro-resistive grid calculates the potential distribution over the mapped area based on the 

information encoded in the spatial memory. The neural-resistive grid is updated every 

image processing cycle as new sensory data become available. 
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The Concept 

The potential distribution is calculated based on the law of physics where electric 

current flows from a node of a higher potential toward a node of a lower potential. Here, 

the node corresponding to the goal state is set with a highest potential value (i.e. one) while 

nodes correspond to obstacles, or forbidden states, are set to a low potential value (i.e. 

zero). Therefore we have currents flowing from the goal, through the grid and towards the 

obstacle nodes. At any point in the grid, the direction opposite to that of the current flow 

indicates a path to the goal. 

Neuro-resisCive grid 

SpaCial Memory 

Figure 5.1: The neural-resistive grid planner is composed of the neuro-resistive 
grid layer and the spatial memory layer. 

The Theory 

In the implementation of this concept, the neuro-resistive grid receives inputs from 

its N; neighbours and one of its corresponding neuron in the spatial memory layer. Each 

output or "potential" y; of the neuron i is calculated as follows 

(5.1) 

where w ij is the weight given to the input from neuron} to neuron i; Yj is the output 

of neuron}; 1; is an external input used to constrain the value of yj , and Tf is the transfer 
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function of the neuron i. The linear saturating function illustrated below (figure 5.2) is 

used as the transfer function Tf 

0 

Figure 5.2: Transfer function of the neurons representing nodes of the 
neuro-resistive grid. 

For a two-dimensional case, the weight wu is set to 1/N; (=0.25), which makes y; the 

average potential of the N; neighbours. As nodes at the edge of a two-dimensional grid 

have only 3 neighbours (N,=3) and those at the corners only 2 neighbours (N,=2), their 

input weight must be set to wy=0.333 and wy=0.5 respectively. The saturation of the 

transfer function for inputs larger than 1 or smaller than 0 only happens for nodes 

corresponding to target or obstacles respectively due to external inputs from the spatial 

memory. These cause the goal neuron to have a potential y1= 1 as the external input is set to 

1,-I and the neurons corresponding to obstacles to have a potential yrO as their external 

inputs are set to 1,=-l. The external inputs for nodes that are neither the target nor 

obstacles are set to 1,=0. Therefore, these nodes determine their potential freely, according 

to the potentials of their neighbours. Before an equilibrium distribution of the potentials is 

achieved, all the neurons in the network must be updated several times. Theoretically, an 

infinite number of updating cycles is needed but in practice only a few tens of iterations are 

needed to achieve a correct direction of potential gradients. The minimal number of 

iterations depends on the distance between the current position of the robot and its target 

while taking account the complexity of the maze. Note that the gradients distribution does 
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not need to be recalculated each time provided that there is no new obstacle, and the 

obstacles and target remain static. 

Tbe Setup 

To model the robot's environment, a neural-resistive grid with 47x65 nodes was 

built. The walls in the robot's environment were pre-programmed into the outer nodes of 

the spatial memory of the neural-resistive grid. In the neural-resistive grid, the spatial 

memory is used as a prior map for map updating while the neuro-resistive grid is used for 

path planning. 

The actual size of the robot's navigation area is 89xl25cm2
, which is represented 

by 45x63 nodes in the neural-resistive grid. Thus, each node in the neural-resistive grid 

covers a 2x2cm2 area of the robot's environment. 

5.1.2 Representation of Robot and Obstacles in the 
Neuro-resistive Grid 

Representation of robot and obstacles in the resistive grid plays an important role in 

producing obstacle free paths and assuring clear navigation for the robot. In the 

neural-resistive grid method, the robot is modelled by a point of the size of a node while 

obstacles and walls are expanded by the radius of the robot (figure 5.3) to make sure that 

the path produced will avoid a collision with an obstacle and that the robot will not attempt 

to go through any corridor that is too narrow for it. 

The expansion is achieved by using divergent connections (one-to-many) from the 

spatial memory to the neuro-resistive grid. Therefore equation 5.1 becomes 

(5.2) 
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where M; represents the number of divergent connections from node i of the spatial 

memory to the neuro-resistive grid. This is a novel design, extending the functionality of 

the original neural-resistive grid in figure 5.1. 

Neuro-resistive grid 

I; 

Spatial Memory 

Figure 5.3: Modified neural-resistive grid with one-to-many connections from 
the spatial memory layer to the resistive grid layer. The radius of the 
connectivity is equal to the radius of the robot. 

D 
.',. - ....... 
' . 
' ' 

• 
Ll 

Boundary of 
expanded object/walls 

Actual size of robot 

Point-like representation of the 
robot in the neuro-resistive grid 

Collision free space 

Figure 5.4: Representation of walls, obstacle and coUision free space within the 
neural-resistive grid. The robot is represented by a node in the grid while 
obstacle and walls are expanded by the radius of the robot to ensure that collision 
free paths are planned. 
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Figure 5.5: The neural-resistive grid representation. The spatial memory (map) 
shown on the left represents free space in black colour, while occupied areas (i.e. 
the pre-programmed walls and the detected walls and obstacles) in grey colour. 
The white node in the top right quadrant of the map represents the goal position. 
The neuro-resistive grid on the right uses the spatial memory to produces the 
potential distribution of the free space in the robot's environment. The free 
space is represented by a gradient of grey levels while the forbidden space (i.e. 
walls and obstacle after the expansion process) is represented by black-coloured 
nodes. 

5.1.3 Path Planning through Gradient Climbing in 
the Neuro-resistive Grid 

This section describes the generation of waypoints that define a collision free path 

based on the potential distribution in the resistive grid. The waypoints which are along the 

collision free path are later to be sent to the robot which uses them to produce steering 

controls. 

The initial aim of waypoints generation is to search for a collision free path from 

the robot's current position to the goal. This is done by searching through the 

neuro-resistive grid, for a series of highest potential neighbour nodes from the robot' s 

location toward the goal. The algorithm begins by searching through the nearest 

neighbours of the node where the robot is located for a node with the highest potential, 

then move to this node and continues the search. Every fifth highest potential node found 

(i.e. indicate as green in the resistive grid shows in figure 5.6) defmes a waypoint. The 
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searching process is repeated until 8 waypoints are found (there is no need for calculating 

more than 8 waypoints at a time, as explained in chapter 6). 

Figure 5.6: Waypoints representation of the path within the neuro-resistive grid. 
The neuro-resistive grid shows the location of the robot in red while the 
waypoints that form a path from the robot location toward the goal in green. 

5.2 Path Encoding and Decoding through NRBF Nets 

This section describes the NRBF path encoder that is used in the robot. The 

function of the NRBF path encoder is to continuously produce a target point for the robot 

to follow. The target point is a close point on the obstacle free path ahead of the robot. 

The purpose of the target point is to attract the robot towards and along the obstacle free 

path until the robot reaches the goal. 

Input 

c=> 
Robot's Position 

(x,,y,) 

'\RBI· l'ath 
lurotkr 

Output 

c=> 
Target Position 

(xi' I>Yr • 1) 

Figure 5.7: The NRBF path encoder. The NRBF path encoder takes the robot' s 
position and produces a target position for the robot controller to steer the robot 
toward it. The target position is a position along the encoded path. 
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5.2.1 The Normalised Radial Basis Function (NRBF) Net 

Standard Radial Basis Function (RBF) nets comprise a hidden layer of RBF nodes 

and an output layer with linear nodes (Broornhead, 1988; Brown, 1994). The function of 

these nets is given by: 

11 

Y; (x)= Iwi,j~(x - xj ) (5.3) 
j=l 

where y; is the activity of the output node i, ~(.X -.X j ) is the activity of the hidden 

node}, with a RBF function centred on the vector xj, and .X is the actual input vector and 

wu are the weights from the RBF nodes in the hidden layer to the linear output node 

(Figure 5.8). Such a net is a universal function approximator (Powell, 1987). 

~) 

YJ 

Figure 5.8: Network architecture for standard RBF nets and Normalized RBF 
nets. 

The function ~(.X- .X) of a hidden node j is usually the Gaussian Radial Basis 

Function: 

[ 

K 2 J L: (x*- wjk ) 

~(.X- .X)= exp - k=l 2 0"2 (5 .4) 

where u is the width of the Gaussian and K is the dimension of the input space. 

The "weights" w1k (shown in figure 5.8) between node kin the input layer and node} in the 
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hidden layer do not act multiplicatively as in other neuron models, but define the input 

vector Xj =(wjl . ... , Wjk) eliciting the maximum response Of node j ( Xj is the "centre Of the 

receptive field"). 

Normalised RBF nets have a functional form very similar to the standard one 

(equation 5.3), with the difference of a normalisation by the total activity in the hidden 

layer: 

(5.5) 

As a result, the output activity becomes an activity-weighted average of the input 

weights in which the weights from the most active inputs contribute most to the value of 

the output activity. For instance, in the extreme case where only one of the hidden nodes is 

active, then the output of the net becomes equal to the weight corresponding to that hidden 

node, whatever its actual activity. Thus RBF nodes in the hidden layer are used here as 

case indicators rather than as basis functions proper. 

Figure 5.9 shows that each hidden node in a Normalized RBF net takes over a 

portion of the input space over which it determines the output of the net. Due to this 

property, outputs of the normalized RBF net are always a point on the path, even if the 

current position is not exactly a waypoint. In contrast, the standard RBF net produces 

outputs out of the path for input positions that are not exactly on a waypoint. 

81 



-1 

Input 

- 1 

Figure 5.9: Comparison between standard RBF nets and Normalized RBF nets 
with three hidden nodes on an example of a !-Dimensional path. The path has 4 
waypoints: x = -0.6, -0.2, 0.3, 0.5. The path can be represented as a mapping {-
0.6 -> -0.2; -0.2 -> 0.3; 0.3 -> 0.5}. Dotted line: function of a standard RBF net 
approximating the mapping. Full line: Function of a Normalized RBF net. 

A similar normalisation principle is used in the "centre of gravity defuzzification 

method (Brown and Harris, 1994, pp. 388-404). Our approach is a special case of the 

approach proposed by (Shao, Kee and Jones, 1993) for selecting linear functions Ly{x) 

(instead of the constant weights wii used here). In (Rao and Fuentes, 1996) equation 5.5 

was used to compute normalised motor output vectors in robots. Normalised RBF nets 

have also been used for path encoding in an autonomous wheelchair (Koay, Bugmann, 

Barlow, Phillips and Rodney, 1998) and show very good properties in pattern classification 

applications (Bugmann, 1998). 

5.2.2 Path Encoding 

Encoding a path in a 2-dimensional space is done with an NRBF net with two input 

nodes and two output nodes, and one hidden node per waypoint. The centre of the 

receptive field of each hidden node is set to the position (xn,Yn) of one waypoint (equation 

5.6) and its output weights are set to the position (xn+J,Yn+I) of the next waypoint (equation 

5.7). 
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(5 .6) 

(5.7) 

Therefore when the robot reaches the target (x, ,y, ), this activates hidden node j and 

its output weights (w1j,w2j) become the new target (x,+1, Yn+t ), which pulls the robot along 

the path. To enable the robot to stop its motion when it reaches the final waypoint, the 

input and output weight of the final hidden node are set to the final waypoint, hence the 

target will keep pointing at the same point and the robot will stop. The targets change 

when new waypoints sent by the remote brain are encoded into the NRBF path encoder. 

5.2.3 Path Decoding 

The NRBF path encoder is a function that provides a target position (x1,y1) for the 

robot based on the robot's current position (Xc,Yc) as input (i.e. equation 5.8 and equation 

5.9). The target position is usually a point along the demanded path encoded in the NRBF 

path encoder if the robot is in a position close to the path. If the robot is somewhere 

outside the path, the target position will be a point nearer to the demanded path. 

L: wlj f/Jcx- x) 
X = --';'-::· =-----

' L:f/JCx- x) 
(5.8) 

j 

(5.9) 

where 

Note that the robot will not attempt to reach exactly each intermediate waypoints, 

because when it reaches the neighbourhood of a waypoint, it is directed towards the next 

waypoint. Thus, for a more precise path following, waypoints must be closely spaced. 

Figure 5.10 illustrates a case where the spacing between waypoints is much too large. 
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Trajectory produce using NRBF Decoder 
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Figure 5.10: A simulation of the NRBF path encoder attractive field. The four 
dots represent the waypoints while the solid line shows the path from the initial 
waypoint to the fmal waypoint. The 7 crosses represent various starting position 
and the dotted lines represent their paths. 

Another point is that (j in equation 5.4 must be of the order of the distance between 

waypoints, so that only one hidden node at a time is activated and defines the next 

waypoint. For too large values of (j the produced target becomes a combination of 

waypoints and the path is smoothed out. 

However, the NRBF path encoder has the advantage of being able to produce a 

target point that will lead the robot towards the demanded path from whatever starting 

point as illustrated in figure 5.1 0. This is particularly useful when the robot has left the 

desired path by error. 
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Chapter 6 

Motion Control with Intermittent Delayed 
Measurements 

This chapter discusses motion control with intermittent delayed measurements in 

the system (the remote brain and the robot). A delayed measurement is defined as a 

measurement which is delayed by nr, where r is the controller's cycle time and n is the 

number of cycles between data acquisition and data availability. Delays in measurements 

are usually introduced by the complexity of processing sensory data. Applications such as 

vision-based mobile robots are often faced with delayed measurements from visual 

sensing. Delayed measurements used to cause robots (i.e. robotics system) to exhibit a 

stop-and-go motion (Moravec, 1983 ). For example, a mobile robot that relies on vision for 

its navigation process has to wait for the visual sensory data to become available before the 

navigation process can be executed. Delayed measurements are due to processes such as 

image digitization, image processing, self-localisation, path planning and data transfer. 

This is not a problem that can be solved with a faster or more powerful machine, as not all 

of these processes depend on the computation speed. Furthermore, computation time also 

tends to increase with more intelligent and complex algorithms (Bak, Larsen, Norgaard, 

Andersen, Poulsen and Ravn, 1998). Apart from that, not all time delays are caused by the 
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controller, for example, in a rolling mill process where the time delay lies between the 

issuing of a control and its result's feedback (Smith, 1959). 

Section 6.1 describes the vision-based mobile robotic system used and the time 

delay problem that exists in the system. This section is divided into two subsections; 

section 6.1.1 discusses the system in details, its time delays and the cause of the 

stop-and-go motion, while a solution to the problem is presented in section 6.1.2. 

Section 6.2 deals with the proposed solution to the stop-and-go motion problem 

which was discussed in section 6.1.2. This includes the use of receding horizon control (in 

section 6.2.1) and the adaptation of the retroactive updating scheme in the Smith Predictor 

to the case of intermittent delayed measurement (section 6.2.2). 

Section 6.3 deals with the implementation of the Smith Predictor in which a robot 

model is built (section 6.3.1) followed by the derivation of a set of equations for tracking 

the robot pose (section 6.3.2) using the distances travelled by the robot's wheels 

(determined either by the model or direct readings of the shaft encoders). 

Section 6.4 describes the robot's on-board path control followed by test results 

using the NRBF path encoder. 

Section 6.5 describes and discusses the specifically designed coordinate 

recalibration algorithm for mobile robotic systems that incorporates intermittent delayed 

measurements through retroactive updating. 

86 



6.1 The Time Delays Problem 

In control, a system always consists of several components that act together and 

perform certain functions. Each component requires an amount of time to complete its 

task. The amount of time required depends on several factors such as the complexity of 

the task and the speed of the hardware involved. This amount of time (i.e. time delay) 

often poses a serious threat to the performances of a real-time system. 

The vision-based navigation system used in this research also suffers from time 

delays problem. As a result, the system exhibits a stop-and-go motion. This is 

unacceptable especially for a real-world system such as an autonomous wheelchair. The 

aim here is to analyse the time delays within the system and to propose a solution that will 

solve the stop-and-go motion problem. 

Section 6.1.1 looks at the vision-based navigation system, its control structure and 

timing diagram to investigate the relationship between the time delays and the stop-and-go 

motion. Note that the system was designed with the use of sequential control method. 

Section 6.1.2 proposes a solution to deal with the time delays and overcome the 

stop-and-go motion problem through a concurrent control method. 

6.1.1 Sequential Control "Compute then Move" 

The aim of the vision-based navigation system used in this research is to navigate 

around obstacles towards the goal. The vision-based navigation system flow diagram in 

figure 6.1 shows its components and their relationship within the system. The components 

are grouped into two categories or sub-systems, the first group is known as the remote 

brain. As its name implies, the remote brain deals with high level tasks which are 
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responsible for the sensing, thinking and planning processes; the second group is the 

robotic system which deals with low level tasks such as controlling the robot's motion. 

VIsion-based Nav lgaUon System 

Figure 6.1: Vision-based Navigation System Sequential Control Flow Diagram. 

Figure 6.1 also demonstrates the relationship between the remote brain and the 

robotic system. The remote brain is responsible for determining the robot pose through the 

image obtained from the robot's video camera, and then plan an obstacle free path from the 

robot pose to the goal point. This path and an activation signal are transmitted to the 

robotic system which is responsible for the robot's navigation processes. The remote brain 

then switches into sleep mode while waiting for the robotic system to finish its navigation 

to the target point. The target point in this case is a point along the path from the robot ' s 

initial position to the robot's goal point. Once the robot has reached the target point, the 

robotic system stop the robot's motion, and sends an activation signal to reactivate the 

remote brain' s sensing, thinking and planning process. The whole program cycle is then 

repeated until the robot reaches the goal point. Figure 6.2 shows the sequential control 

vision-based navigation system tasks scheduling diagram which demonstrates the sequence 

of tasks being executed during a navigation process. This diagram also illustrates the main 

system program cycle and the relationship between the remote brain and the robotic system 

within it. 
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Remote Brain's program cycle 
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Figure 6.2: Tasks scheduling diagram for the sequential control vision-based 
navigation system. This diagram show how each tasks is executed and illustrates 
the sequential control where the main system begins its program cycle by executing 
the high level tasks (i.e. Vision, Self-localisation and Planning modules) followed 
by the communication tasks and concludes with the low level tasks (i.e. Controller, 
Motors and Shaft-encoder modules). Note that the scale in this diagram represents 
only an approximation of the actual delays. 

This control method is known as the sequential control method since both program 

cycles within the main system work in a sequential manner. Here, the robotic system has 

to wait for the remote brain to finish executing the main system's high level tasks before it 

can execute the main system's low level tasks. The duration for executing the main 

system' s high level tasks varies as it depends on the complexity of the captured image. In 

average, the vision processing task requires about 0.55 seconds of execution time. The 

self-localization task requires about 2 seconds of execution time. The planning process 

requires about 25 seconds of execution time initially (to perform 80 updating cycles per 

program cycle on the neuro-resistive grid) to achieve a correct direction of potential 

gradients (as described in section 5.1.1 ), then about 0.68 seconds (for performing 1 

updating cycle and selecting new waypoints) at each program cycle. 

Due to the complexity and time consuming process within the high level tasks, time 

delays are created, causing the execution of low level tasks to be delayed. As a 
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consequence, the robot has to remain in a static state until the high level tasks program 

cycle finishes. The same applies to the remote brain which has to wait for the robotic 

system to fmish executing the low level tasks before it can begin executing the high level 

tasks. The average execution time for the main system' s low level tasks (robot motion) is 

about 10 seconds, and this execution time varies with the complexity of the path. Thus, the 

result of time delays within a sequential control method cause the robot to exhibit a 

stop-and-go motion. 

Vision-based Navigation: Sequential ControlTtming Diagram 

Higb Level Control 
time 

Communication 

Low Level Control 
------• time 

Figure 6.3: Vision-based Navigation System Sequential Control timing diagram. It 
demonstrates the tasks and their timing perform in the main system (which consists 
of the remote brain and the robotics system). The timing diagram is divided into 
three rows, the first row from the top represent the main system's high level tasks 
which is a collection of tasks executed by the remote brain, the second row 
represents the communication task involving both the remote brain and the robotic 
system, and the third row represent the main system's low level tasks which is a 
collection of tasks executed by the robotic system. Note that the scale in this 
diagram represents only an approximation of the actual delays. 

Figure 6.3 illustrates the timing diagram ofthe main system. The timing diagram is 

divided into three rows, with the top row representing the main system high level tasks 

(which are handled by the remote brain), the second row represents the communication 

tasks between the remote brain and the robotic system (the communication process 

requires about 0.10 seconds of execution time for sending waypoints data to the robotic 

system while the communication process for reactivating the remote brain needs about 

0.015 seconds), and the third or the bottom row represent the low level tasks (which are 

handled by the robotic system). 
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Many would think that the stop-and-go motion problem can be solved by using a 

faster machine, but this is not entirely true. As shown in figure 6.2, the amount of time the 

robot spends in a static state is equal to the amount of time required to execute the high 

level tasks and the communication tasks. Therefore, reducing the time required to execute 

the main system's high level tasks with a faster machine will only reduce the time during 

which the robot is in a static state, but does not eliminate the static state. This is because 

the vision-based navigation system involves wireless communication tasks (between its 

two sub-systems, the remote brain and the robotic system) whose execution time is not 

directly influenced by a faster machine. 

Therefore it is clear that the stop-and-go motion problem cannot be solved by 

using a faster machine. Section 6.1.2 discusses the way of solving this problem using a 

concurrent control method. 

6.1.2 Concurrent Control "Compute while Moving" 

The stop-and-go motion is the result of the delays in the systems and the sequential 

conception of the control architecture. 

Vision-based Navigation: Concurrent Control Timing Diagram 

High Level Control 
------• time 

Comm unication 

Low Level Con trol 

Figure 6.4: Timing diagram of a Vision-based Navigation System with Concurrent 
Control. Note that the scale in this diagram represents only an approximation of the 
actual delays. 
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To overcome the stop-and-go motion problem, the proposed solution is to run both 

the main system's high level tasks and low level tasks concurrently. This is done by 

executing the main system high level tasks to determine a new target point while the robot 

is still moving toward its current target point (low level task), and transmits the newly 

determined target point to the robotic system before the robot reaches it current target 

point. By doing so, the robot will move continuously form one target point to the next 

until it reaches the goal. The timing diagram of such system is illustrated in figure 6.4. 

From this diagram, it is clear that by executing the main system's high level tasks 

concurrently with the main system's low level tasks, it is possible to keep executing the 

low level tasks continuously from the robot's initial position to its goal point, therefore 

eliminating the robot's static state and overcoming the stop-and-go motion problem. 

The tasks scheduling diagram for the concurrent control vision-based navigation 

system is shown in figure 6.5. This diagram illustrates the new program cycles for both the 

remote brain and the robotics system. It is important to note here that planning has to be 

done in advance, before the robot reaches the position for which the plan is relevant. 

Vision (Processing) 

Self-localization 

Planning 

Corn m unication 

Controller 

Motors 

Shaft Encoders 

Remote Brain's program cycle 

Robotic System's program cycle 

Figure 6.5: Tasks scheduling diagram for the concurrent control vision-based 
navigation system. Note that the scale in this diagram represents only an 
approximation of the actual delays. 
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Figure 6.6 shows the process flow diagram of a stop-and-go motion free system. 

This flow diagram is very similar to the one shown in figure 6.1 except that the remote 

brain does not need an activation message from the robotics system, as both the remote 

brain and the robotic system have independent program cycles as illustrate in figure 6.5. 

VIsion-based Nav lgatlon System 

Figure 6.6: Concurrent control process flow diagram. The difference between this 
flow diagram and the one shown in figure 6.1 is the communication process. The 
flow diagram here has two independent program cycles while in figure 6.1, the 
remote brain and the robotic system work dependently through the communication 
module. 

6.2 Proposed Implementation of Concurrent Control 

This section proposes a strategy for implementing concurrent control into the 

system. The aim is to allow both the remote brain and the robot to function concurrently as 

illustrated in figure 6.4. The relationship between the remote brain and the robotic system 

are such that the robotic system relies on the remote brain for the robot' s navigation 

process, therefore it is important that this is taken into consideration when implementing 

concurrent control. 

Concurrent control requires concurrent sensory processing and planning while the 

robot is moving. This poses a problem for generating a meaningful motion from delayed 

information, during the delay between measurements. For example, let us assume the 

remote brain takes m seconds to complete the high level tasks. If an image is taken for 

processing at time t0, while processing the high level tasks, the robot continues to move. 
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The robot will only receive the feedback (i.e. robot's pose at time to) and path information 

valid for time to at time to+ m, when the robot is already in a new position. 

The delayed path information problem is solved here using a receding horizon 

control method (section 6.2.1) which overcomes the time gap between measurements by 

planning paths that are valid over a certain time range for the robot to follow while new 

plans are elaborated. When the new path becomes available, it can easily be integrated 

into the robot's navigation process and results in a smooth navigation motion (i.e. using the 

NRBF net as discussed in section 5.2). 

A modified Smith Predictor is used here to control the robot during the delays 

between visual feedbacks (section 6.2.2). The Smith Predictor was originally designed to 

deal with continuous but delayed feedbacks. The modification proposed here allows it to 

handle intermittent delayed feedbacks such as the ones caused by image processing. We 

have explored two possible sources of the fast feedback component of the Smith Predictor. 

The first is the standard use of a dynamical model of the robot (section 6.3.1). The second 

is the more direct use of tracking information from shaft encoders (section 6.3.2) 

The use of the modified Smith Predictor in conjunction with the NRBF path 

encoder for on-board path control is described in section 6.24. 

In the modified Smith Predictor, when the delayed feedback (i.e. robot's position at 

time to) from the remote brain becomes available at time t0+nr, it is used to improve the 

estimation of the robot's current position (based on the assumed position at time to and the 

integration of displacements estimated from the fast feedback component) by retroactively 

updating the position assumed for time t0, this coordinate recalibration process is described 

in section 6.25. 
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6.2.1 Receding Horizon Control Strategy 

The receding horizon approach is used here to fill the time gap between 

measurements and provide the robot with a path to follow while new plans are elaborated. 

In the receding horizon approach, the remote brain produces an obstacle free path at each 

remote brain program cycle. Every obstacle free path is based on the image obtained at the 

beginning of the program cycle. Thus the path remains valid from the time it was created 

until the end of the horizon. Here, the end of the horizon is defined as the goal. Therefore 

the path generated remains valid until the robot drifts away due to accumulated odometry 

error or due to the inaccuracy of the control actions (e.g. unbalanced responses of the 

motors). This is overcome when the robot receives the delayed visual information 

feedback and the newest path from the remote brain. 

Obstacle Free Goal-directed paths 
____.. Trajectory created based on 

the robot's position P(tx) 
where 

fx= fx-l+nx T 

Figure 6.7: The concept of receding horizon control strategy. Using the Receding 
Horizon Strategy, the robot's remote brain is regularly searchjng for new paths 
toward the goal based on the robot latest coordinate (obtained through vision). Each 
line in figure here represents an obstacle free path P(tx) based on the image captured 
at time fx. 
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Figure 6.7 illustrates the concept of receding horizon control strategy. Based on the 

receding horizon control strategy, an obstacle-free path is planned from the position where 

the sensory reading is made e.g. P(t0), to the goal. Theoretically, this path should enable 

the robot's controller to steer the robot towards the goal based on its odometric feedback. 

But in reality, there are many factors such as the accumulated odometry error and the 

inaccuracy of control actions that can cause the robot to drift away from its path. For 

example, the robot captures an image at position P(to) at time to and plans an obstacle-free 

path from position P(to) to the goal. Let's assume that the robot then attempts to navigate 

along this path but drifts to the right and ends up at position P(t1). The path created at 

position P(to) becomes invalid thus a new path bases on position P(t1) is needed. Therefore 

it is necessary for the remote brain to provide delayed visual information feedback and 

obstacle-free paths as often as possible (i.e. at every remote brain program cycle) to 

minimise the accumulated odometry errors and keep the robot on track. As illustrates in 

the figure 6.7, a new obstacle-free path is constantly created at each program cycle as the 

robot moves towards the goal. Thus, by continuously providing the robot with the latest 

visual feedback and a new obstacle-free path, the robot position can be continuously 

corrected, therefore minimizing the accumulated odometry errors and enabling the robot to 

reach its goal. 

The obstacle-free path is encoded as 8 waypoints with a distance of lOcm between 

each waypoint. Figure 6.8 shows the process and implementation of the receding horizon 

control strategy using waypoints. As illustrated, the remote brain captures an image at 

time to for high level processing. At the end of the high level processing at time 11, the 

obstacle-free path produced is sent to the robot. Let's call this path 10TtJ, indicating that the 

obstacle free path is created based on the image captured at time to and becomes available 

at time t1• This path 10Ttl is then sent to the robot in term of waypoints while the remote 

brain captures a new image to produce the path 11T 12• Since the robot has a limited memory 
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buffer, only four waypoints are sent. It is important to note that the waypoints sent must be 

able to support the robot's navigation process until the next obstacle-free path becomes 

available. 

160 cm 

t:le•··---
JOcm ~---···· 

t:]oo·~oooOo 
,;:t ,.,....., ,.,....., ,.,....., ,.,....., 0 0 0 0 
~ '--' '-" '--' '-" 

--------orl------------4o~l------------s-o+l-----------~-2~ol~------------~• y(cm) 
.!,! 

~~ e··~··~ooo0oooo 
~~ 

~ Image obtained from the robot at time t,. 

0 Robot's position at time t,. 

.,..... 
\.) Waypolnts• 

0 Waypolnts• that will be send to the robot 

•rhese waypoints are produced based on the image obtained 
at time t,. and will only be available to the robot at time tx+t 

Figure 6.8: This figure illustrates the advantage of applying the receding horizon 
control strategy using the waypoints method. 

Initially the robot is in a static state from to to t1, therefore the first four waypoints 

form the path 10Tr1 are sent to the robot at t1. Note that at time t2, the last four waypoints of 

path 11T12 are sent to the robot instead of the first four. This is because the robot only 

started to move at time t1. Therefore the image captured at time t1 is the same as the one 

captured at time t0, and it is expected that the robot arrives at the fourth waypoints of path 

tOT · 11 at time t2. 

As illustrated in figure 6.8, as the robot moves along the path from time t 2 onward, 

only the last four waypoints (i.e. waypoint 5, 6, 7 and 8) of a path are sent to the robot. 

This is due to the fact that the robot is in motion during the processing of high level tasks. 

When the path becomes available (i.e. with eight waypoints), the robot has already reached 
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the 4th waypoint. This procedure is essentially based on the observation that the remote 

brain needs m seconds for processing the high level tasks and that in that time the robot 

covers a distance of 30 to 40 cm. m refers to a number of low level control cycles, but is 

not a constant, as it depends on the image processing and planning complexity. It is of the 

order of 1 sec in our control system. 

Planning of new paths stops if the second half of the waypoints sent to the robot are 

at the same location as the goal (i.e. the 7th and 8th waypoint's coordinates are the same as 

the goal ' s coordinate). 

6.2.2 Modified Smith Predictor for Intermittent Delayed 
Feedback 

y 

Figure 6.9: Classical diagram of a control system incorporating a Smith Predictor 
where r is the reference signal, P(s) is the transfer function of the process with large 

dead-time, P(s) and ~(s) are the process models with and without dead time 
respectively, the shaded area C(s) is the Smith Predictor or Dead-time 
Compensators (DTC), C0 (s) is the primary controller and d represents external 
disturbances. 

The Smith Predictor is well known as an effective Dead-time Compensator (DTC) 

for a stable process with a large dead time (Smith, 1959). The classical configuration of a 

Smith Predictor is shows in figure 6.9. The presence of a large dead-time (i.e. n-r) in the 

process P(s) causes the feedback of y(t) to be delayed and usually slows down the controls 

and causes the system to have a sluggish response or overcorrection associated with 

conventional controllers. The aim of the Smith Predictor is to improve this closed-loop 

performance. This is done by introducing a minor feedback loop around the primary 
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controller to produce v(t), which is an estimation of the variation of y(t) during the last nr 

units of time. This variation v(t) added to the delayed measurement constitute an estimate 

of the current value of y(t). This is subtracted form the requested value r to produce the 

error e ' that is fed into the controller. This eliminates the sluggish responses or 

overcorrection associate with conventional controllers (Levine, 1996). 

P(s) 

Figure 6.10: Modified Smith Predictor for Intermittent Delayed Feedback 

The initial idea was to build a Smith Predictor into the vision-based navigation 

system to overcome the intermittent delayed feedback. This was not possible since the 

Smith predictor is developed for dealing with dead-time problems common to industrial 

process where feedback from the processes is continuous. Therefore, we proposed the 

modification of the Smith predictor for dealing with intermittent delayed feedback shown 

in figure 6.1 0. In the conventional Smith predictor a delayed copy P( s) of the model ' s 

output Po ( s) is in effect compared in each time step with the actual delayed 

measurement P( s) . The difference between the two provides a new correction factor at 

each time step. This is a form of retroactive updating where the error made at nr time 

steps in the past is corrected in each time step r: 

In the modified Smith predictor, the delayed copy of the model's output can be 

compared with the actual measurement only every nrtime steps. Thus the same correction 
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factor has to be used until the next measurement becomes available. Retroactive updating 

is here of an intermittent nature, very similar to that proposed by other authors in a context 

different from that of the Smith Predictor (see discussion 6.5). 

Functions use by Computer System .. Remote Brain .. 

D Functions use by the Robotic System 

~-- • ~ Functions a hue by both the Computer 
,_ . _ . I and the Robotic Systems 

Figure 6.11: Operation sequence in the proposed system that uses a modified 
Smith Predictor. 

(x,y,e) 

The block diagram shows in figure 6.11 illustrates the proposed system with a 

modified Smith predictor. The initial approach was to use a dynamical model of the 

motors rather than the shaft encoder feedback because the original shaft encoders that 

came with the robot were inaccurate and often gave false readings, and the original Smith 

Predictor design suggests the use of a model to give feedback to the controller. A 

simplified version of the motor model was built; details on how this model was built are 

discussed in section 6.3 .1. Note that the final system design is shown in figure 6.12, in this 

design we used the shaft encoders feedback rather than the model feedback because of two 

main reasons. The first was that we had developed more reliable shaft encoders. The 

second reason was that the model we created was difficult to use, as it did not take into 

account variations of the battery voltage level. This caused a mismatch between the model 

and the actual motors when the battery voltage level dropped over time. 
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The Computer Syate m "Remote Brain" 

D The Robotic System 

~--- ~ Function share by both the Computer 
, ____ j and the Robotic Systema 

Figure 6.12: Operation Sequence in the fmal system inspired by Smith Predictor. 

(x,y,9) 

Figure 6.12 shows the final design of the system that was implemented. The 

modified Smith predictor here is responsible for keeping the robot along the obstacle free 

path with the help of the shaft encoders feedback. The shaft encoders are used to replace 

the motor model and provide a more accurate estimation of the distance travelled by the 

robot. These distance data are then used to estimate the robot position within its 

environment using the on-board motion tracking module which will be described in 

section 6.3.2. 

6.3 Fast Feedback Loop in the Smith Predictor 

6.3.1 Building a Dynamical Model of the Robot 

Building the motor or robot model is done here by first collecting data of the robot 

that exhibit its dynamics and behaviour during motion and speed changes. The second step 

is to derive the robot model and determine the coefficients that will give the model a 

dynamics and behaviour similar to that of the actual robot. 

Due to the spur gear type used by the motors, the inertia of the robot can be 

incorporated in a motor model. Hence we will refer to "motor model" for what is actually 

a model of the motors and the robot. All data are obtained from the robot moving in 

straight line. 
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6.3.1.1 Collecting Modelling Data 

1 0 sets of data were obtained by runrung the robot in straight line in its 

environment where the speed was stepwise increased in each run from 0 to 50%, then from 

50% to 75% and from 75% to 100%. These values represent the percentage of the full 

speed at which the motors can operate. Each dataset consists of 1 00 time interval values. 

The data recorded were the times (ms) spend between each tick of the right wheel shaft 

encoder. Knowing the distances travelled by the wheel between two ticks allows the 

average velocities (cm/ms) to be determined for each time interval. Figure 6.13 shows that 

the first 35 ticks cover the motors speed setting of 50, the next 35 ticks cover the speed 

setting of 75 and the last 30 ticks cover the speed setting of 100. A tick is an optically 

detected either white to black or black to white transition in the encoder pattern shown in 

figure 6.13. 

. . . I I STOP, Speed 0 
Shaft encoder's 
stripes pattern 

. I I Speed 100 

. I I Speed 75 

START, Speed 50 

Figure 6.13: Illustration of the data collection protocol and an example of the 
encoder's strip pattern (i.e. black strip absorb light and white strip reflect light) 
glued to the wheel. A tick is a transition from black to white or from white to black 
detected by an Infra Red emitter/receiver when the wheel turns. 

Once the data of the time intervals between ticks are collected, equation 6.1 is used 

to determine the instantaneous velocity between each tick. 

V _ dtick 
tick - t 

tick 

(6.1) 
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where Vtick, d1ick and flick represent the velocity, the distance travelled by the wheel 

and the time interval between each tick respectively. Since the distance travelled between 

each tick is constant and known, and the time between each tick is obtained from sensory 

measurements, the velocity between each tick can be determined easily. The results are 

plotted on the graph shown in figure 6.14. 

0.12 

0.1 

"U) 0.08 
E e 
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·c 
_g 

~ 0.04 

0.02 

0 

Motor Dynamic -10 Series of Discrete Changes of R~uested Velocity [0,50, 75,100] 

0 1000 2000 3000 
Tme (rrs) 

4000 5000 

Figure 6.14: The motor dynamic plot for 10 runs. The downward jumps in 
instantaneous speed are due to missed shaft encoder ticks. 

6000 

The data on figure 6.14 are quite noisy due to the unreliable detection of ticks by 

the optical shaft encoder. Most of the errors are due to a tick being missed. This 

apparently doubles the time interval between ticks and reduces the calculated velocity. 

This can be detected and corrected by using a simple algorithm (not described here). Some 

of the errors are due to non-existent transitions being detected between two ticks. This 

causes the single high-velocity peak in figure 6.14. This was removed from the data used 

to fit the model parameters. The data after correction can be seen in figure 6.15. The 

unreliability of the shaft encoder also caused a variability of the time at which the step 

changes in requested speed where applied. These time variations were manually corrected 

before the fitting process in 6.3.1.3 
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Figure 6.15: The motor dynamic plot for 10 runs after data correction. 

6.3.1.2 Derivation of the Rug Warrior's Motion Model 

5000 6000 

According to Newton's Second Law, the sum of the external forces F on any object 

or collection of objects equals the product of total mass m and the acceleration a of the 

centre of mass. 

(6.2) 

In this case the only relevant forces on a flat plane are the traction Fr exerted by the 

motor and the frictional losses fl.F N, where f1. is the coefficient of friction and F N is the 

normal force. Therefore the equation of motion can be defmed as 

(6.3) 

Let v be the velocity of the robot, then equation (6.3) can be rewritten as 

(6.4) 

For a geared electric motor, the traction force is defines as 

(6.5) 
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where, 1 is the motor's torque, G is the gear ratio and r,. is the radius of the wheel. 

Applying this equation to equation (6.4) and obtain 

(6.6) 

For a permanent-magnet de motor where the magnetic field flux <1>1 is constant, the 

applied voltage V is related to the armature current la and the induced back-emf voltage Ea 

by (Mohan, Undeland and Robbins, 1995, pp. 377-381, and Jones and Flynn 1993): 

(6.7) 

The induced back-emf Ea increases proportionally with the angular velocity of the 

armature w, and the back-emf constant of the motor k£: 

(6.8) 
where 

(6.9) 

k. being the voltage constant of the motor. 

The torque 1 increases linearly with the armature current la and the torque constant 

of the motor kr: 

(6.10) 

where the torque constant kr is proportional to the magnetic flux. 

(6.11) 

Therefore the applied voltage V can be rewritten as 

(6.12) 
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from which the torque r becomes 

(6.13) 

In a steady state, the electrical power P e of the motor is equal to the mechanical power Pm 

of the motor: 

(6.14) 
where 

P = E I = k .w I e aa f~mtl 
(6.15) 

and 

P =w1=wki m m m r a (6.16) 
therefore 

kE = kT (6.17) 

By defining 

equation 6.13 becomes 

(6.18) 

The angular velocity~ of the motor is related to the displacement velocity v of the 

wheel of the robot by the gear ratio 

(6.19) 

Therefore equation ( 6.18) can be rewrite as 

(6.20) 

Applying the torque equation (6.20) to equation (6.6) 

dv kG k'G' 
m-= V--- v--- f.iF 

dt R r R r 2 
N 

u w a w 

(6.21) 
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and defining cl and c2 as followed 

C =kG 
' Rr a w 

k'G2 c =--
2 R r 2 

a w 

one obtains 

dv =V S_v c2- J.l.F'N 
dt m m m 

By defining P and Q as followed 

m 

Q = Vs- J.l.F'N 
m m 

and equation (6.22) becomes 

dv 
-=Q-Pv 
dt 
dv 
-+Pv=Q 
dt 

this is a Linear Differential Equation of I 51 order with solution (see Appendix A). 

Defining a as 

equation 6.27 can be rewritten as 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

where a is the maximum steady-state velocity achieved by the robot for a given applied 

voltage. The steady-state is reached with a time constant.!_. As P is a constant, a is 
p 

expected to increase linearly with the voltage V (see equation 6.24). However, there is a 
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threshold voltage due to the friction force. C is the initial velocity at time to (see figure 

6.16). 

V 

V 

c 
~--------~· t 

Figure 6.16: This figure illustrates the relation between each of the motor 
coefficients and their effect on the model output. 

6.3.1.3 Parameters Fitting 

Before the curve fitting process, the experimental data are divided into three sets 

based on their speed setting; the first set covers the data for speed setting 50, the second set 

covers the data for speed setting 75 and the third set covers for speed setting I 00. Each set 

of the data is then curve-fitted separately using equation 6.29 to obtain their coefficient a, 

P and C. The coefficients of each set of the experimental data are show in Table 6.1. 

Speed Command a p c 
0-50 0.022515 0.003872 0 
50-75 0.034307 0.003872 0.022515 

75-100 0.042882 0.003872 0.034307 

Table 6.1: The coefficients for each of the command speed obtained through curve 
fitting. 

Figure 6.17 shows the model 's output and the modelling data for speeds setting of 

50, 75 and 100 in solid line and dots respectively. The model' s coefficients were those 

shown in table 6.1. 

108 



Figure 6.17: This figure shows the plot of data collected from the motor (dots) and 
the motor model (solid line) using the coefficients obtained through curve fitting 
(see Table 6.1). 

The coefficients shown in table 6.1 are only applicable for speed settings of 50, 75 

and 100. To obtain the values of the coefficient a for intermediate values of the set speed, 

the following interpolation functions are used: 

a( 8) = -0.00000009579418283 + 0.0000145262926692 

-0.0000627823917998-0.000719846172773 
(6.30) 

Figure 6.18 shows the plot of the a (for the set speeds of 50, 7 5 and 1 00), and the 

function a( b) for the set speeds 8 = 1 ... 1 00. 

Alpha -Speed Command Relationship 
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0.04 . 
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~ 
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o (Speed Conmand) 

Figure 6.18: The actual maximal velocity as a function of the speed commands. 
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Then equation 6.29 can then be rewritten as: 

where 

v(t) = a(b")(1- e -P[I-Io ]) + v~. e-P[I-Io] 

v(t) is the velocity at time t. 

v10 is the velocity at time t0• 

a( b) is the maximal velocity for the set speed 8. 

P is the zero speed acceleration. 

(6.31) 

Note that equations 6.30 and 6.31 are used to determine the velocity of each wheel 

in each time step of the fast control loop. 

The distance travelled by each wheel in each time step within the fast control loop, 

is obtained by integrating the equation 6.31: 

I I 

s(t)= Jv(t')dt'= f[a(b")-e-P1"(a(b")-v0 )]dt' 
lo 1o 

I I 

=a fldt'-(a- v0 ) Je-P1"dt' 
lo lo 

(6.32) 

where S is the distance travelled by the wheel from the time when the initial 

velocity at time to was v0. Details of how displacement information obtained from the 

model is used to track the robot's path are given in the next section. The model provided 

accurate self-tracking information as long as the level of its batteries remained stable 

(figure 6.19). However, when batteries where allowed to discharge the behaviour became 

unreliable. 
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Figure 6.19: The test results of the robot following two prescribed paths based on 
the motors model as feedback. Note that the robot starting point is at the first 
waypoint (20,20) and that the reliability of the model is judged by how close the 
actual measurement of the robot position is to the target point (final waypoint). 

6.3.2 Odometric Motion Tracking 

Another way to determine the distance travelled by the robot is to use direct 

readings from the shaft encoders. However, these need to be more reliable than the ones 

provided in the Rug Warrior kit. For that reason new rigid encoder disks were built and 

attached to the wheels in place of the original adhesive foils. Self-tracking can then be 

performed by integrating the information obtained from the robot's shaft encoders (i.e. the 

distances travelled by each wheel). This section will discuss the self-tracking formula for a 

straight forward motion (section 6.3.2.1) and a curved motion (section 6.3.2.2). These 

formulas are then used to determine the robot's position and orientation based on the shaft 

encoders information. 

6.3.2.1 The Robot in Straight Motion 

During forward motion, the robot is programmed to move forwards in a straight 

line with both shaft encoders expected to show the same counter values (right wheel shaft 

encoder counter value CR is expected to be equal to the left wheel shaft encoder counter 
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value CL). The distances (in centimetre) travelled by the robot left wheel dL and right 

wheel dR were each obtained by multiplying their counter value (i.e. the number of ticks) 

with the distance per tick factor fdpt as shown in equation 6.33 and 6.34. 

dl. =cl. X fdpr 

dR=CRxfdpr 

6.3.2.2 The Robot in a Curved Motion 

(6.33) 

(6.34) 

This section starts by considering the case of a leftward curve, and then adapts the 

equations for a rightward curve. 

During leftward motion, the robot is programmed to move towards its left with both 

shaft encoder counters expecting to have different values. The distance travelled by the 

robot right wheel dR should be greater than the distance travelled by the robot left wheel dL 

as shows in figure 6.20. The actual distance travelled by the centre of the robot is shown in 

figure 6.20 as curve dm and can be represented by LlxrR and L1yrR as the actual distances 

travelled in the x and y direction respectively. L1xrR and L1YrR are obtained using equation 

6.44 and 6.45. In order to solve LlxrR and L1yTR, we first determine the change in the robot's 

orientation L10R using equation 6.41 and the distance Rm from the robot's origin to the !CC 

(Instantaneous Centre of Curvature) of the robot at the start of the curve motion using 

equation 6.43. Below is shown how these equations were derived for the conceptual 

diagram shown in figure 6.20. 
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Figure 6.20: Conceptual diagram for the robot doing a leftward motion. The 
Instantaneous Centre of Curvature (/CC) shown is the centre of rotation for the 
robot and both its right and left wheels when the robot follows a circular motion. 
Based on this concept, the robot's new position can be found provided that distances 
travelled by both the robot's wheels (dL and dR) are known. 

ICCx 

From figure 6.20, knowing the distance travelled by both wheels (dL and dR) and the 

distance between both wheels &?, the change of robot orientation L18R can be obtained 

using equation 6.41. 

dL = RLI18R 

R =~ 
L 118 

R 

dR = RRI18R 

RR =RL +11R 

By substituting equation 6.37 into equation 6.39, we obtain equation 6.40 

R =(~)+11R 
R 118 

R 
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and by substituting equation 6.40 into equation 6.38, we obtain the change of the robot 

angle LIBR as shown in equation 6.41. 

Therefore 

d R = (.!!.J,__ + M)t:.eR 
t:.BR 

= dL + Mt:.BR 

!::.BR= (dR -dl_) 
M 

(6.41) 

The distance Rm from the robot's origin to the /CC was obtained using equation 

6.43. This equation was obtained by substituting equation 6.37 into equation 6.42. 

Rm =RL +( ~) 
Rm =(:~J+( ~) 

From figure 6.20 we solve LlxrR and LlyrR 

t:.xTR = Rm - R., cos(t:.BR) 

t:.yTR = Rm sin(!::. BR) 

(6.42) 

(6.43) 

(6.44) 

(6.45) 

Equations 6.41, 6.43, 6.44 and 6.45 are the actual equations used to determine LlxrR 

and LlyrR· Although these equations were derived based on the conceptual diagram for the 

robot doing a leftward motion, they are also applicable when the robot is doing a rightward 

motion. When the robot is doing a rightward motion, LIBR will be negative (clockwise) and 

this causes Rm to be negative. Therefore LlxrR will become negative. 

6.3.2.3 Conversion to the Map Coordinate System 

This section illustrates the transformation of the robot position from the robot 

coordinate system to the map coordinate system. Figure 6.21 shows the transformation 

diagram. 
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Figure 6.21: Conceptual diagram used for updating the robot position in the model 
map. 

Previously, sections 6.3 .2.1 and 6.3.2.2 illustrated the methods used to track the 

distance travelled by the robot from its old position to its new position in the robot old 

position coordinate system. This section will illustrate the methods used to transform the 

robot's new position from the robot's old position coordinate system to the map coordinate 

system. 

The actual distance travelled by the robot in the x direction LlxrR and y direction 

L1YrR was obtained from section 6.3.2.2. If the robot was programmed to travel in a straight 

path followed by a turn, the distance travelled by the robot in the robot old coordinate 

system can be defined by the equation 6.46 for XTR and equation 6.47 for YTR· 

XTR = /1xTR 

Y m = YTStraiglot + !::,.y71l 
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If the robot was performing a curved path, then Ystraight will be zero (equation 6.48) 

and equation 6.47 becomes equation 6.49. 

Yrstraight = 0 

YTR = 0 + !:lyTR 

(6.48) 

(6.49) 

Before placing the robot's new position onto the map, equation 6.50 and equation 

6.51 are used to transform the robot new position with respect to the robot's old position 

coordinate frame to the map coordinate frame. The output from equations 6.50 and 6.51 is 

then registered onto the map as the robot's current position. Equation 6.52 is then used to 

determine the new orientation. 

Robotx,new = Robotx,old + YTR cos( BR)- XrR sin( BR) 

Robot y,new = Robot y,old + YTR sin(BR )+ XTR cos( BR) 

Roboto,new = Roboto,old +!:!BR 

6.4 On-board Path Control 

(6.50) 

(6.51) 

(6.52) 

This section describes the primary controller on the robotic system. The NRBF 

encoder (see 5.2.2 & 5.2.3) is used based on the robot current position to provide the robot 

with a sub-target along the obstacle-free path. The sub-target is then used to calculate the 

necessary velocities needed by both the right and left wheels to drive the robot towards that 

sub-target. This process is repeated until the robot reaches its final destination (goal). 

The algorithm begins by searching for the distance from the robot to the sub-target. 

This is done by using equations 6.53 to 6.55. 

!:1x = Tx - Robot x 

!:ly = TY -Robot Y 

Dist = ~ !:lx2 + !:ly2 
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Then it determines the direction where the sub-target is located based on the robot's 

current position using equation 6.56. Using equation 6.57, it determines if the robot has to 

turn clockwise or anticlockwise to reach the target. 

5 =tan-'(: J 
Rot8 = 5- Robot8 

(6.56) 

(6.57) 

As the distance is used to determine the speed for the robot to navigate at, it is 

necessary to normalise the distance Dist so that the appropriate maximum speed for the 

robot to work at can be set. In this case the chosen top speed is 45 (out of the maximum of 

100 allowed by the robot's hardware), and the robot will navigate at this speed when the 

distance between its current position and its sub-target is larger than 20 cm. 

IfDist > 20 

Dist = 20 

Linear Vel= 20.0 + 25.0( ~i~t) (6.58) 

The necessary speed required by the wheels for the robot to make a turn is then 

calculated based on the robot' s desired orientation change. 

Case Rote< 0 

SpeedL = Linear Vel (6.59) 

SpeedR = F max[ 0, Linear V+- ( R:~ On l (6.60) 

For Rote> 0 

SpeedR = Linear Vel (6.61) 

Speed£ = F max[ 0, Linear Ve{ 1- ( R:~O n l (6.62) 

These speeds are sent to the motors to drive the robot toward its target. 
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The performance of the controller was tested with three different paths. The results 

are shown in figure 6.22. 
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Figure 6.22: The result of the controller steering the robot from the initial position 
toward the goal based on the shaft encoders input as feedback. The first row shows 
the 10 recorded robot paths (in grey lines), the path created by the NRBF path 
encoder for the robot to follow (black lines) and the encoded waypoints (black dots). 
The second row shows the recorded path of a single run as a series of open circles 
superposed on the image from the robot' s initial position to the robot' s final 
position. 

Results from the tests show that the performance of the controller guiding the robot 

along three different paths based only on the shaft encoders as feedback in the fast 

feedback loop is not significantly better than that using the dynamical model in the 

previous section (figure 6.19). This indicates that the new encoder disks did not solve all 
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the reliability problems. However, their measurements are not dependent on the battery 

charge level and it will therefore be used in the remainder of this thesis. 

6.5 Retroactive Position Calibration Using Visual 
Feedback 

This section deals with the robot's coordinate recalibration process based on the 

feedback from the robot's remote brain. The recalibration process is necessary since the 

robot relies on its shaft encoders (which drift with time) to keep track of its own position in 

the real world. Without the recalibration process, the robot will deviates from its path 

while "believing" that it is still on the obstacle-free path towards the goal. 

6.5.1 Recalibration Equations 

The aim of the coordinate recalibration process is to recalibrate the estimated 

current robot's position held on-board the robot (i.e. P(/0 + nr)) as often as possible, 

based on the robot's position obtained from the robot's remote brain (i.e. P(t0 )) which 

was determined from the image captured at time t0. The idea is to record the positions 

" " 
P(t0 ) and P(t0 + nr) assumed by the robot at time to and t0+nr respectively. Note that at 

time t0, the remote brain captures an image to determine the robot's position and to plan an 

obstacle-free path. This information becomes available to the robot at time t0+nr. By 

comparing the recorded robot position P(/ 0 ) at time to with the robot's position 

P(t0 ) derived from the image captured at time to, the shaft encoder drift having occurred up 

to the time to becomes known. Compensating for this error will not ensure exact position 

knowledge of time t0+nr but limits the error to the possible drift having occurred since to. 
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Figure 6.23: This figure illustrates the concepts of coordinate recalibration. The 
A A 

grey robots indicated by P(t 0 ) and P(t 0 + n r) are the robot positions 

determined from the shaft encoders feedback at time 10 and at time t0+nr 

respectively. The white robot indicated by P(t0 ) is the robot' s actual position at 

time t0 determined from the image obtained at time t0 and that only becomes 
A 

available to the robot at time t0+nr. P' (t0 + nr) is the estimate of the current robot 

position at time t0+nrafter recalibration. 

The proposed recalibration algorithm ts derived based on the following pnor 

knowledge: 

• the robot coordinate P(t0 ) of time to obtained from the remote brain at time 
t0+nr is only true at the time when the image is captured at time to (Since 
extracting information from the image and transfer it to the robot took some 
time, therefore by the time the robot receives this information, it is no 
longer valid, as the robot has already left the location where the image was 
obtained), 

• there exist a relationship between the robot coordinate P(t 0 ) recorded at 

time to and the robot coordinate P(t0 ) derived from the image captured at 
time to, 

• hence there also exist a relationship between the robot coordinate P(t 0 ) 

and robot current coordinate P(t0 + nr) since a relationship can be 

established between P(t0 ) and P(t0 + nr) . 
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Therefore by knowing the difference between P(t0 ) and P(t0 ), and the distance 

travelled from P(t0 ) to P(t0 + nr), a better estimate of the robot's current position 

P'(t0 + nr) can be determined. Two conceptual diagrams are shown in figure 6.24 and 

figure 6.25. These two diagrams are used to derive the coordinate recalibration formulas. 

The first diagram assumes that the coordinates P(t0 ) and P(t0 ) are located at the same 

location but with different orientations. The second diagram assumes that the coordinates 

P(t0 ) and P(t0 ) are located at different location but with similar orientations. Note that 

although these formulas were derived separately, they can be used together. In the actual 

~ 

application, they are used together since the difference between P(t0 ) and P(t0 ) always 

involved their position and orientation. 

I 

I 

I 

I 

I 

I 

I 

dh, 

Figure 6.24: Diagram for the robot orientation recalibration algorithm. 
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Figure 6.24 shows the conceptual diagram where P(t 0 ) and P(t 0 ) are located at the 

' 
same position but with different orientation. The robot believes it has reached P(t0 + nr) 

while it actually has reached P'(t0 + nr). Based on the conceptual diagram, the actual 

robot position P'(t0 + nr) at time t0+nr can be determined by using the equations shown 

below. 

' ' 
Firstly the relationship between P(t0 ) and P(t0 + nr) has to be established. This 

is done by using the equations below. 

' ' dx, = P(t0 +nr).x-P(t0 ).x 
' ' 

dy, = P(/0 + nr).y- P(t0 ).y 
' ' 

dB,= P(t0 +nr).B-P(/0 ).0 

dh, = ~dx/ + dy,
2 

()dh = tan-
1

( ::) 

(6.63) 

(6.64) 

(6.65) 

(6.66) 

(6.67) 

Knowing P(t 0 ).0 and P(t 0 ).0, equation 6.68 is used to determined the angle 

difference !}.(}. The rotational angle Bro1 for dh, when P(t 0 ) is rotated by !}.(} can then be 

determined using equation 6.69 

!}.() = P(/0 ).0- P(t 0 ).0 

(}rot = (} dh + /}. (} 

(6.68) 

(6.69) 

Given that the distance dh, and its rotational angle 0,01, the coordinate P'(/0 + nr) 

can be determined using equation 6. 70 and equation 6. 71, and its orientation using 

equation 6.72. 

P'(t0 + nr).x = P(t0 ).x + dh, cos(Bro,) 

P'(/0 + nr).y = P(t0 ).y + dh,sin(Bro,) 
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Figure 6.25: Diagram for the robot coordinate recalibration algorithm. 

A 

(6.72) 

Figure 6.25 shows the concept diagram where P(t0 ) and P(t0 ) are at different 

locations but have the same orientation. Therefore P'(t0 + nr) can be obtain by determine 

the offset !:'J.X ofx axis and the offset ~y ofy axis of P(t0 )relative toP(t0 ), and translates 

P(t0 + nr) by offsets !:'J.X and ~y. The offsets !:'J.X and ~Y are be determining using 

equations 6.73 and 6.74, 

A 

!:'J.X = P(t0 ).x - P(t0 ).x 
A 

~y = P(t0 ).y -P(t0 ).y 

(6.73) 

(6.74) 

and the translation of P(t0 + nr) to P' (t0 + nr) is achieves using equations 6.75 

and 6.76 

A A 

P' (t0 + nr).x = P(t0 + nr).x + !:'J.X 
A A 

P'(t0 + nr).y = P(t0 + nr).y + ~y 
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If the coordinate and orientation of P(/0 ) and P(t0 ) are different, equations 

6.63- 6.72 are used, as the first terms of equations 6.70 and 6.71 overcome the translation 

problem while the second terms of equations 6.70 and 6.71 solved the rotation problem. 

6.5.2 Discussion 

Solving the problem of delayed measurement by retroactive updating was initially 

proposed by Kosaka, Meng and Kak (1993) although one could argue, as done later in this 

section that the concept was already present in the design of the Smith Predictor 

(Smith, 1959). 

Kosaka, Meng and Kak (1993) wanted to solve the stop-and-go motion problem by 

integrating visual information that was m· time steps old into the tracking system. For that 

purpose, they stored a history of all commands (or shaft encoder readings) from the 

measured time to to the time t0+nr when the delayed measurement becomes available. 

They also stored the measured position P(t0 ) at time t0• When the delayed measurement 

P(t0 ) becomes available, the new estimation of the current position P'(t0 + nr) is 

produced by recalculating the total displacement vector d(t0 ,t0 + nr) from past 

commands, then rotates the displacement vector by the error LIO between the measured 

heading P(t0 ) and P(t0 ), and add it to the new measurement for time P(t0 ): 

- . 
P'(t + nr) = R(t:..O)d(t0 ,t0 + nr) + P(/0 ) (6.77) 

where R is the rotation matrix. 

The requirement to store the history of commands in Kosaka, Meng and Kak 

(1993) was due to the incremental method used to calculate the position uncertainty. As 
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noted in Maeyama, Ohya and Yuta (1995), for re-estimating the position only, the total 

displacement is sufficient. 

In Maeyama, Ohya and Yuta (1995) a new method is proposed to re-estimate the 

uncertainty without using the history of commands. This problem is not dealt with in this 

thesis, as images are acquired at the maximum possible rate, thus there is no advantage in 

having access to uncertainty information to decide when to recalibrate, as done in Kosaka, 

Meng and Kak (1993) and Maeyama, Ohya and Yuta (1995). 

The method for recalibration of the position used in Maeyama, Ohya and Yuta 

(1995) differs from that in Kosaka, Meng and Kak (1993) in that in the former a more 

complex data fusion process is used for generating the new position P' (t 0 + n r) . This 

consists of a maximum likelihood estimation including all measurement available at time 

t0• Otherwise the principle is the same as in Kosaka, Meng and Kak (1993) where the total 

displacement since to is estimated from odometric measurements. 

In a more recent work, Larsen, Andersen and Ravn (1988) are concerned with how 

to set Kalman Filter parameters given that part of the measurements are delayed. The 

proposed solution is to extrapolate the delayed measurement P(t 0 ) to the current time by 

adding to it the displacement M(t 0 , t 0 + n r) as determined from all other sensors 

(6.78) 

This extrapolated data is then fused with other measurements available at time 

to+nr to produce the best estimation of the position at time t0+nr. 

The essential difference with the method proposed by Maeyama, Ohya and Yuta 

(1995) is that data fusion takes place here at time t0+nr rather than at time t0• 
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Very similar principles are used in the design of the original Smith Predictor. 

There, the delayed measurement P(t0 ) is available at each time step, hence the 

recalibration takes place at every time step. 

(6.79) 
where 

(6.80) 

Note that this method requires updating at each time step a list of past position 

vectorsP(i) = (x(i),y(i),O(i)) , where i = t0, . . . ,t0+nr. This is required to calculate the 

orientation error L18 used to rotate the displacement vector (alternatively, one could keep in 

memory the list of displacements in every time step for the time span from to to to+nr). 

(6.81) 

A 

Note that the need to compare P(t 0 ) and P(l 0 ) within the fast loop is usually not 

mentioned in standard descriptions of the Smith Predictor which are not concerned with 

navigation applications. Therefore the modified diagram of the Smith Predictor 

(figure 6.26) is proposed that properly shows the pieces of information needed for its 

operation in the case of a navigation application. 

p desimi Cto + n T) + 
Robot (x,y,9) 

P'(t0 +nr) 
Re calibration 

Vision 

Figure 6.26: The modified Smith Predictor for navigation applications. 
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When the feedback is intermittent, a further modification is needed. This ts 

because P(t0 ) is only available every n-r steps and consequently also !lB. 

pdeslred (t 0 + n r) 

A 

p 

Controller Robot 

Delay n-r 

(to) p Cto) + 
,. 

Intermittent d(t0 ,t0 +nr) 
Updating !lB R 

Odornetry ·-Memory or Model 

p Cto) 
VIsion 

Figure 6.27: The modified Smith Predictor for navigation application with 
intermittent feedback. 

(x,y,e) 

In the proposed additional modification of the Smith Predictor (figure 6.27) only 

one value of the displacement needs to be updated between to and to+nr and only the 

previous estimate P(t0 ) needs to be stored. These values are now kept in memory for use 

at every time step, and are changed only when new measurements become available 

(Figure 6.27). 

As a result, intermittent retroactive updating in the Smith Predictor framework 

turns out to be conceptually equivalent to other methods proposed in different frameworks 

(Kosaka, Meng and Kak, 1993; Maeyama, Ohya and Yuta, 1995; and Larsen, Andersen 

and Ravn, 1988). Basically, all methods produce an estimate of the current position by 

adding the estimated displacement to the delayed measurement. 
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Chapter 7 

Results 

7.1 Experiments and Results 

7.1.1 Experiments Description 

The aim of the experiments described here is to verify if the concurrent control 

theory does work in practice and to compare the performances of the concurrent and the 

sequential control systems. The experiments were conducted in the robotic laboratory of 

the School of Computing, at the University of Plymouth. A robot environment with a size 

of 125cm by 89cm was built to conduct the experiments. The goal was located at 

coordinate (77, 104 ), near the top right corner of the robot environment. The starting point 

of the robot was located at coordinate ( 45, 16). The experiments were divided into two 

different configurations distinguished by the location of the obstacle. In the first 

experiment, the obstacle was placed at the centre left of the robot environment, at 

coordinate (45, 65), while for the seconds experiment the obstacle was place at the centre 

right of the robot environment at coordinate (75, 65). In experiment one, the expected path 

for the robot to reach the goal passes round the right of the obstacle while in experiment 

two, the expected path for the robot passes round the left of the obstacle then heads toward 

the goal. 
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A camera was attached above the robot environment (figure 7.1) to record the path 

taken by the robot during the experiments. 

Figure 7.1: The overhead camera setup used to record the robot' s motion during 
the experiments. 

The experiments begin with the control system that uses the sequential control 

method, followed by the system that uses concurrent control method. During an 

experiment, the robot was asked to navigate towards the goal. The robot had to perform 1 0 

trials for each obstacle configuration and control system. Its paths were recorded and are 

shown in section 7.12. 

A typical sequence of images captured and plans produced during a successful 

navigation to the goal is illustrated in figure 7.2. In this sequence, a concurrent control 

method was used. The robot navigated from its initial position ( 45, 16) toward the goal 

which is located at position (77, 104) while avoiding the obstacle which was located at 
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position (75, 65). The 10 sets of figures shown in figure 7.2 illustrate this process. Each 

set shows, starting from the left, the captured image superimposed with image processing 

results (edges detection), the 2D map after self-localization (the edges fitting process) and 

the neuro-resistive grid with the generated waypoints (path). Examples of other robot 

paths for this configuration are shown in figure 7 .4d. The travelled distance for such paths 

was typically 150 cm for a travel time of approximately 50 seconds (figure 7.3(b)). 10 

images were processed during that time (see below). Video recordings showing the robot 

in motion as well as the computer screen can be found in the CD attached to this thesis. 
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Figure 7.2: Example of the concurrent control system performing the 
navigation task of experiment 2. The figures (a-j) show the sequence of images 
captured and plans produced during a successful navigation to the goal. Starting 
from the left are the captured image, the 20 map illustrating the edges fitting 
process and the neuro-resistive grid. 
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7.1.2 Results 

The experiments show two important points. Firstly they demonstrate that one of 

the aims of the thesis has been achieved, namely the design and test of a navigation system 

that uses vision as main position sensor. Secondly, that the time delays problem exists in 

the system that uses the sequential control strategy and that it can be overcome with the use 

of a concurrent control strategy. 

Figure 7.3 illustrate an example of the distances-versus-time plot for the system 

that uses sequential control and the system that uses concurrent control. 

Figure 7.3(a) shows the of stop-and-go motion effect in the system that uses the 

sequential control method. This system takes about 20 seconds longer to complete the 

navigation task compared to the system that uses concurrent control shown in figure 7 .3(b ). 

Figure 7.3(b) shows that the system does not exhibit the stop-and-go motion during 

navigation. 

a) Sequential Control -Distance w. Time Plot b) Concurrent Control -Distance w. Time Plot 
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Figure 7.3: The Distance vs. Time plot of two systems that uses different 
control methods. (a) This figure shows that the system that uses sequential 
control method exhibits the stop-and-go motion, while (b) shows that the system 
that uses concurrent control does not exhibit this behaviour (the stop-an-go 
motion) and completes the task with 20 seconds quicker than (a). 
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7.4. 

The paths taken by the robot during the navigation experiments are shown in figure 

a) Sequential Control- Experiment 1 
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c) Concurrent Control- Experiment 1 
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b) Sequential Control- Experiment 2 
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d) Concurrent Control- Experiment 2 
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Figure 7.4: The experimental paths produced by the sequential control system 
(a, b) and the concurrent control system (c, d). Left and right figures are 
distinguished by the position of the obstacle. Start and goal positions are shown 
by an empty and a filled circle respectively. 
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In figure 7.4, one can notice a significant variability in the paths produced. Figure 

7.4 (a), (b) and (c) show that 70% of the trials were within 20cm radius of the goal while 

figure 7.4 (d) shows no trial of such accuracy. This is due to the increased possibility to 

confuse corners in the self-localization process with paths of figure 7.4 (d). There were 

some unavoidable problems which were influenced by several factors during the 

experiment. These include the level of noise in the image, the accuracy of the 

self-localization process and the accuracy of the shaft encoders reading. These problems 

are discussed in the next section. 

7.1.3 Problems Encountered 

During the experiments v1s1on, odometry, and communication problems were 

encountered. 

Vision plays an important role in the navigation process and the performances of 

the system were often determined by the results of vision processing. Problem such as the 

environment light intensity changes could sometimes cause the vision system to consider 

certain parts of the walls as floor (i.e. shadows) or parts of the floor as obstacles (i.e. 

reflection of light sources). The presence of noise in the image when the robot was in 

motion (due to an unsteady antenna) often caused the vision system to generate phantom 

obstacles. These phantom obstacles cause problems for self-localization (i.e. phantom 

obstacles that are located close to the environment boundaries have the potential to be 

misinterpreted as detected edges) and path planning (i.e. blockage of valid routes). 

Odometry problems were mainly caused by shaft encoders drift. Most severe 

odometry problems are caused by shaft encoders missing ticks. This occurs when then 

distance between the IR sensor and the reflector (i.e. encoder striped pattern) falls out of 
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the sensors operating range. Such problem can reduce the efficiency of the internal loop of 

the controller and lead to large errors in the displacement vector estimated from odometry 

and cause the robot to deviate from it's path as shown in figure 7.4 (c) and (d). This in turn 

affects the visual self-localization process that assumes that the robot is positioned 

somewhere close to the planned path with a heading roughly parallel to the path. A 

number of paths in figures 7.4 (a)-( d) where affected by this problem. For instance in 

figure 7.4 (a) the robot has sometimes mistaken the top left corner for the top right corner 

and heads towards a goal that now appears to be along the left wall. 

Another problem is the lack of sufficient information for self-localization in certain 

images. It was shown in section 4.5 that the accuracy in the x-direction was reduced due to 

the limited number of visual clues provided by the side walls. During the navigation of the 

robot, the situation can become even worse, as only one wall may be visible in the image 

when the robot is close to it. As a result, vision can only provide position information 

along one direction (e.g. y-direction). In this case, the best that the remote brain can do is 

to estimate the position in the other direction by assuming that the robot has followed the 

desired path. The robot must then use this quite unreliable information for recalibration 

and is at high risk of getting lost. 

The communication process also affects the efficiency of the navigation process. 

The communication is in principle safe, in that the robot uses security bytes to identify the 

source of the transmission and check-sums to detect corrupted data. If an error is detected 

it then requests the remote brain to resend the data. Sometimes the remote brain can miss 

this request and the robot must ignore recalibration and path data. In that case, the robot 

pursues its previous path, eventually reaching the last of the sent waypoints. 
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Another potential communication problem can lead to disorientation problems 

(i.e. vision-based self-localization establishes erroneous correspondences between detected 

edges and edges on the prior map). This is due to the fact that, during the communication 

process, the robot keeps executing the last motor command and may overshoot its target 

and could be too far from the desired path when the image for vision-based 

self-localization is captured. This is illustrated in figure 7.4 (d) where the communication 

process established while the robot was making a turn caused the robot to collide with the 

obstacle. 

In such a case, vision can be the victim of the unreliability of the motion control in 

that the set of initial positions along the planned path assumed during self-localization does 

not cover the position that the robot has reached. 

Overall vision often failed to perform accurate self-localization, either due to a 

clue-poor environment, or due to motion errors. Communication problems also 

contributed, but to a lesser extent. 

Due to the large impact of these problems on the system's performance, it would 

have been of little significance to produce more quantitative evaluations of the 

performance. The key lessons learnt from these experiments will be discussed in section 

8.2. 
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Chapter 8 

Conclusion and Future Work 

8.1 Contributions to Knowledge 

This thesis has presented a complete vision-based navigation system that can plan 

an obstacle-avoiding path to a desired destination on the basis of an internal model (map) 

updated with information gathered from its visual sensors. It has demonstrated a control 

technique that addresses the stop-and-go motion problem by concurrent image processing 

and planning while the robot is in motion. Quantitative results of the systems behaviour 

were shown. 

Contributions were made in the areas of vision, planning and control. 

During the development of this system, a new floor-edges-specific filter was 

proposed to detect floor edges and at the same time determine their pose. An algorithm 

has been proposed to determine precisely the position of the edge in the filter window. 

A self-localization algorithm that uses the detected edges and their orientation for 

estimating the robot's pose was developed. This is done by matching the detected floor 

edges with the nearest edges in the prior map. In order to limit the potential for aliasing 
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errors, self-localization is performed by assuming that the robot is located somewhere near 

to the planned path. The orientation of the robot can then be estimated simply from the 

average orientation mismatch between edges found in the image and the corresponding 

edges in the prior map. 

The neural-resistive grid which is an ideal data structure for mappmg and 

path-planning was implemented for the first time in a real-world actual application (instead 

of simulation in Bugmann, Taylor and Denham, (1994); Althofer and Bugmann. (1995)). 

A novel scheme was proposed to represent the collision-free space, using divergent 

connections from the spatial memory to the neuro-resistive grid. 

To overcome the stop-and-go motion problem caused by intermittent delayed 

measurements, a modified Smith Predictor combined with receding horizon control was 

successfully implemented. Experiments were conducted to demonstrate the system. 

A novel implementation of the receding horizon control usmg NRBF net was 

proposed. The NRBF path encoder (previously proposed in Koay, Bugmann, Barlow, 

Philips and Rodney (1998) for an autonomous wheelchair) was implemented on-board the 

robot to continuously produce a target point to attract the robot toward and along the 

obstacle free path until the robot reaches the goal. This research demonstrates a system 

that performs automatic path encoding using the waypoints obtained from the remote brain 

at every remote brain program cycle, while the previous paper (Koay, Bugmann, Barlow, 

Philips and Rodney, 1998) demonstrated manual path encoding. 

We have proposed two modifications of the Smith Predictor for its use in 

navigation systems, one with intermittent delayed measurements and the other without. 

The one for intermittent delayed measurements is used in the demonstrated system to 
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implement retroactive updating. It has been shown here that other recently proposed 

methods for handling delayed measurements (Kosaka, Meng and Kak, 1993; Maeyama, 

Ohya and Yuta, 1995; and Larsen, Andersen and Ravn, 1988) are formally equivalent to 

the modified Smith Predictor. 

8.2 Problems and Difficulties Encountered 

In this research, several problems that affect the performances of the system were 

noted. These essentially contributed to the robot failing to reach the goal in 30% of the 

trials due to collisions with obstacles or disorientation. 

The vision-based self-localization process plays a crucial role in the success of the 

system in reaching the goal. 

During the experiments, failure in vision-based self-localization process often 

caused the robot to deviate from the given path and collide with obstacles. Failures of the 

vision-based self-localization process were caused by matching the detected edges with the 

wrong edges in the prior map. 

This can be traced back to several causes. Most of these were related to vision 

problems such as the presence of noise in the sampled image during navigation. Others 

were related to the accuracy of the shaft encoders readings and the on-board motion 

controller (e.g. the robot derived from the designated path due to shaft encoders feedback 

errors). 

The presence of noise in the sampled image during navigation was caused by bad 

reception due to an unstable antenna on-board the robot. The robot's environment light 

intensity changes also contributed to the noise level as the vision system could consider 
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certain parts of the walls as floor (i.e. shadows) or parts of the floor as obstacles (i.e. 

reflection of light sources). 

The noise in the image was often detected by the vision process as detected edges 

(i.e. floor edges or obstacles), since there is no algorithm for noise detection in the vision 

process. This confusion lead to the vision-based self-localization matching process to 

produces unreliable results that could generate disorientation problems. 

During vision-based self-localization, those detected edges that did not find a match 

with edges from the prior map were assumed to be obstacles. These phantom obstacles 

could lead to the blockage of valid routes. 

Apart from vision, the disorientation problem was also caused by the unreliability 

of the shaft encoders as their feedback could mislead the on-board motion controller to 

drive the robot away from the designated path. This could cause the vision-based self

localization algorithm to match the detected edges with the wrong edges in the prior map. 

The communication process also had the potential of causing disorientation 

problems. During the communication process, the robot kept executing the last motor 

command while the robot used its processing power for receiving and handling 

communication data. This could cause the robot to deviate from the designated path, and 

cause the vision-based self-localization process to wrongly match detected edges with 

those in the prior map. Apart from this, the deviation from the designated path could also 

cause collisions with walls or the obstacle. 
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Apart from disorientation problems, the vision-based self-localization algorithm 

also had difficulties in determining the robot's position when the image did not contain 

enough visual cues, as discussed in section 4.5.2. 

Communication problems such as the loss or corruption of data also posed a serious 

threat to continuous navigation, as this problem could cause the robot to stop at the final 

waypoint of the current encoded paths while still waiting for the latest path from the 

remote brain. 

The current obstacle detection and registration procedure wasn't able to distinguish 

between real and phantom obstacles. Therefore all the detected edges were currently being 

registered into the neuro-resistive grid which is then used for path planning. This phantom 

obstacles problem should be addressed in future work. 

Overall, almost all failures to reach the goal were a fatal combination of vision 

errors and control errors. The system was designed to allow vision to compensate for 

control errors, but due to the assumption in the self-localization process that the robot was 

following the planned path, self-localization was bound to fail when large control errors 

occurred. However, not making restrictive assumptions about the robot's pose at the time 

of image capture opens the door to aliasing problems, as many corners and walls look the 

same. 

The design of a future system needs to be reassessed in this light. 
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8.3 Future work 

Future work should atm mainly at producing a more robust vision-based 

self-localization process. 

The disorientation problem could be overcome by decorating the environment with 

more visual cues. This can be done by first registering the landmarks or visual cues in the 

map either through sensing or using prior knowledge, then using these landmarks as clues 

to provides orientation information for matching the detected edges to the appropriate 

edges in the prior map. 

Another method is to search for a landmark within the environment and begin 

tracking the landmark (Kosaka and Nakazawa, 1995) during the navigation process for 

deriving the robot's orientation. Note that this method is to track the landmark for relative 

orientation information; therefore only one landmark is needed at a time, as opposed to 

other techniques such as triangulation from landmarks that use more than one landmark to 

derive the robot's position and orientation. 

The problem with the lack of visual cues for determining the robot's pose 

accurately can be overcome by having the camera turning to the sides (i.e. right and left) of 

the robot to obtain wide-field images. This should be done without the robot going into a 

static state, but this will require a carefully designed algorithm to enable the combination 

of the partial position information produced from each view. 

As for the communication problem, this can be solved by having the remote brain 

on-board the robot whereby communication between the remote brain and the robot can be 

established reliably without lost transmission and corrupted data. Note that, with the 
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implementation of the remote brain on-board the robot, this would allow the remote brain 

to gain access into other information which was previously restricted due to the 

communication bandwidth. These include the robot's pose derived from the shaft 

encoders. With the remote brain on-board the robot, this opens many other possibilities 

such as the used of a gyroscope to provide additional orientation information. 

Finally the phantom obstacle problem could be overcome by using a verification 

process in which the detected obstacles have to be confirmed before being placed 

permanently on the map. This can be done by searching for the same obstacle in two 

different pictures captured at different times and using occupancy grid techniques. 

These are some of the proposed solutions to 1mprove the performance of the 

system. 
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Appendix A 

Solving the Rug Warrior's Motion Model 
using Linear Differential Equation of 1st 

order 

General equation: 

dy + P(x)y = Q(x) 
dx 

General solution: 
y= y(x)u(x) 

where, 

( ) 
-JP(•)dx 

y X =e 

u(x) = JQ(x) dx + C 
y(x) 

(a. I) 

(a.2) 

(a.3) 

(a.4) 

Using the above method, we will solve for equation (6.26), showing below as equation 
(a.S). 

dv 
-+Pv=Q 
dt 

Firstly, we solve for y(t) where 

-rl'dl 
y(t) = e ,, 

since P is constant therefore 

-Pfldl 
y(t) = e '" 

y(t) = e -P[1-1, I 

Secondly we solve for u(t), 
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(a.6) 
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(a.8) 



u(t) =I JLdt +C 
0 y(t) 

- r Q 
u(t)- Jo e-P[r-roJ dt + C 

u(t) = Q I eP[r-roldt + C 
0 

u(t) = Q eP[r-roll' + C 
p 'o 

The solution for the velocity vis then obtain from the product ofy(t) and u(t) 

v(t) = y(t)u(t) 

v(t) = e-P[r-rol(; eP[r-roll:o +C) 

v(t) = e-P[r-r0 ](; (eP[r-r0 ] _ eP[r0 -r0 ]) +C) 

v(t) = e-P[r-r0 l(; eP[r-r0 ]_; +C) 
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Abstract. A neural network using Normalized Radial Basis Functions (RBF) is used for encoding the sequence of positions 
forming the trajectory of an autonomous wheelchair. The network operates by producing the next position for the wheelchair. 
As the trajectory passes several times over the same point. an additional phase information is added to the position information, 
which avoids the aliasing problem. The use of normalized RBFs' creates an attraction field over the whole space and enables the 
wheelchair to recover from any perturbations, for instance due to avoidance of people. 

1. Introduction 

This paper describes a part of the control system 
of an autonoroous wheelchair that was exhibited in the 
South London Gallery for a roonth in 1997. During 7 
hours a day, the wheelchair had to perfonn a repeated 
sequence of circles, spirals and figures of eight in an 
unmarked 7m x 7m square area. The public was allowed 
to enter the area and the wheelchair used sonar for 
obstacle detection. An obstacle caused the wheelchair to 
stop. H the "obstacle" did not move after a few seconds, 
the wheelchair initiated an avoidance maneuver which 
caused it to leave the desired trajectory. Our problem was 
to design a control system that i) encodes the complex 
trajectory and ii) enables the wheelchair to recover from 
trajectory disturbances, e.g. due to obstacles. This later 
stability property would also enable the system to be 
insensitive to the starting point, when restarted in the 
morning. 

In section 2 the use of a control approach based 
on a map in Cartesian co-ordinates rather than Perception
to-Action principles is justified. In section 3 the basics of 
the Normalized RBF network are given. In section 4 the 
encoding of the trajectory is described in details, 

Figure 1. Wheelchair in the South London Gallery during the including the method for encoding phase information. In 
exhibition. 

section 5 properties of the system are discussed, such as 
the creation of an attraction field and learning 

capabilities. In section 6 the potential applications in a domestic environment are discussed. The conclusion 
follows in section 7. The self-localization method is described in the Appendix. 

• khenglee@soc.plym.ac.uk 
•• gbugmann@soc.plym.ac.uk 



2. Control Philosophy 

The control system was designed as a three stage process. In the first stage, the position of the wheelchair 
within the gallery was determined. This was done by using a combination of sensors: Sonar, Vision, Shaft encoders 
and Gyroscope as described in the Appendix. In the second stage, a neural network (NN) used the position 
information to determine the next position in the trajectory. In the third stage, a standard control procedure (not 
described in this paper) was used to guide the wheelchair to that position. This task subdivision is similar to the 
one used in [9). The main difference with the work in [9] is the use of a NN to encode the trajectory. In contrac;t to 
the segment-based representation used in [9], the NN produces a continuous sequence of new targets and "pulls" the 
wheelchair smoothly along the trajectory. The description of the NN and its properties is the main purpose of this 
paper. 

Another approach, bac;ed on encoding Perception-to-Action sequences was considered but not retained due 
to the characteristics of the problem. In the Perception-to-Action approach [7, 10, 11, 14, 16], visual images from 
the environment or given setc; of sensor readings are ac;sociated with given actions, e.g . "when this pattern is seen 
from this angle, turn left". This could not be used for following reac;ons: First with people moving around, the 
gallery could not provide a reproducible sensory signature of a position (problem also noted in [14]). We thought 
of using a camera directed toward the ceiling but this one did not have sufficiently distinctive patterns. Secondly, 
the demanded trajectory repeatedly passes in the same point with the wheelchair in the same orientation, this would 
have caused destructive aliasing (discussed in [2, 14, 16]). Thirdly, Perception-to-Action sequences are not stable 
against deviations of the trajectory. If the wheelchair find itself in an untrained position off the trajectory, no 
adequate control action is produced [7]. 

With the system proposed in this paper, only the desired trajectory needs to be encoded, but adequate 
control actions are produced over the whole space, and the aliasing problem is avoided. 

3. Normalised RBF Nets 

Standard Radial Basis Function (RBF) nets comprise a hidden layer of RBF nodes and an output layer with 
linear nodes [4,5]. The function of these nets is given by: 

n 

Y;(x)= [wiftf>(x-x i ) (1) 
i=l 

where Yi is the activity of the output node i, 1/J(x-xj) is the activity of the hidden node j , with a RBF function centred 

on the vector x1, x is the actual input and wij are the weights from the RBF nodes in the hidden layer to the linear 

output node (Figure 2). Such a net is a universal function approximator [15]. 

~ 

Yl 

Figure 2. Network architecture for standard RB F nets and Normalized RBP 

The function q,(x-xj) of a hidden node j is usually the Gaussian Radial Basis Function: 

(2) 



where a is the width of the Gaussian and K is the dimension of the input space. The "weights" wjk between node k 

in the input layer and node j in the hidden layer do not act multiplicatively as in other neuron models, but define the 
input vector xj = (wjl•···· wjK) eliciting the maximum response of node j (xj is the "centre of the receptive field"). 

-1 

Input 

-1 

Figure 3. Comparison between standard RBP nets and Normalized RBP nets with three hidden 
nodes on an example of a !-Dimensional trajectory. The trajectory has 4 way points: x = -0.6,-
0.2, 0.3, 0.5. The trajectory can be represented as a mapping 1-0.6 -> -0.2; -0.2 -> 0.3; 0.3 -> 
0.5) . Doued line: function of a standard RB F net approximating the mapping. Full line: 
Function of a Normalized RBF net. 

Normalised RBF nets have a function very similar to the standard function, with the exception of a 
normalisation by the total activity in the hidden layer: 

(3) 
yi(x) = 

As a result, the output activity becomes an activity-weighted average of the input weights in which the 
weights from the most active inputs contribute most to the value of the output activity. For instance, in the extreme 
case where only one of the hidden nodes is active, then the output of the net becomes equal to the weight 
corresponding to that hidden node, whatever its actual activity. Thus RBF nodes in the hidden layer are used here 
as case indicators rather than as basis functions proper. 

Figure 3 shows that each hidden node in Normalized RBF nets takes over a portion of the input space over 
which it determines the output of the net. Due to this property outputs of the normalized RBF net are always a point 
on the trajectory, even if the current position is not exactly a way point. In contrast, the standard RBF net produces 
outputs out of the trajectory for input positions that are not exactly on a way point. 

A similar normalisation principle is used in the "centre of gravity defuzzification method ([5], pp 388-404). 
Our approach is a special case of the approach proposed by [17] for selecting linear functions Lv(x) (instead of the 

constant weights wij used here). In [16] expression (3) was used to compute normalised motor output vectors in 

robots. Normalised RBF net'i show also very good properties in pattern cla'iSification applications [8]. 
A net with the function (3) wa'i originally proposed for sequence encoding in the case of robot arm 

trajectories [1]. That architecture is extended here with a phase encoding feature that enables encoding of the 
complex trajectory of the wheelchair which passes repeatedly in the same point in space at different phases of the 
sequence. 



Figure 4. Trajectory encoded by the neural network. 
The recLangle indicates the walls of the gallery. The 
figure is produced by simulating the motion of a vehicle 
sl.arting in the lower half of the image. The outward 
spiral is indicated by dots only. The motion of the real 
wheelchair is very similar but we have no recordings of it. 
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4n 

Figure 5. Definition of a figure of eight by four half-

Next Position 

4n 

Current Position 

4. Trajectory Encoding 

The demanded trajectory for the wheelchair comprises 
two large circles along the periphery of a 7m x 7m square, then an 
inward spiral. Once in the center of the square, three successive 
figures of eight are performed, then an outwards spiral takes place. 
After that the sequence restarts with two circles (Figure 4). 

A) Decomposition in a sequence of half-circles 

To encode the trajectory with the proposed neural network, the 
demanded trajectory was divided into 25 half-circles (4 for the 
large circles, 5 for the inward spiral, 3x4 for the eight's and 4 for 
the outward spiral). Each half-circle was represented by 5 to 12 
equidistant way points. By trial and error it was found that the best 
distance between way points was approximately 0.9m. The 
number of way points per half circle wa'i chosen accordingly, 
depending on iL'i radius. 

B) Neural network 

The NN was designed in such a way that when the 
wheelchair reached one way point, the output of the network 
indicated the position of the next way point and the orientation 
qJ of the wheelchair at that position. These values are given a'i 
input to a standard control system which issues motor commands. 
Figure 5 shows an example of 4 half-circles characterizing one 
figure of eight Figure 6 shows the part of the neural network 
encoding the figure. 

Normalized RBF neL'i are well suited for this task because 
the output activity does not depend critically on the positions (x,y) 
given at the input. That is because nodes in the hidden layer 
generate a Voronoi Tesselation [8] of the input space and, for all 
input values within one of the partition, the output of the net is the 
same, actually the value of the weight between the active hidden 
node and the output node (Figure 3). 

Figure 6. Neural network encoding the demanded trajectory. L0: Input layer, Lf 

Hidden layer, 0_: Output layer. 



C) Off-line Learning 

Learning the desired trajectory are done by a one pac;s learning procedure, by setting the input weights of 
each hidden node to the position (x,y) of one way point (equation 4), and its output weights to the position of the 

W j.l = Xn; w, .2=yn; W j.J = Pn - Oj (4) 

(5) 

next way point in the trajectory (equation 5). 
where Xn and Yn are the x and y Cartesian co-ordinate of way point n respectively, while Pn is the phase n 

and Xn+t and Yn+t is the x and y Cartesian co-ordinate of the next way point (n+l) respectively, while ll'n+t is the 
expected orientation of the wheelchair at way point n+ 1. The use of phase information is explained in the next 
section. 

This is a very fast training procedure. The number of recruited hidden nodes in the network represents the 
number of way points along the trajectory. An additional output node is used to encode the orientation qJ of the 
wheelchair at the next way point, a parameter used by the low lever control algorithm. 

C) Avoiding aliasing by phase encoding 

It can be seen in Figure 5 that several half-circles have nodes centred on the same position. To make sure 
that only one of them becomes active at a time, a "Sequence Phase" node wac; added to the network used in [1] 
(Figure 6). The weightc; from each of the nodes in layer L1 to the phase node are equal to their position in the 

sequence or "phase". For instance, if the ftrst node in the sequence is active. the Sequence Phase node will have an 
output I. If the lOth is active, the output will be 10, etc. The output of that node is used as input by the "Position 
Transition" nodes in layer L1. Their input weightc; for the phase are set to their phase- 0.5. For example. the lOth 

node has a receptive field (for phases) centred on 9.5. In that way, nodes start to become activated when the system 
is in the phase prior to their own (or in their own) and when the wheelchair is in the position defined by the two 
weight<; from the "Current Position" in layer L0. Therefore, when a position correspondc; to many nodes, only the 

one receptive to the current phase becomes activated and can indicate the next position in the trajectory. A special 
routine wac; written to reset the phase at the end of the sequence, to enable a repeat of the trajectory. 

Figure 7. Dlustration of the attraction field 
generated by the neural network for the large 
circle. 

5. Properties of the trajectory generator 

A) Auractionfield 

RBF nodes with a Gaussian function produce a response over 
the whole input space (x,y,p) . The response is very weak for most 
combinations of position (x,y) and phase p. For instance, when the 
wheelchair is far from the trajectory, only a very weak response is 
elicited in any of the nodes in layer L1 of the net. However, due to the 

normalization in (3), the network can output a value for the next position, 
ac; encoded in the weightc; to the layer "Next Position". Thus 
normalization results in an attraction field that leads the wheelchair 
towards the demanded trajectory from whatever starting point (Figure 
7). 

The smooth approach-curves in Figure 7 are due to the internal 
dynamics of the network. Let us assume a starting point as in Figure 4. 
Initially the pha'ie p is set to 0.5, so that mainly the first node is activated 
(this node is centred on the position indicated by a cross in Figure 7. and 
i.'i part of a descending half-circle). Thus the first goal position indicated 
by the network is one node ahead of the first node. However, being 
active, the first node causes the phase to become p = 1. This in turn 
enables the second node to become active, which gives now a goal 



position one node ahead of the second node. Thus the wheelchair is given a changing goal as it approaches the 
trajectory. Interestingly, this movement of the goal also occurs when the wheelchair is on the trajectory, and it 
needs to be controlled to avoid goals running too far ahead of the actual position. This control involves either a 
lower frequency of updating of the Sequence Phase node, or a balancing of the role of position and phase in the 
activation of nodes in layer L1, as explained below. 

It can be seen from (2) that the activity of any node in layer L1 of the net is the product of three one

dimensional Gaussian functions centred on their preferred x, y and p respectively. Let us assume that these 
Gaussians' have different widths. If the width for p is large (low selectivity), the winning (most active) node is 
determined by the position of the wheelchair. However, if the width for p is small (high selectivity), the value of p 
becomes most important in determirting the activity of the node. In this case, the net can run through the sequence 
irrespective of the position of the wheelchair. We have found that a good balance between the role of position and 
pha~e is obtained when the width er= I for the pha~e and the position (in meter). 

B) Aliasing 

In this work the position (x,y) of the vehicle was used a~ input to the sequence encoding network. Aliasing 
occurs when the same (or sirrtilar) position reoccurs at different times in the trajectory. By adding a phase node we 
have avoided that the vehicle jumps from one phase of the trajectory to another, hence solving the aliasing problem. 

In Perception-to-Action systems, aliasing is also a problem [7, 14, 16]. The difference is that some 
(position specific) complex sensory picture is used instead of the position (x,y). It should also be possible to avoid 
aliasing in these system~ by adding phase information to the picture. 

C) Peiformance 

In average, the wheelchair worked independently for 45rrtin. At that time it was usually lost in some corner 
of the gallery and an operator had to replace it at the starting position and reset the program. The batteries however 
needed only one charge per day. For the purpose of providing a show, these performances were acceptable. The 
duration of autonomous operation was lirrtited solely by the problems of self-localization. As mentioned in the 
appendix, the lighting conditions in the gallery did not allow a dynarrtic recalibration of the orientation using a CCD 
camera This in turn prevented to use sonar reliably to measure the distances to the walls, which requires the 
orientation to be known (see appendix). Hence self-localization relied solely on shaft encoders. 

Some difficulties in precisely following the desired trajectory were due to dynarrtic lirrtitations of the low 
level control algorithm. A compensating measure wa~ to define the motion speed separately for each semi-circle. 
with a slower speed for the smaller half -circles. Further work is needed at that level. 

However, the trajectory encoding system described here showed no problems. 

6. Potential applications in a domestic environment 

Theoretically, the wheelchair can be programmed on-line, with a new hidden node (way-point) added to 
the network at fixed distance intervals while the wheelchair is being pushed through a desired trajectory. Different 
trajectories can be encoded by using extra output nodes broadcasting the identity of the trajectory, e.g. some code 
for the goal and the starting point. Therefore, the proposed trajectory encoding system has the potential for use in 
domestic environments. 

One point that may need some thoughts is the fact that the density of way points needs to be larger in 
segment.~ with high curvature, requiring really a variable interval between way point.~. Another point to consider is 
the fact that the attractive field does cross walls (unlike fields in Laplacian planning methods [6]), hence it is 
preferable to irtitiate the path-following procedure when close to a way point. 

The biggest limitation currently is the self-localization procedure which needs to be much more robust. 
For that purpose, we are now developing vision based techniques for layout recogrtition and analysis. 



7. Conclusion 

A simple neural network has been described that encodes trajectories in a stable way, allowing recovery 
from disturbances and implementing a new phase encoding principle that solve the aliasing problem. The 
wheelchair produced a satisfactory show for a whole month in an art gallery. For domestics applications, 
improvements in self-localization and low-level control are needed. 
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Appendix: Self Localization 

Robot self-localization is important for keeping the wheelchair on its trajectory (Figure 4) over extended periods of 
time. Two localization methods were used in this wheelchair project. One method was static localization, which is 
used to confliiJl the initial position of the wheelchair in the morning, or after a reset. The other method wa~ dynamic 
localization, which involved correcting the wheelchair position and orientation during task performance. 

The wheelchair was controlled by a laptop Pentium PC attached at the back (Figure 1) running the neural 
network simulation software CORTEX-PRO which also handled sensor integration. The sensors used in these 
operations are described below. All the inputs from these sensors were given a weighting, based on how much these 
inputs were entrusted. The weighted average (i.e. equation A.1) was then used to reinitialize the wheelchair position 
and orientation. The concept of multi-sensor fusion was used here to produce a more robust self-localization. 
Equation A.1 illustrates the calculation of the orientation rp which is based on up to three sensors. 

rp_ shaft x w_ ~·haft+ rp_ camera x w_ camera+ rp_gyro x w_gyro 
rp=~--~----~~~------~------~=---~~-

rp _ shaft + rp _ camera + rp _gyro 
(A .I) 

where rp_shaft is the input given by shaft encoders integration, w_shaft is the weight given to the shaft encoder, 
rp_camera is the input given by camera integration, w _camera is the weight given to the camera, rp_ gyro is the 
input given by the gyroscope, w _ gyro is the weight given to the gyroscope. The weights can be set according to 
how much drift each sensor ha~. and other factors. For initial tests, these were all set to 1 during updating cycles 
when the sensor were able to provide data, and to zero at other times. 

A) Vision: Robot orientation tracking 

A QuickCam camera was mounted at the upper right back of the wheelchair with its lens pointed towards 
the ceiling for horizontal beam searching using a "Hough Transform". These horizontal beams were to be used to 
calculate the wheelchair-heading vector. However, during test runs at the South London Art Gallery, it turned out 
that the camera wa~ blinded by the spot lights which shone down from the ceiling. This prevented the use of the 
camera, hence w _camera wa~ set to zero. 

B) Gyroscope: Robot orientation tracking 

A single axis Rate Gyroscope was mounted on the wheelchair to helped the wheelchair track it~ orientation 
(i.e. wheelchair heading). During test runs, the rate gyroscope was found to drift more than the orientation 
calculated from shaft encoding, so it was not suitable for re-calibration, hence w_gyro was also set to zero. 

C) Shaft Encoder: Robot orientation and position tracking 

Two incremental shaft encoders were used with the wheelchair to help keep track of its own location within 
its internal map. These shaft encoders consist of two striped pattern (200 stripes per rotation for a diameter of 
31.5cm), glued to the wheels and photo-reflectors. These detect the reflected light from the striped pattern and 
produce a series of pulse-trains during the wheels' rotation. These pulse-train output~ were stored in an incremental 
counter. The counter was then used to calculate the distance traveled by the wheels. Distances traveled by each 
wheel (i.e. dL for left wheel and dR for right wheel) were integrated to calculate the wheelchair's new position (in 
Cartesian co-ordinate x and y) and orientation rp. 



D) Sonar: Position tracking and obstacle detection 

Eight Polaroid sonar range-finding systems (Polaroid 6500 Sonar Kits) 
with operational range from 0.30m to 10m were used for distance meac;urements 
and obstacle detection. Most of the sensors were looking ahead, to avoid 
collisions with spectators (Figure. A.1 ). If objects were detected nearer than 
1.7m to the wheelchair, the wheelchair stopped and executed an obstacle 
avoidance routine. 

Obstacles that did not move after a few seconds were consider to be 
static. In this case, the wheelchair turned away from the obstacle, rotating by a 
fixed angle in the direction opposite from where the obstacle was detected. If no 
more obstacle was then detected, the wheelchair foiJowed the direction given by 
the NN, and reentered the trajectory. If no free path was detected the wheelchair 
stopped and continually beeped. 

In the case where the obstacle moved within a few seconds, the 

3 7 

1 

wheelchair resumed its trajectory. Figure A.l. Configuration of the sonar 
sensors attached on the wheelchair. During static localization, sonar numbers 1, 3, 5 and 7 were used to 

determine the stationary wheelchair position, relative to the wall in the room. 
As the wheelchair moved, measurement<; were dynamically taken with the sonar sensors {1, 3, 5 and 7) when 
perpendicular to the waiJs in the room. Measurements were hence taken when the orientations of the wheelchair 
were 0°, 90°, 180°, and 270°. These measurements were used to calculate weighed average (equation A.l). The 
weighted average was then used as the wheelchair's current position and orientation. 
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Abstract - A neural network using Normalised Radial Basis 
Functions (RBF) Is used for encoding the sequence of positions 
forming the trajectory of an autonomous wheelchair. The 
network operates by producing the next position for the 
wheelchair. As the trajectory passes several times over the 
same point, an addJtlonai phase Information Is added to the 
position Information, which avoids the allaslng problem. The 
use of normalised RBFs' creates an attraction fteld over the 
whole space and enables the wheelchair to recover from any 
perturbatlons, for instance due to avoidance of people. 

I INTRODUCfiON 

This paper describes a part of the control system of an 
autonomous wheelchair that wa~ exhibited in the South 
London Gallery for a month in 1997. During 7 hours a day, 
the wheelchair had to perform a repeated sequence of circles, 
spirals and figures of eight in an unmarked 7 m x 7 m square 
area. The public wa~ allowed to enter the area and the 
wheelchair used sonar for obstacle detection. An obstacle 
caused the wheelchair to stop. If the "obstacle" did not move 
after a few seconds, the wheelchair initiated an avoidance 
manoeuvre which caused it to leave the desired trajectory. 
Our problem was to design a control system that i) encodes 
the complex trajectory and ii) enables the wheelchair to 
recover from trajectory disturbances, e.g. due to obstacles. 
This later stability property would also enable the system to 
be insensitive to the starting point, when restarted in the 
morning. 

In section 11 the use of a control approach ba~ on a map in 
Cartesian co-ordinates rather than Perception-to-Action 
principles is justified. In section Ill, the basics of the 
Normalised RBF network are given. In section IV, the 
encoding of the trajectory is described in details, including 
the method for encoding phase information. In section V 
general properties of the system are discussed, such as the 
creation of an attraction field and learning capabilities. The 
conclusion follows in section VI. 

li CONTROL PHILOSOPHY 

We designed the control system as a three stage process. In 
the first stage, the position of the wheelchair within the 
gallery wa~ determined. This wa~ done by using a 
combination of sensors: Sonar, Vision, Shaft encoders and 
Gyroscope. In the second stage, a neural network (NN) used 
the position information to determine the next position in the 
trajectory. In the third stage, a standard control procedure 

Donald Rodney 
Montpelier Road 4 
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wa~ used to guide the wheelchair to that position. The NN 
continuously gave a new target before the old one was 
reached and "pulled" the wheelchair along the trajectory. 
Only the second stage is described in this paper. 

Another approach, based on encoding Perception-to-Action 
sequences was considered but not retained due to the 
characteristics of the problem. In the Perception-to-Action 
approach, visual images from the environment or given sets 
of sensor readings are a~sociated with given actions, e.g. 
"when this pattern is seen from this angle, turn left". This 
could not be used for following rea~ons: First with people 
moving around, the gallery could not provide a reproducible 
sensory signature of a position. We thought of using a 
camera directed toward the ceiling but this one did not have 
sufficiently distinctive patterns. Secondly, Perception-to
Action sequences are not stable against deviations of the 
trajectory. If the wheelchair find itself in an untrained 
position off the trajectory, no adequate control action is 
produced. 

With the system proposed in this paper, only the desired 
trajectory needs to be encoded, but adequate control actions 
are produced over the whole space. 

Fig. !. Wheelchair controUed by a lap!op Pentium PC altachod at the back 
running the neural network simulation software CORTEX-PRO. Sonar sensors 

in small white boxes are used to avoid collisions and for self-localisation. 
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Ill NORMALISED RBF NETS 

Standard Radial Basis Function (RBF) nets comprise a 
hidden layer of RBF nodes and an output layer with linear 
nodes [3,4]. The function of these net<; is given by: 

n 

.Y;(x)=[,wiiljl(x-xi) (1) 
j~l 

where .Y; is the activity of the output node i, ljl(x-xj)is the 
activity of the hidden nodej, with a RBF function centred on 
the vector x)' x is the actual input and wij are the weights 
from the RBF nodes in the hidden layer to the linear output 
node. Such a net is a universal function approximator [6]. 

The function q,(x-xj) of a hidden node j is usually the 
Gaussian Radial Basis Function: 

~rL-::7~-~-(x_k ___ w_jk_)_2 

ljl(x-x i )=exp( ) (2) 
20' 2 

where o is the width of the Gaussian and K is the dimension 
of the input space. The "weights" wi.l: between node k in the 
input layer and node j in the htdden layer do not act 
multiplicatively as in other neuron models, but define the 
input vector xi= (wi.1, ... ,wjK) eliciting the maximum response 
of nodej (xi is the 'centre of the receptive field"). 

Normalised RBF nets have a function very similar to the 
standard function, with the exception of a normalisation by 
the total activity in the hidden layer: 

Ewu~(x-xl) 
y i (x) = J (3) 

L~(x-xl) 
J 

As a result, the output activity becomes an activity-weighted 
average of the input weights in which the weights from the 
most active inputs contribute most to the value of the output 
activity. For instance, in the extreme case where only one of 
the hidden nodes is active, then the output of the net 
becomes equal to the weight corresponding to that hidden 
node, whatever its actual activity. Thus RBF nodes in the 
hidden layer are used here as ca<;e indicators rather than as 
basis functions proper. 

A similar normalisation principle is used in the "centre of 
gravity defuzzification method ([4], pp 388-404). Our 
approach is a special case of the approach proposed by [8] 
for selecting linear functions Li/x) (instead of the constant 
weights Wij used here). In [7] expression (3) wa<; used to 
compute normalised motor output vectors in robot<;. 
Normalised RBF nets show also very good properties in 
pattern classification applications [2]. 

A net with the function (3) was originally proposed for 
sequence encoding in the case of robot arm trajectories [1]. 
That architecture is extended here with a phase encoding 
feature that enables encoding of the complex trajectory of the 
wheelchair which pa<;ses repeatedly in the same point in 
space at different pha<;es of the sequence. 

IV TRAJECTORY ENCODING 

The demanded trajectory for the wheelchair comprises two 
large circles along the periphery of a 7m x 7m square, then 
an inward spiral. Once in the centre of the square, three 
successive figures of eight are performed, then an outwards 
spiral takes place. After that the sequence restarts with two 
circles (fig. 2). 

A) A sequence of half-circles 

The demanded trajectory was divided into 25 half-circles (4 
for the large circles, 5 for the inward spiral, 3x4 for the 
eight's and 4 for the outward spiral). Each half-circle wa<; 
represented by 4 to 12 RBF nodes, depending on the its 
diameter. The receptive field centres of the nodes were 
equidistantly distributed along the half-circle. Their three 
output weight<; represented the position (x,y) and orientation 
<p of the wheelchair at the next position (next node) in the 
half-circle. These values are given as input to a standard 
control system which issues motor commands. Fig. 3. shows 
an example of 4 half-circles characterising one figure of 
eight. Figure 4 shows the part of neural network encoding 
the figure. 

Fig. 2. Trajectory encoded by lhe neural network. The rectangle indicates !he 
walls of !he gallery. The figure is produced by simulating !he motion of a 

vehicle swting in !he lower half of !he image. The outward spiral is indicated 
by dots only. The motion of !he real wheelchair is very similar but we have no 

recordings of it. 

2n+l 

2n 

Fig. 3. Definition of a figure of eight by four half-circles. 
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Next Position 
ard Orientation 

Current Position 

Fig. 4. Neural network encoding the demanded trajecuxy. The width of the 
receptive fields for lhe positions was set to a fifth of the radius of the half-circle. 

For the phases, the width receptive field was Set to I . La= Input layer, L 1: 
Hidden layer, ~: OutpUt layer. 

B) A voiding aliasing by phase encoding. 

It can be seen in Fig. 3 that several half-circles have nodes 
centred on the same position. To make sure that only one of 
them becomes active at a time, a "Sequence Phase" node wa<s 
added to the network used in [1] (Fig. 4). The weights from 
each of the nodes in layer L1 to the phase node are equal to 
their position in the sequence (or "phase"). For instance, if 
the first node in the sequence is active, the Sequence Phase 
node will have an output 1. If the lOth is active, the output 
will be 10, etc. The output of that node is used as input by 
the "Position Transition" nodes in layer L1. Their input 
wei~hts for the phase are set to their phase - 0.5. E.g. the 
10t node has a receptive field (for phases) centred on 9.5. 
In that way, nodes start to become activated when the system 
is in the phase prior to their own (or in their own) and when 
the wheelchair is in the position defined by the two weights 
from the "Current Position" in layer L0. Therefore, when a 
position corresponds to many nodes, only the one receptive 
to the current phase becomes activated and can indicate the 
next position in the trajectory. A special routine wa<s written 
to reset the phase at the end of the sequence, to enable a 
repeat of the trajectory. 

V PROPERTIES 

A) Am·actionfield 

RBF nodes with a Gaussian function produce a response over 
the whole input space (x,y,p). The response is very weak for 
most combinations of position (x,y) and phase p. For 
instance, when the wheelchair is far from the trajectory, only 
a very weak response is elicited in any of the nodes in layer 
L1 of the net. However, due to the normalisation in (3), the 
network can output a value for the next position, a<s encoded 
in the weights to the layer "Next Position". Thus 
normalisation results in an attraction field that leads the 
wheelchair towards the demanded trajectory from whatever 
starting point (Fig. 5). 

The smooth approach-curves in Fig. 5 are due to the internal 
dynamics of the network. Let us assume a starting point a~ in 
fig. 2. Initially the phase pis set to 0.5, so that mainly the 
first node is activated (this node is centred on the position 
indicated by a cross in Fig. 5, and is part of a descending 

half-circle) . Thus the first goal position indicated by the 
network is one node ahead of the first node. However, being 
active, the ftrst node causes the phase to become p = l. This 
in turn enables the second node to become active, which 
gives now as goal position one node ahead of the second 
node. Thus the wheelchair is given a changing goal as it 
approaches the trajectory. Interestingly, this movement of 
the goal also occurs when the wheelchair is on the trajectory, 
and it needs to be controlled to avoid goals too far ahead of 
the actual position. This control involves either a lower 
frequency of updating of the Sequence Phase node, or a 
balancing of the role of position and pha~e in the activation 
of nodes in layer L1, a<s explained below. 

It can be seen from (2) that the activity of any node in layer 
L1 of the net is the product of three one-dimensional 
Gaussian functions centred on their preferred x, y and p 
respectively. Let us assume that these Gaussians' have 
different widths. If the width for pis large (low selectivity), 
the winning (most active) node is determined by the position 
of the wheelchair. However, if the width for p is small (high 
selectivity), the value of p becomes most important in 
determining the activity of the node. In this case, the net can 
run through the sequence irrespective of the position of the 
wheelchair. We have found that a good balance between the 
role of position and phase is obtained when the width for the 
phase is 1. In practice selecting a different width cr for each 
input requires multi-variate RBF nodes, but that poses no 
special problems. 

Fig. S. IlluSlr.l1ion of the aaraction field generau:d by the neural network. The 
figure shows simulated trajeciOries with various swting positions. The initial 

phase is Set to 0.5, so that only the first node can initially be active (and 
determine the target of the motion). Its activity however sets the phase to I 

which enables the succeeding node 10 become active, and so on. This causes a 
progressive curvature of the simulated trajectory towards nearer nodes on the 
demanded trajectory. Only the initial steps of the trajectory are shown. The 

cross marks the position of the receptive field of the fii'Sl node. 
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B) Learning 

In this application, the trajectory wa~ defined in advance and 
the weights of the network were set accordingly. However, 
the trajectory can also be learnt on the spot. In this ea~. a 
user pushes the wheelchair through the desired trajectory, 
while the neural network progressively recruits new nodes in 
layer L1. 

Due to the attraction field, only the desired trajectory needs 
to be learnt. The wheelchair can then enter into the 
trajectory from any starting point and recover from 
deviations. 

C) Aliasing 

In this work the (x,y) position of the vehicle was used a~ 
input to the sequence encoding network. Aliasing occurs 
when the same (or similar) position reoccurs at different 
times in the trajectory. By adding a phase node we have 
avoided that the vehicle jumps from one phase of the 
trajectory to another, hence solving the aliasing problem. 

In Perception-to-Action systems, aliasing is also a problem 
[7]. The difference is that some (position specific) complex 
sensory picture is used instead of the ( x,y) position. It should 
also be possible to avoid alia~ing in these systems by adding 
phase information to the picture. 

VI CONCLUSION 

A simple neural network ha~ been described that encodes 
trajectories in a stable way, allowing recovery from 
disturbances and implementing a new phase encoding 
principle that solve the aliasing problem. 
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Appendix C 

This CD-ROM contains video clips and 
the program source codes. 
1. Video Clips demonstrating the system performing the navigation tasks 

• Concurrent Control -The system uses the concurrent control strategy developed in 
the thesis. 
Take 1.1, 1.2, 1.3, 1.4 and 1.5- illustrate typical paths taken by the robot when the 
position of the obstacle is located at the centre left of the robot environment. In all 
these cases, the goal is located near the top right corner of the robot environment. 
Note that these takes correspond to some of the paths shown in figure 7.4(c). 
Screen 1 - illustrates a typical screen shoot of the remote brain's process when the 
position of the obstacle is located at the centre left of the robot environment. 
Take 2.1 - illustrates a typical path taken by the robot where the position of the 
obstacle is located at the centre right of the robot environment. In this case, the goal 
is located near the top right corner of the robot environment. Note that this take 
corresponds to one of the paths shown in figure 7.4(d). 

• Sequential Control - The system here is using a control strategy described in the 
thesis as "sequential control". 
Take 3.1 and 3.2 -illustrate typical paths taken by the robot when the position of the 
obstacle is located at the centre left of the robot environment. In all these cases, the 
goal is located near the top right corner of the robot environment. Note that these 
takes correspond to some of the paths shown in figure 7.4(a). 
Screen 3 -illustrates a typical screen shoot of the remote brain's process when the 
position ofthe obstacle is located at the centre left of the robot environment. 
Take 4.1 and 4.2 - illustrate typical paths taken by the robot when the position of the 
obstacle is located at the centre right of the robot environment. In all these cases, the 
goal is located near the top right corner of the robot environment. Note that these 
takes correspond to some ofthe paths shown in figure 7.4(b). 
Screen 4 - illustrates a typical screen shoot of the remote brain's process when the 
position of the obstacle is located at the centre right of the robot environment. 

Note: Here the robot receives a waypoint from the remote brain instead of a simple 
motion command. Therefore, it does not stop as often as shown in figure 7.3.a). 

2. Program Source Codes ofthe Computer System "Remote Brain" 

3. Program Source Code of the Robotic System 

4. Program Source Code of the Robot Tracking with Overhead Camera 
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