
INTELLIGENT VISION-BASED NAVIGATION SYSTEM

By

KHENG LEE KOAY

A THESIS SUBMITTED TO THE UNIVERSITY OF PLYMOUTH
IN A PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING
FACULTY OF TECHNOLOGY

March 2003

Copyright © by K.heng Lee Koay 2003
This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation from
the thesis and no information derived from it may be published without the author's prior
consent.

Research Supervisor: Dr. Guido Bugmann

To my parents and my grandmother,
Ah The and Aik Jin Koay

Siew Eng Quah

Author's Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author
been registered for any other University award.

This study was supported by DEVR funding from HEFCE for "Facility in Mobile
Robotics".

A programme of advanced study was undertaken, including two postgraduate courses in
Neural Computation (COIN 501 and COIN 506)

Relevant scientific seminars and conferences were regularly attended at which work was
often presented; external institutions were visited for consultation purposes and several
papers were prepared for publication.

Publications:

• Koay, K. L., Bugrnann, G., Barlow, N. and Philips, M. (1998). Representation of
Trajectories for Mobile Robot. Proceedings of the 6th International Symposium on
Intelligent Robotics Systems, Pages 185-194.

• Bugrnann G., Koay K., Barlow N., Phillips M. and Rodney D. (1998). Stable encoding
of robot trajectories using normalised radial basis functions: Application to an
autonomous wheelchair. In: D Caldwell, J Gray and P Robinson (eds), Proceedings of
29th International Symposium Robotics (ISR'98), Pages 232-235. DMG Publishers:
London.

Presentations and Conferences attended:

• 6th International Symposium on Intelligent Robotic Systems '98 (SIRS98), Edinburgh,
Scotland, UK, July 21-23, 1998

• Centre for Neural and Adaptive Systems (CNAS) and School of Computing research
semmars.

Signed .. ~········ ·
Date .. . / q. ~. ~ .. ~ .. ~.~R 3

Author: Kheng Lee Koay

Title: Intelligent Vision-based Navigation System

Abstract

This thesis presents a complete vision-based navigation system that can plan and

follow an obstacle-avoiding path to a desired destination on the basis of an internal map

updated with information gathered from its visual sensor.

For vision-based self-localization, the system uses new floor-edges-specific filters

for detecting floor edges and their pose, a new algorithm for determining the orientation of

the robot, and a new procedure for selecting the initial positions in the self-localization

procedure. Self-localization is based on matching visually detected features with those

stored in a prior map.

For planning, the system demonstrates for the first time a real-world application of

the neural-resistive grid method to robot navigation. The neural-resistive grid is modified

with a new connectivity scheme that allows the representation of the collision-free space of

a robot with finite dimensions via divergent connections between the spatial memory layer

and the neuro-resistive grid layer.

A new control system is proposed. It uses a Smith Predictor architecture that has

been modified for navigation applications and for intermittent delayed feedback typical of

artificial vision. A receding horizon control strategy is implemented using Normalised

Radial Basis Function nets as path encoders, to ensure continuous motion during the delay

between measurements.

The system is tested m a simplified environment where an obstacle placed

anywhere is detected visually and is integrated in the path plarming process.

The results show the validity of the control concept and the crucial importance of a

robust vision-based self-localization process.

Acknowledgements

In the early 18th century, men begun taking on the challenge of making

mechanisms that imitate parts of human body. Since then, the target has moved on to

making intelligent machines to support human needs, and among the research

community, to test research theories and investigate human intelligent behaviour. The

development of mobile robots marks the turning point of the development of

sophisticated machines. The work presented here represents a small step in the ongoing

effort to develop machine intelligence.

First of all, I would like to give my most heartfelt thanks to my supervisor Dr.

Guido Bugmann who have been supervising my work diligently over these years, and

most of all for his consistent guidance, ideas and kindness.

I am also grateful to Ian Rowlands from the University's Tech Service for his

kind support and John Eastman from the Department of Communication and Electronic

Engineering for designing a new shaft encoder disc which has been used in the project.

I would also like to extend my thanks to the members of our group at the Centre

for Neural and Adaptive Systems of the School of Computing in the University of

Plymouth for sharing, and the assistance and advices generously given.

11

Not forgotten are all my good friends, Yann Chew Tan and his wife Ngan, Ling­

Ti Lin, Lisa He, Trung Nguyen, Steven Lee, Elisa Mak, Jaslyn Yap, Kaemi Yamamoto,

Angie Ng, Lavender Liong, Bee Ling Tan, Kian Lip Kee, Junko Hozu, Nicole Ng,

Cathy Radix and others whom I have forgotten to mentions, thank you all for everything

you all have done for me, I cherish our friendship.

Last but not least, to HEFCE for the DEVR funding for a "Facility for Mobile

Robotics" that made this study possible.

ll1

Kheng Lee Koay

Plymouth, March 2003

Contents

Abstract

Acknowledgements u

Contents IV

List of Figures vu

List of T abies X

1. Introduction 1
1.1. Aims of this Project ... I
1.2. Method ... 3
1.3. Overview ofthe Thesis .. 3

2. Literature Review 6
2.1. Intelligent Vision-based Navigation in Robotics ... 7
2.2. Control with Intermittent Sensing .. 8
2.3. Navigation .. 10

2.3.1. Self-localization .. I 0
2.3.2. Map Building .. 13
2.3.3.Path Planning .. 16

2.4. Spatial Vision ... 19

3. Experimental Setup 22
3.1. The Robotic System ... 23

3 .1.1. The Modified Rug Warrior Robot .. 23
3.1.2. Video Camera ... 24
3.1.3. The Video Sender ... 25
3.1.4. Micro Fast Servo .. 25
3.1.5. Serial Servo Controller ... 25
3.1.6. The Serial Transceiver (418 MHz FM - 1200 Baud) 26

3.2. The Computer System "Remote Brain" ... 27
3.2.1. Software "Cortex-Pro" ... 28
3.2.2. Win Vision Framegrabber (QUANTA) .. 28

3.3. Environment ... 29

IV

4. Vision-based Obstacles Detection, Self-localization and Map Updating 30
4.1. Correction of Lens Distortion .. 33

4.1.1. Fish -eye Lens Effect .. 33
4.1.2. Fish-eye Lens Effect Correction ... 34

4.2. Floor-specific Edge Detection ... 38
4.2.1. Image Segmentation (Floor/non-floor) ... 38
4.2.2. Vertical and Horizontal Edges Filter Design .. 40
4.2.3. Calculation of the Edge Position and Orientation 42

4.2.3.1. Edge Orientation .. 42
4.2.3.2. Edge Positioning- Basic Method ... 48
4.2.3.3. Edge Positioning- Refined Method ... 49

4.3. Coordinate Transformations for Vision System .. 51
4.3.1. Image Coordinate Frame to Camera Coordinate Frame

Transformation ... 51
4.3.2. Camera Coordinate Frame to Map Coordinate Frame Transformation

for Obstacles and Wails .. 55
4.3.2.1. Camera Coordinate Frame to Robot Coordinate Frame

Transformation ... 57
4.3.2.2. Robot Coordinate Frame to Map Coordinate Frame

Transformation ... 58
4.4. Vision-based Self-localization ... 59
4.5. Self-localization Tests .. 62

4.5.1.Results .. 62
4.5.2.Discussion of the Vision-based Self-localization Results 66

4.6. Obstacle Detection and Registration .. 69
4.7. Discussion .. 70

5. Path Planning and Encoding 72
5.1. Path Planning through the Neural-resistive Grid ... 73

5.1.1. Neural-resistive Grid .. 73
5.1.2. Representation of Robot and Obstacles in the Neuro-resistive Grid 76
5.1.3. Path Planning through Gradient Climbing in the Neuro-resistive Grid 78

5.2. Path Encoding and Decoding through NRBF Nets ... 79
5.2.1. The Normalised Radial Basis Function (NRBF) Net 80
5.2.2.Path Encoding ... 82
5.2.3. Path Decoding .. 83

6. Motion Control with Intermittent Delayed Measurements 85
6.1. The Time Delays Problem ... 87

6.1.1. Sequential Control "Compute then Move" ... 87
6.1.2. Concurrent Control "Compute while Moving" .. 91

6.2. Proposed Implementation of Concurrent Control .. 93
6.2.1. Receding Horizon Control Strategy ... 95
6.2.2. Modified Smith Predictor for Intermittent Delayed Feedback 98

6.3. Fast Feedback Loop in the Smith Predictor ... 101
6.3.1. Building a Dynamical Model of the Robot .. 101

6.3 .1.1. Collecting Modelling Data ... 102
6.3.1.2. Derivation of the Rug Warrior's Motion Model 104
6.3.1.3. Parameters Fitting .. 108

6.3 .2. Odometric Motion Tracking ... 111
6.3.2.1. The Robot in Straight Motion .. 111

V

6.3.2.2. The Robot in a Curved Motion .. 112
6.3.2.3. Conversion to Map Coordinate System 114

6.4. On-board Path Control ... 116
6.5. Retroactive Position Calibration Using Visual Feedback 119

6.5.1. Recalibration Equations .. 119
6.5.2. Discussion .. 124

7. Results 128
7 .1. Experiments and Results .. 128

7 .1.1. Experiments Description .. 128
7.1.2.Results .. 133
7.1.3.ProblemsEncountered .. 135

8. Conclusions and Future Work 138
8.1. Contributions to Knowledge .. 138
8.2. Problems and Difficulties Encountered ... 140
8.3. Future Work ... 143

Appendices

A. Solving tbe Rug Warrior's Motion Model using Linear Differential
Equation of 151 order 145

B. Publications 147

C. CD-ROM contains video clips and program source codes. 162
1. Video Clips demonstrating the system performing the navigation tasks.
2. Program Source Codes of the Computer System "Remote Brain".
3. Program Source Code of the Robotic System.
4. Program Source Code of the Robot Tracking with an Overhead Camera.

Bibliography 163

VI

List of Figures

3.1 The commercial Rug Warrior robot ... 23
3.2 The modified Rug Warrior robot .. 26
3.3 The architecture of the Robotic System ... 27
3.4 The architecture of the Computer System "Remote Brain" 28
3.5 The modified Rug Warrior in its environment with the presence of an

obstacle ... 29

4.1 Vision-based processes for obstacles detection, self-localization and
map updating .. 31

4.2 The fish-eye lens effect on a square grid .. 33
4.3 This figure illustrates the fish-eye lens effect and its correction 34
4.4 The robot's vision system image sampling process 35
4.5 The fish-eye lens distorted image correction model 36
4.6 The selected portion of the distortion free image used for vision

processing ... 37
4. 7 The automatic thresholding process ... 39
4.8 The horizontal and the vertical filters ... 40
4.9 The edge filtering process for detecting edges and determining their

positions and orientations ... 40
4.10 The four cases with each representing a quadrant within the circle 42
4.11 Examples of possible image configurations encountered during the

filtering process .. 43
4.12 Edge filter in case I .. 44
4.13 Edge filter in case 2 .. 45
4.14 Edge filter in case 3 .. 46
4.15 Edge filter in case 4 .. 4 7
4.16 Comparison between the basic and the refined methods of edges

positioning .. 49
4.17 This figure shows the camera module .. 51
4.18 The side view of the camera geometry map used for determining they

coordinates of the detected edges ... 52
4.19 The camera geometry map used for determining the x coordinates of

the detected edges ... 53
4.20 Side view of the concept diagram used to determine the angle for each

line in the calibration grid ... 54
4.21 The Pixel-Angle relationship graph showing the measured data plot

and their fitted function .. 55
4.22 Illustration of the relationship between the camera coordinate frame,

the robot's egocentric coordinate frame and the robot's coordinate
frame ... 56

4.23 The location ofpixel Pin the robot coordinate system 58
4.24 This figure illustrates the transformation of coordinate from robot

coordinate system to the map coordinate system 59

VII

4.25 Illustration of the vision-based self-localization process 60
4.26 The positions and orientations used in the vision-based

self-localization test .. 63
4.27 Examples of vision-based self-localization tests plots 64
4.28 Standard deviation of vision-based self-localization errors 65
4.29 Example of the image taken at coordinate (45, 16) 66
4.30 Examples of the vision-based self-localization tests results 68
4.31 The process of registering the detected obstacle into the spatial

memory layer of the neural-resistive grid .. 70

5.1 The neural-resistive grid planner is composed ofthe neuro-resistive
grid layer and the spatial memory layer ... 74

5.2 Transfer function of the neurons representing nodes of the
neuro-resistive grid ... 75

5.3 Modified neural-resistive grid with one-to-many connections from the
spatial memory layer to the resistive grid layer .. 77

5.4 Representation of walls, obstacle and collision free space within the
neural-resistive grid .. 77

5.5 The neural-resistive grid representation ... 78
5.6 Waypoints representation of the path within the neuro-resistive grid 79
5.7 The NRBF path encoder ... 79
5.8 Network architecture for standard RBF nets and Normalized RBF nets .. 80
5.9 Comparison between standard RBF nets and Normalized RBF nets

with three hidden nodes on an example of a !-Dimensional path 82
5.10 A simulation of the NRBF path encoder attractive field 84

6.1 Vision-based Navigation System Sequential Control Flow Diagram 88
6.2 Tasks scheduling diagram for the sequential control vision-based

navigation system ... 89
6.3 Vision-based Navigation System Sequential Control timing diagram 90
6.4 Timing diagram of a Vision-based Navigation System with

Concurrent Control ... 91
6.5 Tasks scheduling diagram for the concurrent control vision-based

navigation system ... 92
6.6 Concurrent control process flow diagram .. 93
6. 7 The concept of receding horizon control strategy 95
6.8 This figure illustrates the advantage of applying the receding horizon

control strategy using the waypoints method ... 97
6.9 Classical diagram of a control system incorporating a Smith Predictor .. 98
6.10 Modified Smith Predictor for Intermittent Delayed Feedback 99
6.11 Operation sequence in the proposed system that uses a modified Smith

Predictor ... I 00
6.12 Operation Sequence in the final system inspired by Smith Predictor I 01
6.13 Illustration of the data collection protocol and an example of the

encoder's strip pattern (i.e. black strip absorb light and white strip
reflect light) glued to the wheel .. 102

6.14 The motor dynamics plot for 10 runs ... 103
6.15 The motor dynamics plot for 10 runs after data correction 104
6.16 This figure illustrates the relation between each of the motor

coefficients and their effect on the model output 108

V Ill

6.17 This figure shows the plot of data collected from the motor (dots) and
the motor model (solid line) ... 109

6.18 The actual maximal velocity as a function of the speed commands 109
6.19 The test results of the robot following two prescribed paths based on

the motors model as feedback .. 111
6.20 Conceptual diagram for the robot doing a leftward motion 113
6.21 Conceptual diagram used for updating the robot position in the model

map ... 115
6.22 The result of the controller steering the robot from the initial position

toward the goal based only on the shaft encoders input as feedback 118
6.23 This figure illustrates the concepts of coordinate recalibration 120
6.24 Diagram for the robot orientation recalibration algorithm 121
6.25 Diagram for the robot coordinate recalibration algorithm 123
6.26 The modified Smith Predictor for navigation applications 126
6.27 The modified Smith Predictor for navigation application with

intermittent feedback .. 127

7.1 The overhead camera setup used to record the robot's motion during
the experiments ... 129

7.2 Example of the concurrent control system performing the navigation
task of experiment 2 ... 132

7.3 The Distance vs. Time plot of two systems that uses different control
methods .. 133

7.4 The experimental paths produced by the sequential control system (a,
b) and the concurrent control system (c,d) ... 134

IX

List of Tables

3.1 The commercial Rug Warrior robot's technical specifications 24

4.1 The equations system used to determine the orientation of the detected
edge ... 41

6.1 The coefficients for each of the command speed obtained through
curve fitting .. 108

X

Chapter 1

Introduction

1.1 Aim of this Project

Research in the field of mobile robotics has received considerable attention in the

past decade due to its wide range of potential applications. One area of special interest is

household robotics for the disabled and the elderly persons. In general, a household robot

needs to be able to perform several tasks. Among these, object fetching is a generic task

which itself consists of several sub-tasks. One of the sub-tasks this research focuses on is

goal directed navigation.

Given the need for artificial vision in most domestic tasks, this study also uses

vision to acquire spatial information for navigation. Designing an effective navigation

system requires the integration of current knowledge or development of new methods in

various fields such as object recognition, spatial vision, spatial knowledge representation,

path planning, motion control, obstacle avoidance and power resources management.

The scenario forming the background of this work is that of a domestic robot

fetching an object in a room cluttered with obstacles. A number of simplifications were

made to the scenario so that more emphasis can be placed on issues related to the

interaction between vision, planning and navigation functions.

The aims are to:

1. design and demonstrate a navigation system that can plan an obstacle-avoiding

path to a desired destination on the basis of an internal model (map), updated

with information gathered from its visual sensors.

2. investigate and demonstrate a control technique that addresses concurrent

image processing and planning while the robot is in motion.

To achieve these aims, the following simplifications were used:

the goal is at a predefined location that can be varied by the experiment, but

does not requires competences in visual object localization.

obstacles are simple white rectangular blocks, each with the height of 1.5

centimetre, small enough for 2-D approximation, that can be detected visually

by the robot's onboard camera as 2-D forbidden areas standing out from the

dark floor of the environment. These obstacles can be placed anywhere and

considered during planning.

the environment is a small-scale box of size l25x89 centimetres developed to

emulate a room in the real world. The walls and the floor of the small-scale

robot's environment were painted with white colour and black colour

respectively. This setup simplifies image processing and frees time for

exploring other issues related to the overall aim of this research.

2

a circular cross-section robot with two drive wheels (which enable the robot to

spin around a centre point) is used as a prototype of a domestic robot. This

cylindrical robot is free from both the geometric constraints and the piano­

mover's problem (Schwartz and Sharir, 1983), therefore the 3-D planning

problem is simplified to a 2-D planning problem.

1.2 Method

The work was divided into two stages. The first stage is to develop a visual system

that informs a planner about the positions of the robot and obstacles. A simple stop-and-go

motion controller was used to test the validity of the approach. In stage two, the motion

control problem was addressed. The issue here was to enable uninterrupted motion of the

robot to the goal despite long intervals (i.e. of the order of 1 second) between image

acquisition and the delayed access to visual information.

1.3 Overview of the Thesis

This thesis consists of eight chapters. This chapter provides an overview of the

research, the thesis and the research activity.

Chapter 2 contains pointers to previous work in topics related to this project.

Chapter 3 provides an overview of the experimental setup. This includes a Rug

Warrior robot from the MIT modified for a remote-brained control architecture where all

computation-intensive processes such as image processing and planning are performed on

a remote computer.

3

Chapter 4 describes vision-based obstacles detection, self-localization and map

updating. This chapter begins with the correction of the camera lens distortion (Fish-eye

effect), then moves on to the design of novel task-specific floor and non-floor edges

detectors, followed by the use of projective geometry for coordinate transformation. The

projective geometry coordinate transformation is used to transform the processed image

information (i.e. the detected edges and their orientation) from the camera coordinate

system to the map coordinate system. The end of this chapter shows how map updating

with visually detected obstacles and self-localization are done on the basis of this

information.

Chapter 5 deals with path planning and encoding. This chapter begins by

describing the use of a neural-resistive grid for path planning and how sections of the

pre-planned path are prepared for sending to the robot controller. The use of a Normalised

Radial Basis Function (NRBF) neural network for encoding and decoding the path in the

robot controller is described.

Chapter 6 looks at the problem of motion control with time delays, and how it is

solved. This chapter proposes a solution to the stop-and-go motion problem using a new

control technique that combines traditional control methods, which are the Smith Predictor

and the receding horizon control strategy, to overcome the problems of computational

complexity and speed in image processing and action planning.

Chapter 7 shows the results of a series of navigation experiments and discusses the

problems encountered.

4

Chapter 8 contains the conclusions and describes work suggested for future

research.

5

Chapter 2

Literature Review

A vision-based navigation system (i.e. a mobile robot) must be able to reach an

assigned goal by moving and reasoning within its environment without direct human

intervention and control. Therefore a navigation system that exhibits such autonomous

ability must first be able to perform the sense-think-act process. Such a system is usually

equipped with a vision system to sense its environment, a mapping module for prior map

updating or building a new map, a planning module for path planning, and a controller for

path following. Many different techniques and approaches for mobile robotics on vision,

mapping, planning, control and navigation have been developed since the mid-twentieth

century to achieve the aim of self-contained autonomy but each has its own advantages and

disadvantages.

In general, a vision-based navigation system (mobile robot) is complex to build,

difficult to maintain and extremely fragile, as each part of the system depends on all others

to function (e.g. the mapping process depends on the vision system).

6

2.1 Intelligent Vision-based Navigation in Robotics

The ultimate aim of a vision-based navigation system is to be able to act as a

reliable moving platform for the environment they are design for, if not for any

environment. If this is achieved, it opens the door to a variety of possible applications such

as household robotics, autonomous vehicles or wheelchairs, etc. A household robot and

autonomous wheelchair must be able to recognise visual patterns, navigates around the

environment smoothly and freely, and perform the tasks they were designed to do. This

includes object retrieval (mainly for household robotics), goal directed navigation, etc.

The first intelligent mobile robot that had vision capability dated back to 1969.

Shakey was constructed at Stanford Research Institute (Nilsson, 1969). It is able to

distinguish objects of given sizes, shapes and colours, and interacts with them to move

them to a designated position. Shakey is equipped with two stepper motors and uses the

differential drive method to control its steering action, and avoid any obstacles

encountered. The name Shakey is derived from its irregular and jerky motion. Shakey

uses STRIPS (the Stanford Research Institute Problem Solver), a logic based problem

solving system to develop navigation plan (Fikes and Nilsson, 1971). STRIPS required

symbolic information from input sensors which Shakey had difficulty generating from raw

data. As Hans Moravec remembers, "An entire run of Shakey could involve the robot

getting into a room, finding a block, being asked to move the block over the top of the

platform, pushing a wedge against the platform, rolling up the ramp, and pushing the block

up. Shakey never did this as one complete sequence. It did it in several independent

attempts, which each had a high probability of failure. You will be able to put together a

movie that had all the pieces in it, but it was really flaky." (Crevier, 1993).

7

The Stanford Cart (Moravec, 1983) is a mobile robot that uses stereo vision to

locate objects and plans obstacle-avoiding paths to desired destinations on the basis of an

internal model derived from stereo data. The robot was controlled by an off-board

computer program and its motion was determined through comparison of images over

time. A complete cycle of sense-think-act process with the robot moving a meter forward

takes about I 0-15 minutes to complete. After moving a meter, the robot stops and begins a

new sense-think-act process. This process is repeated until the robot reaches its final

destination. It takes about 5 hours to complete a 20 meter route in an environment with

three to four obstacles to avoid. The system exhibits a stop-and-go motion which is largely

cause by the computationally expensive stereo vision task. This includes feature detection,

correlation, distance estimation and localization.

2.2 Control with Intermittent Sensing

The stop-and-go problem is a problem of control with intermittent sensing. It is

due to the long time required for processing the image (i.e. delayed measurement) and for

planning the movement. Nowadays computer have become much faster but there is still a

delay between sensing and the moment when a new control becomes effective. To

overcome the stop-and-go motion, and enable the robot to exhibit a smooth continuous

motion, this delay has to be handled.

Kosaka, Meng and Kak (1993) introduced FINALE-II, an improvement over their

earlier system FINALE (Koaska and Kak, 1992), a vision-guided mobile robot navigation

system which had to stay static for the self-localization task (i.e. capture an image and

processing the captured image to reduce the uncertainty of the robot position). FINALE-II

eliminates the need for the robot to remain stationary when the vision data is being

processed. This reduces the duration of the robot static state to the time needed for

8

capturing a new image for self-localization and the time to use the vision information

(updated position uncertainty) to re-estimate the current robot position. Processing of the

captured image in FINALE-I! is done while the robot is in motion, following its previously

calculated path toward the goal. Once the self-localization task is completed, the robot

motion is stopped and its current position is re-estimated retroactively based on the stored

motion history. The system then re-plans a path from the newly updated position to the

goal position and restarts its motion toward the goal. Self-localization is done by matching

the features extracted from the images with the expected landmarks extracted from the

prior model-based map, using the expected robot's position. The robot position

uncertainties are then reduced with the use of a Kalman filter.

Maeyama, Ohya and Yuta (1995) proposed a non-stop outdoor navigation system

using retroactive positioning data fusion, the data being calculated using increments of the

robot position vector and its covariance matrix obtain by dead reckoning. In their system,

the robot keeps the position and the covariance at sensing time (i.e. to) for correction when

the processing of landmark information finishes (i.e. t0+nr, where nr is the time needed to

process landmark information) using maximum likelihood estimation. The current

position (at time t0+nr) is then recalculated using the total increment of parameters such as

location, heading and the covariance from time to to the current time t0+nr.

Larsen, Andersen and Ravn (1998) proposed a simple and computational cheap

way of compensating delays based on the extrapolation of the measurement to the present

time using past and present estimates of the Kalman filter and calculating an optimum gain

for this extrapolated measurement. The proposed method is a solution to the problem of

designing discrete-time Kalman filters for systems where some results of measurements

are delayed.

9

All these methods (Kosaka, Meng and Kak, 1993; Maeyama, Ohya and Yuta, 1995

and Larsen, Andersen and Ravn, 1998) are essentially using the same concept, i.e. using an

estimate of the delayed measurement, then applying a correction factor when this becomes

available. The method proposed here is a modification of the Smith Predictor along

similar lines (chapter 6).

2.3 Navigation

Navigation involves Self-localization, Map building or updating, and Path

Planning. For a successful navigation, a robot must be able to localize itself within its

environment, tracks its own position and use its sensor data to built an internal map or map

the sensed data onto its internal prior map, which will be used for path planning, a process

which searches for an obstacle-free path from the robot's initial position to the goal.

2.3.1 Self-localization

Self-localization is a process performed on the basis of the robot's sensory readings

to determine the robot's actual position within its environment. In most mobile robots

shaft encoders readings can be used to track the robot's position but, due to unavoidable

odometry errors such as wheels slippage and drift, the error in the estimated position

increases over time. Therefore, a self-localization process is necessary to correct this error

and help increase the accuracy of the estimated robot's position and improve path

planning. Apart from that, the self-localization process also helps in the mapping process

(i.e. map updating or construct a new map), as detected obstacles relative to the robot

position can be placed accurately into the model map. Hereafter are presented only some of

the most interesting self-localization algorithms, as it is impossible to cover all the

approaches to self-localization found in the literature.

10

Cox (1989) proposed a self-localization method that uses odometry and laser range

sensing to sense the environment for pose estimation. The idea was to use odometry for

position tracking while overcoming the shaft encoders drift by combining odometry with

laser range sensing data for self-localization. This is done by matching the sensed data to

the prior map.

Janet, Gutierrez-Osuna, Chase, White and Luo (1995) proposed the use of a

self-organizing Kohonen neural network based on a process similar to optical character

recognition by assuming that the mapped sonar data forms a pattern unique to that room.

The aim is to determine in which room the robot is on the basis of sensory data. The

disadvantage of this system is that it only works in a static environment with no additional

furniture or rearrangement of existing furniture, as this will change the characteristic

signature of that room.

Giuffrida, Massucco, Morasso, Vercelli and Zaccaria (1995) proposed an active

localization system that uses triangulation-based reference guidance (i.e. active beacons are

distributed over the operating area and an onboard rotating unit is used to pick up the

signal) and dead reckoning for self-localization.

Atiya and Hager (1993) proposed a real-time localization method based on visual

landmarks. The idea of this approach is to recognise in the image those entities that stay

invariant with respect to the position and orientation of the robot as it moves around its

environment, I.e. landmarks (DeSouza and Kak, 2002), and determine their

correspondence within a stored map to compute the location of the robot. A set-based

algorithm is used for solving the matching problem and computing the location of a mobile

robot in typical indoor environments. Interestingly, the set-based algorithm defines the

error in position as the dimension of the overlapping areas of the tolerance zones around

11

the positions given by individual sensory measurements, instead of making assumptions

based on distributions.

Jensfelt and Kristensen (1999) proposed an active global localization method using

multiple hypothesis tracking. The algorithm is based on Bayesian probability theory and

multiple hypothesis tracking using Kalman filtering of Gaussian pose hypotheses. The

algorithm first produces pose hypotheses based on features extracted from the sensor data.

Then, by making more observations of features in the environment, additional support is

given to a subset of the pose hypotheses. The idea is that the hypothesis corresponding to

the robot true position will gain most evidence and will be selected as the robot's position.

In this approach, the robot is initially taught by interactively leading the robot through the

environment while having the robot actively extracting features from its sensory data and

building a world model. This system was designed to handle incomplete and partly

incorrect world model. According to the authors, when their global localization failed

during the experiment, it was mostly because their exploration strategy had not been able

to guide the robot to points where an essential feature could be seen, or that the robot got

stuck while pursuing a wrong hypothesis.

Kosaka and Kak (1992) proposed a self-localization algorithm for their system

(Finale system), but the algorithm is implemented in such a way that it's only activated

whenever the variances associated with the positional parameters exceed a certain

predetermined threshold. Ohya, Kosaka and Kak (1998) adopt the Finale system

self-localization algorithm but in their system, the self-localization algorithm is carried out

on a continuous basis. The self-localization algorithm begins by generating an expectation

image based on the best estimate of the robot's current position. The edges extracted from

the expectation image are then compared with the edges extracted from the camera image

12

to find a match through an extended Kalman filter. The extended Kalman filter then

produces updated values for the location and the orientation of the robot.

The approach of vision-based self-localization used in thesis involves determining

"what is being observed and where it is observed from" (Atiya and Hager, 1993). A

similar assumption to Cox (I 989), Kosaka and Kak (1992) and Ohya, Kosaka and Kak

(1998) was used, i.e. there is only a small difference between the expected view and the

actual one. Therefore it is reasonable to attempt to match an edge found by sensors with

the nearest edge in the map. The main difference with Cox (1989), Kosaka and Kak

(1992) and Ohya, Kosaka and Kak (1998) is that the used edge detector can also determine

the edge's orientation. This enables direct calculation of the difference between the

estimated orientation and the actual orientation.

2.3.2 Map Building

Two of the most widely used mobile robot mapping concepts are known as the

metric approach and the topological approach.

In the metric approach, the robot's environment is represented in an absolute

reference frame and numerical coordinates define where the objects are in space (Dudek

and Jenkin, 2000). The most used metric approach was originally proposed by Moravec

and Elfes (1985) which is known as the occupancy/certainty grid. The occupancy grid

consists of cells where each cell represents an area of the environment. Each cell in the

grid contains a certainty value representing how confident one is that the cell is being

occupied by an obstacle. The certainty value is calculated based on sensor readings. The

initial aim of the invention of occupancy grid was to handle sonar data with ambiguous

angular positions. Occupancy grid approaches have the advantage of being easy to

construct, to represent and maintain even in large scale environment (Buhrnann, Burgard,

13

Cremers, Fox, Hofmann, Schneider, Strikos and Thrun, 1995; Thrun and Bucken, 1996).

Computation of an obstacle-free path to the goal is made possible by searching through

obstacle-free cells within the grid. This map also allows the robot's position to be tracked

accurately using information obtained from its sensory feedback and enables the system to

overcome any dislocation problem due to different positions with similar sensory reading

(Giuffrida, Massucco, Morasso, Vercelli and Zaccaria, 1995; Thrun, and Bucken, 1996;

Thrun, 1998; Thrun, Gutmann, Fox, Burgard and Kuipers, 1998; Jensfelt, 2001).

In the topological approach, topological graphs are used to represents the

environment. This is done by identifying and linking distinctive places and paths in the

environment. In the graph-like representation, each node represents a distinctive place

identified by unique sensory readings and the connecting arcs between two nodes represent

the existence of a path between the two corresponding pla_ces. Thus the exact metric

relationship between the distinctive places and paths is not needed for the map building

process. The topological map was initially proposed by Kuipers and Byun (1991) for robot

exploration, mapping and navigation in large-scale spatial environments, where a

large-scale spatial environment is define in their paper as an environment with a spatial

structure that is at a significantly larger scale than the sensory horizon of the observer.

Ko, Seneviratne and Earles (1994) proposed a method that uses the extended triangular

algorithm for partitioning free space into triangular cells for building a topological graph

known as the triangulation graph. In the triangulation graph representation, each node is

representing a triangular cell, and the connectors are used to represent the edges between

cells.

The topological approach permits efficient planning and has low space complexity

as its resolution depends only on the complexity of the environment. Accurate

14

detennination of the robot's position is not needed as localization with the topological

approach only requires finding at which node the robot is located.

However both approaches have their disadvantages, the metric approach is

suffering from computational complexity (i.e. due to the high resolution grid map) and the

need for accurate detennination of the robot's position. As for the topological approach,

localization can be difficult if there is more than one node with similar sensory readings.

Note that the sensory reading is also sensitive to the point of measurement which therefore

has an impact on the recognition of places. Thus building and maintaining of topological

maps can be difficult since sensory infonnation is ambiguous.

Thus, Thrun and Bucken (1996) suggest that by integrating both the grid-based and

the topological approaches, they gain the best of both approaches: accuracy/consistency

and efficiency. Their proposal was first to build a grid-based map, because it is easy to

build, represent and maintain. The grid-based map will then enable the robot's position to

be tracked accurately. Once the grid-based map is completed, it is used to build the

topological map, therefore overcoming the problem of ambiguous sensory infonnation. In

their method, they employed an artificial neural network to interpret the sensory

measurements of the environment and map into probabilities of the occupancy grid map.

Bayes' rule was used to integrate multiple interpretations of the sensory measurements

over time. The topological map is then built based on this occupancy grid, which is done

by splitting the occupancy grid into coherent regions, separated by critical lines, where

critical lines correspond to narrow passages such as doorways. This partitioned map is

then transfonned into a topological map where each region is represented by a node while

the critical line is represented by an arc that connects the two nodes. The newly produced

topological map is greatly reduced in resolution compared to the occupancy grid and

enabled fast planning and problem solving.

15

Tomatis, Nourbakhsh and Siegwart (2001) also proposed to integrate both metric

and topological approaches for mapping to gain from the benefits of both approach in their

simultaneous localization and map building (SLAM) process. In contrast to the approach

of Thrun and Bucken (1996), both the topological and metric maps are built

simultaneously. Tomatis, Nourbakhsh and Siegwart (200 1) use a topological graph to

represent a global map (i.e. rooms in a building that are connected to a hallway) with each

node (representing a room) being defined by a metric model. The metric model then

contains detailed information about the room such as detected obstacles.

In this thesis, a metric approach is used, as the robot resides in a single room of

known dimensions. The only unknowns to be determined from sensory data are the

position of the robot and the position of obstacles (chapter 4). The metric approach is well

suited for the grid-based planning method explored in chapter 5.

2.3.3 Path Planning

The planning of an optimal collision-free path in high-dimensional configuration

spaces or in dynamic environments can be a computation intensive process unsuitable for

real-time implementation on a robot.

Faster, but appropriate, path planning through the potential field method for

obstacle avoidance was suggested by Andrews and Hogan (1983), Krogh (1984), and

Khatib (1985) based on the idea of imaginary forces acting on the robot. In this approach,

the robot experiences repulsive and attractive forces from obstacles and the goal

respectively. The idea was to use repulsive forces to push the robot away from obstacles

while using the attractive force to attract the robot toward the goal. The resultant force

which is the sum of all the repulsive and attractive forces is used to determine the direction

16

of motion and the speed of navigation. The resulting obstacle-free path is not optimal as

the robot tends to keep a maximum distance from obstacles. Murray (1997) proposed that

by constraining the repulsive force within a fixed boundary, an optimal obstacle-free path

can be produced. This however does not prevent the robot from being trapped in local

minimum (i.e. a valley in the potential field that has only one way out and that is the way

the robot came in).

Boreinstein and Koren (1989) proposed a new real-time obstacle avoidance

approach know as the Virtual Force Field (VFF). This approach employed certainty

(occupancy) grids for obstacle representation, and the potential field method for

navigation. Note that the potential field algorithm is only applied to the grids within the

active window for path planning. The active window is a window that moves with the

robot in a way such that the robot is always at the centre of the moving window. The VFF

method suffers also from the local minimum problem inherent to potential field method.

The authors proposed to solve the local minimum problem with a method know as the

Wall-following method (WFM). Other inherent limitations of the potential field method

are: no passage between closely spaced obstacles, oscillations in the presence of obstacles

and oscillations in narrow passages (Boreinstein and Koren, 1991a).

A new method know as the Vector Field Histogram (VFH) was then proposed by

Boreinstein and Koren (1991 b) to overcome the inherent limitation and improve the VFF

method. This new method uses a two-dimensional Cartesian histogram grid as a world

model which is updated continuously with range data. A two-stage data-reduction process

is used to determine the desired control commands for the robot. The first is to reduce the

histogram grid within the active window into a one-dimensional polar histogram that

contains the polar obstacle density in each direction. The second stage is to search for

candidate valleys of the polar histogram. Candidate valleys are those that have an obstacle

17

density value that falls below a pre-set threshold value. Only the candidate valley that is

closest to the target direction is selected for the process of detennining the best sector

within that valley. The selected best sector is then used to generate a steering command

for the robot. The authors consider this method as a local path planner, therefore it is

prone to trap-states (and exhibits the cyclic behaviour), especially if the local minimum is

larger than the active window.

Kwon and Lee {1996) proposed to overcome the local minimum method with the

use of obstacle vectors and via points. When the robot is in a trap-state, the via points

algorithm produces a series of via points using a similar idea to the visibility graph method

proposed by Latombe (1991) where the via points are detennined from the target point to

the robot current position, based on available obstacle infonnation. Each of the via points

is then used as the robot temporary target point to guide the robot out of the trap-state.

Not suffering from local minimum problem are graph-based path planning methods

such as spatial graphs and visibility graph (Lozano-Perez and Wesley, 1979), Voronoi

diagram (Lee and Drysdale, 1981; O'Dunlaing and Yap, 1985; Iyengar, Jorgensen, Rao,

and Weisbin, 1986; Takahashi and Schilling, 1989), free way (Wilfong, 1988), cell

decomposition (Vasseur, Pin, and Taylor, 1991) and triangulation graph (Ko, Seneviratne

and Earles, 1994). These methods aim at representing the free space with a topological

graph that then allows the use of graph searching algorithm such as the A* algorithm

(Nilsson, 1982) or the Dijkstra algorithm (Lui, Choo, Lok, Leong, Lee, Poon, and Tan,

1994) for detennining a shortest path from a destination to the goal.

Bugmann, Taylor and Denham (1994) proposed a neural implementation of the

Laplacian path planning (Connolly, Burns and Weiss, 1990) known as the Neural-resistive

grid. The Neural-resistive grid consists of a neuro-resistive grid layer and a spatial

18

memory layer. The spatial memory layer is used to record the position of detected

obstacles, while the potential distribution of the neuro-resistive grid is calculated based on

the target/goal point with respect to the detected obstacles recorded in the spatial memory

layer. The advantage of this method is that it does not suffer from the local minimum

problem and always ensures an existing path to be found if the neuro-resistive grid is

updated a sufficient number of times. Interestingly, this method has never been applied to

a real world navigation system. To investigate its usability in this application, and because

of its potential advantages, the neural-resistive grid is integrated into the system design to

handle the path planning task. Details of the neural-resistive grid will be described in

chapter 5.

2.4 Spatial Vision

Vision sensing is considered the most powerful sensory devices that provide the

richest sensory information of all the sensors used on robots to date. However the

extraction of this information is not an easy task (Borenstein, Everett and Feng, 1996).

Research in vision sensing had received considerable attention, especially in the field of

robotics for the last twenty years. There had been considerable research in the area of

obstacle detection (Molton, Se, Brady, Lee and Probert, 1988), object recognition and

tracking (Kosaka, and Nakazawa, 1995), visual servoing (Allotta, Conticelli and Colombo,

1998; Koreichi, Babaci, Chaumette, Fried and Pontnau, 1998; Ricardo, Michel and

Viviane, 1998) and road extraction (Onoguchi, Takeda and Watanabe, 1995) just to name a

few. Many of these are combined in the field of vision-based mobile robot

self-localization, map building, updating and navigation (Moravec, 1983; Atiya and Hager,

1993; Maeyama, Ohya and Yuta, 1995; Li, Nagata and Tsuji, 1995; Murray, and Jennings,

1997; Ohya, Kosaka and Kak, 1998; DeSouza and Kak, 2002; Asoh, Motomura, Asano,

Hara, Hayamizu, Itou, Kurita and Matsui, 2001).

19

Lorigo, Brooks and Grimson (1997) developed a system that deals with unknown

environments and obstacles, utilising an environment-dependent algorithm approach to

obstacle detection and navigation. The vision system consists of a single-camera vision

system that uses three independent vision software modules for obstacle detection. Each of

the vision modules uses different criteria (based on brightness gradients, RGB colour or

HSV colour features) for detection purposes. The system assumes that anything in the

image that is not "ground-like" is an obstacle. Only one of these modules is given the right

to command the robot at any time, based on the confidence of their output.

Ohya, Kosaka and Kak (1998) employed single-camera VISIOn and "Ultrasonic

sensing for their mobile robot to perform vision-based navigation. The aim was to use the

camera to capture an image of the robot's environment, extract the detected edges in the

image and compare them with edges in a synthetic image of the environment produced

from a 3-D environment model, assuming the robot's position to be the one generated by

dead reckoning.

Moravec (1983) used single-camera stereo vision in the Stanford Cart. This is done

by having the camera capturing 9 pictures as it slides in precise steps from one side to the

other along a 50-cm track. Atiya and Hager (1993) also used a single camera for stereo

vision. This is done by mounting the camera on a slider in such a way that the camera

remains perpendicular to the slider as it travels along the slider. Stereo images are

obtained by capturing the same scene with the camera located at different locations along

the slider.

Murray and Jennings (1997), Murray and Little (1998) and Se, Lowe and Little

(2001) employed the Triclops trinocular stereo vision camera module that has three

identical wide angle cameras. Their vision system used an algorithm similar to the

20

multi-baseline stereo developed by Okutomi and Kanade (1993) for computing the depth

maps. The authors state that the advantage of using trinocular camera over typical two

cameras stereo is because the second pair of cameras (i.e. the pair of cameras that are in the

vertical plane) can resolve situations that are ambiguous to the first pair (i.e. the pair of

cameras that are in the horizontal plane). Earlier work by Wilcox, Gennery, Mishkin,

Cooper, Lawton, Lay and Katzmann (1987) used 3 camera stereo in their Mars rover for

resolving the images correspondence problems. This is done by back-triangulating into the

redundant images for confirmation of a correct match.

Apart from stereo VIsiOn systems, omnidirectional v1s1on systems have been

receiving considerable attention recently. Asoh, Motomura, Asano, Hara, Hayamizu, Itou,

Kurita and Matsui, (2001) employed the omnidirectional camera for its large field of view

which lets many landmarks be simultaneously present in the scene and leads to more

accurate localization. Vlassis, Motomura, Hara, Asoh and Matsui (2001) used an

omnidirectional vision system for environment modelling and navigation.

In this thesis, a single camera is used and distance information is extracted by

projecting on the ground plane the edges of the navigable space detected by specially

developed software filters. Details on the vision system are found in chapter 4.

21

Chapter 3

Experimental Setup

This chapter discusses the experimental setup which was designed to achieve the

aims of the research. This research was fully conducted in the Robotics Laboratory of the

School of Computing at the University of Plymouth. The experimental setup consists of a

vision-based navigation system and a small scale environment. The vision-based

navigation system was programmed to use its camera to guide the robot's navigation

within its environment toward the goal while avoiding any detected obstacle. The vision­

based navigation system consists of two sub-systems, the computer system and the mobile

robot. The task of the computer system is to act as a remote brain for the mobile robot to

help it navigate safely within its environment.

Section 3.1 describes the details of the mobile robot which is equipped with a

monochrome video camera, a video sender for transferring video data, two servo motors

with a servo controller module for controlling the viewing direction of the video camera

and a wireless serial transceiver for communication with the computer system.

Section 3.2 describes the computer system which consists of a computer running

Cortex-Pro - a neural network programming package. The computer, a 200MHz PC with a

framegrabber is connected to a video receiver and a wireless serial transceiver.

22

Section 3.3 describes the robot's environment.

3.1 The Robotic System

3.1.1 The Modified Rug Warrior Robot

The robot used in this project is based on the commercially available Rug Warrior

robot (Figure 3.1), developed by researchers from the Artificial Intelligence Lab at the

Massachusetts Institute of Technology (Jones and Flynn, 1993). The Rug Warrior is

delivered with various sensors (two shaft encoders, three bumper switches, two infrared

detectors, a microphone and two photocells), a Motorola MC68HC11Al microcontroller

and its microcontroller circuit board equipped with 32 kilobytes of on-board RAM and

some free digital and analogue input/output ports for additional sensors and modules. The

microprocessor is programmed from a host computer. The programs are written in C

(using the Interactive C programming environment) and downloaded to the robot via the

host's serial line. This allows the robot to operate autonomously under the control of its

onboard microprocessor. The technical specifications of the robot are listed in Table 3 .1.

Figure 3.1: The commercial Rug Warrior robot.

23

Table 3.1: The commercial Rug Warrior robot's technical specifications.

The key to the adoption of the Rug Warrior robot as the navigation base lies in its

design that enables future expansion. For the purpose of vision-based navigation, work on

this thesis started with fitting the commercial available Rug Warrior robot with a VISION

VM5400S camera module, a UT -66 model wireless video sender module, two HS-80

micro servo motors with a servo controller module and a wireless serial transceivers

module (built by the University of Plymouth Technical Services. Additional details of

these modules and their usages are discussed below.

3.1.2 Video Camera

The aim of this research is to develop a vision-based navigation system that uses

computer vision to detect obstacles and searches for obstacle free path toward the goal.

For that reason, a VISION VM5400S camera module was mounted on the robot and was

used as the robot's visual sensor. This monochrome camera has a resolution of240 by 387

pixels. Its small and lightweight characteristics enable it to be moved around (in

pan-and-tilt motion) with the help of two servos (section 3.1.4). This allows the camera to

scan its surrounding without the need to move the robot, although this feature was

eventually not used. The scanned visual data from the camera are then sent to the host

24

computer (section 3.2) for image processing and analyses aimed at floor and obstacles

detection. These results are later used for mapping and path planning. Th.is enables the

robot to interact with its surroundings without the need of additional sensors.

3.1.3 The Video Sender

The UT-66 wireless video sender module is used to transmit live video signals

from the camera on-board the robot to the remote brain. The video signals are received by

the computer's receiver (i.e. a video player with an antenna), which then feeds the video

signals to the video capture card mounted in the computer. These live video signals are

digitized by the video capture card and undergo image processing. The video sender

module mounted on the robot can be seen in figure 3.2.

3.1.4 Micro Fast Servo

Two micro fast servos model HS-80 Micro from Hitec are used to provide the

video camera with pan-and-tilt motion. This allows the video camera to be directed

remotely. These micro fast servos were chosen because of their lightweight and

high-torque characteristics. They were used to control the vertical direction of the line of

sight of the camera.

3.1.5 Serial Servo Controller

The commercial available Mini SSC (Serial Servo Controller) from Scott Edwards

Electronics was used in this project for the purpose of controlling the HS-80 Micro servo.

Th.is Mini SSC is able to control eight servos according to instructions received over a

2400- or 9600- baud serial connection. In this project, the Mini SSC is directly connected

to the robot's RS-232 serial port and the instructions are received from the microcontroller

25

using 9600- baud. The Mini SCC is used to control the two servo motors discussed above.

These allow the video camera to be oriented to focus on a feature of interest.

3.1.6 The Serial Transceiver (418 MHz FM -1200 Baud)

Two wireless serial transceivers built by the University of Plymouth Technical

Services were used in this research as communication devices. One of the transceiver was

mounted on the robot (figure 3.2) while the other was used by the remote brain. These

transceivers play important roles in the communication process between the robot and the

remote brain. The robot and the "remote brain" PC communicate at 1200- baud. A

dedicated communication protocol was designed for this experiment.

Information such as waypoints and robot coordinates are received from the remote

brain through these transceivers.

Figure 3.2: The modified Rug Warrior robot. This figure shows the added upper
platform with vision and communication equipment used in this research.

26

FM418MHz l T
Receiverrr ransm itte~

1200- baud t RS232

Servo Contro ller

t 9600- baud

HS-80

HS-80
Micro Servo 2

Loft .,,ft E•oo~ ~gb' .. ,ft E""'"''
MC68HCII

Microcontroller

I Po\\er Supply
L_____! 2V

Righ t Motor

DC-DC Convert er

Battery 6V 1+-------1

Figure 3.3: The architecture of the Robotic System.

3.2 The Computer System "Remote Brain"

The Computer System runs the user-program in a software environment called

"CORTEX-Pro". The Computer System in this project acts as the remote brain for the

robot. Live video signals from the robot' s camera are fed through the video player via an

antenna, then to the computer. The remote brain samples the appropriate live video signals

of interest into an digital image. This image is then processed and analysed in order to

produce an obstacle free path for the robot to navigate. This path is then transformed into

waypoints before sending to the robot via the serial transceiver.

27

Monitor
TV

Video Recorder
1200 ooud FM 418 MHz

Rece iverffransmitter

Figure 3.4: The architecture of the Computer System "Remote Brain".

3.2.1 Software "Cortex-Pro"

Cortex-Pro is a special-purpose neural networks programming environment

developed at King' s College, London. It is used to program the user-program that runs on

the host computer. Cortex-Pro comes with built-in functions, corresponding to the needs

of this research. It enables a user-program to be written in a more efficient and easy

manner. The Graphics Interface of Cortex-Pro enables users to access objects/variables

easily, even while the user-program is running. It can also be expanded with user-defined

functions, as has been done here to add image processing capabilities.

3.2.2 Win Vision Framegrabber (QUANTA)

The WinVision Framegrabber (QUANTA) located in the remote brain is used to

sample the live video signal from the robot camera. The framegrabber accepts CCIR-PAL

format (I volt p-p into 75 ohms) video signals and digitizes the 320x240 pixels in the

upper-left corner of the image, which are then compressed horizontally into an array of

187x240 pixels with 256 grey levels.

28

3.3 Environment

The robot's environment has an area of 125x89 centimetres, with white walls and a

black floor. Object such as a small white block was inserted randomly in the robot's

environment, acting as obstacles during the experiment (Figure 3.5). An overhead camera

is mounted above the working area for recording the path of the robot. The motion tracking

software was also written as part of this work, but is not described in this report.

Figure 3.5: The modified Rug Warrior in its environment with the presence of an
obstacle.

29

Chapter 4

Vision-based Obstacles Detection,
Self-localization and Map Updating

Often the tenn "Computer Vision" is defined as a procedure that involves several

processes, which consists of image acquisition, processing, classification, recognition, and to

be all embracing, decision making subsequent to recognition. The aim of using a computer

vision in this project is to detect the presence of obstacle and walls within the robot's

environment. This allows the robot's environmental map to be updated, and supports the

robot's self-localization and navigation tasks.

This chapter described vision-based obstacles detection, self-localization and map

updating. The vision-based processes are shown in figure 4.1. The robot's vision system

consists of a video camera, a wireless video sender, a wireless video receiver, a Win Vision

frame grabber and software components that processes and analyze images. The robot's

video camera constantly feeds live video signals to a wireless video sender that broadcast

these live video signals to the remote brain. The WinVision frame grabber onboard the

remote brain samples these live video signals into a digitized image when it is needed. The

sampled image is then processed by the image-processing and analyzing software module.

The image-processing and analyzing software module perfonns the segmentation of the

sampled image, dividing the sampled image into two distinct regions (walls and floor) of

30

similar attributes. The segmentation process prepares the sampled image for the filtering

process which searches for floor edges then extracts their positions and orientations. That

information is used in the self-localization module for localizing the robot in its prior map,

and then in the map updating module that updates the robot's prior map with detected

obstacles.

The path planner which will be described in chapter 5 can then plan a non-colliding

path to the goal based on the updated robot's map.

r.·--------------------------------,
The Robot's Vision Syst:;-- ((c

~ r~ -~J~ (

Camera

WinVJSion
framegrabber

t Image Segmentation

/
Image Processing • and Analyzing

~
Image Filtering

I_ __ _ ----- ~-----------------,,
VJS ion-based

Self-localization

+
Map Updating

Figure 4.1: Vision-based processes for obstacles detection, self-localization and
map updating.

Section 4.1 begins by discussing the fish-eye lens camera calibration process and

shows how to obtain the camera lens distortion parameters that are needed to correct the

31

distorted image. This is important as the robot's video camera exhibits the properties of

barrel distortion (fish-eye lens effect).

Section 4.2 describes the filtering process in a systematic way and introduces the

floor-edges-specific filters that are used in the filtering process for detecting floor and walls

edges. This section begins with discussing the image segmentation process (4.2.1) followed

by the design of the floor-edges-specific filters (known as the vertical and the horizontal

edge filters) used for detecting floor edges (4.2.2), and describes a new method for

determining the detected edge's position and orientation (4.2.3).

Section 4.3 deals with the coordinate transformation of the detected edges and their

orientations from the image coordinate system to the map coordinate system. This process

involves two sub-transformations; the first is to transform the coordinates of interest from the

image coordinate system to the egocentric coordinate system using projective geometry

(4.3.1), while the second transforms the coordinates of interest from the egocentric

coordinate system to the map coordinate system (4.3.2).

Section 4.4 discusses a vision-based self-localization algorithm that localizes the

robot in its environment based on the captured image by matching the detected floor edges

with those in the internal prior map. A new method is proposed for determining orientation

errors.

Section 4.5 presents tests of the vision-based self-localization algorithm and

discusses the test results.

Section 4.6 explains the obstacle detection and registration process that completes the

robot's vision system.

32

In section 4. 7 the test results and encountered problems are discussed.

4.1 Correction of Lens Distortion

4.1.1 Fish-eye Lens Effect

Figure 4.2: The fish-eye lens effect on a square grid.

The robot's video camera module comes with a Chinon lens that exhibits the fish-eye

lens effect. The lens is used to provide the robot with a large field of view. This is particular

useful when the clearance between the object and the lens is minimal, as fish-eye lens can

provide a full view of the object where other lens fail. The drawback of using such a lens is

that it introduces significant distortion of the captured images. This form of distortion is

commonly known as the fish-eye lens effect or barrel distortion (figure 4.2). The distortion

can be corrected by a procedure that involves a transformation based on the optical centre on

the image plane, and the lens distortion coefficients. These variables are always obtained

through a calibration procedure which is described in section 4.1.2.

There are many calibration methods proposed by other researchers (Beck, 1925;

Miyamoto, 1964; Anderson, Alvertos and Hall, 1982; and Weng, Cohen and Herniou, 1992)

for compensating the lens distortion effect. The approach used in this thesis is inspired by

Williams and Becklund (1972).

33

4.1.2 Fish-eye Lens Effect Correction

a)

I

' i

b) c)

Figure 4.3: This figure illustrates the fish-eye lens effect and its correction. (a) A
sample of the calibration pattern; (b) The distorted image obtained from the robot's
visual sensor; and (c) The distortion-free image after applying the fish-eye lens
correction sub-routine.

This section discussed the calibration procedure used for calibrating the robot's video

camera. The robot's video camera is attached to a docking station with its optical axis

perpendicular to the plane of the calibration pattern. The calibration pattern used is similar to

the one shown in figure 4.3(a). An image of the calibration pattern taken by the robot's

video camera is shown in figure 4.3(b). It is evident that the distortion results in a shifting of

pixels from their original positions and creates a distorted image. This image is then used in

the calibration process as the reference image for determining the location of the optical

centre on the image plane and the lens distortion coefficient. Theoretically, the optical centre

of the lens should always be directly perpendicular to the centre of the camera's CCD sensor

array; therefore the location of the optical centre on the image plane is usually assumed to be

at the centre of the image captured. But due to hardware limitations of the frame grabber, the

34

optical centre on the image plane is shifted from the centre of the captured image as shown

in figure 4.4.

384

187

240

287

Camera's Video Output

240

D Camera's Video Output

D Digitized Video Data

e Optical Centre

Figure 4.4: The robot' s vision system image sampling process. This figure shows
the sampling process from raw video signals to the fmal sampled image used for the
vision processing. Note that the resolution changes during this process are mainly
due to hardware limitations.

When capturing the reference image, it is important to make sure that the camera's

field of view is directly perpendicular to the calibration pattern plane (i.e. the camera lens is

parallel with the calibration pattern plane). The reason for this is to minimize any external

distortion of the reference image.

35

Based on these assumptions and the prior knowledge of the hardware used in the

vision system, the search for the location of the optical centre on the image plane can be

narrowed down. The location of the optical centre on the image plane and the lens distortion

coefficient can then be determined using the equations 4.1-4.5 inspired by Williams and

Becklund (1972) through a trial-and-error method .

y

(0,0)

....------------.,.-----------, (xmax>Ymn.<)

e k'

k

(xcenrre• Ycentre
--------------------------. -------------------

X

1
I
I
I
I
I
I

Figure 4.5: The fish-eye lens distorted image correction model. The origin of the
image coordinate system used in image processing is located at the bottom left of
the image. The pixel k represent the distorted pixel of interests, while k' is its new
position after the fish-eye lens correction. r k represent the distance from the optical
centre on the image plane to the distorted pixel of interests, k .

These two equations shown below are used to correct the coordinates of pixels in the

distorted image.

xk '= [E F X (xk - xrentre)]+X centre

Yk '= [EF X (yk - Y centrJ]+ Y centre

(4.1)

(4.2)

The function of equations 4.1 and 4.2 is to take the distorted pixel coordinate (xk, Yk)

and return their corrected position (xk', y/). The correction are based on the lens optical

centre on the image plane (Xcentre. Ycentre), as the distortion is rotationally symmetric about the

lens optical centre shown in figure 4.3(b). The correction factor EF is defined as:

(4.3)

36

where the value 1 is a scaling factor, rk represent the radial distance in pixel units of

the pixel k from the optical centre on the image plane and F represents the lens distortion

coefficient.

The radial distance r k with its origin located at the lens optical centre on the image

plane (Xcenrre. Ycenrre) is determined using equation 4.4. The coefficient F = 0.0000045 and the

lens optical centre on the image plane (Xcenrre, Ycemre) = (93, 92) are obtained through a trials

and errors method during the camera calibration process.

r* = ~(xk- xcentre)
2 + (yk - Y centre)

2

F = 0.0000045

(4.4)

(4.5)

Once the optical centre of the lens on the image plane (Xcenrre, Ycenrre) and the optimum

coefficient Fare obtained, all the distorted images from the robot's video camera can be

transformed to their undistorted form. The distortion-free version of the distorted image

shown in figure 4.3(b) is shown in figure 4.3(c).

St"~' ""~"'" lm•g<

~ Part of the corrected ~ imageused

Figure 4.6: The selected portion of the distortion free image used for vision
processing. The corrected distorted image captured from the video camera with
resolution of 187x240 pixels is reduced to a rectangular image with resolution of
186x236 pixels. This image is then used in the image coordinate to egocentric
coordinate transformation. Here ft represents the pixel column, and ly represents the
pixel row with respect to the lens optical centre on the image plane.

37

4.2 Floor-specific Edge Detection

The aim of this project is to use the robot's video camera to assist the robot in

navigation process such as obstacle detection, and self-localization. Thus the robot's vision

system must be able to distinguish floor regions and extract useful information such as the

edges positions and their orientations. A segmentation process based on automatic

thresholding was implemented and will be described section 4.2.1. The result of the

segmentation process provides the robot with knowledge of its navigation space but no

boundary edges information (i.e. the position of the floor edges and their orientation) can be

extracted. Therefore an edge detection process is proposed. Section 4.2.2 discusses the

edges detection process and proposes two new floor-edges-specifics filters (i.e. the horizontal

filter and the vertical filter) which are used to determine the presence of floor edges. If a

floor edge is detected, the filter's outputs will be used to select the appropriate equation from

the equations system, and are then applied to the selected equations to determine the

orientation of the detected edge. The equations system consists of four different equations

derived based on trigonometric rules. Details of the equations system are described in

section 4.2.3. Section 4.2.3 also discusses how the positions of the edges are determined; the

basic method is described in section 4.2.3.1 while a refined method which make used of

edges orientations information is described in section 4.2.3.2.

4.2.1 Image Segmentation (Floor/non-floor)

The segmentation of the image captured by the robot into floor and non-floor regions

is in general a complex process for which several methods have been proposed (Haralick and

Shapiro, 1985; Pappas, 1992; Pal and Pal, 1993; Bezdek and Hall, 1993; More\, J.-M. and

Solimini, 1995 and Belongie, Carson, Greenspan and Malik, 1998).

38

In the present case, the image is in a monochrome grey scale. Despite the floor being

painted matt black and the walls being white, in the image, these appear as dark and light

shades of grey with an intensity dependent on the illwnination conditions. To enable a

reliable detection of floor and walls, an automatic thresholding method was designed.

b)

Figure 4.7: The automatic thresholding process. (a) The grey scale image, (b) the
intensity histogram of the pixels in image (a), and (c) the binary image (after
segmentation) with floor represented by the black colour and non-floor represented
by the white colour.

The automatic thresholding sub-routine first analyses the given image (i.e. figure

4.7a) and computes the intensity histogram of that image (i.e. figure 4.7b). In the intensity

histogram, it searches for two peaks, the left-most peak and the right-most peak. The sub-

routine then searches for the valley between these two peaks and set its intensity value to be

the threshold value. The segmentation process segments the image based on this threshold

value. The intensity values that are equal or less than the threshold value are the dark

regions, which are assumed to represent the floor while the intensity values that are higher

than the threshold value are defined as walls or obstacles (i.e. figure 4.7c). Pixels in the

region that represents the floor have their intensity values set to -1 while the other pixels

which represent the walls or obstacles are set to + 1. This segmentation process converts the

original image into a binary image that will later used by the filtering sub-routine to detect

floor edges and their orientations.

39

4.2.2 Vertical and Horizontal Edges Filter Design

To detect the presence of edges in the image, a filtering process is performed on the

image based on the two filters shown in figure 4.8. By using the moving window method,

the image is divided into 784 (28x28) sub-images. Each of these sub-images is then filtered

individually by a centred horizontal and vertical filter.

a) b) I I -I -I

I I -I -I

I I -I -I

I I -I -I

c) d)
I I I I

I I 1 I

- I -I -I -I

-I -I -I -I

Figure 4.8: The vertical and the horizontal filters. (a) The vertical filter. (b) The
matrix representation of the vertical filter; (c) Horizontal filter and (d) the matrix
representation ofthe horizontal filter.

Input Image

-~--,--,--

I I I I
- -·- --- - ---I

Filter I

-- --I
I I I I -_1_- J-- L- -1
I I I I I I I

I I

-
Output Filtering -

Process ___,....
I I
I I

Figure 4.9: The edge filtering process for detecting edges and determining their
positions and orientations. The input is a group of pixels from the input image that
are passed through the filter and the output value of the filter is stored in a new grid
that constitutes an output image.

40

The filters outputs are recorded with their coordinates. Note that these coordinate are

the coordinate of the center of the sub-images within the image coordinate system. The

centers of all the sub-images can be seen as the evenly space dots in figure 4.16a and 4.16c.

In each sub-image, the presence of an edge is determined using equation 4.6 and 4 .7

4 4

II[I(m + j,n + k)FH (j,k)]

A = 0 H (x, y) = ..::..i_='-*-='---------
16

(4.6)

4 4

I I [!(m+ j, n + k)Fv (j, k)]
B = Ov (x, y) = ..::...i=....:..'....:..*.-..='---------

16
(4.7)

Where: I(m+j,n+k) is the input image pixel value at the coordinate(m+j,n+k).

Fv(j,k) is the vertical filterpixel value at coordinate(j,k). (see figure. 4.8.b)

FH(j,k) is the horizontal filter pixel value at coordinate(j,k). (see figure. 4.8.d)

(m,n) is the coordinate of the image pixel at the bottom-left of the filter.

(j,k) is the pixel coordinate relative to (m,n).

(x,y) is the output image pixel coordinate.

A=OH(x,y) is the output value of the horizontal filter.

B=Ov(x,y) is the output value of the vertical filter.

If no edge is detected, the outputs of the horizontal filter A and vertical filter B will be

zero. If an edge is detected, the outputs A and B are used to select an equation from the

equations system shown in table 4.1. Its derivation is detailed in the next section.

(90B - 180A)
a = -=------'-

(B -A)

(180A + 270B)
a = -=----------"-

(A+B)

(4.9)

(4.1 0) a = ...:...(3_60_A_-_2_7_0B.....:....)
(A-B)

Table 4.1: The equations system used to determine the orientation of the detected
edge. A is the output from the horizontal filter while B is the output from the
vertical ftlter. a is the orientation of the edge in degree.

41

(4.8)

(4.11)

The filters outputs A and B are then applied with the selected equation to determine

the detected edge orientation a. The detected edges positions and orientations are then

stored in an array that will later be used for robot self-localization and obstacles registration.

4.2.3 Calculation of the Edge Position and Orientation

The outputs A and B of the filtering process are used for the purpose of defining the

orientations and positions of the detected edges in the input image. The edge's position and

orientation information are important as they are needed to perform self-localization.

4.2.3.1 Edge Orientation

The edge orientation is determined using the equations system shown in table 4.1 .

The equations system is derived based on the trigonometric properties shown in figure 4.10.

By inspecting the horizontal and vertical filters outputs A and B, the edge orientation a can

be narrowed down to the quadrant it belongs to and the equation for each quadrant can be

obtained.

B

Case I
0•-+90<>; A>O and B>O.
Case2
9()o-+ 180<>; A<O and B>O.
Case3
180o-+270o; A<O and B<O.
Case4
27()o-+360o; A>O and B<O.

Figure 4.10: The four cases with each representing a quadrant within the circle.

If both outputs A and B are positive, a falls into the fust quadrant, and is determined

using equation 4.8. If A is negative while B is positive, a falls into the second quadrant, and

is determined using equation 4.9. If both outputs A and Bare negative, a belongs to the third

quadrant, and is determined using equation 4.1 0. If A is positive while B is negative, a

belongs to the fourth quadrant, and is determined using equation 4.11.

42

Hereafter, each derived equation will be tested with one of the image configurations

as seen by the filter shown in figure 4.11.

m
(a) (b) (c) (d) (e)

mm
(f) (g) (h) (i) (j)

Figure 4.11: Examples of possible image configurations encountered during the
filtering process. The white colour represents an obstacle or a wall, while black
represents the floor.

43

CASE 1: A> 0 and B > 0,

a)

c) 1 1

1 1

-1 1

1 1

1 -1

-1 -1

1 1

1 1

b)

d) 1 1 -1 1

1 1 1 1

1 -1 1 1

-1 -1 1 1

Figure 4.12: Edge filter in case 1. (a) Trigonometry drawing for case 1, (b) matrix
representation of the image shown in figure 4.lle, (c) horizontal filter output and (d)
vertical filter output. From (c) and (d) we obtain A = 0.5 and B = 0.5. By applying
the equation system (table 4.1, equation 4.8) we obtain a = 45°

Let

A =(1- :O)c
B =(:O)c

Proof: if a.=O therefore A=C,

therefore A=O, if a.=90

B=O.

B=C.

To determine the angle a., we transform (ii) and obtain

C= 90B
a

Substituting (iii) into (i) we obtain

A= (1-~) 90B
90 a

a
aA = (1-

90
)90B

aA = (90B - aB)

aA +aB =90B
90B

:. a =---
(A+B)

44

(i)

(ii)

(iii)

(4.8)

CASE 2: A< 0, B > 0

b)

c) -1 -1 -1 -1 d) -1 -1 1 1

-1 -1 -1 -1 -1 -1 1 1

-1 1 1 1 1 -1 1 1

-1 -1 1 1 1 1 1 1

Figure 4.13: Edge filter in case 2. (a) Trigonometry drawing for case 2, (b) matrix
representation of the image shown in figure 4.llc, (c) horizontal filter output and (d)
vertical filter output. From (c) and (d) we obtain A = -0.375 and B = 0.375. By
applying the equation system (table 4.1 , equation 4.9) we obtain a = 135°

Let

a
A=(l-

90
)C

B = (2- :o)C

Proof: if a.=90 therefore A=O; B=C

if a.=180 therefore A=-C; B=O

To determine the angle a., we transform (ii) and obtain

C= 90B
(180 - a)

Substituting (iii) into (i) we obtain

A-(l-~) 90B
90 (180-a)

a
(180-a)A = (1--

90
)90B

180A-aA =90B-aB
aB - aA = 90B - 180A
a(B- A)= 90B - 180A

90B - 180A
:.a=----

(B - A)

45

(i)

(ii)

(iii)

(4.9)

CASE 3: A< 0, B < 0

a) b)

c) -1 -1 1 1 d) -1 -1 -1 -1

-1 1 1 1 -1 1 -1 -1

-1 -1 -1 -1 1 1 -1 -1

-1 -1 -1 -1 1 1 -1 -1

Figure 4.14: Edge filter in case 3. (a) Trigonometry drawing for case 3, (b) matrix
representation of the image shown in figure 4.11 a, (c) horizontal filter output and (d)
vertical filter output. From (c) and (d) we obtained A= -0.375 and B = -0.375. By
applying the equation system (table 4.1 , equation 4.10) we obtain a= 225°

Let

a
A=(--3)C

90
a

B =(2-
90

)C

Proof: if a=180 therefore A=-C;

ifa=270 therefore A=O;

B=O

B=-C

To determine the angle a, we transform (ii) and obtain

C= 90B
(180-a)

Substituting (iii) into (i) we have obtain

A-(~-3) 90B
90 (180 - a)

a
(180- a)A = (

90
- 3)90B

180A- aA =aB- 270B
aA+aB = 180A+270B
a(A +B)= 180A + 270B

180A+270B
:.a =-----

A+B

46

(i)

(ii)

(iii)

(4.10)

CASE 4: A> 0, B < 0

a) b)

c) 1 1 1 1 d) 1 1 -1 -1

-1 1 1 1 -1 1 -1 -1

1 1 -1 -1 -1 -1 -1 -1

1 1 1 -1 -1 -1 1 -1

Figure 4.15: Edge filter in case 4. (a) Trigonometry drawing for case 4, (b) matrix
representation of the image shown in figure 4.11 b, (c) horizontal ftlter output and
(d) vertical filter output. From (c) and (d) we obtained A = 0.5 and B = -0.5. By
applying the equation system (table 4.1, equation 4.11) we obtain Cl= 315°

Let

a
A=(--3)C

90
a

B=(--4)C
90

Proof: if a = 270 therefore A=O; B=-C

if a = 360 therefore A=C; B=O

To determine the angle a, we transform (ii) and obtain

C= 90B
(a-360)

Substituting (iii) into (i) we obtain

A - (!:__- 3) 90B
90 (a- 360)

a
(a-360)A = (--3)90B

90
(a- 360)A =(aB- 270B)

aA- aB = (360A- 270B)
a(A-B) = (360A- 270B)

(360A- 270B) :. a =:..__ ___ ____:__
(A-B)

47

(i)

(ii)

(iii)

(4.11)

In summary, these four equations are:

Where

Case 1: a = 90B/(A+B)

Case 2: a= (90B-180A)/(B-A)

Case 3:

Case 4:

a= (180A+270B)/(A+B)

a= (360A-270B)/(A-B)

a: the edge angle in degree

A: the output from the horizontal filter (equation 4.6)

B: the output from the vertical filter (equation 4.7)

4.2.3.2 Edge Positioning - Basic Method

(4.8)

(4.9)

(4.10)

(4.11)

Once the orientation of the edge within the filter window is obtained, the orientation

information a is assigned to its coordinates (i.e. the coordinates x, y as shown in equation 4.6

and 4. 7) in the image. This allows the system to know where the floor region ends and the

edge's orientation. Using this information the system can perform a fairly accurate

self-localization operation.

As discussed previously, the image is divided into 784 (28x28) non-overlapping

sub-images (the distance between the center of two sub-images is equal to the size of a sub­

images) for the filtering process. This reduces the amount of information to be processed,

hence increases the computation speed.

The position of the detected edge within the sub-image is assumed to be the position

of the center of that sub-image. The centers of all the sub-images can be seen as the evenly

space dots in figure 4.16a and 4.16c.

The drawback of this method is that the detected edge is not assigned to its actual

position, if the detected edge does not pass through the centre of the sub-image. This

48

inaccurate positioning leads to errors in self-localization and the presence of phantom

obstacles (i.e. observed figure 4.16a and figure 4.16b)

(a)

. '
~~ : : : : : : : : : : : :
~

. ,. "

(c)

(b)

(d)

Figure 4.16: Comparison between the basic and the reftned methods of edges
positioning. (a) and (b) show the result of the basic method while (c) and (d) show
the result of the refined method. Figure (b) shows that the detected edges at the top
left corner can be mistaken for an as obstacle hence the presence of a phantom
obstacle. Figure (d) show how this problem can be overcome by using the refined
method.

4.2.3.3 Edge Positioning - Refined Method

In order to solve the problem of inaccurate positioning discussed above, firstly the

positions ofthe detected edge within every sub-image has to be determined accurately, only

then can its position relative to the actual image and the map be determined.

Based on the information that the floor is represented by black pixels, fraction of area

covered by the floor within the sub-image can be determined. By knowing the detected edge

orientation and the fraction of floor area, the exact position of the detected edge can be

determined.

49

Since each sub-image is sampled into a 4x4 grid for the filtering process, the fraction

N black of black pixels occupying the grid can be determined by dividing the number of black

pixels P black within the grid by the size of the grid (i.e. 16). This is shown in equation 4.12.

N _ p black
blark -

16 (4.12)

Based on the orientation of the detected edge, the appropriate equation is chosen to

calculate the actual edge position with respect to the image. There are four conditions with a

total of eight equations where each condition is represented by two equations. These

equations are shown below.

Condition: 0° ~ 90°

X= (1 - n black) X Fx + (xs - Fx X 0.5)

y = n black X Fy + (Ys- Fy X 0.5)

Condition: 90° ~ 180°

X = (1 - n black) X Fx + (xs - F.T X 0.5)

y = (1- n black) X Fy + (Ys - Fy X 0.5)

Condition: 180° ~ 270°

X = n black X F.T + (xs - Fx X 0.5)

y = (1- n black) X Fy + (Ys - Fy X 0.5)

Condition: 270° ~ 360°

X = n black X Fx + (xs - Fx X 0.5)

y = n black X Fy + (Ys - Fy X 0.5)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

where Fx and Fy are the filter width (x-axis) and length (y-axis) with respect to the

image, Xs and Ys are the coordinate of the centre of the sub-image with respect to the image

coordinate system (i.e. the evenly space dots in figure 4.16a and 4.16c).

Figure 4.16c shows the better positioning of the edges using this refined method. By

comparing figure 4.16b with 4.16c, one can see that the doubling of the edge line at the top

left of figure 4.16b is eliminated in figure 4.16c. It seems that the refined method is not as

effective for side walls. The reasons for that are unclear at present. They are unlikely to be a

50

software implementation problem as this has been checked several times. Thus the proposed

refined algorithm is effective in reducing the problem of phantom obstacles (section 4.5).

The refined method is used in the self-localization process described in section 4.4.

4.3 Coordinate Transformations for the Vision System

The VC5400S Camera Module used in this project is attached to the top of the robot

(figure 4.17) with height h from the ground (figure 4.18). In order to build the model map,

the relationship between image coordinates and the real world coordinates have to be

established. This section describes the required coordinates transformations.

Figure 4.17: This figure shows the camera module.

4.3.1 Image Coordinate Frame to Camera Coordinate Frame
Transformation

The first step in coordinate transformation is to understand the relationship between

the two coordinate systems of interest (i.e. the image coordinate system and the camera

coordinate system) and make a link between them. The camera coordinate system is centred

at floor level vertically under the camera. It rotates horizontally with the camera (see e.g.

figure 4.22). The objective is to convert the 2-D position of an object (e.g. pixel) in the

51

image into its position in the 3-D coordinate frame of the camera. Figure 4.18 and 4.19

shows the camera geometry maps used to determine the relationship between the image

coordinate system and the camera coordinate system.

h

Figure 4.18: The side view of the camera geometry map used for determining the y
coordinates of the detected edges. The variables shown are /3: camera pitch angle,
h: height of the camera, Py: the vertical image coordinate, dhj_Py): the imaginary
line originating from the lens optical centre and passing through Py. /J...Py): the angle
of dhj_Py) with respect to the line originating from the lens optical centre and
passing through lens optical centre on the image plane (Py=O), d..Py): the
intersection angle of the imaginary line Py and the ground plane, and d(Py): the
distance from the camera to the intersection point of Py on the floor.

Figure 4.18 shows the side view of the camera geometry map used for determining

the coordinate of the pixel of interest with respect to the camera coordinate system. Based

on the camera geometry map shown in figure 4.18, d(Py), or simply Ye, is they-coordinate of

the pixel of interest P (i.e. whose coordinates are (Px, Py) with respect to the image

coordinate system based on the optical centre in the image plane) with respect to the camera

coordinate and can be determined using equation 4.22, if a(Py) is known. a(Py) can be

determined by using equation 4.21, where f3 is the camera pitch angle, and liy{Py) is the angle

of dhy(Py) with respect to the line originating from the lens optical centre and passing

through the lens optical centre on the image plane (Py=O) as shown in figure 4.18. Note that

f3 is negative as the camera is looking downward, and liy{Py) can be positive or negative

52

depends on the location of the pixel of interest P (i.e. Py is negative if it locate below the

optical centre on the image plane).

ay{Py) = -(/JY + 8y(Py))

Y -d(P)-__ h __
c Y tan(a/.t:))

(4.21)

(4.22)

\

\

\

\

\

\

\

\

\

\

\

\

lm~~t~•

.U..(P,)

I

I
I

P,=93

I

I

I

Figure 4.19: The camera geometry map used for determining the x coordinates of
the detected edges. The variables defined here are fx: the horizontal image
coordinate, dhx(lx): the imaginary line originating from the lens optical centre and
passing through fx, K.lx): the angle of dhxUx) with respect to the line between lens
optical centre and the lens optical centre on the image plane, and d(Jx) is the distance
between fx and the lens optical centre on the floor plane.

Once d(Py), the distance of the pixel of interest P with respect with the camera y axis

is determined, d(Px) or Xc can then be determined using equation 4.23. This equation is

derived based on figure 4.19 using similar methodologies as described above.

d(P)
x = d(P) = y

c x tan(8.,)
(4.23)

Note that b"x(Px) and b"y(Py) are needed to determined Xc and Ye respectively. To

determine b"x(Px) and b"y(Py) we need to find their pixel-angle relationship.

53

A similar setup as described in the section 4.1.2 on Fish-Eye Effect Correction was

used to make sure that the camera's optical axis is perpendicular to the calibration grid as

shown in figure 4.20 to determine the pixel-angle relationship of the camera. The calibration

grid is used because the distance between each line in the grid is known hence this simplifies

the measuring process. Based on the calibration grid, we determine the number of pixels

shifted from the optical centre to the first line of the grid and calculate its angle using

equation 4.24 for the x-axis and equation 4.25 for the y-axis.

This pixel-angle data is recorded, and the whole process is repeated for the second

line, the third and so on. This process was performed on all visible vertical and the horizontal

lines of the grid in the image.

Calibnltion Grid

Opt/a/ C•llr

Figure 4.20: Side view of the concept diagram used to determine the angle for each
line in the calibration grid.

B" = tan(::)
B,,, = tan(:, J

(4.24)

(4.25)

The recorded pixel-angle data were plotted and curve-fitted to determine their

relationship. This pixel-angle relationship graph is show in figure 4.21 .

54

-90 a- -

Pixei-Angle Relationship

40 Ange (")

-20 ~
~0 j

0

0

- -O-- 0

Pixel

120 150

Measured Pixei-Angle Relationship Dala for Image's x-axis

Pixei-Angle Relationship Fitted Function for Image's x-axis

Measured Pixei-Angle Relationship Dala for Image's y-axis

Pixei-Angle Relationship Fitted Function for Image's y-axis

Figure 4.21: The Pixel-Angle relationship graph showing the measured data plot
and their fitted function.

The pixel-angle relationship equation for the image x and y axts are shown in

equation 4.26 and equation 4.27 respectively. Px and Py each represent the column and row

number of pixel in the x and y axis with respect to the optical centre.

oxCPx) = 0.3022442903 Px + 0.02324956079

oy(Py) = 0.1515357901Py - 0.2358910127

(4.26)

(4.27)

Once the pixel-angle relationship equations is obtained, the location of the pixel of

interest relative to the camera coordinate (xc, Ye) can be obtained using equation 4.22 and

4.23.

4.3.2 Camera Coordinate Frame to Map Coordinate Frame
Transformation for Obstacles and Walls

The coordinate transformation from the Camera Coordinate frame to Map Coordinate

frame plays an important role in the process of self-localization and map updating, as it

allows the detected edges in the image to be mapped onto the prior map. Two

transformation processes are needed to project the pixel of interest from the camera

coordinate frame to the map coordinate frame. The first transformation, which will be

described in section 4.3.2.1 , transforms the pixel of interest from the camera coordinate

frame to the robot's coordinate frame. The second transformation, which will be described

55

in section 4.3.2.2, transforms the pixel of interest from the robot's coordinate frame to the

map coordinate frame.

The pixels of interest (d(Lx), d(Ly)) described in prev10us section can then be

rewritten as (xc,P,Yc,P) which indicate the coordinates of the pixel of interest P, with respect to

the camera coordinate frame c. Figure 4.22 show the relationship between each coordinate

frame and helps in deriving the transformation equations shown below.

Robot's Camera
Coordinate Frame

Yr
~

Robot 's Egocentric
Coordinate Frame

f t'!.•t:

Figure 4.22: Illustration of the relationship between the camera coordinate frame,
the robot's egocentric coordinate frame and the robot's coordinate frame.

56

4.3.2.1 Camera Coordinate Frame to Robot Coordinate Frame
Transformation

The pixel point shown in figure 4.22 is an example of a pixel in an image captured by

the camera. In order to place this pixel into its relative place on the map, several

transformations have to be made. In this section we will concentrate on the transformation

of the coordinate of interest P from the camera coordinate frame to the robot coordinate

frame. That is the point (xc.P. Yc.P) in the camera coordinate systJm transformed into a point

(xr.P, Yr.P) in the robot coordinate frame. As shows in figure 4.22, a combination of rotations

and translations is needed. A rotation of the camera coordinate system by an angle of fJc.z is

needed for the transformation into the egocentric coordinate system. Therefore equations

4.28 and 4.29 are used to perform the rotation transformation with angle fJc.z to bring the

coordinate of point P from the camera coordinate system into the egocentric system

(figure 4.23).

Xegc.P = Xc.P COS f3c.z - y c,P sin f3c,z

Yegc.P = x,_psinf3c.z + Yc,Pcosf3,,,

(4.28)

(4.29)

Since the egocentric coordinate system is collinear with the robot coordinate system,

only a translation is needed to convert the egocentric coordinate system into the robot

coordinate system. Since only an offset distance dy along the y axis of the robot coordinate

system separates the egocentric coordinate system and the robot coordinate system, we have

y -d +y r,P - r.egc egc,P (4.30)

The translation equation shown above is used to transform the coordinates of point P

from the egocentric system to the robot coordinate system (figure 4.23).

57

p._

I

Y,

Figure 4.23: The location of pixel Pin the robot coordinate system.

4.3.2.2 Robot Coordinate Frame to Map Coordinate Frame
Transformation

To bring the origin of the robot coordinate systems onto the origin of the map

coordinate system involves a rotation of angle BR that will bring the two coordinate systems

parallel with each other, followed by a translation of Xr and Yr along the map Xm and Ym axes

respectively. Therefore in order to transform the coordinate P from the robot coordinate

system to the map coordinate system involves the same rotation and translation process that

are represented in equation 4.31 and equation 4.32. These equations are derived based on the

same concepts described previously:

x, P = x, , + xr P cosB, - Y, P sin Br
> J ' I

Ym.P = Yr + xr,P sin ()r + Yr ,P cos B,

58

(4.31)

(4.32)

Ym,r

Y,

y,.

Robot's
Coordinate Frame

L x.,±::::~ =======::±:::=:::::::================:::J
x,.,,

x,.,p=x,.,, + x,,pCosB,- y,~inO,

Figure 4.24: This figure illustrates the transformation of coordinate from robot
coordinate system to the map coordinate system.

4.4 Vision-based Self-localization

This section describes the vision-based self-localization method used in this project.

The vision-based self-localization function is used to reposition the robot on the prior map

based on the image captured by the robot's camera. It is important to note that the shaft

encoders localization sub-routine does not accurately estimate the robot position as the shaft

encoders drift with time. Thus, vision-based self-localization is employed to overcome this

problem.

The aim of the vision-based self-localization sub-routine is to determine where the

robot was located when the sampled image was taken. This is done by matching the detected

floor edges in the captured image with floor edges in the robot's environment (prior map)

and then, by using this information, deriving the robot' s pose.

59

(a) Edges in the Prior Map (b) (c)

-· . .
..

'

'

.. \
• • • • .. ,._ • • • • I . . .

I

Detected Edges
-~ • • I

..
r "-"'""1

(d)

---.. -:; , ---.. . .
I

•' r~ • ... t

The floor edge in the prior map

The detected floor edges in the sampled image

The robot

Figure 4.25: illustration of the vision-based self-localization process. (a)
Comparing the floor edges (horizontal and vertical) detected in the image with floor
edges in the prior map to obtain the angular and position deviations between the
detected edges and their nearest neighbour edges in the prior map. (b) Using the
mean angular deviation to recalibrates the robot's orientation, and (c) the mean
position deviation to recalibrate the robot's position. The whole process illustrates
at a, b and c is repeated once to provide a better estimation of the robot' s pose as
illustrate in (d). The numbers 1, 2 and 3 in the above figures indicate the sequence
of robot positions during the steps of the vision-based self-localization process while
the number 4 indicates the final robot's pose.

The matching process is performed by matching the detected floor edges with the

floor edges in the prior map. For each detected edge, a search is performed in its

surrounding about 6cm in each direction on the prior map, to find a nearest neighbour with a

similar orientation. During this process, the angular deviations of all the neighbours in that

surrounding that are less than 30 degree are recorded and averaged, but only the nearest

neighbour which is the closest to the detected edge is selected as the nearest neighbour and

its coordinate difference is recorded for positional recalibration.

Once the search process for all the detected edges is completed, the mean angle

deviation of all the potential neighbours for the detected edges is used to calibrate the robot's

orientation. The (x, y) coordinate deviations for all the nearest neighbours are then used to

60

determine the mean (x, y) coordinate deviation to recalibrate the robot's coordinates. This

completes the robot self-localization process as illustrate in figure 4.25.

Note that the vision-based self-localization sub-routine is implemented in this

research by using the waypoints information to narrow down the number of possible pattern

matching edges in the prior map hence reducing the aliasing problem. The proposed

approach was to use 3 points along the planned path, halfway between the waypoints, and

one point at the first waypoint (in case the robot has not moved). Chapter 5 describes how

waypoints are defined. The self-localization algorithm is executed for each of the 4 points,

and the pose with the most matches between the detected edges and the edges on the prior

map then represent the best estimate of the robot's pose at the time the image is captured.

Note that this method relies on the shaft-encoders to perform reliably as it assumes that the

robot has followed the path within a margin of ±6cm.

Before the vision-based self-localization procedure is implemented in the navigation

system, an experiment was conducted to determine its performances. This is described in

section 4.5.

61

4.5 Self-localization Tests

4.5.1 Results

During the experiments, the robot was physically positioned in its environment at a

fixed position and orientation with its video camera looking forward. The idea was to change

the assumed initial position and orientation of the robot and determine if the vision-based

self-localization procedure were capable of correcting this error based on the image obtained

from the video camera. The experiment is divided into two parts, with the first part dealing

with position shifts and the second part dealing with orientation changes.

In the first series of experiments, the robot was physically positioned at (45cm,

16cm) with an orientation of 0 degree. The initial believe of the robot's position was

changed by two centimetre incrementally in either the x or y direction. Four tests were

conducted where each test was performed for a specific direction of the displaced assumed

position (i.e. forward, backward, left and right). For each direction, the initial believe of the

robot's position was shifted by up to 8 centimeters (figure 4.26a). For each two centimetre

increment, 10 trials were performed.

In the second series of experiments, again the robot was physically positioned at

(45cm, 16cm) with orientation of 0 degree. The initial belief of the robot's position was not

changed but instead its orientation was changed with successive increments of 1, 1, 2, 2, 2, 2,

5 and 5 degree in a clockwise and anticlockwise direction (figure 4.26b). Two tests were

conducted where each test was performed for a specific direction (i.e. clockwise or anti

clockwise). For each direction, at every angular increment 10 trials were performed. Figure

4.2. 7 shows, as an example, the results for each of the 10 trials for shifts of 2 cm in four

directions. Figure 4.28 shows the standard deviations of the position errors, as a summary of

all the measurement results.

62

(a) Position Shifting forVision-based Self-localization (b) Orientation Shifting for Vision-based Self-localization

120 120

110 110

100 100

90 90

80 eo

70 70

50 50

30

20•....

40

'
30

20

40

10 10

0 0

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
x(cm) x(cm)

Figure 4.26: The postt10ns and orientations used in the vision-based
self-localization test. (a) The positions used. (b) The orientations used.

63

Self-localization Test (Left Shift 2cm) Self-localization Test (Right Shift 2cm)

120

~
Legend 120 Legend

RObotl pot«kW\ .rt·et R-.-o poo<olon •~er - tetf..bcaiAik)n

110 0 Robaf1 Slze 110 0 RotloCI Size
(cenler 11 ac:lual robot-~ (cent« 11 aclualrol>ol -"""I
AetuaN roboC'a position AdUal robofs-

100 Pr-positlof1 100 Pre.et po1iUon

90 90

80 80

70 70

e e
~ 60

~ 60 > >

50 50

40 40

30 30

20 +€) 20 e +
10 10

0 ,~ T 0

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
x(an) x(an)

Self-localization Test (Up Shift 2cm) Self-localization Test (Down Shift 2cm)

120 Legend 120 Legend
Robol'a positlof1ollet
oetl-loc:alosa-

=after

110 0 Robofa Size 110 0 R~Scze
(eenter at actual robot posllkln) (ceoter .. actuol '"""' pooelon)

Actual roboe's position Actual robd's poilition

100 P.-poo<olon 100 Preeet postion

90 90

80 80

70 70

e ~ ~ 60 60 > >

50 50 j 40 40

30 30 J

20

~
20 +e

10 10 -

0 T ,-r-T ~ 0

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
x(an) x (an)

Figure 4.27: Examples of vision-based self-localization tests plots. The + symbols
represent the result of the self-localization process. The x symbol is the actual
position. The + symbol is the initial position assumed by the self-localization
algorithm.

64

Standard Deviation Plot of
Self-localization Test (Left Shifting by x)

8
Legend

7 x ads errors so

y axis"'""' so
6 o axis efTOfS SO .,

~ 5

~ , 4

i3 X

b

2 0 Q Q
X

0

"' "' "' "' 0

2 4 6 8 10 12 14 16 18 20
x (cm)

Standard Deviation Plot of
Self-localization Test (Up Shifting by y)

8

7

6

l5

'4 5
';3

2

0

5

X

X
0 0 ~

X
0

Legend
• axis errors SO
yadserrot'SSO

o axis errors SO

2 4 6 8 10 12 14 16 18 20
y(cm)

Standard Deviation Plot of
Self-localization Test (Rotating CCW •)

Legend

4

X

x axil etTara SO

yuflemnSO

Ouil errors SO .,
~ 3
C> ., ,
i 2
b

0

0

~~

"' "'
2

0

8

"' "'
4 6

~ ~ ~

"' "'
8 10 12 14 16 18

degee(•)

X

0

"'
20

Figure 4.28: Standard deviation of vision-based self-localization errors. Each
value is obtained from I 0 measurements.

65

4.5.2 Discussion of the Vision-based Self-localization Results

The results show that self-localization along they dimension is much more accurate

than that along the x dimension or the orientation. The reason for that behaviour will be

cliscussed in this section.

Figure 4.29 is an example of the image used in the vision-based self-localization

process taken at coordinate (45, 16). Note that although the camera is looking at the same

location throughout the test series with the same illumination conclitions, the number of

edges detected might be slightly different due to pixel noise that effects the automatic

thresholding process.

Figure 4.29: Example of the image taken at coordinate (45, 16). lllustrating the
result of edges detection, showing the smaller number of visual cues on the sides of
the robot's environment.

Figure 4.30 shows a test result where the initial belief of the robot position is shifted

by a lateral offset. The picture on the left shows where the remote brain initially thinks the

robot is, and where the edges detected in figure 4.29 should be relative to the robot's

position. The picture on the right shows the robot's positions inclicates by + symbols after 10

runs of vision-based self-localization. With an accurate vision-based self-localization

process, the + symbols should end up at coordinates (45, 16), where the actual robot is

located (symbol x).

66

Figure 4.30a shows that the vision-based self-localization performs quite well in the

condition where there are plenty of visual cues (i.e. the detected edges). This is illustrates in

this figure where they coordinates from the calibration results does not vary as much as the x

coordinate, since there are plenty of detected horizontal edges to be matched. Figure 4.30b

also illustrates this effect, showing that no calibration on the x coordinates has taken place

since there are no detected edges that have similar orientations to the left and right edges of

the environment. Therefore the + symbol is staying close to the • symbol.

67

(a)

(b)

'E
~
>-

I
>-

Self-localisation Test {Right Shift 4cm)

120 Legend

110
Robot's position after
se~isatlon

Robora Size
100 (center at actual robot posrtion)

Actual robot's polltlon

90 Preset podion

80

70

60

50

40

30

20 ·e 10

0

0 10 20 30 40 50 60 70 80
x(cm)

Self-localisation Test {Right Shift 8cm)

120

110

100

90

80

70

60

50

40

30

20

10

0

Legend

!~:='after

Robora sa.
(center at actual robot p01ition)

Actual robot's poSition

Preset position

0 10 20 30 40 50 60 70 80
x(cm)

Figure 4.30: Examples of the vision-based self-localization tests results. (a)
Position shifted by 4 cm to the right. Note that there are not many detected edges
with similar orientation to the side walls therefore the robot's x coordinate varies at
each trial. (b) Position shifted by 8 cm to the right. Note that the results of the
calibration process are located closed to the initial position (+) instead of the actual
position (x). Since there is no visual information (edges) that have the same
orientation to both sides of the wall, this prevents recalibration from taking place for
the robot's x coordinate.

68

4.6 Obstacle Detection and Registration

Once the vision-based self-localization process finishes recalibrating the robot's

coordinates in the prior map, all the detected edges that are within the room are placed into

the map. For the detected floor and walls edges with a nearest neighbour, they are assigned

to their nearest neighbour, while the rest of the detected edges with no nearest neighbours are

assumed to be obstacles and are pasted into the prior map. The data structure used for the

prior map is known as the neuro-resistive grid which has a spatial memory layer. The spatial

memory layer is used to store information such as the robot's position, the goal's position

and the detected obstacle positions. The neuro-resistive grid uses the spatial memory layers

to calculate its potential field distribution that is used for path planning. Details of the neuro­

resistive grid are described in chapter 5~

The robot's prior map (i.e. the spatial memory layer of the neural-resistive grid) is

updated throughout the navigation process based on the latest information decoded from the

images obtained through the robot's video camera. This information includes the latest

position and orientation of the robot and the position of detected obstacles within the robot's

environment. The updating process is illustrated in figure 4.31 where a) show the edges

detected on the images, b) the position of the detected edges after self-localization and c) the

detected edges and obstacle registered in the spatial memory layer of the neuro-resistive grid.

69

(a) (b) (c)

Figure 4.31: The process of registering the detected obstacle into the spatial
memory layer of the neural-resistive grid. (a) The results of the edges detection
process on the image obtained from the robot's video camera, (b) After the vision­
based self-location process, the detected edges shows a good match with the prior
map. (c) The detected obstacle is mapped into the spatial memory of the neural­
resistive grid.

4. 7 Discussion

The vision-based obstacles detection, self-localization and map updating processes

used in this project have been described and tested. The results from the test of these

procedures were shown.

The fish-eye lens calibration procedure shows a simple way of calibrating images

that suffer from barrel distortion. The result from the calibration process shows its reliability

and robustness.

The automatic thresholding method is successfully used for determining the

threshold values for the floor and walls; this is useful as it helps the vision system to become

less light sensitive.

The floor edges specific filters currently work at discrete locations in the image. The

advantage is that it reduces the computational load. The disadvantage is the difficulty of

70

determining accurately the position of the detected edges. The proposed refined method

solves this problem.

Vision-based self-localization is an important procedure in this project. It provides

feedback for the robot's remote brain and makes other procedures such as path planning

possible. This is a simple approach that produces acceptable results. The accuracy problems

of this procedure are mostly caused by the positioning problem from the floor edges specific

filters. The vision-based self-localization procedure will be more robust once the positioning

problem is solved. The obstacle detection and registration procedure currently wasn't able to

distinguish between real and phantom obstacles. Therefore all the detected edges were

currently being registered into the neuro-resistive grid which is then used for path planning.

The phantom obstacles problem will be addressed in future work.

71

Chapter 5

Path Planning and Encoding

Path planning is a basic function of most mobile robot or autonomous vehicle

control systems. It involves generating a sequence of commands that will be used to

navigate the mobile vehicle from its current position toward its final position/goal without

colliding with obstacles. To achieve this, a map with data structures that suits the chosen

method of path planning is needed. The data structure has to be able to store the

information about the state of the mapped areas and enable movements from any element

in the structure to the elements which represent adjacent areas in space. In addition, a data

structure for storing paths that complements the map data structure, and efficient

algorithms for locating the robot, path searching and navigation are required. Easy

integration of sensory data for map construction, adaptation and extension is also a must.

Based on these requirements, the neural-resistive grid method (Bugmann, Taylor and

Denham, 1994; Althi.ifer and Bugmann, 1995) is chosen as the ideal data structure to be

used in this project.

This chapter is divided into two sections, the path planning through the

neural-resistive grid and the path encoding and decoding through normalised radial basis

functions (NRBF). Section 5.1 discusses path planning using the neural-resistive grid.

This section begins with an introduction of the theory behind the neural-resistive grid

72

(section 5.1.1), followed by a description of the representation of the robot and the obstacle

within the neural-resistive grid, and the illustration of obstacle free path planning based on

the gradient distribution in the neural-resistive grid (section 5.1.2).

Section 5.2 describes how the obstacle free path is represented by a waypoint data

structure and is used in the robot navigation process. For this, the NRBF net will be

described in section 5.2.1 followed by showing how it facilitates the path encoding in

section 5.2.2 and the path decoding in section 5.2.3.

5.1 Path Planning through the Neural-resistive Grid

5.1.1 Neural-resistive Grid

The route-finding neural net proposed by Bugmann, Taylor and Denham (1994)

was used in this project for environment mapping and path planning. The route-finding

neural net is a neural implementation of a resistive grid; it consists of two layers, a

neuro-resistive grid and a spatial memory layer. In the neuro-resistive grid, every node is

connected to its 2N neighbours. N is the dimension of the represented state space (N=2 in

our case). Each node is also directly connected to the node corresponding to the same

spatial location in the spatial memory layer as shows in figure 5.1.

The neural-resistive grid holds the ideal data structure characteristic for

environment mapping and path planning as the spatial memory is able to store goal and

obstacles information about the mapped area which enables easy integration of sensory

data with a simple algorithm for map construction, adaptation and extension while the

neuro-resistive grid calculates the potential distribution over the mapped area based on the

information encoded in the spatial memory. The neural-resistive grid is updated every

image processing cycle as new sensory data become available.

73

The Concept

The potential distribution is calculated based on the law of physics where electric

current flows from a node of a higher potential toward a node of a lower potential. Here,

the node corresponding to the goal state is set with a highest potential value (i.e. one) while

nodes correspond to obstacles, or forbidden states, are set to a low potential value (i.e.

zero). Therefore we have currents flowing from the goal, through the grid and towards the

obstacle nodes. At any point in the grid, the direction opposite to that of the current flow

indicates a path to the goal.

Neuro-resisCive grid

SpaCial Memory

Figure 5.1: The neural-resistive grid planner is composed of the neuro-resistive
grid layer and the spatial memory layer.

The Theory

In the implementation of this concept, the neuro-resistive grid receives inputs from

its N; neighbours and one of its corresponding neuron in the spatial memory layer. Each

output or "potential" y; of the neuron i is calculated as follows

(5.1)

where w ij is the weight given to the input from neuron} to neuron i; Yj is the output

of neuron}; 1; is an external input used to constrain the value of yj , and Tf is the transfer

74

function of the neuron i. The linear saturating function illustrated below (figure 5.2) is

used as the transfer function Tf

0

Figure 5.2: Transfer function of the neurons representing nodes of the
neuro-resistive grid.

For a two-dimensional case, the weight wu is set to 1/N; (=0.25), which makes y; the

average potential of the N; neighbours. As nodes at the edge of a two-dimensional grid

have only 3 neighbours (N,=3) and those at the corners only 2 neighbours (N,=2), their

input weight must be set to wy=0.333 and wy=0.5 respectively. The saturation of the

transfer function for inputs larger than 1 or smaller than 0 only happens for nodes

corresponding to target or obstacles respectively due to external inputs from the spatial

memory. These cause the goal neuron to have a potential y1= 1 as the external input is set to

1,-I and the neurons corresponding to obstacles to have a potential yrO as their external

inputs are set to 1,=-l. The external inputs for nodes that are neither the target nor

obstacles are set to 1,=0. Therefore, these nodes determine their potential freely, according

to the potentials of their neighbours. Before an equilibrium distribution of the potentials is

achieved, all the neurons in the network must be updated several times. Theoretically, an

infinite number of updating cycles is needed but in practice only a few tens of iterations are

needed to achieve a correct direction of potential gradients. The minimal number of

iterations depends on the distance between the current position of the robot and its target

while taking account the complexity of the maze. Note that the gradients distribution does

75

not need to be recalculated each time provided that there is no new obstacle, and the

obstacles and target remain static.

Tbe Setup

To model the robot's environment, a neural-resistive grid with 47x65 nodes was

built. The walls in the robot's environment were pre-programmed into the outer nodes of

the spatial memory of the neural-resistive grid. In the neural-resistive grid, the spatial

memory is used as a prior map for map updating while the neuro-resistive grid is used for

path planning.

The actual size of the robot's navigation area is 89xl25cm2
, which is represented

by 45x63 nodes in the neural-resistive grid. Thus, each node in the neural-resistive grid

covers a 2x2cm2 area of the robot's environment.

5.1.2 Representation of Robot and Obstacles in the
Neuro-resistive Grid

Representation of robot and obstacles in the resistive grid plays an important role in

producing obstacle free paths and assuring clear navigation for the robot. In the

neural-resistive grid method, the robot is modelled by a point of the size of a node while

obstacles and walls are expanded by the radius of the robot (figure 5.3) to make sure that

the path produced will avoid a collision with an obstacle and that the robot will not attempt

to go through any corridor that is too narrow for it.

The expansion is achieved by using divergent connections (one-to-many) from the

spatial memory to the neuro-resistive grid. Therefore equation 5.1 becomes

(5.2)

76

where M; represents the number of divergent connections from node i of the spatial

memory to the neuro-resistive grid. This is a novel design, extending the functionality of

the original neural-resistive grid in figure 5.1.

Neuro-resistive grid

I;

Spatial Memory

Figure 5.3: Modified neural-resistive grid with one-to-many connections from
the spatial memory layer to the resistive grid layer. The radius of the
connectivity is equal to the radius of the robot.

D
.',. -
' .
' '

•
Ll

Boundary of
expanded object/walls

Actual size of robot

Point-like representation of the
robot in the neuro-resistive grid

Collision free space

Figure 5.4: Representation of walls, obstacle and coUision free space within the
neural-resistive grid. The robot is represented by a node in the grid while
obstacle and walls are expanded by the radius of the robot to ensure that collision
free paths are planned.

77

Figure 5.5: The neural-resistive grid representation. The spatial memory (map)
shown on the left represents free space in black colour, while occupied areas (i.e.
the pre-programmed walls and the detected walls and obstacles) in grey colour.
The white node in the top right quadrant of the map represents the goal position.
The neuro-resistive grid on the right uses the spatial memory to produces the
potential distribution of the free space in the robot's environment. The free
space is represented by a gradient of grey levels while the forbidden space (i.e.
walls and obstacle after the expansion process) is represented by black-coloured
nodes.

5.1.3 Path Planning through Gradient Climbing in
the Neuro-resistive Grid

This section describes the generation of waypoints that define a collision free path

based on the potential distribution in the resistive grid. The waypoints which are along the

collision free path are later to be sent to the robot which uses them to produce steering

controls.

The initial aim of waypoints generation is to search for a collision free path from

the robot's current position to the goal. This is done by searching through the

neuro-resistive grid, for a series of highest potential neighbour nodes from the robot' s

location toward the goal. The algorithm begins by searching through the nearest

neighbours of the node where the robot is located for a node with the highest potential,

then move to this node and continues the search. Every fifth highest potential node found

(i.e. indicate as green in the resistive grid shows in figure 5.6) defmes a waypoint. The

78

searching process is repeated until 8 waypoints are found (there is no need for calculating

more than 8 waypoints at a time, as explained in chapter 6).

Figure 5.6: Waypoints representation of the path within the neuro-resistive grid.
The neuro-resistive grid shows the location of the robot in red while the
waypoints that form a path from the robot location toward the goal in green.

5.2 Path Encoding and Decoding through NRBF Nets

This section describes the NRBF path encoder that is used in the robot. The

function of the NRBF path encoder is to continuously produce a target point for the robot

to follow. The target point is a close point on the obstacle free path ahead of the robot.

The purpose of the target point is to attract the robot towards and along the obstacle free

path until the robot reaches the goal.

Input

c=>
Robot's Position

(x,,y,)

'\RBI· l'ath
lurotkr

Output

c=>
Target Position

(xi' I>Yr • 1)

Figure 5.7: The NRBF path encoder. The NRBF path encoder takes the robot' s
position and produces a target position for the robot controller to steer the robot
toward it. The target position is a position along the encoded path.

79

5.2.1 The Normalised Radial Basis Function (NRBF) Net

Standard Radial Basis Function (RBF) nets comprise a hidden layer of RBF nodes

and an output layer with linear nodes (Broornhead, 1988; Brown, 1994). The function of

these nets is given by:

11

Y; (x)= Iwi,j~(x - xj) (5.3)
j=l

where y; is the activity of the output node i, ~(.X -.X j) is the activity of the hidden

node}, with a RBF function centred on the vector xj, and .X is the actual input vector and

wu are the weights from the RBF nodes in the hidden layer to the linear output node

(Figure 5.8). Such a net is a universal function approximator (Powell, 1987).

~)

YJ

Figure 5.8: Network architecture for standard RBF nets and Normalized RBF
nets.

The function ~(.X- .X) of a hidden node j is usually the Gaussian Radial Basis

Function:

[

K 2 J L: (x*- wjk)

~(.X- .X)= exp - k=l 2 0"2 (5 .4)

where u is the width of the Gaussian and K is the dimension of the input space.

The "weights" w1k (shown in figure 5.8) between node kin the input layer and node} in the

80

hidden layer do not act multiplicatively as in other neuron models, but define the input

vector Xj =(wjl , Wjk) eliciting the maximum response Of node j (Xj is the "centre Of the

receptive field").

Normalised RBF nets have a functional form very similar to the standard one

(equation 5.3), with the difference of a normalisation by the total activity in the hidden

layer:

(5.5)

As a result, the output activity becomes an activity-weighted average of the input

weights in which the weights from the most active inputs contribute most to the value of

the output activity. For instance, in the extreme case where only one of the hidden nodes is

active, then the output of the net becomes equal to the weight corresponding to that hidden

node, whatever its actual activity. Thus RBF nodes in the hidden layer are used here as

case indicators rather than as basis functions proper.

Figure 5.9 shows that each hidden node in a Normalized RBF net takes over a

portion of the input space over which it determines the output of the net. Due to this

property, outputs of the normalized RBF net are always a point on the path, even if the

current position is not exactly a waypoint. In contrast, the standard RBF net produces

outputs out of the path for input positions that are not exactly on a waypoint.

81

-1

Input

- 1

Figure 5.9: Comparison between standard RBF nets and Normalized RBF nets
with three hidden nodes on an example of a !-Dimensional path. The path has 4
waypoints: x = -0.6, -0.2, 0.3, 0.5. The path can be represented as a mapping {-
0.6 -> -0.2; -0.2 -> 0.3; 0.3 -> 0.5}. Dotted line: function of a standard RBF net
approximating the mapping. Full line: Function of a Normalized RBF net.

A similar normalisation principle is used in the "centre of gravity defuzzification

method (Brown and Harris, 1994, pp. 388-404). Our approach is a special case of the

approach proposed by (Shao, Kee and Jones, 1993) for selecting linear functions Ly{x)

(instead of the constant weights wii used here). In (Rao and Fuentes, 1996) equation 5.5

was used to compute normalised motor output vectors in robots. Normalised RBF nets

have also been used for path encoding in an autonomous wheelchair (Koay, Bugmann,

Barlow, Phillips and Rodney, 1998) and show very good properties in pattern classification

applications (Bugmann, 1998).

5.2.2 Path Encoding

Encoding a path in a 2-dimensional space is done with an NRBF net with two input

nodes and two output nodes, and one hidden node per waypoint. The centre of the

receptive field of each hidden node is set to the position (xn,Yn) of one waypoint (equation

5.6) and its output weights are set to the position (xn+J,Yn+I) of the next waypoint (equation

5.7).

82

(5 .6)

(5.7)

Therefore when the robot reaches the target (x, ,y,), this activates hidden node j and

its output weights (w1j,w2j) become the new target (x,+1, Yn+t), which pulls the robot along

the path. To enable the robot to stop its motion when it reaches the final waypoint, the

input and output weight of the final hidden node are set to the final waypoint, hence the

target will keep pointing at the same point and the robot will stop. The targets change

when new waypoints sent by the remote brain are encoded into the NRBF path encoder.

5.2.3 Path Decoding

The NRBF path encoder is a function that provides a target position (x1,y1) for the

robot based on the robot's current position (Xc,Yc) as input (i.e. equation 5.8 and equation

5.9). The target position is usually a point along the demanded path encoded in the NRBF

path encoder if the robot is in a position close to the path. If the robot is somewhere

outside the path, the target position will be a point nearer to the demanded path.

L: wlj f/Jcx- x)
X = --';'-::· =-----

' L:f/JCx- x)
(5.8)

j

(5.9)

where

Note that the robot will not attempt to reach exactly each intermediate waypoints,

because when it reaches the neighbourhood of a waypoint, it is directed towards the next

waypoint. Thus, for a more precise path following, waypoints must be closely spaced.

Figure 5.10 illustrates a case where the spacing between waypoints is much too large.

83

Trajectory produce using NRBF Decoder

120 +-- --- /
/

100

80

I
>-

60

40

20 +-

0

0 20 40 60 80

x(cm)

Figure 5.10: A simulation of the NRBF path encoder attractive field. The four
dots represent the waypoints while the solid line shows the path from the initial
waypoint to the fmal waypoint. The 7 crosses represent various starting position
and the dotted lines represent their paths.

Another point is that (j in equation 5.4 must be of the order of the distance between

waypoints, so that only one hidden node at a time is activated and defines the next

waypoint. For too large values of (j the produced target becomes a combination of

waypoints and the path is smoothed out.

However, the NRBF path encoder has the advantage of being able to produce a

target point that will lead the robot towards the demanded path from whatever starting

point as illustrated in figure 5.1 0. This is particularly useful when the robot has left the

desired path by error.

84

Chapter 6

Motion Control with Intermittent Delayed
Measurements

This chapter discusses motion control with intermittent delayed measurements in

the system (the remote brain and the robot). A delayed measurement is defined as a

measurement which is delayed by nr, where r is the controller's cycle time and n is the

number of cycles between data acquisition and data availability. Delays in measurements

are usually introduced by the complexity of processing sensory data. Applications such as

vision-based mobile robots are often faced with delayed measurements from visual

sensing. Delayed measurements used to cause robots (i.e. robotics system) to exhibit a

stop-and-go motion (Moravec, 1983). For example, a mobile robot that relies on vision for

its navigation process has to wait for the visual sensory data to become available before the

navigation process can be executed. Delayed measurements are due to processes such as

image digitization, image processing, self-localisation, path planning and data transfer.

This is not a problem that can be solved with a faster or more powerful machine, as not all

of these processes depend on the computation speed. Furthermore, computation time also

tends to increase with more intelligent and complex algorithms (Bak, Larsen, Norgaard,

Andersen, Poulsen and Ravn, 1998). Apart from that, not all time delays are caused by the

85

controller, for example, in a rolling mill process where the time delay lies between the

issuing of a control and its result's feedback (Smith, 1959).

Section 6.1 describes the vision-based mobile robotic system used and the time

delay problem that exists in the system. This section is divided into two subsections;

section 6.1.1 discusses the system in details, its time delays and the cause of the

stop-and-go motion, while a solution to the problem is presented in section 6.1.2.

Section 6.2 deals with the proposed solution to the stop-and-go motion problem

which was discussed in section 6.1.2. This includes the use of receding horizon control (in

section 6.2.1) and the adaptation of the retroactive updating scheme in the Smith Predictor

to the case of intermittent delayed measurement (section 6.2.2).

Section 6.3 deals with the implementation of the Smith Predictor in which a robot

model is built (section 6.3.1) followed by the derivation of a set of equations for tracking

the robot pose (section 6.3.2) using the distances travelled by the robot's wheels

(determined either by the model or direct readings of the shaft encoders).

Section 6.4 describes the robot's on-board path control followed by test results

using the NRBF path encoder.

Section 6.5 describes and discusses the specifically designed coordinate

recalibration algorithm for mobile robotic systems that incorporates intermittent delayed

measurements through retroactive updating.

86

6.1 The Time Delays Problem

In control, a system always consists of several components that act together and

perform certain functions. Each component requires an amount of time to complete its

task. The amount of time required depends on several factors such as the complexity of

the task and the speed of the hardware involved. This amount of time (i.e. time delay)

often poses a serious threat to the performances of a real-time system.

The vision-based navigation system used in this research also suffers from time

delays problem. As a result, the system exhibits a stop-and-go motion. This is

unacceptable especially for a real-world system such as an autonomous wheelchair. The

aim here is to analyse the time delays within the system and to propose a solution that will

solve the stop-and-go motion problem.

Section 6.1.1 looks at the vision-based navigation system, its control structure and

timing diagram to investigate the relationship between the time delays and the stop-and-go

motion. Note that the system was designed with the use of sequential control method.

Section 6.1.2 proposes a solution to deal with the time delays and overcome the

stop-and-go motion problem through a concurrent control method.

6.1.1 Sequential Control "Compute then Move"

The aim of the vision-based navigation system used in this research is to navigate

around obstacles towards the goal. The vision-based navigation system flow diagram in

figure 6.1 shows its components and their relationship within the system. The components

are grouped into two categories or sub-systems, the first group is known as the remote

brain. As its name implies, the remote brain deals with high level tasks which are

87

responsible for the sensing, thinking and planning processes; the second group is the

robotic system which deals with low level tasks such as controlling the robot's motion.

VIsion-based Nav lgaUon System

Figure 6.1: Vision-based Navigation System Sequential Control Flow Diagram.

Figure 6.1 also demonstrates the relationship between the remote brain and the

robotic system. The remote brain is responsible for determining the robot pose through the

image obtained from the robot's video camera, and then plan an obstacle free path from the

robot pose to the goal point. This path and an activation signal are transmitted to the

robotic system which is responsible for the robot's navigation processes. The remote brain

then switches into sleep mode while waiting for the robotic system to finish its navigation

to the target point. The target point in this case is a point along the path from the robot ' s

initial position to the robot's goal point. Once the robot has reached the target point, the

robotic system stop the robot's motion, and sends an activation signal to reactivate the

remote brain' s sensing, thinking and planning process. The whole program cycle is then

repeated until the robot reaches the goal point. Figure 6.2 shows the sequential control

vision-based navigation system tasks scheduling diagram which demonstrates the sequence

of tasks being executed during a navigation process. This diagram also illustrates the main

system program cycle and the relationship between the remote brain and the robotic system

within it.

88

Remote Brain's program cycle

Vision (Processing)

Self-localization

I I

t+l
I I

Planning

I I

t+l

I I

~

rj
;..I I

I I
1

I I I
Communication + -+ :.1

I I I I I I
Controller ~-----·~1 ~-----~,

I
Motors •I I

Shaft Encoders

1----H .. II

:.....----+1 I t----+1.,1 I

Robotic System's
program cycle

The main system's program cycle

.,I

Figure 6.2: Tasks scheduling diagram for the sequential control vision-based
navigation system. This diagram show how each tasks is executed and illustrates
the sequential control where the main system begins its program cycle by executing
the high level tasks (i.e. Vision, Self-localisation and Planning modules) followed
by the communication tasks and concludes with the low level tasks (i.e. Controller,
Motors and Shaft-encoder modules). Note that the scale in this diagram represents
only an approximation of the actual delays.

This control method is known as the sequential control method since both program

cycles within the main system work in a sequential manner. Here, the robotic system has

to wait for the remote brain to finish executing the main system's high level tasks before it

can execute the main system's low level tasks. The duration for executing the main

system' s high level tasks varies as it depends on the complexity of the captured image. In

average, the vision processing task requires about 0.55 seconds of execution time. The

self-localization task requires about 2 seconds of execution time. The planning process

requires about 25 seconds of execution time initially (to perform 80 updating cycles per

program cycle on the neuro-resistive grid) to achieve a correct direction of potential

gradients (as described in section 5.1.1), then about 0.68 seconds (for performing 1

updating cycle and selecting new waypoints) at each program cycle.

Due to the complexity and time consuming process within the high level tasks, time

delays are created, causing the execution of low level tasks to be delayed. As a

89

consequence, the robot has to remain in a static state until the high level tasks program

cycle finishes. The same applies to the remote brain which has to wait for the robotic

system to fmish executing the low level tasks before it can begin executing the high level

tasks. The average execution time for the main system' s low level tasks (robot motion) is

about 10 seconds, and this execution time varies with the complexity of the path. Thus, the

result of time delays within a sequential control method cause the robot to exhibit a

stop-and-go motion.

Vision-based Navigation: Sequential ControlTtming Diagram

Higb Level Control
time

Communication

Low Level Control
------• time

Figure 6.3: Vision-based Navigation System Sequential Control timing diagram. It
demonstrates the tasks and their timing perform in the main system (which consists
of the remote brain and the robotics system). The timing diagram is divided into
three rows, the first row from the top represent the main system's high level tasks
which is a collection of tasks executed by the remote brain, the second row
represents the communication task involving both the remote brain and the robotic
system, and the third row represent the main system's low level tasks which is a
collection of tasks executed by the robotic system. Note that the scale in this
diagram represents only an approximation of the actual delays.

Figure 6.3 illustrates the timing diagram ofthe main system. The timing diagram is

divided into three rows, with the top row representing the main system high level tasks

(which are handled by the remote brain), the second row represents the communication

tasks between the remote brain and the robotic system (the communication process

requires about 0.10 seconds of execution time for sending waypoints data to the robotic

system while the communication process for reactivating the remote brain needs about

0.015 seconds), and the third or the bottom row represent the low level tasks (which are

handled by the robotic system).

90

Many would think that the stop-and-go motion problem can be solved by using a

faster machine, but this is not entirely true. As shown in figure 6.2, the amount of time the

robot spends in a static state is equal to the amount of time required to execute the high

level tasks and the communication tasks. Therefore, reducing the time required to execute

the main system's high level tasks with a faster machine will only reduce the time during

which the robot is in a static state, but does not eliminate the static state. This is because

the vision-based navigation system involves wireless communication tasks (between its

two sub-systems, the remote brain and the robotic system) whose execution time is not

directly influenced by a faster machine.

Therefore it is clear that the stop-and-go motion problem cannot be solved by

using a faster machine. Section 6.1.2 discusses the way of solving this problem using a

concurrent control method.

6.1.2 Concurrent Control "Compute while Moving"

The stop-and-go motion is the result of the delays in the systems and the sequential

conception of the control architecture.

Vision-based Navigation: Concurrent Control Timing Diagram

High Level Control
------• time

Comm unication

Low Level Con trol

Figure 6.4: Timing diagram of a Vision-based Navigation System with Concurrent
Control. Note that the scale in this diagram represents only an approximation of the
actual delays.

91

time

time

To overcome the stop-and-go motion problem, the proposed solution is to run both

the main system's high level tasks and low level tasks concurrently. This is done by

executing the main system high level tasks to determine a new target point while the robot

is still moving toward its current target point (low level task), and transmits the newly

determined target point to the robotic system before the robot reaches it current target

point. By doing so, the robot will move continuously form one target point to the next

until it reaches the goal. The timing diagram of such system is illustrated in figure 6.4.

From this diagram, it is clear that by executing the main system's high level tasks

concurrently with the main system's low level tasks, it is possible to keep executing the

low level tasks continuously from the robot's initial position to its goal point, therefore

eliminating the robot's static state and overcoming the stop-and-go motion problem.

The tasks scheduling diagram for the concurrent control vision-based navigation

system is shown in figure 6.5. This diagram illustrates the new program cycles for both the

remote brain and the robotics system. It is important to note here that planning has to be

done in advance, before the robot reaches the position for which the plan is relevant.

Vision (Processing)

Self-localization

Planning

Corn m unication

Controller

Motors

Shaft Encoders

Remote Brain's program cycle

Robotic System's program cycle

Figure 6.5: Tasks scheduling diagram for the concurrent control vision-based
navigation system. Note that the scale in this diagram represents only an
approximation of the actual delays.

92

Figure 6.6 shows the process flow diagram of a stop-and-go motion free system.

This flow diagram is very similar to the one shown in figure 6.1 except that the remote

brain does not need an activation message from the robotics system, as both the remote

brain and the robotic system have independent program cycles as illustrate in figure 6.5.

VIsion-based Nav lgatlon System

Figure 6.6: Concurrent control process flow diagram. The difference between this
flow diagram and the one shown in figure 6.1 is the communication process. The
flow diagram here has two independent program cycles while in figure 6.1, the
remote brain and the robotic system work dependently through the communication
module.

6.2 Proposed Implementation of Concurrent Control

This section proposes a strategy for implementing concurrent control into the

system. The aim is to allow both the remote brain and the robot to function concurrently as

illustrated in figure 6.4. The relationship between the remote brain and the robotic system

are such that the robotic system relies on the remote brain for the robot' s navigation

process, therefore it is important that this is taken into consideration when implementing

concurrent control.

Concurrent control requires concurrent sensory processing and planning while the

robot is moving. This poses a problem for generating a meaningful motion from delayed

information, during the delay between measurements. For example, let us assume the

remote brain takes m seconds to complete the high level tasks. If an image is taken for

processing at time t0, while processing the high level tasks, the robot continues to move.

93

The robot will only receive the feedback (i.e. robot's pose at time to) and path information

valid for time to at time to+ m, when the robot is already in a new position.

The delayed path information problem is solved here using a receding horizon

control method (section 6.2.1) which overcomes the time gap between measurements by

planning paths that are valid over a certain time range for the robot to follow while new

plans are elaborated. When the new path becomes available, it can easily be integrated

into the robot's navigation process and results in a smooth navigation motion (i.e. using the

NRBF net as discussed in section 5.2).

A modified Smith Predictor is used here to control the robot during the delays

between visual feedbacks (section 6.2.2). The Smith Predictor was originally designed to

deal with continuous but delayed feedbacks. The modification proposed here allows it to

handle intermittent delayed feedbacks such as the ones caused by image processing. We

have explored two possible sources of the fast feedback component of the Smith Predictor.

The first is the standard use of a dynamical model of the robot (section 6.3.1). The second

is the more direct use of tracking information from shaft encoders (section 6.3.2)

The use of the modified Smith Predictor in conjunction with the NRBF path

encoder for on-board path control is described in section 6.24.

In the modified Smith Predictor, when the delayed feedback (i.e. robot's position at

time to) from the remote brain becomes available at time t0+nr, it is used to improve the

estimation of the robot's current position (based on the assumed position at time to and the

integration of displacements estimated from the fast feedback component) by retroactively

updating the position assumed for time t0, this coordinate recalibration process is described

in section 6.25.

94

6.2.1 Receding Horizon Control Strategy

The receding horizon approach is used here to fill the time gap between

measurements and provide the robot with a path to follow while new plans are elaborated.

In the receding horizon approach, the remote brain produces an obstacle free path at each

remote brain program cycle. Every obstacle free path is based on the image obtained at the

beginning of the program cycle. Thus the path remains valid from the time it was created

until the end of the horizon. Here, the end of the horizon is defined as the goal. Therefore

the path generated remains valid until the robot drifts away due to accumulated odometry

error or due to the inaccuracy of the control actions (e.g. unbalanced responses of the

motors). This is overcome when the robot receives the delayed visual information

feedback and the newest path from the remote brain.

Obstacle Free Goal-directed paths
____.. Trajectory created based on

the robot's position P(tx)
where

fx= fx-l+nx T

Figure 6.7: The concept of receding horizon control strategy. Using the Receding
Horizon Strategy, the robot's remote brain is regularly searchjng for new paths
toward the goal based on the robot latest coordinate (obtained through vision). Each
line in figure here represents an obstacle free path P(tx) based on the image captured
at time fx.

95

Figure 6.7 illustrates the concept of receding horizon control strategy. Based on the

receding horizon control strategy, an obstacle-free path is planned from the position where

the sensory reading is made e.g. P(t0), to the goal. Theoretically, this path should enable

the robot's controller to steer the robot towards the goal based on its odometric feedback.

But in reality, there are many factors such as the accumulated odometry error and the

inaccuracy of control actions that can cause the robot to drift away from its path. For

example, the robot captures an image at position P(to) at time to and plans an obstacle-free

path from position P(to) to the goal. Let's assume that the robot then attempts to navigate

along this path but drifts to the right and ends up at position P(t1). The path created at

position P(to) becomes invalid thus a new path bases on position P(t1) is needed. Therefore

it is necessary for the remote brain to provide delayed visual information feedback and

obstacle-free paths as often as possible (i.e. at every remote brain program cycle) to

minimise the accumulated odometry errors and keep the robot on track. As illustrates in

the figure 6.7, a new obstacle-free path is constantly created at each program cycle as the

robot moves towards the goal. Thus, by continuously providing the robot with the latest

visual feedback and a new obstacle-free path, the robot position can be continuously

corrected, therefore minimizing the accumulated odometry errors and enabling the robot to

reach its goal.

The obstacle-free path is encoded as 8 waypoints with a distance of lOcm between

each waypoint. Figure 6.8 shows the process and implementation of the receding horizon

control strategy using waypoints. As illustrated, the remote brain captures an image at

time to for high level processing. At the end of the high level processing at time 11, the

obstacle-free path produced is sent to the robot. Let's call this path 10TtJ, indicating that the

obstacle free path is created based on the image captured at time to and becomes available

at time t1• This path 10Ttl is then sent to the robot in term of waypoints while the remote

brain captures a new image to produce the path 11T 12• Since the robot has a limited memory

96

buffer, only four waypoints are sent. It is important to note that the waypoints sent must be

able to support the robot's navigation process until the next obstacle-free path becomes

available.

160 cm

t:le•··---­
JOcm ~---····

t:]oo·~oooOo
,;:t ,.,....., ,.,....., ,.,....., ,.,....., 0 0 0 0
~ '--' '-" '--' '-"

--------orl------------4o~l------------s-o+l-----------~-2~ol~------------~• y(cm)
.!,!

~~ e··~··~ooo0oooo
~~

~ Image obtained from the robot at time t,.

0 Robot's position at time t,.

.,.....
\.) Waypolnts•

0 Waypolnts• that will be send to the robot

•rhese waypoints are produced based on the image obtained
at time t,. and will only be available to the robot at time tx+t

Figure 6.8: This figure illustrates the advantage of applying the receding horizon
control strategy using the waypoints method.

Initially the robot is in a static state from to to t1, therefore the first four waypoints

form the path 10Tr1 are sent to the robot at t1. Note that at time t2, the last four waypoints of

path 11T12 are sent to the robot instead of the first four. This is because the robot only

started to move at time t1. Therefore the image captured at time t1 is the same as the one

captured at time t0, and it is expected that the robot arrives at the fourth waypoints of path

tOT · 11 at time t2.

As illustrated in figure 6.8, as the robot moves along the path from time t 2 onward,

only the last four waypoints (i.e. waypoint 5, 6, 7 and 8) of a path are sent to the robot.

This is due to the fact that the robot is in motion during the processing of high level tasks.

When the path becomes available (i.e. with eight waypoints), the robot has already reached

97

the 4th waypoint. This procedure is essentially based on the observation that the remote

brain needs m seconds for processing the high level tasks and that in that time the robot

covers a distance of 30 to 40 cm. m refers to a number of low level control cycles, but is

not a constant, as it depends on the image processing and planning complexity. It is of the

order of 1 sec in our control system.

Planning of new paths stops if the second half of the waypoints sent to the robot are

at the same location as the goal (i.e. the 7th and 8th waypoint's coordinates are the same as

the goal ' s coordinate).

6.2.2 Modified Smith Predictor for Intermittent Delayed
Feedback

y

Figure 6.9: Classical diagram of a control system incorporating a Smith Predictor
where r is the reference signal, P(s) is the transfer function of the process with large

dead-time, P(s) and ~(s) are the process models with and without dead time
respectively, the shaded area C(s) is the Smith Predictor or Dead-time
Compensators (DTC), C0 (s) is the primary controller and d represents external
disturbances.

The Smith Predictor is well known as an effective Dead-time Compensator (DTC)

for a stable process with a large dead time (Smith, 1959). The classical configuration of a

Smith Predictor is shows in figure 6.9. The presence of a large dead-time (i.e. n-r) in the

process P(s) causes the feedback of y(t) to be delayed and usually slows down the controls

and causes the system to have a sluggish response or overcorrection associated with

conventional controllers. The aim of the Smith Predictor is to improve this closed-loop

performance. This is done by introducing a minor feedback loop around the primary

98

controller to produce v(t), which is an estimation of the variation of y(t) during the last nr

units of time. This variation v(t) added to the delayed measurement constitute an estimate

of the current value of y(t). This is subtracted form the requested value r to produce the

error e ' that is fed into the controller. This eliminates the sluggish responses or

overcorrection associate with conventional controllers (Levine, 1996).

P(s)

Figure 6.10: Modified Smith Predictor for Intermittent Delayed Feedback

The initial idea was to build a Smith Predictor into the vision-based navigation

system to overcome the intermittent delayed feedback. This was not possible since the

Smith predictor is developed for dealing with dead-time problems common to industrial

process where feedback from the processes is continuous. Therefore, we proposed the

modification of the Smith predictor for dealing with intermittent delayed feedback shown

in figure 6.1 0. In the conventional Smith predictor a delayed copy P(s) of the model ' s

output Po (s) is in effect compared in each time step with the actual delayed

measurement P(s) . The difference between the two provides a new correction factor at

each time step. This is a form of retroactive updating where the error made at nr time

steps in the past is corrected in each time step r:

In the modified Smith predictor, the delayed copy of the model's output can be

compared with the actual measurement only every nrtime steps. Thus the same correction

99

factor has to be used until the next measurement becomes available. Retroactive updating

is here of an intermittent nature, very similar to that proposed by other authors in a context

different from that of the Smith Predictor (see discussion 6.5).

Functions use by Computer System .. Remote Brain ..

D Functions use by the Robotic System

~-- • ~ Functions a hue by both the Computer
,_ . _ . I and the Robotic Systems

Figure 6.11: Operation sequence in the proposed system that uses a modified
Smith Predictor.

(x,y,e)

The block diagram shows in figure 6.11 illustrates the proposed system with a

modified Smith predictor. The initial approach was to use a dynamical model of the

motors rather than the shaft encoder feedback because the original shaft encoders that

came with the robot were inaccurate and often gave false readings, and the original Smith

Predictor design suggests the use of a model to give feedback to the controller. A

simplified version of the motor model was built; details on how this model was built are

discussed in section 6.3 .1. Note that the final system design is shown in figure 6.12, in this

design we used the shaft encoders feedback rather than the model feedback because of two

main reasons. The first was that we had developed more reliable shaft encoders. The

second reason was that the model we created was difficult to use, as it did not take into

account variations of the battery voltage level. This caused a mismatch between the model

and the actual motors when the battery voltage level dropped over time.

100

The Computer Syate m "Remote Brain"

D The Robotic System

~--- ~ Function share by both the Computer
, ____ j and the Robotic Systema

Figure 6.12: Operation Sequence in the fmal system inspired by Smith Predictor.

(x,y,9)

Figure 6.12 shows the final design of the system that was implemented. The

modified Smith predictor here is responsible for keeping the robot along the obstacle free

path with the help of the shaft encoders feedback. The shaft encoders are used to replace

the motor model and provide a more accurate estimation of the distance travelled by the

robot. These distance data are then used to estimate the robot position within its

environment using the on-board motion tracking module which will be described in

section 6.3.2.

6.3 Fast Feedback Loop in the Smith Predictor

6.3.1 Building a Dynamical Model of the Robot

Building the motor or robot model is done here by first collecting data of the robot

that exhibit its dynamics and behaviour during motion and speed changes. The second step

is to derive the robot model and determine the coefficients that will give the model a

dynamics and behaviour similar to that of the actual robot.

Due to the spur gear type used by the motors, the inertia of the robot can be

incorporated in a motor model. Hence we will refer to "motor model" for what is actually

a model of the motors and the robot. All data are obtained from the robot moving in

straight line.

101

6.3.1.1 Collecting Modelling Data

1 0 sets of data were obtained by runrung the robot in straight line in its

environment where the speed was stepwise increased in each run from 0 to 50%, then from

50% to 75% and from 75% to 100%. These values represent the percentage of the full

speed at which the motors can operate. Each dataset consists of 1 00 time interval values.

The data recorded were the times (ms) spend between each tick of the right wheel shaft

encoder. Knowing the distances travelled by the wheel between two ticks allows the

average velocities (cm/ms) to be determined for each time interval. Figure 6.13 shows that

the first 35 ticks cover the motors speed setting of 50, the next 35 ticks cover the speed

setting of 75 and the last 30 ticks cover the speed setting of 100. A tick is an optically

detected either white to black or black to white transition in the encoder pattern shown in

figure 6.13.

. . . I I STOP, Speed 0
Shaft encoder's
stripes pattern

. I I Speed 100

. I I Speed 75

START, Speed 50

Figure 6.13: Illustration of the data collection protocol and an example of the
encoder's strip pattern (i.e. black strip absorb light and white strip reflect light)
glued to the wheel. A tick is a transition from black to white or from white to black
detected by an Infra Red emitter/receiver when the wheel turns.

Once the data of the time intervals between ticks are collected, equation 6.1 is used

to determine the instantaneous velocity between each tick.

V _ dtick
tick - t

tick

(6.1)

102

where Vtick, d1ick and flick represent the velocity, the distance travelled by the wheel

and the time interval between each tick respectively. Since the distance travelled between

each tick is constant and known, and the time between each tick is obtained from sensory

measurements, the velocity between each tick can be determined easily. The results are

plotted on the graph shown in figure 6.14.

0.12

0.1

"U) 0.08
E e
~ 0.06 ;::.
·c
_g

~ 0.04

0.02

0

Motor Dynamic -10 Series of Discrete Changes of R~uested Velocity [0,50, 75,100]

0 1000 2000 3000
Tme (rrs)

4000 5000

Figure 6.14: The motor dynamic plot for 10 runs. The downward jumps in
instantaneous speed are due to missed shaft encoder ticks.

6000

The data on figure 6.14 are quite noisy due to the unreliable detection of ticks by

the optical shaft encoder. Most of the errors are due to a tick being missed. This

apparently doubles the time interval between ticks and reduces the calculated velocity.

This can be detected and corrected by using a simple algorithm (not described here). Some

of the errors are due to non-existent transitions being detected between two ticks. This

causes the single high-velocity peak in figure 6.14. This was removed from the data used

to fit the model parameters. The data after correction can be seen in figure 6.15. The

unreliability of the shaft encoder also caused a variability of the time at which the step

changes in requested speed where applied. These time variations were manually corrected

before the fitting process in 6.3.1.3

103

Motor Dynamic- 10 Series of Discrete Changes of Requested Velocity [0,50,75,100)
0.12

0.1

C7i' 0 .08
E
E
0 z; 0.06
·o
.S2

~ 0.04

0.02

0

0 1000 2000 3000
nne{ms)

4000

Figure 6.15: The motor dynamic plot for 10 runs after data correction.

6.3.1.2 Derivation of the Rug Warrior's Motion Model

5000 6000

According to Newton's Second Law, the sum of the external forces F on any object

or collection of objects equals the product of total mass m and the acceleration a of the

centre of mass.

(6.2)

In this case the only relevant forces on a flat plane are the traction Fr exerted by the

motor and the frictional losses fl.F N, where f1. is the coefficient of friction and F N is the

normal force. Therefore the equation of motion can be defmed as

(6.3)

Let v be the velocity of the robot, then equation (6.3) can be rewritten as

(6.4)

For a geared electric motor, the traction force is defines as

(6.5)

104

where, 1 is the motor's torque, G is the gear ratio and r,. is the radius of the wheel.

Applying this equation to equation (6.4) and obtain

(6.6)

For a permanent-magnet de motor where the magnetic field flux <1>1 is constant, the

applied voltage V is related to the armature current la and the induced back-emf voltage Ea

by (Mohan, Undeland and Robbins, 1995, pp. 377-381, and Jones and Flynn 1993):

(6.7)

The induced back-emf Ea increases proportionally with the angular velocity of the

armature w, and the back-emf constant of the motor k£:

(6.8)
where

(6.9)

k. being the voltage constant of the motor.

The torque 1 increases linearly with the armature current la and the torque constant

of the motor kr:

(6.10)

where the torque constant kr is proportional to the magnetic flux.

(6.11)

Therefore the applied voltage V can be rewritten as

(6.12)

105

from which the torque r becomes

(6.13)

In a steady state, the electrical power P e of the motor is equal to the mechanical power Pm

of the motor:

(6.14)
where

P = E I = k .w I e aa f~mtl
(6.15)

and

P =w1=wki m m m r a (6.16)
therefore

kE = kT (6.17)

By defining

equation 6.13 becomes

(6.18)

The angular velocity~ of the motor is related to the displacement velocity v of the

wheel of the robot by the gear ratio

(6.19)

Therefore equation (6.18) can be rewrite as

(6.20)

Applying the torque equation (6.20) to equation (6.6)

dv kG k'G'
m-= V--- v--- f.iF

dt R r R r 2
N

u w a w

(6.21)

106

and defining cl and c2 as followed

C =kG
' Rr a w

k'G2 c =--
2 R r 2

a w

one obtains

dv =V S_v c2- J.l.F'N
dt m m m

By defining P and Q as followed

m

Q = Vs- J.l.F'N
m m

and equation (6.22) becomes

dv
-=Q-Pv
dt
dv
-+Pv=Q
dt

this is a Linear Differential Equation of I 51 order with solution (see Appendix A).

Defining a as

equation 6.27 can be rewritten as

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

where a is the maximum steady-state velocity achieved by the robot for a given applied

voltage. The steady-state is reached with a time constant.!_. As P is a constant, a is
p

expected to increase linearly with the voltage V (see equation 6.24). However, there is a

107

threshold voltage due to the friction force. C is the initial velocity at time to (see figure

6.16).

V

V

c
~--------~· t

Figure 6.16: This figure illustrates the relation between each of the motor
coefficients and their effect on the model output.

6.3.1.3 Parameters Fitting

Before the curve fitting process, the experimental data are divided into three sets

based on their speed setting; the first set covers the data for speed setting 50, the second set

covers the data for speed setting 75 and the third set covers for speed setting I 00. Each set

of the data is then curve-fitted separately using equation 6.29 to obtain their coefficient a,

P and C. The coefficients of each set of the experimental data are show in Table 6.1.

Speed Command a p c
0-50 0.022515 0.003872 0
50-75 0.034307 0.003872 0.022515

75-100 0.042882 0.003872 0.034307

Table 6.1: The coefficients for each of the command speed obtained through curve
fitting.

Figure 6.17 shows the model 's output and the modelling data for speeds setting of

50, 75 and 100 in solid line and dots respectively. The model' s coefficients were those

shown in table 6.1.

108

Figure 6.17: This figure shows the plot of data collected from the motor (dots) and
the motor model (solid line) using the coefficients obtained through curve fitting
(see Table 6.1).

The coefficients shown in table 6.1 are only applicable for speed settings of 50, 75

and 100. To obtain the values of the coefficient a for intermediate values of the set speed,

the following interpolation functions are used:

a(8) = -0.00000009579418283 + 0.0000145262926692

-0.0000627823917998-0.000719846172773
(6.30)

Figure 6.18 shows the plot of the a (for the set speeds of 50, 7 5 and 1 00), and the

function a(b) for the set speeds 8 = 1 ... 1 00.

Alpha -Speed Command Relationship
0.05 r----------- ------------ --,

0.04 .

~
0

~ 0.03
>
ro n o.o2 .
~
l:l

0.01 .

0 10 20 30 40 50 60 70 80 90

o (Speed Conmand)

Figure 6.18: The actual maximal velocity as a function of the speed commands.

109

100

Then equation 6.29 can then be rewritten as:

where

v(t) = a(b")(1- e -P[I-Io]) + v~. e-P[I-Io]

v(t) is the velocity at time t.

v10 is the velocity at time t0•

a(b) is the maximal velocity for the set speed 8.

P is the zero speed acceleration.

(6.31)

Note that equations 6.30 and 6.31 are used to determine the velocity of each wheel

in each time step of the fast control loop.

The distance travelled by each wheel in each time step within the fast control loop,

is obtained by integrating the equation 6.31:

I I

s(t)= Jv(t')dt'= f[a(b")-e-P1"(a(b")-v0)]dt'
lo 1o

I I

=a fldt'-(a- v0) Je-P1"dt'
lo lo

(6.32)

where S is the distance travelled by the wheel from the time when the initial

velocity at time to was v0. Details of how displacement information obtained from the

model is used to track the robot's path are given in the next section. The model provided

accurate self-tracking information as long as the level of its batteries remained stable

(figure 6.19). However, when batteries where allowed to discharge the behaviour became

unreliable.

110

Straight (long) Path L Shape Path

120 120

110 110

100 100

90 90

eo t j eo

- 70
:[

70

~ 60

I
,. 60

50 50

40 40

+ •• 30 30 r- +
20 20 +
10 10

0 0

0 10 20 30 40 50 60 10 eo 0 10 20 30 40 50 60 10 eo
x (ern} x(cm}

Waypoints

+ Actual Measurement of the Robot Position

Figure 6.19: The test results of the robot following two prescribed paths based on
the motors model as feedback. Note that the robot starting point is at the first
waypoint (20,20) and that the reliability of the model is judged by how close the
actual measurement of the robot position is to the target point (final waypoint).

6.3.2 Odometric Motion Tracking

Another way to determine the distance travelled by the robot is to use direct

readings from the shaft encoders. However, these need to be more reliable than the ones

provided in the Rug Warrior kit. For that reason new rigid encoder disks were built and

attached to the wheels in place of the original adhesive foils. Self-tracking can then be

performed by integrating the information obtained from the robot's shaft encoders (i.e. the

distances travelled by each wheel). This section will discuss the self-tracking formula for a

straight forward motion (section 6.3.2.1) and a curved motion (section 6.3.2.2). These

formulas are then used to determine the robot's position and orientation based on the shaft

encoders information.

6.3.2.1 The Robot in Straight Motion

During forward motion, the robot is programmed to move forwards in a straight

line with both shaft encoders expected to show the same counter values (right wheel shaft

encoder counter value CR is expected to be equal to the left wheel shaft encoder counter

111

value CL). The distances (in centimetre) travelled by the robot left wheel dL and right

wheel dR were each obtained by multiplying their counter value (i.e. the number of ticks)

with the distance per tick factor fdpt as shown in equation 6.33 and 6.34.

dl. =cl. X fdpr

dR=CRxfdpr

6.3.2.2 The Robot in a Curved Motion

(6.33)

(6.34)

This section starts by considering the case of a leftward curve, and then adapts the

equations for a rightward curve.

During leftward motion, the robot is programmed to move towards its left with both

shaft encoder counters expecting to have different values. The distance travelled by the

robot right wheel dR should be greater than the distance travelled by the robot left wheel dL

as shows in figure 6.20. The actual distance travelled by the centre of the robot is shown in

figure 6.20 as curve dm and can be represented by LlxrR and L1yrR as the actual distances

travelled in the x and y direction respectively. L1xrR and L1YrR are obtained using equation

6.44 and 6.45. In order to solve LlxrR and L1yTR, we first determine the change in the robot's

orientation L10R using equation 6.41 and the distance Rm from the robot's origin to the !CC

(Instantaneous Centre of Curvature) of the robot at the start of the curve motion using

equation 6.43. Below is shown how these equations were derived for the conceptual

diagram shown in figure 6.20.

112

ICCy

/CC /

<~-~ /
~ /

/

/

/

/

/

·"
Ry

/ I " / '\
/ \

/ dm\
/ \

/ \
/

I

/

RM

Figure 6.20: Conceptual diagram for the robot doing a leftward motion. The
Instantaneous Centre of Curvature (/CC) shown is the centre of rotation for the
robot and both its right and left wheels when the robot follows a circular motion.
Based on this concept, the robot's new position can be found provided that distances
travelled by both the robot's wheels (dL and dR) are known.

ICCx

From figure 6.20, knowing the distance travelled by both wheels (dL and dR) and the

distance between both wheels &?, the change of robot orientation L18R can be obtained

using equation 6.41.

dL = RLI18R

R =~
L 118

R

dR = RRI18R

RR =RL +11R

By substituting equation 6.37 into equation 6.39, we obtain equation 6.40

R =(~)+11R
R 118

R

113

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

and by substituting equation 6.40 into equation 6.38, we obtain the change of the robot

angle LIBR as shown in equation 6.41.

Therefore

d R = (.!!.J,__ + M)t:.eR
t:.BR

= dL + Mt:.BR

!::.BR= (dR -dl_)
M

(6.41)

The distance Rm from the robot's origin to the /CC was obtained using equation

6.43. This equation was obtained by substituting equation 6.37 into equation 6.42.

Rm =RL +(~)
Rm =(:~J+(~)

From figure 6.20 we solve LlxrR and LlyrR

t:.xTR = Rm - R., cos(t:.BR)

t:.yTR = Rm sin(!::. BR)

(6.42)

(6.43)

(6.44)

(6.45)

Equations 6.41, 6.43, 6.44 and 6.45 are the actual equations used to determine LlxrR

and LlyrR· Although these equations were derived based on the conceptual diagram for the

robot doing a leftward motion, they are also applicable when the robot is doing a rightward

motion. When the robot is doing a rightward motion, LIBR will be negative (clockwise) and

this causes Rm to be negative. Therefore LlxrR will become negative.

6.3.2.3 Conversion to the Map Coordinate System

This section illustrates the transformation of the robot position from the robot

coordinate system to the map coordinate system. Figure 6.21 shows the transformation

diagram.

114

Worldy

/CC

R~

/CC

----+----------:-:-:--:-:---'--+:' -:-:--:--------. Worldx
(0,0) WortdRx: 'WortdR'x

Figure 6.21: Conceptual diagram used for updating the robot position in the model
map.

Previously, sections 6.3 .2.1 and 6.3.2.2 illustrated the methods used to track the

distance travelled by the robot from its old position to its new position in the robot old

position coordinate system. This section will illustrate the methods used to transform the

robot's new position from the robot's old position coordinate system to the map coordinate

system.

The actual distance travelled by the robot in the x direction LlxrR and y direction

L1YrR was obtained from section 6.3.2.2. If the robot was programmed to travel in a straight

path followed by a turn, the distance travelled by the robot in the robot old coordinate

system can be defined by the equation 6.46 for XTR and equation 6.47 for YTR·

XTR = /1xTR

Y m = YTStraiglot + !::,.y71l

115

(6.46)

(6.47)

If the robot was performing a curved path, then Ystraight will be zero (equation 6.48)

and equation 6.47 becomes equation 6.49.

Yrstraight = 0

YTR = 0 + !:lyTR

(6.48)

(6.49)

Before placing the robot's new position onto the map, equation 6.50 and equation

6.51 are used to transform the robot new position with respect to the robot's old position

coordinate frame to the map coordinate frame. The output from equations 6.50 and 6.51 is

then registered onto the map as the robot's current position. Equation 6.52 is then used to

determine the new orientation.

Robotx,new = Robotx,old + YTR cos(BR)- XrR sin(BR)

Robot y,new = Robot y,old + YTR sin(BR)+ XTR cos(BR)

Roboto,new = Roboto,old +!:!BR

6.4 On-board Path Control

(6.50)

(6.51)

(6.52)

This section describes the primary controller on the robotic system. The NRBF

encoder (see 5.2.2 & 5.2.3) is used based on the robot current position to provide the robot

with a sub-target along the obstacle-free path. The sub-target is then used to calculate the

necessary velocities needed by both the right and left wheels to drive the robot towards that

sub-target. This process is repeated until the robot reaches its final destination (goal).

The algorithm begins by searching for the distance from the robot to the sub-target.

This is done by using equations 6.53 to 6.55.

!:1x = Tx - Robot x

!:ly = TY -Robot Y

Dist = ~ !:lx2 + !:ly2

116

(6.53)

(6.54)

(6.55)

Then it determines the direction where the sub-target is located based on the robot's

current position using equation 6.56. Using equation 6.57, it determines if the robot has to

turn clockwise or anticlockwise to reach the target.

5 =tan-'(: J
Rot8 = 5- Robot8

(6.56)

(6.57)

As the distance is used to determine the speed for the robot to navigate at, it is

necessary to normalise the distance Dist so that the appropriate maximum speed for the

robot to work at can be set. In this case the chosen top speed is 45 (out of the maximum of

100 allowed by the robot's hardware), and the robot will navigate at this speed when the

distance between its current position and its sub-target is larger than 20 cm.

IfDist > 20

Dist = 20

Linear Vel= 20.0 + 25.0(~i~t) (6.58)

The necessary speed required by the wheels for the robot to make a turn is then

calculated based on the robot' s desired orientation change.

Case Rote< 0

SpeedL = Linear Vel (6.59)

SpeedR = F max[0, Linear V+- (R:~ On l (6.60)

For Rote> 0

SpeedR = Linear Vel (6.61)

Speed£ = F max[0, Linear Ve{ 1- (R:~O n l (6.62)

These speeds are sent to the motors to drive the robot toward its target.

117

The performance of the controller was tested with three different paths. The results

are shown in figure 6.22.

120

110

100

90

80

!
70

60 ,.,
50

40

30

20

10

0

0

Straight (Long) Path L Shape Path S Shape Path

120 120

110 110

100 100

90 90

80 80

I
70 70

60 I 60 ,., ,.,
50 50

40

~
40

30 30

20 20

10 10

•

0 0

10 20 30 40 50 60 70 60 0
x(an)

10 20 30 40 50
x(an)

60 70 80 0 10 20 30 40 50 60 70 60
x(cm)

Figure 6.22: The result of the controller steering the robot from the initial position
toward the goal based on the shaft encoders input as feedback. The first row shows
the 10 recorded robot paths (in grey lines), the path created by the NRBF path
encoder for the robot to follow (black lines) and the encoded waypoints (black dots).
The second row shows the recorded path of a single run as a series of open circles
superposed on the image from the robot' s initial position to the robot' s final
position.

Results from the tests show that the performance of the controller guiding the robot

along three different paths based only on the shaft encoders as feedback in the fast

feedback loop is not significantly better than that using the dynamical model in the

previous section (figure 6.19). This indicates that the new encoder disks did not solve all

118

the reliability problems. However, their measurements are not dependent on the battery

charge level and it will therefore be used in the remainder of this thesis.

6.5 Retroactive Position Calibration Using Visual
Feedback

This section deals with the robot's coordinate recalibration process based on the

feedback from the robot's remote brain. The recalibration process is necessary since the

robot relies on its shaft encoders (which drift with time) to keep track of its own position in

the real world. Without the recalibration process, the robot will deviates from its path

while "believing" that it is still on the obstacle-free path towards the goal.

6.5.1 Recalibration Equations

The aim of the coordinate recalibration process is to recalibrate the estimated

current robot's position held on-board the robot (i.e. P(/0 + nr)) as often as possible,

based on the robot's position obtained from the robot's remote brain (i.e. P(t0)) which

was determined from the image captured at time t0. The idea is to record the positions

" "
P(t0) and P(t0 + nr) assumed by the robot at time to and t0+nr respectively. Note that at

time t0, the remote brain captures an image to determine the robot's position and to plan an

obstacle-free path. This information becomes available to the robot at time t0+nr. By

comparing the recorded robot position P(/ 0) at time to with the robot's position

P(t0) derived from the image captured at time to, the shaft encoder drift having occurred up

to the time to becomes known. Compensating for this error will not ensure exact position

knowledge of time t0+nr but limits the error to the possible drift having occurred since to.

119

I

I

I

I

I

/

I

I

6P(t
0

)

/

/

/

--

Figure 6.23: This figure illustrates the concepts of coordinate recalibration. The
A A

grey robots indicated by P(t 0) and P(t 0 + n r) are the robot positions

determined from the shaft encoders feedback at time 10 and at time t0+nr

respectively. The white robot indicated by P(t0) is the robot' s actual position at

time t0 determined from the image obtained at time t0 and that only becomes
A

available to the robot at time t0+nr. P' (t0 + nr) is the estimate of the current robot

position at time t0+nrafter recalibration.

The proposed recalibration algorithm ts derived based on the following pnor

knowledge:

• the robot coordinate P(t0) of time to obtained from the remote brain at time
t0+nr is only true at the time when the image is captured at time to (Since
extracting information from the image and transfer it to the robot took some
time, therefore by the time the robot receives this information, it is no
longer valid, as the robot has already left the location where the image was
obtained),

• there exist a relationship between the robot coordinate P(t 0) recorded at

time to and the robot coordinate P(t0) derived from the image captured at
time to,

• hence there also exist a relationship between the robot coordinate P(t 0)

and robot current coordinate P(t0 + nr) since a relationship can be

established between P(t0) and P(t0 + nr) .

120

Therefore by knowing the difference between P(t0) and P(t0), and the distance

travelled from P(t0) to P(t0 + nr), a better estimate of the robot's current position

P'(t0 + nr) can be determined. Two conceptual diagrams are shown in figure 6.24 and

figure 6.25. These two diagrams are used to derive the coordinate recalibration formulas.

The first diagram assumes that the coordinates P(t0) and P(t0) are located at the same

location but with different orientations. The second diagram assumes that the coordinates

P(t0) and P(t0) are located at different location but with similar orientations. Note that

although these formulas were derived separately, they can be used together. In the actual

~

application, they are used together since the difference between P(t0) and P(t0) always

involved their position and orientation.

I

I

I

I

I

I

I

dh,

Figure 6.24: Diagram for the robot orientation recalibration algorithm.

121

Figure 6.24 shows the conceptual diagram where P(t 0) and P(t 0) are located at the

'
same position but with different orientation. The robot believes it has reached P(t0 + nr)

while it actually has reached P'(t0 + nr). Based on the conceptual diagram, the actual

robot position P'(t0 + nr) at time t0+nr can be determined by using the equations shown

below.

' '
Firstly the relationship between P(t0) and P(t0 + nr) has to be established. This

is done by using the equations below.

' ' dx, = P(t0 +nr).x-P(t0).x
' '

dy, = P(/0 + nr).y- P(t0).y
' '

dB,= P(t0 +nr).B-P(/0).0

dh, = ~dx/ + dy,
2

()dh = tan-
1

(::)

(6.63)

(6.64)

(6.65)

(6.66)

(6.67)

Knowing P(t 0).0 and P(t 0).0, equation 6.68 is used to determined the angle

difference !}.(}. The rotational angle Bro1 for dh, when P(t 0) is rotated by !}.(} can then be

determined using equation 6.69

!}.() = P(/0).0- P(t 0).0

(}rot = (} dh + /}. (}

(6.68)

(6.69)

Given that the distance dh, and its rotational angle 0,01, the coordinate P'(/0 + nr)

can be determined using equation 6. 70 and equation 6. 71, and its orientation using

equation 6.72.

P'(t0 + nr).x = P(t0).x + dh, cos(Bro,)

P'(/0 + nr).y = P(t0).y + dh,sin(Bro,)

122

(6.70)

(6.71)

I

I

I

I

I

I

A

P'(t
0
+nr)

I

/

/~//
/ I

I

I

I

Figure 6.25: Diagram for the robot coordinate recalibration algorithm.

A

(6.72)

Figure 6.25 shows the concept diagram where P(t0) and P(t0) are at different

locations but have the same orientation. Therefore P'(t0 + nr) can be obtain by determine

the offset !:'J.X ofx axis and the offset ~y ofy axis of P(t0)relative toP(t0), and translates

P(t0 + nr) by offsets !:'J.X and ~y. The offsets !:'J.X and ~Y are be determining using

equations 6.73 and 6.74,

A

!:'J.X = P(t0).x - P(t0).x
A

~y = P(t0).y -P(t0).y

(6.73)

(6.74)

and the translation of P(t0 + nr) to P' (t0 + nr) is achieves using equations 6.75

and 6.76

A A

P' (t0 + nr).x = P(t0 + nr).x + !:'J.X
A A

P'(t0 + nr).y = P(t0 + nr).y + ~y

123

(6.75)

(6.76)

If the coordinate and orientation of P(/0) and P(t0) are different, equations

6.63- 6.72 are used, as the first terms of equations 6.70 and 6.71 overcome the translation

problem while the second terms of equations 6.70 and 6.71 solved the rotation problem.

6.5.2 Discussion

Solving the problem of delayed measurement by retroactive updating was initially

proposed by Kosaka, Meng and Kak (1993) although one could argue, as done later in this

section that the concept was already present in the design of the Smith Predictor

(Smith, 1959).

Kosaka, Meng and Kak (1993) wanted to solve the stop-and-go motion problem by

integrating visual information that was m· time steps old into the tracking system. For that

purpose, they stored a history of all commands (or shaft encoder readings) from the

measured time to to the time t0+nr when the delayed measurement becomes available.

They also stored the measured position P(t0) at time t0• When the delayed measurement

P(t0) becomes available, the new estimation of the current position P'(t0 + nr) is

produced by recalculating the total displacement vector d(t0 ,t0 + nr) from past

commands, then rotates the displacement vector by the error LIO between the measured

heading P(t0) and P(t0), and add it to the new measurement for time P(t0):

- .
P'(t + nr) = R(t:..O)d(t0 ,t0 + nr) + P(/0) (6.77)

where R is the rotation matrix.

The requirement to store the history of commands in Kosaka, Meng and Kak

(1993) was due to the incremental method used to calculate the position uncertainty. As

124

noted in Maeyama, Ohya and Yuta (1995), for re-estimating the position only, the total

displacement is sufficient.

In Maeyama, Ohya and Yuta (1995) a new method is proposed to re-estimate the

uncertainty without using the history of commands. This problem is not dealt with in this

thesis, as images are acquired at the maximum possible rate, thus there is no advantage in

having access to uncertainty information to decide when to recalibrate, as done in Kosaka,

Meng and Kak (1993) and Maeyama, Ohya and Yuta (1995).

The method for recalibration of the position used in Maeyama, Ohya and Yuta

(1995) differs from that in Kosaka, Meng and Kak (1993) in that in the former a more

complex data fusion process is used for generating the new position P' (t 0 + n r) . This

consists of a maximum likelihood estimation including all measurement available at time

t0• Otherwise the principle is the same as in Kosaka, Meng and Kak (1993) where the total

displacement since to is estimated from odometric measurements.

In a more recent work, Larsen, Andersen and Ravn (1988) are concerned with how

to set Kalman Filter parameters given that part of the measurements are delayed. The

proposed solution is to extrapolate the delayed measurement P(t 0) to the current time by

adding to it the displacement M(t 0 , t 0 + n r) as determined from all other sensors

(6.78)

This extrapolated data is then fused with other measurements available at time

to+nr to produce the best estimation of the position at time t0+nr.

The essential difference with the method proposed by Maeyama, Ohya and Yuta

(1995) is that data fusion takes place here at time t0+nr rather than at time t0•

125

Very similar principles are used in the design of the original Smith Predictor.

There, the delayed measurement P(t0) is available at each time step, hence the

recalibration takes place at every time step.

(6.79)
where

(6.80)

Note that this method requires updating at each time step a list of past position

vectorsP(i) = (x(i),y(i),O(i)) , where i = t0, . . . ,t0+nr. This is required to calculate the

orientation error L18 used to rotate the displacement vector (alternatively, one could keep in

memory the list of displacements in every time step for the time span from to to to+nr).

(6.81)

A

Note that the need to compare P(t 0) and P(l 0) within the fast loop is usually not

mentioned in standard descriptions of the Smith Predictor which are not concerned with

navigation applications. Therefore the modified diagram of the Smith Predictor

(figure 6.26) is proposed that properly shows the pieces of information needed for its

operation in the case of a navigation application.

p desimi Cto + n T) +
Robot (x,y,9)

P'(t0 +nr)
Re calibration

Vision

Figure 6.26: The modified Smith Predictor for navigation applications.

126

When the feedback is intermittent, a further modification is needed. This ts

because P(t0) is only available every n-r steps and consequently also !lB.

pdeslred (t 0 + n r)

A

p

Controller Robot

Delay n-r

(to) p Cto) +
,.

Intermittent d(t0 ,t0 +nr)
Updating !lB R

Odornetry ·-Memory or Model

p Cto)
VIsion

Figure 6.27: The modified Smith Predictor for navigation application with
intermittent feedback.

(x,y,e)

In the proposed additional modification of the Smith Predictor (figure 6.27) only

one value of the displacement needs to be updated between to and to+nr and only the

previous estimate P(t0) needs to be stored. These values are now kept in memory for use

at every time step, and are changed only when new measurements become available

(Figure 6.27).

As a result, intermittent retroactive updating in the Smith Predictor framework

turns out to be conceptually equivalent to other methods proposed in different frameworks

(Kosaka, Meng and Kak, 1993; Maeyama, Ohya and Yuta, 1995; and Larsen, Andersen

and Ravn, 1988). Basically, all methods produce an estimate of the current position by

adding the estimated displacement to the delayed measurement.

127

Chapter 7

Results

7.1 Experiments and Results

7.1.1 Experiments Description

The aim of the experiments described here is to verify if the concurrent control

theory does work in practice and to compare the performances of the concurrent and the

sequential control systems. The experiments were conducted in the robotic laboratory of

the School of Computing, at the University of Plymouth. A robot environment with a size

of 125cm by 89cm was built to conduct the experiments. The goal was located at

coordinate (77, 104), near the top right corner of the robot environment. The starting point

of the robot was located at coordinate (45, 16). The experiments were divided into two

different configurations distinguished by the location of the obstacle. In the first

experiment, the obstacle was placed at the centre left of the robot environment, at

coordinate (45, 65), while for the seconds experiment the obstacle was place at the centre

right of the robot environment at coordinate (75, 65). In experiment one, the expected path

for the robot to reach the goal passes round the right of the obstacle while in experiment

two, the expected path for the robot passes round the left of the obstacle then heads toward

the goal.

128

A camera was attached above the robot environment (figure 7.1) to record the path

taken by the robot during the experiments.

Figure 7.1: The overhead camera setup used to record the robot' s motion during
the experiments.

The experiments begin with the control system that uses the sequential control

method, followed by the system that uses concurrent control method. During an

experiment, the robot was asked to navigate towards the goal. The robot had to perform 1 0

trials for each obstacle configuration and control system. Its paths were recorded and are

shown in section 7.12.

A typical sequence of images captured and plans produced during a successful

navigation to the goal is illustrated in figure 7.2. In this sequence, a concurrent control

method was used. The robot navigated from its initial position (45, 16) toward the goal

which is located at position (77, 104) while avoiding the obstacle which was located at

129

position (75, 65). The 10 sets of figures shown in figure 7.2 illustrate this process. Each

set shows, starting from the left, the captured image superimposed with image processing

results (edges detection), the 2D map after self-localization (the edges fitting process) and

the neuro-resistive grid with the generated waypoints (path). Examples of other robot

paths for this configuration are shown in figure 7 .4d. The travelled distance for such paths

was typically 150 cm for a travel time of approximately 50 seconds (figure 7.3(b)). 10

images were processed during that time (see below). Video recordings showing the robot

in motion as well as the computer screen can be found in the CD attached to this thesis.

130

131

Figure 7.2: Example of the concurrent control system performing the
navigation task of experiment 2. The figures (a-j) show the sequence of images
captured and plans produced during a successful navigation to the goal. Starting
from the left are the captured image, the 20 map illustrating the edges fitting
process and the neuro-resistive grid.

132

7.1.2 Results

The experiments show two important points. Firstly they demonstrate that one of

the aims of the thesis has been achieved, namely the design and test of a navigation system

that uses vision as main position sensor. Secondly, that the time delays problem exists in

the system that uses the sequential control strategy and that it can be overcome with the use

of a concurrent control strategy.

Figure 7.3 illustrate an example of the distances-versus-time plot for the system

that uses sequential control and the system that uses concurrent control.

Figure 7.3(a) shows the of stop-and-go motion effect in the system that uses the

sequential control method. This system takes about 20 seconds longer to complete the

navigation task compared to the system that uses concurrent control shown in figure 7 .3(b).

Figure 7.3(b) shows that the system does not exhibit the stop-and-go motion during

navigation.

a) Sequential Control -Distance w. Time Plot b) Concurrent Control -Distance w. Time Plot

200
180
160

e 140

~ 120
Gl
u
c 100
.s • 80
0 60

40
20

200
180
160

e 140

~ 120
Gl
u 100
c

~ 80
0 60

40
20

60

Time (sec) Time (sec)

Figure 7.3: The Distance vs. Time plot of two systems that uses different
control methods. (a) This figure shows that the system that uses sequential
control method exhibits the stop-and-go motion, while (b) shows that the system
that uses concurrent control does not exhibit this behaviour (the stop-an-go
motion) and completes the task with 20 seconds quicker than (a).

133

80

7.4.

The paths taken by the robot during the navigation experiments are shown in figure

a) Sequential Control- Experiment 1

120

110

100

90

80

70

60

50

40

30

20

10

D

0+4~~~~~~~~~~~
0 1 0 20 30 40 50 60 70 80

x(an)

c) Concurrent Control- Experiment 1

120

110

100

90

80

70

60

50

40

30

20

10

D

0~~+4~~~~~~~~~
0 10 20 30 40 50 60 70 80

x(an)

b) Sequential Control- Experiment 2

120

110

100

90

80

70

60

50

40

30

20

10

0+4~~~~~~~~~~~
0 1 0 20 30 40 50 60 70 80

x(an)

d) Concurrent Control- Experiment 2

120

110

100

90

80

70

60

50

40

30

20

10

0~~+4~~~~~~~~~
0 1 0 20 30 40 50 60 70 80

x(an)

Figure 7.4: The experimental paths produced by the sequential control system
(a, b) and the concurrent control system (c, d). Left and right figures are
distinguished by the position of the obstacle. Start and goal positions are shown
by an empty and a filled circle respectively.

134

In figure 7.4, one can notice a significant variability in the paths produced. Figure

7.4 (a), (b) and (c) show that 70% of the trials were within 20cm radius of the goal while

figure 7.4 (d) shows no trial of such accuracy. This is due to the increased possibility to

confuse corners in the self-localization process with paths of figure 7.4 (d). There were

some unavoidable problems which were influenced by several factors during the

experiment. These include the level of noise in the image, the accuracy of the

self-localization process and the accuracy of the shaft encoders reading. These problems

are discussed in the next section.

7.1.3 Problems Encountered

During the experiments v1s1on, odometry, and communication problems were

encountered.

Vision plays an important role in the navigation process and the performances of

the system were often determined by the results of vision processing. Problem such as the

environment light intensity changes could sometimes cause the vision system to consider

certain parts of the walls as floor (i.e. shadows) or parts of the floor as obstacles (i.e.

reflection of light sources). The presence of noise in the image when the robot was in

motion (due to an unsteady antenna) often caused the vision system to generate phantom

obstacles. These phantom obstacles cause problems for self-localization (i.e. phantom

obstacles that are located close to the environment boundaries have the potential to be

misinterpreted as detected edges) and path planning (i.e. blockage of valid routes).

Odometry problems were mainly caused by shaft encoders drift. Most severe

odometry problems are caused by shaft encoders missing ticks. This occurs when then

distance between the IR sensor and the reflector (i.e. encoder striped pattern) falls out of

135

the sensors operating range. Such problem can reduce the efficiency of the internal loop of

the controller and lead to large errors in the displacement vector estimated from odometry

and cause the robot to deviate from it's path as shown in figure 7.4 (c) and (d). This in turn

affects the visual self-localization process that assumes that the robot is positioned

somewhere close to the planned path with a heading roughly parallel to the path. A

number of paths in figures 7.4 (a)-(d) where affected by this problem. For instance in

figure 7.4 (a) the robot has sometimes mistaken the top left corner for the top right corner

and heads towards a goal that now appears to be along the left wall.

Another problem is the lack of sufficient information for self-localization in certain

images. It was shown in section 4.5 that the accuracy in the x-direction was reduced due to

the limited number of visual clues provided by the side walls. During the navigation of the

robot, the situation can become even worse, as only one wall may be visible in the image

when the robot is close to it. As a result, vision can only provide position information

along one direction (e.g. y-direction). In this case, the best that the remote brain can do is

to estimate the position in the other direction by assuming that the robot has followed the

desired path. The robot must then use this quite unreliable information for recalibration

and is at high risk of getting lost.

The communication process also affects the efficiency of the navigation process.

The communication is in principle safe, in that the robot uses security bytes to identify the

source of the transmission and check-sums to detect corrupted data. If an error is detected

it then requests the remote brain to resend the data. Sometimes the remote brain can miss

this request and the robot must ignore recalibration and path data. In that case, the robot

pursues its previous path, eventually reaching the last of the sent waypoints.

136

Another potential communication problem can lead to disorientation problems

(i.e. vision-based self-localization establishes erroneous correspondences between detected

edges and edges on the prior map). This is due to the fact that, during the communication

process, the robot keeps executing the last motor command and may overshoot its target

and could be too far from the desired path when the image for vision-based

self-localization is captured. This is illustrated in figure 7.4 (d) where the communication

process established while the robot was making a turn caused the robot to collide with the

obstacle.

In such a case, vision can be the victim of the unreliability of the motion control in

that the set of initial positions along the planned path assumed during self-localization does

not cover the position that the robot has reached.

Overall vision often failed to perform accurate self-localization, either due to a

clue-poor environment, or due to motion errors. Communication problems also

contributed, but to a lesser extent.

Due to the large impact of these problems on the system's performance, it would

have been of little significance to produce more quantitative evaluations of the

performance. The key lessons learnt from these experiments will be discussed in section

8.2.

137

Chapter 8

Conclusion and Future Work

8.1 Contributions to Knowledge

This thesis has presented a complete vision-based navigation system that can plan

an obstacle-avoiding path to a desired destination on the basis of an internal model (map)

updated with information gathered from its visual sensors. It has demonstrated a control

technique that addresses the stop-and-go motion problem by concurrent image processing

and planning while the robot is in motion. Quantitative results of the systems behaviour

were shown.

Contributions were made in the areas of vision, planning and control.

During the development of this system, a new floor-edges-specific filter was

proposed to detect floor edges and at the same time determine their pose. An algorithm

has been proposed to determine precisely the position of the edge in the filter window.

A self-localization algorithm that uses the detected edges and their orientation for

estimating the robot's pose was developed. This is done by matching the detected floor

edges with the nearest edges in the prior map. In order to limit the potential for aliasing

138

errors, self-localization is performed by assuming that the robot is located somewhere near

to the planned path. The orientation of the robot can then be estimated simply from the

average orientation mismatch between edges found in the image and the corresponding

edges in the prior map.

The neural-resistive grid which is an ideal data structure for mappmg and

path-planning was implemented for the first time in a real-world actual application (instead

of simulation in Bugmann, Taylor and Denham, (1994); Althofer and Bugmann. (1995)).

A novel scheme was proposed to represent the collision-free space, using divergent

connections from the spatial memory to the neuro-resistive grid.

To overcome the stop-and-go motion problem caused by intermittent delayed

measurements, a modified Smith Predictor combined with receding horizon control was

successfully implemented. Experiments were conducted to demonstrate the system.

A novel implementation of the receding horizon control usmg NRBF net was

proposed. The NRBF path encoder (previously proposed in Koay, Bugmann, Barlow,

Philips and Rodney (1998) for an autonomous wheelchair) was implemented on-board the

robot to continuously produce a target point to attract the robot toward and along the

obstacle free path until the robot reaches the goal. This research demonstrates a system

that performs automatic path encoding using the waypoints obtained from the remote brain

at every remote brain program cycle, while the previous paper (Koay, Bugmann, Barlow,

Philips and Rodney, 1998) demonstrated manual path encoding.

We have proposed two modifications of the Smith Predictor for its use in

navigation systems, one with intermittent delayed measurements and the other without.

The one for intermittent delayed measurements is used in the demonstrated system to

139

implement retroactive updating. It has been shown here that other recently proposed

methods for handling delayed measurements (Kosaka, Meng and Kak, 1993; Maeyama,

Ohya and Yuta, 1995; and Larsen, Andersen and Ravn, 1988) are formally equivalent to

the modified Smith Predictor.

8.2 Problems and Difficulties Encountered

In this research, several problems that affect the performances of the system were

noted. These essentially contributed to the robot failing to reach the goal in 30% of the

trials due to collisions with obstacles or disorientation.

The vision-based self-localization process plays a crucial role in the success of the

system in reaching the goal.

During the experiments, failure in vision-based self-localization process often

caused the robot to deviate from the given path and collide with obstacles. Failures of the

vision-based self-localization process were caused by matching the detected edges with the

wrong edges in the prior map.

This can be traced back to several causes. Most of these were related to vision

problems such as the presence of noise in the sampled image during navigation. Others

were related to the accuracy of the shaft encoders readings and the on-board motion

controller (e.g. the robot derived from the designated path due to shaft encoders feedback

errors).

The presence of noise in the sampled image during navigation was caused by bad

reception due to an unstable antenna on-board the robot. The robot's environment light

intensity changes also contributed to the noise level as the vision system could consider

140

certain parts of the walls as floor (i.e. shadows) or parts of the floor as obstacles (i.e.

reflection of light sources).

The noise in the image was often detected by the vision process as detected edges

(i.e. floor edges or obstacles), since there is no algorithm for noise detection in the vision

process. This confusion lead to the vision-based self-localization matching process to

produces unreliable results that could generate disorientation problems.

During vision-based self-localization, those detected edges that did not find a match

with edges from the prior map were assumed to be obstacles. These phantom obstacles

could lead to the blockage of valid routes.

Apart from vision, the disorientation problem was also caused by the unreliability

of the shaft encoders as their feedback could mislead the on-board motion controller to

drive the robot away from the designated path. This could cause the vision-based self­

localization algorithm to match the detected edges with the wrong edges in the prior map.

The communication process also had the potential of causing disorientation

problems. During the communication process, the robot kept executing the last motor

command while the robot used its processing power for receiving and handling

communication data. This could cause the robot to deviate from the designated path, and

cause the vision-based self-localization process to wrongly match detected edges with

those in the prior map. Apart from this, the deviation from the designated path could also

cause collisions with walls or the obstacle.

141

Apart from disorientation problems, the vision-based self-localization algorithm

also had difficulties in determining the robot's position when the image did not contain

enough visual cues, as discussed in section 4.5.2.

Communication problems such as the loss or corruption of data also posed a serious

threat to continuous navigation, as this problem could cause the robot to stop at the final

waypoint of the current encoded paths while still waiting for the latest path from the

remote brain.

The current obstacle detection and registration procedure wasn't able to distinguish

between real and phantom obstacles. Therefore all the detected edges were currently being

registered into the neuro-resistive grid which is then used for path planning. This phantom

obstacles problem should be addressed in future work.

Overall, almost all failures to reach the goal were a fatal combination of vision

errors and control errors. The system was designed to allow vision to compensate for

control errors, but due to the assumption in the self-localization process that the robot was

following the planned path, self-localization was bound to fail when large control errors

occurred. However, not making restrictive assumptions about the robot's pose at the time

of image capture opens the door to aliasing problems, as many corners and walls look the

same.

The design of a future system needs to be reassessed in this light.

142

8.3 Future work

Future work should atm mainly at producing a more robust vision-based

self-localization process.

The disorientation problem could be overcome by decorating the environment with

more visual cues. This can be done by first registering the landmarks or visual cues in the

map either through sensing or using prior knowledge, then using these landmarks as clues

to provides orientation information for matching the detected edges to the appropriate

edges in the prior map.

Another method is to search for a landmark within the environment and begin

tracking the landmark (Kosaka and Nakazawa, 1995) during the navigation process for

deriving the robot's orientation. Note that this method is to track the landmark for relative

orientation information; therefore only one landmark is needed at a time, as opposed to

other techniques such as triangulation from landmarks that use more than one landmark to

derive the robot's position and orientation.

The problem with the lack of visual cues for determining the robot's pose

accurately can be overcome by having the camera turning to the sides (i.e. right and left) of

the robot to obtain wide-field images. This should be done without the robot going into a

static state, but this will require a carefully designed algorithm to enable the combination

of the partial position information produced from each view.

As for the communication problem, this can be solved by having the remote brain

on-board the robot whereby communication between the remote brain and the robot can be

established reliably without lost transmission and corrupted data. Note that, with the

143

implementation of the remote brain on-board the robot, this would allow the remote brain

to gain access into other information which was previously restricted due to the

communication bandwidth. These include the robot's pose derived from the shaft

encoders. With the remote brain on-board the robot, this opens many other possibilities

such as the used of a gyroscope to provide additional orientation information.

Finally the phantom obstacle problem could be overcome by using a verification

process in which the detected obstacles have to be confirmed before being placed

permanently on the map. This can be done by searching for the same obstacle in two

different pictures captured at different times and using occupancy grid techniques.

These are some of the proposed solutions to 1mprove the performance of the

system.

144

Appendix A

Solving the Rug Warrior's Motion Model
using Linear Differential Equation of 1st

order

General equation:

dy + P(x)y = Q(x)
dx

General solution:
y= y(x)u(x)

where,

()
-JP(•)dx

y X =e

u(x) = JQ(x) dx + C
y(x)

(a. I)

(a.2)

(a.3)

(a.4)

Using the above method, we will solve for equation (6.26), showing below as equation
(a.S).

dv
-+Pv=Q
dt

Firstly, we solve for y(t) where

-rl'dl
y(t) = e ,,

since P is constant therefore

-Pfldl
y(t) = e '"

y(t) = e -P[1-1, I

Secondly we solve for u(t),

145

(a.S)

(a.6)

(a.7)

(a.8)

u(t) =I JLdt +C
0 y(t)

- r Q
u(t)- Jo e-P[r-roJ dt + C

u(t) = Q I eP[r-roldt + C
0

u(t) = Q eP[r-roll' + C
p 'o

The solution for the velocity vis then obtain from the product ofy(t) and u(t)

v(t) = y(t)u(t)

v(t) = e-P[r-rol(; eP[r-roll:o +C)

v(t) = e-P[r-r0](; (eP[r-r0] _ eP[r0 -r0]) +C)

v(t) = e-P[r-r0 l(; eP[r-r0]_; +C)

146

(a.9)

(a. I 0)

(a. II)

(a.l2)

(a.l3)

(a.l4)

(a. IS)

(a.l6)

(a.l7)

Appendix B

Publication

1. Koay, K. L., Bugmann, G., Barlow, N. and Philips, M. (1998). Representation of
Trajectories for Mobile Robot. Proceedings of the 6th International Symposium on
Intelligent Robotics Systems, Pages 185-194.

2. Bugmann G., Koay K., Barlow N., Phillips M. and Rodney D. (1998). Stable encoding
of robot trajectories using normalised radial basis functions: Application to an
autonomous wheelchair. In: D Caldwell, J Gray and P Robinson (eds), Proceedings of
29th International Symposium Robotics (ISR'98), Pages 232-235. DMG Publishers:
London.

147

Representation of Trajectories for Mobile Robots.

Kheng L. Koay• , Dr. Guido Bugmann••,
Dr. Nigel Barlow, Mike Pbillips

Donald Rodney
Montpelia- Road 4
London SE IS 2HF, UK School of Computing

University of Plymouth
Plymouth PIA 8AA, UK

Abstract. A neural network using Normalized Radial Basis Functions (RBF) is used for encoding the sequence of positions
forming the trajectory of an autonomous wheelchair. The network operates by producing the next position for the wheelchair.
As the trajectory passes several times over the same point. an additional phase information is added to the position information,
which avoids the aliasing problem. The use of normalized RBFs' creates an attraction field over the whole space and enables the
wheelchair to recover from any perturbations, for instance due to avoidance of people.

1. Introduction

This paper describes a part of the control system
of an autonoroous wheelchair that was exhibited in the
South London Gallery for a roonth in 1997. During 7
hours a day, the wheelchair had to perfonn a repeated
sequence of circles, spirals and figures of eight in an
unmarked 7m x 7m square area. The public was allowed
to enter the area and the wheelchair used sonar for
obstacle detection. An obstacle caused the wheelchair to
stop. H the "obstacle" did not move after a few seconds,
the wheelchair initiated an avoidance maneuver which
caused it to leave the desired trajectory. Our problem was
to design a control system that i) encodes the complex
trajectory and ii) enables the wheelchair to recover from
trajectory disturbances, e.g. due to obstacles. This later
stability property would also enable the system to be
insensitive to the starting point, when restarted in the
morning.

In section 2 the use of a control approach based
on a map in Cartesian co-ordinates rather than Perception­
to-Action principles is justified. In section 3 the basics of
the Normalized RBF network are given. In section 4 the
encoding of the trajectory is described in details,

Figure 1. Wheelchair in the South London Gallery during the including the method for encoding phase information. In
exhibition.

section 5 properties of the system are discussed, such as
the creation of an attraction field and learning

capabilities. In section 6 the potential applications in a domestic environment are discussed. The conclusion
follows in section 7. The self-localization method is described in the Appendix.

• khenglee@soc.plym.ac.uk
•• gbugmann@soc.plym.ac.uk

2. Control Philosophy

The control system was designed as a three stage process. In the first stage, the position of the wheelchair
within the gallery was determined. This was done by using a combination of sensors: Sonar, Vision, Shaft encoders
and Gyroscope as described in the Appendix. In the second stage, a neural network (NN) used the position
information to determine the next position in the trajectory. In the third stage, a standard control procedure (not
described in this paper) was used to guide the wheelchair to that position. This task subdivision is similar to the
one used in [9). The main difference with the work in [9] is the use of a NN to encode the trajectory. In contrac;t to
the segment-based representation used in [9], the NN produces a continuous sequence of new targets and "pulls" the
wheelchair smoothly along the trajectory. The description of the NN and its properties is the main purpose of this
paper.

Another approach, bac;ed on encoding Perception-to-Action sequences was considered but not retained due
to the characteristics of the problem. In the Perception-to-Action approach [7, 10, 11, 14, 16], visual images from
the environment or given setc; of sensor readings are ac;sociated with given actions, e.g . "when this pattern is seen
from this angle, turn left". This could not be used for following reac;ons: First with people moving around, the
gallery could not provide a reproducible sensory signature of a position (problem also noted in [14]). We thought
of using a camera directed toward the ceiling but this one did not have sufficiently distinctive patterns. Secondly,
the demanded trajectory repeatedly passes in the same point with the wheelchair in the same orientation, this would
have caused destructive aliasing (discussed in [2, 14, 16]). Thirdly, Perception-to-Action sequences are not stable
against deviations of the trajectory. If the wheelchair find itself in an untrained position off the trajectory, no
adequate control action is produced [7].

With the system proposed in this paper, only the desired trajectory needs to be encoded, but adequate
control actions are produced over the whole space, and the aliasing problem is avoided.

3. Normalised RBF Nets

Standard Radial Basis Function (RBF) nets comprise a hidden layer of RBF nodes and an output layer with
linear nodes [4,5]. The function of these nets is given by:

n

Y;(x)= [wiftf>(x-x i) (1)
i=l

where Yi is the activity of the output node i, 1/J(x-xj) is the activity of the hidden node j , with a RBF function centred

on the vector x1, x is the actual input and wij are the weights from the RBF nodes in the hidden layer to the linear

output node (Figure 2). Such a net is a universal function approximator [15].

~

Yl

Figure 2. Network architecture for standard RB F nets and Normalized RBP

The function q,(x-xj) of a hidden node j is usually the Gaussian Radial Basis Function:

(2)

where a is the width of the Gaussian and K is the dimension of the input space. The "weights" wjk between node k

in the input layer and node j in the hidden layer do not act multiplicatively as in other neuron models, but define the
input vector xj = (wjl•···· wjK) eliciting the maximum response of node j (xj is the "centre of the receptive field").

-1

Input

-1

Figure 3. Comparison between standard RBP nets and Normalized RBP nets with three hidden
nodes on an example of a !-Dimensional trajectory. The trajectory has 4 way points: x = -0.6,-
0.2, 0.3, 0.5. The trajectory can be represented as a mapping 1-0.6 -> -0.2; -0.2 -> 0.3; 0.3 ->
0.5) . Doued line: function of a standard RB F net approximating the mapping. Full line:
Function of a Normalized RBF net.

Normalised RBF nets have a function very similar to the standard function, with the exception of a
normalisation by the total activity in the hidden layer:

(3)
yi(x) =

As a result, the output activity becomes an activity-weighted average of the input weights in which the
weights from the most active inputs contribute most to the value of the output activity. For instance, in the extreme
case where only one of the hidden nodes is active, then the output of the net becomes equal to the weight
corresponding to that hidden node, whatever its actual activity. Thus RBF nodes in the hidden layer are used here
as case indicators rather than as basis functions proper.

Figure 3 shows that each hidden node in Normalized RBF nets takes over a portion of the input space over
which it determines the output of the net. Due to this property outputs of the normalized RBF net are always a point
on the trajectory, even if the current position is not exactly a way point. In contrast, the standard RBF net produces
outputs out of the trajectory for input positions that are not exactly on a way point.

A similar normalisation principle is used in the "centre of gravity defuzzification method ([5], pp 388-404).
Our approach is a special case of the approach proposed by [17] for selecting linear functions Lv(x) (instead of the

constant weights wij used here). In [16] expression (3) was used to compute normalised motor output vectors in

robots. Normalised RBF net'i show also very good properties in pattern cla'iSification applications [8].
A net with the function (3) wa'i originally proposed for sequence encoding in the case of robot arm

trajectories [1]. That architecture is extended here with a phase encoding feature that enables encoding of the
complex trajectory of the wheelchair which passes repeatedly in the same point in space at different phases of the
sequence.

Figure 4. Trajectory encoded by the neural network.
The recLangle indicates the walls of the gallery. The
figure is produced by simulating the motion of a vehicle
sl.arting in the lower half of the image. The outward
spiral is indicated by dots only. The motion of the real
wheelchair is very similar but we have no recordings of it.

2n+l

2n

1

4n

Figure 5. Definition of a figure of eight by four half-

Next Position

4n

Current Position

4. Trajectory Encoding

The demanded trajectory for the wheelchair comprises
two large circles along the periphery of a 7m x 7m square, then an
inward spiral. Once in the center of the square, three successive
figures of eight are performed, then an outwards spiral takes place.
After that the sequence restarts with two circles (Figure 4).

A) Decomposition in a sequence of half-circles

To encode the trajectory with the proposed neural network, the
demanded trajectory was divided into 25 half-circles (4 for the
large circles, 5 for the inward spiral, 3x4 for the eight's and 4 for
the outward spiral). Each half-circle was represented by 5 to 12
equidistant way points. By trial and error it was found that the best
distance between way points was approximately 0.9m. The
number of way points per half circle wa'i chosen accordingly,
depending on iL'i radius.

B) Neural network

The NN was designed in such a way that when the
wheelchair reached one way point, the output of the network
indicated the position of the next way point and the orientation
qJ of the wheelchair at that position. These values are given a'i
input to a standard control system which issues motor commands.
Figure 5 shows an example of 4 half-circles characterizing one
figure of eight Figure 6 shows the part of the neural network
encoding the figure.

Normalized RBF neL'i are well suited for this task because
the output activity does not depend critically on the positions (x,y)
given at the input. That is because nodes in the hidden layer
generate a Voronoi Tesselation [8] of the input space and, for all
input values within one of the partition, the output of the net is the
same, actually the value of the weight between the active hidden
node and the output node (Figure 3).

Figure 6. Neural network encoding the demanded trajectory. L0: Input layer, Lf

Hidden layer, 0_: Output layer.

C) Off-line Learning

Learning the desired trajectory are done by a one pac;s learning procedure, by setting the input weights of
each hidden node to the position (x,y) of one way point (equation 4), and its output weights to the position of the

W j.l = Xn; w, .2=yn; W j.J = Pn - Oj (4)

(5)

next way point in the trajectory (equation 5).
where Xn and Yn are the x and y Cartesian co-ordinate of way point n respectively, while Pn is the phase n

and Xn+t and Yn+t is the x and y Cartesian co-ordinate of the next way point (n+l) respectively, while ll'n+t is the
expected orientation of the wheelchair at way point n+ 1. The use of phase information is explained in the next
section.

This is a very fast training procedure. The number of recruited hidden nodes in the network represents the
number of way points along the trajectory. An additional output node is used to encode the orientation qJ of the
wheelchair at the next way point, a parameter used by the low lever control algorithm.

C) Avoiding aliasing by phase encoding

It can be seen in Figure 5 that several half-circles have nodes centred on the same position. To make sure
that only one of them becomes active at a time, a "Sequence Phase" node wac; added to the network used in [1]
(Figure 6). The weightc; from each of the nodes in layer L1 to the phase node are equal to their position in the

sequence or "phase". For instance, if the ftrst node in the sequence is active. the Sequence Phase node will have an
output I. If the lOth is active, the output will be 10, etc. The output of that node is used as input by the "Position
Transition" nodes in layer L1. Their input weightc; for the phase are set to their phase- 0.5. For example. the lOth

node has a receptive field (for phases) centred on 9.5. In that way, nodes start to become activated when the system
is in the phase prior to their own (or in their own) and when the wheelchair is in the position defined by the two
weight<; from the "Current Position" in layer L0. Therefore, when a position correspondc; to many nodes, only the

one receptive to the current phase becomes activated and can indicate the next position in the trajectory. A special
routine wac; written to reset the phase at the end of the sequence, to enable a repeat of the trajectory.

Figure 7. Dlustration of the attraction field
generated by the neural network for the large
circle.

5. Properties of the trajectory generator

A) Auractionfield

RBF nodes with a Gaussian function produce a response over
the whole input space (x,y,p) . The response is very weak for most
combinations of position (x,y) and phase p. For instance, when the
wheelchair is far from the trajectory, only a very weak response is
elicited in any of the nodes in layer L1 of the net. However, due to the

normalization in (3), the network can output a value for the next position,
ac; encoded in the weightc; to the layer "Next Position". Thus
normalization results in an attraction field that leads the wheelchair
towards the demanded trajectory from whatever starting point (Figure
7).

The smooth approach-curves in Figure 7 are due to the internal
dynamics of the network. Let us assume a starting point as in Figure 4.
Initially the pha'ie p is set to 0.5, so that mainly the first node is activated
(this node is centred on the position indicated by a cross in Figure 7. and
i.'i part of a descending half-circle). Thus the first goal position indicated
by the network is one node ahead of the first node. However, being
active, the first node causes the phase to become p = 1. This in turn
enables the second node to become active, which gives now a goal

position one node ahead of the second node. Thus the wheelchair is given a changing goal as it approaches the
trajectory. Interestingly, this movement of the goal also occurs when the wheelchair is on the trajectory, and it
needs to be controlled to avoid goals running too far ahead of the actual position. This control involves either a
lower frequency of updating of the Sequence Phase node, or a balancing of the role of position and phase in the
activation of nodes in layer L1, as explained below.

It can be seen from (2) that the activity of any node in layer L1 of the net is the product of three one­

dimensional Gaussian functions centred on their preferred x, y and p respectively. Let us assume that these
Gaussians' have different widths. If the width for p is large (low selectivity), the winning (most active) node is
determined by the position of the wheelchair. However, if the width for p is small (high selectivity), the value of p
becomes most important in determirting the activity of the node. In this case, the net can run through the sequence
irrespective of the position of the wheelchair. We have found that a good balance between the role of position and
pha~e is obtained when the width er= I for the pha~e and the position (in meter).

B) Aliasing

In this work the position (x,y) of the vehicle was used a~ input to the sequence encoding network. Aliasing
occurs when the same (or sirrtilar) position reoccurs at different times in the trajectory. By adding a phase node we
have avoided that the vehicle jumps from one phase of the trajectory to another, hence solving the aliasing problem.

In Perception-to-Action systems, aliasing is also a problem [7, 14, 16]. The difference is that some
(position specific) complex sensory picture is used instead of the position (x,y). It should also be possible to avoid
aliasing in these system~ by adding phase information to the picture.

C) Peiformance

In average, the wheelchair worked independently for 45rrtin. At that time it was usually lost in some corner
of the gallery and an operator had to replace it at the starting position and reset the program. The batteries however
needed only one charge per day. For the purpose of providing a show, these performances were acceptable. The
duration of autonomous operation was lirrtited solely by the problems of self-localization. As mentioned in the
appendix, the lighting conditions in the gallery did not allow a dynarrtic recalibration of the orientation using a CCD
camera This in turn prevented to use sonar reliably to measure the distances to the walls, which requires the
orientation to be known (see appendix). Hence self-localization relied solely on shaft encoders.

Some difficulties in precisely following the desired trajectory were due to dynarrtic lirrtitations of the low
level control algorithm. A compensating measure wa~ to define the motion speed separately for each semi-circle.
with a slower speed for the smaller half -circles. Further work is needed at that level.

However, the trajectory encoding system described here showed no problems.

6. Potential applications in a domestic environment

Theoretically, the wheelchair can be programmed on-line, with a new hidden node (way-point) added to
the network at fixed distance intervals while the wheelchair is being pushed through a desired trajectory. Different
trajectories can be encoded by using extra output nodes broadcasting the identity of the trajectory, e.g. some code
for the goal and the starting point. Therefore, the proposed trajectory encoding system has the potential for use in
domestic environments.

One point that may need some thoughts is the fact that the density of way points needs to be larger in
segment.~ with high curvature, requiring really a variable interval between way point.~. Another point to consider is
the fact that the attractive field does cross walls (unlike fields in Laplacian planning methods [6]), hence it is
preferable to irtitiate the path-following procedure when close to a way point.

The biggest limitation currently is the self-localization procedure which needs to be much more robust.
For that purpose, we are now developing vision based techniques for layout recogrtition and analysis.

7. Conclusion

A simple neural network has been described that encodes trajectories in a stable way, allowing recovery
from disturbances and implementing a new phase encoding principle that solve the aliasing problem. The
wheelchair produced a satisfactory show for a whole month in an art gallery. For domestics applications,
improvements in self-localization and low-level control are needed.

8. Acknowledgment

The authors gratefully acknowledge support in many forms by British Aerospace Systems & Equipment
(Plymouth), Mike Denham, Peter Frere (Lucas Advanced Engineering Centre, Birmingham), Steve Hill, the Henry
Moore Foundation, David Keating, Peter Nurse, Penny and Giles Drives Technology Ltd. Plymouth Disability
Equipment Centre, Paul Robinson, Alan Simpson, the South London Gallery, and others mentioned in the web page:
http://www.tech.plym.ac.uk/soc/research/neural/research/wheelc.htm

9. References

[1] K. Althoefer and G. Bugrnann (1995) "Planning and Learning Goal-Directed Sequences of Robot-Arm
movements", in Fogelman-Soulie F. and Gallinari P. (eds), Proc. of the International Conference on Artificial
Neural Nerwork.s (ICANN'95), Paris, Vol. 1, 449454.

[2] D. H. Ballard and S. D. Whitehead (1992) "Learning visual behaviours" In H. Wechsler, editor, Neural
Nerwork.sfor Perception, volume 2, pages 8-39. Academic Press.

[3] V. Braitenberg (1984) "Vehicles, Experiments in Synthetic Psychology", MIT Press, Cambridge,
Massachussets.

[4] D. S. Broomhead and D. Lowe (1988) "Multivariable Functional Interpolation and Adaptive Networks",
Complex Systems, 2, pp. 321-355.

[5] M. Brown and C. Harris (1994) "Neurofuzzy Adaptive Modelling and Control", Prentice Hall, Hemel
,UK.

[6] G. Bugrnann, J. G. Taylor, and M. Denham (1994) "Route finding by neural nets" in J. G. Taylor (ed) "Neural
Networks", Alfred Wailer Ltd, Henley-on-Thames, p. 217-230.

[7] G. Bugrnann, G. (1997) "A Connectionist Approach to Spatial Memory and Planning" as Chap. 5 in L.J. Landau
and J .G. Taylor (eds) "Basic Concepts in Neural Networks: A survey", In the Series: Perspectives in Neural
Networks, Springer, London, pp. 109-146.

[8] G. Bugrnann (1998) "Normalized Radial Basis Function Networks", To appear in Neurocompuring: Special
Issue on Radial Basis Function Networks.

[9]1. J. Cox (1991) "Blanche - An Experiment in Guidance and Navigation of an Autonomous Robot Vehicle",
IEEE Transactions on Robotics and Automation, Vol.7, No. 2, April 1991.

[10] P. Gaussier and S. Zrehen (1995) "PerAc: A neural architecture to control artificial animals", Robotics and
Autonomous Systems, 16, pp. 291-320.

[ll] Maja J. Mataric (1991) "Navigating With a Rat Brain: A Neurobiologically-Inspired Model for Robot Spatial
Representation", Proc. SAB'91, Paris, pp.l69-175.

[12] J. Moody and Ch. Darken (1989) "Fast learning in networks of locally-tuned processing units.", Neural
Computation, 1, 281-294.
[13] W. L. Nelson and I. J. Cox, "Local path control of an autonomous vehicle", in Proc. IEEE lnt. Conf. Robotics
Automat., 1988, pp. 1504-1510.

[14] C. Owen and U. Nehrnrow, "Middle scale navigation - a case study", Proc. AISB 97 workshop on "Spatial
Reasoning in Animals and Robots", Tech report series, Department of Computer Science, Manchester University,
ISSN 1361-6161. Repon number UMCS-97-4-1.

[15] M. J. D. Powell (1987) "Radial Basis Functions for Multivariate Interpolation: A Review", in Mason J.C. and
Cox M.G. (eds) Algorithms for Approximation, Clarendon Press, Oxford, pp. 143-167.

[16] R. P. N. Rao and 0. Fuentes (1996) "Learning Navigational Behaviour using a Predictive Sparse Distributed
Memory", Proc. of From Animals to Animats: The Fourth International Conference on Simulation of Adaptive
Behaviour, MIT Press, pp. 382-390.

[17] J. Shao, Y. V. Kee and R. Jones (1993) "Onhogonal Projection Method for Fast On-Line Learning Algorithm
of Radial Basis Function Neural Networks", Proc. INNS World Congres on Neural Networks, Portland Oregon,
USA, Vol.3, pp. 520-535.

Appendix: Self Localization

Robot self-localization is important for keeping the wheelchair on its trajectory (Figure 4) over extended periods of
time. Two localization methods were used in this wheelchair project. One method was static localization, which is
used to confliiJl the initial position of the wheelchair in the morning, or after a reset. The other method wa~ dynamic
localization, which involved correcting the wheelchair position and orientation during task performance.

The wheelchair was controlled by a laptop Pentium PC attached at the back (Figure 1) running the neural
network simulation software CORTEX-PRO which also handled sensor integration. The sensors used in these
operations are described below. All the inputs from these sensors were given a weighting, based on how much these
inputs were entrusted. The weighted average (i.e. equation A.1) was then used to reinitialize the wheelchair position
and orientation. The concept of multi-sensor fusion was used here to produce a more robust self-localization.
Equation A.1 illustrates the calculation of the orientation rp which is based on up to three sensors.

rp_ shaft x w_ ~·haft+ rp_ camera x w_ camera+ rp_gyro x w_gyro
rp=~--~----~~~------~------~=---~~-

rp _ shaft + rp _ camera + rp _gyro
(A .I)

where rp_shaft is the input given by shaft encoders integration, w_shaft is the weight given to the shaft encoder,
rp_camera is the input given by camera integration, w _camera is the weight given to the camera, rp_ gyro is the
input given by the gyroscope, w _ gyro is the weight given to the gyroscope. The weights can be set according to
how much drift each sensor ha~. and other factors. For initial tests, these were all set to 1 during updating cycles
when the sensor were able to provide data, and to zero at other times.

A) Vision: Robot orientation tracking

A QuickCam camera was mounted at the upper right back of the wheelchair with its lens pointed towards
the ceiling for horizontal beam searching using a "Hough Transform". These horizontal beams were to be used to
calculate the wheelchair-heading vector. However, during test runs at the South London Art Gallery, it turned out
that the camera wa~ blinded by the spot lights which shone down from the ceiling. This prevented the use of the
camera, hence w _camera wa~ set to zero.

B) Gyroscope: Robot orientation tracking

A single axis Rate Gyroscope was mounted on the wheelchair to helped the wheelchair track it~ orientation
(i.e. wheelchair heading). During test runs, the rate gyroscope was found to drift more than the orientation
calculated from shaft encoding, so it was not suitable for re-calibration, hence w_gyro was also set to zero.

C) Shaft Encoder: Robot orientation and position tracking

Two incremental shaft encoders were used with the wheelchair to help keep track of its own location within
its internal map. These shaft encoders consist of two striped pattern (200 stripes per rotation for a diameter of
31.5cm), glued to the wheels and photo-reflectors. These detect the reflected light from the striped pattern and
produce a series of pulse-trains during the wheels' rotation. These pulse-train output~ were stored in an incremental
counter. The counter was then used to calculate the distance traveled by the wheels. Distances traveled by each
wheel (i.e. dL for left wheel and dR for right wheel) were integrated to calculate the wheelchair's new position (in
Cartesian co-ordinate x and y) and orientation rp.

D) Sonar: Position tracking and obstacle detection

Eight Polaroid sonar range-finding systems (Polaroid 6500 Sonar Kits)
with operational range from 0.30m to 10m were used for distance meac;urements
and obstacle detection. Most of the sensors were looking ahead, to avoid
collisions with spectators (Figure. A.1). If objects were detected nearer than
1.7m to the wheelchair, the wheelchair stopped and executed an obstacle
avoidance routine.

Obstacles that did not move after a few seconds were consider to be
static. In this case, the wheelchair turned away from the obstacle, rotating by a
fixed angle in the direction opposite from where the obstacle was detected. If no
more obstacle was then detected, the wheelchair foiJowed the direction given by
the NN, and reentered the trajectory. If no free path was detected the wheelchair
stopped and continually beeped.

In the case where the obstacle moved within a few seconds, the

3 7

1

wheelchair resumed its trajectory. Figure A.l. Configuration of the sonar
sensors attached on the wheelchair. During static localization, sonar numbers 1, 3, 5 and 7 were used to

determine the stationary wheelchair position, relative to the wall in the room.
As the wheelchair moved, measurement<; were dynamically taken with the sonar sensors {1, 3, 5 and 7) when
perpendicular to the waiJs in the room. Measurements were hence taken when the orientations of the wheelchair
were 0°, 90°, 180°, and 270°. These measurements were used to calculate weighed average (equation A.l). The
weighted average was then used as the wheelchair's current position and orientation.

Proceedings of the 29th Intl. Symp. on Robotics, Advanced Robotics : Beyond 2000, 27 - 30 April 1998, Birmingham, UK

Stable Encoding of Robot Trajectories
using Normalised Radial Basis Functions:

Application to an Autonomous Wheelchair.

Dr. Guido Bugmann, Kheng L. Koay,
Dr. Nigel Barlow, Mike Phillips
School of Computing
University of Plymouth
Plymouth PlA 8AA, UK

Abstract - A neural network using Normalised Radial Basis
Functions (RBF) Is used for encoding the sequence of positions
forming the trajectory of an autonomous wheelchair. The
network operates by producing the next position for the
wheelchair. As the trajectory passes several times over the
same point, an addJtlonai phase Information Is added to the
position Information, which avoids the allaslng problem. The
use of normalised RBFs' creates an attraction fteld over the
whole space and enables the wheelchair to recover from any
perturbatlons, for instance due to avoidance of people.

I INTRODUCfiON

This paper describes a part of the control system of an
autonomous wheelchair that wa~ exhibited in the South
London Gallery for a month in 1997. During 7 hours a day,
the wheelchair had to perform a repeated sequence of circles,
spirals and figures of eight in an unmarked 7 m x 7 m square
area. The public wa~ allowed to enter the area and the
wheelchair used sonar for obstacle detection. An obstacle
caused the wheelchair to stop. If the "obstacle" did not move
after a few seconds, the wheelchair initiated an avoidance
manoeuvre which caused it to leave the desired trajectory.
Our problem was to design a control system that i) encodes
the complex trajectory and ii) enables the wheelchair to
recover from trajectory disturbances, e.g. due to obstacles.
This later stability property would also enable the system to
be insensitive to the starting point, when restarted in the
morning.

In section 11 the use of a control approach ba~ on a map in
Cartesian co-ordinates rather than Perception-to-Action
principles is justified. In section Ill, the basics of the
Normalised RBF network are given. In section IV, the
encoding of the trajectory is described in details, including
the method for encoding phase information. In section V
general properties of the system are discussed, such as the
creation of an attraction field and learning capabilities. The
conclusion follows in section VI.

li CONTROL PHILOSOPHY

We designed the control system as a three stage process. In
the first stage, the position of the wheelchair within the
gallery wa~ determined. This wa~ done by using a
combination of sensors: Sonar, Vision, Shaft encoders and
Gyroscope. In the second stage, a neural network (NN) used
the position information to determine the next position in the
trajectory. In the third stage, a standard control procedure

Donald Rodney
Montpelier Road 4
London SE15 2HF, UK

wa~ used to guide the wheelchair to that position. The NN
continuously gave a new target before the old one was
reached and "pulled" the wheelchair along the trajectory.
Only the second stage is described in this paper.

Another approach, based on encoding Perception-to-Action
sequences was considered but not retained due to the
characteristics of the problem. In the Perception-to-Action
approach, visual images from the environment or given sets
of sensor readings are a~sociated with given actions, e.g.
"when this pattern is seen from this angle, turn left". This
could not be used for following rea~ons: First with people
moving around, the gallery could not provide a reproducible
sensory signature of a position. We thought of using a
camera directed toward the ceiling but this one did not have
sufficiently distinctive patterns. Secondly, Perception-to­
Action sequences are not stable against deviations of the
trajectory. If the wheelchair find itself in an untrained
position off the trajectory, no adequate control action is
produced.

With the system proposed in this paper, only the desired
trajectory needs to be encoded, but adequate control actions
are produced over the whole space.

Fig. !. Wheelchair controUed by a lap!op Pentium PC altachod at the back
running the neural network simulation software CORTEX-PRO. Sonar sensors

in small white boxes are used to avoid collisions and for self-localisation.

Proceedings of the 29th Intl. Symp. on Robotics, Advanced Robotics : Beyond 2000, 27 - 30 April 1998, Birmingham, UK

Ill NORMALISED RBF NETS

Standard Radial Basis Function (RBF) nets comprise a
hidden layer of RBF nodes and an output layer with linear
nodes [3,4]. The function of these net<; is given by:

n

.Y;(x)=[,wiiljl(x-xi) (1)
j~l

where .Y; is the activity of the output node i, ljl(x-xj)is the
activity of the hidden nodej, with a RBF function centred on
the vector x)' x is the actual input and wij are the weights
from the RBF nodes in the hidden layer to the linear output
node. Such a net is a universal function approximator [6].

The function q,(x-xj) of a hidden node j is usually the
Gaussian Radial Basis Function:

~rL-::7~-~-(x_k ___ w_jk_)_2

ljl(x-x i)=exp() (2)
20' 2

where o is the width of the Gaussian and K is the dimension
of the input space. The "weights" wi.l: between node k in the
input layer and node j in the htdden layer do not act
multiplicatively as in other neuron models, but define the
input vector xi= (wi.1, ... ,wjK) eliciting the maximum response
of nodej (xi is the 'centre of the receptive field").

Normalised RBF nets have a function very similar to the
standard function, with the exception of a normalisation by
the total activity in the hidden layer:

Ewu~(x-xl)
y i (x) = J (3)

L~(x-xl)
J

As a result, the output activity becomes an activity-weighted
average of the input weights in which the weights from the
most active inputs contribute most to the value of the output
activity. For instance, in the extreme case where only one of
the hidden nodes is active, then the output of the net
becomes equal to the weight corresponding to that hidden
node, whatever its actual activity. Thus RBF nodes in the
hidden layer are used here as ca<;e indicators rather than as
basis functions proper.

A similar normalisation principle is used in the "centre of
gravity defuzzification method ([4], pp 388-404). Our
approach is a special case of the approach proposed by [8]
for selecting linear functions Li/x) (instead of the constant
weights Wij used here). In [7] expression (3) wa<; used to
compute normalised motor output vectors in robot<;.
Normalised RBF nets show also very good properties in
pattern classification applications [2].

A net with the function (3) was originally proposed for
sequence encoding in the case of robot arm trajectories [1].
That architecture is extended here with a phase encoding
feature that enables encoding of the complex trajectory of the
wheelchair which pa<;ses repeatedly in the same point in
space at different pha<;es of the sequence.

IV TRAJECTORY ENCODING

The demanded trajectory for the wheelchair comprises two
large circles along the periphery of a 7m x 7m square, then
an inward spiral. Once in the centre of the square, three
successive figures of eight are performed, then an outwards
spiral takes place. After that the sequence restarts with two
circles (fig. 2).

A) A sequence of half-circles

The demanded trajectory was divided into 25 half-circles (4
for the large circles, 5 for the inward spiral, 3x4 for the
eight's and 4 for the outward spiral). Each half-circle wa<;
represented by 4 to 12 RBF nodes, depending on the its
diameter. The receptive field centres of the nodes were
equidistantly distributed along the half-circle. Their three
output weight<; represented the position (x,y) and orientation
<p of the wheelchair at the next position (next node) in the
half-circle. These values are given as input to a standard
control system which issues motor commands. Fig. 3. shows
an example of 4 half-circles characterising one figure of
eight. Figure 4 shows the part of neural network encoding
the figure.

Fig. 2. Trajectory encoded by lhe neural network. The rectangle indicates !he
walls of !he gallery. The figure is produced by simulating !he motion of a

vehicle swting in !he lower half of !he image. The outward spiral is indicated
by dots only. The motion of !he real wheelchair is very similar but we have no

recordings of it.

2n+l

2n

Fig. 3. Definition of a figure of eight by four half-circles.

Proceedings of the 29th Inll. Symp. on Robotics, Advanced Robotics : Beyond 2000, 27 - 30 April 1998, Birmingham, UK

Next Position
ard Orientation

Current Position

Fig. 4. Neural network encoding the demanded trajecuxy. The width of the
receptive fields for lhe positions was set to a fifth of the radius of the half-circle.

For the phases, the width receptive field was Set to I . La= Input layer, L 1:
Hidden layer, ~: OutpUt layer.

B) A voiding aliasing by phase encoding.

It can be seen in Fig. 3 that several half-circles have nodes
centred on the same position. To make sure that only one of
them becomes active at a time, a "Sequence Phase" node wa<s
added to the network used in [1] (Fig. 4). The weights from
each of the nodes in layer L1 to the phase node are equal to
their position in the sequence (or "phase"). For instance, if
the first node in the sequence is active, the Sequence Phase
node will have an output 1. If the lOth is active, the output
will be 10, etc. The output of that node is used as input by
the "Position Transition" nodes in layer L1. Their input
wei~hts for the phase are set to their phase - 0.5. E.g. the
10t node has a receptive field (for phases) centred on 9.5.
In that way, nodes start to become activated when the system
is in the phase prior to their own (or in their own) and when
the wheelchair is in the position defined by the two weights
from the "Current Position" in layer L0. Therefore, when a
position corresponds to many nodes, only the one receptive
to the current phase becomes activated and can indicate the
next position in the trajectory. A special routine wa<s written
to reset the phase at the end of the sequence, to enable a
repeat of the trajectory.

V PROPERTIES

A) Am·actionfield

RBF nodes with a Gaussian function produce a response over
the whole input space (x,y,p). The response is very weak for
most combinations of position (x,y) and phase p. For
instance, when the wheelchair is far from the trajectory, only
a very weak response is elicited in any of the nodes in layer
L1 of the net. However, due to the normalisation in (3), the
network can output a value for the next position, a<s encoded
in the weights to the layer "Next Position". Thus
normalisation results in an attraction field that leads the
wheelchair towards the demanded trajectory from whatever
starting point (Fig. 5).

The smooth approach-curves in Fig. 5 are due to the internal
dynamics of the network. Let us assume a starting point a~ in
fig. 2. Initially the phase pis set to 0.5, so that mainly the
first node is activated (this node is centred on the position
indicated by a cross in Fig. 5, and is part of a descending

half-circle) . Thus the first goal position indicated by the
network is one node ahead of the first node. However, being
active, the ftrst node causes the phase to become p = l. This
in turn enables the second node to become active, which
gives now as goal position one node ahead of the second
node. Thus the wheelchair is given a changing goal as it
approaches the trajectory. Interestingly, this movement of
the goal also occurs when the wheelchair is on the trajectory,
and it needs to be controlled to avoid goals too far ahead of
the actual position. This control involves either a lower
frequency of updating of the Sequence Phase node, or a
balancing of the role of position and pha~e in the activation
of nodes in layer L1, a<s explained below.

It can be seen from (2) that the activity of any node in layer
L1 of the net is the product of three one-dimensional
Gaussian functions centred on their preferred x, y and p
respectively. Let us assume that these Gaussians' have
different widths. If the width for pis large (low selectivity),
the winning (most active) node is determined by the position
of the wheelchair. However, if the width for p is small (high
selectivity), the value of p becomes most important in
determining the activity of the node. In this case, the net can
run through the sequence irrespective of the position of the
wheelchair. We have found that a good balance between the
role of position and phase is obtained when the width for the
phase is 1. In practice selecting a different width cr for each
input requires multi-variate RBF nodes, but that poses no
special problems.

Fig. S. IlluSlr.l1ion of the aaraction field generau:d by the neural network. The
figure shows simulated trajeciOries with various swting positions. The initial

phase is Set to 0.5, so that only the first node can initially be active (and
determine the target of the motion). Its activity however sets the phase to I

which enables the succeeding node 10 become active, and so on. This causes a
progressive curvature of the simulated trajectory towards nearer nodes on the
demanded trajectory. Only the initial steps of the trajectory are shown. The

cross marks the position of the receptive field of the fii'Sl node.

Proceedings of the 29th lntl. Symp. on Robotics, Advanced Robotics: Beyond 2000, 27- 30 April 1998, Birmingham, UK

B) Learning

In this application, the trajectory wa~ defined in advance and
the weights of the network were set accordingly. However,
the trajectory can also be learnt on the spot. In this ea~. a
user pushes the wheelchair through the desired trajectory,
while the neural network progressively recruits new nodes in
layer L1.

Due to the attraction field, only the desired trajectory needs
to be learnt. The wheelchair can then enter into the
trajectory from any starting point and recover from
deviations.

C) Aliasing

In this work the (x,y) position of the vehicle was used a~
input to the sequence encoding network. Aliasing occurs
when the same (or similar) position reoccurs at different
times in the trajectory. By adding a phase node we have
avoided that the vehicle jumps from one phase of the
trajectory to another, hence solving the aliasing problem.

In Perception-to-Action systems, aliasing is also a problem
[7]. The difference is that some (position specific) complex
sensory picture is used instead of the (x,y) position. It should
also be possible to avoid alia~ing in these systems by adding
phase information to the picture.

VI CONCLUSION

A simple neural network ha~ been described that encodes
trajectories in a stable way, allowing recovery from
disturbances and implementing a new phase encoding
principle that solve the aliasing problem.

VII ACKNOWLEDGEMENT

The authors gratefully acknowledge support in many forms
by British Aerospace Systems & Equipment (Plymouth),
Mike Denham, Peter Frere (Luca~ Advanced Engineering
Centre, Birmingham), Steve Hill, the Henry Moore
Foundation, David Keating, Peter Nurse, Penny and Giles
Drives Technology Ltd. Plymouth Disability Equipment
Centre, Paul Robinson, Alan Simpson, the South London
Gallery, and others mentioned in the web page:
hnp:l/www.tech.plym.ac.uk/soc/research/neural/
research/wheelc.htm

VIII REFERENCES

[1] K. Althoefer and G. Bugmann (1995) "Planning and
Learning Goal-Directed Sequences of Robot-Arm
movements", in Fogebnan-Soulie F. and Gallinari P. (eds),
Proc. of the lntemational Conference on Aniflcial Neural
Networks (ICANN'95), Paris, Vol. I, 449-454.

[2] G. Bugmann (1996) "A note on the use of weight­
averaging output nodes in RBF-ba~d mapping nets",
Technical Report CNAS-96-0 I.

[3] D.S. Broornhead and D. Lowe (1988) "Multivariable
Functional Interpolation and Adaptive Networks", Complex
Systems, 2, pp. 321-355.

[4] M. Brown and C. Harris (1994) Neurofuu.y Adaptive
Modelling and Control, Prentice Hall, Hemel Hempstead,
UK

[5] J. Moody and Ch. Darken (1989) "Fast learning in
networks of locally-tuned processing units.", Neural
Computation, 1, 281-294.

[6] M.J.D. PoweU (1987) "Radial Basis Functions for
Multivariate Interpolation: A Review", in Mason J.C. and
Cox M.G. (eds) Algorithms for Approximation, Clarendon
Press, Oxford, pp. 143-167.

[7] R.P .N. Rao and 0. Fuentes (1996) "Learning
Navigational Behaviour using a Predictive Sparse
Distributed Memory", Proc. of From Animals to Animals:
The Fourth lntemalional Conference on Simulation of
Adaptive Behaviour, MIT Press, pp. 382-390.

[8] J. Shao, Y. V. Kee and R. Jones (1993) "Orthogonal
Projection Method for Fast On-Line Learning Algorithm of
Radial Basis Function Neural Networks", Proc. INNS World
Congres on Neural Networks, Portland Oregon, USA, Vol.3,
pp. 520-535.

Appendix C

This CD-ROM contains video clips and
the program source codes.
1. Video Clips demonstrating the system performing the navigation tasks

• Concurrent Control -The system uses the concurrent control strategy developed in
the thesis.
Take 1.1, 1.2, 1.3, 1.4 and 1.5- illustrate typical paths taken by the robot when the
position of the obstacle is located at the centre left of the robot environment. In all
these cases, the goal is located near the top right corner of the robot environment.
Note that these takes correspond to some of the paths shown in figure 7.4(c).
Screen 1 - illustrates a typical screen shoot of the remote brain's process when the
position of the obstacle is located at the centre left of the robot environment.
Take 2.1 - illustrates a typical path taken by the robot where the position of the
obstacle is located at the centre right of the robot environment. In this case, the goal
is located near the top right corner of the robot environment. Note that this take
corresponds to one of the paths shown in figure 7.4(d).

• Sequential Control - The system here is using a control strategy described in the
thesis as "sequential control".
Take 3.1 and 3.2 -illustrate typical paths taken by the robot when the position of the
obstacle is located at the centre left of the robot environment. In all these cases, the
goal is located near the top right corner of the robot environment. Note that these
takes correspond to some of the paths shown in figure 7.4(a).
Screen 3 -illustrates a typical screen shoot of the remote brain's process when the
position ofthe obstacle is located at the centre left of the robot environment.
Take 4.1 and 4.2 - illustrate typical paths taken by the robot when the position of the
obstacle is located at the centre right of the robot environment. In all these cases, the
goal is located near the top right corner of the robot environment. Note that these
takes correspond to some ofthe paths shown in figure 7.4(b).
Screen 4 - illustrates a typical screen shoot of the remote brain's process when the
position of the obstacle is located at the centre right of the robot environment.

Note: Here the robot receives a waypoint from the remote brain instead of a simple
motion command. Therefore, it does not stop as often as shown in figure 7.3.a).

2. Program Source Codes ofthe Computer System "Remote Brain"

3. Program Source Code of the Robotic System

4. Program Source Code of the Robot Tracking with Overhead Camera

162

Bibliography

Allotta, B., Conticelli, F. and Colombo, C. (1998). Asymptotically Stable Visual Servoing
of 6-DOF Manipulators. Proceedings of the 6th International Symposium on
Intelligent Robotics Systems, Pages 101-108.

AlthOfer, K. and Bugmann, G. (1995). Planning and Learning Goal-directed Sequence of
Robot Arm Movements. Proceedings of ICANN'95, Volume 1, Pages 449-454.

Anderson, R. L., Alvertos, N. and Hall, E. L. (1982). Omnidirectional Real Time lmaging
Using Digital Restoration. SPIE High Speed Photography, Vol. 348.

Andrews, J. R. and Hogan, N. (1983). Impedance Control as a Framework for
Implementing Obstacle A voidance in Manipulator. Control of Manufacturing
Processes and Robotic Systems, Eds. Hardt, D. E. and Book, W., ASME, Boston,
Pages 243-251.

Asoh, H., Motomura, Y., Asano, F., Hara, 1., Hayamizu, S., ltou, K., Kurita, T. and Matsui,
T. (2001). Jijo-2: An Office Robot That Communicates and Learns. IEEE Intelligent
Systems, Volume 16, No.5, Pages 46-55.

Atiya, S. and Hager G.D. (1993). Real-Time Vision-Based Robot Localization. IEEE
Transactions on Robotics and Automation, Volume 9, No.6, Pages 785-800.

Bak, M., Larsen, T. D., Norgaard, M., Andersen, N. A., Poulsen, N. K. and Ravn, 0.
(1998). Location Estimation using Delayed Measurements.

(Available at http:/ /www.iau.dtu.dk/-tdllamc98paper.ps.gz)

Ballard, D. H. and Brown, C. M. (1982). Computer Vision. Prentice Hall, New Jersey.

Beck, C. (1925). Apparatus to Photograph the Whole Sky. Journal of Scientific
Instrumention, Volume 2, Pages 135-139.

Belongie, S., Carson, C., Greenspan, H. and Malik., J. (1998). Color- and texture-based
image segmentation using the expectation-maximization algorithm and its application
to content-based image retrieval. In Proceeding of the Sixth International Conference
on Computer Vision, Pages 675-682.

Bezdek, J. C., Hall, L. 0. (1993). Review of MR image segmentation techniques using
pattern recognition, Medical Physics, Volume 20, No. 4, Pages 1033-1048.

Bialkowski, W. L. (1983). Application of Kalman Filters to the Regulation of Dead Time
Processes. IEEE Transactions on Automatic Control, Volume 28, No. 3,
Pages 400-406.

163

Borenstein, J. and Koren, Y. (1989). Real-time Obstacle Avoidance for Fast Mobile
Robots. IEEE Transactions on Systems, Man, and Cybernetic, Volume 19, No. 5,
Pages 1179-1187.

Borenstein, J. and Koren, Y. (1991a). Potential Field Methods and Their Inherent
Limitations for Mobile Robot Navigation. Proceedings of the IEEE Conference on
Robotics and Automation, Sacramento, California, Pages 1398-1404.

Borenstein, J. and Koren, Y. (1991b). The Vector Field Histogram - Fast Obstacle
Avoidance for Mobile Robot. IEEE Transactions on Robotics and Automation,
Volume 7, No. 3, Pages 278-288.

Borenstein, J., Everett, H. R. and Feng, L. (1996). Where am I? Sensors and Methods for
Mobile Robot Positioning. Edited and compiled by J. Borenstein, University of
Michigan.

(Available at http://www-personal.umich.edu/-johannb/shared/pos96rep.pdf)

Broomhead, D.S. and Lowe, D. (1988). Multivariable Functional Interpolation and
Adaptive Networks, Complex Systems, Volume 2, Pages. 321-355.

Brown, M. and Harris, C. (1994). Neurofuzzy Adaptive Modelling and Control. Prentice
Hall, Hemel Hempstead, UK

Brown, R. G. and Donald, B.R. (2000). Mobile robot self-localization without explicit
landmarks. Algorithmica, Volume 26, No. 3-4, Pages. 515-559.

Bugmann, G., Taylor, J. G. and Denham, M. J. (1994). Route Finding by Neural Nets.
Application of Modern Heuristic Methods: Neural Networks, J.G. Taylor (ed), Unicorn
& Alfred Wailer Ltd. Pub!., Pages 217-230.

Bugmann, G.(1996). A note on the use of weight-averaging output nodes in RBF-based
mapping nets, Technical Report CNAS-96-01.

Bugmann, G., Koay, K. L., Barlow, N., Phillips, M. and Rodney, D. (1998). Stable
Encoding of Robot Trajectories using Normalised Radial Basis Functions: Application
to an Autonomous Wheelchair. Proceeding of the 29th Intl. Symp. Robotics (ISR'98),
27-30 April, Birmingham, UK, Pages 232-235. DMG Publishers: London.

Bugmann, G. (1998). Normalized Radial Basis Function Networks. Neurocomputing
(Special Issue on Radial Basis Function Networks), 20, Pages 97-110. (ISSN : 0925-
2312)

Buhmann, J., Burgard, W., Cremers, A. B., Fox, D., Hofrnann, T., Schneider, F. E.,
Strikos, J. and Thrun. S. (1995). The Mobile Robot Rhino. AI Magazine, Volume 16,
No. 2, Pages31-38.

Chang, C. C. and K. T. Song (1997). Environment Prediction for a Mobile Robot in a
Dynamics Environment. IEEE Transactions on Robotics and Automation, Volume 13,
No. 6, Pages 862-872.

Choi, J., Sellen, J. and Yap. C. K. (1994). Approximate Euclidean shortest path in 3-space.
Proceedings of the lOth ACM Symposium on Computational Geometry, Pages 41-48.

164

Connolly, C. 1., Bums, J. B. and Weiss R. (1990). Path planning using Laplace's Equation.
Proceedings of the 1990 IEEE International Conference on Robotics and Automation,
Pages 2102-2106.

Cox, I. J. (1989). Blanche: Position Estimation for an Autonomous Robot Vehicle.
IEEEIRSJ International workshop on Intelligent Robots and Systems, Pages 432-439.

Cox, I. J. (1991). Blanche-An Experiment in Guidance and Navigation of an Autonomous
Robot Vehicle. IEEE Transactions on Robotics and Automation, Volume 7, No. 2
Pages 193-204.

Crevier, D. (1993). AI: The Tumultuous History of the Search for Artificial Intelligence.
Pages.llS. Basic Books (Harper Col/ins), New York.

DeSouza G. N. and Kak A. C. (2002). Vision for Mobile Robot Navigation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Volume 24, No. 2, Pages
237-267.

(Available at http://rvll.ecn.purdue.edu/Projects/MobileRobotics/pami.ps)

Despande, P. B. and Ash, R. H. (1988). Computer Process Control. /SA Pub, 2nd Ed.

Everett, H. R.(1995). Sensors for Mobile Robots: Theory and Application. A K Peters
Ltd., ISBN: 1568810482.

Fikes, R., Nilsson, N. (1971). STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. Artificial Intelligence, Volume 2, Pages 189-208

Giuffrida, F., Massucco, C., Morasso, P., Vercelli, G., Zaccaria, R. (1995). Multi-Level
Navigation Using Active Localisation System

Golovan, A. A. and L.A. Mironovskii (1993). An Algorithmic Control of Kalman Filters.
Automation and Remote Control, Volume 54, No. 7 Pt 2, Pages 1183-1194.

Haralick, R. M., and Shapiro, L. G. (1985). Image segmentation techniques. Computer
Vision, Graphics, and Image Processing, Volume 29, Pages 100-132.

Hu, H., J.M. Brady, J. Grothusen, F. Li and P.J. Probert (1995). LICAs: A Modular
Architecture for Intelligent Control of Mobile Robots. International Conference on
Intelligent Robots and Systems, Volume 1, Pages 471-476.

lyengar, S. S. Jorgensen, C. C., Rao, S. V. N. and Weisbin, C. R. (1986). Robot
Navigation Algorithms Using Learned Spatial Graphs. Robotica, Volume 4, Part 2,
Pages 93-100.

Janet, J.A., Gutierrez-Osuna, R., Chase, T.A., White, M. and Luo, R.C. (1995). Global
Self-Localization for Autonomous Mobile Robots Using Self-Organizing Kohonen
Neural Networks. Proceeding IEEEIRJS International Conference on Intelligent
Robots and Systems, Volume 3, Pages 504-509

Jasiobedzki, P. (1995). Detecting Driveable Floor Regions. International Conference on
Intelligent Robots and Systems, Volume 1, Pages 264-270.

165

Jensfelt, P. and Kristensen, S. (1999). Active global localisation for a mobile robot using
multiple hypothesis tracking. In Proc. of the /JCA/-99 Workshop on Reasoning with
Uncertainty in Robot Navigation, Pages 13-22.

Jensfelt, P. (200 1). Approaches to Mobile Robot Localization in Indoor Environments.
PhD thesis, Department of Signals, Sensors and Systems, Royal Institute of
Technology (Kungl Tekniska Hogskolan).

Jiang, K., Seneviratne, L. D. and Earles, S. W. E. (1997). Time-optimal smooth-path
motion planning for a mobile robot with kinematic constraints. Robotica, Volume 15,
No.S, Pages 547-553.

Jiang, K. C., Seneviratne, L. D. and Earles, S. W. E. (1999). A shortest path based path
planning algorithm for nonholonomic mobile robots. Journal of Intelligent and
Robotic Systems, 24, Pages 347-366.

Jogan, M. and Leonardis, A. (2000). Robust localization using panoramic view-based
recognition. Proceeding of 15th International Conference of Pattern Recognition,
Volume 4, Pages 136-139.

Jones, J. L. and Flynn, A. M. (1993). Mobile Robots Inspiration to Implementation.
A K Peters Ltd.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME-Journal of Basic Engineering, Pages 35-45.

Kambhampati, C., A Delgado, J. D. Mason and K. Warwick (1997). Stable Receding
Horizon Control Based on Recurrent Networks./££ Proceeding of the Control Theory
Appl., Volume 144, No. 3, Pages 249-254.

Khatib, 0. (1985). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.
Proceedings of the IEEE International Conference on Robotics and Automation,
Pages 500-505.

Ko, W., Seneviratne, L. D. and Earles, S. W. E. (1994). Extended triangulation algorithm
for robot path planning with obstacle avoidance. Proceeding Engineering Systems
Design and Analysis. American Society of Mechanical Engineers, Volume 6, Pages
101-108.

Koay, K. L., Bugmann, G., Barlow, N. and Philips, M. (1998). Representation of
Trajectories for Mobile Robot. Proceedings of the 6th International Symposium on
Intelligent Robotics Systems, Pages 185-194.

Koreichi, M. L., Babaci, S., Chaumette, F., Fried, G., and Pontnau, J. (1998). Visual Servo
Control of A Parallel Manipulator for Assembly Tasks. Proceedings of the 6th
International Symposium on Intelligent Robotics Systems, Pages 109-116.

Kosaka, A. and Kak, A. C. (1992). Fast Vision-Guided Mobile Robot Navigation Using
Model-Based Reasoning and Prediction of Uncertainties. Computer Vision, Graphics,
and Image Processing -Image Understanding, Volume 56, No. 3, Pages 271-329.

166

Kosaka, A., Meng, M. and Kak, A. C. (1993). Vision-Guided Mobile Robot Navigation
Using Retroactive Updating of Position Uncertainty. Proceeding of IEEE
International Conference on Robotics and Automation. Volume 2, Pages 1-7

Kosaka, A. and Nakazawa, G. (1995). Vision-Based Motion Tracking of Rigid Objects
Using Prediction of Uncertainties. Proceeding of IEEE International Conference on
Robotics and Automation, Pages 2637-2644.

Krogh, B. H. (1984). A Generalized Potential Field Approach to Obstacle Avoidance
Control. First World Conference on Robotics Research, RIA.

Kuipers, B., and Byun, Y. T. (1991). A robot exploration and mapping strategy based on a
semantic hierarchy of spatial representations. Journal of Robotics and Autonomous
Systems, Volume 8, Pages 47-63

Kwon, Y. D. and Lee, 1. S. (1995). An Obstacle Avoidance Algorithm for Mobile Robot:
the Improved Weighted Safety Vector Field Method, lOth IEEE! International Symposium
on Intelligent Control, Monterey, CA.

Kwon, Y. D. and Lee, 1. S. (1996). A Local Path Generation Method using Obstacle
Vectors and Via Points. World Automation Congress.

Kwon, W. H., P. S. Kim and P. Park (1999a). A Receding Horizon Kalman FIR Filter for
Discrete Time-Invariant Systems. IEEE Transactions on Automatic Control,
Volume 44, No. 9.

Kwon, W. H., P. S. Kim and P. Park (1999b). A Receding Horizon Kalman FIR Filter for
Linear Continuous-Time Systems. IEEE Transactions on Automatic Control,
Volume 44, No. 11.

Larsen, T. D., Andersen, N. A. and Ravn, 0. (1988). Incorporation of Time Delayed
Measurements in a Discrete-time Kalman Filter. In To appear in proceedings for CDC
'98, Tampa, Florida.

Latombe, 1. C. (1991). Robot Motion Planning. Kluwer Academic Publishers, Boston,
MA.

Levine, W. S. (1996). The Control Handbook. CRC Press, ISBN: 0849385709.

Lee, D. T. and Drysdale, R. L. (1981). Generalize Voronoi Diagrams in a Plane. SIAM
Journal ofComputing, Volume 10, No. 1, Pages 73-87.

Li, S., Nagata, S. and Tsuji, S. (1995). A Navigation System Based upon Paranomic
Representation. International Conference on Intelligent Robots and Systems,
Volume 1, Pages 142-147.

Lorigo, L. M., Brooks, R. A. and Grimson, W. E. L. (1997). Visually-Guided Obstacle
Avoidance in Unstructured Environments. In Proceedings of the IEEEIRSJ
International Conference on Intelligent Robots and Systems, Pages 373-379.

167

Lozano-Perez, T. and Wesley, M. (1979). An Algorithm for planning collision-free paths
among polyhedral Obstacles. Communications of the ACM, Volume 2, No. 3. Pages
560-570.

Lui, 8., Choo, S. H., Lok, S. L., Leong, S. M., Lee, S. C., Poon, F. P. and Tan, H. H.
(1994). Finding the Shortest Route Using Cases, Knowledge, and Dijkstra's
Algorithm. IEEE Expert, Pages 7-11.

Maeyama, S., Ohya, A. and Yuta, S. (1995). Non-stop outdoor navigation of a mobile
robot---Retroactive positioning data fusion with a time consuming sensor system---. In
Proceedings of the IEEEIRSJ International Conference on Intelligent Robots and
Systems, Pages 130-135.

Marshall, J. E. (1979). Control of Time-Delay System. lEE Control Engineering Series
IO.

Maybeck, P. S. (1979). Stochastic Models, Estimation, and Control. Volume 1. Academic
Press, Inc.

Mayne, D. Q. and Michalska, H. (1990). Receding Horizon Control ofNonlinear Systems.
IEEE Transactions on Automatic Control, Volume 35, No. 7, Pages 400-406.

Miall, R. C., Weir, D. J., Wolpert, D. M. and Stein, J. F. (1993). Is the Cerebellum a Smith
Predictor?. Journal of Motor Behaviour, Volume 25, No. 3, Pages 203-216.

Miyamoto, K. (1964). Fish Eye Lens. Journal Letter, Volume 54, Pages 1060-1061.

Molton, N., Se, S., Brady, J. M., Lee, D. and Probert, P. (1988). A Stereo Vision-Based
Aid for the Visually Impaired. Image and Vision Computing, Volume 16, No. 4, Pages
251-263.

Moody, J. and Darken, Ch. (1989). Fast learning in networks of locally-tuned processing
units, Neural Computation, Volume 1, Pages 281-294.

Moravec, H. P. (1983). The Stanford Card and the CMU Rover. Proceedings ofthe IEEE,
Volume 71, No. 7, Pages 872-884.

Moravec, H. and A. Elfes (1985). High Resolution Maps from Wide Angle Sonar.
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA '85), Pages 116-121.

More!, J.-M. and Solimini, S. (1995). Variational Methods in Image Segmentation.
Boston, MA, Birkhauser, ISBN: 0-8176-3720-6.

Murray, D. and Jennings, C. (1997). Stereo Vision Based Mapping and Navigation for
Mobile Robots. Proceedings of the IEEE International Conference on Robotics and
Automation, Pages 1694-1699.

Murray, D. and Little, J (1998). Using Real-Time Stereo Vision for Mobile Robot
Navigation. Proceeding of the IEEE Workshop on Perception for Mobile Agent, Pages
19-27

168

Nilsson, N. (1969). A Mobile Automaton: An Application of Artificial Intelligence
Techniques. Proceedings IJCA. Reprinted in Autonomous Mobile Robots: Control,
Planning and Architecture. Volume 2, Pages 233-239

Nilson, N. J. (1982). Principles of Artificial Intelligence. Springer-Verlag, New York.

Ohya, A., Kosaka, A. and Kak, A. (1998). Vision-Based Navigation by a Mobile Robot
with Obstacle Avoidance using Single-Camera Vision and Ultrasonic Sensing. IEEE
Transactions on Robotics and Automation, Volume 14, No. 6, Pages 969-978.

O'Dunlaing, and Yap, C. K. (1983). The Voronoi Method for Motion-Planning 1: The
Case of a Disk, Technical Report 53, Courant Institute.

O'Dunlaing, and Yap, C. K. (1985). A Retraction Method for Planning the Motion of a
Disk. J. Algorithm, Volume 6, Pages 104-111.

Okutomi, M. and Kanade, T. (1993). A Multiple-Baseline Stereo. IEEE Transactions on
Pattern Analysis and Machine Intelligence, Volume 15, No.4, Pages 353-363.

Onoguchi, K., Takeda, N. and Watanabe, M. (1995). Planar Projection Stereopsis Method
for Road Extraction. Pages 249-256.

Otega, J. G. and Camacho, E. F. (1996). Mobile Robot Navigation in a Partially Structured
Static Environment, Using Neural Predictive Control. Control Engineering Practice,
Volume 4, No. 12, Pages 1669-1679.

Pal, N. R. and Pal, S. K. (1993). A review on image segmentation techniques, Pattern
Recognition, Volume 26, No. 9, Pages 1277-1294.

Paletta, L., Prantl, M. and Pinz, A.(1998). Reinforcement Learning for Autonomous
Three-Dimensional Object Recognition. Proceedings of the 6th International
Symposium on Intelligent Robotics Systems, Pages 63-72.

Pappas, T. N. (1992). An adaptive clustering algorithm for image segmentation, IEEE
Transactions on Signal Processing, Volume 40, Pages 901-914.

Pocchiola, M. and Vegter, G. (1995). Computing the visibility graph via pseudo­
triangulations. Proceedings 11th ACM Annual Symposium on Computational
Geometry, Pages 248-257.

Powell, M. J. D. (1987). Radial Basis Functions for Multivariate Interpolation: A Review,
in Mason J.C. and Cox M.G. (eds) Algorithms for Approximation, Clarendon Press,
Oxford, Pages 143-167.

Ricardo, S. 0., Michel, D. and Viviane, C. (1998). Controlling the Execution of a Visual
Servoing Task. Proceedings of the 6th International Symposium on Intelligent
Robotics Systems, Pages 127-136.

Rao, R. P. Nand Fuentes, 0. (1996). Learning Navigational Behaviour using a Predictive
Sparse Distributed Memory, Proceeding of From Animals to Animals: The Fourth
international Conference on Simulation of Adaptive Behaviour, MIT Press, Pages
382-390.

169

Roberts, L. G. (1965). Machine Perception of Three Dimensional Solid, in Optical and
Electro-optical Information Processing. Ed. J. P. Tipper et al., MIT Press, Cambridge,
Massachusetts.

Ronco, E. Arsan, T. and Gawthrop, P. J. (1998). Open-Loop Intermittent Feedback
Optimal Predictive Control: Practical Continuous-time GPC. lEE Proceedings on
Control Theory and Applications.

Ronco, E. (1998). Open-Loop Intermittent Feedback Optimal Control: a probable human
motor control strategy. Technical Report: EE-98005, Systems and Control Laboratory,
University of Sydney.

(Available at http://merlot.ee.usyd.edu.au/tech rep/EE98005.html).

Ronco, E. and Hill, D. J. (1999). Open-Loop Intermittent Feedback Optimal Predictive
Control: a human movement control model. Technical Report: EE-99003, School of
Electrical and Information Engineering, University of Sydney.

Schwartz, J. T. and Sharir, M. (1983a). On the Piano Movers' Problem 1: The special case
of a rigid polygonal body moving amidst polygonal barriers. Commun. Pure Appl.
Math., 36, Pages 345-398.

Schwartz, J. T. and Sharir, M. (1983b). On the Piano Movers' Problem 11: General
techniques for computing topological properties of real algebraic manifolds. Adv.
Appl. Math., 4, Pages 298-351.

Schwartz, J. T. and Sharir, M. (1983c). On the Piano Movers' Problem III: Coordinating
the Motion of Several Independent Bodies: The Special Case of Circular Bodies
Moving Amidst Polygonal Barriers. Robotics Research, Vol. 2, No. 3, Pages 46-75.

Se, S., Lowe, D. and Little, J (2001). Vision-Based Mobile Robot Localization and
Mapping using Scale-Invariant Features. Proceedings of the IEEE International
Conference on Robotics and Automation, Pages 2051-2058.

Seneviratne, L. D., Ko, W. S. and Earles, S. W. E. (1997). Triangulation-based path
planning for a mobile robot. Proceeding !MechE, Part C, Journal of Mechanical
Engineering Science, Volume 211, No. 5, Pages 365-371.

Shah, S. and Aggarwal, J. K. (1994). A Simple Calibration Procedure for Fish-Eye (High
Distortion) Lens Camera. International Conference on Robotics and Automation,
Munich, Germany, Pages 3422-3427.

Shao, J., Kee Y. V and Jones, R. (1993). Orthogonal Projection Method for Fast On-Line
Learning Algorithm of Radial Basis Function Neural Networks, Proceeding of the
INNS World Congres on Neural Networks, Portland Oregon, USA, Volume 3, Pages
520-535.

Shilman, S. V. (1994). Adaptive Kalman Filters, Doklady Akademii Nauk, Volume 338,
No. 6, Pages 742-744.

Smith, 0. J. (1959). A Controller to Overcome Dead Time. !SA J., Volume 6, no. 2,
Pages 28-33.

170

Takahashi, 0. and Schilling, R. J. (1989). Motion Planning in a Plane using Generalized
Voronoi Diagrams. IEEE Transactions on Robotics and Automation, Volume 5, No.2,
Pages 143-150.

Thrun, S. and Bucken, A. (1996). Integrating Grid-Based and Topological Maps for
Mobile Robot Navigation. Proceedings of the Thirteenth National Conference on
Artificial intelligence, Pages 944-950.

Thrun, S. (1998). Learning Metric-Topological Maps for Indoor Mobile Robot
Navigation, Artificial intelligence, Volume 99, No. 1, Pages 21-71.

Thrun, S., Gutmann, J-S., Fox, D., Burgard, W. and Kuipers, B. (1998). Integrating
Topological and Metric Maps for Mobile Robot Navigation: A Statistical Approach.
Proceedings of the 15th AAA/ Conference. Pages 989-996.

Tomatis, N., Nourbakhsh, 1., Siegwart, R. (2001). Simultaneous Localization and Map
Building: A Global Topological Model with Local Metric Maps. Proceeding of the
IEEEIRJS International Conference on Intelligent Robots and Systems.

Udupa, S. (1977). Collision Detection and Avoidance in Computer Controlled
Manipulators. Ph. D. Dissertation, Dept. of Electrical Engineering, California Institute
ofTechnology, Pasadena, CA.

Uhrmeister, B. (1994). Kalman Filters for A Missile with Radar and/or Imaging Sensor.
Journal ofGuidance Control and Dynamics, Volume17, No.6, Pages1339-1344.

Vasseur, H.A., Pin, F.G. and Taylor, J.R. (1991). Navigation of a Car-like mobile robot
using a ecomposition of the environment in convex cells. Proceeding of the IEEE
International Conference on Robotics and Automation, Pages 1496-1502.

Vandoren, V. J. (1996). The Smith Predictor: A Process Engineer's Crystal Ball, Control
Engineering, Pages 61-62.

Vlassis, N., Motomura, Y., Hara, 1., Asoh, H. and Matsui, T. (2001). Edge-based features
from omnidirectional images for robot localization. Proceeding of the IEEE
International Conference on Robotics and Automation. Pages 1579-1584.

Weng, J., Cohen, P. and Hemiou, M. (1992). Camera Calibration with Distortion Models
and Accuracy Evaluation. IEEE Trans. On Pattern Analysis and Machine
Intelligence, Volume 14, No. 10, Pages 965-980.

Wilcox, B. H., Gennery, D. B., Mishkin, A.H., Cooper, B. K., Lawton, T. B., Lay, N. K.
and Katzmann, S. P. (1987). A Vision System for a Mars Rover. SPIE Mobile Robots
11, Volume 852, Pages 172-179.

Wilfong, G.T. (1988). Motion Planning for an Autonomous Vehicle. Proceeding of the
IEEE International Conference on Robotics and Automation, Pages 529-533.

Williams, C. and Becklund, 0. (1972). Optics: A Short Course for Engineers & Scientists.
John Wiley & Sons, Inc.

171

