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Chapter 1

Introduction

1.1 Aim of this Project

Research in the field of mobile robotics has received considerable attention in the
past decade due to its wide range of potential applications. One area of special interest is
household robotics for the disabled and the elderly persons. In general, a household robot
needs to be able to perform several tasks. Among these, object fetching is a generic task
which itself consists of several sub-tasks. One of the sub-tasks this research focuses on is

goal directed navigation.

Given the need for artificial vision in most domestic tasks, this study also uses
vision to acquire spatial information for navigation. Designing an effective navigation
system requires the integration of current knowledge or development of new methods in
various fields such as object recognition, spatial vision, spatial knowledge representation,

path planning, motion control, obstacle avoidance and power resources management.

The scenario forming the background of this work is that of a domestic robot
fetching an object in a room cluttered with obstacles. A number of simplifications were
made to the scenario so that more emphasis can be placed on issues related to the

interaction between vision, planning and navigation functions.



The aims are to:

1. design and demonstrate a navigation system that can plan an obstacle-avoiding
path to a desired destination on the basis of an internal model (map), updated

with information gathered from its visual sensors.

2. investigate and demonstrate a control technique that addresses concurrent

image processing and planning while the robot is in motion.

To achieve these aims, the following simplifications were used:

- the goal is at a predefined location that can be varied by the experiment, but

does not requires competences in visual object localization.

- obstacles are simple white rectangular blocks, each with the height of 1.5
centimetre, small enough for 2-D approximation, that can be detected visually
by the robot’s onboard camera as 2-D forbidden areas standing out from the
dark floor of the environment. These obstacles can be placed anywhere and

considered during planning.

- the environment is a small-scale box of size 125x89 centimetres developed to
emulate a room in the real world. The walls and the floor of the small-scale
robot’s environment were painted with white colour and black colour
respectively. This setup simplifies image processing and frees time for

exploring other issues related to the overall aim of this research.




- acircular cross-section robot with two drive wheels (which enable the robot to
spin around a centre point) is used as a prototype of a domestic robot. This
cylindrical robot is free from both the geometric constraints and the piano-
mover’s problem (Schwartz and Sharir, 1983), therefore the 3-D planning

problem is simplified to a 2-D planning problem.

1.2 Method

The work was divided into two stages. The first stage is to develop a visual system
that informs a planner about the positions of the robot and obstacles. A simple stop-and-go
motion controller was used to test the validity of the approach. In stage two, the motion
control problem was addressed. The issue here was to enable uninterrupted motion of the
robot to the goal despite long intervals (i.e. of the order of 1 second) between image

acquisition and the delayed access to visual information.

1.3 Overview of the Thesis

This thesis consists of eight chapters. This chapter provides an overview of the

research, the thesis and the research activity.
Chapter 2 contains pointers to previous work in topics related to this project.

Chapter 3 provides an overview of the experimental setup. This includes a Rug
Warrior robot from the MIT modified for a remote-brained control architecture where all
computation-intensive processes such as image processing and planning are performed on

a remote computer.



Chapter 4 describes vision-based obstacles detection, self-localization and map
updating. This chapter begins with the correction- of the camera lens distortion (Fish-eye
effect), then moves on to the design of novel task-specific floor and non-floor edges
detectors, followed by the use of projective geometry for coordinate transformation. The
projective geometry coordinate transformation is used to transform the processed image
information (i.e. the detected edges and their orientation) from the camera coordinate
system to the map coordinate system. The end of this chapter shows how map updating
with visually detected obstacles and self-localization are done on the basis of this

information.

Chapter 5 deals with path planning and encoding. This chapter begins by
describing the use of a neural-resistive grid for path planning and how sections of the
pre-planned path are prepared for sending to the robot controller. The use of a Normalised
Radial Basis Function (NRBF) neural network for encoding and decoding the path in the

robot controller is described.

Chapter 6 looks at the problem of motion control with time delays, and how it is
solved. This chapter proposes a solution to the stop-and-go motion problem using a new
control technique that combines traditional control methods, which are the Smith Predictor
and the receding horizon control strategy, to overcome the problems of computational

complexity and speed in image processing and action planning.

Chapter 7 shows the results of a series of navigation experiments and discusses the

problems encountered.




Chapter 8 contains the conclusions and describes work suggested for future

research.



Chapter 2

Literature Review

A vision-based navigation system (i.e. a mobile robot) must be able to reach an
assigned goal by moving and reasoning within its environment without direct human
intervention and control. Therefore a navigation system that exhibits such autonomous
ability must first be able to perform the sense-think-act process. Such a system is usually
equipped with a vision system to sense its environment, a mapping module for prior map
updating or building a new map, a planning module for path planning, and a controller for
path following. Many different techniques and approaches for mobile robotics on vision,
mapping, planning, control and navigation have been developed since the mid-twentieth
century to achieve the aim of self-contained autonomy but each has its own advantages and

disadvantages.

In general, a vision-based navigation system (mobile robot) is complex to build,
difficult to maintain and extremely fragile, as each part of the system depends on all others

to function (e.g. the mapping process depends on the vision system).




2.1 Intelligent Vision-based Navigation in Robetics

The ultimate aim of a vision-based navigation system is to be able to act as a
reliable moving platform for the environment they are design for, if not for any
environment. If this is achieved, it opens the door to a variety of possible applications such
as household robotics, autonomous vehicles or wheelchairs, etc. A household robot and
autonomous wheelchair must be able to recognise visual patterns, navigates around the
environment smoothly and freely, and perform the tasks they were designed to do. This

includes object retrieval (mainly for household robotics), goal directed navigation, etc.

The first intelligent mobile robot that had vision capability dated back to 1969.
Shakey was constructed at Stanford Research Institute (Nilsson, 1969). It is able to
distinguish objects of given sizes, shapes and colours, and interacts with them to move
them to a designated position. Shakey is equipped with two stepper motors and uses the
differential drive method to control its steering action, and avoid any obstacles
encountered. The name Shakey is derived from its irregular and jerky motion. Shakey
uses STRIPS (the Stanford Research Institute Problem Solver), a logic based problem
solving system to develop navigation plan (Fikes and Nilsson, 1971). STRIPS required
symbolic information from input sensors which Shakey had difficulty generating from raw
data. As Hans Moravec remembers, “An entire run of Shakey could involve the robot
getting into a room, finding a block, being asked to move the block over the top of the
platform, pushing a wedge against the platform, rolling up the ramp, and pushing the block
up. Shakey never did this as one complete sequence. It did it in several independent
attempts, which each had a high probability of failure. You will be able to put together a

movie that had all the pieces in it, but it was really flaky.” (Crevier, 1993).




The Stanford Cart (Moravec, 1983) is a mobile robot that uses stereo vision to
locate objects and plans obstacle-avoiding paths to desired destinations on the basis of an
internal model derived from stereo data. The robot was controlled by an off-board
computer program and its motion was determined through comparison of images over
time. A complete cycle of sense-think-act process with the robot moving a meter forward
takes about 10-15 minutes to complete. After moving a meter, the robot stops and begins a
new sense-think-act process. This process is repeated until the robot reaches its final
destination. It takes about 5 hours to complete a 20 meter route in an environment with
three to four obstacles to avoid. The system exhibits a stop-and-go motion which is largely
cause by the computationally expensive stereo vision task. This includes feature detection,

correlation, distance estimation and localization.

2.2 Control with Intermittent Sensing

The stop-and-go problem is a problem of control with intermittent sensing. It is
due to the long time required for processing the image (i.e. delayed measurement) and for
planning the movement. Nowadays computer have become much faster but there is still a
delay between sensing and the moment when a new control becomes effective. To
overcome the stop-and-go motion, and enable the robot to exhibit a smooth continuous

motion, this delay has to be handled.

Kosaka, Meng and Kak (1993) introduced FINALE-II, an improvement over their
earlier system FINALE (Koaska and Kak, 1992), a vision-guided mobile robot navigation
system which had to stay static for the self-localization task (i.e. capture an image and
processing the captured image to reduce the uncertainty of the robot position). FINALE-II
eliminates the need for the robot to remain stationary when the vision data i1s being

processed. This reduces the duration of the robot static state to the time needed for



capturing a new image for self-localization and the time to use the vision information
(updated position uncertainty) to re-cs;imate the current robot position. Processing of the
captured image in FINALE-II is done while the robot is in motion, following its previously
calculated path toward the goal. Once the self-localization task is completed, the robot
motion is stopped and its current position is re-estimated retroactively based on the stored
motion history. The system then re-plans a path from the newly updated position to the
goal position and restarts its motion toward the goal. Self-localization is done by matching
the features extracted from the images with the expected landmarks extracted from the
prior model-based map, using the expected robot’s position. The robot position

uncertainties are then reduced with the use of a Kalman filter.

Maeyama, Ohya and Yuta (1995) proposed a non-stop outdoor navigation system
using retroactive positioning data fusion, the data being calculated using increments of the
robot position vector and its covariance matrix obtain by dead reckoning. In their system,
the robot keeps the position and the covariance at sensing time (i.€. #5) for correction when
the processing of landmark information finishes (i.e. fptn1, where nr is the time needed to
process landmark information) using maximum likelithood estimation. The current
position (at time ¢yt+n7) is then recalculated using the total increment of parameters such as

location, heading and the covariance from time f, to the current time ¢y+nr.

Larsen, Andersen and Ravn (1998) proposed a simple and computational cheap
way of compensating delays based on the extrapolation of the measurement to the present
time using past and present estimates of the Kalman filter and calculating an optimum gain
for this extrapolated measurement. The proposed method is a solution to the problem of
designing discrete-time Kalman filters for systems where some results of measurements

are delayed.



All these methods (Kosaka, Meng and Kak, 1993; Maeyama, Ohya and Yuta, 1995
and Larsen, Andersen and Ravn, 1998) ﬁe essentially using the same concept, i.e. using an
estimate of the delayed measurement, then applying a correction factor when this becomes
available. The method proposed here is a modification of the Smith Predictor along

similar lines (chapter 6).

2.3 Navigation

Navigation involves Self-localization, Map building or updating, and Path
Planning. For a successful navigation, a robot must be able to localize itself within its
environment, tracks its own position and use its sensor data to built an internal map or map
the sensed data onto its internal prior map, which will be used for path planning, a process

which searches for an obstacle-free path from the robot’s initial position to the goal.

2.3.1 Self-localization

Self-localization is a process performed on the basis of the robot’s sensory readings
to determine the robot’s actual position within its environment. In most mobile robots
shaft encoders readings can be used to track the robot’s position but, due to unavoidable
odometry errors such as wheels slippage and drift, the error in the estimated position
increases over time. Therefore, a self-localization process is necessary to correct this error
and help increase the accuracy of the estimated robot’s position and improve path
planning. Apart from that, the self-localization process also helps in the mapping process
(1.e. map updating or construct a new map), as detected obstacles relative to the robot
position can be placed accurately into the model map. Hereafter are presented only some of
the most interesting self-localization algorithms, as it is impossible to cover all the

approaches to self-localization found in the literature.
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Cox (1989) proposed a self-localization method that uses odometry and laser range
sensing to sense the environment for po-se estimation. The idea was to use odometry for
position tracking while overcoming the shaft encoders drift by combining odometry with
laser range sensing data for self-localization. This is done by matching the sensed data to

the prior map.

Janet, Gutierrez-Osuna, Chase, White and Luo (1995) proposed the use of a
self-organizing Kohonen neural network based on a process similar to optical character
recognition by assuming that the mapped sonar data forms a pattern unique to that room.
The aim is to determine in which room the robot is on the basis of sensory data. The
disadvantage of this system is that it only works in a static environment with no additional
fumiture or rearrangement of existing furniture, as this will change the éharacteristic

signature of that room.

Giuffrida, Massucco, Morasso, Vercelli and Zaccaria (1995) proposed an active
localization system that uses triangulation-based reference guidance (i.e. active beacons are
distributed over the operating area and an onboard rotating unit is used to pick up the

signal) and dead reckoning for self-localization.

Atiya and Hager (1993) proposed a real-time localization method based on visual
landmarks. The idea of this approach is to recognise in the image those entities that stay
invariant with respect to the position and orientation of the robot as it moves around its
environment, i.e. landmarks (DeSouza and Kak, 2002), and determine their
correspondence within a stored map to compute the location of the robot. A set-based
algorithm is used for solving the matching problem and computing the location of a mobile
robot in typical indoor environments. Interestingly, the set-based algorithm defines the

error in position as the dimension of the overlapping areas of the tolerance zones around
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the positions given by individual sensory measurements, instead of making assumptions

based on distributions.

Jensfelt and Kristensen (1999) proposed an active global localization method using
multiple hypothesis tracking. The algorithm is based on Bayesian probability theory and
multiple hypothesis tracking using Kalman filtering of Gaussian pose hypotheses. The
algorithm first produces pose hypotheses based on features extracted from the sensor data.
Then, by making more observations of features in the environment, additional support is
given to a subset of the pose hypotheses. The idea is that the hypothesis corresponding to
the robot true position will gain most evidence and will be selected as the robot’s position.
In this approach, the robot is initially taught by interactively leading the robot through the
environment while having the robot actively extracting features from its sensory data and
building a world model. This system was designed to handle incomplete and partly
incorrect world model. According to the authors, when their global localization failed
during the experiment, it was mostly because their exploration strategy had not been able
to guide the robot to points where an essential feature could be seen, or that the robot got

stuck while pursuing a wrong hypothesis.

Kosaka and Kak (1992) proposed a self-localization algorithm for their system
(Finale system), but the algorithm i1s implemented in such a way that it’s only activated
whenever the varnances associated with the positional parameters exceed a certain
predetermined threshold. Ohya, Kosaka and Kak (1998) adopt the Finale system
self-localization algorithm but in their system, the self-localization algorithm is carried out
on a continuous basis. The self-localization algorithm begins by generating an expectation
image based on the best estimate of the robot’s current position. The edges extracted from

the expectation image are then compared with the edges extracted from the camera image
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to find a match through an extended Kalman filter. The extended Kalman filter then

produces updated values for the location and the orientation of the robot.

The approach of vision-based self-localization used in thesis involves determining
“what is being observed and where it is observed from” (Atiya and Hager, 1993). A
similar assumption to Cox (1989), Kosaka and Kak (1992} and Ohya, Kosaka and Kak
(1998) was used, i.e. there is only a small difference between the expected view and the
actual one. Therefore it is reasonable to attempt to match an edge found by sensors with
the nearest edge in the map. The main difference with Cox (1989), Kosaka and Kak
(1992) and Ohya, Kosaka and Kak (1998) is that the used edge detector can also determine
the edge’s orientation. This enables direct calculation of the difference between the

estimated orientation and the actual orientation.

2.3.2 Map Building

Two of the most widely used mobile robot mapping concepts are known as the

metric approach and the topological approach.

In the metric approach, the robot’s environment is represented in an absolute
reference frame and numerical coordinates define where the objects are in space (Dudek
and Jenkin, 2000). The most used metric approach was onginally proposed by Moravec
and Elfes (1985) which is known as the occupancy/certainty grid. The occupancy gnd
consists of cells where each cell represents an area of the environment. Each cell in the
grid contains a certainty value representing how confident one is that the cell is being
occupied by an obstacle. The certainty value is calculated based on sensor readings. The
initial aim of the invention of occupancy grid was to handle sonar data with ambiguous
angular positions. Occupancy grid approaches have the advantage of being easy to

construct, to represent and maintain even in large scale environment (Buhmann, Burgard,
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Cremers, Fox, Hofmann, Schneider, Strikos and Thrun, 1995; Thrun and Bucken, 1996).
Computation of an obstacle-free path to the goal is made possible by searching through
obstacle-free cells within the grid. This map also allows the robot’s position to be tracked
accurately using information obtained from its sensory feedback and enables the system to
overcome any dislocation problem due to different positions with similar sensory reading
(Giuffrida, Massucco, Morasso, Vercelli and Zaccaria, 1995; Thrun, and Bucken, 1996;

Thrun, 1998; Thrun, Gutmann, Fox, Burgard and Kuipers, 1998; Jensfelt, 2001).

In the topological approach, topological graphs are used to represents the
environment. This is done by identifying and linking distinctive places and paths in the
environment. In the graph-like representation, each node represents a distinctive place
identified by unique sensory readings and the connecting arcs between two nodes represent
the existence of a path between the two corresponding places. Thus the exact metric
relationship between the distinctive places and paths is not needed for the map building
process. The topological map was initially proposed by Kuipers and Byun (1991) for robot
exploration, mapping and navigation in large-scale spatial environments, where a
large-scale spatial environment is define in their paper as an environment with a spatial
structure that is at a significantly larger scale than the sensory horizon of the observer.
Ko, Seneviratne and Earles (1994) proposed a method that uses the extended triangular
algorithm for partitioning free space into triangular cells for building a topological graph
known as the triangulation graph. In the triangulation graph representation, each node is
representing a triangular cell, and the connectors are used to represent the edges between

cells.

The topological approach permits efficient planning and has low space complexity

as 1ts resolution depends only on the complexity of the environment. Accurate
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determination of the robot’s position is not needed as localization with the topological

approach only requires finding at which node the robot is located.

However both approaches have their disadvantages, the metric approach is
suffering from computational complexity (i.e. due to the high resolution grid map) and the
need for accurate determination of the robot’s position. As for the topological approach,
localization can be difficult if there is more than one node with similar sensory readings.
Note that the sensory reading is also sensitive to the point of measurement which therefore
has an impact on the recognition of places. Thus building and maintaining of topological

maps can be difficult since sensory information is ambiguous.

Thus, Thrun and Bucken (1996) suggest that by integrating both the grid-based and
the topological approaches, they gain the best of both approaches: accuracy/consistency
and efficiency. Their proposal was first to build a grid-based map, because it is easy to
build, represent and maintain. The grid-based map will then enable the robot’s position to
be tracked accurately. Once the grid-based map is completed, it is used to build the
topological map, therefore overcoming the problem of ambiguous sensory information. In
their method, they employed an artificial neural network to interpret the sensory
measurements of the environment and map into probabilities of the occupancy grid map.
Bayes’ rule was used to integrate multiple interpretations of the sensory measurements
over time. The topological map is then built based on this occupancy grid, which is done
by splitting the occupancy grid into coherent regions, separated by critical lines, where
critical lines correspond to narrow passages such as doorways. This partitioned map is
then transformed into a topological map where each region is represented by a node while
the critical line is represented by an arc that connects the two nodes. The newly produced
topological map is greatly reduced in resolution compared to the occupancy grid and

enabled fast planning and problem solving.
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Tomatis, Nourbakhsh and Siegwart (2001) also proposed to integrate both metric
and topological approaches for -m_apping to gain from the benefits of both approach in their
simultaneous localization and map building (SLAM) process. In contrast to the approach
of Thrun and Bucken (1996), both the topological and metric maps are built
simultaneously. Tomatis, Nourbakhsh and Siegwart (2001) use a topological graph to
represent a global map (i.e. rooms in a building that are connected to a hallway) with each
node (representing a room) being defined by a metric model. The metric model then

contains detailed information about the room such as detected obstacles.

In this thesis, a metric approach is used, as the robot resides in a single room of
known dimensions. The only unknowns to be determined from sensory data are the
position of the robot and the position of obstacles (chapter 4). The metric approach is well

suited for the grid-based planning method explored in chapter 5.

2.3.3 Path Planning

The planning of an optimal collision-free path in high-dimensional configuration
spaces or in dynamic environments can be a computation intensive process unsuitable for

real-time implementation on a robot.

Faster, but appropriate, path planning through the potential field method for
obstacle avoidance was suggested by Andrews and Hogan (1983), Krogh (1984), and
Khatib (1985) based on the idea of imaginary forces acting on the robot. In this approach,
the robot experiences repulsive and attractive forces from obstacles and the goal
respectively. The idea was to use repulsive forces to push the robot away from obstacles
while using the attractive force to attract the robot toward the goal. The resultant force

which is the sum of all the repulsive and attractive forces is used to determine the direction
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of motion and the speed of navigation. The resulting obstacle-free path is not optimal as
the robot tends to keep a maximum distance from obstacles. Murray (1997) proposed that
by constraining the repulsive force within a fixed boundary, an optimal obstacie-free path
can be produced. This however does not prevent the robot from being trapped in local
minimum (i.¢. a valley in the potential field that has only one way out and that is the way

the robot came in).

Boreinstein and Koren (1989) proposed a new real-time obstacle avoidance
approach know as the Virtual Force Field (VFF). This approach employed certainty
(occupancy) grids for obstacle representation, and the potential field method for
navigation. Note that the potential field algorithm is only applied to the grids within the
active window for path planning. The active window is a window that moves with the
robot in a way such that the robot is always at the centre of the moving window. The VFF
method suffers also from the local minimum problem inherent to potential field method.
The authors proposed to solve the local minimum problem with a method know as the
Wall-following method (WFM). Other inherent limitations of the potential field method
are; no passage between closely spaced obstacles, oscillations in the presence of obstacles

and oscillations in narrow passages (Boreinstein and Koren, 1991a).

A new method know as the Vector Field Histogram (VFH) was then proposed by
Boreinstein and Koren (1991b) to overcome the inherent limitation and improve the VFF
method. This new method uses a two-dimensional Cartesian histogram grid as a world
model which is updated continuously with range data. A two-stage data-reduction process
is used to determine the desired control commands for the robot. The first is to reduce the
histogram grid within the active window into a one-dimensional polar histogram that
contains the polar obstacle density in each direction. The second stage is to search for

candidate valleys of the polar histogram. Candidate valleys are those that have an obstacle
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density value that falis below a pre-set threshold value. Only the candidate valley that is
closest to the target direction 1s selected for the process of determining the best sector
within that valley. The selected best sector is then used to generate a steering command
for the robot. The authors consider this method as a local path planner, therefore it is
prone to trap-states (and exhibits the cyclic behaviour), especially if the local minimum is

larger than the active window.

Kwon and Lee (1996) proposed to overcome the local minimum method with the
use of obstacle vectors and via points. When the robot is in a trap-state, the via points
algorithm produces a series of via points using a similar idea to the visibility graph method
proposed by Latombe (1991) where the via points are determined from the target point to
the robot current position, based on available obstacle information. Each of the via points

is then used as the robot temporary target point to guide the robot out of the trap-state.

Not suffering from local minimum problem are graph-based path planning methods
such as spatial graphs and visibility graph (Lozano-Perez and Wesley, 1979), Voronoi
diagram (Lee and Drysdale, 1981; O’Dunlaing and Yap, 1985; Iyengaf, Jorgensen, Rao,
and Weisbin, 1986; Takahashi and Schilling, 1989), free way (Wilfong, 1988), cell
decomposition (Vasseur, Pin, and Taylor, 1991) and triangulation graph (Ko, Seneviratne
and Earles, 1994). These methods aim at representing the free space with a topological
graph that then allows the use of graph searching algorithm such as the A* algorithm
(Nilsson, 1982) or the Dijkstra algorithm (Lui, Choo, Lok, Leong, Lee, Poon, and Tan,

1994) for determining a shortest path from a destination to the goal.

Bugmann, Taylor and Denham (1994) proposed a neural implementation of the
Laplacian path planning (Connolly, Burns and Weiss, 1990) known as the Neural-resistive

grid. The Neural-resistive grid consists of a neuro-resistive grid layer and a spatial
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memory layer. The spatial memory layer is used to record the position of detected
obstacles, while the potential distribution of the neuro-resistive grid is calculated based on
the target/goal point with respect to the detected obstacles recorded in the spatial memory
layer. The advantage of this method is that it does not suffer from the local minimum
problem and always ensures an existing path to be found if the neuro-resistive grid is
updated a sufficient number of times. Interestingly, this method has never been applied to
a real world navigation system. To investigate its usability in this application, and because
of its potential advantages, the neural-resistive grid is integrated into the system design to
handle the path planning task. Details of the neural-resistive grid will be described in

chapter 5.

2.4 Spatial Vision

Vision sensing is considered the most powerful sensory devices that provide the
richest sensory information of all the sensors used on robots to date. However the
extraction of this information is not an easy task (Borenstein, Everett and Feng, 1996).
Research in vision sensing had received considerable attention, especially in the field of
robotics for the last twenty years. There had been considerable research in the area of
obstacle detection (Molton, Se, Brady, Lee and Probert, 1988), object recognition and
tracking (Kosaka, and Nakazawa, 1995), visual servoing (Allotta, Conticelli and Colombo,
1998; Koreichi, Babaci, Chaumette, Fried and Pontnau, 1998; Ricardo, Michel and
Viviane, 1998) and road extraction (Onoguchi, Takeda and Watanabe, 1995) just to name a
few. Many of these are combined in the field of vision-based mobile robot
self-localization, map building, updating and navigation (Moravec, 1983; Atiya and Hager,
1993; Maeyama, Ohya and Yuta, 1995; Li, Nagata and Tsuji, 1995; Murray, and Jennings,
1997; Ohya, Kosaka and Kak, 1998; DeSouza and Kak, 2002; Asoh, Motomura, Asano,
Hara, Hayamizu, Itou, Kurita and Matsui, 2001).
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Lorigo, Brooks and Grimson (1997) developed a system that deals with unknown
environments and obstacles, utilising an environment-dependent algorithm approach to
obstacle detection and navigation. The vision system consists of a single-camera vision
system that uses three independent vision software modules for obstacle detection. Each of
the vision modules uses different criteria (based on brightness gradients, RGB colour or
HSV colour features) for detection purposes. The system assumes that anything in the
image that is not “ground-like” is an obstacle. Only one of these modules is given the right

to command the robot at any time, based on the confidence of their output.

Ohya, Kosaka and Kak (1998) employed single-camera vision and "Ultrasonic
sensing for their mobile robot to perform vision-based navigation. The aim was to use the
camera to capture an image of the robot’s environment, extract the detected edges in the
image and compare them with edges in a synthetic image of the environment produced
from a 3-D environment model, assuming the robot’s position to be the one generated by

dead reckoning.

Moravec (1983) used single-camera stereo vision in the Stanford Cart. This is done
by having the camera capturing 9 pictures as it slhides in precise steps from one side to the
other along a 50-cm track. Atiya and Hager (1993) also used a single camera for stereo
vision. This is done by mounting the camera on a slider in such a way that the camera
remains perpendicular to the slider as it travels along the slider. Stereo images are
obtained by capturing the same scene with the camera located at different locations along

the slider.

Murray and Jennings (1997), Murray and Little (1998) and Se, Lowe and Little
(2001) employed the Triclops trinocular stereo vision camera module that has three

identical wide angle cameras. Their vision system used an algorithm similar to the
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multi-baseline stereo developed by Okutomi and Kanade (1993) for computing the depth
maps. The authors state that the advantage of using trinocular camera over typical two
cameras stereo is because the second pair of cameras (i.e. the pair of cameras that are in the
vertical plane) can resolve situations that are ambiguous to the first pair (i.e. the pair of
cameras that are in the honzontal plane). Earlier work by Wilcox, Gennery, Mishkin,
Cooper, Lawton, Lay and Katzmann (1987) used 3 camera stereo in their Mars rover for
resolving the images correspondence problems. This is done by back-triangulating into the

redundant images for confirmation of a correct match.

Apart from stereo vision systems, omnidirectional vision systems have been
receiving considerable attention recently. Asoh, Motomura, Asano, Hara, Hayamizu, Itou,
Kurita and Matsui, (2001) employed the omnidirectional camera for its large field of view
which lets many landmarks be simultaneously present in the scene and leads to more
accurate localization. Vlassis, Motomura, Hara, Asoh and Matsui (2001) used an

omnidirectional vision system for environment modelling and navigation.

In this thesis, a single camera is used and distance information is extracted by
projecting on the ground plane the edges of the navigable space detected by specially

developed software filters. Details on the vision system are found in chapter 4.
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Chapter 3

Experimental Setup

This chapter discusses the experimental setup which was designed to achieve the
aims of the research. This research was fully conducted in the Robotics Labvoratory of the
School of Computing at the University of Plymouth. The experimental setup consists of a
vision-based navigation system and a small scale environment. The vision-based
navigation system was programmed to use its camera to guide the robot’s navigation
within its environment toward the goal while avoiding any detected obstacle. The vision-
based navigation system consists of two sub-systems, the computer system and the mobile
robot. The task of the computer system is to act as a remote brain for the mobile robot to

help it navigate safely within its environment.

Section 3.1 describes the details of the mobile robot which is equipped with a
monochrome video camera, a video sender for transferring video data, two servo motors
with a servo controller module for controlling the viewing direction of the video camera

and a wireless serial transceiver for communication with the computer system.

Section 3.2 describes the computer system which consists of a computer running
Cortex-Pro - a neural network programming package. The computer, a 200MHz PC with a
framegrabber is connected to a video receiver and a wireless serial transceiver.
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computer (section 3.2) for image processing and analyses aimed at floor and obstacies
detection. These results are later used for mapping and path planning. This enables the

robot to interact with its surroundings without the need of additional sensors.

3.1.3 The Video Sender

The UT-66 wireless video sender module is used to transmit live video signals
from the camera on-board the robot to the remote brain. The video signals are received by
the computer’s receiver (i.e. a video player with an antenna), which then feeds the video
signals to the video capture card mounted in the computer. These live video signals are
digitized by the video capture card and undergo image processing. The video sender

module mounted on the robot can be seen in figure 3.2.

3.1.4 Micro Fast Servo

Two micro fast servos model HS-80 Micro from Hitec are used to provide the
video camera with pan-and-tilt motion. This allows the video camera to be directed
remotely. These micro fast servos were chosen because of their lightweight and
high-torque characteristics. They were used to control the vertical direction of the line of

sight of the camera.

3.1.5 Serial Servo Controller

The commercial available Mini SSC (Serial Servo Controller) from Scott Edwards
Electronics was used in this project for the purpose of controlling the HS-80 Micro servo.
This Min1 SSC is able to control eight servos according to instructions received over a
2400- or 9600- baud senal connection. In this project, the Mini SSC is directly connected

to the robot’s RS-232 serial port and the instructions are received from the microcontrolier

25















Chapter 4

Vision-based Obstacles Detection,
Self-localization and Map Updating

Often the term “Computer Vision” is defined as a procedure that involves several
processes, which consists of image acquisition, processing, classification, recognition, and to
be all embracing, decision making subsequent to recognition. The aim of using a computer
vision in this project is to detect the presence of obstacle and walls within the robot’s
environment. This allows the robot’s envircnmental map to be updated, and supports the

robot’s self-localization and navigation tasks.

This chapter described vision-based obstacles detection, seltf-localization and map
updating. The vision-based processes are shown in figure 4.1, The robot’s vision system
consists of a video camera, a wireless video sender, a wireless video receiver, a WinVision
frame grabber and software components that processes and analyze images. The robot’s
video camera constantly feeds live video signals to a wireless video sender that broadcast
these live video signals to the remote brain. The WinVision frame grabber onboard the
remote brain samples these live video signals into a digitized image when it is needed. The
sampled image is then processed by the image-processing and analyzing software module.
The image-processing and analyzing software module performs the segmentation of the

sampled image, dividing the sampled image into two distinct regions (walls and floor) of
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distorted image. This is important as the robot’s video camera exhibits the properties of

barrel distortion (fish-eye lens effect).

Section 4.2 describes the filtering process in a systematic way and introduces the
floor-edges-specific filters that are used in the filtenng process for detecting floor and walls
edges. This section begins with discussing the image segmentation process (4.2.1) followed
by the design of the floor-edges-specific filters (known as the vertical and the horizontal
edge filters) used for detecting floor edges (4.2.2), and describes a new method for

determining the detected edge’s position and orientation (4.2.3).

Section 4.3 deals with the coordinate transformation of the detected edges and their
orientations from the image coordinate system to the map coordinate system. This process
involves two sub-transformations; the first is to transform the coordinates of interest from the
image coordinate system to the egocentric coordinate system using projecﬁve geometry
(4.3.1), while the second transforms the coordinates of interest from the egocentric

coordinate system to the map coordinate system (4.3.2).

Section 4.4 discusses a vision-based self-localization algorithm that localizes the
robot in its environment based on the captured image by matching the detected floor edges
with those in the internal prior map. A new method is proposed for determining orientation

€ITrors.

Section 4.5 presents tests of the vision-based self-localization algorithm and

discusses the test results.

Section 4.6 explains the obstacle detection and registration process that completes the

robot’s vision system.
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4.2 Floor-specific Edge Detection

The aim of this project is to use the robot’s video camera to assist the robot in
navigation process such as obstacle detection, and self-localization. Thus the robot’s vision
system must be able to distinguish floor regions and extract useful information such as the
edges positions and their orientations. A segmentation process based on automatic
thresholding was implemented and will be described section 4.2.1. The result of the
segmentation process provides the robot with knowledge of its navigation space but no
boundary edges information (i.e. the position of the floor edges and their orientation) can be
extracted. Therefore an edge detection process is proposed. Section 4.2.2 discusses the
edges detection process and proposes two new floor-edges-specifics filters (i.e. the horizontal
filter and the vertical filter) which are used to determine the presence of floor edges. Ifa
floor edge is detected, the filter’s outputs will be used to select the appropriate equation from
the equations system, and are then applied to the selected equations to determine the
orientation of the detected edge. The equations system consists of four different equations
derived based on trigonometric rules. Details of the equations system are described in
section 4.2.3. Section 4.2.3 also discusses how the positions of the edges are determined; the
basic method is described in section 4.2.3.1 while a refined method which make used of

edges orientations information is described in section 4.2.3.2.

4.2.1 Image Segmentation (Floor/non-floor)

The segmentation of the image captured by the robot into floor and non-floor regions
is in general a complex process for which several methods have been proposed (Haralick and
Shapiro, 1985; Pappas, 1992; Pal and Pal, 1993; Bezdek and Hall, 1993; Morel, J.-M. and

Solimini, 1995 and Belongie, Carson, Greenspan and Malik, 1998).
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4.3.2.1 Camera Coordinate Frame to Robot Coordinate Frame
Transformation

The pixel point shown in figure 4.22 is an example of a pixel in an image captured by
the camera. In order to place this pixel into its relative place on the map, several
transformations have to be made. In this section we will concentrate on the transformation
of the coordinate of interest P from the camera coordinate frame to the robot coordinate
frame. That is the point (x.p, y.p) in the camera coordinate systém transformed into a point
(x.p, y-p) in the robot coordinate frame. As shows in figure 4.22, a combination of rotations
and translations is needed. A rotation of the camera coordinate system by an angle of f.; is
needed for the transformation into the egocentric coordinate system. Therefore equations
4.28 and 4.29 are used to perform the rotation transformation with angle Bc: to bring the

coordinate of point P from the camera coordinate system into the egocentric system

(figure 4.23).
xegc.P = xc.P cos ez yc.P Sin €,z (428)
ycgc.P = xr,P Sln ﬁc,z +yr,,P cosﬁr,z (429)

Since the egocentric coordinate system is collinear with the robot coordinate system,
only a translation is needed to convert the egocentric coordinate system into the robot
coordinate system. Since only an offset distance d, along the y axis of the robot coordinate

system separates the egocentric coordinate system and the robot coordinate system, we have

yr,P = dr.egc + yegc,P (430)
The translation equation shown above is used to transform the coordinates of point P

from the egocentric system to the robot coordinate system (figure 4.23).
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determine the mean (x, y) coordinate deviation to recalibrate the robot’s coordinates. This

completes the robot self-localization process as illustrate in figure 4.25.

Note that the viston-based self-localization sub-routine is implemented in this
research by using the waypoints information to narrow down the number of possible pattern
matching edges in the prior map hence reducing the aliasing problem. The proposed
approach was to use 3 points along the planned path, halfway between the waypoints, and
one point at the first waypoint (in case the robot has not moved). Chapter 5 describes how
waypoints are defined. The self-localization algorithm is executed for each of the 4 points,
and the pose with the most matches between the detected edges and the edges on the prior
map then represent the best estimate of the robot’s pose at the time the image is captured.
Note that this method relies on the shaft-encoders to perform reliably as it assumes that the

robot has followed the path within a margin of 6¢m.

Before the vision-based self-localization procedure is implemented in the névigation
system, an experiment was conducted to determine its performances. This is described in

section 4.5.
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4.5 Self-localization Tests

4.5.1 Results

During the experiments, the robot was physically positioned in its environment at a
fixed position and orientation with its video camera looking forward. The idea was to change
the assumed initial position and ornentation of the robot and determine if the vision-based
self-localization procedure were capable of correcting this error based on the image obtained
from the video camera. The experiment is divided into two parts, with the first part dealing

with position shifts and the second part dealing with orientation changes.

In the first series of experiments, the robot was physically positioned at (45cm,
16cm) with an orientation of 0 degree. The initial believe of the robot’s position was
changed by two centimetre incrementally in either the x or y direction. Four tests were
conducted where each test was performed for a specific direction of the displaced assumed
position (i.e. forward, backward, left and right). For each direction, the initial believe of the
robot’s position was shifted by up to 8 centimeters (figure 4.26a). For each two centimetre

increment, 10 trials were performed.

In the second series of experiments, again the robot was physically positioned at
(45cm, 16cm) with orientation of 0 degree. The initial belief of the robot’s position was not
changed but instead its orientation was changed with successive increments of 1, 1, 2, 2, 2,2,
5 and 5 degree in a clockwise and anticlockwise direction (figure 4.26b). Two tests were
conducted where each test was performed for a specific direction (i.e. clockwise or anti
clockwise). For each direction, at every angular increment 10 trials were performed. Figure
4.2.7 shows, as an example, the results for each of the 10 trials for shifts of 2 ¢m in four
directions. Figure 4.28 shows the standard deviations of the position errors, as a summary of
all the measurement results.
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Figure 4.30a shows that the vision-based self-localization performs quite well in the
condition where there are plenty of visual cues (i.e. the detected edges). This is illustrates in
this figure where the y coordinates from the calibration results does not vary as much as the x
coordinate, since there are plenty of detected horizontal edges to be matched. Figure 4.30b
also illustrates this effect, showing that no calibration on the x coordinates has taken place
since there are no detected edges that have similar orientations to the left and right edges of

the environment. Therefore the + symbol is staying close to the ¢ symbol.
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4.6 Obstacle Detection and Registration

Once the vision-based self-localization process finishes recalibrating the robot’s
coordinates in the prior map, all the detected edges that are within the room are placed into
the map. For the detected floor and walls edges with a nearest neighbour, they are assigned
to their nearest neighbour, while the rest of the detected edges with no nearest neighbours are
assumed to be obstacles and are pasted into the prior map. The data structure used for the
prior map is known as the neuro-resistive grid which has a spatial memory layer. The spatial
memory layer is used to store information such as the robot’s position, the goal’s position
and the detected obstacle positions. The neuro-resistive grid uses the spatial memory layers
to calculate its potential field distribution that is used for path planning. Details of the neuro-

resistive grid are described in chapter 5.

The robot’s prior map (i.e. the spatial memory layer of the neural-resistive grid) is
updated throughout the navigation process based on the latest information decoded from the
images obtained through the robot’s video camera. This information includes the latest
position and orientation of the robot and the position of detected obstacles within the robot’s
environment. The updating process is illustrated in figure 4.31 where a) show the edges
detected on the images, b) the position of the detected edges after self-localization and c) the

detected edges and obstacle registered in the spatial memory layer of the neuro-resistive grid.
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determining accurately the position of the detected edges. The proposed refined method

solves this problem.

Vision-based self-localization is an important procedure in this project. It provides
feedback for the robot’s remote brain and makes other procedures such as path planning
possible. This is a simple approach that produces acceptable results. The accuracy problems
of this procedure are mostly caused by the positioning problem from the floor edges specific
filters. The vision-based self-localization procedure wili be more robust once the positioning
problem is solved. The obstacle detection and registration procedure currently wasn’t able to
distinguish between real and phantom obstacles. Therefore all the detected edges were
currently being registered into the neuro-resistive grid which is then used for i)ath planning.

The phantom obstacles problem will be addressed in future work.
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Chapter 5

Path Planning and Encoding

Path planning is a basic function of most mobile robot or autonomous vehicle
control systems. It involves generating a sequence of commands that will be used to
navigate the mobile vehicle from its current position toward its final position/goal without
colliding with obstacles. To achieve this, a map with data structures that suits the chosen
method of path planning is needed. The data structure has to be able to store the
information about the state of the mapped areas and enable movements from any element
in the structure to the elements which represent adjacent areas in space. In addition, a data
structure for storing paths that complements the map data structure, and efficient
algorithms for locating the robot, path searching and navigation are required. Easy
integration of sensory data for map construction, adaptation and extension is also a must.
Based on these requirements, the neural-resistive grid method (Bugmann, Taylor and
Denham, 1994; Althofer and Bugmann, 1995) is chosen as the ideal data structure to be

used in this project.

This chapter is divided into two sections, the path planning through the
neural-resistive grid and the path encoding and decoding through normalised radial basis
functions (NRBF). Section 5.1 discusses path planning using the neural-resistive grid.

This section begins with an introduction of the theory behind the neural-resistive grid
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(section 5.1.1), followed by a description of the representation of the robot and the obstacle
within the neural-resistive grid, and the illustration of obstacle free path planning based on

the gradient distribution in the neural-resistive grid (section 5.1.2).

Section 5.2 describes how the obstacle free path is represented by a waypoint data
structure and is used in the robot navigation process. For this, the NRBF net will be
described in section 5.2.1 followed by showing how it facilitates the path encoding in

section 5.2.2 and the path decoding in section 5.2.3.

5.1 Path Planning through the Neural-resistive Grid

5.1.1 Neural-resistive Grid

The route-finding neural net proposed by Bugmann, Taylor and Denham (1994)
was used in this project for environment mapping and path planning. The route-finding
neural net is a neural implementation of a resistive grid; it consists of two layers, a
neuro-resistive grid and a spatial memory layer. In the neuro-resistive grid, every node 1s
connected to its 2V neighbours. N is the dimension of the represented state space (V=2 in
our case). Each node is also directly connected to the node corresponding to the same

spatial location in the spatial memory layer as shows in figure 5.1.

The neural-resistive grid holds the ideal data structure charactenistic for
environment mapping and path planning as the spatial memory is able to store goal and
obstacles information about the mapped area which enables easy integration of sensory
data with a simple algorithm for map construction, adaptation and extension while the
neuro-resistive grid calculates the potential distribution over the mapped area based on the
information encoded in the spatial memory. The neural-resistive grid is updated every

image processing cycle as new sensory data become available.

73









not need to be recalculated each time provided that there is no new obstacle, and the

obstacles and target remain static.

The Setup

To model the robot’s environment, a neural-resistive grid with 47x65 nodes was
built. The walls in the robot’s environment were pre-programmed into the outer nodes of
the spatial memory of the neural-resistive grid. In the neural-resistive grid, the spatial
memory is used as a prior map for map updating while the neuro-resistive grid is used for

path planning.

The actual size of the robot’s navigation area is 89x125cm?, which is represented
by 45x63 nodes in the neural-resistive grid. Thus, each node in the neural-resistive grid

covers a 2x2cm? area of the robot’s environment.

5.1.2 Representation of Robot and Obstacles in the
Neuro-resistive Grid

Representation of robot and obstacles in the resistive grid plays an important role in
producing obstacle free paths and assuring clear navigation for the robot. In the
neural-resistive grid method, the robot is modelled by a point of the size of a node while
obstacles and walls are expanded by the radius of the robot (figure 5.3) to make sure that
the path produced will avoid a collision with an obstacle and that the robot will not attempt

to go through any corridor that is too narrow for it.

The expansion is achieved by using divergent connections {(one-to-many) from the

spatial memory to the neuro-resistive grid. Therefore equation 5.1 becomes

y,-=Tf(qu.jyj+ ZIJJ (5.2)

JjeN, JjeM,
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hidden layer do not act multiplicatively as in other neuron models, but define the input
vector X; =(wj,...,w;) eliciting the maximum response of node j (x ; is the "centre of the

receptive field").

Normalised RBF nets have a functional form very similar to the standard one
(equation 5.3), with the difference of a normalisation by the total activity in the hidden

layer:

zwlj‘p(f_ij)
yl(x)= Z¢(i—5€'1)

(5.5)

As a result, the output activity becomes an activity-weighted average of the input
weights in which the weights from the most active inputs contribute most to the value of
the output activity. For instance, in the extreme case where only one of the hidden nodes is
active, then the output of the net becomes equal to the weight corresponding to that hidden
node, whatever its actual activity. Thus RBF nodes in the hidden layer are used here as

case indicators rather than as basis functions proper.

Figure 5.9 shows that each hidden node in a Normalized RBF net takes over a
portion of the input space over which it determines the output of the net. Due to this
property, outputs of the normalized RBF net are always a point on the path, even if the
cwrrent position is not exactly a waypoint. In contrast, the standard RBF net produces

outputs out of the path for input positions that are not exactly on a waypoint.
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Chapter 6

Motion Control with Intermittent Delayed
Measurements

This chapter discusses motion control with intermittent delayed measurements in
the system (the remote brain and the robot). A delayed measurement is defined as a
measurement which is delayed by nz, where 7 is the controller’s cycle time and # is the
number of cycles between data acquisition and data availability. Delays in measurements
are usually introduced by the complexity of processing sensory data. Applications such as
vision-based mobile robots are often faced with delayed measurements from visual
sensing. Delayéd measurements used to cause robots (i.e. robotics system) to exhibit a
stop-and-go motion (Moravec, 1983). For example, a mobile robot that relies on vision for
its navigation process has to wait for the visual sensory data to become available before the
navigation process can be executed. Delayed measurements are due to processes such as
image digitization, image processing, self-localisation, path planning and data transfer.
This is not a problem that can be solved with a faster or more powerful machine, as not all
of these processes depend on the computation speed. Furthermore, computation time also
tends to increase with more intelligent and complex algorithms (Bak, Larsen, Norgaard,

Andersen, Poulsen and Ravn, 1998). Apart from that, not all time delays are caused by the
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controller, for example, in a rolling mill process where the time delay lies between the

issuing of a control and its result’s feedback (Smith, 1959),

Section 6.1 describes the vision-based mobile robotic system used and the time
delay problem that exists in the system. This section is divided into two subsections;
section 6.1.1 discusses the system in details, its time delays and the cause of the

stop-and-go motion, while a solution to the problem is presented in section 6.1.2.

Section 6.2 deals with the proposed solution to the stop-and-go motion problem
which was discussed in section 6.1.2. This includes the use of receding horizon control (in
section 6.2.1) and the adaptation of the retroactive updating scheme in the Smith Predictor

to the case of intermittent delayed measurement (section 6.2.2).

Section 6.3 deals with the implementation of the Smith Predictor in which a robot
model is built (section 6.3.1) followed by the derivation of a set of equations for tracking
the robot pose (section 6.3.2) using the distances travelled by the robot’s wheels

(determined either by the model or direct readings of the shaft encoders).

Section 6.4 describes the robot’s on-board path control followed by test results

using the NRBF path encoder.

Section 6.5 describes and discusses the specifically designed coordinate
recalibration algorithm for mobile robotic systems that incorporates intermittent delayed

measurements through retroactive updating.
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6.1 The Time Delays Problem

In control, a system always consists of several components that act together and
perform certain functions. Each component requires an amount of time to complete its
task. The amount of time required depends on several factors such as the complexity of
the task and the speed of the hardware involved. This amount of time (i.e. time delay)

often poses a serious threat to the perforrances of a real-time system.

The vision-based navigation system used in this research also suffers from time
delays problem. As a result, the system exhibits a stop-and-go motion. This is
unacceptable especially for a real-world system such as an autonomous wheelchair. The
aim here is to analyse the time delays within the system and to propose a solution that will

solve the stop-and-go motion problem.

Section 6.1.1 looks at the vision-based navigation system, its control structure and
timing diagram to investigate the relationship between the time delays and the stop-and-go

motion. Note that the system was designed with the use of sequential control method.

Section 6.1.2 proposes a solution to deal with the time delays and overcome the

stop-and-go motion problem through a concurrent control method.

6.1.1 Sequential Control “Compute then Move”

The aim of the vision-based navigation system used in this research is to navigate
around obstacles towards the goal. The vision-based navigation system flow diagram in
figure 6.1 shows its components and their relationship within the system. The components
are grouped into two categories or sub-systems, the first group is known as the remote

brain. As its name implies, the remote brain deals with high level tasks which are
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The robot will only receive the feedback (i.e. robot’s pose at time #5) and path information

valid for time fy at time g+ nt, when the robot is already in a new position.

The delayed path information problem is solved here using a receding horizon
control method (section 6.2.1) which overcomes the time gap between measurements by
planning paths that are valid over a certain time range for the robot to follow while new
plans are elaborated. When the new path becomes available, it can easily be integrated
into the robot’s navigation process and results in a smooth navigation motion (i.e. using the

NRBEF net as discussed in section 5.2).

A modified Smith Predictor is used here to control the robot during the delays
between visual feedbacks (section 6.2.2). The Smith Predictor was originally designed to
deal with continuous but delayed feedbacks. The modification proposed here allows it to
handle intermittent delayed feedbacks such as the ones caused by image processing. We
have explored two possible sources of the fast feedback component of the Smith Predictor.
The first is the standard use of a dynamical model of the robot (section 6.3.1). The second

is the more direct use of tracking information from shaft encoders (section 6.3.2)

The use of the modified Smith Predictor in conjunction with the NRBF path

encoder for on-board path control is described in section 6.24.

In the modified Smith Predictor, when the delayed feedback (i.e. robot’s position at
time f9) from the remote brain becomes available at time fy+nz, it is used to improve the
estimation of the robot’s current position (based on the assumed position at time fy and the
integration of displacements estimated from the fast feedback component) by retroactively
updating the position assumed for time £y, this coordinate recalibration process is described

in section 6.25.
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Figure 6.7 illustrates the concept of receding horizon control strategy. Based on the
receding horizon control strategy, an obstacle-free path is planned from the position where
the sensory reading is made e.g. P(f), to the goal. Theoretically, this path should enable
the robot’s controller to steer the robot towards the goal based on its odometric feedback.
But in reality, there are many factors such as the accumulated odometry error and the
inaccuracy of control actions that can cause the robot to drift away from its path. For
example, the robot captures an image at position P(fy) at time £y and plans an obstacle-free
path from position P(fp) to the goal. Let’s assume that the robot then attempts to navigate
along this path but drifts to the right and ends up at position P(¢;). The path created at
position P(tp) becomes invalid thus a new path bases on position P(¢;) is needed. Therefore
it is necessary for the remote brain to provide delayed visual information feedback and
obstacle-free paths as often as possible (i.e. at every remote brain program cycle) to
minimise the accumulated odometry errors and keep the robot on track. As illustrates in
the figure 6.7, a new obstacle-free path is constantly created at each program cycle as the
robot moves towards the goal. Thus, by continuously providing the robot with the latest
visual feedback and a new obstacle-free path, the robot position can be continuously
corrected, therefore minimizing the accumulated odometry errors and enabling the robot to

reach its goal.

The obstacle-free path is encoded as 8 waypoints with a distance of 10cm between
each waypoint. Figure 6.8 shows the process and implementation of the receding horizon
control strategy using waypoints. As illustrated, the remote brain captures an image at
time ¢y for high level processing. At the end of the high level processing at time #;, the
obstacle-free path produced is sent to the robot. Let’s call this path T,,, indicating that the
obstacie free path is created based on the image captured at time ¢y and becomes available
at time ¢;. This path "T,; is then sent to the robot in term of waypoints while the remote

brain captures a new image to produce the path /T,;. Since the robot has a limited memory
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where, I" is the motor’s torque, G is the gear ratio and r,, is the radius of the wheel.

Applying this equation to equation (6.4) and obtain

m® TG F, (6.6)

For a permanent-magnet dc motor where the magnetic field flux d,is constant, the
applied voltage V' is related to the armature current /, and the induced back-emf voltage £,

by (Mohan, Undeland and Robbins, 1995, pp. 377-381, and Jones and Flynn 1993):

V=IR +E, (6.7)
The induced back-emf E, increases proportionally with the angular velocity of the

armature @y, and the back-emf constant of the motor 4g:

D ' (6.8)
where
ky =k,®, (6.9)

k. being the voltage constant of the motor.

The torque I increases linearly with the armature current /, and the torque constant

of the motor k7

T=kl, (6.10)

where the torque constant kr is proportional to the magnetic flux.

ky =k®, (6.11)

Therefore the applied voltage V' can be rewritten as

y = 1R +hkew (6.12)
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from which the torque I' becomes

rayke ke
R R

a a

(6.13)

In a steady state, the electrical power P, of the motor is equal to the mechanical power Py,

of the motor:

P =P (6.14)
where

P=EI =kw,l, (6.15)
and

P=ol=0kl, (6.16)
therefore

kp =k (6.17)
By defining

k=k, =k,

equation 6.13 becomes

2
r=VRi-m,,,;— (6.18)

The angular velocity ay, of the motor is related to the displacement velocity v of the

wheel of the robot by the gear ratio

w, =—G (6.19)

Therefore equation (6.18) can be rewrite as

2
F=Vi—v k
R R r

a a w

G (6.20)

Applying the torque equation (6.20) to equation (6.6)

212
dv_, kG _ kG

m—=v — 2
dt Rr, Rr

a w

- 4F, (6.21)
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and defining C; and C; as followed

C - kG
Rarw
c, = k Gz
Rﬂrw
one obtains
ﬂ:V&_v&__ﬂF_N (6.22)
dt m m m

By defining P and Q as followed

G (6.23)
m
o=V G _#hy (6.24)
m m
and equation (6.22) becomes
dv
2 _o-pP 6.25
I Q- Pv (6.25)
dv
—+ Pv= 6.26
T Q (6.26)
this is a Linear Differential Equation of 1* order with solution (see Appendix A).
(1) = %(] — g7ty 4 el (6.27)
Defining o as
Q
a== 6.28
P (6.28)
equation 6.27 can be rewritten as
(1) = a(l - e i ly 4 cePlimnl (6.29)

where a is the maximum steady-state velocity achieved by the robot for a given applied

. . . 1 . .
voltage. The steady-state is reached with a time constant;. As P is a constant, a is

expected to increase linearly with the voltage V (see equation 6.24). However, there is a
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Then equation 6.29 can then be rewritten as:

1) =a(@)(1-e el 4y, o7l (6.31)
where

v(¢#) is the velocity at time 7.

V0 18 the velocity at time ¢y.

a(d) is the maximal velocity for the set speed &.
P is the zero speed acceleration.

Note that equations 6.30 and 6.31 are used to determine the velocity of each wheel

in each time step of the fast control loop.

The distance travelled by each wheel in each time step within the fast control loop,

is obtained by integrating the equation 6.31:

s)= fur)dr = fla(@) - (@(8) - vo)r

I !
=a J'ldt‘—(a —v,) Ie"’"dt'
I i
i =P

=a(—1)~(@-vo)——

(6.32)

where S is the distance travelled by the wheel from the time when the initial
velocity at time 1 was vg. Details of how displacement information obtained from the
model is used to track the robot’s path are given in the next section. The model provided
accurate self-tracking information as long as the level of its batteries remained stable

(figure 6.19). However, when batteries where allowed to discharge the behaviour became

unreliable.
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value Cp). The distances (in centimetre) travelled by the robot left wheel d; and right
wheel dr were each obtained by multiplying their counter value (i.e. the number of ticks)

with the distance per tick factor fz, as shown in equation 6.33 and 6.34.

d,=C; x fdpl (6.33)
dR=CRxfdp, (6.34)

6.3.2.2 The Robot in a Curved Motion

This section starts by considering the case of a leftward curve, and then adapts the

equations for a nghtward curve.

During leftward motion, the robot is programmed to move towards its left with both
shaft encoder counters expecting to have different values. The distance travelied by the
robot right wheel dg should be greater than the distance travelled by the robot left wheel dy

as shows in figure 6.20. The actual distance travelled by the centre of the robot is'shown in
figure 6.20 as curve d,, and can be represented by Axrg and Ayrz as the actual distances
travelled in the x and y direction respectively. Axyg and Ay are obtained using equation
6.44 and 6.45. In order to solve Axyg and Ay, we first determine the change in the robot's
orientation A& using equation 6.41 and the distance R,, from the robot's origin to the ICC
(Instantaneous Centre of Curvature) of the robot at the start of the curve motion using

equation 6.43. Below is shown how these equations were derived for the conceptual

diagram shown in figure 6.20.
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and by substituting equation 6.40 into equation 6.38, we obtain the change of the robot

angle A6k as shown in equation 6.41.

d, =( 4 +ARJA9R
R

=d, + ARAG,

Therefore

A8, = (d%fi’-) (6.41)

The distance R,, from the robot’s origin to the /CC was obtained using equation

6.43. This equation was obtained by substituting equation 6.37 into equation 6.42.

R =R +[ﬂ) (6.42)
2
R, = d, +[£) (6.43)
A8, 2
From figure 6.20 we solve Axrg and dyrr
Axy =R, - R, cos(A8,) (6.44)
Ay, =R sin(Ad,) (6.45)

Equations 6.41, 6.43, 6.44 and 6.45 are the actual equations used to determine Axrz
and Ayrg. Although these equations were derived based on the conceptual diagram for the
robot doing a leftward motion, they are also applicable when the robot is doing a rightward
motion. When the robot is doing a rightward motion, Af will be negative (clockwise) and

this causes R, to be negative. Therefore Axr; will become negative.

6.3.2.3 Conversion to the Map Coordinate System

This section illustrates the transformation of the robot position from the robot
coordinate system to the map coordinate system. Figure 6.21 shows the transformation

diagram.
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the reliability problems. However, their measurements are not dependent on the battery

charge level and it will therefore be used in the remainder of this thesis.

6.5 Retroactive Position Calibration Using Visual
Feedback

This section deals with the robot’s coordinate recalibration process based on the
feedback from the robot’s remote brain. The recalibration process is necessary since the
robot relies on its shaft encoders (which drift with time) to keep track of its own position in
the real world. Without the recalibration process, the robot will deviates from its path

while “believing” that it is still on the obstacle-free path towards the goal.

6.5.1 Recalibration Equations
The aim of the coordinate recalibration process is to recalibrate the estimated
current robot’s position held on-board the robot (i.e. f’(t0 +n7)) as often as possible,

based on the robot’s position obtained from the robot’s remote brain (i.e. P(f,)) which

was determined from the image captured at time fy. The idea is to record the positions

13(10) and 15(!0 +n7) assumed by the robot at time ¢y and f5+n7 respectively. Note that at
time ¢y, the remote brain captures an image to determine the robot’s position and to plan an
obstacle-free path. This information becomes available to the robot at time ty+n7. By
comparing the recorded robot position f’(to) at time fyp with the robot’s position

P(t,) derived from the image captured at time 14, the shaft encoder drift having occurred up
to the time 7y becomes known. Compensating for this error will not ensure exact position

knowledge of time f5+n7 but limits the error to the possible drift having occurred since .
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Figure 6.24 shows the conceptual diagram where P(t,)and 13(10) are located at the
same position but with different orientation. The robot believes it has reached 1‘5’(t0 +n7)
while it actually has reached }3'(10 +nt). Based on the conceptual diagram, the actual

robot position P (¢, +n7) at time tp+n7 can be determined by using the equations shown

below.

Firstly the relationship between f’(to) and 13'(t0 +n7) has to be established. This

is done by using the equations below.

dx, = P(t, +nt)x— P(t,)x (6.63)

dy, = P(t, +nt).y - P(t,).y (6.64)

de, = P(t, +nt).0 - P(1,).0 (6.65)

dh =dx? +dy* (6.66)
o dy,

g, =tan l(de,] (6.67)

Knowing P(¢,).6 and 13(!0).8, equation 6.68 is used to determined the angle

difference A@. The rotational angle &,,, for dk, when f’(fo) is rotated by A# can then be

determined using equation 6.69
AG = P(1,).0 - P(1,).0 (6.68)
0., =8, +A0 (6.69)
Given that the distance dh, and its rotational angle 6,,, the coordinate f"(to +nT)

can be determined using equation 6.70 and equation 6.71, and its orientation using

equation 6.72.

P'(¢, + nt)x = P(t,).x + dh, cos(B.,,) (6.70)
P'(t, +nt).y = P(t,).y + dh sin(d,,,) (6.71)
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If the coordinate and orientation of P(r,) and f’(lo) are different, equations

6.63 - 6.72 are used, as the first terms of equations 6.70 and 6.71 overcome the translation

problem while the second terms of equations 6.70 and 6.71 solved the rotation problem.

6.5.2 Discussion

Solving the problem of delayed measurement by retroactive updating was initially
proposed by Kosaka, Meng and Kak (1993) although one could argue, as done later in this
section that the concept was already present in the design of the Smith Predictor

(Smith, 1959).

Kosaka, Meng and Kak (1993) wanted to solve the stop-and-go motion problem by
integrating visual information that was nt time steps old into the tracking system. For that
purpose, they stored a history of all commands (or shaft encoder readings) from the

measured time fy to the time fp+n7 when the delayed measurement becomes available.
They also stored the measured position ﬁ(ro) at time fp. When the delayed measurement
P(r,) becomes available, the new estimation of the current position f"(t0 +nr7) I8

produced by recalculating the total displacement vector c?(ro,r0+m') from past

commands, then rotates the displacement vector by the error A9 between the measured

heading 13(!0) and P(¢,), and add it to the new measurement for time P(f,):

P'(t +nt) = R(AOY(1,,1, + nT) + P(1,) 6.77)

where R is the rotation matrix.

The requirement to store the history of commands in Kosaka, Meng and Kak

(1993) was due to the incremental method used to calculate the position uncertainty. As
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noted in Maeyama, Ohya and Yuta (1995), for re-estimating the position only, the total

displacement is sufficient.

In Maeyama, Ohya and Yuta (1995) a new method is proposed to re-estimate the
uncertainty without using the history of commands. This problem is not dealt with in this
thesis, as images are acquired at the maximum possible rate, thus there is no advantage in
having access to uncertainty information to decide when to recalibrate, as done in Kosaka,

Meng and Kak (1993) and Maeyama, Ohya and Yuta (1995).

The method for recalibration of the position used in Maeyama, Ohya and Yuta
(1995) differs from that in Kosaka, Meng and Kak (1993) in that in the former a more
complex data fusion process is used for generating the new position 1?"(10 +nt). This

consists of a maximum likelihood estimation including ali measurement available at time
fg. Otherwise the principle is the same as in Kosaka, Meng and Kak (1993) where the total

displacement since fy is estimated from odometric measurements.

In a more recent work, Larsen, Andersen and Ravn (1988) are concerned with how

to set Kalman Filter parameters given that part of the measurements are delayed. The

proposed solution is to extrapolate the delayed measurement P(¢,)} to the current time by

adding to it the displacement Af’(to ,ty + n7) as determined from all other sensors

perslie (1, + nt) = P(ty) + AP(ty 1, + n7) (6.78)
This extrapolated data is then fused with other measurements available at time

tp+nt to produce the best estimation of the position at time tp+nz.

The essential difference with the method proposed by Maeyama, Ohya and Yuta

(1995) 1s that data fusion takes place here at time fp+n7 rather than at time f,.
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Chapter 7

Results

7.1 Experiments and Results

7.1.1 Experiments Description

The aim of the experiments described here is to verify if the concurrent control
theory does work in practice and to compare the performances of the concurrent and the
sequential control systems. The experiments were conducted in the robotic laboratory of
the School of Computing, at the University of Plymouth. A robot environment with a size
of 125cm by 89cm was built to conduct the experiments. The goal was located at
coordinate (77,104), near the top right corner of the robot environment. The starting point
of the robot was located at coordinate (45,16). The experiments were divided into two
different configurations distinguished by the location of the obstacle. In the first
experiment, the obstacle was placed at the centre left of the robot environment, at
coordinate (45, 65), while for the seconds experiment the obstacle was place at the centre
right of the robot environment at coordinate (75, 65). In experiment one, the expected path
for the robot to reach the goal passes round the right of the obstacle while in experiment
two, the expected path for the robot passes round the left of the obstacle then heads toward

the goal.
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In figure 7.4, one can notice a significant variability in the paths produced. Figure
7.4 (a), (b} and (c) show that 70% of the trials were within 20cm radius of the goal while
figure 7.4 (d) shows no trial of such accuracy. This is due to the increased possibility to
confuse comers in the self-localization process with paths of figure 7.4 (d). There were
some unavoidable problems which were influenced by several factors during the
experiment. These include the level of noise in the image, the accuracy of the
self-localization process and the accuracy of the shaft encoders reading. These problems

are discussed in the next section.

7.1.3 Problems Encountered

During the experiments vision, odometry, and communication problems were

encountered.

Vision plays an important role in the navigation process and the performances of
the system were often determined by the results of vision processing. Problem such as the
environment light intensity changes could sometimes cause the vision system to consider
certain parts of the walls as floor (i.e. shadows) or parts of the floor as obstacles (i.e.
reflection of light sources). The presence of noise in the image when the robot was in
motion (due to an unsteady antenna) often caused the vision system to generate phantom
obstacles. These phantom obstacles cause problems for self-localization (i.e. phantom
obstacles that are located close to the environment boundaries have the potential to be

misinterpreted as detected edges) and path planning (i.e. blockage of valid routes).

Odometry problems were mainly caused by shaft encoders drift. Most severe
odometry problems are caused by shaft encoders missing ticks. This occurs when then

distance between the IR sensor and the reflector (i.e. encoder striped pattern) falls out of

135



the sensors operating range. Such problem can reduce the efficiency of the internal loop of
the controller and lead to large errors in the displacement vector estimated from odometry
and cause the robot to deviate from it’s path as shown in figure 7.4 (c) and (d). This in turn
affects the visual self-localization process that assumes that the robot is positioned
somewhere close to the planned path with a heading roughly parallel to the path. A
number of paths in figures 7.4 (a){d) where affected by this problem. For instance in
figure 7.4 (a) the robot has sometimes mistaken the top left corner for the top right corner

and heads towards a goal that now appears to be along the left wall.

Another problem is the lack of sufficient information for self-localization in certain
images. It was shown in section 4.5 that the accuracy in the x-direction was reduced due to
the limited number of visual clues provided by the sidé walls. During the navigation of the
robot, the situation can become even worse, as only one wall may be visible in the image
when the robot is close to it. As a result, vision can only provide position information
along one direction (e.g. y-direction). In this case, the best that the remote brain can do is
to estimate the position in the other direction by assuming that the robot has followed the
desired path. The robot must then use this quite unreliable information for recalibration

and is at high risk of getting lost.

The communication process also affects the efficiency of the navigation process.
The communication is in principle safe, in that the robot uses security bytes to identify the
source of the transmission and check-sums to detect corrupted data. If an error is detected
it then requests the remote brain to resend the data. Sometimes the remote brain can miss
this request and the robot must ignore recalibration and path data. In that case, the robot

pursues its previous path, eventually reaching the last of the sent waypoints.
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Another potential communication problem can lead to disorientation problems
(i.e. vision-based self-localization establishes erroneous correspondences between detected
edges and edges on the prior map). This is due to the fact that, during the communication
process, the robot keeps executing the last motor command and may overshoot its target
and could be too far from the desired path when the image for vision-based
self-localization is captured. This is illustrated in figure 7.4 (d) where the communication
process established while the robot was making a turn caused the robot to collide with the

obstacle.

In such a case, vision can be the victim of the unreliability of the motion control in
that the set of initial positions along the planned path assumed during self-localization does

not cover the position that the robot has reached.

Overall vision often failed to perform accurate self-localization, either due to a
clue-poor environment, or due to motion errors. Communication problems also

contributed, but to a lesser extent.

Due to the large impact of these problems on the system’s performance, it would
have been of little significance to produce more quantitative evaluations of the

performance. The key lessons learnt from these experiments will be discussed in section

8.2.
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Chapter 8

Conclusion and Future Work

8.1 Contributions to Knowledge

This thesis has presented a complete vision-based navigation system that can plan
an obstacle-avoiding path to a desired destination on the basis of an internal model (map)
updated with information gathered from its visual sensors. It has demonstrated a control
technique that addresses the stop-and-go motion problem by concurrent image processing
and planning while the robot is in motion. Quantitative results of the systems behaviour

were shown.
Contributions were made in the areas of vision, planning and control.

During the development of this system, a new floor-edges-specific filter was
proposed to detect floor edges and at the same time determine their pose. An algorithm

has been proposed to determine precisely the position of the edge in the filter window.

A self-localization algorithm that uses the detected edges and their orientation for
estimating the robot’s pose was developed. This is done by matching the detected floor

edges with the nearest edges in the prior map. In order to limit the potential for aliasing
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errors, self-localization is performed by assuming that the robot is located somewhere near
to the planned path. The orientation of the robot can then be estimated simply from the
average orientation mismatch between edges found in the image and the corresponding

edges in the prior map.

The neural-resistive grid which is an ideal data structure for mapping and
path-planning was implemented for the first time in a real-world actual application (instead
of simulation in Bugmann, Taylor and Denham, (1994); Althéfer and Bugmann. (1995)).
A novel scheme was proposed to represent the collision-free space, using divergent

connections from the spatial memory to the neuro-resistive grid.

To overcome the stop-and-go motion problem caused by intermittent delayed
measurements, a modified Smith Predictor combined with receding horizon control was

successfully implemented. Experiments were conducted to demonstrate the system.

A novel implementation of the receding horizon control using NRBF net was
proposed. The NRBF path encoder (previously proposed in Koay, Bugmann, Barlow,
Philips and Rodney (1998) for an autonomous wheelchair) was implemented on-board the
robot to continuously produce a target point to attract the robot toward and along the
obstacle free path until the robot reaches the goal. This research demonstrates a system
that performs automatic path encoding using the waypoints obtained from the remote brain
at every remote brain program cycle, while the previous paper (Koay, Bugmann, Barlow,

Philips and Rodney, 1998) demonstrated manual path encoding.

We have proposed two modifications of the Smith Predictor for its use in
navigation systems, one with intermittent delayed measurements and the other without.

The one for intermittent delayed measurements is used in the demonstrated system to
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implement retroactive updating. It has been shown here that other recently proposed
methods for handling delayed measurements (Kosaka, Meng and Kak, 1993; Maeyama,
Ohya and Yuta, 1995; and Larsen, Andersen and Ravn, 1988) are formally equivalent to

the modified Smith Predictor.

8.2 Problems and Difficulties Encountered

In this research, several problems that affect the performances of the system were
noted. These essentially contributed to the robot failing to reach the goal in 30% of the

trials due to collisions with obstacles or disorientation.

The vision-based self-localization process plays a crucial role in the success of the

system in reaching the goal.

During the experiments, failure in vision-based self-localization process often
caused the robot to deviate from the given path and collide with obstacles. Failures of the
vision-based self-localization process were caused by matching the detected edges with the

wrong edges in the prior map.

This can be traced back to several causes. Most of these were related to vision
problems such as the presence of noise in the sampled image during navigation. Others
were related to the accuracy of the shaft encoders readings and the on-board motion
controller (e.g. the robot derived from the designated path due to shaft encoders feedback

eIrors).

The presence of noise in the sampled image during navigation was caused by bad
reception due to an unstable antenna on-board the robot. The robot’s environment light
intensity changes also contributed to the noise level as the vision system could consider

140



certain parts of the walls as floor (i.e. shadows) or parts of the floor as obstacles (i.e.

reflection of light sources).

The noise in the image was often detected by the vision process as detected edges
(i.e. floor edges or obstacles), since there is no algorithm for noise detection in the vision
process. This confusion lead to the vision-based self-localization matching process to

produces unreliable results that could generate disorientation problems.

During vision-based self-localization, those detected edges that did not find a match
with edges from the prior map were assumed to be obstacles. These phantom obstacles

could lead to the blockage of valid routes.

Apart from vision, the disorientation problem was also caused by the unreliability
of the shaft encoders as their feedback could mislead the on-board motion controller to
drive the robot away from the designated path. This could cause the vision-based self-

localization algorithm to match the detected edges with the wrong edges in the prior map.

The communication process also had the potential of causing disorientation
problems. During the communication process, the robot kept executing the last motor
command while the robot used its processing power for receiving and handling
communication data. This could cause the robot to deviate from the designated path, and
cause the vision-based self-localization process to wrongly match detected edges with
those in the prior map. Apart from this, the deviation from the designated path could also

cause collisions with walls or the obstacle.
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Apart from disorientation problems, the vision-based self-localization algorithm
also had difficulties in determining the robot’s position when the image did not contain

enough visual cues, as discussed in section 4.5.2.

Communication problems such as the loss or corruption of data also posed a serious
threat to continuous navigation, as this problem could cause the robot to stop at the final
waypoint of the current encoded paths while still waiting for the latest path from the

remote brain.

The current obstacle detection and registration procedure wasn’t able to distinguish
between real and phantom obstacles. Therefore all the detected edges were currently being
registered into the neuro-resistive grid which is then used for path planning. This phantom

obstacles problem should be addressed in future work.

Overall, almost all failures to reach the goal were a fatal combination of vision
errors and control errors. The system was designed to allow vision to compensate for
control errors, but due to the assumption in the self-localization process that the robot was
following the planned path, self-localization was bound to fail when large control errors
occurred. However, not making restrictive assumptions about the robot’s pose at the time
of image capture opens the door to aliasing problems, as many corners and walls look the

same.

The design of a future system needs to be reassessed in this light.
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8.3 Future work

Future work should aim mainly at producing a more robust vision-based

self-localization process.

The disorientation problem could be overcome by decorating the environment with
more visual cues. This can be done by first registering the landmarks or visual cues in the
map either through sensing or using prior knowledge, then using these landmarks as clues
to provides orientation information for matching the detected edges to the appropriate

edges in the prior map.

Another method is to search for a landmark within the environment and begin
tracking the landmark (Kosaka and Nakazawa, 1995) during the navigation process for
deriving the robot’s orientation. Note that this method is to track the landmark for relative
orientation information; therefore only one landmark is needed at a time, as opposed to
other techniques such as triangulation from landmarks that use more than one landmark to

derive the robot’s position and orientation.

The problem with the lack of visual cues for determining the robot’s pose
accurately can be overcome by having the camera turning to the sides (i.e. right and left) of
the robot to obtain wide-field images. This should be done without the robot going into a
static state, but this will require a carefully designed algorithm to enable the combination

of the partial position information produced from each view.

As for the communication problem, this can be solved by having the remote brain
on-board the robot whereby communication between the remote brain and the robot can be

established reliably without lost transmission and corrupted data. Note that, with the
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implementation of the remote brain on-board the robot, this would allow the remote brain
to gain access into other information which was previously restricted due to the
communication bandwidth. These include the robot’s pose derived from the shaft
encoders. With the remote brain on-board the robot, this opens many other possibilities

such as the used of a gyroscope to provide additional orientation information.

Finally the phantom obstacle problem could be overcome by using a verification
process in which the detected obstacles have to be confirmed before being placed
permanently on the map. This can be done by searching for the same obstacle in two

different pictures captured at different times and using occupancy grid techniques.

These are some of the proposed solutions to improve the performance of the

system.
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Appendix A

Solving the Rug Warrior’s Motion Model
using Linear Differential Equation of 1*
order

General equation:

L+ PGa)y = 000 @)
General solution:
y = r(x)u(x) (a.2)
where,
y(x)=e 1" (@.3)
_ 192
u(x) = | o dx+C (a.4)

Using the above method, we will solve for equation (6.26), showing below as equation

(a.5).

dv
— 4+ Pyv= a.5
atv=e (@.3)
Firstly, we solve for y(r) where
-jll‘dr
yH=e™ (a.6)
since P is constant therefore
-Prla':
Hy=e @7)
y(1) = g Flnl (a.8)

Secondly we solve for u(¢),
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u(t) = J:;%dwc

u)= [ —2di+C
o g o
u(t)=Q [ e"ldr+C

u(f) — %eP[r-:o]

1
+C
o

The solution for the velocity v is then obtain from the product of y(r) and u(¢)

v(1) = y(Nu(l)
V(I) = e_P[’“'ol %eP[l—lu]

' +C]

Wty = ¢-Pew % (eP-a) _ grlanly 4 CJ

‘V([) = e_P['_"'] er["'o] _2+CJ
P P

V(f) — %(1 _ e—P[t—l.,]) + Ce—-F[n—ro]
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Appendix B

Publication

1. Koay, K. L., Bugmann, G., Barlow, N. and Philips, M. (1998). Representation of
Trajectories for Mobile Robot. Proceedings of the 6th International Symposium on
Intelligent Robotics Systems, Pages 185-194.

2. Bugmann G., Koay K., Barlow N., Phillips M. and Rodney D. (1998). Stable encoding
of robot trajectories using normalised radial basis functions: Application to an
autonomous wheelchair. In: D Caldwell, J Gray and P Robinson (eds), Proceedings of
29th International Symposium Robotics (ISR'98), Pages 232-235. DMG Publishers:
London.
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position one node ahead of the second node. Thus the wheelchair is given a changing goal as it approaches the
trajectory. Interestingly, this movement of the goal also occurs when the wheelchair is on the trajectory, and it
needs to be controlled to avoid goals running too far ahead of the actual position. This control involves either a
lower frequency of updating of the Sequence Phase node, or a balancing of the role of position and phase in the
activation of nodes in layer L, as explained beiow.

It can be seen from (2) that the activity of any node in layer L; of the net is the product of three one-

dimensional Gaussian functions centred on their preferred x, y and p respectively. Let us assume that these
Gaussians' have different widths. If the width for p is large (low selectivity), the winning (most active) node is
determined by the position of the wheelchair. However, if the width for p is small (high selectivity), the value of p
becomes most important in determining the activity of the node. In this case, the net can run through the sequence
irrespective of the position of the wheelchair. We have found that a good balance between the role of position and
phase is obtained when the width & =1 for the phase and the position (in meter).

B) Aliasing

In this work the position (x,y) of the vehicle was used as input to the sequence encoding network. Aliasing
occurs when the same (or similar) position reoccurs at different times in the trajectory. By adding a phase node we
have avoided that the vehicle jumps from one phase of the trajectory to another, hence solving the aliasing problem.

In Perception-to-Action systems, aliasing is also a problem [7, 14, 16]). The difference is that some
(position specific) complex sensory picture is used instead of the position (x,y). It should also be possible Lo avoid
aliasing in these systems by adding phase information to the picture.

C) Performance

In average, the wheelchair worked independently for 45min. At that time it was usuvally lost in some corner
of the gallery and an operator had to replace it at the starting position and reset the program. The batteries however
needed only one charge per day. For the purpose of providing a show, these performances were acceptable. The
duration of autonomous operation was limited solely by the problems of self-localization. As mentioned in the
appendix, the lighting conditions in the gallery did not allow a dynamic recalibration of the orientation using a CCD
camera. This in tum prevented to use sonar reliably to measure the distances to the walls, which requires the
orientation to be known (see appendix). Hence self-localization relied solely on shaft encoders.

Some difficulties in precisely following the desired trajectory were due to dynamic limitations of the low
level control algorithm, A compensating measure was to define the motion speed separaiely for each semi-circle,
with a slower speed for the smaller half-circles. Further work is needed at that level.

However, the trajectory encoding system described here showed no problems.

6. Potential applications in a domestic environment

Theoretically, the wheelchair can be programmed on-line, with a new hidden node (way-point) added to
the network at fixed distance intervals while the wheelchair is being pushed through a desired trajectory. Different
trajectories can be encoded by using extra output nodes broadcasting the identity of the trajectory, ¢.g. some code
for the goal and the starting point. Therefore, the proposed trajectory encoding system has the potential for use in
domestic environments,

One point that may need some thoughts is the fact that the density of way points needs to be larger in
segments with high curvature, requiring really a variable interval between way points. Another point to consider is
the fact that the attractive field does cross walls (unlike fields in Laplacian planning methods [6]), hence it is
preferable 1o initiate the path-following procedure when close to a way point.

The biggest limitation currently is the self-localization procedure which needs to be much more robust.
For that purpose, we are now developing vision based techniques for layout recognition and analysis.



7. Conclusion

A simple neural network has been described that encodes trajectories in a stable way, allowing recovery
from disturbances and implementing a new phase encoding principle that solve the aliasing problem. The
wheelchair produced a satisfactory show for a whole month in an art gallery. For domestics applications,
improvements in self-localization and low-level control are needed.
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Appendix: Self Localization

Robot self-localization is important for keeping the wheelchair on its trajectory (Figure 4) over extended periods of
time. Two localization methods were used in this wheelchair project. One method was static localization, which is
used to confirm the initial position of the wheelchair in the morning, or after a reset. The other method was dynamic
localization, which involved correcting the wheelchair position and orientation during task performance.

The wheelchair was controlled by a laptop Pentium PC attached at the back (Figure 1) running the neural
network simulation software CORTEX-PRO which also handled sensor integration. The sensors used in these
operations are described below. All the inputs from these sensors were given a weighting, based on how much these
inputs were entrusted. The weighted average (i.¢. equation A.1) was then used to reinitialize the wheelchair position
and orientation. The concept of multi-sensor fusion was used here to produce a more robust self-localization.
Equation A.1 illustrates the calculation of the orientation ¢ which is based on up to three sensors.

_ @_shaft x w_shaft + ¢_ camera X w_ camera + Q_ gyro X w_ gyro (A.1)
Q_ shaft + p_camera + @_gyro

?

where @_shaft is the input given by shaft encoders integration, w_shaft is the weight given to the shaft encoder,
@_camera is the input given by camera integration, w_camera is the weight given to the camera, ¢@_ gyro is the
input given by the gyroscope, w_ gyro is the weight given to the gyroscope. The weights can be set according to
how much drift each sensor has, and other factors. For initial tests, these were all set to 1 during updating cycles
when the sensor were able to provide data, and to zero at other times.

A) Vision: Robot orientation tracking

A QuickCam camera was mounted at the upper right back of the wheelchair with its lens pointed towards
the ceiling for horizontal beam searching vsing a “Hough Transform”. These horizontal beams were (0 be used to
calculate the wheelchair-heading vector. However, during test runs at the South London Art Gallery, it turmed out
that the camera was blinded by the spot lights which shone down from the ceiling. This prevented the use of the
camera, hence w_camera was set (o zero.

B) Gyroscope: Robot orientation tracking

A single axis Rate Gyroscope was mounted on the wheelchair to helped the wheelchair track its orientation
(i.e. wheelchair heading). During test runs, the rate gyroscope was found to drift more than the orientation
calculated from shaft encoding, so it was not suitable for re-calibration, hence w_gyro was also set to zero.

C) Shaft Encoder: Robot orientation and position tracking

Two incremental shaft encoders were used with the wheelchair to help keep track of its own location within
its internal map. These shaft encoders consist of two striped pattern (200 swripes per rotation for a diameter of
31.5cm), glued o the wheels and photo-reflectors. These detect the reflected light from the striped pattern and
produce a series of pulse-trains during the wheels’ rotation. These pulse-train outputs were stored in an incremental
counter. The counter was then used to calculate the distance traveled by the wheels. Distances traveled by each
wheel (i.e. dL for left wheel and dR for right wheel) were integrated to calculate the wheelchair's new position (in
Cartesian co-ordinai¢ x and y) and orientation ¢,
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B) Learning

In this application, the trajectory was defined in advance and
the weights of the network were set accordingly. However,
the trajectory can also be learnt on the spot. In this case, a
user pushes the wheelchair through the desired trajectory,
while the neural network progressively recruits new nodes in
layer L,.

Due to the atiraclion field, only the desired trajectory needs
to be learnt. The wheelchair can then enter into the
trajectory from any starting point and recover from
deviations.

C) Aliasing

In this work the (x,y) position of the vehicle was used as
input to the sequence encoding network. Aliasing occurs
when the same (or similar) position reoccurs at different
times in the trajectory. By adding a phase node we have
avoided that the vehicle jumps from one phase of the
trajectory to another, hence solving the aliasing problem.

In Perception-to-Action systems, aliasing is also a problem
[7]. The difference is that some (position specific) complex
sensory picture is used instead of the (x,y) position. It should
also be possible 1o avoid aliasing in these systems by adding
phase information to the picture.

VI CONCLUSION

A simple neural network has been described that encodes
trajectoriecs in a stable way, allowing recovery from
disturbances and implementing a new phase encoding
principle that solve the aliasing problem.
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