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ABSTRACT 

GENERATION AND SENSITIVITY ANALYSIS OF 

TRANSMISSION SHIFT SCHEDULE FOR 

HYBRID-ELECTRIC VEHICLE 

Nicholas Connelly 

The increased concern of global climate change and lack of sustainability of fossil fuels in the 

projected future has prompted further research into alternative fuel vehicles, or advanced vehicles, 

in an effort to combat vehicle emissions and fuel consumption. One of the many areas of advanced 

vehicles being researched includes the electrification and hybridization of vehicles.  As the 

technology for hybrid-electric vehicles has increased, so has the need for more advanced control 

scheme for the vehicles. This includes the development and optimization of a shift schedule for the 

automatic transmission in a hybrid powertrain. The focus of this work is to demonstrate how to 

develop and analyze the benefits and shortcomings of two different shift schedules for a position 3 

parallel hybrid-electric vehicle:  a traditional two-parameter shift schedule that operates as a function 

of the driver’s accelerator position and the vehicle’s speed (SOC independent shift schedule), and a 

three-parameter shift schedule that also adapts to fluctuations in the state of charge of the high 

voltage batteries (SOC dependent shift schedule). The shift schedules were generated using an 

exhaustive search coupled with a fitness function to evaluate all possible vehicle operating points. 

The generated shift schedules were then tested in the software-in-the-loop (SIL) environment and 

the vehicle-in-the-loop (VIL) environment and compared to each other, as well as to the stock 8L45 

8-speed transmission shift schedule. The results show that both generated shift schedules improved 

upon the stock transmission shift schedule used in the hybrid powertrain in component efficiency, 

vehicle efficiency, engine fuel economy, and vehicle fuel economy. However, there were few 

differences between the two shift schedules. A sensitivity analysis was then performed on the 

generated SOC dependent shift schedule by varying the initial SOC in the SIL environment in an 

attempt to explore more of the shift schedule’s solution space. The sensitivity analysis showed little 

difference in vehicle energy consumption, engine fuel economy, and vehicle fuel economy during 

the executed driving cycle as initial SOC varied. Additionally, the analysis showed that the gear 

commanded from the SOC dependent shift schedule between the three cases were almost identical 

with the exception of at the start of the simulation. Once the control algorithm achieved and sustained 

the target SOC, the SOC dependent shift schedule contributed little as deviations in SOC were 

minute. 



iii 
 

DEDICATION 

This thesis is dedicated to my old family, new family, and friends. 

 I want to thank my dad, James Connelly, for his patience with me and constant support through my 

college career. Without him I would not be where I am today. I want to thank my mom, Judi 

Connelly, who has been a pillar of support and always believed I can be better than I am. I want to 

thank my little sister, Sarah, for always keeping me on the right track.  

I want to thank my significant other, best friend, and soon to be fiancé, Ashley Moore, for supporting 

me financially and emotionally through this whole ordeal. You always stuck by my side through the 

worst times and helped me through them. Thanks to you, we can finally have the life we deserve, 

and I can’t wait to finally begin that chapter of our life with you. You’re the strongest person I know, 

I love you always. 

I could not list everyone I wanted to thank in detail, so this is for everyone else. Thank you for 

helping make me the person I am today. 



iv 
 

ACKNOWLEDGMENTS 

I would like to acknowledge the individuals that provided me with assistance and support during in 

pursuit of my master’s degree.  

First, I would like to thank my thesis committee members: Dr. Andrew Nix, Dr. Scott Wayne, and 

Dr. Mario Perhinschi. I want to thank my committee chair and lead faculty advisor for the EcoCAR 

3 program, Dr. Nix, for allowing me into the EcoCAR 3 program where I was able to flourish as not 

only an engineer, but as a person as well. Thank you for fighting for me when I wanted to go to 

graduate school so abruptly and getting me the funding I needed. Thank you for providing guidance 

as my teacher and relief as my friend through the arduous journey that is EcoCAR.  I want to thank 

one of my committee members, Dr. Wayne, for his endless support in control engineering and system 

modeling. You taught me how to use the tools I needed to become the engineer I became. I also 

would want to thank my other committee member, Dr. Perhinschi, for showing me various control 

techniques such as fuzzy logic, neural networks, and genetic algorithms. These techniques, though 

introductory, expanded my perception on possible solutions to the problems I faced during EcoCAR. 

Thank you opening my eyes to a new world of problem solving. 

Second, I would like to acknowledge the EcoCAR 3 GM mentor for WVU, William Cawthorne, for 

his endless knowledge in the world of automotive controls engineering. Bill was instrumental in the 

success the WVU EcoCAR 3 team throughout the competition and responsible for getting me a job 

at General Motors. I couldn’t have asked for a better mentor, thank you. 

Third, I would like to acknowledge my fellow teammates during the EcoCAR 3 competition. My 

co-team lead for the controls team, Derek George, was the best teammate and friend I could have 

asked for.  Through the three years we have known each other, he has helped me through solving 

the complex problems we faced during EcoCAR and our college career. His ability to tackle 

problems and think outside the box pushed me to be a better engineer, if not just to keep up with 

him. My engineering manager, Matthew Bergman, for setting up all the little things that most people 

took for granted but were essential to my success and for being an excellent leader and superb friend 



 

v 
 

to me. Our electrical team lead, Andrew Weers, for staying late with me and helping debug the car 

whenever any stupid problem arose. Our previous system modeling and simulation team lead, Chris 

Cline, for developing the entire full vehicle model with high fidelity from scratch by himself. 

Without you, Derek and I would not have been able to test our control algorithms or thesis topics so 

extensively. I could not possibly name them all, so I would like to acknowledge and thank the rest 

of the EcoCAR 3 team through the three years I have been a part of it. 

Lastly, I would like to acknowledge all the people working at the Center for Alternative Fuels, 

Engines, and Emissions (CAFEE) here in Morgantown, WV for their invaluable support in chassis 

dynamometer vehicle testing as well as the knowledge they have passed on to me and my fellow 

classmates. 



 

 vi 

TABLE OF CONTENTS 

Abstract ................................................................................................................ ii 

Dedication ........................................................................................................... iii 

Acknowledgments ...............................................................................................iv 

Table of Contents ................................................................................................vi 

List of Figures................................................................................................... viii 

List of Tables .................................................................................................... xiii 

List of Acronyms .............................................................................................. xiv 

List of Symbols ................................................................................................ xvi 

List of Units ..................................................................................................... xvii 

Chapter 1: Introduction ........................................................................................ 1 

1.1 Evolution of Vehicles .............................................................................. 1 

1.2 Transitional Vehicle Technologies .......................................................... 2 

1.3 Advanced Vehicle Technology Competitions ........................................ 5 

1.4 Hybrid-Electric Powertrain Control Development ................................. 8 

1.5 Objective of Study ................................................................................... 9 

1.6 Limitation of Study ................................................................................ 10 

1.7 Organization of Thesis ........................................................................... 10 

Chapter 2: Literature Review ............................................................................. 12 

2.1 Various Algorithm Objectives and Overview ....................................... 12 

2.2 Static Shift Map Optimizations ............................................................. 16 

2.3 Dynamic Onboard Shift Strategies ........................................................ 21 

2.4 Summary ................................................................................................ 24 

Chapter 3: Methodology and Test Setup ........................................................... 25 

3.1 Shift Schedule Theory ........................................................................... 25 

3.2 General Approach .................................................................................. 28 

3.2 Gear Validation for Vehicle .................................................................. 30 

3.3 Shift Schedule Generation ..................................................................... 32 

3.4 Shift Schedule Command Actuation ..................................................... 43 

3.5 Testing and Validation Setup ................................................................ 46 

3.6 Fuel Economy and Energy Calculations ............................................... 58 

Chapter 4: Results and Sensitivity Analysis ...................................................... 60 

4.1 Calibration Process ................................................................................ 60 

4.2 Resultant Shift Schedules ...................................................................... 61 

4.3 SIL Results ............................................................................................. 67 

4.4 VIL Results ............................................................................................ 68 

4.5 Sensitivity Analysis ............................................................................... 82 

Chapter 5: Conclusions and Recommendations ................................................ 89 

Chapter 6: References ........................................................................................ 92 

Appendix A: Component Data .......................................................................... 95 

Appendix B: Shift Schedules ............................................................................. 97 



 

vii 
 

Appendix C: Additional SIL Results ...............................................................104 

Appendix D: Additional VIL Results ..............................................................146 



 

 viii 

LIST OF FIGURES 

Figure 1: Alternative Fuels Annual Wheel to Wheel Greenhouse Gas Emission per Vehicle

 ....................................................................................................................................... 3 

Figure 2: Fuel Economy and Average Vehicle Cost of Various Vehicle Types [6]............... 4 

Figure 3: WVU EcoCAR 3 Vehicle Architecture .................................................................... 7 

Figure 4: Vehicle Mode Operation Representation ................................................................. 8 

Figure 5: The Extracted Gear Shift Schedule [13] ................................................................. 17 

Figure 6: Optimized Extracted Two-parameter Gear Shift Schedule [13] ............................ 17 

Figure 7: General Two-parameter Shift Schedule Representation ........................................ 26 

Figure 8: General Three-parameter Shift Schedule Representation ...................................... 27 

Figure 9: Speed Validity MATLAB Code ............................................................................. 30 

Figure 10: Speed Validity Flowchart ..................................................................................... 31 

Figure 11: Fitness Matrix of Upshift Gears ........................................................................... 37 

Figure 12: Fitness Matrix of Downshift Gears ...................................................................... 38 

Figure 13: Overall SOC Independent Shift Schedule Representation .................................. 39 

Figure 14: Initial Sigmoidal Function of SOC Deviation vs. Minimum Amperage Rate .... 40 

Figure 15: SOC Independent MATLAB/Simulink Shift Command Actuation ................... 43 

Figure 16: SOC Dependent MATLAB/Simulink Shift Command Actuation ...................... 44 

Figure 17: Block Diagram of Shift Command Actuation ...................................................... 44 

Figure 18: Shift Command Logic ........................................................................................... 45 

Figure 19: Shift Command Logic Flowchart ......................................................................... 45 

Figure 20: E&EC Drive Cycle - 2 Iterations .......................................................................... 46 

Figure 21: High-level view of Full Vehicle Model ............................................................... 47 

Figure 22: Full Vehicle Model, High-level Vehicle System I/O ........................................... 48 

Figure 23: Full Vehicle Model, Vehicle System .................................................................... 49 

Figure 24: Full Vehicle Model, High-level Driver System I/O ............................................. 49 

Figure 25: Full Vehicle Model, High-level Controller System I/O....................................... 50 

Figure 26: Controller System High-level Flow Chart............................................................ 51 

Figure 27: Horiba 4WD Vulcan II Emission Chassis Dynamometer [27] ........................... 52 

Figure 28: CAFEE, Light-duty Chassis Dynamometer Cell ................................................. 53 

Figure 29: CAFEE, Light-duty Chassis Dynamometer Control Room [27]......................... 54 

Figure 30: Dilution Tunnel Sampling Schematic [27] ........................................................... 55 

Figure 31: Horiba bag sampling unit for batch analysis [27] ................................................ 57 

Figure 32:  Horiba® MEXA unit for gaseous analysis (A), and CAFEE particulate sampling 

system (B); all are part of the Title 40 CFR, Part 1065 compliant emissions 

measurement system installed with the light-duty chassis dynamometer. [27] ....... 57 

Figure 33: Calibration Environment Diagram ....................................................................... 60 

Figure 34: SOC Independent Shift Schedule ......................................................................... 61 

Figure 35: SOC Dependent Shift Schedule Upshift Lines, Target vs. 5% Below Target SOC

 ..................................................................................................................................... 63 



 

ix 
 

Figure 36: SOC Dependent Shift Schedule Downshift Lines, Target vs. 5% Below Target 

SOC ............................................................................................................................. 64 

Figure 37: SOC Dependent Shift Schedule Upshift Lines, Target vs. 5% Above Target SOC

 ..................................................................................................................................... 65 

Figure 38: SOC Dependent Shift Schedule Downshift Lines, Target vs. 5% Above Target 

SOC ............................................................................................................................. 66 

Figure 39: Engine Shut-offs During VIL Testing .................................................................. 71 

Figure 40: CO2 Emission Rates of SOC Independent and SOC Dependent Shift Schedules

 ..................................................................................................................................... 74 

Figure 41: CO2 Emissions Cumulative Sum of SOC Independent and SOC Dependent Shift 

Schedules .................................................................................................................... 74 

Figure 42: Ethanol Fuel Composition of SOC Independent and SOC Dependent Shift 

Schedules .................................................................................................................... 76 

Figure 43: SOC Independent Engine Torque and Speed Efficiency Plot ............................. 78 

Figure 44: SOC Independent Shift Schedule − Engine Efficiency and Engine Speed 

Occurrences vs. Time ................................................................................................. 80 

Figure 45: SOC Dependent Shift Schedule − Engine Efficiency and Engine Speed 

Occurrences vs. Time ................................................................................................. 81 

Figure 46: SOC Dependent Shift Schedule Gear Commands with Varying Initial SOC ..... 83 

Figure 47: Commanded Gear Enhanced Area 1 .................................................................... 84 

Figure 48: Final SOC vs. Initial SOC of SOC Dependent Shift Schedule ........................... 87 

Figure 49: Engine Fuel Economy vs. Initial SOC of SOC Dependent Shift Schedule ........ 87 

Figure 50: Average Engine Efficiency vs. Initial SOC of SOC Dependent Shift Schedule 87 

Figure 51: Average Motor Discharging Efficiency vs. Initial SOC of SOC Dependent Shift 

Schedule ...................................................................................................................... 87 

Figure 52: Average Motor Discharging Efficiency vs. Initial SOC of SOC Dependent Shift 

Schedule ...................................................................................................................... 88 

Figure 53: Vehicle Fuel Economy vs. Initial SOC of SOC Dependent Shift Schedule ....... 88 

Figure 54: Average Vehicle Efficiency vs. Initial SOC of SOC Dependent Shift Schedule

 ..................................................................................................................................... 88 

 

Figure A 1: Percent Error of CAFEE Emissions Data Analyzers ......................................... 96 
 

Figure B-1: SOC Independent Shift Schedule and Shift Schedule at Target SOC of SOC 

Dependent Shift Schedule .......................................................................................... 97 

Figure B-2: Shift Schedule 1% Below Target SOC of SOC Dependent Shift Schedule ..... 98 

Figure B-3: Shift Schedule 3% Below Target SOC of SOC Dependent Shift Schedule ..... 99 

Figure B-4: Shift Schedule 5% Below Target SOC of SOC Dependent Shift Schedule ... 100 

Figure B-5: Shift Schedule 1% Above Target SOC of SOC Dependent Shift Schedule ... 101 

Figure B-6: Shift Schedule 3% Above Target SOC of SOC Dependent Shift Schedule ... 102 

Figure B-7: Shift Schedule 5% Above Target SOC of SOC Dependent Shift Schedule ... 103 

 

Figure C-1: SOC Independent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, 

and Engine Torque vs. Time – Initial SOC 30% ..................................................... 105 



 

x 
 

Figure C-2: SOC Independent Shift Schedule Vehicle Speed, SOC, Battery Current, and 

Battery Voltage vs. Time – Initial SOC 30% .......................................................... 106 

Figure C-3: SOC Independent Shift Schedule Vehicle Speed, SOC, and Transmission Gear 

vs. Time – Initial SOC 30% ..................................................................................... 107 

Figure C-4: SOC Independent Shift Schedule Vehicle Speed, APP, and Transmission Gear 

vs. Time – Initial SOC 30% ..................................................................................... 108 

Figure C-5: SOC Independent Shift Schedule Torque and Speed Engine Efficiency Plot – 

Initial SOC 30%........................................................................................................ 109 

Figure C-6: SOC Independent Shift Schedule Torque and Speed Motor Efficiency Plot – 

Initial SOC 30%........................................................................................................ 110 

Figure C-7: SOC Independent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, 

and Engine Torque vs. Time – Initial SOC 35% ..................................................... 112 

Figure C-8: SOC Independent Shift Schedule Vehicle Speed, SOC, Battery Current, and 

Battery Voltage vs. Time – Initial SOC 35% .......................................................... 113 

Figure C-9: SOC Independent Shift Schedule Vehicle Speed, SOC, and Transmission Gear 

vs. Time – Initial SOC 35% ..................................................................................... 114 

Figure C-10: SOC Independent Shift Schedule Vehicle Speed, APP, and Transmission Gear 

vs. Time – Initial SOC 35% ..................................................................................... 115 

Figure C-11: SOC Independent Shift Schedule Torque and Speed Engine Efficiency Plot – 

Initial SOC 35%........................................................................................................ 116 

Figure C-12: SOC Independent Shift Schedule Torque and Speed Motor Efficiency Plot – 

Initial SOC 35%........................................................................................................ 117 

Figure C-13: SOC Independent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine 

Speed, and Engine Torque vs. Time – Initial SOC 40% ......................................... 119 

Figure C-14: SOC Independent Shift Schedule Vehicle Speed, SOC, Battery Current, and 

Battery Voltage vs. Time – Initial SOC 40% .......................................................... 120 

Figure C-15: SOC Independent Shift Schedule Vehicle Speed, SOC, and Transmission Gear 

vs. Time – Initial SOC 40% ..................................................................................... 121 

Figure C-16: SOC Independent Shift Schedule Vehicle Speed, APP, and Transmission Gear 

vs. Time – Initial SOC 40% ..................................................................................... 122 

Figure C-17: SOC Independent Shift Schedule Torque and Speed Engine Efficiency Plot – 

Initial SOC 40%........................................................................................................ 123 

Figure C-18: SOC Independent Shift Schedule Torque and Speed Motor Efficiency Plot – 

Initial SOC 40%........................................................................................................ 124 

Figure C-19: SOC Dependent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, 

and Engine Torque vs. Time – Initial SOC 30% ..................................................... 126 

Figure C-20: SOC Dependent Shift Schedule Vehicle Speed, SOC, Battery Current, and 

Battery Voltage vs. Time – Initial SOC 30% .......................................................... 127 

Figure C-21: SOC Dependent Shift Schedule Vehicle Speed, SOC, and Transmission Gear 

vs. Time – Initial SOC 30% ..................................................................................... 128 

Figure C-22: SOC Dependent Shift Schedule Vehicle Speed, APP, and Transmission Gear 

vs. Time – Initial SOC 30% ..................................................................................... 129 



 

xi 
 

Figure C-23: SOC Dependent Shift Schedule Torque and Speed Engine Efficiency Plot – 

Initial SOC 30%........................................................................................................ 130 

Figure C-24: SOC Dependent Shift Schedule Torque and Speed Motor Efficiency Plot – 

Initial SOC 30%........................................................................................................ 131 

Figure C-25: SOC Dependent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, 

and Engine Torque vs. Time – Initial SOC 35% ..................................................... 133 

Figure C-26: SOC Dependent Shift Schedule Vehicle Speed, SOC, Battery Current, and 

Battery Voltage vs. Time – Initial SOC 35% .......................................................... 134 

Figure C-27: SOC Dependent Shift Schedule Vehicle Speed, SOC, and Transmission Gear 

vs. Time – Initial SOC 35% ..................................................................................... 135 

Figure C-28: SOC Dependent Shift Schedule Vehicle Speed, APP, and Transmission Gear 

vs. Time – Initial SOC 35% ..................................................................................... 136 

Figure C-29: SOC Dependent Shift Schedule Torque and Speed Engine Efficiency Plot – 

Initial SOC 35%........................................................................................................ 137 

Figure C-30: SOC Dependent Shift Schedule Torque and Speed Motor Efficiency Plot – 

Initial SOC 35%........................................................................................................ 138 

Figure C-31: SOC Dependent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, 

and Engine Torque vs. Time – Initial SOC 40% ..................................................... 140 

Figure C-32: SOC Dependent Shift Schedule Vehicle Speed, SOC, Battery Current, and 

Battery Voltage vs. Time – Initial SOC 40% .......................................................... 141 

Figure C-33: SOC Dependent Shift Schedule Vehicle Speed, SOC, and Transmission Gear 

vs. Time – Initial SOC 40% ..................................................................................... 142 

Figure C-34: SOC Dependent Shift Schedule Vehicle Speed, APP, and Transmission Gear 

vs. Time – Initial SOC 40% ..................................................................................... 143 

Figure C-35: SOC Dependent Shift Schedule Torque and Speed Engine Efficiency Plot – 

Initial SOC 40%........................................................................................................ 144 

Figure C-36: SOC Dependent Shift Schedule Torque and Speed Motor Efficiency Plot – 

Initial SOC 40%........................................................................................................ 145 

 

Figure D-1: SOC Independent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, 

and Engine Torque vs. Time .................................................................................... 147 

Figure D-2: SOC Independent Shift Schedule Vehicle Speed, SOC, Battery Current, and 

Battery Voltage vs. Time ......................................................................................... 148 

Figure D-3: SOC Independent Shift Schedule Vehicle Speed, SOC, and Transmission Gear 

vs. Time .................................................................................................................... 149 

Figure D-4: SOC Independent Shift Schedule Vehicle Speed, APP, and Transmission Gear 

vs. Time .................................................................................................................... 150 

Figure D-5: SOC Independent Shift Schedule Torque and Speed Engine Efficiency Plot 151 

Figure D-6: SOC Independent Shift Schedule Torque and Speed Motor Efficiency Plot . 152 

Figure D-7: SOC Independent Shift Schedule CO, NOx, and HC Emission Rates ........... 153 

Figure D-8: SOC Independent Shift Schedule CO2 Emission Rate ................................... 154 

Figure D-9: SOC Independent Shift Schedule CO, NOx, and HC Emissions Cumulative 

Sums .......................................................................................................................... 155 



 

xii 
 

Figure D-10: SOC Independent Shift Schedule CO2 Emissions Cumulative Sum ............ 156 

Figure D-11: SOC Dependent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, 

and Engine Torque vs. Time .................................................................................... 158 

Figure D-12: SOC Dependent Shift Schedule Vehicle Speed, SOC, Battery Current, and 

Battery Voltage vs. Time ......................................................................................... 159 

Figure D-13: SOC Dependent Shift Schedule Vehicle Speed, SOC, and Transmission Gear 

vs. Time .................................................................................................................... 160 

Figure D-14: SOC Dependent Shift Schedule Vehicle Speed, APP, and Transmission Gear 

vs. Time .................................................................................................................... 161 

Figure D-15: SOC Dependent Shift Schedule Torque and Speed Engine Efficiency Plot 162 

Figure D-16: SOC Dependent Shift Schedule Torque and Speed Motor Efficiency Plot .. 163 

Figure D-17: SOC Dependent Shift Schedule CO, NOx, and HC Emission Rates ............ 164 

Figure D-18: SOC Dependent Shift Schedule CO2 Emission Rate .................................... 165 

Figure D-19: SOC Dependent Shift Schedule CO, NOx, and HC Emissions Cumulative 

Sums .......................................................................................................................... 166 

Figure D-20: SOC Dependent Shift Schedule CO2 Emissions Cumulative Sum .............. 167 

Figure D-21: Stock Transmission Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine 

Speed, and Engine Torque vs. Time ........................................................................ 169 

Figure D-22: Stock Transmission Shift Schedule Vehicle Speed, SOC, Battery Current, and 

Battery Voltage vs. Time ......................................................................................... 170 

Figure D-23: Stock Transmission Shift Schedule Vehicle Speed, SOC, and Transmission 

Gear vs. Time............................................................................................................ 171 

Figure D-24: Stock Transmission Shift Schedule Vehicle Speed, APP, and Transmission 

Gear vs. Time............................................................................................................ 172 

Figure D-25: Stock Transmission Shift Schedule Torque and Speed Engine Efficiency Plot

 ................................................................................................................................... 173 

Figure D-26: Stock Transmission Shift Schedule Torque and Speed Motor Efficiency Plot

 ................................................................................................................................... 174 

Figure D-27: Stock Transmission Shift Schedule CO, NOx, and HC Emission Rates ...... 175 

Figure D-28: Stock Transmission Shift Schedule CO2 Emission Rate .............................. 176 

Figure D-29: Stock Transmission Shift Schedule CO, NOx, and HC Emissions Cumulative 

Sums .......................................................................................................................... 177 

Figure D-30: Stock Transmission Shift Schedule CO2 Emissions Cumulative Sum ........ 178 



 

 xiii 

LIST OF TABLES 

Table 1: Alternative Fuels for Advanced Vehicles [4] ............................................................ 2 

Table 2: Fuel Consumption in Simulation and Real Vehicle Platform (Shen, et al.) [13] ... 18 

Table 3: Gaseous Emissions Analyzer Information [27] ....................................................... 56 

Table 4: SIL Fuel Economy and Efficiency ........................................................................... 67 

Table 5: VIL Fuel Economy and Efficiency .......................................................................... 70 

Table 6: Total Emissions and Distance Traveled During VIL Testing ................................. 72 

Table 7: Engine Fuel Economy − Instantaneous Fuel Consumption and Carbon Balance 

Comparison ................................................................................................................. 73 

Table 8: Energy Consumption Comparison ........................................................................... 77 

Table 9: Fuel Economy Comparison ...................................................................................... 77 

Table 10: Engine Speed Placement and Efficiency Comparison .......................................... 79 

Table 11: Sensitivity Analysis of 5% Below Target Summary Table .................................. 86 

Table 12: Sensitivity Analysis of 5% Above Target Summary Table .................................. 86 

 

Table A-1: Parker GVM 210-200S General Specifications [35] .......................................... 95 

Table A-2: 8-Speed 8L45 Automatic Transmission Gear Specifications [36] ..................... 95 

Table A-3: 2.4 L Ecotec LEA Engine General Specifications [37] ...................................... 95 

Table A-4: Vehicle Specifications .......................................................................................... 96 

 

Table C-1: SOC Independent Shift Schedule SIL Results – Initial SOC 30% ................... 104 

Table C-2: SOC Independent Shift Schedule SIL Results – Initial SOC 35% ................... 111 

Table C-3: SOC Independent Shift Schedule SIL Results – Initial SOC 40% ................... 118 

Table C-4: SOC Dependent Shift Schedule SIL Results – Initial SOC 30% ..................... 125 

Table C-5: SOC Dependent Shift Schedule SIL Results – Initial SOC 35% ..................... 132 

Table C-6: SOC Dependent Shift Schedule SIL Results – Initial SOC 40% ..................... 139 

 

Table D-1: SOC Independent Shift Schedule VIL Results ................................................. 146 

Table D-2: SOC Dependent Shift Schedule VIL Results .................................................... 157 

Table D-3: Stock Transmission Shift Schedule VIL Results .............................................. 168 



 

xiv 
 

LIST OF ACRONYMS 

ANL Argonne National Laboratory 

APP accelerator pedal position 

AVTC Advanced Vehicle Technology Competition 

CAFEE Center for Alternative Fuels, Engines, and Emissions 

CAN controller area network 

CD charge depleting 

CFV critical flowrate venturi 

CNN convolutional neural network 

CO carbon monoxide 

CO2 carbon dioxide 

CS charge sustaining 

CVS constant volume sampling 

DOE Department of Energy 

DP dynamic programming 

E&EC emissions and energy consumption 

ECM engine control module 

ECU electronic control unit 

ESS energy storage system 

EV electric vehicle 

GA genetic algorithm 

GHG greenhouse gasses 

GM General Motors 

GPS global positioning system 

HC hydrocarbons 

HEV hybrid-electric vehicle 

HSC hybrid supervisory controller 



 

xv 
 

ICE internal combustion engine 

IRP inverse reserve power 

MDR mid-differential ratio 

MOGA multi-objective genetic algorithm 

NN neural network 

NOx nitrogen oxide 

P3 position 3 

PRNDM park-reverse-neutral-drive-manual 

PSO particle swarm optimization 

PTW pump to wheels 

RBF radial basis function 

RDR rear-differential ratio 

SAE Society of Automotive Engineers 

SIL software-in-the-loop 

SOC state of charge 

SOH state of health 

TCM transmission control module 

THC total hydrocarbons 

TSA torque split algorithm 

V2X vehicle-to-everything 

VETL Vehicle Emissions Testing Laboratory 

VIL vehicle-in-the-loop 

WOT wide-open throttle 

WTP well to pump 

WTW well to wheel 

WVU West Virginia University 
 



 

 xvi 

LIST OF SYMBOLS 

AMIN amperage rate from high voltage batteries 

F fitness function 

FCC fuel carbon content 

FE fuel economy 

G transmission gear ratio 

i subscript for vehicle speed 

j subscript for driver APP 

k subscript for transmission gear 

MFIT fitness matrix 

max maximum function 

min minimum function 

N speed 

PC power consumed 

PL power loss 

PP power produced 

s subscript for SOC 

T torque 

V validity matrix 

W weighting coefficient 

z subscript for possible engine torques 

ΔT change in torque 

η efficiency 

Σ summation function 
 



 

 xvii 

LIST OF UNITS 

% percent 

A amps 

g grams 

g/s grams per second 

gal gallons 

hp horsepower 

J joules 

kJ/km kilojoules per kilometer 

km kilometers 

L liters 

L/100 km liters per 100 kilometers 

lb pounds 

m meters 

mi miles 

mpg miles per gallon 

mpgge miles per gallon gasoline equivalent 

Nm newton meters 

sec seconds 

V volts 

W watts 



 

 1 

CHAPTER 1: INTRODUCTION 

1.1 Evolution of Vehicles 

The advancement of vehicle technologies has been an ongoing endeavor for humanity since the 

invention of prevalent means of propulsion. These advancements include the invention of the first 

gasoline powered engine in 1876 by Carl Benz [1] which eventually revolutionized transportation 

all over the world, and the first automatic transmission in a vehicle which came to market in 1938 

with the Oldsmobile Hydra-Matic drives [2].  

However, with the rapidly growing evolution of conventional gasoline powered vehicles our 

dependence on fossil fuels has increased. Due to the geometrical increase of the world’s population 

over past decades, fossil fuels have not only become an unsustainable long-term solution to the 

world’s transportation needs but have also greatly impacted the planet’s climate through global 

warming. The planetary changes prompted the exploration of alternative energy sources for vehicles 

such as natural gas, ethanol, electricity, and other alternative fuels used in more advanced vehicles 

today. Table 1 lists the alternative fuels currently used in advanced vehicles. Although alternative 

fuels for vehicles have been researched in the past, unfortunately the technology did not take off until 

the early 1990’s when the world’s energy crisis and climate change became more prevalent in part 

due to the publication of Al Gore’s book, Earth in the Balance: Ecology and the Human Spirit (1992) 

[3]. The sudden boom in development of these advanced vehicles require automotive engineers to 

be more innovative than in past years to reduce dependence on fossil fuels. To promote innovative 

advanced vehicle technologies, Argonne National Laboratory created Advanced Vehicle 

Technology Competitions to educated and foster creative problem-solving skills for future 
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automotive engineers. In the 1990’s these competition focused primarily on alternative fuels for 

vehicles. However, through the years the competitions have become focused on the development of 

hybrid-electric vehicles as the technology for advanced vehicles has increased. 

Table 1: Alternative Fuels for Advanced Vehicles [4] 

Biodiesel: 
Diesel Vehicles 

 

Biodiesel is a renewable fuel that can 

be manufactured from vegetable oils, 

animal fats, or recycled cooking grease 

for use in diesel vehicles. 

Electricity: 
Hybrid & 

Plug-In 

Vehicles  

Electricity can be used to power plug-

in electric vehicles, which are 

increasingly available. Hybrids use 

electricity to boost efficiency. 

Ethanol: 
Flexible Fuel 

Vehicles 
 

Ethanol is a widely used renewable 

fuel made from corn and other plant 

materials. It is blended with gasoline 

for use in vehicles. 

Hydrogen: 
Fuel Cell 

Vehicles 
 

Hydrogen is a potentially tailpipe 

emissions- free alternative fuel that can 

be produced from domestic resources 

for use in fuel cell vehicles. 

Natural Gas: 
Natural Gas 

Vehicles 
 

Natural gas is a domestically abundant 

gaseous fuel that can have significant 

fuel cost advantages over gasoline and 

diesel fuel. 

Propane: 
Propane 

Vehicles 
 

Propane is a readily available gaseous 

fuel that has been widely used in 

vehicles throughout the world for 

decades. 

 

1.2 Transitional Vehicle Technologies 

While all the alternative fuels outlined in Table 1 are viable alternatives for gasoline, electricity is 

one of the more predominant fuels associated with the lowest well-to-wheel (WTW) greenhouse 

https://www.afdc.energy.gov/fuels/biodiesel.html
https://www.afdc.energy.gov/fuels/electricity.html
https://www.afdc.energy.gov/fuels/ethanol.html
https://www.afdc.energy.gov/fuels/hydrogen.html
https://www.afdc.energy.gov/fuels/natural_gas.html
https://www.afdc.energy.gov/fuels/propane.html
https://www.afdc.energy.gov/fuels/biodiesel.html
https://www.afdc.energy.gov/fuels/electricity.html
https://www.afdc.energy.gov/fuels/ethanol.html
https://www.afdc.energy.gov/fuels/hydrogen.html
https://www.afdc.energy.gov/fuels/natural_gas.html
https://www.afdc.energy.gov/fuels/propane.html
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gases (GHG) [4]. Figure 1 illustrates the annual emissions per vehicle for various alternative fuels 

in pounds of CO2 equivalence. As shown, an all-electric vehicle produces nearly 60% less WTW 

GHG than a conventional gasoline vehicle due to the electric grid’s more efficient energy generation 

from renewable energy sources. 

 

Figure 1: Alternative Fuels Annual Wheel to Wheel Greenhouse Gas 

Emission per Vehicle 

However, the technologies for all-electric vehicles are still in the infant stages compared to 

conventional vehicles and are far from being the pre-dominant vehicles on the market. According to 

Geuss [5], in 2017 more than 2 million electric vehicles were on road worldwide. However, that is 

only approximately 0.2% of the world’s light-duty vehicles currently on road. This is primarily due 

to range limitations, consumer needs and fiscal concerns, and worldwide refueling logistics. These 

issues will be addressed in the oncoming years according to automotive companies such and General 
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Motors and Tesla, however a more immediate solution to continue the research in electricity as an 

alternative fuel is the development of hybrid-electric vehicles. A hybrid-electric vehicle, or HEV, 

combines a conventional internal combustion engine, or ICE, powertrain with an electric powertrain 

to achieve propulsion. The hybridization of the two powertrains allows for the vehicle to operate in 

a more energy efficient fashion by reducing the amount of carbon-based fuel used during vehicle 

operation. Hybrid-electric vehicles can improve fuel economy while still reducing a consumer’s 

carbon footprint and are generally within the same price range of a conventional ICE vehicle. Figure 

2 shows the average price prediction (dashed lines) and fuel economy (solid lines) of various hybrid-

electric and electric vehicles versus a conventional gasoline vehicle until the year 2025 [6]. The 

numbers below the plug-in vehicles represent the electric vehicle, or charge depleting, range. As an 

example, the plug-in hybrid electric vehicle 10 represents a 10-mile charge depleting range. 

 

Figure 2: Fuel Economy and Average Vehicle Cost of Various Vehicle 

Types [6] 
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Although electrified vehicles are pricier than a conventional gasoline vehicle (15-55%) more 

expensive), these trends show that not only will the price in hybrid-electric and electric vehicles 

decrease, but that the price of conventional gasoline vehicles will increase.  

Another issue combating the consumer’s willingness to buy electric vehicles is the inconvenience of 

charging or “fueling-up” the vehicle. Because electric vehicles are still relatively new, there is a lack 

of high voltage charging stations around the globe as they take time and money to install to make 

them as convenient as carbon-based fueling stations. However, a hybrid-electric vehicle is powered 

by both electricity and carbon-based fuels, making it is easier for a consumer to re-fuel their vehicle 

since the institution for carbon-based fueling stations have already been established throughout the 

world.  For the moment, hybrid-electric vehicles alleviate the issue of a lack of high voltage charging 

stations on the roads. 

1.3 Advanced Vehicle Technology Competitions 

The technologies for HEVs has become so important that Argonne National Laboratory created 

Advanced Vehicle Technology Competitions, or AVTCs, specifically to train future automotive 

engineers how to create more energy efficient vehicles by developing more innovative technologies 

from vehicle component design to powertrain control algorithms. AVTCs are competitions that 

challenge college students to covert conventional production ICE vehicles to an advanced vehicle 

that will operate on an alternative fuel and hybridization to increase energy efficiency while still 

meeting the toughest emissions standards and creating a vehicle that is still appealing to the 

consumer. Sponsored by the U.S. Department of Energy (DOE) and General Motors and managed 



 

6 
 

by Argonne National Laboratory (ANL), AVTCs provide a real-world training ground in the state-

of-the-art automotive industry for college students all over North America [7].  

The latest AVTC, EcoCAR 3, was a four-year competition (2014-2018) where the students involved 

were tasked with designing and converting a production 2016 Chevrolet Camaro into a hybrid-

electric vehicle architecture of their choosing. The criteria for the EcoCAR 3 competition involved 

increasing fuel economy and reducing emissions from the stock vehicle while still maintaining the 

performance consumers expect from a Chevrolet Camaro. The final vehicle architecture that was 

selected was a position 3 (P3) parallel (electric motor post-transmission) plug-in hybrid electric 

vehicle (PHEV) as seen in Figure 3. The final vehicle architecture consisted of an internal 

combustion engine and an electric motor with all power delivered to the rear wheels of the vehicle. 

The engine was a 2.4L GM LEA engine (136 kW peak power) that utilized the stock 2016 Chevrolet 

Camaro 8L45 8-speed transmission to transfer its power to the rear wheels. The type of fuel used for 

the LEA engine was 85% ethanol and 15% gasoline (E85). The Parker GVM210-200S motor (148 

kW peak power) was located between the transmission and the rear differential (2.77 gear ratio) and 

was mounted to the vehicle approximately under the rear seat of the vehicle. The electric motor 

delivered shaft power to the drive shaft through a mid-gear box (2.52 gear ratio) at a ninety-degree 

angle to the driveshaft. As a P3 parallel hybrid, the vehicle could use both the electric motor and 

engine simultaneously to give the vehicle max power. The electric motor was powered by a battery 

energy storage system (ESS) consisting of seven A123 15s2p battery modules (7x15s2p layout) 

located in the trunk of the vehicle that was equipped with a custom thermal cooling system developed 

by Brumley [8].  
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Engine: GM 2.4L I4 LEA E85 

• Peak Power: 136 kW 

• Peak Torque: 233 Nm 

 

Transmission: GM 8L45 8 Speed Automatic 

 

Fuel: E85 

 

Energy Storage System (ESS): A123 Systems 7x15s2p 

• Power Output: 40 kW (Discharge Cont. 118kW 

10-sec Peak) 

• Energy Output: 12.6 kW-Hr (Min) 

 

Mid Gearbox (MGB): Winters Racing Pro Eliminator 

Midget-7 Quick Change Gear Box (2.52 Gear Ratio) 

 

Motor: Parker GVM 210-200S 

• Peak Power: 148 kW 

• Peak Torque: 314 Nm 

 

Inverter/Controller: Rinehart PM150DX 

  

Battery/Charger: Brusa NLG513-U1-02A (air cooled 

version) 

 

Figure 3: WVU EcoCAR 3 Vehicle Architecture 

The vehicle has two operating modes: a charge depleting (CD) mode, and a charge sustaining (CS) 

mode. In CD mode, the vehicle’s hybrid supervisory control (HSC) algorithm depletes the high 

voltage battery state of charge (SOC) by primarily using the electric motor for propulsion and only 

using the engine if it is necessary to meet the driver’s torque demand. The vehicle stays in CD mode 

until a target SOC has been reached, at which point the HSC algorithm transitions to CS mode. 

During CS mode, the HSC algorithm attempts to maintain the target SOC as efficiently as possible 

by using the engine as the propulsive force and the electric motor as either a generator for the high 

voltage batteries or a secondary propulsive force. Figure 4 illustrates the CD region and CS region 

during vehicle operation. 
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Figure 4: Vehicle Mode Operation Representation 

The CS region during vehicle operation requires the most optimization as the control algorithm 

attempts to balance emissions, energy consumption, and SOC for the vehicle. 

1.4 Hybrid-Electric Powertrain Control Development 

The general goal of powertrain control development of a hybrid-electric vehicle is to improve the 

overall vehicle efficiency, reduce vehicle energy consumption, and reduce vehicle emissions. The 

primary means of accomplishing these goals is to develop an algorithm that optimizes the power 

distribution between the ICE powertrain and electric powertrain. There are many control scheme 

methodologies that have been applied to achieve these goals such as predictive algorithms to learn 

driving behaviors in [9], vehicle-to-everything communication (V2X) to improve the vehicle’s 

awareness of its surroundings [10], a golden section search algorithm coupled with a various cost 

functions to optimize the torque distribution of the powertrains, transmission control development 

for a hybrid-electric vehicle architecture, or something as simple as a binary, or ON-OFF, approach 
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for when to use each powertrain. The research within this thesis will focus on the development and 

optimization of a gear shifting schedule for the transmission in a P3 parallel hybrid-electric vehicle.  

1.5 Objective of Study 

The overall objective of this research is the generation and sensitivity analysis of two hybrid shift 

schedules for a transmission in a P3 parallel hybrid-electric vehicle. Specifically, to compare the 

benefits and shortcomings of an optimized two-parameter shift schedule, or SOC independent shift 

schedule, versus an optimized three-parameter shift schedule, or SOC dependent shift schedule, that 

adapts to fluctuations in SOC of the high voltage batteries. The main goal of the hybrid shift 

schedules is to determine the optimal gear for the transmission for the current vehicle state to 

maximize overall vehicle efficiency and reduce fuel energy consumption. To serve as a baseline for 

comparison, additional analysis was done on the stock transmission shift schedule. 

The specific objectives are: 

• To evaluate and compare the engine fuel economy in miles per gallon of E85 (mpg) and the 

SOC corrected vehicle fuel economy in miles per gasoline gallon equivalent (mpgge) 

• To evaluate and compare the overall vehicle efficiency 

• To evaluate and compare the vehicle energy consumption 

• To compare CO, CO2, NOx, and HC emission rates and total tailpipe emissions 
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1.6 Limitation of Study 

The limitations of the study are as follows: 

• Simulation accuracy due to assumptions and simplifications made such as drivetrain parasitic 

losses and component data derived from steady state (transients not considered). 

• Resources available for emissions testing, on-road testing and chassis dynamometer transient 

cycle testing are scarce. 

• A lack of access to source code of powertrain control model in the vehicle inhibits the full 

potential of the hybrid shift schedule. 

1.7 Organization of Thesis 

This thesis has been divided into six chapters: 

Chapter 1 Introduction: Describes the rationale of why this research is important, sets the 

objectives of the paper, and outlines the limitations of the research. 

Chapter 2 Literature Review: Dedicated to illustrating the relevant literatures and recent works 

related to the study.  

Chapter 3 Methodology and Test Setup: Describes the procedures used in the generation of the 

shift schedules, implementation of the desired gear in the vehicle, and vehicle and simulation testing 

setup as well as the hardware involved. 
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Chapter 4 Results: Analysis of the results gathered from testing. Relevant data and figures will be 

presented in this chapter. 

Chapter 5 Sensitivity Analysis: This chapter will analyze the impacts of each shift schedule in 

comparison to each other in terms of fuel economy, emissions, and energy consumption. 

Chapter 6 Conclusions and Recommendations: Conclusions gathered from the results of this 

study and future recommendations are given in this chapter.
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CHAPTER 2: LITERATURE REVIEW 

2.1 Various Algorithm Objectives and Overview 

The three primary challenges in developing a hybrid-electric vehicle are to increase fuel efficiency, 

reduce carbon emissions, and maintain or enhance the driver experience. As noted by Ward [11], the 

use of hydrocarbons as a fuel has several serious and potentially catastrophic drawbacks. The 

hydrocarbon resources, such as oil, natural gas, and coal, while abundant, are still finite in a world 

where demand has increased geometrically. There is certainly a correlation between what type of 

vehicle a consumer will buy with the price of gasoline. In addition, the oxidation of fossil fuels 

releases captured CO2, significantly increasing the presence of that greenhouse gas in the 

atmosphere. Government emissions regulations, in an effort to reduce CO, NOx, and HC emissions, 

have had a large impact on the type of vehicles automotive manufacturers are producing and 

designing. 

Since the late 1980’s, automatic transmission controls have been evolving from a purely 

hydromechanical control to electronic controls using a transmission control module (TCM). As early 

as 1989, Ford introduced the E4OD as the first electronic control unit for its C6 transmission [12]. 

A TCM is essentially a unit that accepts a variety of inputs from various sensors, such as a vehicle 

speed sensor, a throttle position sensor and a variety of other sensors, and outputs signals to the shift 

solenoids that activate gear shifting. The shift schedule, or shift map, which resides in the TCM and 

determines the transmission gear ratio output of a plug-in P3 hybrid, is the focus of this thesis. 

The shift map determines the points at which the transmission either down-shifts or up-shifts. 

Historically this has been a function of both the vehicle speed, and the engine torque (as determined 
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from the throttle position). In general, the formulation of the shift map has been a labor-intensive 

process requiring a huge number of trial-and-error tests done iteratively. However, as computational 

power has increased, along with new precision sensors, and coupled with innovative control 

algorithms, it has become possible to optimize the shift map dynamically for a range of desired 

outcomes [13]. These outcomes include: 

• Drivability: How well the vehicle responds to driver torque demand, the reduction of 

needless gear shifts, and gear smoothness 

• Fuel Efficiency: This can include both gasoline utilization and battery usage 

• Emissions: Reduction of the hydrocarbon and CO2 emissions into the atmosphere, with the 

ultimate goal of reducing greenhouse gases and its effect on climate change 

• Terrain sensitivity: This can include the gradient at which the vehicle travels, the weather 

conditions, and friction 

• Durability and Safety: Primarily the impact on the transmission itself and safety issues that 

may arise during the shifting process 

The shift decision strategies can be broadly sorted into three general categories: Experience-based 

gear shift strategy, optimization algorithms, and dynamic onboard shift strategies. 

Experience-based gear shift strategy: the design of the shift map is performed based on 

engineering knowledge, calibration and tuning performed heuristically and involves a large trial-
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and-error effort [14].  Although this is not normally an issue in a simulation environment, it is a 

costly and time-consuming endeavor when iteratively calibrated in the real world. 

Optimization Algorithms: optimization algorithms are computationally-intensive gear shift design 

methods that can exploit a variety of on-board sensors to achieve two or more of the outcomes listed 

above. Onori, et.al. provide general reference for many of these optimization algorithms [15]. 

Clearly, the optimization algorithm employed to generate the shift map is highly dependent upon the 

design of the vehicle and the outcomes desired. There are a variety of optimization and generation 

techniques used to approach the issues surrounding multidimensional non-linear systems such as a 

transmission shift schedule. These techniques are often used in conjunction with each other and 

should not be taken as the overall methodology to solving complex problems. These techniques 

include but are not limited to: 

• Genetic algorithms – Iteratively modifies a population of solutions by pairing, mutation, and 

other methods to generate a new set of solutions that are then evaluated. Used for solving 

both constrained and unconstrained optimization problems that are based on natural selection 

and is a balancing act between exploration (global) of the solution space and excitation 

(local) of the solution space. Genetic algorithms will often find the optimal result, however 

in some applications the process is time consuming [16, 17]. 

• Particle swarm – Iteratively attempts to improve a candidate solution with regard to the 

evaluation of the particles (points) in question. Particles are guided by the best-known 
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position in the solution space and by its local best-known solution. Particle swarm algorithms 

are less computationally intensive but do not guarantee an optimal convergence [16]. 

• Fuzzy logic – This method works by applying an if-then rule structure to a problem where 

the answer is not distinct. Fuzzy logic is excellent for discretizing a continuous system but 

can however very user intensive on more complex problems [18].  

• Golden section search – Iteratively finds a minima or maxima of a given non-linear function 

by successively narrowing the range of values inside which the extrema is known to exist. A 

golden section search algorithm is easily implementable but does not however guarantee an 

optimal convergence [19]. 

• Dynamic programming – A recursive technique that simplifies a complex problem by 

breaking it into smaller sub-problems and then finds the optimal solution to the sub-problem 

[13, 20]. 

Dynamic Onboard Shift Strategies: Research into applying artificial intelligence methods, such as 

neural networks, to allow the vehicle to learn driving conditions, driver inclinations, and the trend of 

other dynamic inputs has received increasing interest. Neural network methods are hampered in 

vehicle applications by the lack of a large training dataset, however with reasonable assumptions can 

provide encouraging results. We will briefly examine examples from both a neural network and a 

fuzzy logic application. 
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2.2 Static Shift Map Optimizations 

In this section we will examine a representative selection of techniques employing some of the 

optimization algorithms mentioned previously. 

Dynamic Programming 

Generally, the TCM in a conventional internal combustion engine vehicle utilizes a traditional two-

parameter gear shift schedule as a function of driver torque demand and vehicle speed. However, 

this approach is not optimal for a hybrid electric vehicle because this system cannot take full 

advantage of the additional powertrain components [21]. The most widespread method of optimizing 

a shift schedule for a hybrid vehicle is through dynamic programming (DP) for a given torque 

selection algorithm with an associated cost function and vehicle architecture. Shen, et al. [13] studied 

optimization of shift schedules for an HEV with an automated manual transmission. The goal of the 

optimization is to improve upon an existing gear shift schedule to minimize the cost function J shown 

in Equation (1) over a drive cycle where L is the instantaneous cost function value, Xk is the state 

vector of the hybrid driver system, and Uk is the gear shift schedule vector. 

 

𝐽 = ∑ 𝐿(𝑋𝑘, 𝑈𝑘)

𝑁−1

𝑘=0

 (1) 

Using DP, the continuous non-linear system is discretized into state space model equations, which 

are evaluated in the recursive Equation (2) to find the optimal gear for that vehicle state section. 

 𝐽𝑘
∗(𝑋𝑘) = min𝑢𝑘 [𝐿(𝑋𝑘, 𝑈𝑘) + 𝐽𝑘+1

∗ (𝑋𝑘+1)] (2) 

In the Figure 5, each colored point represents a different optimal gear that was calculated for a vehicle 

state where red is first gear, green is second gear, blue is third gear, light blue is fourth gear, and 

black is fifth gear. A clustering algorithm is then used on the optimal gear points to approximate the 



 

17 
 

optimal gear shift lines for the vehicle represented in Figure 5 as red lines. These shift lines are then 

offset to create the upshift and down shift lines around the optimal shift lines to produce a gear 

shifting delay as seen in Figure 6. 

 

Figure 5: The Extracted Gear Shift Schedule [13] 

 

Figure 6: Optimized Extracted Two-parameter Gear Shift Schedule [13] 
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The simulation and vehicle testing results of this shift map are shown in Table 2. The DP approach 

used to optimize a pre-existing shift schedule taken by Shen, et al. clearly improved upon the 

vehicle’s original transmission shift schedule by reducing fuel consumed by nearly 6 L/100 km. This 

type of design method can be easily applied to the designing of other gear shift schedules for 

particular vehicles given adequate testing time and access to appropriate facilities. Dynamic 

programming also requires a pre-existing knowledge of the drive cycle to optimize the shift schedule 

and cannot be executed during vehicle operation. 

Table 2: Fuel Consumption in Simulation and Real Vehicle Platform (Shen, 

et al.) [13] 

Schedule Type Simulation Results (L/100 km) Real Vehicle Results (L/100 

km) 

Conventional two-parameters 

gear shift schedule 
30.67 29.5 

The optimized two-parameter 

gear shift  
24.54 23.9 

 

Multiple-Objective Genetic Algorithm 

As mentioned above, one desired outcome to gear shift map formulation is to reduce greenhouse gas 

emissions. Fofana et.al. [17] have developed a Multi-Objective Genetic Algorithm (MOGA) to 

generate a set of non-dominated, equally optimal solutions that optimize reduced emissions, 

drivability and durability. By non-dominated, they mean that no single objective can be optimized 

any further without degrading the other objectives. 
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The objective for CO2 reduction is characterized by the fuel consumption required for the vehicle to 

go a specific distance. The objective function is shown in Equation (3) where the 𝐹𝑢𝑒𝑙𝑀𝑎𝑠𝑠(𝑔) is 

calculated from the BSFC map, 𝐶𝐶,𝐶%  is fuel carbon content expressed as a percentage, and 𝑑𝑐𝑦𝑐𝑙𝑒 

is the distance traveled during the driving cycle. 

 
𝐽𝐶𝑂2(𝑔 𝑘𝑚⁄ ) = 𝐹𝑢𝑒𝑙𝑀𝑎𝑠𝑠(𝑔) ∗ 𝐶𝐶,𝐶% ∗ 𝐶𝑂2(𝑔 𝑚𝑜𝑙)⁄ ∗

1

𝑑𝑐𝑦𝑐𝑙𝑒
 (3) 

A cost function was developed to minimize CO2 emissions by minimizing the distance between a 

reference point on the brake specific fuel consumption (BSFC) map and the upshift points for various 

throttle positions. 

An additional objective is performance, as defined by the vehicle’s ability to accelerate. This is 

parameterized by the Inverse Reserve Power (IRP) seen in Equation (4) where ∆𝑃−1(𝑘) is the 

reserve power calculated from the product of the engine speed and the reserve torque (the difference 

between the maximum engine torque and the actual engine torque). 

 
𝐽𝐼𝑅𝑃 =∑∆𝑃−1(𝑘) (4) 

The third objective was gearbox durability and is characterized by minimizing the number of gear 

shifts, given simply by the number of up and down shifts in a given cycle. 

By using a MOGA to derive a set of non-dominated solutions based upon optimizing the three 

objectives noted above, the authors used an operator which uses a weighted Pareto ranking to 

differentiate between the various non-dominated solutions. This is the Gear Early Shift Operator 

(GESO) which seeks to reduce emissions by producing an early gear shift to reach the most efficient 
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area in the BSFC map as quickly as possible. It is characterized by reducing the velocity difference 

between the Upshift and Downshift lines. The test results on a rolling road using an optimized gear 

shift showed significant improvements in lowering CO2 emissions, with only a slight degradation in 

drivability. 

Genetic Algorithm and Particle Swarm Optimization Hybrid 

Particle swarm optimization (PSO) essentially populates a solution space with solutions (particles) 

and optimizes the particles ‘position’ and ‘velocity’. As optimization increases, particles will swarm 

to the best solution. Bertram et.al. [16]  has suggested using a hybrid of PSO with a Genetic 

Algorithm (GA) to improve the convergence rate of the control parameters of a diesel engine, 

demonstrating a nearly 50% improvement over the PSO alone approach. 

The hybridization was implemented by taking a PSO step, and then producing a GA offspring for 

each PSO particle. The best performer from each genetic sub-population would then represent the 

next PSO particle. This process was continued iteratively until a best solution was determined. The 

optimization criteria were the reduction in NOx, soot, and to lesser degrees CO2 and fuel 

consumption. 

Dynamic Programming and Convex Optimization Hybrid 

Nüesch et.al. [20], in a study of energy management of hybrid electric vehicles, has suggested the 

use of a Dynamic Programming and Convex Optimization hybrid optimization (DP-C). In particular, 

the optimization sought to reduce engine cost and gearshift costs.  

Typically, when designing a high-fidelity vehicle model non-linearities are inherent in the system. 

To employ Complex Optimization, any non-linearities in the design vehicle model are replaced with 
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a convex modeling approach. Eliminating non-linearities in the vehicle model increases the 

simulation speed and enhances the effectiveness of optimization techniques. Three decision variables 

were selected to be optimized: 1) engine on/off, 2) the gear shift, and 3) engine/motor torque split. 

The latter being the only convex decision variable. The On/Off and Gear shift strategy was optimized 

using a Dynamic Programming algorithm, which then fed the Convex Optimization of the power 

split. This sequence was then iterated until convergence. The authors compared the convergence 

time of DP-C to a DP optimization and found a significant improvement (up to 98% better) with a 

slight improvement in precision. 

2.3 Dynamic Onboard Shift Strategies 

Using inputs from onboard modules (the engine control module, or ECM, for example), the TCM 

can act as a microprocessor to make shift decisions in lieu of a shift map. Two exact same vehicles 

may be driven differently, under different terrain, traffic and weather conditions, and with different 

loads. Although a static map can be optimized in these situations, situational awareness coupled with 

artificial intelligence (AI) could provide a great benefit.  

Neural Networks 

The various shift map construction strategies discussed above have been directed at creating static 

shift maps which are then installed on the TCM and respond according to designated input feeds. 

Recently, work has been done to provide dynamic shift maps which can provide some learning 

capability to respond to different terrains, drivers and other fluctuations. An example of such a 

dynamic shift map is the work performed by Ha et.al. [22], which developed a shift map generator 

based upon a neural network directly installed within the TCM. 
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Neural networks work best when trained with a large data-set, leading to many hidden-layers of 

neurons and inputs. However, in a vehicle, the in-coming data is too small to take advantage of such 

“deep-learning” approaches. Ha et.al. used a Normalized Radial Basis Function Neural Network 

(RBFNN) utilizing a single hidden layer. The activation function is a normalized Gaussian radial 

function [23]. 

Each objective was classified by sub-functions or modules and then the output from each module 

was fed into a shift position generator module. Four preliminary objectives were used: states of the 

engine output, driver’s intention, road condition, and driver satisfaction. 

• Status of the engine output − This evaluates the vehicle load correlated with the allowed 

maximum engine output. Inputs into this module arrive from the ECU and include the change 

in transmission output rotation speed, engine torque and vehicle load. 

• Driver’s intention − Indicates the driver’s willingness to accelerate. Input parameters are 

throttle valve open rate, variation in the throttle valve open rate, the brake switch, and the 

brake’s measured deceleration resistance. 

• Road condition − This module is composed of five sub-modules to determine the slope of 

the road, driver’s willingness to accelerate downhill, driver’s willingness to decelerate 

downhill, driver’s intention to use the brake, and whether the brake was used. The gradient 

descent method was used to train each of these sub-modules 
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• Driver satisfaction − Determines the degree to which the driver is satisfied with the current 

shift map. Based upon throttle opening rate, brake deceleration resistance and the current 

shift position. 

The outputs of these four modules are then fed into a final module to determine the shift position. 

Fuzzy Logic in Predictive Control 

Fuzzy logic algorithms have been employed to model human decision-making or behavior-based 

inputs in a variety of control optimizations. One example in the hybrid automotive domain was 

performed by Hajimiri and Salmasi [18] to improve energy management and improve the health of 

the powertrain battery. Fuzzy logic was chosen as a controller in the hybrid drivetrain, due to the 

number of inputs, its non-linear nature and time-variance of the inputs. In addition to decision of the 

power split, their algorithm also considered the State-of-Health (SOH) of the battery, with the goal 

of extending the lifetime of the battery. 

The future situation of the vehicle was based primarily on global positioning systems (GPS) to gain 

knowledge of terrain and traffic conditions. This information was condensed into two input 

variables: 1) the difference between the predicted future speed of the vehicle and the present speed, 

and 2) the difference in elevation between a future point and the present. The state of both 1 and 2 

were characterized by increasing, decreasing and constant. A matrix of rules was then consulted to 

anticipate what the battery state would be at that future time. 

A similar approach was taken to protect the SOH of the battery. An additional input was taken from 

the SOC of the battery from which the present SOH can be determined. If the SOH is found to be 
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critical, adjustments can be made, based upon the other two inputs, which will have the effect of 

reduced fuel efficiency but improved SOH. 

2.4 Summary 

A great deal of research and practical design work has been performed in the optimization of 

transmission gear shift algorithms. From the literature reviewed, there has been a clear shift away 

from the traditional trial-and-error coupled with calibration expertise shift map generation, to shift 

map optimizations that seek to utilize a larger vehicle profile to realize higher performance, fuel 

efficiency, reduced emissions and vehicle durability. The optimization presented in this thesis 

utilizes an exhaustive search approach coupled with an objective function that attempts to generate 

and optimize two shift schedules for a hybrid-electric vehicle: a SOC independent shift schedule and 

a SOC dependent shift schedule. Like a genetic algorithm, the objective function is a fitness function 

that determines how “fit” a particular solution may be. The fitness is scaled from 0 to 1 with a higher 

fitness value correlating to a more “fit” solution. This method was chosen due to the ease of code 

implementation and the ability to quickly generate a fully functional shift schedule that has been 

optimized offline for a vehicle. No literature was found in the generation of a shift schedule that 

fluctuations with SOC in this manner, merely optimization techniques on pre-existing shift 

schedules. However, once the shift schedules are generated and compared, the optimization 

techniques discussed in this literature review, such as dynamic programming, can be utilized on the 

superior shift schedule offline.
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CHAPTER 3: METHODOLOGY AND TEST SETUP 

3.1 Shift Schedule Theory 

The purpose of the two shift schedules that were generated was to improve fuel economy and reduce 

energy consumption of a P3 plug-in parallel hybrid-electric vehicle by increasing overall vehicle 

efficiency and reducing engine fuel consumption compared to the stock 8-speed 8L45 transmission 

shift schedule designed for a 2016 Chevrolet Camaro. The overall vehicle performance is generally 

defined by these two aspects: 

• Overall vehicle efficiency: The overall efficiency of the power flow of the ICE powertrain 

and electric powertrain to the wheels. By focusing on overall vehicle efficiency, high voltage 

battery discharging and charging events are optimized subsequently increasing the vehicle’s 

overall fuel economy. 

• Engine fuel consumption: Fuel energy consumption by the engine. This metric was chosen 

because the power loss of the engine greatly outweighs the power loss of the electric 

powertrain by approximately a factor of 10. A typical ICE engine (30% to 40% efficiency) 

is much more inefficient than an electric motor (60% to 98% efficiency). Additionally, the 

energy density of a carbon-based fuel is much higher than that of electric. The lower 

efficiency of an engine coupled with the high energy density of carbon-based fuel results in 

massive power losses in ICE powertrains. Focusing on lowering engine fuel consumption 

will have a great impact on the overall vehicle’s energy consumption and will reduce the 

pump-to-wheel emissions. 

The shift schedules were generated through an exhaustive search method coupled with a fitness 

function to analyze how “fit” each transmission gear was for all valid vehicle operating points. Once 
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generated, a sensitivity analysis was performed to quantify the impact of the generated shift schedule 

that adapts to fluctuations in SOC of the HV batteries, or SOC dependent shift schedule, versus the 

generated traditional static shift schedule, or SOC independent shift schedule. 

The generated shift schedules are a function of the driver’s accelerator pedal position, or APP, and 

vehicle speed as most shift schedules are. Shift schedules consist of gear threshold shift lines which 

indicated when the transmission will perform either an upshift or a downshift.  Figure 7 illustrates 

the general shift schedule process with upshift lines represented as solid lines and downshift lines 

represented as dashed lines. 

 

Figure 7: General Two-parameter Shift Schedule Representation 
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When the current vehicle status point approaches an upshift line from either below (throttle position, 

y-direction) or the left (vehicle speed, x-direction), an upshift in gears will be executed. Similarly, 

when the current vehicle status approaches a downshift line from either above (throttle position, y-

direction) or the left (vehicle speed, x-direction), a downshift in gears will be executed. This process 

can also be applied in both the x- and y-directions to obtain 2-D movement through the shift 

schedule. The same movement principle can be applied to the SOC dependent shift schedule as well. 

The SOC dependent shift schedule is a function of not only driver APP and vehicle speed, but SOC 

of the batteries as well. Figure 8 illustrates a general representation of how the three-parameter SOC 

dependent shift schedule operates. The added dimension of SOC allows the shift schedule to operate 

in the z-direction as well as denoted by the Fluctuations in SOC lines shown in the figure. As SOC 

fluctuates, so does the upshift and downshift lines of the shift schedule thus creating an upshift plane 

and a downshift plane that constitute the SOC dependent shift schedule. 

 

Figure 8: General Three-parameter Shift Schedule Representation 
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As SOC deviates below the target SOC, the shift lines will move to the right which promotes lower 

gears (higher gear ratios) to supply a higher engine charging torque for the electric motor to charge 

the high voltage batteries more effectively. Alternatively, as SOC deviates above the target SOC, the 

shift lines will move to the left which promotes higher gears (lower gear ratios) to place the engine 

in a more efficient region for torque production subsequently decreasing the amount of fuel 

consumed during discharge events. Note, this generation method assumes that the engine torque will 

be reduced by the torque split algorithm when SOC is above the target SOC and the engine torque 

will be increased by the torque split algorithm when SOC is below the target SOC to charge the 

batteries [19]. The generation method used for the SOC dependent shift schedules assumes the torque 

split algorithm will select the optimal engine torque necessary for a vehicle operating point and only 

controls the engine speed placement to most efficiently produced that engine torque. The approach 

used to generate the SOC independent and SOC dependent shift schedules are only applicable to a 

position 3 (P3) parallel hybrid-electric vehicle and may not necessarily be applicable to a position 1 

(P1) or position 2 (P2) parallel hybrid-electric vehicle. 

3.2 General Approach 

The generation and implementation of these shift schedules was partitioned into four steps: gear 

validation, shift schedule generation, SOC shift schedule generation, and shift map command 

actuation. The gear validation step defined the boundary conditions of the valid transmission gears 

for the vehicle based on given component information. Additionally, the resolution of the APP and 

vehicle speed axis are defined in this step which in turn defined the solution space for the following 

step. The resolution of the APP and vehicle speed axis were calibratable and the final resolutions are 

reported in Chapter 4: Results and Sensitivity Analysis. The shift schedule generation step utilized 
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an exhaustive search method coupled with a fitness function to evaluate all valid gears for all APPs 

and vehicle speeds defined in the previous step. The fitness function produced a ranking of the most 

fit gear to the least fit gear. The most fit gears generated the optimal shift lines for the SOC 

independent shift schedule. The SOC shift schedule generation step produced the SOC dependent 

shift schedule. This shift schedule was created from expanding upon the SOC independent shift 

schedule. Additionally, the resolution of the SOC axis was defined in this step. The resolution of the 

SOC axis was also calibratable and the final resolution is reported in Chapter 4: Results and 

Sensitivity Analysis. The shift map command actuation step implemented the shift schedules 

generated offline into the online control algorithm and consisted of the logic needed to actuate the 

gear command. Once the shift schedules were implemented in the control algorithm, testing was 

done in the software-in-the-loop (SIL) environment through use of MATLAB/Simulink and the 

vehicle-in-the-loop (VIL) environment on closed courses such as the West Virginia University 

(WVU) Jackson’s Mill airstrip and on a light duty chassis dynamometer at the WVU Center for 

Alternative Fuels, Engines, and Emissions (CAFEE). Emissions data was also collected at the 

CAFEE facility responsible for the Volkswagen emissions scandal [24]. 

For clarity, the subscripts below will be used in the following sections to denote the following: 

• i – vehicle speed 

• j – driver APP 

• k – transmission gear 

• z – possible engine torque 

• s – SOC 
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3.2 Gear Validation for Vehicle 

The valid range of gears for both upshifting and downshifting the transmission are defined as a 

function of minimum torque necessary to meet the driver torque demand (upshift/downshift torque 

validity matrix or y-direction validity) and the minimum/maximum speed limits of the engine 

(upshift/downshift speed validity matrix or x-direction validity). 

The speed validity matrices are created by defining a calibratable range of engine speeds for both 

upshift events and downshift events. These engine speed thresholds are then converted in terms of 

vehicle speed, creating a vector of threshold vehicle speeds (a vehicle speed threshold for each gear 

ratio in the transmission). All possible speeds for the vehicle are then tested to distinguish whether 

that speed is within the valid range of vehicle speeds for a given gear. Figure 9 illustrates the speed 

validity section of code where Speeds is vehicle speed range, Vel_Minup is the minimum velocity 

range for the upshift matrix, Vel_Mindwn is the minimum velocity range for the downshift matrix, 

Vel_Maxup is the maximum velocity range for the upshift matrix, Vel_Maxdwn is the maximum 

velocity range for the downshift matrix, GearAllowed_Spdup is the gear validity matrix for the 

upshift matrix, and GearAllowed_Spddwn is the gear validity matrix for the downshift matrix. 

 

Figure 9: Speed Validity MATLAB Code 
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For a given gear, if vehicle speed is greater than or equal to the minimum velocity range and the 

vehicle speed is less than or equal to the maximum velocity range, then that gear is valid for that 

vehicle speed (1). To avoid discontinuities in the data generation, first gear is ensured valid for all 

lower speeds (2). If all other operating points did not meet either of these criteria, then the gear was 

deemed invalid (3). A flowchart of this process is shown in Figure 10 

 

Figure 10: Speed Validity Flowchart 

The torque validity matrices are created by calculating the minimum and maximum torque required 

at the wheels by the engine for a given gear. This is done by calculating the maximum instantaneous 

and continuous electric motor torque available and finding the difference from the driver torque 

demand. This difference is the torque necessary to achieve the driver torque demand and must be 

provided by the engine. If the difference is within the torque capabilities of the engine, the gear for 
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that operating point is valid. Equations (5), (6), (7), (8), and (9) outline this process, where 

𝑇𝐸,𝑀𝑎𝑥𝑅𝑒𝑞𝑎𝑡𝑊ℎ𝑙 and 𝑇𝐸,𝑀𝑖𝑛𝑅𝑒𝑞𝑎𝑡𝑊ℎ𝑙 are the maximum and minimum engine torques at the wheels 

necessary to meet driver torque demand respectively,  𝑇𝐷,𝑖,𝑗 is the driver torque demand, 𝑇𝑀,𝑀𝑎𝑥,𝑖 is 

the maximum motor torque, 𝑇𝐸,𝑀𝑎𝑥 is the maximum engine torque, and 𝑇𝐸,𝑀𝑎𝑥𝐴𝑙𝑙𝑜𝑤𝑒𝑑 and 

𝑇𝐸,𝑀𝑖𝑛𝐴𝑙𝑙𝑜𝑤𝑒𝑑 are the allowed engine torques at that operating point respectively. 

 𝑇𝐸,𝑀𝑎𝑥𝑅𝑒𝑞𝑎𝑡𝑊ℎ𝑙 = 𝑇𝐷,𝑖,𝑗 + 𝑇𝑀,𝑀𝑎𝑥,𝑖 (5) 

 𝑇𝐸,𝑀𝑖𝑛𝑅𝑒𝑞𝑎𝑡𝑊ℎ𝑙 = 𝑇𝐷,𝑖,𝑗 − 𝑇𝑀,𝑀𝑎𝑥,𝑖 (6) 

 𝑇𝐸,𝑀𝑎𝑥𝐴𝑙𝑙𝑜𝑤𝑒𝑑 = min(𝑇𝐸,𝑀𝑎𝑥𝑅𝑒𝑞𝑎𝑡𝑊ℎ𝑙, 𝑇𝐸,𝑀𝑎𝑥) (7) 

 𝑇𝐸,𝑀𝑖𝑛𝐴𝑙𝑙𝑜𝑤𝑒𝑑 = max(𝑇𝐸,𝑀𝑖𝑛𝑅𝑒𝑞𝑎𝑡𝑊ℎ𝑙, 0) (8) 

 𝑖𝑓𝑇𝐸,𝑀𝑖𝑛𝐴𝑙𝑙𝑜𝑤𝑒𝑑 < 𝑇𝐸,𝑀𝑎𝑥𝐴𝑙𝑙𝑜𝑤𝑒𝑑 → 𝑣𝑎𝑙𝑖𝑑𝑔𝑒𝑎𝑟 (9) 

Where the two valid ranges overlap results in the overall operating point validity. This process is 

outlined in Equation (10) where 𝑉𝑂,𝑖,𝑗,𝑘 is the overall gear validity, 𝑉𝑇,𝑖,𝑗,𝑘 is the torque validity, 

𝑉𝑆,𝑖,𝑗,𝑘 is the speed validity, 𝑇𝐷,𝑖,𝑗 is the driver torque demand, 𝑇𝑀,𝑀𝑎𝑥,𝑖 is the max motor torque, 

𝑁𝑉𝑒ℎ,𝑖 is the vehicle speed, 𝑁𝐸,𝑖,𝑘 is the engine speed, 𝑁𝐸,𝑀𝑎𝑥 and 𝑁𝐸,𝑀𝑖𝑛 are the maximum and 

minimum engine speeds allowed for the engine respectively, and 𝐺𝑅𝑎𝑡,𝑘 is the gear ratio.  

 
𝑉𝑂,𝑖,𝑗,𝑘 =

[𝑉𝑇,𝑖,𝑗,𝑘(𝑇𝐷,𝑖,𝑗 , 𝑇𝑀,𝑀𝑎𝑥,𝑖, 𝐺𝑅𝑎𝑡,𝑘)] ∪

[𝑉𝑆,𝑖,𝑗,𝑘(𝑁𝑉𝑒ℎ,𝑖, 𝑁𝐸,𝑖,𝑘, 𝑁𝐸,𝑀𝑎𝑥, 𝑁𝐸,𝑀𝑖𝑛, 𝐺𝑅𝑎𝑡,𝑘)]
 (10) 

   

3.3 Shift Schedule Generation 

SOC Independent Shift Schedule Generation 

To generate the SOC independent shift schedule, a fitness function is applied to evaluate the fitness 

of a valid gear for the current operating point. The developed fitness function is a function of overall 
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vehicle efficiency and engine power loss. Equation (11) outlines the fitness function used where 

𝜂𝑉,𝑖,𝑗,𝑘,𝑧 is vehicle efficiency, 𝑃𝐿𝐸,𝑖,𝑗,𝑘,𝑧 is the engine power loss, 𝑃𝐿𝐸,𝑀𝑎𝑥 is the maximum engine 

power loss, and 𝑊𝜂 and 𝑊𝑃𝐿 are the associated weighting coefficients. This fitness function will 

reward gears that result in the least amount of engine power loss and have a higher vehicle efficiency.  

 
𝐹𝑖,𝑗,𝑘,𝑧 = 𝑊𝜂 ∗ 𝜂𝑉,𝑖,𝑗,𝑘,𝑧 +𝑊𝑃𝐿 ∗ (1 −

𝑃𝐿𝐸,𝑖,𝑗,𝑘,𝑧

𝑃𝐿𝐸,𝑀𝑎𝑥
) (11) 

   

The overall efficiency of the vehicle is found by calculating the ratio of the total power produced 

(PP) versus the total power consumed (PC) from both the engine and electric motor as shown in 

Equation (12). 𝑃𝑃𝑀,𝑖,𝑗,𝑘,𝑧 and 𝑃𝑃𝐸,𝑖,𝑗,𝑘,𝑧 is the mechanical power produced by the electric motor and 

engine respectively, while 𝑃𝐶𝑀,𝑖,𝑗,𝑘,𝑧 is the electric power consumed by the electric motor and 

𝑃𝐶𝐸,𝑖,𝑗,𝑘,𝑧 is the fuel power consumed by the engine. Note, this power analysis does not assume 

internal power loss of the high voltage battery pack which will result in some loss in overall 

efficiency information. 

 
𝜂𝑉,𝑖,𝑗,𝑘,𝑧 =

𝑃𝑃𝑀,𝑖,𝑗,𝑘,𝑧 + 𝑃𝑃𝐸,𝑖,𝑗,𝑘,𝑧

𝑃𝐶𝑀,𝑖,𝑗,𝑘,𝑧 + 𝑃𝐶𝐸,𝑖,𝑗,𝑘,𝑧
 (12) 

   

To execute the power calculations performed within the fitness function, an engine torque, engine 

speed, electric motor torque, and electric motor speed must be found for the current operating point. 

Since the vehicle is a P3 parallel hybrid-electric vehicle, the motor is directly connected to the wheels 

(Figure 3 in section 1.3 Advanced Vehicle Technology Competitions, page 5). Ergo, the motor speed 

is simply a function of vehicle speed. Similarly, the engine speed is a function of vehicle speed and 

the transmission gear ratio. The component speed calculations for the electric motor and engine are 
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shown in Equation (13) and Equation (14) respectively, where 𝑅𝐷𝑅 is the rear-differential ratio of 

the vehicle and 𝑀𝐷𝑅 is the mid-differential ratio of the vehicle and 𝑁𝑉𝑒ℎ,𝑖 is the speed of the vehicle 

in m/s. The values of the tire radius, mid-differential ratio, and rear-differential ratio of the vehicle 

are shown in Table A-4 in Appendix A: Component Data. 

 

𝑁𝑀,𝑖 =
𝑁𝑉𝑒ℎ,𝑖

𝑇𝑖𝑟𝑒𝑅𝑎𝑑𝑖𝑢𝑠
∗ 𝑅𝐷𝑅 ∗ 𝑀𝐷𝑅 (13) 

 
𝑁𝐸,𝑖,𝑘 =

𝑁𝑉𝑒ℎ,𝑖
𝑇𝑖𝑟𝑒𝑅𝑎𝑑𝑖𝑢𝑠

∗ 𝑅𝐷𝑅 ∗ 𝐺𝑅𝑎𝑡,𝑘 (14) 

   

All possible engine torques are then tested to fully define the system for each APP, vehicle speed, 

and transmission gear. With engine torque defined, a subsequent electric motor torque can then be 

found for a given APP, vehicle, and transmission gear. Equations (15), (16), and (17) outlines how 

the motor torque is found where 𝑇𝐸,𝑊𝐻𝐿,𝑖,𝑗,𝑘,𝑧 is the engine wheel torque, 𝑇𝐸,𝑖,𝑗,𝑘,𝑧 is the iterated 

engine torque, 𝑇𝑀,𝑊𝐻𝐿,𝑖,𝑗,𝑘,𝑧 is the electric motor wheel torque, and 𝑇𝑀,𝑖,𝑗,𝑘,𝑧 is the electric motor 

torque. 

 𝑇𝐸,𝑊𝐻𝐿,𝑖,𝑗,𝑘,𝑧 =𝑇𝐸,𝑖,𝑗,𝑘,𝑧 ∗ 𝐺𝑅𝑎𝑡,𝑘 ∗ 𝑅𝐷𝑅 (15) 

 𝑇𝑀,𝑊𝐻𝐿,𝑖,𝑗,𝑘,𝑧 = 𝑇𝐷,𝑖,𝑗 − 𝑇𝐸,𝑊𝐻𝐿,𝑖,𝑗,𝑘,𝑧 (16) 

 
𝑇𝑀,𝑖,𝑗,𝑘,𝑧 =

𝑇𝑀,𝑊𝐻𝐿,𝑖,𝑗,𝑘,𝑧

𝑅𝐷𝑅 ∗ 𝑀𝐷𝑅
 (17) 

With the torque and speed for each powertrain component, the power flow through the vehicle is 

then calculated. The fuel power consumed is calculated from fuel flow data of the engine provided 

by the manufacturer and is a function of engine torque and engine speed as shown in Equation (18). 

This data will not be provided in this paper as it is GM sensitive information not disclosed to the 
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public. The engine and electric motor mechanical power produced is calculated from the product of 

the component torque in newton-meters and component speed in radians per second as shown in 

Equation (19) and Equation (20) respectively. Since the high voltage electric batteries are not 

modeled during this process, the electric power consumption from the electric motor cannot be 

directly calculated. Instead, the electric motor’s efficiency is found from component data of the 

electric motor provided by the manufacturer and is a function of electric motor torque and electric 

motor speed as shown in Equation (21). Again, this data will not be provided in this thesis as it is 

Parker sensitive information not disclosed to the public. The electric power consumption from the 

electric motor is then found by dividing the electric motor power produced by the electric motor 

efficiency as shown in Equation (22).  

 𝑃𝐶𝐸,𝑖,𝑗,𝑘,𝑧 = 𝑓(𝑁𝐸,𝑖,𝑘 , 𝑇𝐸,𝑖,𝑗,𝑘,𝑧) (18) 

 𝑃𝑃𝐸,𝑖,𝑗,𝑘,𝑧 = 𝑇𝐸,𝑖,𝑗,𝑘,𝑧 ∗ 𝑁𝐸,𝑖,𝑘 (19) 

 𝑃𝑃𝑀,𝑖,𝑗,𝑘,𝑧 = 𝑇𝑀,𝑖,𝑗,𝑘,𝑧 ∗ 𝑁𝑀,𝑖 (20) 

 𝜂𝑀,𝑖,𝑗,𝑘,𝑧 = 𝑓(𝑇𝑀,𝑖,𝑗,𝑘,𝑧 , 𝑁𝑀,𝑖) (21) 

 
𝑃𝐶𝑀,𝑖,𝑗,𝑘,𝑧 =

𝑃𝑃𝑀,𝑖,𝑗,𝑘,𝑧

𝜂𝑀,𝑖,𝑗,𝑘,𝑧
 (22) 

The power loss of each powertrain component is then found by taking the difference between the 

power consumed and the power produced as seen in Equation (23) and Equation (24). 

 𝑃𝐿𝐸,𝑖,𝑗,𝑘,𝑧 =𝑃𝐶𝐸,𝑖,𝑗,𝑘,𝑧 − 𝑃𝑃𝐸,𝑖,𝑗,𝑘,𝑧 (23) 

 𝑃𝐿𝑀,𝑖,𝑗,𝑘,𝑧 = 𝑃𝐶𝑀,𝑖,𝑗,𝑘,𝑧 − 𝑃𝑃𝑀,𝑖,𝑗,𝑘,𝑧 (24) 
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The subsequent results of the power flow equations are then used in Equation (11) and (12) to obtain 

the fitness of the valid transmission gears for an operating point. To condense the 4-dimensional 

fitness matrix in terms of APP, vehicle speed, transmission gear, and engine torque into a 2-

dimensional fitness matrix in terms of APP and vehicle speed, the highest fitness along the z-axis 

(engine torque) is taken with respect to engine torque. Equation (25) outlines this process where 

𝑀𝐹𝐼𝑇,𝑖,𝑗,𝑘,𝑧 is the 4-dimensional fitness matrix and 𝑀𝐹𝐼𝑇,𝑖,𝑗,𝑘 is the 3-dimensional fitness matrix. 

 𝑀𝐹𝐼𝑇,𝑖,𝑗,𝑘 =max
𝑧

(𝑀𝐹𝐼𝑇,𝑖,𝑗,𝑘,𝑧) (25) 

   

This yields a 3-dimensional fitness matrix in terms of APP, vehicle speed, and transmission gear. 

Notably, the engine torques with the highest fitness are the ideal engine torques needed to maximize 

the fitness function during vehicle operation. It is assumed that the torque split algorithm [19] within 

the overall control algorithm of the vehicle will calculate the ideal engine torques within a reasonable 

tolerance as the output commanded torque. The highest fitness along the k-axis (transmission gear) 

is then taken with respect to transmission gear to obtain a 2-dimesional fitness matrix in terms of 

APP and vehicle speed with each element in the matrix corresponding to the optimal gear and engine 

torque at that operating point. Equation (26) shows this process where 𝑀𝐹𝐼𝑇,𝑖,𝑗 is the 2-dimensional 

fitness matrix. 

 𝑀𝐹𝐼𝑇,𝑖,𝑗 =max
𝑘

(𝑀𝐹𝐼𝑇,𝑖,𝑗,𝑘) (26) 

   

A visual representation of the final product of this process for the upshift and downshift matrices is 

shown in Figure 11 and Figure 12. Each shaded plateau represents different transmission gear as a 

function of APP and vehicle speed. 
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Figure 11: Fitness Matrix of Upshift Gears 
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Figure 12: Fitness Matrix of Downshift Gears 

By taking the contours of the upshift and downshift fitness matrices and overlapping them, the 

overall shift schedule is can be identified more easily as shown in Figure 13. 
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Figure 13: Overall SOC Independent Shift Schedule Representation 

SOC Dependent Shift Schedule Generation 

The SOC independent shift schedule is then used as the foundation for the SOC dependent shift 

schedule. The SOC dependent shift schedule was generated by first assuming a minimum amperage 

rate of current flow to and from the high voltage batteries as a function of the deviation away from 

the target SOC. A calibratable sigmoidal function of the minimum amperage rate as a function of 

SOC was initially chosen to avoid abrupt gear shifts if the SOC deviation was small (Figure 14). A 

fixed amperage rate defines the minimum amount of charging (or discharging) torque required for 

the current SOC, which in turn defines the amount of engine torque needed to meet the driver torque 

demand. In the charging region (below target SOC), if the current gear ratio does not allow the engine 
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to meet the required torque demand the gear ratio is increased, or a downshift occurs to increase the 

engine torque capability delivered to the wheels. The opposite is true for the discharging region. 

 

Figure 14: Initial Sigmoidal Function of SOC Deviation vs. Minimum 

Amperage Rate 

The minimum engine torque needed at the wheels as a function of SOC was calculated by finding 

the difference between the current driver torque demand and the minimum electric power input into 

the electric motor from the current minimum amperage rate and finding the resulting torque at the 

wheels. In order to execute the calculation, two assumptions are made. The first assumption made is 

the voltage of the high voltage battery pack needed to calculate the electric power input of the electric 

motor. The voltage that was chosen as an input to this calculation was the rated nominal voltage of 

the high voltage battery pack of 340 volts given from the component data. The second assumption 

made is the efficiency of the electric motor to calculate the mechanical power output of the electric 

motor and subsequently the electric motor torque at the wheels for a given speed. This was found by 

taking the average of the electric motor efficiency data matrix also given from the component data 

which was found to be 92.2%. Equations (27), (28), (29), and (30) outline this process where 
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𝑃𝐶𝐸,𝑀𝑖𝑛,𝑖,𝑗,𝑠 is the minimum electric power input into the electric motor, 𝑃𝑃𝐸,𝑀𝑖𝑛,𝑖,𝑗,𝑠 is the minimum 

mechanical power output of the electric motor, 𝐴𝑀𝑖𝑛,𝑠 is the minimum amperage rate, 𝑇𝑀,𝑀𝑖𝑛,𝑊𝐻𝐿,𝑖,𝑗,𝑠 

is the minimum required electric motor torque at the wheels, and 𝑇𝐸,𝑀𝑖𝑛,𝑊𝐻𝐿,,𝑖,𝑗,𝑠 is the minimum 

required engine torque at the wheels. 

 𝑃𝐶𝐸,𝑀𝑖𝑛,𝑖,𝑗,𝑠 =𝐴𝑀𝑖𝑛,𝑠 ∗ 340𝑉𝑜𝑙𝑡𝑠 (27) 

 
𝑃𝑃𝐸,𝑀𝑖𝑛,𝑖,𝑗,𝑠 = 𝑃𝐶𝐸,𝑀𝑖𝑛,𝑖,𝑗,𝑠 ∗

92.2

100
 (28) 

 
𝑇𝑀,𝑀𝑖𝑛,𝑊𝐻𝐿,𝑖,𝑗,𝑠 = 𝑃𝑃𝐸,𝑀𝑖𝑛,𝑖,𝑗,𝑠 ∗

𝑇𝑖𝑟𝑒𝑅𝑎𝑑𝑖𝑢𝑠

𝑁𝑉𝑒ℎ,𝑖
 (29) 

 𝑇𝐸,𝑀𝑖𝑛,𝑊𝐻𝐿,𝑖,𝑗,𝑠 = 𝑇𝐷,𝑖,𝑗 − 𝑇𝑀,𝑀𝑖𝑛,𝑊𝐻𝐿,𝑖,𝑗,𝑠 (30) 

The value obtained for 𝑇𝐸,𝑀𝑖𝑛,𝑊𝐻𝐿,𝑖,𝑗,𝑠 from Equation (30) is then compared to the ideal engine torque 

for that operating point from condensing the 𝑀𝐹𝐼𝑇,𝑖,𝑗 fitness matrix in Equation (26). If the minimum 

engine wheel torque required is less than the ideal engine wheel torque outside of an acceptable 

range, then the gear for that operating point in the upshift matrix is upshifted to decrease the engine’s 

torque capability and promote electric motor discharging events. An upshift in gears increases the 

efficiency of the engine power output flow as higher gears, or lower gear ratios within the 

transmission, decrease the engine power output loss to the wheels from transmission efficiency. 

Similarly, if the minimum engine wheel torque required is greater than the ideal engine wheel torque 

outside of an acceptable range, then the gear for that operating point in the downshift matrix is 

downshifted to increase the engine’s torque capability and promote electric motor charging events. 

A downshift in gears allows more torque flow to the wheels and electric motor from the engine, 

allowing the vehicle to charge more effectively. This process is outlined in Equations (31), (32), 
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(33), and (34) where 𝑇𝐸,𝐼𝐷𝐸𝐴𝐿(𝑀𝐹𝐼𝑇,𝑖,𝑗) is the ideal engine torque at the flywheel, 𝐺𝑅𝑎𝑡,𝑖,𝑗(𝑠′) is the 

gear ratio of the decided gear from the previously generated shift schedule, 𝑇𝐸,𝐼𝐷𝐸𝐴𝐿,𝑊𝐻𝐿 is the ideal 

engine wheel torque, and ∆𝑇𝐸 is a calibratable delta engine torque value used to create a hysteresis 

around the ideal engine torque. The hysteresis was introduced to make the boundary conditions of 

the optimal engine torque less rigid as it is unlikely that the torque split algorithm will choose the 

exact optimal engine torque every time [19]. The variable 𝑠′ in the gear ratio 𝐺𝑅𝑎𝑡,𝑖,𝑗(𝑠′) represents 

the two-parameter shift schedule from the previous step of SOC deviation, where the initial step is 

the SOC independent shift schedule. 

 𝑇𝐸,𝐼𝐷𝐸𝐴𝐿,𝑊𝐻𝐿 = 𝑇𝐸,𝐼𝐷𝐸𝐴𝐿(𝑀𝐹𝐼𝑇,𝑖,𝑗) ∗ 𝐺𝑅𝑎𝑡,𝑖,𝑗(𝑠′) ∗ 𝑅𝐷𝑅 (31) 

 𝑖𝑓(𝑇𝐸,𝐼𝐷𝐸𝐴𝐿,𝑊𝐻𝐿 − ∆𝑇𝐸) < 𝑇𝐸,𝑀𝑖𝑛,𝑊𝐻𝐿,𝑖,𝑗,𝑠 < (𝑇𝐸,𝐼𝐷𝐸𝐴𝐿,𝑊𝐻𝐿 + ∆𝑇𝐸) → 𝑛𝑜𝑐ℎ𝑎𝑛𝑔𝑒 (32) 

 𝑖𝑓𝑇𝐸,𝑀𝑖𝑛,𝑊𝐻𝐿,𝑖,𝑗,𝑠 < (𝑇𝐸,𝐼𝐷𝐸𝐴𝐿,𝑊𝐻𝐿 − ∆𝑇𝐸) → 𝑢𝑝𝑠ℎ𝑖𝑓𝑡𝑔𝑒𝑎𝑟 (33) 

 𝑖𝑓𝑇𝐸,𝑀𝑖𝑛,𝑊𝐻𝐿,𝑖,𝑗,𝑠 > (𝑇𝐸,𝐼𝐷𝐸𝐴𝐿,𝑊𝐻𝐿 + ∆𝑇𝐸) → 𝑑𝑜𝑤𝑛𝑠ℎ𝑖𝑓𝑡𝑔𝑒𝑎𝑟 (34) 

This process results in the shift schedule thresholds moving further to the right and down as SOC 

deviates further below the target SOC and the shift schedule thresholds moving further to the left 

and up as SOC deviates further above the target SOC, thus creating the SOC dependent shift 

schedule.  The resultant final SOC independent shift schedule and SOC dependent shift schedule is 

discussed in Section 4.2 Resultant Shift Schedules in more detail.
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3.4 Shift Schedule Command Actuation 

The implementation of the shift schedules is done in MATLAB/Simulink within the supervisory 

control algorithm of the vehicle. The SOC independent and SOC dependent shift schedules are 

separated into an upshift look-up table and downshift look-up table as seen in Figure 15 and Figure 

16 respectively. These look-up tables are then fed into an online MATLAB function, the Shift 

Command Logic block which ultimately decides the gear command. A simplified block diagram of 

the Simulink model is shown in Figure 17. 

 

Figure 15: SOC Independent MATLAB/Simulink Shift Command 

Actuation 
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Figure 16: SOC Dependent MATLAB/Simulink Shift Command Actuation 

 

Figure 17: Block Diagram of Shift Command Actuation 



 

45 
 

The way in which a gear command is calculated is by comparing the current transmission gear with 

the output of the upshift and downshift look-up tables. Figure 18 shows the MATLAB code used to 

execute the shift command logic where up is the output gear from the upshift look-up table, dwn is 

the output gear from the downshift look-up table, crnt is the current transmission gear, and req is the 

output gear command. A flowchart of this process is shown in Figure 19. 

 

Figure 18: Shift Command Logic 

 

Figure 19: Shift Command Logic Flowchart 

3 

2 

1 
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If the current gear is less than the output of the upshift look-up table, then the gear command will be 

the output of the upshift look-up table (1). Similarly, if the current gear is greater than the output of 

the downshift look-up table, then the gear command will be the output of the downshift look-up table 

(2). Otherwise, the gear command will hold the current gear until the operating point changes (3). 

The shift schedules were then tested after they were successfully implemented in the supervisory 

control algorithm. 

3.5 Testing and Validation Setup 

The completion of the shift schedule implementation led to testing in the SIL environment and VIL 

environment using the same drive cycle. The shift schedules were tested on two back-to-back cycles 

of the AVTC EcoCAR 3 emissions and energy consumption (E&EC) drive cycle shown in Figure 

20. The E&EC drive cycle consists of a weighted sum of four EPA standard drive cycles: UDDS 

505 (29%), HWFET (12%), US06 City (14%), and US06 Highway (45%). The cycle is 

approximately 28 miles and takes approximately 42 minutes to complete in real-time.  

 
Figure 20: E&EC Drive Cycle - 2 Iterations 
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Software-in-the-Loop (SIL) Environment 

Simulation testing was performed with a full vehicle model of the hybrid-electric vehicle developed 

in MATLAB/Simulink.  The model consists of three main systems: a Vehicle System, a Driver 

System, and a Controller System shown in Figure 21.  

 

Figure 21: High-level view of Full Vehicle Model 

The Vehicle System is a Simulink model created to represent the vehicle and utilizes the Simscape 

toolboxes provided in MATLAB/Simulink to simulate physical connections of the rotational masses 

within the drivetrain (driveshaft, rear differential, transmission, engine, wheels, etc. This system also 

models the communication interfaces between the primary electronic control modules, or ECUs, 

within the vehicle and simulates their behavior. From a high-level perspective, the Vehicle System 

receives engine torque commands, electric motor torque commands, and transmission gear 
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commands from the Controller System and reports the status of the vehicle such the current gear, 

powertrain torque production, vehicle speed, and SOC. A high-level diagram of the Vehicle 

System’s input/output relationship is shown in Figure 22.  

 

Figure 22: Full Vehicle Model, High-level Vehicle System I/O 

Within the Vehicle System, the commands are received by the modeled ECU software for each 

powertrain component. The ECUs for each main powertrain component are the ECM, Inverter, and 

TCM for the engine, electric motor, and transmission respectively. Each ECU software then executes 

the logic needed to actuate the received command from the Controller System for their respective 

powertrain component. Each ECU also monitors and reports the status of their respective powertrain 

component such as current gear, torque production, and current vehicle speed. Figure 23 shows all 

major components modeled within the Vehicle System more in depth. 
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Figure 23: Full Vehicle Model, Vehicle System 

The Driver System is a Simulink model created to simulate a driver. This system oversees simulating 

startup and shutdown of the vehicle, APP input, brake pedal input, and park-reverse-neutral-drive-

manual (PRNDM) shifting into the Controller System and is the driving force of the three systems. 

A high-level diagram of the Driver System’s input/output relationship is show in Figure 24. 

 

Figure 24: Full Vehicle Model, High-level Driver System I/O 
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The Controller System houses the supervisory control algorithm for the vehicle. This system is where 

all hybridization control algorithms for the vehicle were developed. From a high-level perspective, 

this algorithm mainly consists of the gear request logic (GRL) and torque split algorithm (TSA) for 

the vehicle shown in Figure 25. 

 

Figure 25: Full Vehicle Model, High-level Controller System I/O 

The GRL subsystem contains the generated shift schedules and shift command logic discussed in 

Section 3.3 Shift Schedule Generation and Section 3.4 Shift Schedule Command Actuation 

respectively. This subsystem receives inputs from both the Vehicle System (vehicle speed, current 

transmission gear, SOC) and Driver System (APP) and outputs the gear command to the transmission 

and the TSA subsystem. The TSA subsystem determines the optimal torque commands for both the 

engine and electric motor to meet the driver torque demand derived from APP efficiently through 

use of a golden section search algorithm and a cost function [19]. The TSA subsystem utilizes 

powertrain component torque feedback, powertrain component limitations, SOC, and the gear 
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command from the GRL subsystem to define a solution space that the golden section search 

algorithm and cost function are then applied to. A visual representation of this process is illustrated 

in Figure 26. 

 

Figure 26: Controller System High-level Flow Chart 

Vehicle-in-the-Loop (VIL) Environment 

Vehicle testing was performed using the Center for Alternative Fuels, Engines, and Emissions 

(CAFEE) Vehicle Emissions Testing Laboratory (VETL) light-duty chassis dynamometer test cell, 

comprised of a Title 40 CFR, Part 1066-compliant Horiba® 4WD Vulcan II emission chassis 

dynamometer with an accompanying Title 40 CFR, Part 1065 [25, 26] compliant constant volume 

sampling (CVS) emissions sampling system for spark-ignited and compression-ignited vehicles, as 
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well as hybrid, plug-in hybrid and electric vehicles [27] (see Figure 27). The dual-roll dynamometer 

can accommodate testing of two-, four- and all-wheel drive vehicles. 

 
Figure 27: Horiba 4WD Vulcan II Emission Chassis Dynamometer [27] 

Key specifications of the WVU CAFEE chassis dynamometer include the following: 

• Test weight simulation from 2000 lb to over 14,000 lb, (dependent upon test schedule) 

• Vehicle height up to 168 inches can be accommodated, and wheelbase from 70.8 to 173.2 

inches. 

• Absorbing Power (2WD) - 230 kW or 308 hp. 

• Motoring (2WD) - 230 kW or 308 hp. 

• Top speed =125 mph. 

• maximum load per axle = 5,511 lb 

• Dual-roll system can test vehicles in RWD, FWD, AWD, and 4WD configurations. 

• Fixed- or variable-speed fan capable of  simulating wind speed of up to 78 mph, per 

regulatory practices recommended in Title 40 CFR, Part 86 and Part 1066 [28]. 
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• Environmental conditions controlled to regulatory standards, typically between 20°C and 

30°C. A hot environment can be simulated for air conditioning tests, per the instructions 

found in Title 40 CFR, Part 1066.845 [25, 28].  

 
Figure 28: CAFEE, Light-duty Chassis Dynamometer Cell  

The Horiba® 4WD Vulcan II emission chassis dynamometer, shown in Figure 28 with the WVU 

EcoCAR Camaro mounted, is controlled via software provided by Horiba® and allows for a wide 

range of standardized test cycles as well as customized cycles to be implemented. The Horiba control 

software is interfaced with main laboratory control and acquisition software developed and 

maintained in-house. The light-duty chassis dynamometer control room running the Horiba control 

software is shown in Figure 29.  
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Figure 29: CAFEE, Light-duty Chassis Dynamometer Control Room [27] 

The full range of vehicle drive cycles are available, including those required by the Environmental 

Protection Agency (EPA) and California Air Resources Board (CARB), as well as the European 

Commission and other foreign regulatory agencies, including (but not limited to): FTP-75 (Federal 

Test Procedure), UDDS, HWFET, US06, AC17, NEDC, and fully-customized drive cycles. The 

AVTC EcoCAR 3 E&EC drive cycle was converted to a compatible format with CAFEE’s software 

and programmed into the drive cycle control software. 

CAFEE’s custom in-house data post-processing software was used to perform emissions calculations 

on data acquired during chassis dynamometer testing. The data acquired included both continuous 

emissions concentration in parts per million (PPM), rolling integrated mass in grams (g), and 

integrated distance specific mass emissions in grams per mile (g/mi). 

Vehicle exhaust is ducted to a 10" diameter total exhaust double dilution tunnel based on the Critical 

Flow Venturi - Constant Volume Sampling (CFV-CVS) concept. The exhaust gas sampling system 

is designed to measure the true mass of both gaseous and particulate emissions in the exhaust of 

either diesel-cycle, or Otto-cycle light-duty vehicles and light-duty trucks. The mass of gaseous 
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emissions is determined from the sample concentration and total flow over the test period. This 

system utilizes the CVS concept (described in §86.109) of measuring mass emissions.  

The dilution tunnel system complies with 40 CFR Part 86 [25, 29] for complete vehicle emissions 

certification. Dilution air is conditioned for temperature and humidity and passed through a HEPA 

filtration system upstream of the tunnel entrance. All components of the primary and secondary 

dilution tunnel were fabricated from stainless steel. A complete sampling system schematic of the 

dilution tunnel and gaseous emissions analysis bench are shown in Figure 30. 

 

Figure 30: Dilution Tunnel Sampling Schematic [27] 

Tailpipe emissions were treated in accordance with standard requirements of Constant Volume 

Sampling (CVS) with flowrate controlled according to standards developed for Critical Flowrate 

Venturi (CFV) design. Tailpipe exhaust was diluted with conditioned air in a full-flow dilution 

tunnel, with sample handling provided for by a Horiba® CVS-ONE, designed for the measurement 
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of dilute emissions. This system complies with the latest emission regulations, such as Title 40 CFR, 

Part 1065 and Part 1066 [25, 26, 28], and is suitable for hybrid vehicle fuel economy testing. 

Microprocessor controlled heated probes and sampling lines are used to draw gaseous samples into 

the gas analysis equipment. Emissions concentrations were quantified using a Horiba® MEXA-

7200D exhaust gas analyzer. This system is designed to measure CVS-diluted exhaust gases from 

all vehicle and engine types for basic R&D, model certification, quality testing, and durability. The 

MEXA system consists of two measurement subsystems, namely, non-heated NDIR determination 

for CO and CO2 and a heated system for measurement of NOx, THC, and CH4. For the test results 

reported herein, particulate matter measurements were not included, since the objective of the study 

was primarily for NOx, THC, and fuel consumption characterization.  

 

Table 3: Gaseous Emissions Analyzer Information [27] 

Analyzer Principle Component Range (ppm) 

Horiba FIA-725A 
Flame ionization 

detector 

THC 
Range 1: ~750 

Range 2: ~5000 

CH4 
Range 1: ~100 

Range 2: ~5000 

Horiba CLA 720MA 
Chemi-luminescence 

detector 
NOX 

Range 1: ~500 

Range 2: ~750 

Horiba CLA 720A 
Chemi-luminescence 

detector 
NO 

Range 1: ~500 

Range 2: ~750 

Horiba AIA - 722 Infrared detector 

CO2 
Range 1: ~5% 

Range 2: ~20% 

CO 
Range 1: ~1500 

Range 2: ~5000 

Each of these analyzers listed in Table 3 is calibrated using standard calibration gases and is set to a 

range appropriate to the emissions from the test engine.  Calibration occurs at the beginning of the 
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test program, or when zero and span checks show that a drift over 2% has occurred. In all cases the 

requirements of 40 CFR Part 1065 are followed. Analyzer drift is monitored and recorded between 

test runs. Data from the exhaust analyzers, sampling trains, double dilution tunnel, and the engine 

are acquired and archived at 10 Hz. The exhaust gas measurement system conforms to 40 CFR 

§1065.145 and §1065.205. Gaseous emissions analyzers conform to 40 CFR §1065.145 and 

§1065.170 [25, 26].  

.  
Figure 31: Horiba bag sampling unit for batch analysis [27] 

  
(A) (B) 

Figure 32:  Horiba® MEXA unit for gaseous analysis (A), and CAFEE 

particulate sampling system (B); all are part of the Title 40 CFR, Part 1065 

compliant emissions measurement system installed with the light-duty 

chassis dynamometer. [27] 
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3.6 Fuel Economy and Energy Calculations 

The fuel economy results were calculated using equations based on the Society of Automotive 

Engineers (SAE) J1711 guidelines [30]. The energy consumed by each torque producing powertrain 

component was first calculated. The electric energy consumed by the electric motor in Wh/km was 

calculated by analyzing the change between the initial SOC and final SOC of the energy storage 

system (ESS) over a drive cycle to find the amount of battery pack energy lost in Ah. This value is 

then multiplied by the nominal pack voltage of 340 volts and divided by the total distanced traveled 

to find the ESS energy used per kilometer. Equation (35) outlines this process where 𝐸𝐶𝐸𝑆𝑆 is the 

ESS electric energy consumed and 𝐸𝑆𝑆𝑃𝑒𝑎𝑘𝐶𝑎𝑝 is the ESS peak pack capacity (39.2 Ah). 

 
𝐸𝐶𝐸𝑆𝑆 = (

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑂𝐶 − 𝐹𝑖𝑛𝑎𝑙𝑆𝑂𝐶

100
) ∗ 𝐸𝑆𝑆𝑃𝑒𝑎𝑘𝐶𝑎𝑝 ∗ 340𝑉 ∗

1

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑
 (35) 

 

The fuel energy consumed was calculated by taking the product of the total fuel consumed over the 

drive cycle in grams and multiplying by the specific energy density of the fuel used (fuel density of 

E85 is 7.96 Wh/g [31]) and dividing by the distanced traveled to obtain the fuel energy used per 

kilometer. Equation (36) outlines this process where 𝐸𝐶𝐹𝑢𝑒𝑙 is the fuel energy consumed. 

 
𝐸𝐶𝐹𝑢𝑒𝑙𝐸85 =

𝐹𝑢𝑒𝑙𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑜𝑓𝐸85 ∗ 7.96𝑊ℎ/𝑔

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑
 (36) 

 

Because this is a hybrid-electric vehicle capable of sustaining battery SOC with engine power, a 

correction factor is then applied to the fuel energy consumed to account for the conversion of fuel 

energy to electric energy, or charging events. This was done by taking the sum of the fuel energy 

consumed and the electric energy consumed applied with a conversion factor. The conversion factor 
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used in this analysis is 0.25 as it is the standard for SAE J1711 [30]. This process is outlined in 

Equation (37) where 𝐸𝐶𝐹𝑢𝑒𝑙,𝑆𝑂𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 is the SOC corrected fuel energy consumed. 

 𝐸𝐶𝐹𝑢𝑒𝑙𝐸85,𝑆𝑂𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐸𝐶𝐹𝑢𝑒𝑙 + 𝐸𝐶𝐸𝑆𝑆 ∗ 0.25 (37) 

 

The total energy consumption is then found by adding the SOC corrected fuel energy consumed and 

the ESS electric energy consumed. The vehicle fuel economy in mpgge is then found through 

Equation (38) where 𝐿𝐻𝑉𝐸10 is the lower heating value of E10, or gasoline, in Wh/gal [32]. 

 
𝐹𝐸𝑉𝑒ℎ =

1

𝐸𝐶𝐹𝑢𝑒𝑙𝐸85,𝑆𝑂𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 + 𝐸𝐶𝐸𝑆𝑆
∗ 𝐿𝐻𝑉𝐸10 (38) 

 

The fuel economy of the engine in mpg was calculated from instantaneous fuel flow reported over 

CAN from the ECM by simply dividing the total miles traveled when the engine was on by the 

integration of the instantaneous fuel flow converted to gallons per second. Equation (39) shows the 

engine fuel economy calculation from fuel flow data where 𝐹𝐸𝐸𝑛𝑔,𝐼𝑛𝑠𝑡𝐹𝐹 is the engine fuel economy 

from instantaneous fuel flow. 

 
𝐹𝐸𝐸𝑛𝑔,𝐼𝑛𝑠𝑡𝐹𝐹 =

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑

∫ 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝐹𝑢𝑒𝑙𝐹𝑙𝑜𝑤𝑜𝑓𝐸85
 (39) 

 

A carbon balance was performed using Equation (40) [33] where 𝐹𝐸𝐸𝑛𝑔,𝐶𝐵 is the fuel economy of 

the engine from carbon balance, 𝐶𝐻𝐶 is the amount of HC emitted in grams, 𝐶𝐶𝑂 is the amount of 

CO emitted in grams, 𝐶𝐶𝑂2 is the amount of CO2 emitted in grams, and 𝐹𝐶𝐶𝐸85 is the fuel carbon 

content of E85 ethanol. 

 
𝐹𝐸𝐸𝑛𝑔,𝐶𝐵 = (

((0.817 ∗ 𝐶𝐻𝐶) + (0.429 ∗ 𝐶𝐶𝑂) + (0.273 ∗ 𝐶𝐶𝑂2))

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑
)

−1

∗ 𝐹𝐶𝐶𝐸85 (40) 
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CHAPTER 4: RESULTS AND SENSITIVITY ANALYSIS 

4.1 Calibration Process 

The process to calibrate the shift schedules was performed in an iterative fashion, alternating between 

SIL and VIL calibrations, as shown in Figure 33. Starting first in the SIL environment (1), the shift 

schedules were analyzed and verified at the system level before transferring to the VIL environment 

(2). This was done to decrease the risk of suboptimal shifts such as “gear-busyness” (frequent 

shifting), or a shift that could over-speed or under-speed the engine. In addition, an analysis of the 

time taken to execute the shift was included with the analysis of the fuel economy and vehicle energy 

consumption. Once the shift schedules were verified at the system level, the shift schedules were 

then tested in the VIL environment and the results are analyzed (1→2). If it was decided that that 

further refinement was required, the full vehicle model and shift schedule algorithm was updated 

with the collected data and then recalibrated in the SIL environment (2→1). If no further refinement 

was required, then the target for the shift schedules was achieved (2→3). Additionally, for the 

following sections the control algorithm utilized a target SOC of 35%. 

 
Figure 33: Calibration Environment Diagram 
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4.2 Resultant Shift Schedules 

The resultant SOC independent shift schedule is shown in Figure 34. The path each shift line takes 

follows the “s-shaped” trend of a generic shift schedule. At lower speeds and low APP, each line 

starts low and to the left. As either speed, APP, or both increase, the line starts to shift up and to the 

right creating the traditional “s-shape”.  If APP is held constant at 0%, or no driver accelerator pedal 

input, and the vehicle is increasing in speed, the shift schedule commands upshifts much sooner as 

decreasing the torque capacity of the engine at the wheels as not as much engine torque is demanded. 

Inversely, if APP is held constant at 100%, or wide-open throttle (WOT), upshifts occur much later 

to increase the torque capacity of the engine at the wheels longer to maximize the torque produced. 

The final resolution of this shift schedule is a 51x43 matrix with 2193 possible vehicle operating 

points where: APP = 0 to 100% in steps of 2% (51 steps) and vehicle speed = 0 to 131.25 kph in 

steps 3.125 kph (43 steps). 

 
 

Figure 34: SOC Independent Shift Schedule 
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The resultant SOC dependent shift schedule is illustrated by the change in the upshift lines and 

downshift lines 5% above and 5% below the target SOC in Figure 35 through Figure 38. The dotted 

lines represent the upshift/downshift lines at the target SOC, while the solid lines represent the 

deviated shift line. As stated in Section 3.3 Shift Schedule Generation, the shift schedule thresholds 

have moved further to the right and down as SOC deviates further below the target SOC and the shift 

schedule thresholds moving further to the left and up as SOC deviates further above the target SOC. 

The final resolution of this shift schedule is a 51x43x7 matrix with 15351 possible vehicle operating 

points where: APP = 0 to 100% in steps of 2% (51 steps), vehicle speed = 0 to 131.25 kph in steps 

3.125 kph (43 steps), and SOC = 30% to 40% in a variable step range of 30%, 32%, 34%, 35%, 

36%, 38%, and 40% (7 steps). The SOC dependent shift schedule in its entirety is shown in Appendix 

B: Shift Schedules.
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Figure 35: SOC Dependent Shift Schedule Upshift Lines, Target vs. 5% Below Target SOC 

Target SOC shift schedule indicated by dashed lines 

5% below target SOC indicated by solid lines 
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Figure 36: SOC Dependent Shift Schedule Downshift Lines, Target vs. 5% Below Target SOC 

Target SOC shift schedule indicated by dashed lines 

5% below target SOC indicated by solid lines 
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Figure 37: SOC Dependent Shift Schedule Upshift Lines, Target vs. 5% Above Target SOC 

Target SOC shift schedule indicated by dashed lines 

5% above target SOC indicated by solid lines 

NOTE: In this case, no movement of the upshift lines was deemed necessary by the code. 
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Figure 38: SOC Dependent Shift Schedule Downshift Lines, Target vs. 5% Above Target SOC 

Target SOC shift schedule indicated by dashed lines 

5% above target SOC indicated by solid lines 
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4.3 SIL Results 

The vehicle operating mode for the following tests was charge sustaining mode and the charge 

depleting mode of the vehicle is not considered in the analysis. The fuel economy and efficiency 

results for the SOC independent shift schedule and SOC dependent shift schedule with an initial 

SOC of 35% (the target SOC) are shown in Table 4. Due to lack of access to the 8L45 transmission’s 

source code, no SIL results were able to be obtained for the transmission stock shift schedule. The 

percentage difference of the efficiency and fuel economy results from both shift schedules were 

calculated using the SOC independent as a reference. This was done because the results are virtually 

identical in the SIL environment.  

Table 4: SIL Fuel Economy and Efficiency 

  Shift Schedule Used  

Parameter Unit 
SOC 

Independent 

SOC 

Dependent 

Percent 

Difference 

Initial SOC % 35 35 0.00 % 

Final SOC % 36.7 36.5 - 0.55 % 

Engine Fuel Economy mpg 17.3 17.4 + 0.57 % 

Engine Efficiency 

[Eqn (39)] 
% 28.6 28.7 + 0.35 % 

Motor Discharge Efficiency % 62.6 63.1 + 0.79 % 

Motor Charge Efficiency % 75.5 75.9 + 0.53 % 

Vehicle Fuel Economy  

[Eqn (38)] 
mpgge 23.8 24.0 + 0.83 % 

Vehicle Efficiency % 38.0 38.0 0.00 % 

The percentage difference between the two shift schedules favor the SOC dependent shift schedule 

as it performed slightly better than the SOC independent in all categories. The SOC dependent shift 
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schedule has a higher engine and vehicle fuel economies and a higher component efficiency over 

two iterations of the E&EC drive cycle. However, the differences are so minute that the SOC 

dependent shift schedule has no significant advantages over the SOC independent shift schedule. 

This is most likely due to the starting point of the initial SOC being the target SOC for the control 

algorithm. As previously discussed in Section 3.3 Shift Schedule Generation, the SOC dependent shift 

schedule is identical to the SOC independent shift schedule at the target SOC due to the method used 

to generate the shift schedules. If the SOC did not deviate from the target over the drive cycle very 

far, the alterations in the SOC dependent shift schedule’s shift lines would not be significant. 

Additional results from SIL testing are shown in Appendix C: Additional SIL Results. These results 

include engine speed, engine torque, fuel flow rate, SOC, vehicle speed, ESS current, ESS voltage, 

and transmission gear versus time as well as a summary table including and energy consumption and 

efficiency analysis. 

4.4 VIL Results 

Again, the vehicle operating mode for the following tests was charge sustaining mode and the charge 

depleting mode of the vehicle is not considered in the analysis. The VIL results were gathered from 

fuel economy and emissions testing on the light duty chassis dynamometer test cell at the CAFEE 

VETL located in Morgantown, West Virginia (see section 3.5 Testing and Validation Setup from 

more information). The emissions data was collected from the CAFEE Horiba equipment, while the 

instantaneous vehicle information was collected from the vehicle’s controller area network (CAN). 

The fuel economy and efficiency results for the SOC independent shift schedule, SOC dependent 

shift schedule, and stock transmission shift schedule are shown in Table 5. It should be noted that 

the engine efficiency, vehicle fuel economy, and vehicle efficiency values for all shift schedules have 
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increased from the SIL environment. This is due in part to inaccurately modeled drivetrain parasitic 

losses within the full vehicle model in the SIL environment.  

An example of this is the modeled drivetrain patristic losses of a Simscape torque converter between 

the modeled engine and transmission. The torque converter losses were added to the model in an 

attempt to increase the fidelity of the model to better represent the vehicle, but the system could not 

be properly calibrated from lack of understanding how the Simscape block functioned and 

insufficient time. The calibration of the torque converter was very rigid and sensitive, meaning a 

small change in the value within the block resulted in a massive change within the full vehicle model. 

Multiple components within the full vehicle model suffered the same issues and due to lack of 

necessary on-road testing and time constraints the full vehicle model was not calibrated to 

appropriately simulate the losses seen in the vehicle. Subsequently, the losses seen in the full vehicle 

model were actually greater than that of the vehicle.  

Also, it was noticed that during vehicle testing, the engine shut off periodically. This was due to the 

supervisory control algorithm deeming the SOC was too high. This behavior is illustrated in Figure 

28 at the points where the engine speed CAN signal goes to zero. A periodic engine shut down during 

was not witnessed during the SIL testing and may be the main contributor to why the engine 

efficiency, vehicle fuel economy, and vehicle efficiency values have increased in the VIL 

environment. However, the correlation between the shift schedules in each environment is still 

practicable. Additional vehicle CAN data from VIL testing is shown in Appendix D: Additional VIL 

Results. These results include engine speed, engine torque, fuel flow rate, SOC, vehicle speed, ESS 

current, ESS voltage, and transmission gear versus time as well as a summary table including and 

energy consumption and efficiency analysis. 
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Table 5: VIL Fuel Economy and Efficiency 

  Shift Schedule Used 

Parameter Unit 
SOC 

Independent 

SOC 

Dependent 

Stock 

Transmission 

Initial SOC % 38 38 38.5 

Final SOC % 38 38.5 38 

Engine Fuel Economy 

[Eqn (39)] 
mpg 18.0 18.5 14.6 

Engine Efficiency % 35.8 36.1 33.7 

Motor Discharge Efficiency % 70.4 66.3 72.1 

Motor Charge Efficiency % 83.0 83.9 81.4 

Vehicle Fuel Economy 

[Eqn (38)] 
mpgge 34.8 35.3 33.6 

Vehicle Efficiency % 48.0 47.9 47.7 
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Figure 39: Engine Shut-offs During VIL Testing 

 

Engine shut-offs indicated by red arrow.  
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In addition to calculating the engine fuel economy from the instantaneous fuel flow, the engine fuel 

economy was also calculated by carbon balancing, to permit a comparison between the two. The 

total emissions in grams from CO, CO2, and HC as well as the distance traveled with the engine on 

and the total distance traveled are shown in Table 6. The SOC dependent shift schedule significantly 

reduced the amount of CO2 emissions produced from both the SOC independent shift schedule by 

approximately 16% and the stock transmission shift schedule by approximately 7.5%. This indicated 

that the SOC dependent shift schedule allowed the high voltage batteries to charge more quickly 

allowing the engine to shut off sooner, resulting in less emissions produced over the cycle. Additional 

emission data collected is shown in Appendix D: Additional VIL Results. 

Table 6: Total Emissions and Distance Traveled During VIL Testing 

Shift Schedule Used 

Total Emissions (g) 
Distance Traveled 

(mi) 

CO CO2 HC NOx 
Engine 

On 
Total 

SOC Independent 18.1 8978.2 2.6 0.37 21.3 28.9 

SOC Dependent 19.2 7736.2 2.8 0.09 21.9 28.8 

Stock Transmission 31.8 8328.4 2.3 0.11 18.0 28.9 

 

The resulting engine fuel economy calculations from carbon balancing and the deviation from the 

instantaneous fuel consumption engine fuel economy are shown in Table 7. The carbon balanced 

fuel economy is roughly the same as the instantaneous fuel consumption fuel economy for all shift 

schedules apart from the SOC independent shift schedule. The SOC independent shift schedule 
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carbon balance fuel economy shows a decrease in mpg by 21.6% from the instantaneous fuel 

consumption fuel economy.  

Table 7: Engine Fuel Economy − Instantaneous Fuel Consumption and 

Carbon Balance Comparison 

Shift Schedule Used 

Engine Fuel Economy (mpg) 

Instantaneous Fuel 

Consumption 

[Eqn (39)] 

Carbon Balance 

[Eqn (40)] 
Percent Difference 

SOC Independent 18.0 14.8 - 21.6 % 

SOC Dependent 18.5 17.7 - 4.5 % 

Stock Transmission 14.6 13.4 - 9.0 % 

 

Because the trend in fuel economy numbers of instantaneous fuel consumption from SIL to VIL are 

consistent and within the fuel flow uncertainty of 3% [34], it was suspected that there was an error 

in the modal emission data collected, namely the CO2 emissions analyzer. However, upon inspection 

of the CO2 emission rate and the percent error of the emission data analyzers [26], it was clear that 

the tailpipe continuous CO2 emissions were higher during the SOC independent test than the SOC 

independent test as shown in Figure 40 and Figure 41. Figure 40 shows the continuous CO2 emission 

rates of between the two tests and  Figure 41 shows the cumulative sum of the CO2 emissions. The 

estimation of the percent error of the emissions data analyzers is impractical due to the number of 

independent sensors in the system and was not readily available. CAFEE uses the standard percent 

error of emissions data collection given by CFR Part 1065 [26] of approximately 2.24%. The percent 

error values for the emission data analyzers given by CAFEE can be found in Appendix A: 

Component Data.  
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Figure 40: CO2 Emission Rates of SOC Independent and SOC Dependent 

Shift Schedules 

 

Figure 41: CO2 Emissions Cumulative Sum of SOC Independent and SOC 
Dependent Shift Schedules 
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The discrepancy between the carbon balance and instantaneous fuel consumption does not appear to 

be the CO2 emission data analyzer. Inspection of the continuous CO2 emissions data does not show 

any obvious anomalies as shown in Figure 40 and Figure 41 despite the fact that the CO2 emissions 

collected from the SOC dependent test are lower. It is conceivable that the behavior of the ECM 

changed due to a change in the fuel composition of the E85 after refueling the vehicle between tests. 

Figure 42 shows the ECM reported ethanol fuel composition of the SOC independent and SOC 

dependent tests. During the SOC dependent test, the reported fuel composition trend is clearly 

decreasing. This is due to the ECM re-learning the ethanol fuel composition after the vehicle was 

refilled. In flexible fuel vehicles, the ECM uses the ethanol composition sensor to determine how 

the engine will behave. This may have resulted in the lower emissions during the SOC dependent 

test. Additionally, the change in behavior of the ECM from a different fuel composition may have 

affected the reported instantaneous fuel consumption which would explain the large difference in 

fuel economy during the SOC independent test. The above analysis describes a possible solution, 

but however is still inconclusive. To definitively conclude the cause of the discrepancy, multiple 

executions of the same test would need to be performed and compare the vehicle data gathered to 

determine the vehicle’s behavior.  
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Figure 42: Ethanol Fuel Composition of SOC Independent and SOC 

Dependent Shift Schedules 

Because the results from the SOC independent shift schedule and SOC dependent shift schedule had 

few differences, a more in-depth comparison was performed. The metrics of this analysis were the 

vehicle energy consumption, engine fuel economy, vehicle fuel economy and the frequency of 

engine speed locations. The frequency of engine speed locations metric is how often the engine speed 

visited a particular speed region. For the following tables in this section, the percent difference is 

calculated using the SOC independent shift schedule results as a reference. Table 8 compares energy 

consumed over the cycle for each shift schedule. From an energy consumption perspective, the SOC 

dependent shift schedule performed nearly 0.5% better than the SOC independent shift schedule, as 

measured by the decrease in the vehicle energy consumed. Additional energy consumption data from 

VIL testing is shown in Appendix D: Additional VIL Results. 
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Table 8: Energy Consumption Comparison 

Parameter Unit 

Shift Schedule Used 
Percent 

Difference SOC 

Independent 

SOC 

Dependent 

Engine Fuel Energy Consumed kJ/km 2364.6 2357.7 - 0.29 % 

Motor Electric Energy Consumed kJ/km 618.8 611.7 - 1.16 % 

Vehicle Energy Consumed kJ/km 2983.4 2969.4 - 0.47 % 

 

 The fuel economy results for both the engine and the vehicle are shown in Table 9. The SOC 

dependent shift schedule improved the engine fuel economy over the cycle by nearly 2.8% and 

improved the overall vehicle fuel economy by over 1.4%. 

Table 9: Fuel Economy Comparison 

Parameter Unit 

Shift Schedule Used 
Percent 

Difference SOC 

Independent 

SOC 

Dependent 

Engine Fuel Economy 

[Eqn (39)] 
mpg 18.0 18.5 + 2.78 % 

Vehicle Fuel Economy 

[Eqn (38)] 
mpgge 34.8 35.3 + 1.42 % 

 

The transmission has no direct influence on torque production from the engine; however, it can 

control the engine speed that will deliver the specified torque. As stated previously, each shift 

schedule was designed to place the engine in a more efficient region to produce the torque necessary 

to meet the driver torque demand. For the LEA 4-cylinder engine used in this vehicle, the most 

efficient speed region for the engine to produce torque occurs approximately between 1600 rpm and 

2200 rpm. The torque versus speed points overlaid on the engine efficiency map for the SOC 
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independent shift schedule is shown in Figure 43 as an example to show the max engine efficiency 

range. The torque versus speed efficiency map results from VIL testing are located in Appendix D: 

Additional VIL Results. 

 

Figure 43: SOC Independent Engine Torque and Speed Efficiency Plot 

Table 10 shows the number of times the engine speed was placed in the most efficient region over 

the drive cycle as a percentage of total engine speed data points for each shift schedule. The engine 

speed from CAN data was discretized into eight categories from 0 rpm to 7000 rpm, where the bolded 

row of 2000 rpm represents the most efficient speed region of the engine. While each shift schedule 

was optimized to place the engine in the most efficient region, the SOC dependent shift schedule 

was more successful in this endeavor by placing the engine in the most efficient region (2000 rpm 

category) 1.2% more than the SOC independent shift schedule, as seen in Table 10. The increase of 

efficient engine speed region placement yielded an increase of engine efficiency by 0.6% from the 

SOC independent shift schedule. 
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Table 10: Engine Speed Placement and Efficiency Comparison 

Parameter Unit 

 Shift Schedule Used 
Percent 

Difference  SOC 

Independent 

SOC 

Dependent 

Percentage of Engine 

Speed Placement 
% 

@ 0 rpm 30.5 30.0 - 0.5 % 

@ 1000 rpm 12.8 12.0 - 0.8 % 

@ 2000 rpm 51.9 53.1 + 1.2 % 

@ 3000 rpm 4.2 4.4 + 0.2 % 

@ 4000 rpm 0.5 0.3 - 0.2 % 

@ 5000 rpm 0 0.2 + 0.2 % 

@ 6000 rpm 0 0 0.0 % 

@ 7000 rpm 0 0 0.0 % 

Engine Efficiency at 

Max Engine Speed 

Placement 

% 36.3 36.9 + 0.6 % 

 

Shown in Figure 44 and Figure 45 are the number of occurrences of where the engine speed was 

placed for the commanded gear during the drive cycle rounded to the nearest thousand as well as the 

average engine efficiency at that point for both the SOC independent shift schedule and SOC 

dependent shift schedule respectively. These figures serve as a visual representation of the data 

shown in Table 10. In Figure 45, there is an outlier in the efficiency calculation due to a discontinuity 

in the received CAN data.
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Figure 44: SOC Independent Shift Schedule − Engine Efficiency and Engine Speed Occurrences vs. Time 

Max Efficiency = 36.2% 

Max Percentage of Speed 

Placement = 51.9% 
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Figure 45: SOC Dependent Shift Schedule − Engine Efficiency and Engine Speed Occurrences vs. Time 

Max Efficiency = 36.9% 

Discontinuity 

from CAN 

Data 

Max Percentage of Speed 

Placement = 53.1% 
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4.5 Sensitivity Analysis 

To perform a more in-depth study of how the SOC dependent shift schedule impacts the performance 

as the SOC changes, a sensitivity analysis was performed by changing the initial SOC of the 

simulation in the SIL environment to explore more of the shift schedule. The results were obtained 

from the vehicle model in the SIL environment at three different initial SOC settings while the target 

SOC was kept constant: 1) at 5% below the target SOC, 2) at 5% above the target SOC, and 3) at the 

target SOC. Note, the results obtained for case 3) will be identical to the results obtained in 4.3 SIL 

Results and were used as the baseline for the sensitivity analysis. The control algorithm utilized a 

target SOC of 35%, leading to an SOC of the 30% and 40% for the first and second cases above, 

respectively. 

The resultant commanded gear from the SOC dependent shift schedule from each case over the drive 

cycle is shown in Figure 46 with black representing an initial SOC of 35%, blue representing and 

initial SOC of 30%, and red indicating an initial SOC of 40%. Where the lines get clipped at the 

upper portion of the graph is where the transmission was in neutral and should be ignored.  
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Figure 46: SOC Dependent Shift Schedule Gear Commands with Varying 

Initial SOC 

As seen in the figure, there is very little difference between the commanded gears if the initial SOC 

is changed. However, there are subtle differences when zoomed in, notably towards the beginning 

of the simulation. Figure 47 is an enhanced image of Figure 46 between times of 60 seconds and 220 

seconds of the simulation indicated on Figure 46 by Area 1. In this figure, the command gear at an 

initial SOC of 30% is more distinguishable from the gear commands at the initial SOC of 35%. 

Transmission in 

Neutral 

Area 1 
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When the initial SOC is set at 30%, the SOC dependent shift schedule upshifted later in the 

simulation during vehicle accelerations. Similarly, the SOC dependent shift schedule downshifted 

sooner during the vehicle decelerations. These trends coincide with the basic premise of the SOC 

dependent shift schedule when the SOC is below the target SOC; a lower gear supplies more engine 

torque to the wheels and to the high voltage batteries. However, this late upshifting and early 

downshifting only occurred at these three points in the beginning of the simulation. 

 

Figure 47: Commanded Gear Enhanced Area 1 

Once the high voltage batteries have charged enough to be above the target SOC, the SOC dependent 

shift schedule attempted to minimize the engine torque at the wheels to conserve fuel. However, no 

occurrences of this were found during SIL testing, indicating that the SOC dependent shift schedule’s 

Late Upshift 

Early Downshift 
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calibratable minimum amperage rates discussed in Section 3.3 Shift Schedule Generation are too 

strict. 

The resultant trends of the final SOC, engine fuel economy, engine efficiency, motor discharging 

efficiency, motor charging efficiency, vehicle fuel economy, and vehicle efficiency are summarized 

in Table 11 and Table 12 and shown visually in Figure 48 through Figure 54. The results show that 

the impact of varying the initial SOC with the SOC dependent shift schedule is small because the 

shift schedule could not be used to its full potential. In order to explore more of the SOC dependent 

shift schedule, the initial SOC must be changed; this is in addition to varying the inputs of APP and 

vehicle speed which can be done by varying drive cycles. Due to time limitations this was not 

performed. However, some trends should be noted. The engine fuel economy, for example, has a 

slight upward trend as the initial SOC increases. This is primarily due to the basic concept within the 

supervisory control algorithm: if SOC is above the target SOC, use the engine less and the electric 

motor more; if SOC is below the target SOC, use the engine more and the electric motor to charge. 

However, these trends may not be a result of the shift schedule used but rather the torque split 

algorithm that was developed for the vehicle [19]. Additional results from SIL testing for the 

sensitivity analysis are also shown in Appendix C: Additional SIL Results. These results include 

engine speed, engine torque, fuel flow rate, SOC, vehicle speed, ESS current, ESS voltage, and 

transmission gear versus time as well as a summary table including and energy consumption and 

efficiency analysis. 
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Table 11: Sensitivity Analysis of 5% Below Target Summary Table 

Parameter Unit 

Initial SOC of 

35% 

(@ Target) 

Initial SOC of 

30% 

(5% < Target) 

Percent 

Difference 

Final SOC % 36.5 36.7 + 0.5 % 

Engine Fuel Economy 

[Eqn (39)] 
mpg 17.4 16.7 - 4.2 % 

Engine Efficiency % 28.7 28.9 + 0.7 % 

Motor Discharge Efficiency % 63.1 62.4 - 1.1 % 

Motor Charge Efficiency % 75.9 76.5 + 0.8 % 

Vehicle Fuel Economy 

[Eqn (38)] 
mpgge 24.0 23.0 - 4.4 % 

Vehicle Efficiency % 38.0 38.7 + 1.8 % 

Table 12: Sensitivity Analysis of 5% Above Target Summary Table 

Parameter Unit 

Initial SOC of 

35% 

(@ Target) 

Initial SOC of 

40% 

(5% > Target) 

Percent 

Difference 

Final SOC % 36.5 36.5 0.0 % 

Engine Fuel Economy 

[Eqn (39)] 
mpg 17.4 18.2 + 4.4 % 

Engine Efficiency % 28.7 28.3 - 1.4 % 

Motor Discharge Efficiency % 63.1 64.4 + 2.0 % 

Motor Charge Efficiency % 75.9 74.4 - 2.0 % 

Vehicle Fuel Economy 

[Eqn (38)] 
mpgge 24.0 25.1 + 4.4 % 

Vehicle Efficiency % 38.0 37.8 - 0.5 % 
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Figure 48: Final SOC vs. Initial SOC of SOC Dependent 

Shift Schedule 

 

Figure 49: Engine Fuel Economy vs. Initial SOC of SOC 

Dependent Shift Schedule 

 

Figure 50: Average Engine Efficiency vs. Initial SOC of 

SOC Dependent Shift Schedule 

 

Figure 51: Average Motor Discharging Efficiency vs. 

Initial SOC of SOC Dependent Shift Schedule 
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Figure 52: Average Motor Discharging Efficiency vs. 

Initial SOC of SOC Dependent Shift Schedule 

 

Figure 53: Vehicle Fuel Economy vs. Initial SOC of SOC 

Dependent Shift Schedule 

 

Figure 54: Average Vehicle Efficiency vs. Initial SOC of 

SOC Dependent Shift Schedule 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

In conclusion, the objective of this research was the generation and sensitivity analysis of two hybrid 

shift schedules for a transmission in a position 3 (P3) parallel hybrid-electric vehicle with the 

objectives of minimizing energy consumption and increasing vehicle fuel economy while reducing 

emissions. A literature review was performed on previous work on the development and 

optimization of shift schedules. The literature found showed many optimization techniques for 

existing shift schedules and other non-linear systems such as dynamic programming. However, 

nothing was uncovered in the topic generating a shift schedule generation that adapts with deviations 

of high voltage battery state of charge (SOC) or generation a of shift schedule in general. Due to the 

lack of shift schedule generation methods found, two types of transmission shift schedules were 

generated, calibrated, and then compared for a P3 parallel hybrid-electric vehicle using an exhaustive 

search coupled with a fitness function to evaluate all possible vehicle operating points. The two shift 

schedules that were generated were a traditional two-parameter shift schedule SOC independent shift 

schedule) that operates as a function of the driver’s accelerator position and the vehicle’s speed, and 

a three-parameter shift schedule (SOC dependent shift schedule) that also adapts to fluctuations in 

the state of charge of the high voltage batteries.  

To create the shift schedules, first, a gear validation was performed using vehicle torque capacity 

and vehicle speed as the boundary conditions. Then an exhaustive search was coupled with a fitness 

function to evaluate all possible vehicle operating points of the most “fit” gear for that operating 

point. The metrics used for evaluating the fitness included engine power loss and overall vehicle 

efficiency. The shift schedule generated from the maximum fitness evaluated for each vehicle 
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operating point generated the two-parameter shift schedule, or SOC independent shift schedule. To 

create the SOC dependent shift schedule, the SOC independent shift schedule was used as the 

foundation for the target SOC. This foundation was altered based on a calibratable minimum 

amperage rate needed for a given SOC to shift the upshift and downshift lines of the SOC 

independent shift schedule. Thus, creating the SOC dependent shift schedule. 

The shift schedules were then tested and analyzed in the software-in-the-loop (SIL) environment and 

vehicle-in-the-loop (VIL) environment. The results showed that both generated shift schedules 

improved the engine fuel economy, vehicle fuel economy, and overall vehicle energy consumption 

of the vehicle from the stock 8L45 automatic transmission shift schedule for a production 2016 

Chevrolet Camaro. However, when the generated shift schedules were compared to each other 

neither had significant improvements over the other.  

The sensitivity analysis performed on the SOC dependent shift schedule in the SIL environment 

consisted of running the EcoCAR 3 emissions and energy consumption (E&EC) drive cycle while 

varying the initial SOC from 30%, 35%, and 40%. The results indicated that the commanded gear 

from the SOC dependent shift schedule rarely varied in each case. At the beginning of the simulation 

during the initial SOC at 30% case was the only time a difference could be found within the SOC 

dependent shift schedule. After the torque split algorithm stabilized and sustained the target SOC, 

the SOC axis of the SOC dependent shift schedule contributed very little. The summary results for 

the sensitivity analysis yielded similar outcomings netting on average a 2% deviation as the initial 

SOC was varied. This is in part due to the lack of exploration of the SOC dependent shift schedule’s 

full potential. In order to thoroughly analyze this shift schedule, the drive cycle must be varied to 

change the accelerator pedal position (APP) and vehicle along with the initial SOC. 
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While the SOC dependent shift schedule performed slightly better than the SOC independent shift 

schedule according to the results gathered, the SOC dependent shift schedule will take up more 

processing power during vehicle operation due to the 3-dimensional interpolation it performs. 

Because the hybrid supervisory controller, or HSC, used has more processing power than a typical 

vehicle electronic control unit, or ECU, this issue was never experienced. The performance of these 

two shift schedules could be further investigated by comparing the HSC ‘s processing overhead over 

a drive cycle executed with each shift schedule. However, the indistinguishable differences between 

the two shift schedules warrants further investigation into the generation and calibration of the SOC 

dependent shift schedule. 

Another recommendation is the optimization method of the shift schedule. The optimization method 

was a heuristic one of iterative SIL and VIL tests coupled with good engineering sense. This was 

done because the shift schedules also had to be generated and compared, to form a baseline 

measurement in order to determine which method was superior.  

Further optimization of the selected shift schedule could be more adequately performed through use 

of dynamic programming similar to the research done by Shen, et al. [13]. Based on the analyses 

performed, the SOC dependent shift warrants further research to be optimized.
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APPENDIX A: COMPONENT DATA 

Table A-1: Parker GVM 210-200S General Specifications [35] 

Motor Inverter Battery IQ Limit 
ID 

Limit 

Moto 

Over-speed  

Break 

Speed 

Torque 

Limit  

Parker 

GVM 

210-200S 

Rinehart 

PM150DX 
320 V 636 A 400 A 8000 rpm 3700 rpm 412 Nm 

 

Table A-2: 8-Speed 8L45 Automatic Transmission Gear Specifications [36] 

Gear Gear Ratio 

First 4.62 

Second 3.04 

Third 2.07 

Fourth 1.66 

Fifth 1.26 

Sixth 1.00 

Seventh 0.85 

Eighth 0.66 

Reverse 3.93 
 

Table A-3: 2.4 L Ecotec LEA Engine General Specifications [37] 

Engine 

Orientation 

Compression 

Ratio 
Fuel System Horsepower Torque 

Transverse 11.2:1 Direct Inject 
182 hp  

(136 kW) 

172 lb-ft 

(233 Nm) 
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Table A-4: Vehicle Specifications 

Curb 

Weight 

Torque 

Split 

Frontal 

Area 

Wheel 

Base 
Track 

Rear 

Differential 

Ratio 

Mid-

Differential 

Ratio 

Tire Radius 

1859 kg 
0%F 

100% R 
2.154 m2 2.84 m 1.65 m 2.77 2.52 0.34 m 

 

 

 

Figure A 1: Percent Error of CAFEE Emissions Data Analyzers
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APPENDIX B: SHIFT SCHEDULES 

 

 

 

Figure B-1: SOC Independent Shift Schedule and Shift Schedule at Target SOC of SOC Dependent Shift Schedule 
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Figure B-2: Shift Schedule 1% Below Target SOC of SOC Dependent Shift Schedule 
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Figure B-3: Shift Schedule 3% Below Target SOC of SOC Dependent Shift Schedule 
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Figure B-4: Shift Schedule 5% Below Target SOC of SOC Dependent Shift Schedule 
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Figure B-5: Shift Schedule 1% Above Target SOC of SOC Dependent Shift Schedule 
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Figure B-6: Shift Schedule 3% Above Target SOC of SOC Dependent Shift Schedule 
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Figure B-7: Shift Schedule 5% Above Target SOC of SOC Dependent Shift Schedule
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APPENDIX C: ADDITIONAL SIL RESULTS 

 

Table C-1: SOC Independent Shift Schedule SIL Results – Initial SOC 30% 

Parameter Unit Value 

Total Drive Distance mi 28.2 

Total Drive Time s 2609 

Average Driving Speed mph 39.0 

Total Fuel Consumed gal 1.7 

Initial Battery SOC % 30.0 

Final Battery SOC % 36.7 

Total Battery DC Energy Consumed kWh -0.82 

Fuel Energy Consumed Wh/km 579.0 

SOC Corrected Fuel Energy Consumed Wh/km 860.6 

Vehicle Fuel Economy mpgge 23.0 

Engine Fuel Economy mpg 16.6 

Engine Energy Consumed MJ 156.5 

Engine Energy Produced MJ 49.4 

Motor Energy Consumed MJ 24.1 

Motor Energy Produced MJ 20.3 

Average Energy Efficiency % 28.9 

Average Motor Charging Efficiency % 76.1 

Average Motor Discharging Efficiency % 62.0 

Overall Vehicle Efficiency % 38.6 
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Figure C-1: SOC Independent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, and Engine Torque vs. Time – Initial SOC 30% 
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Figure C-2: SOC Independent Shift Schedule Vehicle Speed, SOC, Battery Current, and Battery Voltage vs. Time – Initial SOC 30% 
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Figure C-3: SOC Independent Shift Schedule Vehicle Speed, SOC, and Transmission Gear vs. Time – Initial SOC 30% 
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Figure C-4: SOC Independent Shift Schedule Vehicle Speed, APP, and Transmission Gear vs. Time – Initial SOC 30% 
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Figure C-5: SOC Independent Shift Schedule Torque and Speed Engine Efficiency Plot – Initial SOC 30% 
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Figure C-6: SOC Independent Shift Schedule Torque and Speed Motor Efficiency Plot – Initial SOC 30%
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Table C-2: SOC Independent Shift Schedule SIL Results – Initial SOC 35% 

Parameter Unit Value 

Total Drive Distance mi 28.2 

Total Drive Time s 2609 

Average Driving Speed mph 39.0 

Total Fuel Consumed gal 1.6 

Initial Battery SOC % 35.0 

Final Battery SOC % 36.7 

Total Battery DC Energy Consumed kWh -0.16 

Fuel Energy Consumed Wh/km 556.1 

SOC Corrected Fuel Energy Consumed Wh/km 826.6 

Vehicle Fuel Economy mpgge 23.8 

Engine Fuel Economy mpg 17.3 

Engine Energy Consumed MJ 150.3 

Engine Energy Produced MJ 46.9 

Motor Energy Consumed MJ 22.7 

Motor Energy Produced MJ 18.9 

Average Energy Efficiency % 28.6 

Average Motor Charging Efficiency % 75.5 

Average Motor Discharging Efficiency % 62.6 

Overall Vehicle Efficiency % 38.0 
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Figure C-7: SOC Independent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, and Engine Torque vs. Time – Initial SOC 35% 
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Figure C-8: SOC Independent Shift Schedule Vehicle Speed, SOC, Battery Current, and Battery Voltage vs. Time – Initial SOC 35% 
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Figure C-9: SOC Independent Shift Schedule Vehicle Speed, SOC, and Transmission Gear vs. Time – Initial SOC 35% 
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Figure C-10: SOC Independent Shift Schedule Vehicle Speed, APP, and Transmission Gear vs. Time – Initial SOC 35% 
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Figure C-11: SOC Independent Shift Schedule Torque and Speed Engine Efficiency Plot – Initial SOC 35% 
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Figure C-12: SOC Independent Shift Schedule Torque and Speed Motor Efficiency Plot – Initial SOC 35%
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Table C-3: SOC Independent Shift Schedule SIL Results – Initial SOC 40% 

Parameter Unit Value 

Total Drive Distance mi 28.2 

Total Drive Time s 2609 

Average Driving Speed mph 39.0 

Total Fuel Consumed gal 1.6 

Initial Battery SOC % 40.0 

Final Battery SOC % 36.7 

Total Battery DC Energy Consumed kWh 0.51 

Fuel Energy Consumed Wh/km 847.5 

SOC Corrected Fuel Energy Consumed Wh/km 1259.7 

Vehicle Fuel Economy mpgge 25.0 

Engine Fuel Economy mpg 18.1 

Engine Energy Consumed MJ 143.8 

Engine Energy Produced MJ 44.3 

Motor Energy Consumed MJ 22.1 

Motor Energy Produced MJ 18.4 

Average Energy Efficiency % 28.2 

Average Motor Charging Efficiency % 74.3 

Average Motor Discharging Efficiency % 64.7 

Overall Vehicle Efficiency % 37.8 
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Figure C-13: SOC Independent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, and Engine Torque vs. Time – Initial SOC 40% 
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Figure C-14: SOC Independent Shift Schedule Vehicle Speed, SOC, Battery Current, and Battery Voltage vs. Time – Initial SOC 40% 
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Figure C-15: SOC Independent Shift Schedule Vehicle Speed, SOC, and Transmission Gear vs. Time – Initial SOC 40% 
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Figure C-16: SOC Independent Shift Schedule Vehicle Speed, APP, and Transmission Gear vs. Time – Initial SOC 40% 
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Figure C-17: SOC Independent Shift Schedule Torque and Speed Engine Efficiency Plot – Initial SOC 40% 
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Figure C-18: SOC Independent Shift Schedule Torque and Speed Motor Efficiency Plot – Initial SOC 40%
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Table C-4: SOC Dependent Shift Schedule SIL Results – Initial SOC 30% 

Parameter Unit Value 

Total Drive Distance mi 28.2 

Total Drive Time s 2609 

Average Driving Speed mph 39.0 

Total Fuel Consumed gal 1.7 

Initial Battery SOC % 35.0 

Final Battery SOC % 36.7 

Total Battery DC Energy Consumed kWh -0.81 

Fuel Energy Consumed Wh/km 576.2 

SOC Corrected Fuel Energy Consumed Wh/km 856.3 

Vehicle Fuel Economy mpgge 23.0 

Engine Fuel Economy mpg 16.7 

Engine Energy Consumed MJ 155.8 

Engine Energy Produced MJ 49.6 

Motor Energy Consumed MJ 23.5 

Motor Energy Produced MJ 19.8 

Average Energy Efficiency % 28.9 

Average Motor Charging Efficiency % 76.5 

Average Motor Discharging Efficiency % 62.4 

Overall Vehicle Efficiency % 38.7 
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Figure C-19: SOC Dependent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, and Engine Torque vs. Time – Initial SOC 30% 
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Figure C-20: SOC Dependent Shift Schedule Vehicle Speed, SOC, Battery Current, and Battery Voltage vs. Time – Initial SOC 30% 
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Figure C-21: SOC Dependent Shift Schedule Vehicle Speed, SOC, and Transmission Gear vs. Time – Initial SOC 30% 
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Figure C-22: SOC Dependent Shift Schedule Vehicle Speed, APP, and Transmission Gear vs. Time – Initial SOC 30% 
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Figure C-23: SOC Dependent Shift Schedule Torque and Speed Engine Efficiency Plot – Initial SOC 30% 
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Figure C-24: SOC Dependent Shift Schedule Torque and Speed Motor Efficiency Plot – Initial SOC 30%



 

132 
 

Table C-5: SOC Dependent Shift Schedule SIL Results – Initial SOC 35% 

Parameter Unit Value 

Total Drive Distance mi 28.2 

Total Drive Time s 2609 

Average Driving Speed mph 39.0 

Total Fuel Consumed gal 1.6 

Initial Battery SOC % 35.0 

Final Battery SOC % 36.5 

Total Battery DC Energy Consumed kWh -0.13 

Fuel Energy Consumed Wh/km 553.5 

SOC Corrected Fuel Energy Consumed Wh/km 822.7 

Vehicle Fuel Economy mpgge 24.0 

Engine Fuel Economy mpg 17.4 

Engine Energy Consumed MJ 149.5 

Engine Energy Produced MJ 46.9 

Motor Energy Consumed MJ 22.0 

Motor Energy Produced MJ 18.3 

Average Energy Efficiency % 28.7 

Average Motor Charging Efficiency % 75.9 

Average Motor Discharging Efficiency % 63.1 

Overall Vehicle Efficiency % 38.0 
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Figure C-25: SOC Dependent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, and Engine Torque vs. Time – Initial SOC 35% 
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Figure C-26: SOC Dependent Shift Schedule Vehicle Speed, SOC, Battery Current, and Battery Voltage vs. Time – Initial SOC 35% 
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Figure C-27: SOC Dependent Shift Schedule Vehicle Speed, SOC, and Transmission Gear vs. Time – Initial SOC 35% 
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Figure C-28: SOC Dependent Shift Schedule Vehicle Speed, APP, and Transmission Gear vs. Time – Initial SOC 35% 
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Figure C-29: SOC Dependent Shift Schedule Torque and Speed Engine Efficiency Plot – Initial SOC 35% 
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Figure C-30: SOC Dependent Shift Schedule Torque and Speed Motor Efficiency Plot – Initial SOC 35%
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Table C-6: SOC Dependent Shift Schedule SIL Results – Initial SOC 40% 

Parameter Unit Value 

Total Drive Distance mi 28.2 

Total Drive Time s 2609 

Average Driving Speed mph 39.0 

Total Fuel Consumed gal 1.6 

Initial Battery SOC % 40.0 

Final Battery SOC % 36.5 

Total Battery DC Energy Consumed kWh 0.54 

Fuel Energy Consumed Wh/km 842.5 

SOC Corrected Fuel Energy Consumed Wh/km 1252.2 

Vehicle Fuel Economy mpgge 25.1 

Engine Fuel Economy mpg 18.2 

Engine Energy Consumed MJ 142.9 

Engine Energy Produced MJ 44.3 

Motor Energy Consumed MJ 21.4 

Motor Energy Produced MJ 17.8 

Average Energy Efficiency % 28.3 

Average Motor Charging Efficiency % 74.4 

Average Motor Discharging Efficiency % 64.4 

Overall Vehicle Efficiency % 37.8 
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Figure C-31: SOC Dependent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, and Engine Torque vs. Time – Initial SOC 40% 
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Figure C-32: SOC Dependent Shift Schedule Vehicle Speed, SOC, Battery Current, and Battery Voltage vs. Time – Initial SOC 40% 
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Figure C-33: SOC Dependent Shift Schedule Vehicle Speed, SOC, and Transmission Gear vs. Time – Initial SOC 40% 
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Figure C-34: SOC Dependent Shift Schedule Vehicle Speed, APP, and Transmission Gear vs. Time – Initial SOC 40% 
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Figure C-35: SOC Dependent Shift Schedule Torque and Speed Engine Efficiency Plot – Initial SOC 40% 
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Figure C-36: SOC Dependent Shift Schedule Torque and Speed Motor Efficiency Plot – Initial SOC 40%
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APPENDIX D: ADDITIONAL VIL RESULTS 

 
Table D-1: SOC Independent Shift Schedule VIL Results 

Parameter Unit Value 

Total Drive Distance mi 28.9 

Total Drive Time s 2423 

Average Driving Speed mph 42.9 

Total Fuel Consumed gal 1.2 

Initial Battery SOC % 38.0 

Final Battery SOC % 38.0 

Total Battery DC Energy Consumed kWh -0.17 

Fuel Energy Consumed Wh/km 398.1 

SOC Corrected Fuel Energy Consumed Wh/km 591.7 

Vehicle Fuel Economy mpgge 34.8 

Engine Fuel Economy mpg 18.0 

Engine Energy Consumed MJ 109.2 

Engine Energy Produced MJ 40.3 

Motor Energy Consumed MJ 28.6 

Motor Energy Produced MJ 25.8 

Average Energy Efficiency % 35.8 

Average Motor Charging Efficiency % 83.0 

Average Motor Discharging Efficiency % 70.4 

Overall Vehicle Efficiency % 48.0 
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Figure D-1: SOC Independent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, and Engine Torque vs. Time 
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Figure D-2: SOC Independent Shift Schedule Vehicle Speed, SOC, Battery Current, and Battery Voltage vs. Time 
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Figure D-3: SOC Independent Shift Schedule Vehicle Speed, SOC, and Transmission Gear vs. Time 
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Figure D-4: SOC Independent Shift Schedule Vehicle Speed, APP, and Transmission Gear vs. Time 



 

 
 

151 

 

 

Figure D-5: SOC Independent Shift Schedule Torque and Speed Engine Efficiency Plot 
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Figure D-6: SOC Independent Shift Schedule Torque and Speed Motor Efficiency Plot  
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Figure D-7: SOC Independent Shift Schedule CO, NOx, and HC Emission Rates 
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Figure D-8: SOC Independent Shift Schedule CO2 Emission Rate 
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Figure D-9: SOC Independent Shift Schedule CO, NOx, and HC Emissions Cumulative Sums 
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Figure D-10: SOC Independent Shift Schedule CO2 Emissions Cumulative Sum
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Table D-2: SOC Dependent Shift Schedule VIL Results 

Parameter Unit Value 

Total Drive Distance mi 28.8 

Total Drive Time s 2423 

Average Driving Speed mph 42.8 

Total Fuel Consumed gal 1.2 

Initial Battery SOC % 38 

Final Battery SOC % 38.5 

Total Battery DC Energy Consumed kWh -0.22 

Fuel Energy Consumed Wh/km 394.8 

SOC Corrected Fuel Energy Consumed Wh/km 586.8 

Vehicle Fuel Economy mpgge 35.3 

Engine Fuel Economy mpg 18.5 

Engine Energy Consumed MJ 108.9 

Engine Energy Produced MJ 40.3 

Motor Energy Consumed MJ 28.2 

Motor Energy Produced MJ 25.3 

Average Energy Efficiency % 36.1 

Average Motor Charging Efficiency % 83.9 

Average Motor Discharging Efficiency % 66.3 

Overall Vehicle Efficiency % 47.9 
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Figure D-11: SOC Dependent Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, and Engine Torque vs. Time 
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Figure D-12: SOC Dependent Shift Schedule Vehicle Speed, SOC, Battery Current, and Battery Voltage vs. Time 
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Figure D-13: SOC Dependent Shift Schedule Vehicle Speed, SOC, and Transmission Gear vs. Time 
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Figure D-14: SOC Dependent Shift Schedule Vehicle Speed, APP, and Transmission Gear vs. Time 



 

 
 

162 

 

 

Figure D-15: SOC Dependent Shift Schedule Torque and Speed Engine Efficiency Plot 
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Figure D-16: SOC Dependent Shift Schedule Torque and Speed Motor Efficiency Plot  
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Figure D-17: SOC Dependent Shift Schedule CO, NOx, and HC Emission Rates 
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Figure D-18: SOC Dependent Shift Schedule CO2 Emission Rate 
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Figure D-19: SOC Dependent Shift Schedule CO, NOx, and HC Emissions Cumulative Sums 
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Figure D-20: SOC Dependent Shift Schedule CO2 Emissions Cumulative Sum
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Table D-3: Stock Transmission Shift Schedule VIL Results 

Parameter Unit Value 

Total Drive Distance mi 28.9 

Total Drive Time s 2425 

Average Driving Speed mph 42.8 

Total Fuel Consumed gal 1.2 

Initial Battery SOC % 38.5 

Final Battery SOC % 38 

Total Battery DC Energy Consumed kWh -0.004 

Fuel Energy Consumed Wh/km 416.8 

SOC Corrected Fuel Energy Consumed Wh/km 619.4 

Vehicle Fuel Economy mpgge 33.6 

Engine Fuel Economy mpg 14.6 

Engine Energy Consumed MJ 112.9 

Engine Energy Produced MJ 40.5 

Motor Energy Consumed MJ 31.9 

Motor Energy Produced MJ 28.6 

Average Energy Efficiency % 33.7 

Average Motor Charging Efficiency % 81.4 

Average Motor Discharging Efficiency % 72.1 

Overall Vehicle Efficiency % 47.7 
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Figure D-21: Stock Transmission Shift Schedule Vehicle Speed, Fuel Flow Rate, Engine Speed, and Engine Torque vs. Time 
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Figure D-22: Stock Transmission Shift Schedule Vehicle Speed, SOC, Battery Current, and Battery Voltage vs. Time 
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Figure D-23: Stock Transmission Shift Schedule Vehicle Speed, SOC, and Transmission Gear vs. Time 
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Figure D-24: Stock Transmission Shift Schedule Vehicle Speed, APP, and Transmission Gear vs. Time 
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Figure D-25: Stock Transmission Shift Schedule Torque and Speed Engine Efficiency Plot 
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Figure D-26: Stock Transmission Shift Schedule Torque and Speed Motor Efficiency Plot  
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Figure D-27: Stock Transmission Shift Schedule CO, NOx, and HC Emission Rates 
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Figure D-28: Stock Transmission Shift Schedule CO2 Emission Rate 
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Figure D-29: Stock Transmission Shift Schedule CO, NOx, and HC Emissions Cumulative Sums 
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Figure D-30: Stock Transmission Shift Schedule CO2 Emissions Cumulative Sum 


	GENERATION AND SENSITIVITY ANALYSIS OF TRANSMISSION SHIFT SCHEDULE FOR HYBRID-ELECTRIC VEHICLE
	Recommended Citation

	Thesis

