14 research outputs found

    Development of Full Speed Range ACC with SiVIC, a virtual platform for ADAS Prototyping, test and evaluation

    Full text link
    LIVIC-IFSTTAR develops driving assistance services in order to improve the driving safety. These systems are tested on several real prototypes equipped with sensors and perception, decision and control modules. But tests on real prototypes are not always available, effectively some hardware architectures could be too expensive to implement, scenario may lead to hazardous situations. Moreover, lots of reasons could lead to the inability to obtain both sensors and ground truth data for ADAS evaluation. However, safety applications must be tested in order to guaranty their reliability. For this task, simulation appears as a good alternative to the real prototyping and testing stages. In this context, the simulation must provide the same opportunities as reality, by providing all the necessary data to develop and to prototype different types of ADAS based on local or extended environment perception. The sensor data provided by simulation must be as noised and imperfect as those obtained with real sensors. To address this issue, the SiVIC platform has been developed; it provides a virtual road environment including realistic dynamic models of mobile entities (vehicles), realistic sensors, and sensors for ground truth. To test real embedded applications, an interconnection has been developed between SiVIC and third party applications (ie. RTMaps). In this way, the prototyped application can be directly embedded in real prototypes in order to test it in real conditions. A Full Speed Range ACC application is presented in this paper to illustrate the capabilities and the functionalities of this virtual platform

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system

    A Research Approach to Study Human Factors in Transportation Systems

    Get PDF
    This thesis proposes a new general-purpose methodology to conduct studies on Human Factors in Transportation Systems.A full-fledged setup and implementation of the methodology is provided for validation. This setup, which uses real data to perform the simulation, includes a traffic micro-simulator, a driving simulator, a traffic control centre and an Advanced Driver Assistance System, providing an experimentation laboratory, in which empirical research can be conducted. The communication between the simulation components is made interchangeably using both the European standard Datex II and the SUMO TraCI protocols.Several usage scenarios are implemented and indications on how to extend the methodology to accommodate different requirements are provided; as to prove its usability and feasibility. A simple Human Factors study was conducted using the implemented setup. This study uses naturalistc data and evaluates the network performance gain by using an Advanced Driver Assistance System that recommends new routes to drivers in congestion situations and provides a final validation of the methodology.In conclusion, the methodology has been proved usable to effectively conduct Human Factors research and also to develop Advanced Driver Assistance Systems applications in a controlled, yet realistic environment.This thesis proposes a new general-purpose methodology to conduct studies on Human Factors in Transportation Systems.A full-fledged setup and implementation of the methodology is provided for validation. This setup, which uses real data to perform the simulation, includes a traffic micro-simulator, a driving simulator, a traffic control centre and an Advanced Driver Assistance System, providing an experimentation laboratory, in which empirical research can be conducted. The communication between the simulation components is made interchangeably using both the European standard Datex II and the SUMO TraCI protocols.Several usage scenarios are implemented and indications on how to extend the methodology to accommodate different requirements are provided; as to prove its usability and feasibility. A simple Human Factors study was conducted using the implemented setup. This study uses naturalistc data and evaluates the network performance gain by using an Advanced Driver Assistance System that recommends new routes to drivers in congestion situations and provides a final validation of the methodology.In conclusion, the methodology has been proved usable to effectively conduct Human Factors research and also to develop Advanced Driver Assistance Systems applications in a controlled, yet realistic environment

    Ergo, SMIRK is Safe: A Safety Case for a Machine Learning Component in a Pedestrian Automatic Emergency Brake System

    Full text link
    Integration of Machine Learning (ML) components in critical applications introduces novel challenges for software certification and verification. New safety standards and technical guidelines are under development to support the safety of ML-based systems, e.g., ISO 21448 SOTIF for the automotive domain and the Assurance of Machine Learning for use in Autonomous Systems (AMLAS) framework. SOTIF and AMLAS provide high-level guidance but the details must be chiseled out for each specific case. We report results from an industry-academia collaboration on safety assurance of SMIRK, an ML-based pedestrian automatic emergency braking demonstrator running in an industry-grade simulator. We present the outcome of applying AMLAS on SMIRK for a minimalistic operational design domain, i.e., a complete safety case for its integrated ML-based component. Finally, we report lessons learned and provide both SMIRK and the safety case under an open-source licence for the research community to reuse.Comment: Under revie

    Dynamic Trajectory Generation Using Continuous-Curvature Algorithms for Door to Door Assistance Vehicles

    Get PDF
    International audienceIn this paper, an algorithm for dynamic path generation in urban environments is presented, taking into account structural and sudden changes in straight and bend segments (e.g. roundabouts and intersections). The results present some improvements in path generation (previously hand plotted) considering parametric equations and continuous-curvature algorithms, which guarantees a comfortable lateral acceleration. This work is focused on smooth and safe path generation using road and obstacle detection information. Finally, some simulation results show a good performance of the algorithm using different ranges of urban curves. The main contribution is an Intelligent Trajectory Generator, which considers infrastructure and vehicle information. This method is recently used in the framework of the project CityMobil2, for urban autonomous guidance of Cybercars

    Virtual sensor models for real-time applications

    Get PDF

    Trajectory planning based on adaptive model predictive control: Study of the performance of an autonomous vehicle in critical highway scenarios

    Get PDF
    Increasing automation in automotive industry is an important contribution to overcome many of the major societal challenges. However, testing and validating a highly autonomous vehicle is one of the biggest obstacles to the deployment of such vehicles, since they rely on data-driven and real-time sensors, actuators, complex algorithms, machine learning systems, and powerful processors to execute software, and they must be proven to be reliable and safe. For this reason, the verification, validation and testing (VVT) of autonomous vehicles is gaining interest and attention among the scientific community and there has been a number of significant efforts in this field. VVT helps developers and testers to determine any hidden faults, increasing systems confidence in safety, security, functional analysis, and in the ability to integrate autonomous prototypes into existing road networks. Other stakeholders like higher-management, public authorities and the public are also crucial to complete the VTT process. As autonomous vehicles require hundreds of millions of kilometers of testing driven on public roads before vehicle certification, simulations are playing a key role as they allow the simulation tools to virtually test millions of real-life scenarios, increasing safety and reducing costs, time and the need for physical road tests. In this study, a literature review is conducted to classify approaches for the VVT and an existing simulation tool is used to implement an autonomous driving system. The system will be characterized from the point of view of its performance in some critical highway scenarios.O aumento da automação na indústria automotiva é uma importante contribuição para superar muitos dos principais desafios da sociedade. No entanto, testar e validar um veículo altamente autónomo é um dos maiores obstáculos para a implantação de tais veículos, uma vez que eles contam com sensores, atuadores, algoritmos complexos, sistemas de aprendizagem de máquina e processadores potentes para executar softwares em tempo real, e devem ser comprovadamente confiáveis e seguros. Por esta razão, a verificação, validação e teste (VVT) de veículos autónomos está a ganhar interesse e atenção entre a comunidade científica e tem havido uma série de esforços significativos neste campo. A VVT ajuda os desenvolvedores e testadores a determinar quaisquer falhas ocultas, aumentando a confiança dos sistemas na segurança, proteção, análise funcional e na capacidade de integrar protótipos autónomos em redes rodoviárias existentes. Outras partes interessadas, como a alta administração, autoridades públicas e o público também são cruciais para concluir o processo de VTT. Como os veículos autónomos exigem centenas de milhões de quilómetros de testes conduzidos em vias públicas antes da certificação do veículo, as simulações estão a desempenhar cada vez mais um papel fundamental, pois permitem que as ferramentas de simulação testem virtualmente milhões de cenários da vida real, aumentando a segurança e reduzindo custos, tempo e necessidade de testes físicos em estrada. Neste estudo, é realizada uma revisão da literatura para classificar abordagens para a VVT e uma ferramenta de simulação existente é usada para implementar um sistema de direção autónoma. O sistema é caracterizado do ponto de vista do seu desempenho em alguns cenários críticos de autoestrad

    Techniques mixtes de positionnement et la navigation véhiculaire

    Get PDF
    Les véhicules intelligents sont des véhicules dotés de systèmes permettant d’alerter le conducteur ou de prendre une décision en cas de danger imminent. Une condition sine qua non pour garantir un bon fonctionnement de ces systèmes est d’avoir une localisation précise du véhicule. En tirant profit des capteurs embarqués dans un véhicule, on peut exploiter la redondance de l’information afin d’obtenir un positionnement fiable. Cette information de localisation peut être alors utilisée dans un système d’aide à la conduite. Cette étude va se focaliser sur deux aspects. Dans un premier temps, un effort sera porté sur l'aspect localisation précise du véhicule lors de son déplacement. Il s’agit d’utiliser des approches bayésiennes pour fusionner les informations provenant de systèmes hétérogènes de navigation telle que le GPS et une centrale inertielle (INS) auxquels sera rajoutée ensuite l'odométrie. L'accent sera mis sur la précision des résultats. Ensuite, nous allons nous mettre en œuvre un régulateur de vitesse intelligent pour couvrir l’aspect navigation d’un véhicule

    Fuel consumption mathematical models for road vehicle – a review

    Get PDF
    Since the invention of the automobile, engineers and researchers alike have worked towards improving the automobile in various ways from safety, handling and performance to efficiency and durability. As technology in the IT and computing sector evolves into a very helpful tool for detailed calculations, an advantage and possibility for detailed models is there to assist with very detailed assessment on fuel and energy consumption on today’s vehicles. This review is meant to explore in detail what has been achieved by years of joint research through advanced modelling and the following factors such as emissions software and how these models play an important role in sustainable road transport for the masses. The mathematical models also display varying characteristics where models are created striking a balance between complexity, accuracy, and the number of variables to be included
    corecore