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Abstract 

 

Increasing automation in automotive industry is an important contribution to 

overcome many of the major societal challenges. However, testing and validating a highly 

autonomous vehicle is one of the biggest obstacles to the deployment of such vehicles, 

since they rely on data-driven and real-time sensors, actuators, complex algorithms, 

machine learning systems, and powerful processors to execute software, and they must 

be proven to be reliable and safe.  

For this reason, the verification, validation and testing (VVT) of autonomous 

vehicles is gaining interest and attention among the scientific community and there has 

been a number of significant efforts in this field. VVT helps developers and testers to 

determine any hidden faults, increasing systems confidence in safety, security, functional 

analysis, and in the ability to integrate autonomous prototypes into existing road 

networks. Other stakeholders like higher-management, public authorities and the public 

are also crucial to complete the VTT process. 

As autonomous vehicles require hundreds of millions of kilometers of testing 

driven on public roads before vehicle certification, simulations are playing a key role as 

they allow the simulation tools to virtually test millions of real-life scenarios, increasing 

safety and reducing costs, time and the need for physical road tests. 

In this study, a literature review is conducted to classify approaches for the VVT 

and an existing simulation tool is used to implement an autonomous driving system. The 

system will be characterized from the point of view of its performance in some critical 

highway scenarios. 
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Resumo 

 

O aumento da automação na indústria automotiva é uma importante 

contribuição para superar muitos dos principais desafios da sociedade. No entanto, 

testar e validar um veículo altamente autónomo é um dos maiores obstáculos para a 

implantação de tais veículos, uma vez que eles contam com sensores, atuadores, 

algoritmos complexos, sistemas de aprendizagem de máquina e processadores potentes 

para executar softwares em tempo real, e devem ser comprovadamente confiáveis e 

seguros. 

Por esta razão, a verificação, validação e teste (VVT) de veículos autónomos está 

a ganhar interesse e atenção entre a comunidade científica e tem havido uma série de 

esforços significativos neste campo. A VVT ajuda os desenvolvedores e testadores a 

determinar quaisquer falhas ocultas, aumentando a confiança dos sistemas na 

segurança, proteção, análise funcional e na capacidade de integrar protótipos autónomos 

em redes rodoviárias existentes. Outras partes interessadas, como a alta administração, 

autoridades públicas e o público também são cruciais para concluir o processo de VTT. 

Como os veículos autónomos exigem centenas de milhões de quilómetros de 

testes conduzidos em vias públicas antes da certificação do veículo, as simulações estão 

a desempenhar cada vez mais um papel fundamental, pois permitem que as ferramentas 

de simulação testem virtualmente milhões de cenários da vida real, aumentando a 

segurança e reduzindo custos, tempo e necessidade de testes físicos em estrada. 

Neste estudo, é realizada uma revisão da literatura para classificar abordagens 

para a VVT e uma ferramenta de simulação existente é usada para implementar um 

sistema de direção autónoma. O sistema é caracterizado do ponto de vista do seu 

desempenho em alguns cenários críticos de autoestrada. 
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Chapter 1  

Introduction 

 

Autonomous Vehicles (AVs) is an emerging topic which increasingly gained 

attention in recent years, with significant efforts and high-performance resources 

invested by academia and companies around the world. The focus of the automotive 

industry has shifted from Advanced Driver Assistance Systems (ADAS), classified by the 

Society of Automotive Engineers (SAE) as levels 1 and 2 of automation, to Autonomous 

Driving (AD) of SAE level 3+ [1]. 

Indeed, autonomous vehicles use AD that enables the vehicle to respond to external 

conditions by itself based on intelligent agents, such as deep learning. The architecture 

of these innovative systems is becoming progressively more complex at both hardware 

and software level which increases the ability of the AV functions. Due to technological 

advances in these fields, AVs are capable of sensing its environment (through a multitude 

of sensors), making decisions, and moving safely with reduced or even without human 

interaction [2]. 

In this way, AD is the next frontier of the automotive industry and the future of the 

new road vehicles with the potential to spark a revolution in the transportation sector. 

Indeed, AVs may lead to disruptive changes in urban mobility and city design. In 

addition, its adoption can improve traffic safety, significantly reducing accident rates, 

reduce traffic congestion and solve economic problems. In summary, AVs may pave the 

way to mitigate human errors and, at the same time, it may provide a mean to optimize 

the driving process [3].  

However, the impressive results achieved by the AV technology challenges the 

adoption of adequate models (new methods) for verifying, validating and testing those 

safety-critical systems to ensure their safety and reliability, since a failure in their 

systems can result in loss of life. AVs must be trained and tested to respond to all driving 

situations, and testing millions of scenarios extends their development lifecycles. In 

addition, due to the lack of automation, the software verification and validation (V&V) 

tends to swallow up 40% to 50% of the total development cost [4], which means that 

testing these systems is a complex, time-consuming, and cost-intensive task. 

All of this represents an obstacle in the deployment of these vehicles and that's why 

despite the significant progress made in the last decade, only AV prototypes without 

safety drivers are being tested. Furthermore, tech companies and automotive 

manufacturers only test these types of vehicles using Operational Design Domains 
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(ODDs), where the vehicle can operate safely in autonomous mode. An ODD defines 

when, where, and under what conditions an autonomous vehicle is designed to operate, 

including geographic, environmental, traffic-related, and temporal limitations, that is, 

the ODD comprises the static and dynamic attributes within which an Av is designed to 

function safely. 

In contrast to traditional test methods, simulations are undoubtedly the most 

practical and effective way to test AV systems. Real-world testing requires a minimum 

total driving distance of 100.8 million km with costs over 100 million euros, and because 

simulation is conducted in a virtual environment, it is faster (reduces time to market) 

and less expensive to test millions of driving situations [5]. In addition, simulation 

enables to test the AVs in dangerous situations, failure modes and based on conditions 

that rarely happen in the real traffic scenarios. Besides that, as simulations are performed 

since early stages of the systems development lifecycle, from the design phase, it is easier 

and cheaper to find and to fix defects, reducing the number of errors in the AV functions. 

The V-Model is widely used as basis for the development and integration of 

electric/electronic systems, such as autonomous vehicles.  

Virtual driving tests are performed through x-in-the-loop simulation which 

comprises model-in-the-loop simulation, software-in-the-loop simulation, hardware-in-

the-loop simulation and vehicle-in-the-loop simulation, generally performed 

sequentially. From hardware-in-the-loop simulations, testing includes real physical 

hardware as electronic control units, which are distributed all over the vehicle and 

interconnected through different types of communication networks such as the 

controller area networks (CANs) [6].  

As soon as AVs reach higher levels of connectivity, a network of autonomous vehicles 

capable of communicating with each other (vehicle-to-vehicle communication), with 

infrastructures (vehicle-to-infrastructure communication) and with pedestrians 

(vehicle-to-pedestrian communication), has the potential to face the challenges of the 

new cities. 
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1.1  Objective 

 
The main objective of this dissertation is the proposal of an autonomous vehicle 

model. For the development of the model, a literature review is carried out on the 

technology of autonomous and connected vehicles and on how to test these systems, in 

order to acquire sufficient knowledge of this matter. In addition, the simulation of the 

model aims to analyze the performance of the model (driverless vehicle) through critical 

highway scenarios, and to analyze the decision making made by the model in each 

scenario. 

 

 
1.2  Structure 

 
The present work comprises six chapters, whose organization is described as follows. 

In chapter 1, Introduction, an introduction to the topic is made, where the objectives 

and structure of the dissertation are presented. 

In chapter 2, Connected and Autonomous vehicles, a definition of autonomous and 

connected vehicles is presented, as well as all the technology that involves them. In the 

autonomous vehicles subsection, the several functions for autonomous driving, the 

architecture of an autonomous vehicle and the artificial intelligence used in the software 

of these vehicles are introduced. In the connected vehicles subsection, the different types 

of communication networks are identified and the types of connectivity available for 

CAVs are characterized. 

In chapter 3, Verification, Validation and Testing, the methods used in the 

autonomous vehicle industry to test their prototypes are introduced. In this chapter, a 

survey on the techniques and tools used to verify, validate and test the CAVs is also 

presented. 

In chapter 4, Trajectory planning based on adaptive model predictive control: Study 

of the performance of an autonomous vehicle in critical highway scenarios, the detailed 

description of the project is presented: the vehicle dynamics, the planning system and 

the control system.  

In chapter 5, Results and discussion, the results obtained are exposed and analyzed. 

The analyzed results are discussed in detail. 

Chapter 6 concludes the dissertation and indicates possible future works and 

developments around this topic. 
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Chapter 2  

Connected and autonomous vehicles 

 

The introduction of Connected and Autonomous Vehicles (CAVs) will bring 

changes in the driving environment as we know it. Connected and autonomous vehicles 

incorporate many different technologies: all the technology of Autonomous Vehicles 

(AVs), which allows vehicles to operate without human intervention, and all the 

technology of Connected Vehicles (CVs), which allows autonomous vehicles to be 

connected with each other and with everything around them. 

 

2.1 Autonomous vehicles 

 
Due to the rapid development of artificial intelligence, its application to the 

automotive industry has drawn wide attention all over the world. Vehicles are no longer 

mechanical systems only, but intelligent systems, where the complexity of the embedded 

systems in today’s vehicles is increasing. 

Autonomous vehicles are cyber-physical systems in which at least some aspect of 

a safety-critical control function (e.g., steering, throttle, or braking) occurs without direct 

driver input. Cyber-physical systems, like AVs, are complex heterogeneous distributed 

systems, which consists of large number of sensors and actuators connected to a pool of 

computing nodes [7], as shown in Figure 2.1. 

 

                   

 

Figure 2.1 - Cyber-physical system of an autonomous vehicle (adapted from [7]). 
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Through the fusion of information from sensors, computing nodes and actuators 

(connected through several communications), the AV system perceives and understands 

changes in the physical environment, analyzes the impacts of such changes, and makes 

intelligent decisions to respond to the changes by issuing commands to control the 

physical objects in the system, moving the car safely on the road. Such decisions in 

conventional vehicles are made by humans and according to the World Health 

Organization1, 1.35 million people die every year on roads where 94% of the accidents are 

caused by human error (e.g., distracted driving, impaired driving, speeding, driver 

inexperience, driver fatigue) [8]. 

In this perspective, autonomous vehicles are expected to reduce the number of 

traffic accidents and fatalities by removing the most common cause of traffic accidents 

(human errors), as well as improving driving efficiency, such as travel time reduction by 

reducing traffic congestion and better parking possibilities, and improving the efficiency 

of energy and/or fuel consumption, increasing environmental sustainability. These 

social, economic and environmental benefits are the most wanted skills for the AV 

industry. 

 

 

2.1.1 Standards 

 

 
Providing guarantees about the behavior of safety-critical systems, as 

autonomous vehicles, is imperative and proper certifications are indispensable. Because 

these systems use advanced software to interact with the physical world, security and 

safety are primary concerns. In this way, the Society of Automotive Engineers (SAE), the 

International Organization for Standardization (ISO) and the International 

Electrotechnical Commission (IEC) are working on new and improved regulations for 

AV.  

The automotive industry follows its own international safety standard, which was 

designed especially for road vehicles: the well-established ISO 26262 standard2. 

Regarding the cybersecurity of road vehicles, the standards are relatively new (such as 

ISO/SAE 214343) since vehicles with advanced electronic technology are still an evolving 

reality.  

 
1 https://www.who.int/data/gho/data/themes/road-safety 
2 https://www.iso.org/standard/68383.html 
3 https://www.iso.org/standard/70918.html 
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Besides that, as a result of reaching new levels of automation in modern vehicles, 

new taxonomies and definitions are needed. In this way the SAE International standard 

J30164 establishes a terminology for the levels of automation of road vehicles. 

Other important efforts in the automotive industry are in the development of the 

software architecture of an autonomous vehicle, in which the AUTOSAR standard5 is 

used, and in the quality management of that software, in which ASPICE standard is used. 

In addition to the standards presented here, there are several other standards for some 

particular functions (e.g., ISO 112706: Intelligent transport systems - Lane keeping 

assistance systems). 

 

 

A. SAE J3014 

In 2014, SAE International designed a standard for consumers - the SAE J3016 

(“Levels of Driving Automation”), which is the Cybersecurity Guidebook for Cyber-

Physical Vehicle Systems and sets the foundation for cybersecurity standards. The 

standard provides a common taxonomy and definitions (e.g., dynamic driving task, 

driving mode, request to intervene) for automated driving with full descriptions and 

examples for each level, as illustrated in Figure 2.2. The standard defines the six levels of 

driving automation, from SAE Level Zero (no automation) to SAE Level 5 (full vehicle 

autonomy) [9]. 

 

 

Figure 2.2- The SAE J3016 levels of driving automation chart, issued in 2014 [9]. 

 
4 https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic 
5 https://www.autosar.org/standards/ 
6 https://www.iso.org/committee/54706/x/catalogue/ 
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The automotive industry recently reached SAE levels 2 to 3 [10] and the SAE 

committee saw the need to explain more clearly each of the six levels and how they relate 

to increasing consumer safety and convenience. In this way, in 2018 SAE International 

unveiled the new visual chart for the standard (Figure 2.3). 

 

 

Figure 2.3 - The SAE J3016 levels of driving automation chart, updated in 20184. 

 

 

 

B. ISO 26262 

 Written specifically for automotive, the ISO 26262 (“Functional Safety: Road 

Vehicles”) is the international standard for the development of safety-critical electronic 

systems in the automotive industry and is based on the general IEC 61508 standard.  

IEC 61508 (“Functional Safety of Electrical/Electronic/Programmable Electronic 

(E/E/PE) Safety-related Systems”) is a generic functional safety standard for industry-

specific standards, especially for safety-critical industries, in the development of safety-

critical E/E/PE systems. The standard's main goal is to reduce the risk of failure to a 

tolerable level when safety functions fail. Therefore, it specifies an allowable frequency 

of dangerous failure (see Table 2.1) for each Safety Integrity Level (SIL). The SILs are a 

measurement of performance that correlate with the frequency and severity of the 

hazards [11], and comprise four levels where SIL 1 represents the lowest level of safety 

integrity (least dependable) and SIL 4 represents the highest (most dependable).  
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Table 2.1 - Safety integrity levels of the IEC 61508 standard (adapted from [12]). 
 

Safety Integrity Level 
 

Probability of Failure (on demand) 

SIL 4 ≥10-5 to <10-4 

SIL 3 ≥10-4 to <10-3 

SIL 2 ≥10-3 to <10-2 

SIL 1 ≥10-2 to <10-1 

 

There are several industry-specific adaptations of this generic safety standard 

(IEC 61508 related standards), as shown in Figure 2.4, in which ISO 26262 has 

specifications for the sector of electrical/electronic (E/E) systems within road vehicles. 

 

 

 

Figure 2.4 - IEC 61508 and related standards (adapted from [11]). 

 

ISO 26262 is a risk-based safety standard where the goal is to ensure safety 

throughout the lifecycle of automotive systems, covering all of the functional safety 

aspects of the entire development process (requirements specification, design, 

implementation, verification and validation). 

The first edition of the standard was published in 2011 (ISO 26262:2011) and it 

was limited to passenger cars. In 2018 was updated and the second edition was released 

(ISO 26262:2018) with an extended scope from passenger cars to all road vehicles except 

mopeds, including the requirements and the supporting processes for trucks, buses, 

trailers and semi-trailers [13]. As shown in Figure 2.5, the first edition of ISO 26262 

consists of ten parts, nine normative parts and one guideline. In the second edition, two 
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parts were added: part 11 (guideline) and part 12 (normative part) making a total of 

twelve parts, and some parts have been renamed: Part 7 was changed from “Production 

and operation” to “Production, operation, service and decommissioning” and Part 10 

changed from “Guideline” to “Guidelines”, as illustrated in Figure 2.6. 

 

 

Figure 2.5 - The ISO 26262:2011 structure [14]. 

 

 

Figure 2.6 - The ISO 26262:2018 structure7. 

 
7 https://semiengineering.com/iso-262622018-2nd-edition-what-changes/ 
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In both editions, the shaded “V”s represent the interconnection between parts 

since Part 3-7 is the ISO 26262 safety lifecycle and addresses specifically the hardware 

and the software development lifecycles. The second edition of the standard includes a 

new part (Part 3) defining motorcycles specific requirements in the safety lifecycle [13]. 

One of the key components of ISO 26262 is the Automotive Safety Integrity Level 

(ASIL) for risk classification. The ASILs range from ASIL A (represents the lowest risk 

level) to ASIL D (represents the highest risk level) and there is also the Quality 

Management (QM) level that indicates a risk level below than the ASIL A (there is no 

need to implement additional risk reduction measures) [14]. As illustrated in Figure 2.7, 

the parameters for the ASILs classification are based on three main classes: classes of 

severity (the type of injuries to the driver and passengers in an incident), classes of 

probability of exposure (how often the vehicle is exposed to the hazard in the operational 

scenario) and classes of controllability (how much the driver can do to prevent the injury) 

[15]. 

 

 

Figure 2.7 - Determination of an ASIL8. 

 

Each of these classes is divided into sub-classes. Severity has four classes ranging 

from “no injuries” (S0) to “life-threatening (survival uncertain), fatal injuries” (S3). 

Exposure has five classes covering the “incredible” (E0) to the “highly probability” (E4). 

Controllability has four classes ranging from “controllable in general” (C0) to “difficult 

to control or uncontrollable” (C3). All of the sub-classifications are analyzed and 

combined to determine the ASIL level [16]. 

 
8 https://www.aptiv.com/en/insights/article/what-is-asil-d 
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C. ISO/SAE 21434 

 One of the pillars in the development of safety-critical systems is security and the 

SAE J3061 standard emphasizes that safety cannot be guaranteed without securing the 

system. Some discussions during the development of ISO 26262 addressed this topic and 

the ISO 21434 (“Road vehicles: cybersecurity engineering”) is under development [17]. 

 SAE J3061 standard (“Cybersecurity Guidebook for Cyber-Physical Vehicle 

Systems”) provides the guiding principles for implementing a complete cybersecurity 

process into cyber-physical vehicle systems and is a predecessor of ISO/SAE 21434. The 

guidebook states that the new ISO/SAE 21434 standard requires an appropriate vehicle 

development lifecycle process for E/E systems within road vehicles – the ISO/SAE 21434 

standard uses the characteristic V-model workflow of ISO 26262 for product 

development [18]. SAE J3061 relates security and safety processes to each other, 

determining whether there are cybersecurity threats that can potentially lead to safety 

violations. However, ISO/SAE 21434 security process is decoupled from safety. 

In 2016, SAE International and ISO started a collaboration to develop joint 

standards and established four areas of common interest, where one of them is the 

automotive cybersecurity [17]. In this way, ISO/SAE 21434 standard introduces a set of 

guidelines for securing high-level processes in connected vehicles and is defined similarly 

to the structure described in ISO 26262 [19].  

ISO/SAE 21434 structure identifies the guidelines for cybersecurity processes at 

all stages of the vehicle's life cycle: cybersecurity process overview and 

interdependencies, continuous cybersecurity activities (continuous risk assessments and 

vulnerability management), risk assessment, concept phase (item definition and 

cybersecurity concepts), product development and post-development phases 

(production and security operations) and distributed cybersecurity activities [20], as 

illustrated in the Figure 2.8. 
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Figure 2.8 - The ISO/SAE 21434 standard structure [20]. 

 

 

D. AUTOSAR 

 Autonomous vehicles are extremely complex vehicles and part of that complexity 

involves the number of internal subsystems found within the vehicle's own electronic 

system. Modern vehicles have more than 100 electronic control units (ECUs) and each 

of them contains thousands of functions.  

AUTOSAR (AUTomotive Open System Architecture) is the most popular 

industrial standard in the automotive field for automotive E/E architectures, especially 

because one AUTOSAR application can be deployed on multiple ECUs. AUTOSAR 

establishes an open and standardized software architecture for software development of 

automotive ECUs with components to improve interoperability [21] – with the 

AUTOSAR, it is possible to develop the software independent from the ECU and this 

software can be transferred or used in different systems or ECUs.  

As is presented in Figure 2.9, the AUTOSAR architecture consists of three main 

layers of software: application layer, basic software layer and the runtime environment 
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layer. The application layer consists of software components that are mapped on the 

ECU. The interaction between them and between the application layer/basic software 

layer is routed through the runtime environment which is a middleware that provides a 

communication abstraction. The basic software is the standardized software layer and is 

necessary to run the functional part of the software as well as providing services for 

accessing the hardware layer [14]. 

 

 

Figure 2.9 - AUTOSAR reference structure [14]. 

 

 
As AUTOSAR is not a security standard, it cannot guarantee the security of the 

system by itself. 

 

E. ASPICE 

 Software development is in a constant state of improvement, especially in the 

automotive industry. In this way, the international ASPICE standard provides a 

framework for establishing and evaluating the processes required for the automotive 

software development.  

ASPICE represents a variant of the international standard developed by the ISO 

and IEC joint subcommittee: ISO/IEC 15504. The ISO/IEC 15504 standard (“SPICE - 

Software Process Improvement and Capability Determination”) represents an 
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international standard that establishes a framework to build evaluation processes and 

improve software development processes [22]. 

The Automotive SPICE (ASPICE) consists of a process assessment model and a 

process reference model. The process assessment model is used to perform the 

evaluation of the process capability (capability determination) on the development of 

automotive software and embedded systems. The process capability defines six levels 

(see Table 2.2) that constitute a rational way of progressing through improvement of the 

capability of any process [23]. 

 

Table 2.2 - Process Capability Levels [23]. 
 

Capability Levels 
 

Description 

Level 0:  

Incomplete process 

The process is not implemented or fails to achieve its 

process purpose. 

Level 1:  

Performed process 

The implemented process achieves its process purpose 

(however, there may be gaps). 

Level 2:  

Managed process 

The previously process is now implemented in a 

managed fashion (planned, monitored and adjusted) 

and its work products are appropriately established, 

controlled and maintained. 

Level 3:  

Established process 

The previously process is now implemented using a 

defined process that is capable of achieving its process 

outcomes. 

Level 4:  

Predictable process 

The previously process now operates predictively within 

defined limits to achieve its process outcomes. 

Quantitative management needs are identified, 

measurement data are collected and analyzed to identify 

assignable causes of variation. 

Level 5:  

Innovating process 

The previously process is now continually improved to 

respond to organizational change. 

 

 

ASPICE has its own process reference model (Figure 2.10) that describes the 

lifecycle of automotive electronic products with three different process, categorized as 

follows: Primary Life Cycle Processes, Organizational Life Cycle Processes and 

Supporting Life Cycle Processes and it is essential to assess the maturity level of these 

processes. ASPICE purpose is to provide a scheme for evaluating the capability of 

software processes and a path for their improvement (quality of the software refinement) 

[23].  
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Figure 2.10 - Automotive SPICE process reference model [23]. 

 
 
 
2.1.2 Evolution from ADAS to AD  

 
In recent years, there has been a worldwide demand for higher levels of 

automation and, therefore, huge progress has been made towards the development of 

automated driving technologies around the world [24].  

Automated driving is a driving enhanced by the existence of autonomous 

(sub)systems that support the driver (dedicated control) while he is in control of the 

vehicle or is able to timely get back in control of the vehicle. These (sub)systems are called 

Advanced Driving Support Systems (ADAS) and are positioned in SAE levels 1 and 2. On 

the other hand, the extreme end result of automated driving is autonomous driving (SAE 

Level 3+), where at this stage no human driver needs to be active in the control of the 

vehicle. An Autonomous Driving (AD) system is able to take the entire vehicle’s control 

and be in charge of driving the vehicle when it is authorized [25]. Indeed, the AD system 

is integrated in vehicles that are already equipped with several ADAS [26].  

Current progress in the development of ADAS and AD is based on a wide range 

of technological advances in the field of artificial intelligence (AI). More and more ADAS 

are entering the market to improve both safety and comfort by assisting the drivers in 

their driving task, and the continuous integration of these driver assistance systems 

enables vehicles to handle more and more traffic situations autonomously until they fully 
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reach autopilot operations (SAE level 5) - transition from assisted driving to fully 

autonomous driving [27], as shown in Figure 2.11.  

 

 

 

 

Figure 2.11 - From ADAS to AD. 

 

 

SAE levels 1 and 2 include assisted driving technologies, but they differ from each 

other according to the number of technologies working together simultaneously - SAE 

level 1 only can take control over one functionality at a time. At SAE levels 3, 4 and 5, the 

driving tasks are no longer performed by the human driver and are carried out by the 

automated system. While SAE level 2 vehicles require drivers to have at least fingertips 

in the wheel, SAE level 3 vehicles enable drivers to take their hands off the wheel and feet 

off the pedals in specific circumstances (conditional automation capabilities). SAE level 

4 vehicles provide full automation under most circumstances, and SAE level 5 vehicles 

provide full automation under all circumstances [28]. Some of these systems have not 

yet been fully embedded into commercial vehicles and, therefore, currently the highest 

level of automation available to the public is a SAE level 3. 

ADAS and AD extract useful information from various sensors, such as in-vehicle 

cameras and radars, which sense information from the outside world. On the one hand, 

ADAS use environment sensors to improve driving comfort and traffic safety by assisting 

the driver in recognizing and reacting to potentially dangerous traffic situations. On the 

other hand, AD systems, due to their complex architecture of advanced software and 

hardware components (in Section 2.1.4), use environment sensors to sense the 

surrounding environment, plan a path, and implement that path into concrete driving 

actions [29]. The interaction between human and machine (Human-Machine interface) 

lowers as the vehicle’s capability increases.  
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2.1.3 Artificial intelligence in automotive software 

 

 
Autonomous vehicles use AI systems that employ machine learning techniques, 

specifically deep learning, in order to make decisions that in conventional vehicles are 

taken by humans. Deep learning is becoming crucial for the development of automotive 

software for autonomous vehicles, since one of the main tasks of the autonomous driving 

is the detection and identification of objects in the surrounding environment. An 

autonomous vehicle needs to accurately detect cars, pedestrians, cyclists, road signs, and 

other objects in real-time in order to make the right control decisions that ensure safety 

[30].   

 

A. Deep learning 

Deep Learning (DL) is a branch of machine learning based on artificial neural 

networks with multiple layers between the input and output layers (deep neural 

networks). An Artificial Neural Network (ANN) is a computing system designed to mimic 

the human brain (biological neural networks) in information processing, which is 

capable of learning.  

 

Figure 2.12 - Deep neural network and characteristics of a neuron. 
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An ANN is a model based on a collection of connected nodes, called "artificial 

neurons", organized in layers. Depending on the number of existing layers in the model, 

the ANNs are classified from shallow neural networks (single or few hidden layers) to 

deep neural networks (multiple hidden layers). In an ANN, each artificial neuron (Figure 

2.12) has weighted inputs, an activation function (transfer function) and produces a 

single output which can be sent to multiple other neurons [31]. In autonomous vehicles 

the input neurons get activated from the AV sensors that perceive the environment, while 

the other neurons get activated from the previous neuron activations.  

An ANN can also be defined by the direction of the signal flow in the network, it can 

have a feedforward architecture, where the signals travel in one way (from input to 

output layer), or have a feedback architecture, where the signals can travel in both 

directions [31]. To learn, a neural network needs to be trained. The learning process can 

be conducted through supervised learning, unsupervised learning and reinforcement 

learning (Table 2.3). In automotive industry, the neural networks are widely trained 

using supervised learning, however, and depending on the application, some automotive 

applications combine supervised training with reinforcement training [30].  

 

Table 2.3 - ANN learning processes [32]. 
 

Supervised Learning 
 

Unsupervised Learning 
 

Reinforcement Learning 
 

The training dataset contains 
labelled inputs paired with 

desired outputs (known 
outputs), where the ANN use 

the training data to learn a 
link between the input and the 

outputs. Thus, training data 
can be generalized, and the 

neural network can be used on 
new data with some accuracy. 

 

 
 

The training dataset is only 
based on a group of unlabeled 

input data (there is no fixed 
output variables). The model 

learns from the data, discovers 
patterns and features from it 

and returns the output. 

 
 
 
 
 
 

This strategy is built on 
observation, where the training 
model uses an agent that learns 
from experience using a trial-
and-error approach in a set 

environment. The ANN makes a 
decision based on feedback from 

the agent's own actions and if 
the feedback is negative, the 

network adjusts its weights to be 
able to make a different required 

decision the next time. 

 

Classification algorithms: 
these processes help 

categorizing the training 
dataset into classes based on 

different parameters, 
predicting the target class for 

each category of the data. 
Predict and classify discrete 

values. 

Regression algorithms: these 
processes help finding the 

relationship between variables 
by predict the outcome of an 

event based on the 
relationship between the 

variables obtained from the 
dataset. Predict continuous 

values. 
 

 

 

 

Clustering algorithms: these 
processes help to classify 

unlabeled data sets, finding 
similarities in the training data 

and grouping similar data into a 
cluster group. 
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The software of autonomous vehicles is based on Deep Neural Networks (DNNs), 

which typically, are feedforward networks with many hidden layers and can be trained 

more in-depth to find patterns with high performance, even for complex nonlinear 

relationships [31]. Automotive applications can easily reach DNNs with 10 hidden layers 

and thousands of nodes, in which a large number of training datasets (images or other 

sensor data) are used to train the neural network of the vehicle [30]. 

 
 

B. Convolutional neural networks 

Nowadays, Convolutional Neural Networks (CNNs) are considered as the most 

widely used DNN in autonomous vehicle software for object detection, since the 

architecture of a CNN is inspired by the organization of the visual cortex of the human 

brain. CNNs are one of the best learning algorithms for understanding image content, 

including image classification and segmentation, object detection and video processing. 

When it comes to image processing, traditional DNNs (multilayer neural networks) 

have become unfeasible, because an image is a matrix of pixel values and each input in 

the DNN corresponds to a pixel in the image. In this way, the number of weights (input 

dependent) rapidly becomes unmanageable for large images and difficulties arise while 

training the network. CNNs can be used to solve the problem for larger inputs such as 

high-resolution images. 

Convolutional neural networks are feedforward DNNs that manage data in the form 

of arrays that take into account spatial dependencies in an image (input) [30]. CNNs are 

also composed of layers, but those layers are not fully connected as in the traditional 

DNNs. Convolutional networks can be divided in two processes: feature extraction 

process and classification process, where fully connected layers are only used in the 

classification process (Figure 2.13). CNNs alternate between convolutional layers (with 

activation functions) and pooling layers, followed by one or more fully connected layers 

at the end of the network that results in the output layer [33]. 

 

Figure 2.13 - CNNs processes9. 

 
9 https://developersbreach.com/convolution-neural-network-deep-learning/ 
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A convolutional layer (Figure 2.14) is composed of a set of convolutional kernels (also 

called filters) where each neuron acts as a kernel. Kernels are sets of weights (randomly 

generated vectors) that slide throughout the input image extracting different features 

from it and produce a feature map that is the output of the convolutional layer. Given the 

fewer number of parameters (due to weight sharing), convolution networks are more 

efficient to train [33]. Initial layers of convolution learn generic information and last 

layers learn more specific/complex features. 

 

 

Figure 2.14 - Convolutional layer of a CNN. 

 

 

After every convolutional layer, an activation function is deployed as a decision 

function that helps in learning patterns by adding non-linearity properties to the 

network. The most efficient function for CNNs is ReLU (Rectified Linear Unit) since it 

speeds up the network training [33]. 

A pooling layer (Figure 2.15) operates on each feature map to reduce the 

dimensionality of the network, reducing the number of parameters and computation in 

the network. This is possible because after features are extracted, their exact location 

becomes less important as long as its approximate position relative to others is 

preserved. The use of pooling operation also helps to extract a combination of features 

invariants to translational shifts and small distortions. The most commonly used pooling 

formulations in CNNs are the max pooling - which returns the maximum value from the 

portion of the image covered by the kernel - and the average pooling - which returns the 

average of all the values from the portion of the image covered by the kernel [33].  
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Figure 2.15 - Pooling layer of a CNN, through the two most used processes: max pooling and average 

pooling. 

 

The last layer of the features extraction process is the flatten layer, where after the 

final convolution layer, ReLU, and pooling layer the output feature map (matrix) is 

converted into a vector (one dimensional array). The output from the flatten layer is fed 

into a fully-connected layer. The flattened matrix goes through a fully connected layer to 

learn features and classify data. 

 

 

2.1.4 Architecture  

 
Due to technological advances in the field of artificial intelligence, Internet-of-

things (IoT) and cloud computing, AVs are able to learn and make intelligent decisions. 

The core competencies of an autonomous vehicle software are based on a multi-layer of 

Perception-Planning-Control algorithms, to identify objects, interpret situations, and 

make decisions when navigating on roads. To help the vehicle's software interact with 

the environment (collecting data from the environment and reacting to it), an 

autonomous vehicle makes use of hardware components such as sensors and actuators. 

  Autonomous vehicles use a combination of several on-board sensors that, by 

working together, provide a map of their surroundings and help to detect the speed and 

distance of nearby objects. These sensors activate the various actuators of the vehicle, 

which in turn, will generate the order to activate the physical movements in the vehicle, 

converting energy (often electrical, pneumatic, or hydraulic) into mechanical force.  
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Figure 2.16 presents the functional architecture of an autonomous vehicle, 

highlighting the interaction between the components of the vehicle's software and 

hardware. 

 

Figure 2.16 - General architecture of autonomous vehicles [34]. 

 

 
A. Perception system 

The perception layer provides the environment model (through the vehicle's sensors) 

and the vehicle localization (through vehicle's navigation system). The perception system 

collects information and extract relevant knowledge from the environment [35].  

The environment model is built through the perception of the driving environment, 

where data is acquired by gathering different information from through various on-board 

sensors and through the vehicular communications [34]. This environmental perception 

includes the identification of obstacles (e.g., other vehicles, pedestrians) and potential 

road hazards, the detection of traffic signs and road markings, and the categorization of 

all data through their semantic meaning [36]. In this layer, all the received outputs from 

the multiple sensors are combined (sensor fusion) to reduce the weaknesses of each 

sensor (Figure 2.17), where the limitations of any sensor (e.g., operating conditions, 

resolution, types of objects detectable) are potentially complemented by the strengths of 

another. By using a combination of sensors that work together, the system is able to 

create a complete and more reliable model of the surrounding environment that is far 

beyond the reach of individual sensors [37]. 
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Figure 2.17 - Strengths and weaknesses of vehicle sensors. 

 

This layer, in addition to providing the environment model, also provides the 

localization of the vehicle. Through the vehicle's navigation system, it is possible to 

calculate its global and local location, determining its position [35]. 

 

 

1) Vehicle's sensors 

Intelligent observability is one of the prerequisites for autonomous driving. The 

sensors are able to sense the external environment (e.g., through obstacle detection) and 

provide data to the vehicle's software in order to allow the vehicle to take actions on its 

own. Each of these technologies uses a different part of the electromagnetic spectrum to 

collect information. 

 

Ultrasonic sensor 

Ultrasonic sensors consist of a transmitter and a receiver, as shown in Figure 2.18, 

and are used to measure the distance to an object by sending high frequency sound waves 

(range of 20 kHz to 40 kHz). 

 

 

Figure 2.18 - Ultrasonic sensor scheme [38]. 
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Ultrasounds are based on the time-of-flight principle, measuring the time 

difference between the emission of a signal (sound wave) and its return to the sensor, 

after this signal is reflected by the object [39]. The distance can be calculated as follows: 

 

𝑑 =  𝑐 ∗  
∆𝑡

2
                                                       (2.1) 

 

Where 𝑑 is the distance to the object, 𝑐 is the speed of sound (Table 2.4), which 

depends on relative humidity (RH) and temperature (θ), and the ∆𝑡 is the time 

difference, which needs to be divided by 2 since the total time consist of the time of the 

emitted signal and the time of the received signal. 

 

Table 2.4 - Speed of sound in dry and humid air (adapted from [40]). 

 

θ (ºC) 

 

RH = 0 % 
Exact speed of sound (CE) Instantaneous speed of sound (CS) 

RH = 30 % RH = 100 % RH = 30 % RH = 100 % 

20 343.210 343.592 344.489 343.800 344.696 

30 349.015 349.721 351.392 350.180 351.824 

40 354.725 355.977 358.970 356.754 359.596 

50 360.344 362.481 367.677 363.581 368.213 

 

Ultrasonic sensors are robust and provide reliable distance data, regardless of 

environmental factors (for example, at night, with fog) and regardless of the object's color 

and type [39]. However, the range of these vehicle sensors is limited to less than 10 

meters, which means this sensors can only be used for nearby obstacle detection [41]. 

 

 

RADAR 

RADAR (Radio Detection And Ranging) is a detection system that uses radio 

waves to measure the position and velocity of objects relative to the vehicle, determining 

the range (distance), the relative velocity, and the direction of other vehicles [35].  

The measurement of the relative velocity is estimated by Doppler effect, 

calculating the difference in frequencies between the transmitted and the reflected radio 

waves. When a fixed frequency radio wave sent by the transmitter (from the radar sensor) 

continuously strikes an object that is moving towards or away from the transmitter, the 

frequency of the reflected radio wave will change, and it is possible to calculate the speed 

of that object [38]. The radar system uses a radio frequency generator to emit radio waves 

(Figure 2.19). The return waves are then picked up by the receiving antenna and are 

amplified and filtered in the radar system. After that, the signal pass through an A/D 
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converter to convert the analog signal to a digital signal to be processed by the interface 

of a computer [42]. 

 

Figure 2.19 - Block diagram of a radar system [42]. 

 
There are two main kinds of automotive radars: the Short-Range Radar (SRR) 

and Long-Range Radar (LRR) and each of them can perform different functions. As 

shown in Figure 2.20, radars for intelligent vehicles operate at frequencies of 24/76/77 

GHz and are a trade-off between range and field of view, where SSRs generally have a 

shorter detection range, but a bigger field of view. Today, autonomous vehicles have a set 

of both types of radars [38].  

 

 

Figure 2.20 - The different characteristics for radar in autonomous vehicles [38]. 

 

Radar sensors are robust and usually provide reliable data for all weather 

conditions - even in adverse weather conditions. Radar waves are generally immune to 

high luminosity, rain, fog, snow, and even dust [42]. However, due to the low resolution 

of the radar data, objects can be detected, but not classified - distance sensors have 

greater difficulty in identifying and differentiating between objects [39].  

 

 



 26 

LIDAR  

LIDAR (Light Detection And Ranging) is able to measure target distance and 

produce a three-dimensional map around the vehicle, using light in the form of a pulsed 

laser to measure ranges.  

Lidar systems are also based on the time-of-flight principle, but instead of radio 

or ultrasonic waves, the lidar sensors emit infrared laser pulses that when reflected by 

an object are captured by the sensor receptor (photo-detector) [35]. These sensors 

measure the difference in time between the laser pulse emitted by an infrared laser diode 

(reflected off of a rotating mirror) and the returned laser pulse received by the photo-

receiver (Figure 2.21). They emit up to one million laser pulses per second (3D Lidar 

systems integrate 4 to 128 lasers), and summarize the results on a high-resolution 3D 

map of the environment [39].  

 

 

Figure 2.21 - Lidar sensor scheme [39]. 

 

Lidar systems are classified into rotating lidar systems and solid-state lidar 

systems. In rotating lidar systems, the rotation of the sensor makes a field of view of up 

to 360° possible, while solid state lidar systems have a field of view that oscillates 

between 20° and 45° [39]. Lidar sensors can measure obstacles in an 800m range of 

pulse [35].  

Infrared emissions are in ranges of 905 nm or 1550 nm, where 905 nm emissions 

require less energy than those emitted at 1550 nm because from the emissions of 1400 

nm, the water in the atmosphere begins to absorb energy [39].  

Objects recognized by lidar sensors can be categorized, for example, a pedestrian 

can be distinguished from a cyclist [35]. Due to the diffraction of light in adverse weather 

conditions, such as rain, snow or fog, the operating range detection depends on the 

reflectivity of the objects that are reached by the laser beams [39].  
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Cameras  

Cameras are capable of producing images of the surrounding world by capturing 

the electromagnetic waves emitted by objects [35] and converting them into electrical 

signals [38]. The light emitted by objects is captured by an electronic image sensor inside 

the cameras and they are classified into Charge-Coupled Device (CCD) sensors and 

Complementary Metal Oxide Semiconductor (CMOS) sensors. Typically, CCD sensors 

create higher quality images (with low noise [39]) and are the most used for vehicle 

applications [42].  

Cameras capture wavelengths between 400 nm and 780 nm (visible light) and 

are divided into three bands: Red, Green and Blue (RGB) that are coded separately. A 

single camera has one camera lens and one image sensor and provides 2D images. The 

combination of two cameras results in a stereo camera, which consists of two camera 

lenses and two image sensors, and takes two images from different angles 

simultaneously. Stereo cameras (Figure 2.22) can have two or more lenses with an image 

sensor for each lens and provide depth information by creating 3D images, so stereo 

cameras with this feature are known as RGBD [39]. For detecting vehicles on the road, 

both single camera and stereo camera are used [35].  
 

 

Figure 2.22 - Stereo cameras for creating 3D images [43]. 

 

In addition to the strong color processing capabilities, cameras can also provide 

texture and contrast data, making these sensors very efficient in classifying data [38]. 

However, cameras do not provide distance information and their reliability is limited in 

adverse environmental conditions, such as snow, ice or fog, and are highly affected by 

variations in lighting, such as in the dark [39]. Besides that, as autonomous vehicles use 

high-definition cameras, powerful processors are also required to process millions of 

pixels for each frame - some cameras shoot at 30 to 60 frames per second - and the price 

of these cameras becomes very expensive [38].  
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Autonomous vehicles also use infrared cameras that capture infrared light with 

wavelengths between 780 nm and 1 mm [39]. These cameras are mostly used for 

pedestrian detection at night [35].  

 

 

Vehicles use these different sensors for different ADAS applications, summarized 

in Table 2.5. 

 

 

Table 2.5 - Usage and applications of vehicle sensors. 
 

Sensor type 

 

Typical usage 

 

ADAS Applications 

 

Illustration 

 

Cameras 

 

Obstacle detection 

and classification, 

and 3D mapping. 

 

Lane departure warning 

system[42];  

 

Parking assistance. 

 

 

 

 

Radar 

 

 

Obstacle detection 

and speed obstacle 

measurement. 

 

Blind-spot detection [38]; 

Lane Change Assistant [39];  

Forward Cross Traffic Alert [38]; 

Auto parking [35]. 

Adaptive cruise control [38]; 

Emergency brake assistant [35]; 

 

 

 

Ultrasonic 

sensors 

 

Near obstacle 

detection. 

 

Parking assistance [39]; 

 

Blind-spot detection (for 

emergency brake assistants). 

 

 

Lidar 

 

Obstacle detection 

and 3D mapping. 

 

Adaptive Cruise Control [39];  
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2) Vehicle's navigation systems 

One of the most important subsystems of autonomous and connected vehicles is 

the navigation and guidance system, where the location of the vehicle is the key. Unlike 

the sensors described in the previous section, the vehicle’s navigation systems provide 

the vehicle's absolute location. 

Today, one of the most popular ways to locate a vehicle is through the fusion of 

satellite-based navigation systems and inertial navigation systems [36]. With their 

combination, each system can complement each other and overcome the shortcomings 

of the individual system [44].  

 

 

Satellite-based navigation systems 

The general term for satellite-based technology that provides global positioning, 

navigation and timing services for autonomous vehicles is the Global Navigation Satellite 

System (GNSS). 

GNSS is a system that uses satellites to provide geo-spatial positioning, allowing 

electronic receivers to determine their location (longitude, latitude, and altitude) with 

high precision using time signals (radio signal) from a set of satellites that orbit 

approximately 20,000 km from the earth’s surface [39]. From these signals it is possible 

to determine the exact location of the vehicle, which combined with the time information 

provided by the satellites can also accurately calculate the vehicle's speed [38].  

Global Positioning System (GPS) is the most prevalent GNSS developed by the USA 

and uses information from a network of 24 satellites placed in orbit located on six fixed 

planes inclined 55° from the equator with a rotation period of 11 h 58 m (Figure 2.23). 

The configuration of the 24 satellites allows any receiver located on the earth's surface to 

receive signals from 6 to 12 satellites [39].  

 

 

Figure 2.23 - Most commonly used GNSS [39]. 

 

GPS positioning is based on trilateration (Figure 2.24). If there is only one satellite, 

the receiver can be anywhere along the circle; if there are two satellites, the receiver can 
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be at any of the two points where the two circles intersect; if there are three satellites, the 

receiver can only be positioned where the three circles intersect. The vehicle's current 

position is calculated based on the analysis of the signals received from at least 4 satellites 

[38]. 

 

 

Figure 2.24 - Principle of trilateration10. 

 
The GPS operating principle is based on measuring the time of flight of the signal 

emitted by the satellite and that received by the receiver to calculate the distance (or 

range) from the receiver to the satellite [39]. As the GPS receiver does not carry atomic 

clocks (like the GPS satellites), the measured distances between the receiver and the 

satellites introduce errors originating from the clock error. In this way, the distance 

between a receiver 𝑃 and the 𝑖-th satellite (𝑆𝑖) is called pseudo range (𝑃𝑅𝑖) and is 

determined as follows [44]:  

 

𝑃𝑅𝑖 = 𝑅𝑖 + 𝐶 ∗ ∆𝑡𝐴𝑖 + 𝐶 ∗ (∆𝑡𝑢 −  ∆𝑡𝑆𝑖)                                 (2.2) 

 

Where 𝑖 = 1, 2, 3, 4;  𝑅𝑖 is the real distance between the 𝑖-th satellite to the receiver 

𝑃; 𝐶 is the speed of light; ∆𝑡𝐴𝑖 is the 𝑖-th satellite’s transmission (radio wave propagation) 

delay and other errors that can occur, ∆𝑡𝑢 is the receiver clock’s errors relative to GPS 

system time and ∆𝑡𝑆𝑖 is the 𝑖-th satellite’s error relative to GPS system time.  

Assuming that the receiver position is 𝑃(𝑋, 𝑌, 𝑍) and the position of the 𝑖-th satellite is 

𝑆𝑖(𝑋𝑖 , 𝑌𝑖, 𝑍𝑖), which is known, the real distance between them is 

 

𝑅𝑖 =  √(𝑋𝑖 − 𝑋)2 + (𝑌𝑖 − 𝑌)2 + (𝑍𝑖 − 𝑍)2                                       (2.3) 

 

 

 
10 https://www.mathworks.com/help/fusion/gs/model-imu-gps-and-
insgps.html?fbclid=IwAR0oTYj_HN3_LHmnZ-URfqT6sF1Nf1WyjUb7h1OIfn_oHcMKKY9UnpSJmbE 
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Then, 

 

 𝑃𝑅𝑖 = √(𝑋𝑖 − 𝑋)2 + (𝑌𝑖 − 𝑌)2 + (𝑍𝑖 − 𝑍)2 + 𝐶 ∗ ∆𝑡𝐴𝑖 + 𝐶 ∗ (∆𝑡𝑢 −  ∆𝑡𝑆𝑖)         (2.4) 

The pseudo range (𝑃𝑅𝑖) is measured by the receiver and by linearizing equation (2.4) 

it is possible to get the receiver’s position 𝑃(𝑋, 𝑌, 𝑍)  – the vehicle's position. 

 

 

Inertial navigation systems 

The basis of the inertial navigation systems (INS) is the inertial measurement unit 

(IMU), which is an electronic device (Figure 22.5) mounted on a platform fixed to the 

vehicle [45]. The basic concept behind an inertial navigation systems is the measurement 

of changes in relative motion, which requires two components: a combination of 

individual inertial sensors and a starting position [46].  

 

 

Figure 2.25 - Inertial Measurement Unit10. 

 

Inertial sensors include accelerometers, gyroscopes and magnetometers (each 

oriented towards the orthogonal , 𝑋, 𝑌 and 𝑍 axes) which measures vehicle’s linear 

acceleration, angular velocity and magnetic field intensity data, respectively. The data 

reported by the IMU is fed into a processor which calculates vehicle’s relative velocity 

and position [47].  

As inertial sensors can only make measurements when detecting changes 

between states, a starting position (initial location of the vehicle) is required. Therefore, 

a state 𝑆0 is defined in the starting position as the inertial reference and all changes are 

determined between the starting position and the current state [46]. The starting 

position is usually determined by GPS. Besides that, an IMU allows a GPS receiver to 
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work when GPS-signals are unavailable (e.g., in tunnels, inside buildings, with electronic 

interference).  

Unlike the other vehicle sensors, an IMU does not require a connection or knowledge 

of the external world to provide data to the vehicle's software for perception and 

localization. 

 

 

B. Planning system 

All perception data with the location of obstacles are fed into the vehicle's system for 

motion planning. The planning system of an autonomous vehicle usually consists of three 

software steps: the route planning, the behavioral planning and trajectory planning, as 

illustrated in Figure 2.26.  

 
 

 

Figure 2.26 - Planning system. 

 

 
 

Route planning 

The first step is the searching for a feasible path. A route planner (or algorithm) 

is responsible for choosing an optimal global route - taking into account high-level 

parameters such as energy efficiency, traffic flows and travel time - from the vehicle’s 

current position to the requested destination. This task needs to access the external map 

to obtain the road network and road information, and uses global optimization 

algorithms to find the optimal paths for the vehicle [35]. The classic algorithms for route 

planning are graph search algorithms, which can find the shortest path from a starting 

node to a destination node in the search space [48]. The route planners define the 

optimal route on the road network map, by discretizing it into waypoints (sets of 

coordinates) [49]. Once the global route plan has been found, the vehicle's architecture 

goes to the decision-making task [35].  

 

 

Behavioral planning 

The behavioral planner is responsible for decision making and is based on motion 

prediction techniques. The goals of these planner are:  
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• to determine a collision-free trajectory that the vehicle should follow based on the 

outputs from the environment perception [50]; 

• to ensure that the vehicle follows any stipulated road rules while making 

incremental progress along the planned route [36].  

 

Decision making consists of the vehicle driving behavior that maximizes the driving 

function within a dynamic environment, where the motion prediction is an essential 

element for this task. The existing motion prediction models are categorized into physics-

based models, maneuver-based models and interaction-aware models (Table 2.6) [35]. 

The motion prediction task stores the current and historic dynamics data to predict 

the dynamics of all the elements surrounding the vehicle (Deep Reinforcement Learning 

[49]). This process allows to perform risk estimation and dynamic re-planning [51].  

The output of the behavioral planner is usually a high-level characterization of 

motion (e.g., "going straight", "turning"), which is fed into the next task - the trajectory 

planning. The trajectory planning system translates the behavioral output into a dynamic 

feasible trajectory, where the path is parameterized by time [35].  

 

Table 2.6 - Motion prediction models [52]. 
 

Physics-based motion models 
 

Maneuver-based motion models Interaction-aware motion 
models 

 

These models consider that the 
motion of vehicles only depends 

on the laws of physics, which 
rely on dynamic and kinematic 

properties. 
 

 

These models, in addition to 
considering the laws of physics, 

also consider that the future 
movement of a vehicle depends 
on the maneuver that the driver 

intends to perform. 

 

These models consider that the 
motion of the vehicles is 

influenced by the motion of the 
other vehicles in the scene, 

taking into account the inter-
dependencies between vehicle 

maneuvers. 
 

 

Provide only short-term (less 
than a second) motion and risk 

estimation. 

 

Provide long-term motion and 
risk estimation, but are not 

always reliable since they ignore 
the dependencies between the 

vehicles in the scene. 

 

Provide reliable long-term 
motion and risk estimation, 

however, due to their 
computational complexity, they 
are not always compatible with 

real-time risk assessment. 
 

 
 

Low level of abstraction                                                                                                High level of abstraction 
 

 

 

Trajectory planning 

The final step in the planning process is the trajectory generation, which is the 

real-time planning of a vehicle’s driving function, where trajectory planning algorithms 
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take the given path defined by the previous layers (reference path) and endow it with the 

time information, as well as velocity or acceleration and other position derivatives [35].  

Including time as a dimension in the configuration space is crucial for an accurate 

determination of the vehicle's trajectory and obstacle trajectories [36]. These planners 

process the data from the waypoints on the collision-free geometric path (created by the 

route planners) in order to associate a velocity for each waypoint while preserving the 

geometric properties of the continuous path [53].  

In the literature, the most relevant path planning algorithms implemented are 

classified into three groups: graph search based planners, sampling-based planners and 

interpolating curve planners [54].  

Graph search based planners are algorithms that find the shortest path in a graph. 

This state space is often represented as a discrete occupancy grid or lattice that depicts 

where objects are in the environment. The most used in motion planning are the 

Dijkstra's algorithm, shown in Figure 2.27, and the A* Algorithm, which is an extension 

of the Dijkstra’s algorithm with heuristics, which enables a fast node search [54].  

 

A)   

B)  

C)  
 

Figure 2.27 - Dijkstra's algorithm: A) the red points are the way-points planned by the route planner, B) 

the blue are matched points and the brown are interpolated points, C) generated trajectory [55]. 
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The sampling-based planners consists of connecting points sampled randomly in the 

configuration space in order to build a graph (roadmap) of feasible trajectories, collision-

free trajectories. These algorithms find the shortest path that connects the initial state 

with a final state through the roadmap. The most commonly used algorithm is the 

Rapidly-exploring Random Tree (RRT) [54] - illustrated in Figure 2.28.  

 

 

Figure 2.28 - RRT search with increasing iterations [53]. 

 

Unlike graph search planners and sampling-based planners that are global planners 

that provide a rough approximation of the solution, the interpolating curve planners 

interpolate the waypoint list using geometric functions. The main goal of these planners 

is to smooth the path from a given set of waypoints. Interpolating curve planners are 

represented by a specific geometric function such as the clothoids curves, the spline 

curves, the polynomial curves and the Bézier curves (Figure 2.29) [53]. 

 

 

Figure 2.29 - Bézier curve for the trajectory generation - the blue curve is the optimal trajectory for the 

vehicle to follow [56]. 

 

Once the path with the waypoints is generated, this information is passed to the 

vehicle's control system so the planned trajectory can be executed by the actuators. 
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C. Control system 

Motion control is the process of converting planned intentions into actions. The 

control system physically performs the actions outlined by the planning system by 

tracking the list of waypoints (path tracking) and target velocities (speed tracking) and 

by controlling the vehicle at the hardware level to follow the planned trajectory, based on 

sensor readings [35].  

The control system passes the waypoints and velocities to an algorithm, called 

controller, which calculates how much steering, acceleration or braking is required to 

ensure the vehicle longitudinal and lateral motion [35].  

In literature, control strategies for trajectory tracking can be classified into 

traditional control and learning-based control (Figure 2.30). Along with that, some 

control strategies can be achieved trajectory tracking directly, while others achieve 

trajectory tracking through path tracking and speed tracking, separately. 

 

 

Figure 2.30 - Control Strategies for Autonomous Vehicles. 

 

Traditional control is one of the most widely used and reliable control strategy for 

safety-critical systems, such as autonomous vehicles, while learning-based control 

strategies have only just begun to emerge. Learning-based control schemes are a 

promising alternative to traditional ones, however, these schemes still have a long way 

to achieve the same goals as the traditional control strategies, since learning-based 

controllers are not entirely reliable - when presented with a new scenario (not stored in 

database), they can generate wrong control actions based on the resources learned. 

Hybrid control strategies are also possible. Aspects such as gains or systems models of 

traditional controllers can be learned through recursive training, thereby improving the 

performance of the controller [57].  
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The Bang-Bang control switches abruptly between two states (simple binary 

controller) and is recommended to be applied only to Variable Structure Systems (VSS) 

that allow Sliding Motion Control (SMC) [57]. Sliding motion control is a nonlinear 

control method for nonlinear dynamical systems, such as AVs, and is widely applied to 

trajectory tracking to deal with the disturbances, like the crosswind, varying vehicle 

parameter and changing road friction [35].  

The PID control is used for trajectory tracking and takes advantage of the three 

primary controllers - the proportional controller, the integral controller and derivative 

controller – to rise to a much more efficient controller [57] for both vehicle’s lateral and 

longitudinal control [35].  

Geometric control is used for path tracking and the most popular controllers are 

the Pure Pursuit controller and the Stanly controller [57]. As these controllers ignore the 

vehicle's velocity and acceleration (speed tracking), they are unable to achieve good high-

speed tracking performance [35].  

Model Predictive Control (MPC) is an optimization control strategy for trajectory 

tracking [57] and has the capability to systematically include system constraints and 

future predictions in the controller [35]. MPC controllers predict the future states of the 

vehicle, considering control constraints, in order to select the optimal solution – the 

optimal set of waypoints by minimizing a cost function (minimal cost trajectory) [57]. 

Control restrictions are used to increase the vehicle's fuel economy and the safety 

performance [36]. In this way, MPC has become the most attractive approach in the 

control of autonomous vehicles [35]. 

Imitation learning and Reinforcement learning are also applied to trajectory 

tracking control. Imitation learning is a type of supervised learning that uses a set of 

labeled data to train the system in order to directly predict the control actions required 

to drive the vehicle, minimizing the error in its predictions. However, achieving 

perfection by using this technique requires especially a very large dataset and an 

extended training duration. In contrast, reinforcement learning learns through trial-and-

error situations, which allows the system to explore the environment and discover new 

strategies on its own - where some of them may be even better than those performed by 

humans. When the system performs a set of well-done actions, it is rewarded and, 

therefore, the purpose of this learning is to maximize the reward function. However, 

reward functions are difficult to define and as the system seeks to maximize the reward 

function, it can take any possible action, including cheating, which can compromise road 

safety [57]. 
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2.2 Connected vehicles  
 

Connected Vehicles (CVs) use various communication technologies to exchange 

information. Their connectivity refers to an Intelligent Transport System (ITS) where all 

vehicles and infrastructure systems are interconnected with each other. The 

communication mechanisms are collectively known as Vehicle-To-Everything (V2X) 

communication, which includes the following subcategories: Vehicle-To-Vehicle (V2V) 

communication, Vehicle-To-Infrastructure (V2I) communication, Vehicle-To-

Pedestrian (V2P) communication and Vehicle-To-Network (V2N) communications, as 

well as Vehicle-To-Grid (V2G) communication and Vehicle-To-Home (V2H) 

communication.  

All of this interconnectivity has become possible with the introduction of 

Vehicular Ad hoc Networks (VANETs). VANETs are a new type of Mobile Ad hoc 

Networks (MANETs), where all the nodes in the network are moving or stationary 

vehicles connected by wireless using dedicated short-range communication between 

them. This intelligent transport system enables a wide range of road applications, such 

as prevention of collisions, safety, blind crossing, dynamic route scheduling, real-time 

traffic condition monitoring, etc. [58], as well as providing Internet connectivity to the 

vehicular nodes [58]. 

According to the National Highway Traffic Safety Administration (NHSTA) 

predictions, by effectively applying V2V and V2I communications it is possible to reduce 

and/or eliminate up to 80% crashes of any type from non-impairment [59]. In addition 

to reducing the number of accidents, V2X connectivity and its constituents allow other 

benefits on the roads, such as reducing congestion, by optimizing traffic flows, and 

minimizing vehicle emissions. 

 

 
2.2.1 Communication networks 

 
A. Mobile Ad Hoc Networks 

Mobile ad hoc networks are networks composed of a set of mobile devices (or nodes) 

spontaneously interconnected with wireless links.  

By default, a node in an ad hoc network is only able to communicate with its 

neighbors (single-hop), restricting communications to the node’s radio range. To solve 

this problem, MANETs use specially designed routing protocols that provide the network 

with multi-hop communication. Therefore, a path between two nodes (source node and 

destination node) is a sequence of an arbitrary number of hops of intermediate nodes, as 

shown in Figure 2.31. Nodes are autonomous and have the ability of organizing 
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themselves randomly, and the success of interaction extremely relies on other nodes 

collaboration. Each node has to execute routing by forwarding messages for other nodes. 

Besides that, nodes can be router and host at the same time [60].  

MANETs are dynamic networks where nodes move freely, that is, the nodes do not 

have fixed positions, they are free to move inside and outside the network. In addition, 

MANETs are completely self-organized networks that have the ability to work anywhere 

without any pre-existing infrastructure, such as routers in wired networks, so they can 

be established anywhere without any geographical restrictions [60].  

Another feature of MANETs is devices heterogeneity, where the network works 

regardless of the types of devices that constitute it. 

 

 

Figure 2.31 - Multi-hop routing, using dual paths, between the source node and the destination node 

(adapted from [61]). 

 

 

 

B. Vehicular Ad Hoc Networks 

Vehicle ad hoc networks are MANETs where the nodes in the network are vehicles. 

Vehicles can communicate with each other, or with Roadside Units (RSU), by 

transmitting a Basic Safety Message (BSM). A BSM is a package of data that contains 

information about vehicle position, speed and other information relating to a vehicle's 

state and predicted path to its destination [62]. A BSM is updated and broadcasted up to 

10 times per second to surrounding vehicles [63]. A roadside unit is a static access point 

(or a communication node) installed within infrastructures located alongside the roads. 

RSUs have the ability to enable communications between vehicles and an infrastructure 

[64].  
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1. Data dissemination in VANETs 

Dissemination of data is a scalable process because the number of broadcasted 

messages is limited and, therefore, the network is not flooded [65]. In literature, data 

dissemination techniques for VANETs can be classified into three models: push model, 

pull model, and hybrid model. Push models disseminate data proactively using periodic 

broadcast, while pull models disseminate data on demand. Hybrid models combine both 

models for data dissemination in order to support different applications. 

 

Push model 

Push models are preferred for safety applications where an immediate response 

is required. The purpose here is to regularly exchange information between vehicles in 

motion, in order to allow each individual vehicle to view and assess traffic conditions 

ahead of it [65]. Thus, these models are used for safety messaging systems, such as 

collision warning systems, emergency message dissemination systems and information 

systems specified for dangerous road conditions (e.g., ice, water, snow) [66].  

Vehicles generate data with their information, such as their position, which are 

updated in every broadcast period, and they store other vehicles data whenever they 

receive a broadcasted message. Each vehicle broadcasts the information about itself and 

the information it knows about other vehicles (relayed data) in a single package. Every 

time a vehicle receives information broadcasted by another vehicle, it updates its stored 

information - in this process, the received message is postponed to the next transmission 

period, where the information broadcasted by the vehicle is already the updated 

information [65].  

Vehicular information dissemination can be broadcasted in all directions, that 

means that the communication could be broadcasted using vehicles traveling in the same 

direction, vehicles traveling in the opposite direction, or vehicles traveling in both 

directions (bidirectional mobility). Figure 2.32 illustrates the model for data 

dissemination for vehicles that travel in the same direction and in opposite direction, 

separately. 

In the same-direction model, when a vehicle broadcasts a package, only vehicles 

that move in the same direction, that are in the transmission range and that are behind 

the vehicle are responsible for the propagation of this package (propagated backwards). 

In the opposite-direction model, generated and relayed data are not broadcasted 

together. Vehicles traveling in the same direction broadcast only their own generated 

data. This data is then aggregated and propagated backwards by vehicles moving in the 

opposite direction [65].  
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Figure 2.32 - Dissemination models: (a) the same-direction model, and (b) the opposite-direction model 

[65]. 

 

 

The bidirectional model combines both the same-direction model and the 

opposite-direction model. In this model, vehicles moving in the same direction propagate 

backwards vehicles’ generated and relayed data, while vehicles moving in opposite 

direction only propagate relayed data [65]. This model, however, affects the performance 

of the data dissemination model because all vehicles traveling in the desired direction 

(both directions) participate in broadcasting, although it may be sufficient to transmit 

data for only a subset of the vehicles [66].  

 

Pull model 

Pull models, on the other hand, follow the request-response paradigm for data 

dissemination, therefore, they are used for delay-tolerant applications with the aim of 

improving traffic efficiency and travel comfort [66].  

Usually, when a vehicle needs a service, it creates a data package with the service 

request containing its specifications, such as the type of service and the desired service 

area, and transmits it to the nearest RSU. According to what it proactively learned, the 

roadside unit does two things [66]: 
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• If the RSU knows the IP address of the provider of that service, it forwards the 

service request to the target service provider, 

• If the RSU does not know the IP address, it broadcasts the service request over 

the backbone network to search for the target service provider. The RSU can 

transmit the service request to the target service provider over the vehicular 

network or the backbone network, however, if the RSU transmitted it over the 

vehicular network it would rapidly flood the network with data packages. 

After receiving the request, the service provider creates a data package carrying the 

requested content (service response) and transmits it to the original vehicle [66].  

Comparing to push models, pull models requires less overhead, since the number of 

data requests are smaller, tolerate more delays, as long as a response eventually returns 

[66], and have a better control in terms of bandwidth [67].  

 

Hybrid model 

There are some schemes that combine both models in order to support different 

types of applications, where for dangerous traffic conditions and emergency messages, 

push models are used and for location-sensitive queries issued by vehicles on demand, 

pull models are used [66].  

 

 

2. VANETs characteristics 

The main goal of VANETs is to improve road safety, convenience and comfort of the 

passengers in the vehicles [68]. The deploying of VANETs leads to enhance traffic safety 

and efficiency by reducing the traffic jams and accidents. This is possible to VANETs 

unique features, represented in Figure 2.33. 

These vehicular networks have high mobility and therefore, have a high dynamic 

topology. The nodes of VANETs (vehicles) are more dynamic than the nodes of the typical 

MANETs because they are usually moving at a very high speed and changing their 

position constantly, making hard to predict a vehicle’s position [68].  

As the position of the nodes changes frequently, the network topology in VANETs 

also tends to change frequently, this is because the topology of the networks relies on the 

radio range between vehicles [68]. Due to the high movement of the nodes and the 

frequent change in the environment, VANETs also have frequent disconnections in the 

link connection between the vehicles, mostly in low traffic environments [69].  

In this way, these networks have a variable network density based on the traffic 

density – in a case of traffic jam, the network density is very high and, in a case of a 
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suburban traffic, the network density can be very low. This means that the scale of the 

network in VANETs can reach unlimited geographic levels. 

In VANETs, position measurements and energy consumption are not an issue. The 

vehicles’ current position, speed and direction can be easily accurate. Given the number 

of on-board sensors in the vehicles that make continuous measurements and the number 

of computational resources (e.g., processors, large memory capacity) inside the vehicles, 

it is possible to obtain routing information. Besides that, vehicles have rich resources of 

power since they have the ability to provide continuous power via long-life batteries.  

Another characteristic of VANETs is the predictable mobility patterns. VANETs are 

more capable of predicting mobility patterns that regular MANETs, since all vehicles 

move on pre-defined roads and highways [69] constrained by roads, streets and 

highway’s structure, traffic lights, road signs, speed limit, traffic conditions, and drivers' 

driving behaviors [70].  

 

 

Figure 2.33 - General characteristics of VANETs [68]. 

 

 

3. Communication standards of VANETs 

There are two types of radio technologies that are competing to become the standard 

for V2X connectivity: the Dedicated Short Range Communication (DSRC) and the 

Cellular V2X (C-V2X). These technologies are the pathway that allows vehicles to 

communicate with each other and with infrastructures.  

Dedicated short range communication is a type of wireless technology that uses radio 

frequencies in the 5.9 GHz band, based on the Institute of Electrical and Electronics 

Engineers (IEEE) 802.11p. The IEEE 802.11p is the IEEE standard for DSRC and is an 

amendment to the IEEE 802.11 standard to add wireless access in vehicular 

environments [71]. DSRC was introduced to add intelligence to transportation systems 

for interchanging wireless broadcast messages in a vehicular environment. It is a mature 
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technology with proven road-tested experience and is widely used in most places around 

the world. DSRC is a wireless communication method with a limited range that covers a 

maximum of ≈150 m (in all weather conditions) [59] and an end-to-end latency of 1–10 

ms. This implies that the speed of the vehicle has to be relatively low, in order to allow 

enough time for the exchange of messages between vehicles and any roadside device. 

DSRC also have some complications during intensive traffic. As in these situations the 

number of devices connected using the same radio channels increases, the signal 

interference and the transmission delay also increase. As a result, the data transmission 

rate decreases and device authentication may not be handled properly or not be handled 

at all [72].  

A promising alternative to DSRC is the cellular based V2X communication. C-V2X is 

defined by 3rd Generation Partnership Project (3GPP) and was first specified as part of 

the 3GPP, release 14, in 2017 using fourth generation wireless technology/Long-Term 

Evolution (4G/LTE) [71]. However, 4G C-V2X did not provide higher performance and 

lower latency than DSRC, where simulation results showed that when 50 vehicles are 

present, 4G C-V2X is actually worse than that of DSRC. However, 4G was improved and 

the fifth-Generation New Radio (5G NR), release 15 and 16, is a new promising 

possibility.  5G NR C-V2X offers higher performance, higher reliability, longer range, and 

reduced latency (operates at higher vehicular speeds). As 5G NR C-V2X is in 

development, it is important to test, verify, and improve the performance when they 

become available [59].  

 

 

2.2.2 Types of V2X connectivity  

 
There are several forms to exchange information in VANETs and each 

subcategory of V2X has specific concerns, strengths, weaknesses and different 

applications in the automotive field. Bringing together all of these subcategories takes 

advantage of the synergy between them. Figure 2.34 represents all subcategories of V2X 

connectivity. 
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Figure 2.34 - V2X connectivity [71]. 

 
 
 

A. Vehicle-to-Vehicle 

V2V technologies allows the direct vehicular communication, exchanging data 

between vehicles without relying on a fixed infrastructure [70]. Vehicles can share their 

speed and location, as well as any other relevant information between them, giving the 

system a 360-degree representation of its surroundings. This means that vehicles can 

issue warnings, avoid collisions or share immediate road and traffic conditions [71].  

 

B. Vehicle-to-Infrastructure  

V2I technologies allows a vehicle to communicate with the roadside infrastructures, 

exchanging data between vehicles and road infrastructures, such as traffic lights, road 

signs, and other transport infrastructure to strengthen safety measures [70]. For 

instance, dynamic traffic signaling can alert vehicles so that they can adjust its speed [71].  

 

C. Vehicle-to-Pedestrian 

V2P technologies allows data exchanging between vehicles and the electronic devices 

(e.g., smartphones) carried by pedestrians to ensure their safety. This enable both 

vehicles and pedestrians to receive information about activities taking place nearby [70]. 

For example, such devices can alert vehicles that a pedestrian is walking on the 

pedestrian walkway ahead, close to a crosswalk [71].  
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D. Vehicle-to-Network  

V2N technologies allows data exchanging between vehicles and the Traffic Control 

Centre (TCC), receiving real-time information on traffic and weather conditions, as well 

as real-time custom navigation, and other cloud services [73].  

 

E. Vehicle-to-Grid and Vehicle-to-Home communication 

With the introduction of electric vehicles, V2G communication is beginning to 

flourish in the automotive industry. V2G technologies consist of bidirectional energy 

flow: from vehicle to grid, if the energy stored in the battery is high, and from grid to 

vehicle when the energy stored in the battery is low, as illustrated by Figure 2.35. 

However, if the energy of the electric vehicle battery is supplied to individual houses 

instead of the grid, it is called as V2H technology.  The structure of V2H technology is 

similar to the V2G structure, in which the energy stored in batteries of the electric 

vehicles can be used as an energy source for houses.  In this way, during the night, when 

power consumption is low on the grid, the vehicle's battery can be charged. When energy 

consumption is high in the grid, the vehicle's stored energy can be sold to the grid [74].  

 

 

Figure 2.35 - Bidirectional electric vehicle charger: a) grid to vehicle mode; b) vehicle to grid mode; and c) 

Vehicle-to-Home [74]. 
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Chapter 3  

Verification, validation and testing of 
connected and autonomous vehicles 

 

Connected and autonomous vehicles require large-scale development and testing 

in all possible scenarios before they can be deployed. Validating their systems through 

traditional methods requires driving hundreds of millions of miles, and in some cases 

hundreds of billions of miles, in the real world over the course of several decades to 

demonstrate their reliability, especially in terms of their safety on the road. However, 

these testing approaches are time- and capital-intensive.  

Simulations, on the other hand, play an essential role in the testing and validation 

of CAVs, where it is possible to test drive billions of miles carried out in a virtual 

environment quickly and economically. Simulations are very close to real road testing 

and are based on the V-model, which is specifically designed to fulfil the automotive 

hardware and software development lifecycle. This approach follows the concept of the 

X-in-the-loop simulation for vehicle validation before going to public roads with mixed 

traffic, which represents a safer and more efficient way than live testing [75]. Field tests, 

like test drives, will contribute with further validation insights, which derive from 

unexpected driving situations and retroactive effects under real driving conditions [76]. 

Figure 3.1 shows the different models that can be configured to simulate a driving 

scenario. 

Testing and validation (through simulation) alone are insufficient to ensure the 

correctness of the system, this is where software verification plays an important role. 

Through the use of formal methods, verification proves or disproves the correctness of 

the system [77]. 

 

 

Figure 3.1 - Possible models to configure for testing and validation of CAVs. 
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3.1 Software development models 

 
The Verification and Validation model (V-model) is the most commonly used 

model by the automotive industry for software development because CAVs are projects 

with well-defined and clear requirements and are built step by step, where the system 

parts are developed consecutively. However, some parts can be broken into smaller parts 

and be developed in phases in which agile models are used [78]. To decide which process 

model to use when developing a system, the following conditions must be considered: 

How stable are the requirements?, Who are the end users for the system?, What is the 

size of the project? and Where are the project teams located? [79]. 

 

 

3.1.1 V-model vs agile model 

  

The V-model (Figure 3.2) is a sequential way of developing a system, in which 

each phase must be completed before the next phase begins. All phases have a 

corresponding verification and validation test - the components are tested and corrected 

immediately at each stage of the project and the test objectives are specific for each test 

level [79]. The entire development phase is planned in parallel with product testing, so 

software testers are involved from the beginning [78]. In this way, the fault-finding 

occurs at the early stage of the development process, which provides the cheapest 

alternative to fix it.  

Due to its rigid nature, all requirements are written at the beginning of the 

process, so this model is used for projects where requirements rarely change during the 

system's development lifecycle. If one of the requirements changes, all the requirements 

and test documentation need to be updated [79]. At the end of the development process, 

the system is presented to stakeholders. 

In contrast, the agile model (Figure 3.2) is a continuous process developed 

gradually in iterations [78]. In each iteration, requirements analysis, design, 

implementation, and testing are performed [79]. In this way, the agile model is more 

suitable for projects that must be delivered in a short time, since the development of the 

system is faster. The V-model requires more resources, especially more time, and is 

therefore more expensive. 

Agile model has a flexible nature and is open to changes, which means that 

changing requirements can happen at any stage of the SDLC, even at the last stage of the 

iteration [78]. This is possible because at the end of each iteration, a product version is 

released to enable the constant feedback from the stakeholders. This allows the customer 
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to adaptively refine the requirements for the next released based on the observation of 

the evolving product [79]. The differences between the V-model and the agile model are 

summarized as shown in Table 3.1. 

 

Table 3.1 - Characteristics between V-model and agile model. 
 

V-model 
 

Agile model 

Sequential process Continuous process 

Rigid nature Flexible nature 

Requirements rarely or occasionally 

change 

Requirements regularly change 

Long or complex projects Brief or simple projects 

 

      

Figure 3.2 - V-model (left) and agile model (right) diagrams [78]. 

 

 

 

3.1.2 V-model 

 

The traditional V-model is an extension of the waterfall model, but with an 

emphasis on verification and validation activities in the process of developing a system 

[80].  

The waterfall model is a sequential development model that divides the SDLC 

into pre-defined phases (Figure 3.3). In this model, each phase must be completed (in a 

specified period of time) before the next phase can begin with no overlap between the 

phases. In this way, the system requirements must be specified in the start of the process 

because further changes in it will not be considered. Unlike the V-model, defects in the 

waterfall model are found very late in the development lifecycle, as the test phase only 
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happens later in the process and the test team has not been involved since the beginning 

of the project - the tester role is only involved in the testing phase [81]. Besides that, all 

errors that were not detected during the testing phase are only corrected in the 

maintenance phase. In this phase, functional improvements and software corrections are 

also implemented in order to allow its integration with other software. 
 

 

 

 

Figure 3.3 - Waterfall model (adapted from [81]). 

 

The V-model starts in high-level architecture and requirements of the system to 

be designed and it decomposes in lower-level architectures where the development and 

implementation of the software and hardware takes place [82]. The V-model uses a ‘top-

down’ approach to design and a ‘bottom-up’ approach to test and validation of safety-

critical systems [83]. 

As illustrated in Figure 3.4, the SDLC of the V-model consists of those four 

phases, however, this work is focused on the right side of the “V” diagram – the testing 

phase (VVT) – which is divided into four test levels: Unit testing, Integration testing, 

System testing and Acceptance testing. The main objective of this phase is to test the 

system under development and its different levels of maturity, to ensure that the system 

is designed correctly, and all requirements are satisfied [80]. 

 

Unit tests (UT) 

The main characteristic of this test level is that each module, unit, and component 

are tested in isolation and without interfacing with other components. Each software 

component, each sensor, the bus system and the ECUs are described in detail. The 

objective in this level is to check if the individual components meet the defined 

requirements and are working properly [84]. As no other components are involved it is 

much easier to find defects, reducing the number of errors in the basic functions, such as 

calculations of distances, time intervals, time for collision [85]. 
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Figure 3.4 - V-model phases (adapted from [78]). 

 

 

Integration tests (IT) 

This test level is performed after the unit test is completed. Integration tests check 

whether the components, which have been developed and tested independently (in the 

unit tests), can be integrated with each other and function as a group – these are 

considered as sub-systems [86]. The objective in this level is to verify the interaction and 

functionality of the individual sub-systems and to verify if the subsystem meets the 

specifications. The sub-systems are modeled to represent different functionalities of the 

system under development: perception, processing and interpretation of data, and 

planning of path, maneuver and trajectory [84].   

 

System tests (ST) 

Although the components and the integration of the components (sub-systems) 

have already been tested at this stage, system tests are necessary because some features 

cannot be tested without running the complete software system [86]. The objective in 

this level is to check the behavior and the capacity of the entire system under 

development according to the defined functional and non-functional requirements 

through the test cases. Each test case contains all necessary information in order to be 

executable [84]. 

 

Acceptance tests (AccT) 

The last test level of the V-model is performed to determine whether the system 

has met the requirement specifications and is ready to be used in the real world. The 

objective in this level is to test the acceptability of the system under development [86]. 
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Test cases are designed to demonstrate the system behavior and evaluate the system 

from the user’s perspective by focusing on the external behavior of the system through 

field tests. Acceptance drives are set up as show cases, matching concrete scenarios 

carried out in real vehicles in the real world (on road testing) [84].  

The main characteristics of the four test levels of the V-model can be summarized 

as shown in Table 3.2. 

 

Table 3.2 - Test levels of the V-model. 

Unit testing Integration testing System testing Acceptance testing 

First level Second level Third level Fourth level 

Test individual 

components 

Test integrated 

components 

Test the entire 

system 

Test the entire final system  

 

Finding errors is easy 
 

Finding errors is difficult 

Done by developers Done by the developers 

or testers 

Done by testers Done by End Users or 

developers 

 

 
 

 

3.2 Verification, validation and testing approaches 
 

Training and testing the machine learning algorithms of CAVs is crucial for them 

to be able to respond to all driving scenarios - SAE levels 1 and 2 tests were based on 

defined scenarios with specific maneuvers (depending on the function under test), while 

in SAE level 3+ test, the scenario space is infinite and requires many hours of virtual 

tests.  

During the testing phase, the implemented system is examined through the 

software verification phase, to establish if the systems behavior is what is specified in the 

requirements set, and through the software validation phase, to establish if the system 

actually works as required by the customer. Thus, the approaches for VVT are divided in: 

verification approaches and test and validation approaches, as illustrated in Figure 3.4. 

Verification approaches are Formal-Based (FB) techniques for verifying the modeled 

system, where the main interests are the security properties. Test and validation 

approaches, on the other hand, are performed through two ways: (1) Model-Based (MB) 

and Ontology-Based (OB) methods to build vehicle models, and (2) SCenario-Based 

(ScB) and Search-Based (SB) methods to build the environment model. Ontology-based 

(OB) and search-based (SB) techniques are sub-categories of the MB and ScB testing, 

respectively [85]. 
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Figure 3.5 - Approaches for VVT and architecture of CAVs. 

 

 

 

3.2.1 Formal-based techniques 

 

Formal methods can be categorized into two ways according to their execution 

proceedings: static formal methods (Formal verification) and dynamic formal methods 

(Run-time verification).  

Formal Verification (FV) is generally found in the literature through two 

techniques: Model Checking or Theorem Proving. Model checking is the primary 

technique used by FV tools to analyze the behavior of a sequential system over a period 

of time, it verifies whether a finite-state model of a system meets a given specification. 

This method is divided into three phases: the modeling of the system, the execution of 

the model checking algorithm, and the analysis of the results. Theorem-proving, on the 

other hand, requires expert knowledge in formal methods, and hence, is difficult and it 

is not so popular. The verification is viewed as a theorem to prove based on rules and 

axioms to find design and specification errors early, where the system properties are 

transformed into mathematical objects [26].  

Run-time Verification (RV) is an area of formal methods and is usually performed 

using Run-time Monitoring. Run-time monitoring is based on observing executions of a 

system. Typically, the two main activities in run-time monitoring are the generation of a 

monitor from a specification and then the use of the monitor to analyze the dynamics of 

the system under study [86]. 

In addition, since system verification is carried out early in the development 

cycle, it helps to identify many critical bugs, making it cheaper to fix them at this level. 
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3.2.2 Model-based techniques 

  

The adoption of model-based techniques for the development of ECU software 

has shown great advantages in productivity in the automotive industry. Thus, MB 

techniques are used to build vehicle models (vehicle software and hardware) and are 

found in the literature based on two main steps: the system modeling process and the 

verification and validation (V&V) process. The system modeling process consists of 

creating models to specify the expected behavior of the system under test (functions and 

their states, inputs and structure), and the verification and validation process follows the 

four test levels of the V-model to detect failures in the system as early as possible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 - XIL simulation and Test drive and the relationship between the virtual/real components. 
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In CAVs, these two processes are performed using X-In-the-Loop (XIL) 

simulations and Test drive (last test stage), as illustrated in Figure 3.5. These simulation 

loops are a key element to reduce the development time and cost of the verification and 

validation process (the testing phase) [87]. The XIL simulations are a model-based 

approach, where the “X” refers to any type of test included in the development process, 

such as the abstract model, software, or hardware. In other words, XIL simulation is the 

set of tests with different configurations, generally performed sequentially: Model-In-

the-Loop (MIL), Software-In-the-Loop (SIL), Hardware-In-the-Loop (HIL) and the 

Vehicle-In-the-Loop (VIL) simulations.  

Model-based testing is considered as "black box", since only its inputs and 

outputs are considered controllable and observable, respectively [88]. 

 

 

XIL Simulation 

The role of simulation in CAVs saves years of testing that would be required on 

the road since those same miles are driven in a fraction of the time in a virtual simulation. 

Simulation provides an opportunity to adjust vehicle safety properties in a virtual 

environment before field trials. 

 
MIL simulation 

In the design phase, a model-in-the-loop is developed with the different modules, 

considering the different functionalities of a vehicle system [80]. MIL is an offline 

simulation and its goal is to abstract the behavior of the system in a way that the function 

model is tested to validate the system concept [4], [89]. From each of the different 

modules, the code is generated and tested through the UT and the IT using a SIL 

simulation. 

 

SIL simulation 

Software-in-the-loop simulation allows to test some driving software components 

in real time simulations [90]. This method involves linking all the AV algorithms that 

correspond to the hardware of a vehicle, that is, it allows developers to check the 

performance of the code in a simulated environment without real hardware parts. If the 

system passes the UT and the IT, the system test can be performed using first a HIL 

simulation, where the software is integrated into a real ECU, and then a VIL simulation, 

where the complete vehicle is tested. Otherwise, it returns horizontally to the design 

phase to modify its features and rebuild the unit test and the integration test [80]. 
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HIL simulation 

The hardware-in-the-loop simulation is a hybrid system, where real and virtual 

elements form a closed-loop virtual reality environment that allows the test (ST) of an 

automotive component or a complete autonomous driving system [90]. In this way, is 

one of the most important steps in the real-time simulation environments before any 

road testing. After the full integration of all electronic and mechanical components, the 

complete vehicle is tested using VIL simulation. 

 

 

VIL simulation 

With the vehicle-in-the-loop, real-time simulations are used to study human 

behavior inside a real car as it drives in virtual traffic either by itself or controlled by the 

driver when needed. On this level the entire vehicle is the system under test and this 

requires an integration of a real vehicle with the hardware-in-the-loop system [91]. This 

technique is recently used to simulate real vehicles in virtual environments, to ensure the 

safety of critical test scenarios in real-world tests.  

If the vehicle system passes the ST, through HIL and VIL simulations, the next 

test level - the acceptance test - can be performed. Otherwise, at this level, it returns 

horizontally to system requirements for its modification. The testing phase ends with the 

AT, where the complete vehicle is tested in the real world through Test drives for 

validation. 

 

 

Test drive 

Road tests with prototype vehicles are the last stage of vehicle testing (carried out 

in the real world) and certify the results obtained in the XIL simulation (virtual world), 

where field monitoring in the simulated models is used for further verify and refine the 

system of CAVs with aggregated data collected from the field. Field trials are decisive 

tests to ensure these vehicles exhibit the intended behavior and to capture any potential 

violations of the safety requirements before an event of significant loss occurs. [92].  

Field experience has shown that VVT applied to a given operational design 

domains structures the whole process. Standardized processes provide generic VVT 

processes and CAVs testing grounds, however, with field testing, datasets are created to 

satisfy ODD constraints instead of working generically, refining the test and validation 

of these vehicles [93]. Ensuring that training and testing are completed requires at least 

ensuring that all aspects of the ODD have been addressed [94]. 
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Typical descriptions of an ODD tend to be somewhat simplistic as the relevant 

factors are road types, geographic features, speed ranges, weather and “other domain 

restrictions” (listed by NHTSA in 2017). The list of “other” considerations can be 

extensive and difficult to enumerate due to the variety of automated vehicle projects. [94] 

 

 

3.2.3 Ontology-based techniques 

 

 The ontology-based approach is a model-based testing approach that instead of 

modeling the vehicle's system behavior, relies on existing vehicle system models to model 

the behavior of the system. In another words, ontology-based testing relies on a 

description of the environmental concepts and their relationships to extract inputs for a 

system under test. OB testing is a recent concept and was originally developed to identify 

critical scenarios - to test autonomous vehicles where interactions of environmental 

concepts (e.g., street junctions, weather conditions, pedestrians crossing the street) 

could cause a wrong behavior of the AV being tested [95], [96]. 

 

 

3.2.4 Scenario-based techniques 

 

 After the vehicle configuration (MB or OB approaches), the vehicle needs to be 

tested in driving scenarios, hence, scenario-based approaches are used. Scenario-based 

simulations specify an entire scenario (scenes, events, goals and values) in a test case and 

the scenario information is the input for the driving function. This information is usually 

reconstructed from crash data analysis and naturalistic driving data analysis for the 

construction of scenarios [92]. For the Scenario-based testing, two greatest difficulties 

are pointed out in the literature: 

• the input data are not discrete, it occur in large quantities, change very quickly 

and depend on the environment [92], 

• it is difficult to repeat the tests with the same input data, unless by simulation, 

since an infinite number of different scenarios can theoretically occur with the 

same input data [92]. 
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3.2.5 Search-based techniques 

 

 Search-based approaches are used to find particularly dangerous situations - 

generally applied to collision avoidance systems and are typically vision-based systems 

using thousands of simulated scenarios [97]. Most of these techniques in the field of 

autonomous vehicles use evolutionary algorithms. These algorithms rely on machine 

learning or a combination of machine learning and Darwinian genetic operators to 

automatically generate new solutions (program inputs - test scenarios) [98], [99]. These 

evolutionary algorithms work through the iterative sampling of the input space, select 

the fittest scenarios (critical test scenarios) and evolve the fittest ones using genetic 

search operators to generate new (critical) scenarios. They are able to effectively generate 

the most critical test scenarios and provide useful results, regardless of specific time 

constraints and the size of the input space [100]. 

 

 

 

3.3 Verification, validation and testing tools  
 

Due to the different processes in the verification, validation and testing of CAVs, 

the tools are categorized according to the software process they perform, as illustrated in 

Figure 3.7.  

 

Figure 3.7 - Classification of tools for VVT. 

 

 

In the verification tools, both the theorem proving and the run-time monitoring 

do not use automatic tools to check the correctness of the system properties. Model 

checking is the only formal method that uses a wide range of tools available on the 

market. These tools are chosen according to the most suitable purpose [101]. 
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Test and validation tools use driving simulation platforms to conducted 

simulated road testing in a virtual environment. In this way, companies can quickly and 

economically complete the design explorations needed to develop a wide range of 

technologies that are required for the connected and autonomous vehicles. This 

platforms are very popular because they are developed and tested with a high level of 

accuracy and, therefore, can be trusted for high fidelity testing [102]. 

The section reviews some of the most popular software tools for VVT of CAVs. 

 

 

3.3.1 Verification tools 

 

Model checking allows verification tools to be largely automatized, where the 

most used model checkers are shown in Table 3.3.  

 

 
Table 3.3 - Model checkers. 

 
 

Several verification tools, like UPPAAL, CADP and PRISM model checkers, use 

timed automata (TA) as modeling formalism to specify the behavior of CAVs with clock 

variables and simple constraints over clocks and states [103]. The TA model is the most 

well-established model for the specification and verification of real-time systems and 

allows to create clear and concise abstract models of CAV systems and allows to apply 

algorithms designed for timed properties [104].  

Other tools, such as BTC Embedded Validator, Reactis Validator and Simulink 

Design Verifier, allow the formulation of a property that the model's behavior should 

have as an assertion, and checks if the model (compatible with the verification tool) 

satisfies that property under all possible scenarios. The result of the search for violations 

can either be “True” or “False”, where in the case of being “False” the tool produces a 

simulated scenario to see how the model violates the property [105]. 

 

 

Model checkers Description 

UPPAAL integrated probabilistic tools for the modeling and the verification of real-

time systems and its modeling formalism is an extension of timed 

automata. 

CADP 

PRISM 

BTC Embedded Validator verification tools that use formal methods to identify hidden design errors 

in Simulink/Stateflow models by performing automated searches for 

violations. 

Reactis Validator 

Simulink Design Verifier 
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3.3.2 Test and validation tools 

 

Test and validation tools are driving simulation tools that place the driver in an 

artificial environment believed to be a valid substitute for one or more aspects of the 

actual driving experience, exposing drivers to various challenging and risky scenarios in 

a controlled environment, since it is difficult to reproduce in reality some road situations. 

These tools provide a safe environment for real-time testing and help predicting 

equivalent measurements in the real world that lead to a better understanding of the 

complex driver–vehicle–road interaction in critical driving situations.  

In the literature, the validation of closed-loop perception, planning and control 

algorithms is performed by testing the configuration of the vehicle and a wide variety of 

traffic scenarios [37]. In this way, the driving simulation tools can be classified in two 

ways: vehicle configuration tools and environment configuration tools. Table 3.4 shows 

the different models that can be configured with each tool. 

 

Table 3.4 - Difference between tools. 

 

 

 

 

 

 

 

 

 

 

Vehicle model tools 

These tools are used for prototyping the characteristics of road vehicles and to 

test their dynamics (physics-based), where is possible to create vehicle models: motor 

models, sensor models (vision-based, infrared and ultrasonic sensors, radar, LiDAR, 

etc.), actuator models (brake and steering systems) and vehicular communication (V2X). 

It involves executing high-fidelity mathematical models capturing continuous dynamic 

behaviors of vehicles and their environment [106]. Vehicle dynamics require dynamic 

driving tasks, which includes operational (e.g., steering, braking, accelerating) and 

tactical (e.g., responding to events, determining when to change lanes, turn) aspects of 

the driving task [9]. Some of the most used tools to configure the system of an 

autonomous vehicle are: Matlab/Simulink, LabVIEW, CarMaker/TruckMaker, ROS, 

Webots, Simcenter Amesim and Unity 3D. 

Vehicle model tools Environment model tools 

vehicle settings vehicle settings 

sensor models sensor models 

- road models 

- traffic models 

- pedestrian models 
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Matlab/Simulink, created by MathWorks, allows the design of vehicle models to 

simulate their behavior - enables the simulation of their perception, planning, and 

control systems, that is, it allows the design and simulation of the sensors and the 

dynamics of the vehicle (e.g., how a vehicle's forward movement changes in response to 

driver inputs) [107]. The laboratory virtual instrument engineering workbench 

(LabVIEW), created by National Instruments, also allows the design and the simulation 

of vehicle models [108]. Both Simulink and LabVIEW have difficulty interacting with the 

hardware. CarMaker/TruckMaker, created by the IPG Automotive, is an extremely fast 

vehicle simulation platform with sophisticated vehicle models that allows full HIL 

simulations [102]. The robot operating system (ROS), created by Open Robotics, and 

Webots, created by Cyberbotics [109], are open-source robotic simulators that help 

building robot applications. As CAVs are a type of robot, the same types of programs can 

be used to control them [34]. Simcenter Amesim, created by SIEMENS, provides an 

integrated simulation platform to accurately predict the performance of intelligent 

systems, specifically the vehicle dynamics [37]. Unity 3D is a game engine platform 

originally design for the creation of video games. However, in recent years it has served 

to generate several simulators to implement path planning, control and vision systems 

of vehicles [34].  

 

Environment model tools 

These tools are perception-based simulators (AVs are decision-making systems 

that receive feedback from the surrounding environment through sensors), which 

simulate a dynamic world, allow not only the modeling of vehicle models, but also allow 

the development and manipulation of road models and traffic models. Simulations can 

model a real system with all its static (e.g., buildings, traffic signs) and dynamic (other 

vehicles or the traffic flow, pedestrians, etc.) components, as well as modeling the 

weather (e.g., rain, fog, day or night). Some of environment configuration tools are: 

CARLA, Dynacar, DYNA4, CarSim/TruckSim, Pro-SiVIC, Simcenter Prescan, VTD, 

NVIDIA DRIVE, SUMO, Synchro and Gazebo, where most of them are compatible with 

Matlab/Simulink. 

The CAR Learning to Act (CARLA), created by the Computer Vision Center, is an 

open-source simulator that has been used to study the performance of autonomous 

driving according to three different approaches: a modular pipeline, an end-to-end 

model trained via imitation learning and an end-to-end model trained via reinforcement 

learning [110]. Dynacar, developed by Tecnalia Research and Innovation, focuses on the 

validation of control and route planning [34] – it allows a good definition of trajectories 

and cooperative maneuvers. In addition, this platform allows HIL simulation with 
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different types of vehicles and scenarios [111]. DYNA4, created by Vector Informatik, also 

allows the execution of closed-loops simulations with the integration of ECUs. Driving 

simulation tools like CarSim/TruckSim, created by Mechanical Simulation Corporation, 

the simulator vehicle infrastructure sensors (Pro-SiVIC), created by Civitec, the 

Simcenter Prescan, created by SIEMENS, [111], the Virtual Test Drive (VTD), created by 

VIRES [85] and the NVIDIA DRIVE are commercial simulators (most of them are 

expensive to buy and maintain [102]) that allow developers to design and implement 

detailed simulations for vehicle testing and validation [34]. They support HIL 

simulation. The Simulation of Urban Mobility (SUMO), created by DLR [24], and 

Synchro, created by Trafficware [112], are open source microscopic traffic flow 

simulators for analysis, optimization and visualization of road networks. Each vehicle is 

modeled with its own route and moves individually through the network. Gazebo, created 

by Open Robotics, is a 3D environment simulator that provides realistic rendering of 

environments, including high-quality lighting, shadows and textures, and supports HIL 

simulations [24]. 

 

 

3.4 Challenges of SAE level 3+ 
 

With the increase in the level of automation in the automotive industry, vehicles 

are becoming increasingly complex and new and different challenges are emerging. In 

this way, the main challenges related to verification, validation and testing of CAVs can 

be classified into five major categories: sensors, communication, machine learning, 

testing and regulation, where the first four of these challenges must be solved to help 

overcome the last one.  

 

 

3.4.1 Sensors 

 

Sensors feed the vehicle’s control system with data acquired from the perception 

of the surrounding environment and this is highly influenced by external factors like 

adverse weather conditions, intense traffic or poor road signaling. This means that the 

decisions made by the CAVs depend directly on the accuracy of the data acquired by the 

sensors and, therefore, high precision sensors are needed to achieve autonomous driving. 

In addition, another difficulty of CAVs is the integration of all sensors in the 

vehicle system, and their fusion to form a single model - the sensor fusion unit [34]. 
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3.4.2 Communication 

 

Like sensors, CAVs connectivity need to capture and transmit data in real time 

over the surrounding environment in a wide range of conditions. In complex scenarios, 

such as intersections, especially the V2I communication reveals problems of scalability, 

bandwidth, versatility and universality during its simulation [112].  

Another challenge in vehicle communications is the data security and privacy. 

Because of the information exchanged between vehicles and with infrastructures, these 

system are vulnerable to cyber-attacks. More than ever, security software needs to be 

developed to make cyber-attacks more difficult [113]. 

 

 

3.4.3 Machine learning 

 

Machine learning algorithms are difficult to test and analyze, since it is difficult 

to characterize all the behaviors of these components under all circumstances, mainly 

due to the high number of parameters and the difficulty in characterizing the training 

data [109] – it is difficult to validate perception, planning and control algorithms with 

the simulation of vehicle dynamics in several traffic scenarios [37]. 

Besides that, integrating machine learning components with traditional software 

is a very challenging task. 

 

 

3.4.4 Testing  

 

The challenges in testing CAVs start with the requirements definition, where this 

is difficult due the multiple areas involved – it is necessary to define functional and safety 

requirements and make them all consistent [26]. However, the biggest problem in testing 

comes from the high complexity of these systems, where given the complexity of CAV 

systems (based on events) it is difficult to test such systems and consequently it is 

difficult to evaluate the entire implementation with all the time constraints [21]. Other 

difficulties for the verification, validation and testing of CAVs are summarized as follows: 

 

• Difficulty in the specification of input data for the test case generation [15];  

• Difficulty in characterizing scenarios: the need to consider the complexity and 

variety of scenarios and the constant possibility of interaction between multiple 

systems [114], the need to consider the expression of uncertainty in the driving 
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environment, as well as the absence of approaches to assess the safety of driving 

decisions [115]; 

• Difficulties in generating scenarios: generating environmental elements and 

assembling them in simulations that implement relevant and realistic test cases 

that challenge the autonomous vehicle software [98] and that closely resemble 

the situation on the road [27], respectively; 

• Difficulty in integrating the vehicle in an infrastructure with human drivers - 

other traffic participants can cause a critical scenario for CAVs [87]. 

• Difficulties in simulating the vehicle dynamics: the configuration must 

correspond to the interface of the control algorithm and its behavior must 

correspond as closely as possible to the actual behavior of the vehicle [116]. 

• Difficulties presented by the simulation platforms: they do not provide guidance 

for which test scenarios should be selected for simulation and simulations of 

vehicle dynamics are computationally expensive [97]. 

• Difficulty to perform tests that produce quantitative, repeatable and comparable 

results, since we do not have a detailed and testable definition of the intelligence 

of autonomous vehicles [75]. 

• Difficulty to facilitate efficient interaction at different stages of testing and 

validation in the V-model, have feedback from real-world test and the 

development of the test cases and test scenarios [83]. 

 

 

3.4.5 Regulation 

 

Sufficient standards and regulations for a complete system do not exist in any 

industry. However, the safety of connected and autonomous vehicles is vital, especially 

since a malfunction of the system can result in loss of life. Therefore, new legislation is 

needed to verify, validate and test CAVs - there are some standards and guidelines in the 

automotive industry, but they do not solve the problems of sensor, communication, 

testing and machine learning concepts [91]. New standards (e.g., ISO/SAE 21434) are 

starting to become more mature to improve the safety and security of CAVs and can be 

expected in the near future [82]. 
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Chapter 4  

Trajectory planning based on adaptive model 
predictive control: Study of the performance 
of an autonomous vehicle in critical highway 
scenarios  

 

This chapter shows a detailed description of the modeling process used to test 

and validate an autonomous vehicle model through several pre-defined scenarios using 

a software-in-the-loop simulation in Simulink. The main objective of the project is to 

avoid any collision in order to ensure the vehicle's safety, while driving autonomously. 

As the surrounding conditions and disturbances could not be controlled, the only option 

to avoid collision is the intelligent functioning of the main vehicle (called ego vehicle) 

and controlling its velocity, acceleration and steering angle by using an adaptive 

controller. For this purpose, a model predictive control (MPC) controller was used to 

accomplish this task. This model was implemented in a test bench by merging and 

configuring three ADAS functions in Matlab & Simulink: cruise control (CC); following 

lead vehicle (FLV); and lane change (LC). Furthermore, this vehicle model does not 

include a sensing system (sensor fusion). 

As mentioned in Chapter 2, the planning system of an autonomous vehicle 

consists of route planning, behavioral planning and trajectory planning. However, for 

this model only trajectory planning is addressed, as shown in Figure 4.1. Trajectory 

planning takes the global path previously defined by route and behavioral planners 

(called reference path) and provides it with time, velocity, acceleration and jerk 

information to generate inputs to the vehicle's control system - ensuring that the planned 

trajectory is executed.  

The model has been simulated in some pre-defined scenarios - with an ego vehicle 

reference path, designed in the Driving Scenario designer app from Matlab - to verify if 

the main vehicle uses all ADAS functions properly. 

 

 
 

Figure 4.1 - Planning system and control system used in the model. 
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Thus, the vehicle model was built in four steps: (1) designing the ego vehicle 

dynamics, (2) designing the pre-defined scenarios, with an ego vehicle reference path, 

(3) designing the planning system for the ego vehicle and (4) designing the ego vehicle 

control system. 

This project uses object-oriented programming (OOPs) to allow the combination 

of data and its associated actions (functions) into objects where they can evolve and 

change over time without introducing incompatibilities. Compared to other conventional 

programming languages (e.g., Java, Python), the OOPs in MATLAB allow to solve 

complex computing problems as it facilitates code modularization making programming 

faster.  

To model an object to have certain characteristics and behavior, classes are used. 

A Matlab class contains a blueprint used to build a specific type of object and is mainly 

composed of a set of properties and methods, and their attributes. The class's properties 

store data for each of the class's objects, while the class's methods contain a set of 

functions that define the operations that can be performed on each object of the class. 

Some specialized kinds of methods like the constructor are optional. Constructor 

methods are specialized methods that create objects of the class. A constructor method 

have the same name as the class and typically initializes property values with data 

obtained from input arguments. When defining a class, attributes can be specified to 

control the behavior of the class's properties and methods and to control how they are 

accessed from outside the object. For example, properties and methods can be public, 

private, or protected.  

Inheritance is one of the key points of object-oriented programming, as it allows 

the reuse of existing code, facilitating the creation of the project. Inheritance allows to 

create new classes built from existing ones (superclasses), to specify a new 

implementation while maintaining the same behaviors. An inherited class is called a 

subclass and all methods and attributes of its respective superclass will be inherited by 

it. To the subclass, new methods and new attributes can be added in a process of 

successive specialization.  

In addition to defining properties and methods, it is also possible to define 

enumerations in classes. Enumeration classes are specialized classes that define a fixed 

set of names representing a single type of value (integer types). This class type was used 

to define the driving modes supported in this model. 

Furthermore, as this project also requires implementation and simulation of 

dynamic systems with inputs that change over time and the values of the output signals 

depend on the instantaneous values of the input signals and on the past behavior of the 
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system, system objects were used. A System Object11 is a specialized kind of Matlab class 

with specific methods and properties, designed specifically for these dynamic systems. 

System objects use internal states to store their past behavior, which is used in the next 

computational step. As a result, system objects are optimized for iterative computations 

that process large streams of data in segments. This ability to process streaming data 

provides the advantage of not having to hold large amounts of data in memory and 

simplifies the model by using loops efficiently.  

 

 

4.1 Coordinate systems 
 

This model uses three cartesian coordinate systems defined in the SAE J670 and 

ISO 8855 standards. Vehicle dynamics modeling (Chapter 4.2) follows the SAE J670 

convention with two coordinate systems: the earth-fixed coordinate system (inertial) and 

the vehicle coordinate system. Path planning, localization, mapping and driving scenario 

simulation (Chapters 4.3, 4.4 and 4.5) follow the ISO8855 convention, which defines the 

world coordinate system.  

 

Earth-fixed coordinate system: Newtonian physics considers that the earth is an inertial 

reference, therefore, in the earth-fixed coordinate system, the axes (XE, YE, ZE) are fixed 

in an inertial reference frame where the angular velocity and linear and angular 

acceleration are zero. The XE and YE axes are parallel to the ground plane and the ZE axis 

is aligned with the gravitational vector. [117] 

 

Vehicle coordinate system: This system coincides with the earth-fixed coordinate system 

and begins in the point where motion is initialized. The vehicle system (XV, YV, ZV) is 

anchored to the main vehicle placed on the ground right below the midpoint of the rear 

axle (Figure 4.2). The XV axis points forward from the vehicle, the YV axis points to the 

right and the ZV axis points downward in the Z-Down orientation. [117] 

 

World coordinate system: All vehicles are placed in a fixed universal coordinate system 

that follows the ISO 8855 convention for rotation. The X axis points forward, the Y axis 

points to the left and the Z axis points up from the ground (Z-Up orientation), as 

illustrated in Figure 4.2. In this study, the world coordinate system is used in global-

frame and frenet-frame.  

 

 
11 https://www.mathworks.com/help/matlab/matlab_prog/what-are-system-objects.html 
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Figure 4.2 - Axis systems for the vehicle coordinate system and the world coordinate system. 

 

 

4.2 Vehicle dynamics 
 

To effectively design a control system for the ego vehicle, a simple dynamic model 

of the system under study is required. Here, Vehicle Dynamics Blockset12 of Matlab was 

used (vehicle coordinate system) and the dynamic aspects are explained in detail. 

 

Assumption 1: The ego vehicle only travels in a forward motion with a constant 

velocity and has the following initial conditions: (1) the longitudinal velocity is equal to 

the initial longitudinal velocity parameter (V0) set in the driving scenario (pre-built 

scenarios in Driving scenario app), (2) the lateral velocity is zero, as well as the 

longitudinal acceleration, the angular velocity and the steering angle. 

 

Assumption 2: The ego vehicle has 4 wheels in which the left and right axle are 

lumped into a single wheel each (bicycle model). The tractive force of the vehicle comes 

only from the front wheels (front-wheel drive). The vehicle mass is lumped in the Center 

of Gravity (CG), lying in the segment that connects the two wheels. 

 

Assumption 3: The vehicle has 3 Degrees Of Freedom (DOF): two 

displacements on the plane (longitudinal and lateral) and the rotation around an axis 

normal to that plane (yaw rotation). 

 

Assumption 4: Suspension movement, road inclination and aerodynamic 

influences are neglected. Whenever to simulate the model it was necessary to use 

parameters related to these characteristics, default values were used. 

 

 
12 https://www.mathworks.com/products/vehicle-dynamics.html 



 69 

Assumption 5: The other vehicles that travel around the main vehicle are called 

target vehicles or Most Important Objects (MIOs). All these vehicles travel at a constant 

speed on a fixed reference path (fixed waypoints).  

 

 
Vehicle dynamics models are distinguished with regards to degrees of freedom 

and the model of this project uses 3DOF. These 3DOF models are widely used for 

simulation purposes in which several behaviors of a vehicle such as velocity, acceleration, 

braking, and steering are being studied. To design and model the ego vehicle, the Vehicle 

Body 3DOF13 block from the Vehicle Dynamics Blockset™ of Matlab was used. This block 

implements a rigid two-axle vehicle body model to calculate longitudinal, lateral and yaw 

motion; and is used when vehicle pitch, roll, and vertical motion are not significant. By 

controlling these 3DOF over time, the vehicle’s trajectory will be known, so the path 

described by the vehicle can be studied.  

As additional simplifications are made, such as considering that the vehicle 

travels at constant speed, the model can be represented by a two-wheeled vehicle model: 

single-track (bicycle model). The bicycle model represents the vehicle's lateral dynamics 

in good detail, since in this project, the lane change trajectories are more important than 

tire forces or vehicle stability. The diagram of the model is showed in figure 4.3. 

 

 

Figure 4.3 - Bicycle model. 

 

Since the vehicle is assumed to have planar motion, three coordinates are 

necessary to describe the vehicle motion: X, Y and Ψ, where (X, Y) represent the inertial 

coordinates of the location of the center of gravity of the vehicle, while Ψ (yaw angle) 

indicates the orientation of the vehicle-fixed frame about the earth-fixed z-axis. The 

 
13 https://www.mathworks.com/help/vdynblks/ref/vehiclebody3dof.html 
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vector 𝑉 is the velocity at the CG of the vehicle and makes a slip angle (β) with the 

longitudinal axis of the vehicle. In an absolute inertial frame, the vehicle’s equations of 

motion are represented as follows 

 

�̇� = 𝑉 cos (𝛹 +  𝛽)                                                      (4.1) 

 

�̇� = 𝑉 sin (𝛹 +  𝛽)                                                      (4.2) 

 

�̇� =
𝑉 cos (𝛽)

𝑙𝑓+ 𝑙𝑟
 tan(𝛿)                                                      (4.3) 

 

where �̇� and �̇� are the longitudinal and lateral velocities, �̇� (yaw rate) is the vehicle 

angular velocity about the vehicle z-axis, δ is the steering angle, 𝑙𝑓 and 𝑙𝑟 are the 

longitudinal distance from the center of gravity to front and rear wheel, respectively.  

 

The bicycle model is derived by adding forces (𝐹𝑥, 𝐹𝑦, 𝐹𝑧) and moments (𝑀𝑥, 𝑀𝑦, 

𝑀𝑧) around the vertical axis at the center of gravity and it shows the vehicle lateral motion 

dynamics as well as the rotational dynamics. In this simple case, to obtain longitudinal 

and lateral accelerations, we can derive the equations of longitudinal and lateral motion 

by using Newton’s equations for translational motion in 𝑋 and 𝑌, while to obtain angular 

motion we use Euler’s equations in z-axis. Additionally, as we want to take into account 

the changes in the longitudinal velocity on the lateral and yaw motion, the vehicle is 

configured to use external longitudinal forces to accelerate or brake the vehicle. 

 

𝑚�̈� = 𝑚�̇��̇� +  𝐹𝑥𝑓 +  𝐹𝑥𝑟 + 𝐹𝑥 𝑒𝑥𝑡                                               (4.4) 

 

𝑚�̈� = − 𝑚�̇��̇� + 𝐹𝑦𝑓 +  𝐹𝑦𝑟 +  𝐹𝑦 𝑒𝑥𝑡                                              (4.5) 

 

𝐼𝑧𝑧�̈� =  𝑙𝑓𝐹𝑦𝑓 −  𝑙𝑟𝐹𝑦𝑟 +  𝑀𝑧 𝑒𝑥𝑡                                                   (4.6) 

 

where �̈� and �̈� are the longitudinal and lateral accelerations, �̈� is the vehicle angular 

acceleration, 𝑚 is the mass of the vehicle, 𝐹𝑥𝑓 and 𝐹𝑥𝑟 are the longitudinal forces applied 

to front and rear wheels, 𝐹𝑦𝑓 and 𝐹𝑦𝑟 are the lateral forces applied to front and rear wheel, 

𝐹𝑥 𝑒𝑥𝑡 and 𝐹𝑦 𝑒𝑥𝑡 are the external longitudinal and lateral forces applied to vehicle CG, 

𝑀𝑧 𝑒𝑥𝑡 is the external moment of the vehicle CG about the vehicle z-axis and 𝐼𝑧𝑧 is the yaw 

polar inertia.  
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Longitudinal and lateral forces applied to front and rear wheels are calculated 

with respect to the longitudinal and lateral tire forces, and the steering angle 

 

𝐹𝑥𝑓 =  𝐹𝑙𝑓 cos(𝛿) −  𝐹𝑐𝑓 sin (𝛿)                                            (4.7) 

 

𝐹𝑦𝑓 =   𝐹𝑙𝑓 sin(𝛿) −  𝐹𝑐𝑓 cos (𝛿)                                           (4.8) 

 

𝐹𝑥𝑟 =  𝐹𝑙𝑟                                                              (4.9) 

 

𝐹𝑦𝑟 =  𝐹𝑐𝑟                                                            (4.10) 

 

where 𝐹𝑙 is the traction force of tires and 𝐹𝑐 is the cornering force of tires.  

 

Tires generate longitudinal force during accelerating and decelerating (traction) 

and generate lateral force during cornering. In this way, the longitudinal tire forces are 

calculated using the input forces by the equations (4.11) and (4.12), and the lateral tire 

forces are calculated by the equations (4.13) and (4.14) using tire slip angles and linear 

cornering stiffness, and depend on the friction characteristics between the road and the 

tires 

 

𝐹𝑙𝑓 =  𝐹𝑥𝑓 𝑖𝑛𝑝𝑢𝑡                                                        (4.11) 

 

 𝐹𝑙𝑟 =  𝐹𝑥𝑟 𝑖𝑛𝑝𝑢𝑡                                                       (4.12) 

 

𝐹𝑐𝑓 =  − 𝐶𝑦𝑓𝛼𝑓𝜇𝑓
𝐹𝑧𝑓

𝐹𝑧𝑛𝑜𝑚
                                                (4.13) 

 

𝐹𝑐𝑟 =  − 𝐶𝑦𝑟𝛼𝑟𝜇𝑟
𝐹𝑧𝑟

𝐹𝑧𝑛𝑜𝑚
                                                (4.14) 

 

where 𝐶𝑦𝑓, 𝐶𝑦𝑟 are the front and rear wheel cornering stiffness, 𝛼𝑓 and 𝛼𝑟 are the front 

and rear wheel slip angles, 𝜇𝑓 and 𝜇𝑟 are the front and rear wheel friction coefficient 

(dimensionless), 𝐹𝑧𝑓 and 𝐹𝑧𝑟 are the normal force applied to front and rear wheels along 

vehicle z-axis and 𝐹𝑧𝑛𝑜𝑚 is the nominal normal force applied to axles, also along in the 

vehicle z-axis. 
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To maintain pitch and roll equilibrium, the normal forces, obtained by equations 

(4.15) and (4.16), are divided by the nominal normal load to vary the effective friction 

parameters during weight and load transfer 

 

(𝑙𝑓 +  𝑙𝑟) 𝐹𝑧𝑓 =   𝑙𝑟𝑚𝑔 − (�̈� − �̇��̇�)𝑚ℎ + ℎ𝐹𝑥 𝑒𝑥𝑡 + 𝑙𝑟𝐹𝑧 𝑒𝑥𝑡 −  𝑀𝑦 𝑒𝑥𝑡           (4.15) 

 

(𝑙𝑓 +  𝑙𝑟) 𝐹𝑧𝑟 =   𝑙𝑓𝑚𝑔 − (�̈� − �̇��̇�)𝑚ℎ − ℎ𝐹𝑥 𝑒𝑥𝑡 + 𝑙𝑓𝐹𝑧 𝑒𝑥𝑡 − 𝑀𝑦 𝑒𝑥𝑡           (4.16) 

 

where h is the height of vehicle CG above the axle plane, 𝐹𝑧 𝑒𝑥𝑡 is the external force applied 

to vehicle CG along the vehicle z-axis, 𝑀𝑦 𝑒𝑥𝑡 is the external moment of the vehicle CG 

about the vehicle y-axis.  

 

The slip angle of the tires, given by equations (4.17) and (4.18), represent the 

angle between the wheel velocity and the direction of the wheel itself 

 

𝛼𝑓 = atan( 
�̇�+ 𝑙𝑓�̇� 

�̇�
 )  −  𝛿                                                 (4.17) 

 

𝛼𝑟 = atan( 
�̇�− 𝑙𝑟�̇� 

�̇�
 )                                                     (4.18) 

 

The Vehicle Body 3DOF block used to design the ego vehicle in Simulink 

implements all these equations and the required fixed values for the simulation to work 

used in this block are shown in Table 4.1.   

 

Table 4.1 - Fixed ego vehicle parameters. 

 

 

 

 

 

 

 

 

 

 

Parameter Value Units 

Izz 2875  𝐾𝑔 𝑚2 
 

V0 
 

0 
𝑚

𝑠
 

 

Cyf 
 

19000 
N

𝑟𝑎𝑑
 

 

Cyr 
 

33000 
N

𝑟𝑎𝑑
 

 

Ψ̇o 
 

0 
𝑟𝑎𝑑

𝑠
 

Fznom 5000 𝑁 

m 1575 𝐾𝑔 

lf 1,2 𝑚 

lr 1,6 𝑚 

h 0,35 𝑚 

αf 0,1 𝑟𝑎𝑑 

αr 0,1 𝑟𝑎𝑑 
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In addition, Figure 4.4 shows all the values used in the Vehicle Body 3DOF block: 

the fixed parameters and the time-varying parameters required for the simulation.  

 

 

 

 

 

Figure 4.4 - Parameters defined for the ego vehicle dynamics. 
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4.3 Scenario setup 
 

The simulation environment was built using the Driving Scenario Designer14  app 

and the Automated Driving Toolbox15 from Matlab. Both use the world coordinate system 

for testing the autonomous driving model. All the scenarios were built in this app (see 

Figures 4.6, 4.7 and 4.8) and were exported as a Matlab function, where the Matlab code 

generated is equivalent to the scenarios created. The Driving Scenario Designer app 

generates a drivingScenario16 object which contains information about roads, vehicles 

(actors), pedestrians and barriers of a scenario. By modifying the code in the exported 

Matlab function, it was possible to generate multiple variations of each original scenario, 

such as changing the waypoints (reference path) or the lateral offset (lane) of the ego 

vehicle and the target vehicles, varying the speeds of all vehicles, etc.. These exported 

Matlab function were called in the main Matlab script to generate the scenario variables 

needed to run the closed-loop Simulink model in real time. In Simulink, these scenario 

variables are read by the Scenario Reader17 block. The Scenario reader block needs two 

conversions to work properly (Figure 4.5): 

(1) It requires a discrete signal to update the vehicle state in the driving scenario, for 

which Rate transition18 blocks were used, where the rate of transition is equal to 

the controller sample time.  

(2) It requires the conversion of the physical quantities of the ego vehicle (coming 

from the Vehicle body 3DOF block) expressed in the SAE J670 convention to the 

ISO8855 convention (used by the Scenario reader block). 
 

 

Figure 4.5 - Signal conversions. 

 
14 https://www.mathworks.com/help/driving/ref/drivingscenariodesigner-app.html 
15 https://www.mathworks.com/products/automated-driving.html 
16 https://www.mathworks.com/help/driving/ref/drivingscenario.html 
17 https://www.mathworks.com/help/driving/ref/scenarioreader.html 
18 https://www.mathworks.com/help/simulink/slref/ratetransition.html 
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All scenarios were set with an ego vehicle with a reference path that has two 

waypoints: the initial waypoint (positioned on the vehicle's CG) and the final waypoint, 

which corresponds to the end of the road. All roads have a longitudinal extension of 800 

meters and each lane has a lateral length of 3.6 meters (default value of the Driving 

Scenario Designer app). Simulation time was set to 30 seconds for all scenarios.  

In relation to the ego vehicle, the middle of the lateral length of the road 

corresponds to the zero reference, where the right lanes support negative values 

(negative lane centers) and the left lanes support positive values (positive lane centers). 

 

Driving scenario 1: This scenario has two lanes and contains three target vehicles. 

 

 
Figure 4.6 - Driving scenario 1. 

 

 
Driving scenario 2: This scenario has three lanes and contains six target vehicles. 

 

 
Figure 4.7 - Driving scenario 2. 

 

 
Driving scenario 3: This scenario has four lanes and contains nine target vehicles. 

 
Figure 4.8 - Driving scenario 3. 
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The physical quantities of the ego vehicle converted before are then packed in a 

Matlab structure through the function “Ego” (see Figure 4.10), since the Scenario Reader 

block demands an input signal of the ego vehicle pose containing a Matlab structure with 

the fields: ID, position, velocity, yaw angle and yaw rate (angular velocity) of the ego 

vehicle. In the existence of an ego vehicle (which is the case), the Scenario reader block 

will convert the physical quantities of all other actors into the vehicle coordinate system. 

This block can also read the road boundary data (in vehicle coordinate system). The 

parameters of the Scenario reader block can be seen in Figure 4.9.  

 

 
Figure 4.9 - Scenario reader block parameters. 

 

 

The trajectory planning system of the Simulink model requires target vehicles 

positions in frenet and global coordinates. In this way, the Vehicle To World19 block was 

used to convert physical quantities of non-ego actors outputted by the Scenario Reader 

block into world coordinates.  

 
19 https://www.mathworks.com/help/driving/ref/vehicletoworld.html#:~:text=%C3%97-
,Description,with%20the%203D%20simulation%20environment. 
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Both the outputs of Scenario Reader block (in vehicle coordinates) and Vehicle 

To World block (in world coordinates) are a Simulink bus containing a Matlab structure 

with the fields: number of actors, current simulation time and actor poses. The actor 

poses include the positions, velocities, and orientations of actors in the driving scenario, 

where each actor pose is a Simulink bus containing the Matlab structure with the fields 

of Table 4.2.  

 

Table 4.2 - Actor pose structure17,19. 

Field  Description Values Units 

Actor ID Scenario-defined actor identifier Positive integer - 

Position Position of the ego actor Real-valued vector of the 

form [x y z] 

Meter 

Velocity Velocity of the ego actor in the x- 

y-, and z-directions 

Real-valued vector of the 

form [vx vy vz] 

Meter per second 

Roll Roll angle of the ego actor Real-valued scalar Degree 

Pitch Pitch angle of the ego actor Real-valued scalar Degree 

Yaw Yaw angle of the ego actor Real-valued scalar Degree 

Angular Velocity Angular velocity of the ego actor 

in the x-, y-, and z-directions 

Real-valued vector of the 

form [ωx ωy ωz] 

Degree per second 

 

 

The Scenario reader block automatically creates four Simulink buses: 

“BusActorsEgoActors” and “BusActorsEgo” for actors, and “BusLaneBoundaries1” and 

“BusLaneBoundaries1LaneBoundaries” for lanes. In this vehicle model, as the lane 

information was not used, only the actor bus objects were exported from the Bus Editor20 

and saved into Matlab files, stored in the Simulink.Bus object format. The 

“BusActorsEgoActors” (output of the Scenario Reader block) was change21 to 

“BusActorsEgo” and saved in Matlab file called “CreateBusActorsEgo.m”, where the 

number of actors was replaced for a variable, since this is a variable parameter for each 

scenario. The “BusActorsEgo” (actor pose structure) was changed21 to “BusActor” and 

saved in the Matlab file called “CreateBusObjects.m” to initialize this bus object in the 

Matlab base workspace. 

In addition, a function was also created to interrupt the simulation when a 

collision between the ego vehicle and a target vehicle occurs - "collisionDetect" function 

(Figure 4.10). Collision detection occurs when the ego vehicle and target vehicle 

polyshapes overlap. The calculation of polyshapes is achieved through the width, length, 

and rear overhang of the actors. 

  

 
20 https://www.mathworks.com/help/simulink/slref/buseditor.html 
21 The bus name was changed to a more intuitive name only by authors' choice. 
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Figure 4.10 - Scheme of the scenario setup of the Simulink model. 
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4.4 Vehicle path planning 
 

Trajectory planning uses local planners to adjust the global path based on 

obstacles in the environment, generating alternative trajectories for the ego vehicle 

through the traffic. The local planning strategy samples a set of local trajectories based 

on the current and foreseen state of the environment before choosing the most optimal 

trajectory. The generator of local trajectories22 for planning adaptive routes in Matlab is 

done in Frenet-frame. 

 

 

 

4.4.1 States conversion 

 
The traveling path is defined by parametric curves, particularly on curved roads 

and lane changes. To achieve optimization and time efficiency, many trajectory planning 

algorithms are developed in the frenet-frame to reduce the planning dimension when 

generating trajectories along the shape of the reference path, that is, the frenet 

coordinate system is a way of representing position on a road in a more intuitive way 

than the traditional cartesian coordinates (mathematically simpler representation) [118]. 

In this way, the cartesian states (global-frame) of the waypoints in the reference path 

need to be converted to the frenet-frame, as illustrated in Figure 4.11. 
 

 

Figure 4.11 - Comparison of a planned trajectory in Cartesian and Frenet coordinates. 

 

 
The global states of a vehicle are represented by a six-element row vector  

 

globalState =[𝑋, 𝑌, 𝜃, 𝐾, 𝑉, 𝐴] 

 
22 https://www.mathworks.com/help/nav/ug/choose-path-planning-algorithms-for-navigation.html 

 

 

𝑙 
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where (𝑋, 𝑌) is the vehicle position in meters, 𝜃 is the orientation angle in radians, 𝐾 is 

the curvature in 𝑚−1, 𝑉 is the vehicle velocity in 𝑚/𝑠 and a is the vehicle acceleration in 

m/𝑠2.  

 

With frenet coordinates, the variables 𝑠 and 𝑙 are used to describe a vehicle’s 

position, where the 𝑠 coordinate represents distance along the road (arc length), also 

known as longitudinal displacement, and the 𝑙 coordinate represents the side-to-side 

position on the road relative to a reference path, also known as lateral displacement. 

Thus, the frenet states are a six-element row vector represented by position, velocity and 

acceleration relative to a reference path 

 

frenetState = [ 𝑠,
𝑑𝑠

𝑑𝑡
 ,

𝑑2𝑠

𝑑𝑡2  , 𝑙 ,
𝑑𝑙

𝑑𝑠
 ,

𝑑2𝑙

𝑑𝑠2 ] 

 

 The global states of the ego vehicle and target vehicles obtained before, are saved 

and also converted to frenet states in the function “statesConverter”, requiring the 

creation of a Simulink bus for the closed-loop model to work. In the Bus Editor, this bus 

named “BusEgoAndTargetStates” was constructed with the following fields: number of 

target actors, ego global state, ego frenet state, target global states and target frenet 

states, as shown in Figure 4.12. The created bus was then exported and saved in the 

Matlab file “CreateBusObjects.m” to initialize this bus object in the Matlab base 

workspace.  

 

 
 

Figure 4.12 - Bus Editor showing the fields of the Simulink bus "BusEgoAndTargetStates”. 
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4.4.2 Polynomials trajectories 

 

The vehicle trajectory is a combination of the lateral movement (offset pattern) 

𝑙(𝑡) and the longitudinal movement 𝑠(𝑡), as illustrated in Figure 4.13. Generally, both 

patterns are formulated as a 4th/5th order polynomial function, where the fourth-order 

function enables to generate the minimum acceleration trajectory and the fifth-order 

order function enables to generate the minimum jerk (acceleration change) trajectory 

[118]. Since we seek to minimize the jerk to smooth the motion and the safety for high 

speeds, a fifth-order polynomial is used 

 

𝑙(𝑡) =  𝑎6𝑡5 +  𝑎5𝑡4 +  𝑎4𝑡3 + 𝑎3𝑡2 +  𝑎2𝑡 + 𝑎1                            (4.19) 

 

𝑠(𝑡) =  𝑏6𝑡5 +  𝑏5𝑡4 +  𝑏4𝑡3 +  𝑏3𝑡2 +  𝑏2𝑡 + 𝑏1                           (4.20) 

 

where variable 𝑎𝑖 and 𝑏𝑖 are computed according to the initial and terminal conditions 

over time, in frenet coordinates. 

 

Figure 4.13 - Vehicle trajectory. 

 

As both patterns can be written following the same logic, the adopted quintic 

polynomial is defined as  

 

𝑠(𝑡) =  𝑎6𝑡5 + 𝑎5𝑡4 +  𝑎4𝑡3 +  𝑎3𝑡2 +  𝑎2𝑡 + 𝑎1                                      (4.21) 

 

where 𝑠 here is considered the longitudinal or lateral distance. In this way, the velocity 

�̇�(𝑡), the acceleration �̈�(𝑡) and the jerk 𝑠(𝑡) are given by 
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�̇�(𝑡) =  5𝑎6𝑡4 + 4𝑎5𝑡3 +  3𝑎4𝑡2 +  2𝑎3𝑡 +  𝑎2                                 (4.22) 

 

�̈�(𝑡) =  20𝑎6𝑡3 +  12𝑎5𝑡2 +  6𝑎4𝑡 +  2𝑎3                                      (4.23) 

 

𝑠(𝑡) =  60𝑎6𝑡2 +  24𝑎5𝑡 +  6𝑎4                                              (4.24) 

 

The start boundary conditions (𝑡 = 0) are 𝑠𝑠𝑡𝑎𝑟𝑡 = 𝑎1, �̇�𝑠𝑡𝑎𝑟𝑡 = 𝑎2, �̈�𝑠𝑡𝑎𝑟𝑡 = 2𝑎3 and 

𝑠𝑠𝑡𝑎𝑟𝑡 = 6𝑎4. In this way, substituting in equation (4.21), the formulation of the 

longitudinal or lateral movement for a jerk-optimal trajectory generation is defined as 

 

𝑠(𝑡) =  
1

6
𝑠𝑠𝑡𝑎𝑟𝑡𝑡3 + 

1

2
�̈�𝑠𝑡𝑎𝑟𝑡𝑡2 +  �̇�𝑠𝑡𝑎𝑟𝑡𝑡 + 𝑠𝑠𝑡𝑎𝑟𝑡                          (4.25) 

 

The same happens for velocity, acceleration and jerk 

 

�̇�(𝑡) =
1

2
𝑠𝑠𝑡𝑎𝑟𝑡𝑡2 + �̈�𝑠𝑡𝑎𝑟𝑡𝑡 +  �̇�𝑠𝑡𝑎𝑟𝑡                                      (4.26) 

 

�̈�(𝑡) =  𝑠𝑠𝑡𝑎𝑟𝑡𝑡 + �̈�𝑠𝑡𝑎𝑟𝑡                                                  (4.27) 

 

𝑠(𝑡) =  𝑠𝑠𝑡𝑎𝑟𝑡                                                         (4.28) 

 

 

4.4.3 Formulation of local trajectory planning 

 

The Local trajectory planning for the ego vehicle consists of a large and complex 

system, therefore, it was designed in a separate Simulink file labeled “planner.slx”. This 

model woks as a separate model and is used in the main Simulink file through a Model23 

block. Model blocks reuse models as blocks in other models, creating a model hierarchy 

where the main Simulink file is the parent model.  

The planning model needs some parameters, which have been condensed into a 

subsystem. This subsystem requires a Simulink bus for the parameters to work within 

the closed loop model. This bus was named “BusPlannerParams” and holds the planning 

 
23 https://www.mathworks.com/help/simulink/slref/model.html 
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parameters, as shown in Figure 4.14. The model also needs information from the map 

which also requires a Simulink bus. The bus that contains this type of information was 

named “BusMapInfo” and has the following fields: number of lanes, lane width, lane 

centers, number of global planning points (waypoints) and the global planning points 

(Figure 4.15). These buses were then saved in the Matlab file “CreateBusObjects.m”. 

 

 
 

Figure 4.14 - Bus Editor showing the fields of the Simulink bus "BusPlannerParams". 

 

 
 

Figure 4.15 - Bus Editor showing the fields of the Simulink bus "BusMapInfo". 
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The trajectory planning model was structured as follows, where Figure 4.16 shows 

a synthesis of the process: 

 

I. Generate terminal states for the ego vehicle,  

II. Evaluate cost of the terminal states, 

III. Generate trajectories for the ego vehicle,  

IV. Check trajectories (kinematic) feasibility of the ego vehicle, 

V. Check Trajectories for Collision and Select the Optimal Trajectory. 

 

 
 

Figure 4.16 - Scheme of the local planning system for the ego vehicle to select the optimal trajectory at 

every sampled time. 
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I. Generate terminal states for the ego vehicle  

 

The generation of the terminal states for the ego vehicle requires the knowledge of its 

position and the position of the target vehicles, in frenet states. Target vehicles are 

tracked in the scenario by the function “trackMIOs”, while the position of the ego vehicle 

is constantly updated by the function “updateEgoInfo”, to compute the distance between 

the main vehicle and the target vehicles that are in its current lane and adjacent right and 

left lanes.  

The “trackMIOs” function outputs the frenet states for each target vehicle, which 

also requires a Simulink bus. The bus was named “BusMIOFrenetStates” and contains 

the following fields: number of target vehicles (or MIOs), their IDs and their states 

(Figure 4.17). This bus was exported and saved in the Matlab file “CreateBusObjects.m” 

as well. 

 

 
 

Figure 4.17-Bus Editor showing the fields of the Simulink bus “BusMIOFrenetStates". 

 

 

The function “updateEgoInfo” requires knowing the preferred lane for the vehicle, 

that is, the lane where the ego vehicle can travel with safety (collision-free). In this way, 

the preferred lane is calculated by the “FindPreferredLane” function which estimates this 

lane based on the Time-To-Contact (TTC) between MIOs and the ego vehicle 

 

𝑇𝑇𝐶 =
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦
                                                 (4.29) 
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Time-To-Contact is defined as the time for two vehicles to collide if both vehicles 

continue to drive at their current velocity and with the same heading angle. For lane 

change maneuvers, the calculation of the TTC is not trivial, since projections of future 

interactions between the ego vehicle and the target vehicles are required [119].  

To estimate the magnitude of the distance and velocity vectors (relative distance and 

relative velocity) it was used the cart2pol function from Matlab, which uses polar 

coordinates generating the magnitude vectors and their respective angles. The angle of 

the relative velocity, calculated in equations (4.30) and (4.31), is the relative yaw angle, 

which is the angle from the lane centerline in relation to the longitudinal velocity, as 

illustrated in Figure 4.18.  

 

𝑣𝑥 = 𝑉 ∗ cos (𝜃𝑦𝑎𝑤)                                                  (4.30) 

 

𝜃𝑦𝑎𝑤 =  𝜃𝑣𝑒𝑙 − 𝜃𝑑𝑖𝑠𝑡                                                  (4.31) 

 

where 𝑣𝑥 is the longitudinal velocity, 𝜃𝑦𝑎𝑤 is the relative yaw angle, 𝜃𝑣𝑒𝑙 is the velocity 

angle and 𝜃𝑑𝑖𝑠𝑡 is the relative distance angle. 

 

 
Figure 4.18 - Illustration of the relative velocity angle (relative yaw angle) and the relative distance angle 

(adapted from [120]). 

 

When the planning model has both ego vehicle position and target vehicles position, 

it initializes the generation of the terminal states according to three driving modes 

supported by the planner. 

 

(1) Cruise control: when this function is activated, cruise control terminal states are 

generated. Regarding longitudinal conditions, the longitudinal position is unrestricted, 
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and is, therefore, specified as not a number (NaN). Longitudinal velocity is set to the 

speed that the ego vehicle is traveling in the driving scenario (�̇�𝑑𝑒𝑠) and the terminal 

acceleration is set to zero. This function uses the ego vehicle's lateral velocity and the 

time horizon (𝑡ℎ𝑜𝑟) to predict the expected lateral offset (ego vehicle's lane) N-seconds in 

the future. With this predicted lateral offset, the lane center is calculated and becomes 

the terminal state's lateral deviation 𝑙𝑒𝑥𝑝𝐿𝑎𝑛𝑒. The lateral velocity and acceleration are set 

to zero. 

 

cruiseControlState = [𝑁𝑎𝑛, �̇�𝑑𝑒𝑠, 0, 𝑙𝑒𝑥𝑝𝐿𝑎𝑛𝑒 , 0, 0, 𝑡ℎ𝑜𝑟] 

         

 

(2) Following Lead Vehicle: when this function is activated, terminal states that track a 

vehicle in front of the ego vehicle are generated. First, this function determines the ego 

vehicle's current lane through the estimation of its lane centers from the driving scenario. 

The function predicts the future state of each target vehicle, for each time horizon, to find 

the actors that occupies the same lane as the ego vehicle. In case there is a leading vehicle, 

the function searches for the vehicle that is closest to the main vehicle  

 

closestLeadVehicleState = [𝑠𝐿𝑒𝑎𝑑 , �̇�𝐿𝑒𝑎𝑑 , 0, 𝑙𝐿𝑒𝑎𝑑, 𝑙�̇�𝑒𝑎𝑑 , 0] 

 

The terminal state of the ego vehicle is calculated by taking the position and speed 

of the lead vehicle and reducing the longitudinal position by the safety distance.  

 

followLeadVehicleState = [(𝑠𝐿𝑒𝑎𝑑 −  𝑑𝑠𝑎𝑓𝑒𝑡𝑦), �̇�𝐿𝑒𝑎𝑑 , 0, 𝑙𝐿𝑒𝑎𝑑, 𝑙�̇�𝑒𝑎𝑑, 0, 𝑡ℎ𝑜𝑟] 

 

(3) Lane change: when this function is activated, terminal states that transition the 

vehicle from the current lane to either adjacent lane are generated. First, this function 

determines the ego vehicle's current lane and then checks if adjacent lanes exist and each 

future ones are available. For each valid adjacent lane, the terminal state is defined in the 

same manner as the cruise control behavior, with the terminal velocity is set to the 

current speed that the ego vehicle is travelling in the driving scenario (�̇�𝑐𝑢𝑟).  

 

laneChangeState = [𝑁𝑎𝑛, �̇�𝑐𝑢𝑟, 0, 𝑙𝑑𝑒𝑠𝐿𝑎𝑛𝑒 , 0, 0, 𝑡ℎ𝑜𝑟] 

 

Each driving mode outputs the number of terminal states and their own values. 

Therefore, to hold these two information in the same output, it was necessary to create a 
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Simulink bus and exported to the Matlab file “CreateBusObjects.m”. This bus was named 

“BusTerminalStates”. 

 

When the planner has all terminal states, it concatenates them to ensure that the 

planned continuous trajectory is feasible and also natural. This operation is made in the 

function “TerminalStatesConcatenation” in which the output variable is composed by the 

following fields: the number of resulting combinations, the actual combinations (with all 

the states) and the driving mode (CC, LFV and LC). Both combinations and driving mode 

hold a maximum of 60 terminal state values. For this output, the Simulink bus 

“BusTerminalStatesConbination” was created (Figure 4.19) and exported to the Matlab 

file “CreateBusObjects.m”. 

 

 
 

Figure 4.19-Bus Editor showing the fields of the Simulink bus “BusTerminalStatesConbination". 

 

 

II. Evaluate cost of the terminal states  

 

Trajectory evaluation is done after the generation of the terminal states by evaluating 

their costs and finding the trajectory with the minimum cost (the optimal one). The 

function “EvaluateTSCost” defines the cost as the combination of three weighted sums 

 

𝐶𝑇𝑂𝑇𝐴𝐿 =  𝐶𝑙𝑎𝑡𝐷𝑒𝑣 +  𝐶𝑡𝑖𝑚𝑒 + 𝐶𝑠𝑝𝑒𝑒𝑑                                    (4.32) 
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The lateral deviation cost presented in the equation (4.33) is achieved by the lateral 

deviation difference penalized with a positive weight for all the states that deviate from 

the center of a lane. The lateral deviation difference, given by the equation (4.34), uses 

the minimum argument of the lateral deviation vector. This vector is calculated by the 

difference between the lateral deviation of the ego current lane and each terminal states 

lateral deviation.  

 

𝐶𝑙𝑎𝑡𝐷𝑒𝑣 =  𝑊𝛥𝐿 ∗ 𝛥𝐿                                                     (4.33) 

 

𝛥𝐿 = 𝑎𝑟𝑔𝑚𝑖𝑛 (|𝐿𝑒𝑔𝑜𝐿𝑎𝑛𝑒 −  𝐿𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒|)                                (4.34) 

 

where 𝐶𝑙𝑎𝑡𝐷𝑒𝑣 is the lateral deviation cost, 𝑊𝛥𝐿 is the lateral deviation weight, 𝛥𝐿 is 

the lateral deviation difference, 𝐿𝑒𝑔𝑜𝐿𝑎𝑛𝑒 is the lateral deviation of the lane (lane center) 

in which the ego vehicle is travelling and 𝐿𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒 is the lateral deviation of all 

terminal states. 

 

The time cost, given by the equation (4.35), is computed by prioritizing motions that 

occur over a longer interval, resulting in smoother trajectories. In this way, the time of 

the terminal states is multiplied with a negative weight. 

 

𝐶𝑡𝑖𝑚𝑒 =  𝑊𝛥𝑡 ∗ 𝛥𝑡                                                     (4.35) 

 

where 𝐶𝑡𝑖𝑚𝑒 is the time cost, 𝑊𝛥𝑡 is the time weight and 𝛥𝑡 is the time interval of the 

terminal states (time horizon). 

 

The velocity cost, expressed by the equation (4.36), is determined by the 

multiplication of the velocity difference for each terminal states, multiplied by a positive 

weight in order to prioritize motions that maintain the ego vehicle velocity from the 

driving scenario - resulting in less dynamic maneuvers. The velocity difference is 

achieved by the contrast between the ego vehicle velocity (from the scenario) and its 

terminal states velocity – equation (4.37). 

 

𝐶𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  𝑊𝛥𝑣 ∗ 𝛥𝑣                                                    (4.36) 

 

𝛥𝑣 = 𝑣𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒𝑠 −  𝑣𝑒𝑔𝑜                                             (4.37) 
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where 𝐶𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 is the velocity cost, 𝑊𝛥𝑣 is the velocity weight, 𝛥𝑣 is the velocity difference, 

𝑣𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒𝑠 is the velocity of all terminal states and 𝑣𝑒𝑔𝑜 is the ego vehicle speed. 

 

The three weighted sums are calculated and sorted in ascending order, placing 

terminal states with the lowest costs in the first positions of choice for the ego vehicle. 

Once the terminal states are sorted, it is possible to generate trajectories for the main 

vehicle. For that, a system object named “EgoTrajectoryGenerator” was created, where a 

trajectoryGeneratorFrenet24 object is used. This object generates trajectories using fifth-

order polynomials relative to the reference path, which is specified as a 

referencePathFrenet25 object. This last object fits a smooth, piecewise and continuous 

curve for the specified set of waypoints from the reference path, resulting in a trajectory 

that smoothly matches the ego vehicle's velocity over the time horizon.  

The trajectoryGeneratorFrenet object generates global trajectories for the ego 

vehicle, calculated according to the minimal cost previously estimated. All global 

trajectories are updated at every replan cycle based on the information received from the 

upstream blocks. The default replan cycle is one second and is created by a pulse 

generator. Thus, the “EgoTrajectoryGenerator” system object output has the following 

fields: number of the global trajectories generated, if each global trajectory is new, the 

index of each global trajectory and the characteristics of a global trajectory for each 

trajectory. To support this output, the Simulink bus “BusGlobalTrajectories” (Figure 

4.20) was created. 

Each global trajectory sustains the trajectory waypoints and respective times, the 

number of these waypoints, checks if the trajectory is valid for the ego vehicle, verify if 

the trajectory is evaluated and if it collides, and the driving mode used. In this way, the 

Simulink bus named “BusGlobalTrajectory” was created (Figure 4.21). The trajectory 

waypoints has a maximum number given by the following equation 

 

𝑚𝑎𝑥𝑇𝑟𝑎𝑗𝑃𝑜𝑖𝑛𝑡𝑠 =  
𝑡ℎ𝑜𝑟

𝑡𝑟𝑒𝑠
+  1                                               (4.38) 

 

where 𝑡ℎ𝑜𝑟 is the time horizon and 𝑡𝑟𝑒𝑠 is the time resolution. A waypoint must be added 

to the equation (4.38) since it is necessary to consider the ego vehicle's waypoint (located 

in its CG). 

 

 
24 https://www.mathworks.com/help/nav/ref/trajectorygeneratorfrenet.html 
25 https://www.mathworks.com/help/nav/ref/referencepathfrenet.html 
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Both buses were exported and saved in the Matlab file “CreateBusObjects.m”. 

 

 
 

Figure 4.20 - Bus Editor showing the fields of the Simulink bus “BusTrajectories". 

 

 

 

 
 

Figure 4.21 - Bus Editor showing the fields of the Simulink bus “BusGlobalTrajectory". 
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III. Check trajectories kinematic feasibility of the ego vehicle 

 

In addition of having terminal states with minimal cost, an optimal trajectory also 

needs to take into account the kinematic feasibility for a good ride quality. For this 

purpose, the "checkTrajectoryFeasibility" function was created to guarantee that all 

generated global trajectories eliminate infeasible maneuvers, taking into account some 

important kinematic constraints. This function defines bounds as follows: (1) maximum 

values of curvature, acceleration, yaw rate, and (2) minimum value of velocity. 

Constraining curvature, acceleration, yaw rate to minimum values results in a 

smoother driving experience. Regarding the velocity, as the ego vehicle only travels in 

forward motion, it is necessary to assign it a minimum speed. By restricting these 

features, it is possible to eliminate all kinematically infeasible trajectories that would 

otherwise be performed by the ego vehicle. 

 

 

 

IV. Check Trajectories for Collision and Select the Optimal Trajectory 

 

The final step in the planning process is choosing the best trajectory: the collision-

free trajectory. Collision checking is an expensive operation, so for the simulation 

optimization it is saved for after the cost evaluation and the analysis of constraints. After 

these two tasks the remaining trajectories can then be checked for collision until a 

collision-free path has been found or all trajectories have been evaluated. 

To accomplish this task, it is necessary to know all the future trajectories that the 

ego vehicle can perform in order to avoid possible collisions with the target vehicles. For 

that, a system object named “EgoTrajectoryPredictor” was created. This system object 

uses the referencePathFrenet  object to smooth the path along the waypoint set. The 

system object uses the current MIO position to predict the future trajectories of MIO by 

assuming them to be moving with a constant velocity during the simulation time and 

computing ego states accordingly. It returns the predicted trajectories of the MIOs with 

the following fields: number of trajectories, all the target IDs and the future trajectories 

of all target vehicles (have their own features). In the Bus Editor, a Simulink bus 

containing these field was created and named “BusFutureTrajectories”. After that it was 

exported and saved in the Matlab file “CreateBusPredictedTrajectories.m”, where the 

number of target vehicles was replaced for a variable, since this is a variable parameter 

for each scenario. 
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Each single predicted trajectory holds the ID of the target actor travelling on it, 

its number of waypoints and the frenet states for each point. The maximum number of 

frenet states for each waypoint on that trajectory was set to 255 (rows), since the target 

vehicle ID and the number of waypoints are uint826 data types. In this way, the Simulink 

bus named “BusFutureTrajectory” was created and saved in the Matlab file 

“CreateBusPredictedTrajectories.m” as well (Figure 4.22). 

 

 
 

Figure 4.22 - Bus Editor showing the fields of the Simulink bus “BusFutureTrajectory". 

 

When the planning system has the global valid trajectories for the ego vehicle and 

the predicted trajectories of the target vehicles, the system checks for collision. For that, 

is created a system object named “CollisionChecker” that uses the dynamicCapsuleList27 

object, This object manages two separated lists of capsule-based collision objects, ego 

bodies and obstacles, in 2-D space. Each collision object in the two lists has three key 

elements: ID for each object (EgoIDs for ego vehicles and ObstacleIDs for target 

vehicles), their states which is a three-element row vector in the form of [𝑋 𝑌 𝜃] and their 

geometry (Figure 4.23). 

 

Figure 4.23 - Geometry of a capsule-based collision object. 

 
26 https://www.mathworks.com/help/matlab/matlab_prog/integers.html 
27 https://www.mathworks.com/help/nav/ref/dynamiccapsulelist.html 
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The Driving Scenario Designer allow the configuration of different geometries for 

the actors, in which for collision checking it represents an important and indispensable 

feature to take into account. In “CollisionChecker” system object, the main vehicle is 

defined with default vehicle dimensions of a sedan, shown in Figure 4.24, since these 

values are the same as the ego vehicle of the driving scenario. 

 

 

 

Figure 4.24 - Vehicle dimensions of a sedan vehicle. 

 

Regarding the target vehicles, it was used the actorProfiles28 function from 

Matlab which is a structure with the fields presented in Table 4.3. To be able to access 

these vehicle characteristics as variables, it was necessary to create a Simulink bus with 

these parameters which was named "BusActorProfiles " and saved in the Matlab file 

“CreateBusPredictedTrajectories.m”. 

 

The “CollisionChecker” system object updates constantly the two capsule lists 

according to the predicted trajectories of MIOs and the sampled ego trajectories. It 

checks for collisions between ego and target vehicles during replan cycles and in between 

replan cycles. The first valid collision-free trajectory obtained is chosen as the optimal 

trajectory. This means that all the trajectory information outputted by this system block 

needs to be a Simulink bus with: 

 

▪ valid trajectory information for the ego vehicle (bus “BusTrajectories”), 

▪ predicted trajectories for target vehicles (bus “BusFutureTrajectories”). 

 

 

 

 

 
28 https://www.mathworks.com/help/driving/ref/drivingscenario.actorprofiles.html 
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Table 4.3 - Vehicle profile structure. 

Field Description Value Units 

ActorID Scenario-defined actor identifier Positive integer - 

ClassID Classification identifier Nonnegative integer * - 

Length Length of actor Positive real-valued scalar Meter 

Width Width of actor Positive real-valued scalar Meter 

Height Height of actor Positive real-valued scalar Meter 

OriginOffset Offset of the actor's rotational 

center (origin) from its 

geometric center 

Real-valued vector of the form 

[x, y, z] 

Meter 

MeshVertices Mesh vertices of actor N-by-3 real-valued matrix of 

vertices. Each row in the matrix 

defines a point in 3-D space 

 

- 

MeshFaces Mesh faces of actor M-by-3 matrix of integers. 

Each row of MeshFaces 

represents a triangle defined by 

the vertex IDs, which are the 

row numbers of vertices 

 

- 

RCSPattern Radar cross-section pattern of 

actor 

numel(RCSElevationAngles)-

by-numel(RCSAzimuthAngles) 

real-valued matrix 

Decibel per 

square 

meter 

RCSAzimuthAngles Elevation angles corresponding 

to rows of RCSPattern 

Vector of values in the range [–

180, 180] 

Degree 

RCSElevationAngles Elevation angles corresponding 

to rows of RCSPattern 

Vector of values in the range [–

90, 90] 

Degree 

* The default ClassID of zero is reserved for an object of an unknown or unassigned class, the ClassID of 

actors set to 1 is a car, 2 is for trucks, 3 is for bicycles, 4 is for pedestrians, 5 is for jersey barrier and 6 is 

for guardrail. 

 

 

In this way, the Simulink bus named “BusTrajectoriesInfo” was created 

containing the information of the ego trajectory and the information of the future 

trajectories of the target vehicles, as shown in Figure 4.25. It has exported and saved in 

the Matlab file “CreateBusPredictedTrajectories.m”. 

 

 The last step of the local trajectory planning is to compute the next state of the 

ego vehicle, required by the control system. A MPC controller includes a nominal 

operating point at which its model applies to obtain the linear-time-invariant 

approximation. The function “EgoCurrentState” estimates the next state (waypoint on 

path) of the ego vehicle based only on its current pose and outputs that waypoint 
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information - updated at each time step as the ego’s operating waypoint keeps changing. 

According to that information, the control system adjusts the longitudinal and lateral 

characteristics of the ego vehicle. To support all function output fields, the Simulink bus 

“BusRefPointOnPath” was created (Figure 4.26). This is the last bus necessary to create 

and was also saved in the Matlab file “CreateBusPredictedTrajectories.m”. 

 

 
 

Figure 4.25 - Bus Editor showing the fields of the Simulink bus “BusTrajectoriesInfo". 

 

 

 
 

Figure 4.26 - Bus Editor showing the fields of the Simulink bus “BusRefPointOnPath". 

 
The vehicle model planning system designed in the Simulink file can be found in 

Figures 4.27, 4.28, 4.29 and 4.30.  
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Figure 4.27 - Scheme of the planning system of the Simulink model. 
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Figure 4.28 – “Planner parameters” subsystem. 

 
 
 
 
 
 
 

 
 

Figure 4.29 – “Generate terminal states for the ego vehicle" subsystem. 
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Figure 4.30 - "Pulse generator" subsystem. 
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4.5 Vehicle control 
 

For path-following, the control system of this vehicle model uses an adaptive 

model predictive control (MPC) to keep the ego vehicle travelling along the center of a 

road (LKA) while maintaining a safe distance from a lead vehicle (ACC) to track the 

waypoints defined previously in path planning (upper level control). For that purpose, 

the Path Following Control System29 block from the Model Predictive Control Toolbox30 

of Matlab was used, since this block combines the capabilities of the Lane Keeping Assist 

System31 and the Adaptive Cruise Control System32 blocks, as shown in Figure 4.31. The 

adaptive MPC controller is the core of this control system that computes optimal control 

actions while satisfying velocity, acceleration, and steering angle constraints. 

 

 
 

Figure 4.31 - Schematic of lane curvature estimation for LKA29. 

 

 

 

4.5.1 Adaptive model predictive control 

 

The model predictive control predicts future behavior using a Linear-Time-

Invariant (LTI) dynamic model. In a traditional MPC, the LTI prediction accuracy might 

degrade since the ego characteristics vary dramatically with time. Adaptive MPC can 

address this degradation by adapting the prediction model for changing operating 

conditions because it allows the models parameters to evolve with time. The adaptive 

MPC uses a fixed plant model structure that changes over a finite prediction horizon 

[121].  

 
29 https://www.mathworks.com/help/mpc/ref/pathfollowingcontrolsystem.html 
30 https://www.mathworks.com/products/model-predictive-control.html 
31 https://www.mathworks.com/help/mpc/ref/lanekeepingassistsystem.html 
32 https://www.mathworks.com/help/mpc/ref/adaptivecruisecontrolsystem.html 
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The inputs for the plant are separated to indicate that 𝑢 correspond to the front 

wheel steering angle and acceleration/deceleration command of the vehicle (controlled 

output of MPC), while 𝑣 indicates the previewed curvature (measured disturbance). The 

structure of the MPC plant model is as follows 

 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢𝑢(𝑘) + 𝐵𝑑𝑣(𝑘)                               (4.39) 

 

𝑦(𝑘) = 𝐶𝑥(𝑘)                                                          (4.40) 

 

where 𝑥 is the state, 𝑘 is time index (current control interval), 𝑢 is the manipulated input 

(inputs that are adjusted by the MPC controller), 𝑣 is the measured disturbance input, 𝑦 

is the output of the system, 𝐴 is the state matrix, 𝐵𝑢 and 𝐵𝑑 are the input matrices 

corresponding to inputs 𝑢 and 𝑣 respectively, and 𝐶 is the output matrix. 

 

 

 

4.5.2 Path following control 

 

In a cruise control system, the speed of the vehicle is controlled to a desired value 

using the throttle control input. When a preceding vehicle is detected, the ACC system 

determines whether or not the ego vehicle can continue to travel safely at the desired 

speed. The upper level and lower level controller of the longitudinal control system 

architecture for the cruise control is structured as shown in Figure 4.32. [122] 
 

 

Figure 4.32  - Structure of cruise control system [122]. 

 
The upper level controller determines the desired longitudinal acceleration for 

the ego vehicle, where the speed of the vehicle should converge to the speed set by the 
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driver – in this vehicle model, converge to the speed defined for the ego vehicle in the 

driving scenario. The lower level controller (Figure 4.33) determines the throttle input 

required to track the desired acceleration, which due to the finite bandwidth associated 

with this controller, the vehicle is expected to track its desired acceleration imperfectly 

and thus it is required to incorporate a lag in tracking desired acceleration 

 

�̈� =
1

𝜏𝑠+1
�̈�𝑑𝑒𝑠                                                         (4.41) 

 

where �̈� is the throttle input, �̈�𝑑𝑒𝑠 is the desired acceleration and τ is desired acceleration 

time constant, assumed to be τ = 0.5 sec for analysis and simulation. 

 

 
 

Figure 4.33 – Lower level controller of the Simulink file. 

 

 

The predictive model of the adaptive cruise control system has the following 

predictive state-space model  
 

𝐴1 = [
−

1

𝜏
0

1 0
]                                                        (4.42) 

 

𝐵1 = [
1

𝜏

0
]                                                             (4.43) 

 

𝐶1 = [0 1]                                                            (4.44) 

 

𝐷1 = 0                                                              (4.45) 

 

In a lane-keeping assist system, the lateral deviation and relative yaw angle 

between the centerline of a lane and the ego car is measured, as well as the current lane 
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curvature and curvature derivative. The curvature in front of the ego vehicle (previewed 

curvature) can be calculated from these two last features. Thus, the previewed lane 

curvature [123] is achieved by assuming that 𝐾(𝑠) is a linearly varying function, so that 

the evolution of the ego vehicle state at each waypoint is calculated as 

 
 

𝐾𝑖+1 = 𝐾𝑖 + 𝐶𝑖+1 + 𝑠𝑖+1                                               (4.46) 

 

since, 

𝑠 = 𝑉𝑥 ∗ 𝑡ℎ𝑜𝑟                                                          (4.47) 

 

then, 

𝑠𝑖+1 = 𝑉𝑥 ∗ 𝑡𝑝𝑟𝑒𝑑                                                       (4.48) 

 

where 𝐾𝑖+1 is the previewed curvature, 𝐾𝑖 is the current curvature, 𝐶𝑖+1 is the curvature 

slope (constant by definition), 𝑠𝑖+1 is the predicted arc-length of the road, 𝑉𝑥 is the 

longitudinal velocity and 𝑡𝑝𝑟𝑒𝑑 is the prediction time that is equal to the prediction 

horizon multiplied by the simulation sample time (𝑇𝑠), represented by the gain “K” in 

Figure 4.34. 

 

 
 

Figure 4.34 - Calculation of previewed curvature: 1) curvature derivative, 2) longitudinal velocity and 3) 

curvature. 
 

 

In this way, the predictive model of the lane-keeping system has the following 

predictive state-space model  

 

𝐴2 =  [

− 2(𝐶𝑓 + 𝐶𝑟)

𝑚𝑉𝑥

− 𝑉𝑥− 2(𝐶𝑓𝑙𝑓 − 𝐶𝑟𝑙𝑟)

𝑚𝑉𝑥

− 2(𝐶𝑓𝑙𝑓 − 𝐶𝑟𝑙𝑟)

𝐼𝑧𝑧𝑉𝑥

− 2(𝐶𝑓(𝑙𝑓)2+ 𝐶𝑟(𝑙𝑟)2)

𝐼𝑧𝑧𝑉𝑥

]                                 (4.49) 

 

𝐵2 = [

2𝐶𝑓

𝑚
2𝐶𝑓𝑙𝑓

𝐼𝑧𝑧

]                                                           (4.50) 
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𝐶2 = [
1 0
0 1

]                                                          (4.51) 

 

𝐷2 =  [
0
0

]                                                             (4.52) 

 

The LKA system keeps the ego car travelling along the centerline of the lanes on 

the road by adjusting the front steering angle of the ego vehicle, keeping lateral deviation 

and relative yaw angle close to zero. 

 

As the path following control system combines these two previous systems, its 

predictive model results in the following predictive state-space model  

 

𝐴 = [
𝐴1 0
0 𝐴2

]                                                         (4.53) 

 

𝐵 = [
𝐵1 0
0 𝐵2

]                                                         (4.54) 

 

𝐶 = [
𝐶1 0
0 𝐶2

]                                                          (4.55) 

 

𝐷 = [
𝐷1 0
0 𝐷2

]                                                         (4.56) 

 

Therefore, the output of this combined model are the longitudinal acceleration 

and the steering angle. All values used in the controller are shown in Figure 4.35 and the 

vehicle model control system designed in the Simulink file can be found in Figure 4.36. 

 

   
 

Figure 4.35 - Values of the path following control system. 
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Figure 4.36 - Scheme of the control system of the Simulink model. 
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Chapter 5  

Results and discussion 

 

In this chapter the software-in-the-loop simulation procedure is presented with 

its results, and discussed in detail about the performance of the system. The results 

obtained in the simulations are evaluated for model validation. 

 

To simulate the performance of the main vehicle in a low-traffic scenario and in 

a dense traffic scenario, and to reduce test cases, three driving scenarios were created. 

For the scenario with little traffic (driving scenario 1), only a two-lane road was tested 

since for little traffic the main vehicle has more space to make maneuvers like lane 

changes to avoid collisions, and therefore presents a very similar behavior and 

performance for roads with more than two lanes. On the other hand, in a scenario with 

dense traffic, the main vehicle has less room to maneuver. For this reason, the model 

developed was simulated for roads with three and four lanes - driving scenarios 2 and 3, 

respectively. 

The simulation environment, as mentioned in Chapter 4, is defined with default 

lane lengths of 3.6 meters, where their respective centers are different for each driving 

scenario, as these depend on the number of lanes (see Figure 5.1). In the driving scenario 

with 2 lanes, the center of the right lane holds the value of -1.8 meters (half of the lateral 

length of the lane), while the center of the left lane holds the value of 1.8 meters. In the 

three-lane scenario the center of the right lane holds the value of -3.6 meters, the center 

of the middle lane has the value of 0 meters, and the center of the left lane holds the value 

of 3.6 meters. The four-lane scenario has two right lanes with lane centers of -5.4 meters 

(rightmost lane) and -1.8 meters, and two left lanes with lane centers of 1.8 meters and 

5.4 meters (leftmost lane). Also, the first lane (lane 1) is always the rightmost lane of the 

road. 
 

 
 

Figure 5.1 - Lane centers for: A) 2 lanes, B) three lanes and C) four lanes. 
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As all scenarios will be tested according to the performance of the ego vehicle, all 

other conditions such as relative position and speed of other vehicles in the scenario are 

defined in relation to it. The surrounding traffic is defined with a constant velocity and 

with a pre-defined path. Tables 5.1, 5.2 and 5.3 show the velocity and the positions 

(waypoints) defined for the target vehicles in each scenario. 

 
Table 5.1 - Values defined for the target vehicles for the driving scenario 1. 

Vehicle ID Velocity Initial position Final position 

1 23 [10 1.8 0] [800 1.8 0] 

2 17 [70 -1.8 0] [800 -1.8 0] 

3 22 [75 1.8 0] [800 1.8 0] 

 
 
 

Table 5.2 - Values defined for the target vehicles for the driving scenario 2. 

Vehicle ID Velocity Initial position Final position 

1 17 [7 -3.6 0] [800 -3.6 0] 

2 17 [10 3.6 0] [800 3.6 0] 

3 19 [30 -3.6 0] [800 -3.6 0] 

4 15 [40 0 0] [800 0 0] 

5 17 [50 3.6 0] [800 3.6 0] 

6 15 [80 0 0] [800 0 0] 

 
 
 

Table 5.3 - Values defined for the target vehicles for the driving scenario 3. 

Vehicle ID Velocity Initial position Final position 

1 20 [1 5.4 0] [800 5.4 0] 

2 17 [7 -1.8 0] [800 -1.8 0] 

3 18 [13 1.8 0] [800 1.8 0] 

4 21 [15 5.4 0] [800 5.4 0] 

5 21 [30 1.8 0] [800 1.8 0] 

6 24 [33 5.4 0] [800 5.4 0] 

7 16 [50 -5.4 0] [800 -5.4 0] 

8 18 [55 -1.8 0] [800 -1.8 0] 

9 22 [100 5.4 0] [800 5.4 0] 

 

All driving scenarios were created for the ego vehicle to achieve the most desired 

performance: make a lane change when a critical scenario arises, since this is the driving 

mode that uses the maximum capability of the implemented system to avoid collisions. 

This means that all driving scenarios are critical scenarios and, consequently, all 

scenarios perform at least one lane change (successfully or not).  
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Driving scenario 1 was built to evaluate the performance of the ego vehicle over time, 

on a two-lane road with little traffic, in which the main vehicle was initially placed in lane 

1 (the rightmost lane of the road). On the other hand, driving scenario 2 was created to 

evaluate the vehicle performance on a three-lane road with dense traffic, with the main 

vehicle placed in lane 2 (middle lane). Driving scenario 3 aims to evaluate the vehicle's 

performance in a scenario of dense traffic on a four-lane road, where the vehicle was 

placed in lane 1. Figure 5.2 shows the ego vehicle in its initial lane in each scenario. 

 

  

  

  

Figure 5.2 - The ego vehicle performing its first lane change in each scenario: (1) driving scenario 1; (2) 

driving scenario 2 and (3) driving scenario 3. 
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Each driving scenario was simulated for four different velocities of the ego vehicle, as 

shown in Figure 5.3. 

 
 

Figure 5.3 - Ego vehicle characteristics for the 12 scenarios considered for this study. 

 

Collision occurrences happen in very extreme scenarios and when they happen the 

closed-loop simulation stops. Although the objective of this vehicle model is to test the 

performance of the ego vehicle for unpredictable situations that may arise (avoiding 

collisions), these extreme cases are also considered, so the performance of the system 

shows its maximum capabilities. 

Criticality arises when the relative distance and relative velocity between the ego 

vehicle and the lead vehicle is reduced, generating different sets of results with regards 

to the scenario elements. Figures 5.4 to 5.27 show the performance of the ego vehicle in 

each simulation for further evaluation of the developed system.  

The ego vehicle travels at a constant velocity, which means that its direction is 

also constant. This means that when the vehicle changes direction to perform a lane 

change maneuver, its speed decreases slightly. At that moment, the vehicle experiences 

acceleration to counteract the disturbance in velocity, where the  control system activates 

the vehicle's accelerator to make the speed return to its defined value.  

Steering angle and yaw angle determine whether the vehicle has turned into the 

left or right lane. When the steering wheel is rotated to the right, the steering angle is 

positive, when it is rotated to the left, the steering angle is negative [124]. Regarding the 

yaw angle, and in agreement with the Driving Scenario Designer app, when the vehicle 

turns to the left the angle is positive, when the vehicle turns to the right the angle is 

negative. 
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Scenario 1A: In driving scenario 1 for a vehicle speed of 18 m/s, at instant 𝑡 = 1.8 sec 

the vehicle initiates a lane change maneuver as can be seen by the decrease in velocity 

(consequently increased acceleration) and the change in steering angle. From the yaw 

and steering angle graphs, it is possible to see that the vehicle performed a lane change 

to the left lane - the steering angle is negative and the yaw angle is positive.  

 

 
 

Figure 5.4 - Graph of velocity, acceleration, yaw angle and steering angle of the scenario 1A. 
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At 𝑡 = 3.9 sec, the vehicle performs a lane change to its right, returning to its initial 

lane (lane 1) as a faster target vehicle in lane 2 (𝑉𝑡𝑎𝑟𝑔𝑒𝑡3 = 22 m/s) approaches the main 

vehicle. As the return to lane 1 is not ideal due to the low speed vehicle ahead (𝑉𝑡𝑎𝑟𝑔𝑒𝑡2 = 

17 m/s), at instant 𝑡 = 7.6 sec the ego vehicle is forced to slow down to avoid a collision 

(Figure 5.5). The ego vehicle control system decelerates until the planning system 

provides a feasible trajectory for the vehicle to pursue, which happens at instant 𝑡 = 8.7 

sec where the vehicle makes its third lane change to its left. The ego vehicle remains in 

this lane until the end of the simulation. Due to the fact that the vehicle in front is faster, 

the ego vehicle does not need to change lanes, since a lane change affects the vehicle's 

performance. In this way, the main vehicle travels to the end of the simulation in follow 

the leading vehicle mode. 

 

 

 
 

Figure 5.5 - Ego vehicle at instant 𝑡 = 7.6 sec, when the vehicle starts to slow down to avoid a collision with 

the target vehicle ahead. 
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Scenario 1B: In driving scenario 1 for a vehicle speed of 20 m/s, and as in the previous 

scenario, exists a target vehicle ahead of the main vehicle that has a lower velocity 

(𝑉𝑡𝑎𝑟𝑔𝑒𝑡2 = 17 m/s). In this scenario, the ego vehicle lags behind the target vehicle 2 until 

a trajectory for a more optimal lane change emerges and, therefore, the ego vehicle 

control system decelerates slightly to avoid a collision. At instant 𝑡 = 2.9 sec the vehicle 

performs a lane change maneuver to its left, and at this instant the acceleration increase 

to counteract the decrease in speed caused by the lane change manoeuvre.t. At instant 𝑡 

= 21 sec the vehicle returns to the right lane, remaining there until the end of the 

simulation. There are no target vehicles in the right lane ahead of the main vehicle, the 

only target vehicle in the right lane stayed behind the ego vehicle because it has a lower 

speed than the ego vehicle (𝑉target= 17 m/s), so the ego vehicle is in cruise control mode. 

 

 
 

Figure 5.6 - Graph of velocity, acceleration, yaw angle and steering angle of the scenario 1B. 
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Scenario 1C: In driving scenario 1 for a vehicle speed of 22 m/s, the ego vehicle behaves 

as in the previous scenario, where the only difference here is the times in which the two 

lane change maneuvers are initiated - in this scenario the ego vehicle starts both 

maneuvers earlier. The ego vehicle makes the first lane change to the left at instant 𝑡 = 

0.1 sec and returns to the right lane at instant 𝑡 = 4 sec, where it remains until the end of 

the simulation in cruise control mode. 

 

 
 

Figure 5.7 - Graph of velocity, acceleration, yaw angle and steering angle of the scenario 1C. 



 115 

Scenario 1D: In driving scenario 1 for a vehicle speed of 22 m/s, the ego vehicle behaves 

as in the last two scenarios. In this scenario, the first lane change to the left takes place 

at the same time as the previous scenario (𝑡 = 0.1 sec), while the second maneuver in 

which the vehicle returns to the right lane happens earlier, 𝑡 = 2.3 sec. From that moment 

on, the vehicle remains in the right lane until the end of the simulation in cruise control 

mode. 

 

 
 

Figure 5.8 - Graph of velocity, acceleration, yaw angle and steering angle of the scenario 1D. 
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Scenario 2A: In driving scenario 2 for a vehicle speed of 18 m/s, at instant 𝑡 = 2 sec the 

ego vehicle control system is forced to decelerate to avoid a collision with the slower 

vehicle ahead (𝑉𝑡𝑎𝑟𝑔𝑒𝑡4 = 15 m/s), until the planning system provides a better trajectory. 

At instant 𝑡 = 3.4 sec the main vehicle gets a better trajectory in its right lane, for which 

a lane change maneuver is initiated. At this instant the velocity of the main vehicle 

decreases more sharply than before the lane change. After that, the vehicle performs two 

lane changes to its right: at instant 𝑡 = 12.4 sec, returning to lane 2 (its initial lane), and 

at instant 𝑡 = 14 sec, where it goes to the rightmost lane of the road, remaining there until 

the end of the simulation. In this lane there is a target vehicle that has a higher speed 

than the ego vehicle (𝑉𝑡𝑎𝑟𝑔𝑒𝑡3 = 19 m/s) and, therefore, this target vehicle is traveling in 

front of the ego vehicle during the entire simulation making the ego vehicle travelling in 

the follow the leading vehicle mode. 

 

 
 

Figure 5.9 - Graph of velocity, acceleration, yaw angle and steering angle of the scenario 2A. 
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Scenario 2B: In driving scenario 2 for a vehicle speed of 20 m/s, at instant 𝑡 = 0.1 sec 

the ego vehicle performs a lane change to the left (lane 3). After that, the vehicle makes 

two lane changes to its right lane: at instant 𝑡 = 6.8 sec the vehicle turns right, returning 

to its initial lane (lane 2), and then at instant 𝑡 = 11 sec turns right again, going to the 

rightmost lane of the road (lane 1), as shown in Figure 5.11. The decrease in acceleration 

before each of these two previous lane changes is due to the control system needing to 

decelerate until the planning system obtains a better trajectory, since the vehicle in front 

is traveling at a slower velocity. Between 𝑡 = 11 sec and 𝑡 = 14.7 sec, the vehicle's steering 

angle signal suffers some disturbances, however, no lane change is made.  

 

 
 

Figure 5.10 - Graph of velocity, acceleration, yaw angle and steering angle of the scenario 2B. 
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These steering angle disturbances are due to the planning system being 

constantly updating the best trajectory for the ego vehicle over time, since the current 

one is not feasible considering the relative distance and relative velocity between the 

leading vehicle and the ego vehicle, as shown in Figure 5.12. 

At instant 𝑡 = 15.5 sec (Figure 5.13), the main vehicle is finally able to generate a 

feasible trajectory, where it makes a lane change to its left returning to the middle lane. 

The ego vehicle remains in this lane until the end of the simulation and as the only target 

vehicles traveling in the middle lane are target vehicles 4 and 6 which travel at a lower 

speed than the ego vehicle (𝑉target4 = 𝑉target6 = 15 m/s), the ego vehicle travels in this lane 

in the cruise control mode. 

 

 

Figure 5.11 - Scenario 2B for instants 𝑡 = 11 sec. 

 

 

Figure 5.12 - Scenario 2B for instant 𝑡 = 13.5 sec. 

 

 

Figure 5.13 - Scenario 2B for instant 𝑡 = 15.5 sec. 
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Scenario 2C: In driving scenario 2 for a vehicle speed of 22 m/s, the simulation results 

in an extreme case. At instant 𝑡 = 9.7 sec the simulation stops because the main vehicle 

collides with the vehicle in front of it. Before the crash, the ego vehicle makes two lane 

changes: the first one at 𝑡 = 0.1 sec where it turns into its left lane (lane 3), and the second 

one at 𝑡 = 3.4 sec where performs a lane change to the right, returning to the middle lane. 

Although the vehicle slows down to avoid colliding with the target vehicle in front, the 

vehicle cannot find a collision-free trajectory and crashes, stopping the simulation. 

 

 
 

Figure 5.14 - Graph of velocity, acceleration, yaw angle and steering angle of the scenario 2C. 
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Scenario 2D: In driving scenario 2 for a vehicle speed of 24 m/s, at instant 𝑡 = 0.1 sec 

the ego vehicle makes a lane change for the left lane (lane 3) and until the planning 

system has a better trajectory, the control system decelerates to avoid a collision, since 

the target vehicle ahead has a lower velocity (𝑉𝑡𝑎𝑟𝑔𝑒𝑡5 = 17 m/s). At the instant 𝑡 = 2.2 sec 

the ego vehicle changes lane to its right, returning to the middle lane. In the middle lane 

as in the previous two scenarios, the vehicle has difficulty finding feasible lanes to 

perform a lane change: in the instants 𝑡 = 3.6 sec and 𝑡 = 4.4 sec the ego vehicle starts to 

turn right and left, respectively, but it doesn't make a complete lane change – the vehicle 

only makes a complete lane change, to the right (lane 1), at instant 𝑡 = 5.2 sec.  

 

 
 

Figure 5.15 - Graph of velocity, acceleration, yaw angle and steering angle of the scenario 2D. 
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As illustrated in Figure 5.16, this difficulty is due to the fact that the planning 

system seeks the best trajectory based on the current position of the ego vehicle and the 

future positions of the target vehicles, estimating the relative distance and the relative 

velocity at each sample time to find the best feasible trajectory for the ego vehicle. 

The ego vehicle makes two more lane changes, both to the left: at instant 𝑡 = 6.6 

sec the ego vehicle begins to perform a lane change to its left lane going to the middle 

lane, while at instant 𝑡 = 8.1 sec the vehicle performs a new lane change to its left lane 

(lane 3). The ego vehicle remains in that lane until the end of the simulation in cruise 

control mode. The ego vehicle planning system decides that the leftmost lane is most 

suitable for it based on the relative distance and relative velocity between the main 

vehicle and the target vehicles in each lane, as shown in Figure 5.17. 

 

 
 

Figure 5.16 - Lane change to the right lane at instant 𝑡 = 5.2 sec. 

 

 
 

Figure 5.17 - Ego vehicle in cruise control mode at instant 𝑡 = 13 sec.  
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Scenario 3A: In driving scenario 3 for a vehicle speed of 18 m/s, the ego vehicle only 

makes a lane change to its left lane (lane 2) at instant 𝑡 = 5.2 sec. The vehicle remains in 

lane 2 in the mode of following the lead vehicle, since the velocity of the vehicle ahead 

has the same velocity as the ego vehicle and their relative distance is acceptable. Besides 

that, the main vehicle's right and left lanes do not present best trajectories for its current 

and future positions, as shown in the Figure 5.19 and Figure 5.20.  

 

 
 

Figure 5.18 - Graph of velocity, acceleration, yaw angle and steering angle of the scenario 3A. 
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Figure 5.19 - Ego vehicle in following the lead vehicle mode at instant 𝑡 = 15.3 sec. 

 

 

 

 

 
 

Figure 5.20 - Ego vehicle in following the lead vehicle mode at instant 𝑡 = 30 sec. 
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Scenario 3B: In driving scenario 3 for a vehicle speed of 20 m/s, at instant 𝑡 = 2.4 sec 

the ego vehicle makes a lane change for the left lane (lane 2) since the vehicle in front has 

a lower speed. At instant 𝑡 = 10.2 sec the ego vehicle makes another lane change to its 

left, going into lane 3 of the road, where it remains until the end of the simulation in the 

mode of following the lead vehicle. 

 

 
 

 

Figure 5.21 - Graph of velocity, acceleration, yaw angle and steering angle of the scenario 3B. 
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Scenario 3C: In driving scenario 3 for a vehicle speed of 22 m/s, the steering angle and 

the yaw angle suffered some disturbances during the first 15 seconds of simulation. At 

instant 𝑡 = 1.7 sec the ego vehicle makes a lane change from lane 1 to lane 2 and at instant 

𝑡 = 6 sec from lane 2 to lane 3.  

 

 

 
 

Figure 5.22 - Graph of velocity, acceleration, yaw angle and steering angle of the scenario 3C. 
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Between instant 𝑡 = 6 sec and 𝑡 = 14.5 sec, the ego vehicle can’t make a lane change 

based on the relative distance and relative velocity between the main vehicle and the 

target vehicles in the adjacent ego lanes according to their future positions, as shown in 

Figure 5.23. In this way, at 𝑡 = 8 sec, the ego control system slows down so the vehicle 

stays behind the vehicle in front (𝑉𝑡𝑎𝑟𝑔𝑒𝑡5 = 21 m/s), until there is a feasible trajectory for 

the ego vehicle to follow.  

At instant 𝑡 = 14.5 sec, the main vehicle finally achieves a feasible trajectory to its 

right (Figure  5.24), returning to lane 2 where it remains until the end of the simulation 

in cruise control mode. At this instant, the acceleration of the ego vehicle begins to 

increase to counteract the decrease in vehicle speed due to the lane change maneuver. 

 

 
 

Figure 5.23 – The ego vehicle at instant 𝑡 = 11.8 sec when it is unable to track a feasible trajectory. 

 

 
 

Figure 5.24 – The ego vehicle at instant 𝑡 = 14.5 sec when it is finally able to track a feasible trajectory, 

making a lane change maneuver. 



 127 

Scenario 3D: In driving scenario 3 for a vehicle speed of 24 m/s, at instant 𝑡 = 1.2 sec 

the ego vehicle makes the only possible maneuver: a lane change to the left, due to the 

lower speed of the target vehicle ahead. However, this isn’t the best trajectory for the 

future positions of the main vehicle, since in lane 2 the vehicle ahead moves at a lower 

speed than the ego.  

 

 

 
 

Figure 5.25 - Graph of velocity, acceleration, yaw angle and steering angle of the scenario 3D. 
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In this way, and as illustrated in Figure 5.26, the ego vehicle control system 

decelerates to avoid a collision until a better trajectory appears in the adjacent lanes, 

taking into account the relative distance and velocity. At instant 𝑡 = 5.2 sec, the main 

vehicle gets a feasible trajectory on the left lane, so it performs a lane change returning 

to lane 1 (Figure 5.27). At this moment, the acceleration of the ego vehicle starts to 

increase to counteract the decrease in the vehicle velocity due to the lane change 

maneuver. At instant 𝑡 = 8.2 sec the main vehicle makes a last lane change to its left, 

where remains until the end of the simulation in cruise control mode. 

 

 
 

Figure 5.26 – The ego vehicle searching for a better trajectory at instant 𝑡 = 4.2 sec. 

 

 

 
 

Figure 5.27 - Lane change in the instant 𝑡 = 5.2 sec. 
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Table 5.4 summarizes information from the simulations, showing how many lane 

changes are performed by the ego vehicle in each scenario and whether the vehicle 

performs the other supported driving modes: cruise control and follow the leading 

vehicle.  

 
Table 5.4 - Simulation results. 

Scenario ID Ego velocity CC FLV LC Collision 

 

Driving 

scenario 1 

Scenario 1A 18  ✓ 3 No 

Scenario 1B 20 ✓ ✓ 2 No 

Scenario 1C 22 ✓ ✓ 2 No 

Scenario 1D 24 ✓ ✓ 2 No 

 

Driving 

scenario 2 

Scenario 2A 18  ✓ 3 No 

Scenario 2B 20 ✓ ✓ 4 No 

Scenario 2C 22  ✓ 2 Yes 

Scenario 2D 24 ✓ ✓ 5 No 

 

Driving 

scenario 3 

Scenario 3A 18  ✓ 1 No 

Scenario 3B 20  ✓ 2 No 

Scenario 3C 22 ✓ ✓ 3 No 

Scenario 3D 24 ✓ ✓ 3 No 
 

       (✓) Used, () Not used 

 

 

Taking into account the results obtained, it was found that for the low-traffic 

scenario, with increasing speed, the main vehicle passes the slow vehicle in front earlier 

and more smoothly - the lane change maneuvers present both steering and yaw angles 

within a smaller range of values as the speed increases. This is due to the fact that in the 

scenario with low traffic density, the vehicle has enough space to maneuver with greater 

freedom, resulting in a smoother driving experience. 

 

On the other hand, scenarios with high traffic density present different performances 

according to the number of lanes. In the dense three-lane traffic scenario, as the main 

vehicle velocity increases, the opposite of the driving scenario 1 happens. With increasing 

speed, the lane change maneuvers performed by the ego vehicle become less smooth, 

increasing the range of values of steering and yaw angles. With dense traffic, it becomes 

difficult for the vehicle to make lane change maneuvers, maintaining a constant speed, 

and an extreme case happens. As the number of lanes increases, no extreme cases unfold. 

In the four-lane traffic scenario, as the main vehicle velocity increases, the vehicle has to 

make more lane changes to avoid colliding with target vehicles in front, as shown in Table 

5.4. Regarding steering and yaw angles, there is no gradual increase or decrease in their 
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range of values, as the main vehicle speed increases. For speeds of 18 and 20 m/s, both 

angles are included in smaller value intervals, while for speeds of 22 and 24 m/s the 

steering angle is included in slightly larger value intervals. In general, the trajectories for 

this four-lane scenario with dense traffic are smooth and without major disturbances in 

the performance of the ego vehicle (reduced driving aggressiveness), due to the fact that 

there are more lanes through which the vehicle can perform maneuvers to avoid 

collisions, maintaining a constant velocity. 

 

The comparison of these 12 scenarios reveals that unsuccessful cases are less than 

successful cases, where only in one scenario a collision occur – scenario 2C. This means 

that based on the simulations performed, the developed model has a good performance 

in decision making. However, as these results are for very specific cases, further 

simulations with different criteria for scenario complexity would be needed. 

 

The change in the value of the prediction horizon in the adaptive MPC was also 

tested as a possible variation in the study, since from the prediction horizon, the ego 

vehicle predicts the position of the target vehicles in its lane and in adjacent lanes. 

Increasing the prediction horizon increases the view of the ego vehicle in its front, 

detecting the lead vehicle earlier, however, changing the value of the prediction horizon 

did not prevent the collision in scenario 2C and did not alter any lane change maneuvers, 

nor the instants in which they took place. 
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Chapter 6  

Conclusions and future works 

 

Autonomous driving is one of the latest technological upgrades in the new world 

that can improve driver safety and reduce traffic congestion. However, developing this 

new platform is rife with challenges. Simulations cut the development time and cost since 

autonomous vehicles must be trained and tested to respond to all driving situations.  

This dissertation provides an overview of autonomous and connected vehicle 

technology; verification, validation and testing of autonomous prototypes in which a 

survey of the techniques and tools used is carried out; and also, the implementation of a 

model-based framework to evaluate the performance of a vehicle model in some critical 

driving scenarios, through a software-in-the-loop simulation. The main objective of this 

model is to avoid any collision in order to ensure the vehicle's safety, while driving 

autonomously.  

In our experiments we merged three main ADAS functions (CC, FLV and LC) into 

a Matlab & Simulink test bench, enabling the system to switch between them. The 

decision making in choosing the best driving mode for the ego vehicle over time is based 

on the relative distance and the relative velocity between the main vehicle and the target 

vehicles in the ego lane and in the adjacent lanes. 

Predictions are vitally important for these type of systems that change 

dynamically over time. In this way, the core of this model is an adaptive MPC controller 

which controls the acceleration and steering of the vehicle to obtain the best possible 

performance.  

Due to the countless scenarios that a road vehicle can encounter, in the design 

phase of this system it was necessary to choose only a few critical highway scenarios to 

test the performance of the model, which means that more simulations with different 

considerations are needed to validate the system as a safe system. Each system in the 

model – the planning system and the control system - was developed and tested 

independently (UT) and then integrated with each other to function as a group (IT), 

verifying if the integrated components meet the specifications. 

Considering the limited time and simulation tools in this research, the obtained 

results are satisfying the expectations of the dissertation topic. However, as this field of 

study is really vast, there would be further research in this area that would complete this 

system to work in more complex scenarios. 

For future work, it is suggested the optimization of some functions and the 

incorporation of others. To make the vehicle model more autonomous it is necessary to 
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include a sensing system (sensor fusion) so the vehicle is able to sense the environment 

around it. To test other types of roads, test changes of direction (e.g., scenarios with 

intersections), and test scenarios with traffic lights and crossings, it is necessary to 

integrate an autonomous braking system (AEB). Another possibility is the aggregation 

of a V2X communication system, so the vehicle becomes more independent according to 

the information it receives from the surrounding environment. Finally, move on to the 

next testing phase: the hardware-in-the-loop simulation. 
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