10 research outputs found

    Security Analysis of Wireless BAN in e-Health

    Get PDF
    The Wireless Body Area Network (WBAN) has gained popularity as a new technology for e-Health, and is considered as one of the key research areas in computer science and healthcare applications. WBAN collects patients’ data, monitors constantly their physiological parameters, using small implantable or wearable sensors, and communicates these data using wireless communication techniques in short range. WBAN is playing a huge role in improving the quality of healthcare. Still, due to sensitive and concurrent nature of e-Heath systems, current research has showed that designers must take into considerations the security and privacy protection of the data collected by a WBAN to safeguard patients from different exploits or malicious attacks, since e-Health technologies are increasingly connected to the Internet via wireless communications. In this paper we outline the most important security requirements for WBANs. Furthermore, we discuss key security threats to avoid. Finally, we conclude with a summary of security mechanisms to follow that address security and privacy concerns of WBANs, and need to be explored in an increasingly connected healthcare world

    Security Analysis of Wireless BAN in e-Health

    Get PDF
    The Wireless Body Area Network (WBAN) has gained popularity as a new technology for e-Health, and is considered as one of the key research areas in computer science and healthcare applications. WBAN collects patients’ data, monitors constantly their physiological parameters, using small implantable or wearable sensors, and communicates these data using wireless communication techniques in short range. WBAN is playing a huge role in improving the quality of healthcare. Still, due to sensitive and concurrent nature of e-Heath systems, current research has showed that designers must take into considerations the security and privacy protection of the data collected by a WBAN to safeguard patients from different exploits or malicious attacks, since e-Health technologies are increasingly connected to the Internet via wireless communications. In this paper we outline the most important security requirements for WBANs. Furthermore, we discuss key security threats to avoid. Finally, we conclude with a summary of security mechanisms to follow that address security and privacy concerns of WBANs, and need to be explored in an increasingly connected healthcare world

    Challenges in Blood Pressure Self-Measurement

    Get PDF
    Blood pressure self-measurement (BPSM) requires patients to follow a range of recommendations in order to be considered reliable for diagnostic use. We investigated currently used BPSM interventions at four medical clinics combined with an online questionnaire targeting BPSM users. We found that the participating healthcare personnel perceived BPSM as a relevant and useful intervention method providing that the recommendations are followed. A total of six challenges were identified: (1) existing devices do not guarantee that the recommendations are followed, (2) healthcare providers cannot verify whether self-monitoring patients follow the recommendations, (3) patients are not aware of all recommendations and the need to follow them, (4) risk of patient induced reporting bias, (5) risk of healthcare provider induced data-transfer bias, and (6) risk of data being registered as belonging to the wrong patient. We conclude that existing BPSM interventions could be significantly affected by user-induced bias resulting in an indeterminable quality of the measurement data. Therefore, we suggest applying context-aware technological support tools to better detect and quantify user errors. This may allow us to develop solutions that could overcome or compensate for such errors in the future

    Virtual Platform-Based Design Space Exploration of Power-Efficient Distributed Embedded Applications

    Get PDF
    Networked embedded systems are essential building blocks of a broad variety of distributed applications ranging from agriculture to industrial automation to healthcare and more. These often require specific energy optimizations to increase the battery lifetime or to operate using energy harvested from the environment. Since a dominant portion of power consumption is determined and managed by software, the software development process must have access to the sophisticated power management mechanisms provided by state-of-the-art hardware platforms to achieve the best tradeoff between system availability and reactivity. Furthermore, internode communications must be considered to properly assess the energy consumption. This article describes a design flow based on a SystemC virtual platform including both accurate power models of the hardware components and a fast abstract model of the wireless network. The platform allows both model-driven design of the application and the exploration of power and network management alternatives. These can be evaluated in different network scenarios, allowing one to exploit power optimization strategies without requiring expensive field trials. The effectiveness of the approach is demonstrated via experiments on a wireless body area network application

    Hybrid approaches based on computational intelligence and semantic web for distributed situation and context awareness

    Get PDF
    2011 - 2012The research work focuses on Situation Awareness and Context Awareness topics. Specifically, Situation Awareness involves being aware of what is happening in the vicinity to understand how information, events, and one’s own actions will impact goals and objectives, both immediately and in the near future. Thus, Situation Awareness is especially important in application domains where the information flow can be quite high and poor decisions making may lead to serious consequences. On the other hand Context Awareness is considered a process to support user applications to adapt interfaces, tailor the set of application-relevant data, increase the precision of information retrieval, discover services, make the user interaction implicit, or build smart environments. Despite being slightly different, Situation and Context Awareness involve common problems such as: the lack of a support for the acquisition and aggregation of dynamic environmental information from the field (i.e. sensors, cameras, etc.); the lack of formal approaches to knowledge representation (i.e. contexts, concepts, relations, situations, etc.) and processing (reasoning, classification, retrieval, discovery, etc.); the lack of automated and distributed systems, with considerable computing power, to support the reasoning on a huge quantity of knowledge, extracted by sensor data. So, the thesis researches new approaches for distributed Context and Situation Awareness and proposes to apply them in order to achieve some related research objectives such as knowledge representation, semantic reasoning, pattern recognition and information retrieval. The research work starts from the study and analysis of state of art in terms of techniques, technologies, tools and systems to support Context/Situation Awareness. The main aim is to develop a new contribution in this field by integrating techniques deriving from the fields of Semantic Web, Soft Computing and Computational Intelligence. From an architectural point of view, several frameworks are going to be defined according to the multi-agent paradigm. Furthermore, some preliminary experimental results have been obtained in some application domains such as Airport Security, Traffic Management, Smart Grids and Healthcare. Finally, future challenges is going to the following directions: Semantic Modeling of Fuzzy Control, Temporal Issues, Automatically Ontology Elicitation, Extension to other Application Domains and More Experiments. [edited by author]XI n.s

    Event-driven Middleware for Body and Ambient Sensor Applications

    Get PDF
    Continuing development of on-body and ambient sensors has led to a vast increase in sensor-based assistance and monitoring solutions. A growing range of modular sensors, and the necessity of running multiple applications on the sensor information, has led to an equally extensive increase in efforts for system development. In this work, we present an event-driven middleware for on-body and ambient sensor networks allowing multiple applications to define information types of their interest in a publish/subscribe manner. Incoming sensor data is hereby transformed into the required data representation which lifts the burden of adapting the application with respect to the connected sensors off the developer's shoulders. Furthermore, an unsupervised on-the-fly reloading of transformation rules from a remote server allows the system's adaptation to future applications and sensors at run-time as well as reducing the number of connected sensors. Open communication channels distribute sensor information to all interested applications. In addition to that, application-specific event channels are introduced that provide tailor-made information retrieval as well as control over the dissemination of critical information. The system is evaluated based on an Android implementation with transformation rules implemented as OSGi bundles that are retrieved from a remote web server. Evaluation shows a low impact of running the middleware and the transformation rules on a phone and highlights the reduced energy consumption by having fewer sensors serving multiple applications. It also points out the behavior and limits of the open and application-specific event channels with respect to CPU utilization, delivery ratio, and memory usage. In addition to the middleware approach, four (preventive) health care applications are presented. They take advantage of the mediation between sensors and applications and highlight the system's capabilities. By connecting body sensors for monitoring physical and physiological parameters as well as ambient sensors for retrieving information about user presence and interactions with the environment, full-fledged health monitoring examples for monitoring a user throughout the day are presented. Vital parameters are gathered from commercially available biosensors and the mediator device running both the middleware and the application is an off-the-shelf smart phone. For gaining information about a user's physical activity, custom-built body and ambient sensors are presented and deployed
    corecore