
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2011; 41:237–265
Published online 7 September 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.998

SPINE: A domain-specific framework for rapid prototyping
of WBSN applications‡

Fabio Bellifemine1, Giancarlo Fortino2,∗,†, Roberta Giannantonio1,
Raffaele Gravina2,3, Antonio Guerrieri2 and Marco Sgroi3

1Telecom Italia, Turin, Italy
2Department of Electronics, Informatics and Systems (DEIS), University of Calabria, Rende (CS), Italy

3WSN Lab Telecom Italia, Berkeley, CA, U.S.A.

SUMMARY

Wireless body sensor networks (WBSNs) enable a broad range of applications for continuous and real-
time health monitoring and medical assistance. Programming WBSN applications is a complex task
especially due to the limitation of resources of typical hardware platforms and to the lack of suitable
software abstractions. In this paper, SPINE (signal processing in-node environment), a domain-specific
framework for rapid prototyping of WBSN applications, which is lightweight and flexible enough to be
easily customized to fit particular application-specific needs, is presented. The architecture of SPINE has
two main components: one implemented on the node coordinating the WBSN and one on the nodes with
sensors. The former is based on a Java application, which allows to configure and manage the network
and implements the classification functions that are too heavy to be implemented on the sensor nodes. The
latter supports sensing, computing and data transmission operations through a set of libraries, protocols and
utility functions that are currently implemented for TinyOS platforms. SPINE allows evaluating different
architectural choices and deciding how to distribute signal processing and classification functions over
the nodes of the network. Finally, this paper describes an activity monitoring application and presents the
benefits of using the SPINE framework. Copyright q 2010 John Wiley & Sons, Ltd.

Received 8 June 2009; Revised 14 February 2010; Accepted 15 June 2010

KEY WORDS: body sensor networks; domain-specific frameworks; signal processing; SPINE

1. INTRODUCTION

A Wireless Sensor Network (WSN) [1] is a collection of tiny devices capable of sensing, computa-
tion and wireless communication operating in a certain environment to monitor and control events
of interest in a distributed manner and collectively react to critical situations. WSN applications
span various domains such as environmental and building monitoring and surveillance, pollu-
tion monitoring, agriculture, health care, home-automation, energy management, earthquake and
eruption monitoring.

When applied to the monitoring of human body parameters, WSNs are usually called Wireless
Body Sensor Networks (WBSNs) [2] or just BSNs and can significantly improve the quality of
life by enabling continuous and real-time medical assistance at low cost. Health-care applications

∗Correspondence to: Giancarlo Fortino, Department of Electronics, Informatics and Systems (DEIS), University of
Calabria, Rende (CS), Italy.

†E-mail: g.fortino@unical.it
‡This paper is a significantly extended version of R. Gravina, A. Guerrieri, G. Fortino, F. Bellifemine, R. Giannantonio,
M. Sgrio, ‘Development of Body Sensor Network Applications using SPINE,’ In Proc. of. IEEE International
Conference on Systems, Man, and Cybernetics (SMC 2008), Singapore, Oct. 12–15, 2008.

Copyright q 2010 John Wiley & Sons, Ltd.

238 F. BELLIFEMINE ET AL.

based on BSNs include early detection or prevention of diseases, elderly person assistance at home,
e-fitness, rehabilitation after surgeries, motion and gestures detection, cognitive and emotional
recognition, medical assistance in disaster events, etc.

Programming BSN applications is a complex task mainly due to the difficult resource constraints
of wearable devices and to the lack of proper and easy to use software abstractions. Three main
approaches have been developed for the design of BSN applications. The most common approach
consists of developing prototype applications on BSN nodes as a monolithic block assembling
low-level services, reusable components and application-specific logic. As a result, the software
is poorly reusable and difficult to extend. Moreover, the risk of errors is significantly high and
the debugging can be a very time-consuming process. The second approach is based on general-
purpose middleware. Middleware is a software layer consisting of a set of services implemented
across a network. It hides the complexities of low system and network layers and provides proper
abstractions and interfaces to the upper layers. In this way application developers can focus on
the application logic without dealing with the implementation details of the underlying services.
As a consequence, the development time is generally shortened. Furthermore, if the middleware
is well optimized, the overall system could even reach a higher performance. While in traditional
distributed systems a number of general-purpose middlewares such as CORBA, DCOM and RMI
have been widely used thanks to their ability to work well for very different applications, the current
general-purpose middlewares for WSN (e.g. Agilla [3], DFuse [4], Milan [5], TAG [6], Mires [7])
are usually too general to be effective or demand too many resources to be implemented on sensor
node platforms. The third programming approach combines the best characteristics of the other
two: it is based on frameworks that include domain-specific libraries and tools that can be easily
reused for multiple applications of a selected domain. This approach allows reducing design time
through modularity and reuse while offering solutions that are optimized for the target domain.
For example, most BSN systems include signal processing intensive tasks. The prototyping of
BSN applications can be significantly facilitated by a domain-specific framework with libraries and
protocols that allow to implement signal processing tasks efficiently in star-topology networks.

To support the design of optimized BSN applications while minimizing the design time and effort,
a domain-specific open source framework, called SPINE (signal processing in-node environment)
[8], has been developed. SPINE offers a service architecture and a set of libraries that are common
to most BSN applications, and at the same time makes it easy to customize or extend the given
libraries to meet the particular needs of specific applications. SPINE provides libraries of protocols,
utilities and processing functions and a lightweight Java API that can be used by local and remote
applications to manage the sensor nodes or issue service requests. By providing these abstractions
and libraries, that are common to most signal processing algorithms used in WSNs for sensor
data analysis and classification, SPINE also provides flexibility in the allocation of tasks among
the WSN nodes and allows the exploitation of implementation tradeoffs. For example, SPINE
supports distributed implementations of classification systems where signal processing functions
are computed on the sensor nodes and the result sent to the BSN coordinator (called SPINE
coordinator) running on a PC or PDA. This allows reducing the amount of data exchanged between
the BSN coordinator and the sensor nodes with respect to applications where sensor nodes transmit
raw sensor data.

This paper provides several research contributions.
The first contribution is represented by the SPINE framework, which is able to support effective

and rapid development of efficient BSN applications according to a domain-specific framework
approach. The SPINE framework is described in details for potential users to understand its
architecture and main components and to use it for the rapid development of BSN applications. It is
worth noting that the SPINE-based high-level programming and monitoring/control (configuration,
initialization, start/restart, etc) of a sensor node and the final data processing is done in Java
without requiring any knowledge of the low-level sensor node programming which is currently
based on nesC/TinyOS.

The second contribution is the analysis of a SPINE-enabled BSN application (a human activity
monitoring system) based on ‘in-node signal processing’ with respect to a similar application based

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

SPINE: A DOMAIN-SPECIFIC FRAMEWORK 239

on ‘only base station processing’ as the majority of applications currently available. In particular,
it is shown how the framework can optimize (from software perspective and system performance
perspective) the final implementation of the proposed application. Indeed the developed human
activity monitoring system is ‘per se’ an interesting contribution as it provides high recognition
accuracy by using only 2 wearable sensors.

Finally, the third important research contribution is related to the easy reuse of (i) the design
schemas and patterns (‘software’ perspective) and (ii) the high-level communication protocol
(‘communication’ perspective) on which SPINE is based for the development of new BSN appli-
cations and for the porting of SPINE itself on other sensor platforms. On such bases, SPINE was
also ported to the TI Z-Stack sensor platform [9] with limited efforts and the SPINE coordinator
was made interoperable with other hw/sw sensor platforms (e.g. Java-based SunSPOT [10]).

The remainder of this paper is organized as follows. Section 2 outlines some relevant related
work on BSN applications and software development techniques. Some BSN applications are
presented and the CodeBlue [11] and Titan [12] frameworks are described. Section 3 describes
in detail the SPINE framework principles and architecture. The SPINE communication protocol
is also discussed. Section 4 presents an efficient implementation of SPINE on the TinyOS
operating system [13]. Some code snippets are shown as well as the performance evaluation
of SPINE node-side. In Section 5, the base-station side of the SPINE framework is presented.
Section 6 describes the case study application developed using SPINE. Moreover, the developed
application is compared with the same application implemented without signal in-node processing
mechanisms. Finally, Section 7 presents the conclusions and discusses the future research
directions.

2. RELATED WORK

Most research efforts on BSNs are currently focusing on proof-of-concept applications with the
aim to demonstrate the feasibility of new context-aware algorithms and techniques, e.g. for recog-
nition of physical activity or prompt detection of heart diseases, considering issues such as power
consumption and also radio channel usage but not taking into account code reusability and modu-
larity. In [14], a method for physical activity monitoring is presented, which is able to detect
body postures and periods of walking in elderly persons using one kinematic sensor attached
to the chest. In [15], wearable motion sensors are used to guide post-stroke rehabilitation by
models to predict clinical scores of motor abilities. In [16], activity recognition is improved by
integrating wearable sensors with ambient blob-based vision sensor data. Another physical activity
recognition system based on wearable devices is presented in [17]. In [18] is discussed in detail
the interesting issue of developing a personal activity recognition system which is based on data
coming from a single body location regardless of the specific sensor location and able to work
with different individuals. The system can be further personalized to enhance the activity recog-
nition accuracy. Finally, the most exhaustive effort on activity recognition based on wearable
sensors is presented in [19]. All these projects have focused on efficient application-specific solu-
tions rather than on the definition of reusable frameworks facilitating the development of BSN
applications.

One of the most relevant attempts to define a general platform able to support various
BSN applications is CodeBlue [11]. CodeBlue is a framework running on TinyOS specifically
designed for integrating wireless medical sensor nodes and other devices. CodeBlue allows
these devices to discover each other, report events, and establish communications. CodeBlue is
based on a publish/subscribe-based data routing framework in which sensors publish relevant
data to a specific channel and end-user devices subscribe to channels of interest. It includes a
naming scheme, a multi-hop communication protocol, authentication and encryption capabil-
ities, location tracking and in-network filtering and aggregation. CodeBlue provides end-user
devices with a query interface for retrieving data from previously discovered sensor nodes.
Although CodeBlue provides a sensor driver abstraction architecture which allows an easy

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

240 F. BELLIFEMINE ET AL.

integration of new sensors within the system, selection of sensor types or physical node iden-
tifiers as data sources, tuning of the data rate and definition of threshold-based filters to avoid
unnecessary data being transmitted, it does not allow inserting complex signal processing func-
tionalities into the sensor nodes. It only supports simple threshold-based triggers on the sensor
readings which does not give enough flexibility for the variety of requirements of the BSN
applications.

A higher level approach is adopted by Titan [12]. Titan, which is implemented in TinyOS,
is a general-purpose middleware that supports implementation and execution of context recogni-
tion algorithms in dynamic WSN environments. Titan represents data processing by a data flow
from sensors to recognition result. The data are processed by tasks, which implement elementary
computations. Tasks and their data flow interconnections define a task network, which runs on
the sensor network as a whole. Tasks are mapped onto each sensor node according to the sensors
and the processing resources it provides. Titan dynamically reprograms the WSN to exchange
context recognition algorithms, handle defective nodes, variations in available processing power,
or broken communication links. The architecture of Titan is composed of several software compo-
nents, which enhance modularity. Although Titan raises the programming abstraction level by
offering a middleware for effectively developing signal processing applications in WSNs, it is
based on too generic mechanisms for providing efficient solutions in the specific BSN application
domain. In fact, the programming of a feature extraction operation on the sensor node, which
is often carried out in a BSN application, requires the creation of at least five tasks (sampling,
buffering, loading, feature calculation, transmission). Moreover, some overhead can be intro-
duced due to the connections of the output and input ports among tasks through which data are
exchanged.

Domain-specific frameworks [8, 20] are in the middle between application-specific code and
general-purpose middleware approaches. They specifically address and standardize the core chal-
lenges of WSN designs within a particular application domain. While maintaining high efficiency,
such frameworks allow for a more effective development of customized applications with little or no
additional hardware configuration and with the provision of high-level programming abstractions
tailored for the reference application domain. In particular, the SPINE framework proposed in this
paper is a domain-specific framework in the context of signal processing in-node intensive BSN
applications, whereas CodeBlue and Titan can be seen as general-purpose middleware solutions
for BSN applications.

To summarize, the development of WBSN applications can mainly be implemented according to
the following approaches: (i) application-specific code [14–18], (ii) general-purpose middleware
[11, 12] or (iii) domain-specific frameworks [8]. Table I summarizes the characteristics of the
above three described approaches. As will be discussed in detail in the remainder of this paper,
SPINE allows for both code efficiency similar to an application-specific code approach, and
code reusability, rapid prototyping, easy debugging, and system interoperability as CodeBlue and
Titan. Moreover, it specifically supports functionalities for flexible sensing operations and easily
programmable in-node signal processing.

Table I. Comparison among the available approaches for BSN application development.

Application-specific Domain-specific General-purpose
code framework middleware

Code
Reusability

√ √
Rapid prototyping

√ √
Ease of debugging

√ √
Code efficiency

√ √
System interoperability

√ √
Specific support to flexible sensing operations

√
Specific support to in-node signal processing

√

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

SPINE: A DOMAIN-SPECIFIC FRAMEWORK 241

3. THE SPINE FRAMEWORK

SPINE is a domain-specific framework for the development of BSN applications which is based
on the following principles:

• Open Source. SPINE is an open source project to establish a broad community of users and
developers. Its source code is released under the LGPL 2.1 license [21].

• Interoperability through APIs. SPINE provides local and remote applications with lightweight
Java APIs that can be used to manage sensor nodes or issue service requests. The APIs are
easily portable to devices of various capabilities, such as PCs or mobile phones.

• High-level abstractions. SPINE provides high-level programming libraries including protocols,
utilities, data processing functions and specific support to easily specify new services and
features. The layer defined by the SPINE service libraries allows application designers to
program at higher levels of abstraction than the currently available operating environments
(e.g. TinyOS).

• Rapid prototyping. SPINE helps designers to efficiently prototype distributed BSN data clas-
sification algorithms with respect to the use of energy and channel bandwidth.

Table II introduces the most common task/processes involved in BSN applications on sensor
nodes, which are supported by SPINE.

In the following subsections, the SPINE network architecture, the functional architecture and the
application-level communication protocol between base station and sensor nodes are described.

3.1. Network architecture

The BSN architecture supported by SPINE includes multiple sensor nodes and one coordinator
node (see Figure 1). The coordinator manages the network, collects and analyzes the data received
from the sensor nodes, and acts as a gateway to connect the BSN with wide area networks for
remote data access. Sensor nodes measure local physical parameters and send raw or processed
data to the coordinator. Currently, SPINE supports BSNs with star topology, which is a requirement
for BSN applications, where sensor nodes communicate only with the coordinator. However, the
framework can be easily extended to also support direct and multi-hop communications among
sensor nodes. In the current version of SPINE (version 1.3) a sensor node can only be associated

Table II. Common tasks supported by BSN applications at node-side.

TASK DESCRIPTION

SAMPLING The sensor sampling process represents the first step for developing a BSN
application. Selecting the appropriate sampling time to satisfy the applica-
tion requirements is important because the amount of data generated and
processed, and under certain degree the energy consumed depend on it.

FEATURE EXTRACTION Classifier algorithms very rarely use raw data. Instead, attributes (or features)
are typically extracted on data windows and used to detect events and classify
activities. Extracting features directly on the wireless nodes also allows the
reduction of the radio usage, as aggregated results are sent instead of several
raw data values.

QUERIES Support for selective queries on the available sensors of a node is important
because application requirements can change over time and not all the sensors
are necessarily involved for algorithms execution at any time.

NODE SYNCHRONIZATION In a WBSN, nodes should be kept synchronized when sampling the sensors
and processing data, because data gathered from multiple wearable nodes
must refer to the same time interval to be aggregated to recognize correctly
e.g. physical activities or other events of interest.

DUTY CYCLING Duty cycling is a mechanism for handling the radio status (idle, on, off) to
reduce power consumption of a sensor node and therefore its battery lifetime.
In particular, radio duty cycling must be tuned very carefully, reducing as
much as possible the active time (transmitting, receiving, and listening).

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

242 F. BELLIFEMINE ET AL.

Figure 1. SPINE network architecture.

SPINE API
commands & events

SPINE Coordinator
Side

SPINE Processing Manager

SPINE Node Manager

SPINE Node
Communication Manager

SPINE Sensor
Controller

B
u
f
f
e
r
s

User applications

SPINE Node Side

Host platform

SPINE Host
Communication Manager

Node platform

Figure 2. SPINE functional architecture.

with a single coordinator; a possible extension is to allow nodes to be associated and communicate
with multiple coordinators. A scenario where such architecture could be used is when a patient
wearing body sensors moves across locations; in this case such sensors should connect to a different
coordinator at each different location.

3.2. Functional architecture

The SPINE framework consists of two main components, implemented, respectively, on the coor-
dinator (e.g. a PC or a smart-phone) and on the BSN nodes. The functional architecture of SPINE
is shown in Figure 2.

On the coordinator side, SPINE provides application developers with a very intuitive interface
to the BSN which is placed between end-user applications and the hardware and software host
platform. User applications manage a SPINE-based network through the lightweight and well-
defined SPINE API. The surface level of SPINE lets the registered applications be notified of
high-level events generated by the remote BSN, such as discovery of new nodes, sensor data
communication, node alarms, and system messages such as low battery warnings. Commands
issued by the user application and network-generated events are respectively coded in lower level
SPINE messages (see Section 3.4) and decoded in higher level information by the SPINE Host
Communication Manager. This component takes care of packets generation and retrieval and
interfaces with the specific software components of the host platform to access the physical radio
module to transmit/receive packets to/from the BSN.

On the node side, the SPINE framework is responsible for providing developers with abstractions
of hardware resources such as sensors and the radio, a default set of ready-to-use common signal
processing functions and, most important, a flexible and modular architecture to customize and
extend the framework itself to support new physical platforms and sensors and introduce new
signal processing services. In particular, the SPINE Node Communication Manager acts as the

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

SPINE: A DOMAIN-SPECIFIC FRAMEWORK 243

counterpart of the SPINE Host Communication Manager; in addition, it possibly takes into account
management policies to optimize energy consumption by an intelligent use of the radio module
(see Section 3.3). The SPINE Sensor Controller manages and abstracts the sensors on the node
platform, providing a standard interface to the diverse sensor drivers. It is responsible for sampling
the sensors and storing the sensed data in properly defined Buffers. The SPINE Node Manager
is the central component, responsible for recognizing the remote requests and dispatching them to
the proper components. Finally, the SPINE Processing Manager consists of a dispatcher for the
actual processing services and a standard interface for user-defined services integration.

At compile time, SPINE allows developers to tune a number of parameters of the sensor node.
In particular, it is possible to specify which sensor drivers and processing functions must be
included in the compilation, how many buffers must be allocated for the sensors, and what size
such buffers must have. Other compile time parameters (e.g. radio channel, max active message
payload size) are tunable as in any other TinyOS application.

At run-time, SPINE allows to tune several parameters of the sensor nodes and activate and
deactivate functions and alarms. First of all, each available sensor of a remote node is initially
idle, but can be set to start sampling at any time. Sampling time and time scale (e.g. ‘ms’, ‘s’,
‘min’) are tunable parameters. Second, any computable processing function (e.g. feature extractors
or alarms) is active by defaults, but they can be started or stopped remotely. Typical tunable
processing parameters include window of samples, shift over the window, type of feature extractors
to compute on a given sensor, type and value of a threshold that would trigger alarms on given
sensed data. It is also possible to enable/disable a simple Time Division Multiple Access (TDMA)
communication protocol, and a ‘radio low power’ mode through a duty cycle mechanism (see
next section for further details). SPINE also introduces an optional encryption service that enables
the remote motes to communicate securely with the base-station node. This service is currently
available for CC2420-based platforms such as the Telosb/tmote sky and the Shimmer, as it uses
the built-in AES-128 hardware encryption.

3.3. The SPINE application-level communication protocol

The SPINE framework includes an application-level communication protocol to manage the bidi-
rectional communication between nodes and the coordinator. The SPINE communication protocol
works at the application-level and is independent of the underlying network and data-link layers.
The current architecture includes an optional TDMA scheme and a radio duty cycling mechanism.

A general communication scheme has been defined and is supported by a set of standard
messages summarized in Table III, whereas the structure of the general SPINE message is reported
in Figure 3. Messages can be directed from the coordinator to a node (C→N) or from a node to
the coordinator (N→C). While service messages have a fixed format, user messages can be easily
customized to better fit the application needs. Moreover, developers also have the possibility to
extend the framework with new user-defined messages.

Table III. Standard messages of the SPINE protocol exchanged between Coordinator (C) and Node (N).

Direction

C→N N→C Parameters

Service Discovery • NONE
Service Advertisement • < sensors list, services list>
Set-Up Sensor • < sensor code, sensor parameters >
Set-Up Service • < service code, service parameters>
Activate Service • < service code >
De-activate Service • < service code >
Data (raw or processed) • < service code, data >
Start processing • < radio configuration >
Reset (node/network) • NONE
System notification • < notification type, notification details >

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

244 F. BELLIFEMINE ET AL.

Figure 3. Structure of the general SPINE message.

The communication scheme is usually initiated by a Node/Service Discovery phase. Several
discovery techniques can be adopted. For example, the coordinator can broadcast a service
request (Service Discovery message) and wait for a service advertisement by active nodes within
range. To keep the network information updated, service requests can be sent on a periodical
basis. A Service Advertisement, sent from a sensor node upon reception of a Service Discovery
message, includes information about the node hardware, in particular regarding the available
sensors, and the node services which can be processing functions (e.g. mean, max, min, vari-
ance, total energy, entropy) and/or alarms (sensed data exceeding thresholds). Table IV reports
the services and alarms that SPINE provides by default. It is worth noting that many services
can be set up to process periodically, on-demand only, or even on event basis. Hence, the data
flow generated by the service is dependent on the service itself and on the specific dynamic
configuration requested by the application on that service. For instance, a raw data service can
be set up to transmit sensor data periodically, one-shot, or only when a given threshold has been
exceeded.

According to the information collected, the User application on the coordinator must first set
up the sensors of interest by specifying: sensor identification code, sampling time, and time scale.
Once sensors have been set-up, the User application will typically set-up the desired services
(if the service requires a preliminary set up phase) and subsequently activate them. Services can
be dynamically activated and, if necessary, de-activation is also supported.

Set up, activation and de-activation of a service involve the specification of certain parameters
which usually vary from service to service. Thus, corresponding messages have been structured
with a dynamic and partly service-specific format. As aforementioned, the SPINE framework
provides native services, whereas new services can be easily integrated. In this case, the developer
must enhance the framework with a specific format for the set-up, activation and de-activation
request messages.

Once each node is fully set up, the user application is finally ready to start working by broad-
casting a start message. From this time on, the nodes will start sensing and processing according to
the activated services. The data produced by the running services of each node are transmitted in
data messages to the coordinator which in turn forwards the message content to the user applica-
tion. The data message has a well-defined format, but its payload semantic is clearly dependent on
the service that generated that data and, again, if it is a user-defined service, coding and decoding
of the payload content is up to the developer. To notify the coordinator of system events such as

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

SPINE: A DOMAIN-SPECIFIC FRAMEWORK 245

Table IV. Default services and alarms which can be activated in the SPINE node.

FEATURE DESCRIPTION

Raw data Sensed data coming from sensing processes
Max Maximum value computed on a sample window
Min Minimum value computed on a sample window
Range Maximum displacement (max–min) value computed on a sample window
Mean Average value computed on a sample window
Amplitude (Maximum-mean) value computed on a sample window
RMS RMS value computed on a sample window
St dev Standard deviation value computed on a sample window
Total energy Cross-axial magnitude computed on a sample window. It takes into account multiple

sensor channels, if any.
Variance Variance value computed on a sample window
Mode Most frequent value computed on a sample window
Median Median value computed on a sample window (central value of the ordered window

buffer)
Vector magnitude Magnitude of a sample window (sum of the squares of the window elements)
Entropy Entropy computed on a sample window
Pitch & roll Pitch and roll estimation computed on a sample window. It is useful only if applied

to accelerometer data.

ALARM
ABOVE An alarm is triggered when a given sensor data or a computed feature exceeds the

specified threshold
BELOW An alarm is triggered when a given sensor data or a computed feature goes below

the specified threshold
WITHIN An alarm is triggered when a given sensor data or a computed feature are within the

range of the specified thresholds (min, max)
OUTSIDE Alarm is triggered when a given sensor data or a computed feature exceeds the range

specified by the thresholds (min, max)

low battery warnings, processing overhead errors or bad requests, nodes can issue defined system
event notification messages. Single nodes or the whole network can be reset by the coordinator
if requested by the user application. Information such as sensor and service advertisements, error
and warning types and details, are all exchanged in the form of numerical codes which must be
shared between the nodes and the coordinator.

To provide a concrete example of a typical messages exchange between the coordinator and a
node, Figure 4 shows the sequence of transmissions within a scenario where a user application is
looking for a node equipped with a given sensor to request some in-node processing of the data
sensed by that sensor. The user application, through the coordinator side of SPINE, broadcasts a
Service Discovery to check if a node with the required sensor is found in the vicinity. An active
node replies to the service discovery with a Service Advertisement. The information contained in
the advertisement message is sufficient for the user application to understand whether that node has
the sensor and the signal processing services required. In that event, the application can proceed
by first setting up the sensor with the desired sampling rate. Then, the application will set up the
specific function(s) and subsequently activate them. The node configuration phase is now complete
and the application issues a start message which includes configuration for radio behaviors of the
sensor nodes (enabling/disabling of TDMA, number of nodes for TDMA initialization, and radio
activity of type always on or duty cycle). Upon reception of the start message, the node reacts
by starting the sampling timer on the sensor and the processing mechanism, and transmitting the
results as they are available.

An important mechanism of SPINE is the radio duty cycle, a simple run-time mechanism to
help in reducing the power consumption due to the radio usage. When enabled by the coordinator,
the sensor nodes turn on the radio only when they need to transmit data over the air. In order to
receive messages, before turning off the radio after the successful transmission of a message, the
radio is kept on listening to incoming messages for a given period of time (duty cycling timer),

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

246 F. BELLIFEMINE ET AL.

Figure 4. Example of communication between user application, coordinator and sensor node.

which can be set at compile time (usually in the order of a few milliseconds). If a message is
received the timer is reset. The coordinator, which keeps a queue of the messages to be sent to
each node, sequentially sends each message for a given node immediately after receiving a packet.
If an ack is received for a sent message, the coordinator removes that message from the queue of
messages ready to be sent.

4. THE TINYOS-BASED NODE SIDE OF SPINE

In this section the node side of the SPINE functional architecture presented in Section 3.2 is
described by (i) detailing the developed TinyOS-based architecture, (ii) presenting some program-
ming examples on how to use and easily extend the framework and (iii) discussing the obtained
performance evaluation results.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

SPINE: A DOMAIN-SPECIFIC FRAMEWORK 247

Figure 5. Class diagram of the sensing logical block.

4.1. Software architecture in TinyOS

The flexible and effective TinyOS software architecture of SPINE is presented in the following.
The presentation of the static architecture is aided by UML class diagrams, whereas UML sequence
diagrams are used to show key dynamic interactions among software components. The whole
architecture has been graphically shown in three separate class diagrams (see Figures 4, 6, and 8).
Logical components are reported as single blocks where not strictly necessary. The stereotype
<<component>> has been used to represent TinyOS entities which typically consist of three
components: an interface for publishing the component commands and events, a configuration
for wiring external components and a module which implements the component commands and
that can generate the defined events of the component interface. The stereotype <<iswired to>>

indicates the TinyOS wiring operation ‘→’ [13].

4.1.1. Sensing. The class diagram in Figure 5 shows the architecture of the SPINE Sensor
Controller (or sensing functional block). To enhance extendibility, access to the sensors drivers
has been decoupled by the introduction of the SensorBoard Controller and the Sensor interface.
Thus, sensors are addressed only by unique codes. In particular, by using parameterized Sensor
interfaces, the SensorBoard Controller module is itself independent of the actual sensors; wiring
the actual sensor drivers (i.e. HilAccelerometerSensorC) to the parameterized Sensor interface is
left to the SensorBoard Controller configuration component, which is much easier to edit or extend.
Each sensor driver module (i.e. HilAccelerometerSensorP) must register its unique sensor code
to the Sensor Registry to inform (through the Service Advertisement message) the coordinator
of the presence of the sensor. The SensorBoard Controller module uses timers for the sampling
operations of the available sensors.

In TinyOS sensor data are typically gathered in ‘split-phase’, which means an operation request
and its correlated response are separate with a callback mechanism. Hence, as shown in the sequence
diagram of Figure 6, when a given sensor timer fires, the SensorBoard Controller requests the

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

248 F. BELLIFEMINE ET AL.

Figure 6. Sequence diagram of the sensing process.

corresponding sensor to start data acquisition. When the data are ready, the sensor driver notifies
the SensorBoard Controller which, in turn, can get the new reading. Finally, to decouple data
sources (the sensors) by data consumers (the processing services), sensor readings are stored by
the SensorBoard Controller in an ad hoc BufferPool. The BufferPool is internally implemented as
a set of circular buffers. Mappings between buffers and sensors are stored in the Sensor Registry.

4.1.2. Processing. The SPINE Processing Manager (or processing block) (see Figure 7) relies
on a similar schema adopted for the sensing block to support fast extensions of the processing
functions provided by the framework. In fact, the Function Manager handles the actual implemented
functions through the parameterized interface Function. Features are particular types of functions
which are applied on windows of sensed data. In particular, they are characterized by the following
parameters: Window, which is the number of buffered data samples on which the function is
applied, and Sliding%, which is the percentage of shift on the buffered data samples with respect
to the Window. For instance, if Window=40 and Sliding%=50, the function is computed on
40 acquired samples composed of the last 20 previously acquired samples and the first 20 newly
acquired samples.

A specific type of function is the FeatureEngine which handles particular math functions named
features (e.g. max, min, standard deviation, etc.). In particular, the FeatureEngine acts as a dispatcher
for accessing the various feature extractor components and as an aggregator if multiple features
are requested to be computed on the same data. Functions are invoked through the Function
Manager by unique codes. Besides centralizing the access to the various functions, the Function
Manager mainly provides a data transmission command which masks the presence of lower level
transmission services to the functions. This choice is motivated by standardization issues of data
messages, to guarantee the creation of standard messages, function data are encapsulated by the
Function Manager as the payload of a new SPINE data message. It should be noted that the
Function interface is strictly part of the framework core and is used to generalize the concept of
processing function, such as feature extractors, alarms, sensor data filters and pre-processors, and
even simple online classifiers. The Feature interface, instead, has the sole scope of decoupling
the actual feature extractors from the FeatureEngine. Section 4.2 explains such differences, by
providing two examples on how to add a new feature extractor and a new processing function.

Figure 8 shows the complete sequence of steps from buffer data fetching to features extraction
computation. As aforementioned, processing functions are completely decoupled from the sensor
data generation; to get the proper data frames, a function, as soon as a new computation is required,
accesses the Sensor Registry to get the buffer id associated to the sensor of interest; then, it

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

SPINE: A DOMAIN-SPECIFIC FRAMEWORK 249

Figure 7. Class diagram of the processing logical block.

Figure 8. Sequence diagram of a feature processing.

obtains the desired data amount on that buffer through the BufferPool component and computes
the processing.

4.1.3. Communication. The SPINE Node Communication Manager (or communication block) is
presented in Figure 9 to explain how messages transmission and reception are handled at the

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

250 F. BELLIFEMINE ET AL.

Figure 9. Class diagram of the communication logical block.

SPINE node side. At the lowest level, the RadioController masks the TinyOS components for
controlling the physical radio states (e.g. turn on/switch off) and handling packets transmission
and reception. The RadioController exposes the send command to transmit a stream of bytes,
which are not further manipulated. Users of the RadioController are not aware of the current
state of the radio module, which is transparently managed by the RadioController. Addition-
ally, the RadioController signals the event of the reception of a new packet. Such events are
captured by the Packet Manager which verifies whether the received packet is a SPINE message
and, if that is the case, generates a new spineMsgReceived event. SPINE messages are decoded
and encoded by different components one for each message type defined (see Section 3.3).
The Packet Manager, after having recognized the type, which is contained into the SPINE
header of each message, dispatches the encoding (if it is an outgoing message) or the decoding
(if it is an incoming message) to the proper codec component. The dispatching is implemented
through parameterized interfaces: InPacket for incoming messages and OutPacket for outgoing
messages.

The sequence diagram in Figure 10 shows how the reception of a new message is captured
and processed by SPINE. In the example, a user application sends over-the-air a Set-Up Sensor
request. The packet is received by the RadioController which forwards it ‘as is’ to the Packet
Manager. The Packet Manager checks, by processing the packet header, that it is a valid SPINE
message and requests the message decoding to the proper decoder; then it generates a spineMs-
gReceived event, notifying the SPINE Node Manager with the message type. The SPINE Node
Manager handles this event by invoking an internal procedure to process the message param-
eters coming from the SetUp Sensor decoder component. Finally, it invokes the SensorBoard
Controller to set up the sampling timer needed to drive the sensing operation of the given
sensor.

An example of message transmission is shown in Figure 11. After having computed the activated
features, the FeatureEngine sends back the results by invoking the sendFunctionData command
of the Function Manager; the Function Manager generates a new data transmission request to the
Packet Manager which, in turn, encodes this request into a Data message and invokes the Radio
Controller to transmit it over-the-air.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

SPINE: A DOMAIN-SPECIFIC FRAMEWORK 251

Figure 10. Sequence diagram of a message reception and handling.

Figure 11. Sequence diagram of a data message transmission.

4.2. Programming examples

Some programming examples on how to use and extend the node side of the SPINE framework
are described in the following. Common practices that developers may incur while programming
on SPINE are:

• introduction of a new feature extractor;
• introduction of a new processing function;
• integration of new sensor drivers.

In fact, although the SPINE implementation for TinyOS comes with predefined commonly used
processing functions, such as feature extractors on sensor data (e.g. mean, standard deviation,
RMS, max, min) or threshold-based alarms, and has native support for a set of sensor platforms
and sensor boards (Telosb with the SPINE sensor-board and the bio-sensor board [22], MicaZ
[23] with mts300 sensor board, Shimmer platform [24]), application-specific processing, as well
as special-purpose sensors, may frequently need to be introduced. The peculiar design of SPINE
allows for a fast familiarization with the framework and a very flexible extension mechanism,
particularly focused on processing and sensing extensions. Customizing SPINE does not require
any modification to the core components but only some interconnection code lines to make the
new components work.

4.2.1. Introduction of a new feature extractor. Extending SPINE with new features is straightfor-
ward. It first requires declaring a new constant in the features enumeration structure, located in a
SPINE configuration file. This simply implies a new line for the new feature code (of course not

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

252 F. BELLIFEMINE ET AL.

yet in use):

ENTROPY = 15

The following example illustrates the introduction of the Entropy feature, which can be consid-
ered as a new feature extractor on sensed data. The Entropy feature component must then provide
(implement) the Feature interface and hence the process command (see Figure 6) which will
contain the feature implementation logic.

The entropy function, commonly used in information theory, is a measure of the (im)purity of
an arbitrary collection of examples. In the context of signal processing its value is used to have
some kind of information about how sampling data change over the time. In fact, considering an
array of samples, an entropy value that equals to 0 means that every data of the array has the
same value. Instead, higher entropy values correspond to the fact that the array contains samples
having different values. The entropy function is also commonly adopted for attributes selection in
a decision tree [25]. The entropy formula is reported in the following:

E(X)=−
n∑

i=1
(p(xi)∗ log(p(xi))

where p(xi) is the probability of the element/data value xi considering array X .
The value of E(X) varies between 0 and 1. The SPINE implementation of the function above

returns an integer value, considering E(X) multiplied by 1000.
The code of the Entropy feature is reported below.

module EntropyP {
provides interface Feature;
uses interface Boot;
uses interface FeatureEngine;

}

implementation {
bool registered = FALSE;
event void Boot.booted() {
if (!registered) {
call FeatureEngine.registerFeature(ENTROPY);
registered = TRUE;
}
}
command uint8_t Feature.process(int16_t** data, uint8_t channelMask,

uint16_t dataLen, int8_t* result) {
uint8_t k;
uint8_t mask = 0x08;
uint8_t rChCount = 0;
uint16_t i=0, j=0, diffCounter= 0;
uint16_t diffValues[dataLen];
float prob[dataLen];
float entropy= 0;
for (k = 0; k<MAX_VALUE_TYPES; k++)
if ((channelMask & (mask>>k)) == (mask>>k)){
for(i=0; i<dataLen; i++){
for(j=0; j<diffCounter; j++)
if(data[k][i]==diffValues[j]) break;

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

SPINE: A DOMAIN-SPECIFIC FRAMEWORK 253

if(j==diffCounter){
diffCounter++;
diffValues[j]= data[k][i];
prob[j]= 1;
}else prob[j]++;

}
for(i=0; i<diffCounter; i++) prob[i]= prob[i]/dataLen;
for(i=0; i<diffCounter; i++)
entropy+= prob[i]*logf(prob[i]);
((uint16_t *) result)[rChCount++] = (uint16_t)(entropy*-1000);
}

return channelMask;
}
command uint8_t Feature.getResultSize() {
return 2; // uint16_t = 2bytes
}

}

Furthermore, it is necessary to notify the system about the existence of the Entropy feature by
self-registering the code at boot time. That is done by using the TinyOS Boot interface and hence
registering the code in the ‘booted’ event body (see the method event void Boot.booted()
in the implementation of the Entropy feature).

The last step consists in wiring the Entropy feature to the FeatureEngine, simply by locating
the FeatureEngine configuration component, declaring the Entropy Feature and wiring it to the
parameterized Feature interface, as shown below.

components EntropyC;
FeatureEngineP.Features[ENTROPY] -> EntropyC;

4.2.2. Introduction of a new processing function. The example illustrates the introduction of a
new processing function specifically designed for on-node human steps counting.

First of all, a new constant must be included in the functions enumeration, located in a SPINE
configuration file, as shown below.

STEP_COUNTER = 5

The StepCounter component must provide the SPINE interface Function. Finally, it must use the
TinyOS Boot interface which implies the implementation of the ‘booted’ event. Self-registration
code must be inserted here, as shown below.

event void Boot.booted() {
FunctionManager.registerFunction(STEP_COUNTER);

}

To obtain sensor data, different approaches are available and selecting the best one depends on
the nature of the processing function. The more general and, sometimes, necessary way is to use
the SPINE interface BufferPool within the StepCounter component. This allows (i) to be notified
of new data available in the buffers (specified per IDs) and (ii) to get a single element or data
window from the buffers. Such operations require the use of the SensorRegistry to have a reference
resolution from buffer identifier to associated sensor.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

254 F. BELLIFEMINE ET AL.

However, a simplified StepCounter logic enables a faster approach. The StepCounter uses the
SensorBoardController to be notified of new sensors acquisitions, discarding readings coming from
any sensors but the accelerometer. In particular, each time the accelerometer is sampled, the x and z
axis values are compared with two, experimentally estimated thresholds. If the threshold conditions
are satisfied, a proper message is sent over-the-air and a wait counter is set. The purpose of that
counter is to avoid multiple recognition of the same step. The complete StepCounter module is
reported below.

module StepCounterP {
provides interface Function;
uses {
interface Boot;
interface FunctionManager;
interface SensorBoardController;

}
}
implementation {
bool active = FALSE, start = FALSE;
uint8_t waitCounter = 0;
uint16_t steps = 0;

event void Boot.booted() {
FunctionManager.registerFunction(STEP_COUNTER);

}
command bool Function.setUpFunction(uint8_t* functionParams,

uint8_t functionParamsSize) {
return TRUE;

}
command bool Function.activateFunction(uint8_t* functionParams,

uint8_t functionParamsSize) {
active = TRUE;
return TRUE;

}
command bool Function.deactivateFunction(uint8_t* functionParams,

uint8_t functionParamsSize) {
active = FALSE;
return TRUE;

}
command void Function.startProcessing() { start = TRUE; }
command void Function.stopProcessing() { start = FALSE; }
command void Function.reset() { start = FALSE; active = FALSE; }
event void SensorBoardController.acquisitionStored
(enum SensorCode sensorCode, error_t result, int8_t resultCode) {
int32_t x, z = 0;
uint8_t msg[2];
if(activated && started) {
if (sensorCode == ACC_SENSOR) {
if (waitCounter == 0) {
x = call SensorBoardController.getValue(ACC_SENSOR, CH_1);
z = call SensorBoardController.getValue(ACC_SENSOR, CH_3);
if (x < X_THRESHOLD_THIGH && z > Z_THRESHOLD_THIGH){
waitCounter = DEFAULT_WAIT;
steps++;

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

SPINE: A DOMAIN-SPECIFIC FRAMEWORK 255

msg[0] = steps;
call FunctionManager.send(STEP_COUNTER, msg);

}
}
else waitCounter--;

}
}

}
}

A further observation is related to the ease of transmitting data using the communication
functionalities provided by SPINE compared to the usual way to send over-the-air messages in
TinyOS. In the previous example, a single line of code is necessary:

call FunctionManager.sendFunctionData(STEP COUNTER, data);

Finally, the StepCounter must be wired to the FunctionManager to be accessed remotely. This is
done by adding the declaration of the StepCounter component and wiring it to the parameterized
interface Function in the FunctionManager configuration.

components StepCounterC;
FunctionManagerP.Functions[STEP_COUNTER] ->StepCounterC;

It is important to note that only two modifications are necessary to the framework components (to
a configuration file for adding the new function constant and to the FunctionManager configuration
component to wire the new function). Such modifications can be very easily made by automatic
code generation aided by a simple and friendly graphical user interface. This tool could enhance
the SPINE flexibility even more.

4.2.3. Introduction of a new sensor. The following example shows how to integrate a new sensor
in SPINE. SPINE has been designed to introduce an abstraction level for sensor drivers. Thus, it
may happen that the framework already offers support for the type of sensor the developer must
integrate, but probably not for the specific hardware component. For instance, SPINE supports
accelerometer sensors, but only the drivers for an ST accelerometer have been already implemented.
Many other times, however, a completely new sensor could be involved. As the former situation
is a sub-case of the latter, the focus now is on the introduction of an electrocardiogram (ECG)
sensor. First of all, a proper configuration file must be updated by declaring the new sensor type
(nevertheless the specific hardware chip brand/model) into the sensors enumeration structure, as
shown below.

ECG_SENSOR = 7

Then, a new configuration component representing the sensor abstraction level must be imple-
mented, as shown below.

configuration ECGSensorC {
provides interface Sensor;

}
implementation {
components HilECGSensorC;
Sensor = HilECGSensorC;

}

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

256 F. BELLIFEMINE ET AL.

The purpose of this component is to allow fast updates if, for instance, an old ECG sensor is
replaced by a new one, e.g. more energy efficient.

In fact, the framework provides this high-level of abstraction rather than dealing with the
specific sensor drivers. Hence, the SensorBoardController must be updated as well, by (i) declaring
the new sensor driver component and wiring the parameterized Sensor interface to it and
(ii) declaring a new sampling timer to be wired to the parameterized interface Timer, as shown
below.

components ECGSensorC;
components new TimerMilliC() as ECGTimer;
SensorBoardControllerP.SensorImpls[ECG_SENSOR] -> ECGSensorC;
SensorBoardControllerP.SamplingTimers[ECG_SENSOR] -> ECGTimer;

Finally, the actual driver for the physical ECG sensor available must be implemented providing
the SPINE Sensor interface. The driver must also self-register, possibly at boot time, to the
SensorRegistry, as shown below.

call SensorsRegistry.registerSensor(ECG_SENSOR);

4.3. Performance evaluation

To test and evaluate the SPINE implementation discussed above, the Tmote Sky (telosb) platform
and the TinyOS 2.0.2 operating system were selected. Some results are described in the following.
In particular, the performance evaluation has involved:

• times for significant SPINE processing operations;
• memory usage of SPINE components;
• channel bandwidth usage.

To measure the actual elapsed time, the hardware counter register directly connected to the
built-in 32KHz crystal oscillator was considered.

Table V reports the execution times for some TinyOS basic operations. The results can be seen
as a scale for SPINE operations processing time.

Table VI shows the processing times of some feature extractors provided by SPINE. Features
compute on sensor data are already present in buffers, hence the results are not affected by the
sensor sampling time.

These experimental data about the time needed by different services on the node can be used
during the design phase to determine the processing capabilities of the nodes and define task
allocations that avoid data losses. In particular, since TinyOS is a single task operating system, a
task execution will prevent other SPINE functionalities (if they are not forced to pre-empt on others)
and therefore the network manager (coordinator) must carefully activate on node functionalities
for avoiding data losses.

Evaluating the memory consumption of an extensible, customizable framework like SPINE
requires some observations because significant memory occupancy resides outside the framework

Table V. Some TinyOS basic operations.

Operation Time (ms)

Radio start-up 2.685
Radio shut-down 0.244
Packet transmission (one active message with 28-byte payload) From 5.13 to 24.26 (mean 10.07)
ST LIS3LV02DQ accelerometer sampling (all 3-axis) 1.68
MSP430 voltage diode sampling 17.48

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

SPINE: A DOMAIN-SPECIFIC FRAMEWORK 257

Table VI. Processing time for some feature extractors in SPINE.

Time (ms)

Operation 200 samples 100 samples 50 samples

Max (on 3 sensor channels) 1.67 0.88 0.49
Mean (on 3 sensor channels) 2.68 1.65 1.1
Standard deviation (on 3 sensor channels) 53.70 16.80 16.99
Vector magnitude (on 3 sensor channels) 4.58 2.89 2.44
Pitch & roll (on 3 sensor channels) 19.53 18.37 17.90
Entropy (on 3 sensor channels) 1016.39 488.18 239.30

Table VII. Memory requirements for SPINE configurations.

SPINE Configuration ROM (bytes) Max 48KB RAM (bytes) Max 10KB

Core only 14 904 1500+2 ·buffer size ·(buffer pool size+1)
Motion sensor-board + features/alarms 34 316 3860

Table VIII. Radio channel usage in different processing configurations.

Sampling rate RawData Rate Window Sliding (%) Feature rate Savings (%)

40Hz 40 pkt/s 80 samples 50 1 pkt/s 97.5
40Hz 40 pkt/s 80 samples 25 2 pkt/s 95
10Hz 10 pkt/s 20 samples 50 1 pkt/s 90
10Hz 10 pkt/s 20 samples 25 2 pkt/s 80

core and within its extensions (e.g. sensor drivers, processing functions); moreover, it is in part
influenced by some system configuration parameters (e.g. sizing of buffers).

Table VII shows the memory usage of the SPINE 1.2 core with an extension for using a
motion sensor board and computing Features (Max, Min, Range, Mean, Amplitude, Median, Mode,
RMS, Variance, Standard Deviation, Total Multi-Channel Energy, Vector Magnitude, Pitch & Roll,
Entropy) and Alarms (thresholds-based events on Features values).

Radio channel usage depends a lot on the application design choices. In fact, in SPINE, data
sampled by sensors on the motes may be sent to the coordinator without any processing (raw
data) and then be analyzed on the coordinator, or, once clear which processing is needed, part of
it can be done on nodes to achieve a better solution in terms of energy consumption and channel
optimization. Therefore, data may be pre-processed on the node and only the computation result
sent to the coordinator.

Users may decide to collect all the data coming from the sensors and then process them at the
coordinator, therefore a SPINE data packet will be sent every time the sensor is sampled.

RawData Rate=Sampling Rate

However, if on-node feature computation capabilities are used, once the most significant features
are selected and activated, every node will send a data packet to every window sliding.

Feature Rate= Sampling Rate

Window·Sliding%
Table VIII reports a few examples showing that the saving in terms of pkt/s can be significant.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

258 F. BELLIFEMINE ET AL.

5. THE JAVA-BASED SPINE COORDINATOR

As discussed in Section 3.2, the SPINE architecture consists of two entities, one on the sensor
nodes and the other on a coordinator station. Such a coordinator can be a desktop computer, a
laptop or even a PDA or a smart-phone. The coordinator provides the end-user application with
an access point to the wireless BSN. Thus, its main tasks are controlling the remote nodes and
capturing the various messages and events generated, according to the user-application needs.

The design of the SPINE coordinator is driven by principles of lightweight, ease of use and
portability. The idea is to provide a small set of high-level operations by which the BSN can be
controlled and an effective set of events to let the application be notified of information coming
from the BSN. To enhance portability, the Java language was adopted. As is well known, Java is
supported not only by PCs, but by most of the current PDA and smart-phones. Hence, a careful use
of Java libraries and paradigms allows fast porting, e.g. from a PC implementation of the SPINE
coordinator to a mobile phone. In particular, the implementation is based on the 1.4 version of
Java and makes use of data structures and libraries that are available both for the desktop and
mobile edition of the Java Virtual Machine.

Before discussing a simplified architecture of the coordinator-side of SPINE, it is important to
observe that none of the existing computer and mobile phones have a native wireless interface for
communicating with sensor nodes. In fact, most of them are based on the IEEE 802.15.4 commu-
nication protocol [26], rather than Wi-Fi or Bluetooth. Hence, a portion of the implementation is
strictly dependent on the particular base-station module attached to the coordinator node to allow
the physical communication with the BSN nodes.

Figure 12 shows a simplified Package Diagram of the SPINE Coordinator. The SPINE Core
package includes the SPINE Manager class contained in the Commands API and used by end-user
applications for issuing commands to the BSN. Moreover, the SPINE manager is responsible for
capturing low-level messages and nodes events through the Event Listener to notify registered
applications with higher level events and messages content. Additionally, the SPINE Core package
contains tables of constant codes, such as sensors and functions codes, which must be aligned with
the ones present on the nodes.

The SPINE Datamodel package contains classes that represent the high-level, platform inde-
pendent SPINE Messages as well as abstractions of BSN nodes and sensor itself (e.g. a Node
object will be characterized by attributes as its type and id and built-in sensors lists and available
processing functions lists).

End-user applications are only aware of the SPINE Core and Datamodel packages and hence
are completely decoupled by specific implementations of the SPINE Messages and communication
procedures of the currently available sensor node platform.

The SPINE Communication package is internally composed of a Send/Receive interface and
some components implementing that interface according to the specific base-station platform and
that represent the high-level SPINE Messages in platform-specific messages. Thus, most of the
work for porting an implementation of the SPINE Coordinator on a different platform is to be
carried out in this package. Currently, an implementation supporting TinyOS sensor devices is
fully available, while a porting for the ZigBee-compliant platform, TI Z-Stack [9], has been also
developed and is currently under testing.

6. A CASE STUDY: HUMAN ACTIVITY RECOGNITION

The SPINE framework has been used to design a human activity monitoring system prototype. This
application is able to recognize postures (e.g. lying, sitting or standing still) and a few movements
(e.g. walking and jumping) of a person; furthermore, it can detect if the monitored person has
fallen and unable to stand up.

The wearable nodes are based on the Tmote Sky platform [27] to which is attached a custom
sensor board (SPINE sensor-board) including a 3-axis accelerometer and two 2-axis gyroscopes.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

SPINE: A DOMAIN-SPECIFIC FRAMEWORK 259

Figure 12. Simplified package diagram of the SPINE coordinator.

The nodes are powered by a standard 3.7V, 600mAh Li-Ion camera battery). The user application
is implemented in the Java language and runs on top of a SPINE coordinator laptop to which
is attached a Tmote Sky, acting as a base-station bridge, connected via USB port. The activity
recognition system prototype relies on a classifier that takes accelerometer data measured by sensors
placed on the waist and on a leg of a person and recognizes the movements defined in a training
phase. Among the classification algorithms available in the literature, a K-Nearest Neighbor [28]
(KNN)-based classifier was defined.

The prototype provides a default training set and a graphical wizard to let the user build his own
training set to enhance recognition accuracy. The significant features to be activated on the node
to classify the movements are then selected using an offline sequential forward floating selection
[29] (SFFS) approach or the naı̈ve sequential forward selection (SFS), embedded in the application
prototype, running much faster but with worse results. The experimental results show that, given
a certain training set, the classification accuracy is not much affected by the K value or the type
of distance metric used by the classifier. This is because, in this specific example, classes (lying,
sitting, standing and walking) are rather separate and not affected by noise. Therefore, K=1 and
the Manhattan distance as parameters of the KNN-based classifier were set up.

The experiments have been performed using two sensor nodes: one placed on the waist and
the other on the thigh of the right leg. Then, an SFFS off-line was executed to select the smallest
set of features to be activated on the nodes to achieve sufficiently accurate classification. In the
feature selection algorithm the accuracy hwas calculated with a shift of 50% of the data window,
taking into account half of the data set for training and half to test the classifier.

The resultant most significant features are:

• waist node: mean on the accelerometer axes XY Z , min value and max value on the accelerom-
eter axis X ;

• leg node: min value on the accelerometer axis X .

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

260 F. BELLIFEMINE ET AL.

Figure 13. Live monitor panel.

The fall detection is implemented on the waist sensor node and can be activated/deactivated
at run-time. When the fall detector is active, the Alarm Engine (see Section 4.1), every time new
accelerometer data are acquired, checks whether the cross-axial energy feature, calculated on the
three accelerometer axes, is greater than an empirically evaluated threshold and, in the positive
case, sends an alarm message back to the coordinator to inform the user application. False alarms
are drastically reduced by a simple mechanism implemented within the user application: as soon
as it receives a fall-detected message, it waits the recognition of the next seven postures of the
person; only if it evaluates 4 out of 7 lying positions is an emergency message reported to the user
attention.

An interesting functionality of the prototype is a simple tool for adding new, user-defined
activities among the default ones. The tool drives the user through a simple procedure for acquiring
the necessary training data which are then stored in the global data set. Another tool of the
application is a graphical step-counter with daily progress indicator which relies on a simple
on-node step recognition algorithm that runs on the waist node.

The user application is composed of the following graphical panels:

• Live Monitor panel (see Figure 13), which allows to monitor the activity of the subject in
real-time by also visualizing the timed log of the main events occurred.

• Statistics panel, (see Figure 14) which shows the percentages of time of the different kinds
of activities the subject is performing.

• Advanced panel (see Figure 15), which shows, for each sensor node currently exploited, the
sensor types, the available and the enabled feature extractors, and the battery voltage level.

• Developers panel (see Figure 16), which is intended for debugging purposes as well as for
node functionality test. The panel includes a graph to plot either raw data sensor readings or
feature values; a textual log for alarms and other node system messages is also included.

Although the objective of this prototype concerned mainly in testing the SPINE framework in a
semi-realistic use case, the overall performance (see Table IX) reached by the recognition system
is considerably high, with an average posture/movement classification accuracy of 97%. The fall
detection algorithm is quite accurate as well with almost zero undetected falls and a low percentage
of false alarms.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

SPINE: A DOMAIN-SPECIFIC FRAMEWORK 261

Figure 14. Statistics panel.

Figure 15. Advanced panel.

6.1. An analysis of the system development effectiveness and performance

This section is devoted to provide an analysis of the development effectiveness and performance
of the proposed human activity monitoring system. In particular, the analysis is carried out with
respect to an application developed without any high-level framework and centered on an approach
based on the processing of sensed data at the base station side only.

Given the chosen parameters (sampling time=50ms, window =40 samples, shift =20
samples), the communication bandwidth is 20 pkt/sec (in bit/s) if only raw data readings are

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

262 F. BELLIFEMINE ET AL.

Figure 16. Developers panel.

Table IX. Posture/Movement recognition accuracy.

Sitting Standing Lying Walking Falling

96% 92% 98% 94% 100%

transmitted, while the bandwidth drops to just 1 pkt/s in the implementation which uses the
in-node feature extraction as new features are extracted each shift* sampling time =1s. Therefore,
by enabling the in-node feature computation, an overall bandwidth saving of 95% is achieved.
On the basis of the same operating parameters, the experimental results showed that the battery
lifetime is less than 24 hours of continuous monitoring when raw data readings are transmitted,
while it is almost 6 days if only the most significant features are computed on-node and then
transmitted. Thus, the radio duty cycling along with its in-node signal processing capabilities
provided an improvement of almost 6 times that of the battery lifetime. This result does not
reflect exactly the bandwidth saving mainly because the implemented duty cycling mecha-
nism keeps the radio on listening for incoming packets for a certain period; furthermore, the
computational load (i.e. the microcontroller usage) increases when extracting the features on the
nodes.

In order to compare the development effectiveness of the SPINE system with the non-SPINE-
based system, the basic components of a BSN application and the specific ones related to the
developed human activity monitoring system were analyzed and the critical development points
identified by defining the percentage of efforts for developing each component node-side and base-
station side with respect to the complete application node-side and base-station side, respectively
(see Figure 17). As can be seen, without SPINE, all the components had to be developed, whereas
using SPINE, only some components had to be developed since many were already available in
the libraries and easily configurable at compile-time and run-time. The saved development efforts
are 100% at the node side, if only the default components are used, and 80% at the base-station
side, in case of only the classification algorithm being implemented; this consideration shows
that a notable improvement can be obtained by adopting SPINE for the development of BSN
applications.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

SPINE: A DOMAIN-SPECIFIC FRAMEWORK 263

Sensor node-side development efforts

20%

10%

20%
10%

20%

10%

10%

Sensor Driver
Implementation

Sensor Sampling
Operations

Sensed Data Buffering

Sensed Data Windowing

Feature Extraction
Implementation

Control Packet Reception
& Handling

Data Packet
Transmission

Base station-side development efforts

25%

25%

10%

10%

5%

25%

Data Packet Handling

Control Packet
Transmission

Data Buffering and
Windowing

Feature Extraction
Implementation

Different Node Data
Aggregation

Classification Algorithm
Implementation

Figure 17. Development efforts for typical BSN applications at sensor node-side and base station-side.

7. CONCLUSIONS

The development of BSNs applications is a complex task which requires suitable frameworks and
tools for effective and efficient programming at the base station and sensor node sides. In this paper
SPINE, a domain-specific framework for the rapid prototyping of signal-processing-oriented BSN
applications has been presented. SPINE is split into two parts: the base station side and the sensor
node side. The base station is based on a flexible Java framework which allows for interaction
with (configuring, starting, monitoring and data exchanging) the sensor nodes and performing
data monitoring and visualization, and complex data classification and analysis. The sensor node
is based on an efficient framework, currently implemented in nesC on TinyOS, which provides
sensing, processing and communication operations.

The performance evaluation of SPINE at the sensor node side confirms that it is efficient enough
to support intensive sensing and data processing applications. Currently SPINE is applied in the
health care domain for human activity monitoring. In particular a real-time system for the recog-
nition of posture and movements (standing, sitting, lying, walking, falling) has been successfully
developed and described. Moreover, it has been shown an effectiveness and performance compar-
ison between the SPINE-based application and the same application developed without signal
in-node processing. SPINE not only decreases the development efforts but also allows to obtain
higher performances with respect to energy consumption and used network bandwidth.

The experience being gained in the context of the SPINE project for the development of SPINE
and its applications in the health care domain, has already highlighted the need for software abstrac-
tions and platforms to support an effective development of BSN-based systems. The capability to
perform real-time processing of the sensed data directly on the sensor node should be considered a
requirement for BSN frameworks/applications as well as flexible mechanisms, node-side and base-
station-side, for extension and customization to meet specific application requirements. In particular,
BSN applications are based on wearable sensors, particularly of the motion (accelerometers) and
biomedical (ECG, heart rate) type, which are sampled very frequently as they have to monitor
fast variations of the followed phenomenon such as an irregular heart rate or a human fall; as
a consequence, conspicuous data streams are produced. Thus, sending raw data from the sensor
nodes to the coordinator is not efficient in terms of battery lifetime and usage of the wireless
medium. In fact, the radio is one of the most energy consuming components of a sensor node
and consumes significantly not only when transmits or receives data but also when it listens to
the channel waiting for incoming packets. Hence, transmissions of only significant data and/or
aggregated data, and duty cycling techniques are fundamental to extending the battery lifetime.
Furthermore, sending raw sampled data will likely cause packet collisions on the wireless medium.
The distributed in-node processing approach of SPINE perfectly meets these requirements. More-
over, programming the application logic of the BSN system (base-station and sensor-node side)
through a Java API would allow developers to concentrate on the problem solving algorithms
and avoid using low-level programming languages for programming the sensor nodes. The SPINE

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

264 F. BELLIFEMINE ET AL.

Java API allows to remotely configure and control all the in-node SPINE services, thus supporting
a more rapid and robust software application development. This is one of the main strengths of
SPINE: algorithm and application developers do not have to deal with embedded programming but
can manage and configure the processing functionalities of the sensor nodes using a simple and
more familiar Java interface. Additionally, the flexible architecture of the SPINE-based sensor node
software allows interested and skilled developers to more easily program in-node functionalities
as well as to more rapidly introduce new sensors and hardware platforms.

Owing to the aforementioned advantages several research groups have already adopted SPINE
for the development of novel BSN applications and systems. In [30, 31] SPINE has been used for
prototyping an online gait analysis system based on Hidden Markov Model using wireless sensors
placed on the legs and in the shoes. In [32] the porting of SPINE on a Nokia N810 PDA has been
carried out for collecting accelerometer data of multiple sensors placed on subjects walking around
the UCB campus. This effort is part of a larger system, named DexterNet, which also integrates GPS
data and pollution measurement data. In the department of biomedical engineering at the Tampere
University of Technology, SPINE has been used to develop a firmware, which is now integrated
into the SPINE framework, for a bio-sensor board attachable to TelosB nodes and mounting an
ECG sensor, an Electrical Impedance Pneumography (EIP) sensor and a three-axis accelerometer
sensor [32]. In the context of the ‘OpenCare Project’ [33] SPINE is used to easily integrate specific
hardware mote platforms as well as to program applications based on signal in-node processing.
Finally, at the Computer and Embedded System Laboratory of the National School of Engineers
of Sfax in Tunis, SPINE is being extended for supporting nodes authentication.

On the basis of the results described in this paper, on-going work is aimed at finalizing the
porting of SPINE on Texas Instruments Z-Sstack [9], a ZigBee-compliant sensor platform, and
testing SPINE on the Shimmer nodes [24], another TinyOS-based sensor platform. As the SPINE-
based BSN application development targets a specific platform, SPINE2 has been designed for
development of BSN applications on heterogeneous sensor platforms and is going to be imple-
mented and tested on TinyOS, Z-Stack and Ember [34] sensor platforms. Finally cooperative
mechanisms among BSNs based on mutual interaction between their SPINE coordinators and
their sensor nodes are being investigated to enable hand-off of assisted livings among multiple
coordinators and non-supervised information exchange.

ACKNOWLEDGEMENTS

The authors thank Roozbeh Jafari at the University of Dallas, Sameer Iyengar, Kevin Klues, and Alberto
Sangiovanni-Vincentelli at the University of Berkeley, Filippo Tempia Bonda at Telecom Italia, Trevor
Pering at Intel Research Santa Clara, Philip Kuryloski at the Cornell University, Luigi Buondonno, Antonio
Giordano, Stefano Galzarano at the University of Calabria, for their precious contributions to the SPINE
project in terms of ideas, discussions and implementation efforts. This work has been partially supported
by CONET, the Cooperating Objects Network of Excellence, funded by the European Commission under
FP7 with contract number FP7-2007-2-224053.

REFERENCES

1. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks: A survey. Computer Networks:
The International Journal of Computer and Telecommunications Networking 2002; 38(4):393–422.

2. Yang G-Z. Body Sensor Networks. Springer: New York, 2006.
3. Fok C-L, Roman G-C, Lu C. Mobile agent middleware for sensor networks: An application case study,

In Proceedings of the 4th International Conference on Information Processing in Sensor Networks (IPSN’05),
Los Angeles, CA, 25–27 April 2005; 1–6.

4. Kumar R, Wolenetz M, Agarwalla B, JunShin S, Hutto P, Paul A, Ramachandran U. DFuse: A framework for
distributed data fusion. ACM SenSys, Los Angeles, CA, U.S.A., 5–7 November 2003; 114–125.

5. Wendi Heinzelman B, Amy Murphy L, Carvalho HS, Mark Perillo A. Middleware to support sensor network
applications. IEEE Network 2004; 18:6–14.

6. Madden S, Michael Franklin J, Hellerstein J, Hong W. TAG: A tiny aggregation service for ad-hoc sensor
networks. Proceedings of the 5th Symposium on Operating Systems Design and Implementation (OSDI ’02),
Boston, MA, U.S.A., 9–11 December 2002; 131–146.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

SPINE: A DOMAIN-SPECIFIC FRAMEWORK 265

7. Souto E, Guimarães G, Vasconcelos G, Vieira M, Rosa N, Ferraz C, Kelner J. Mires: A publish/subscribe
middleware for sensor networks. Personal and Ubiquitous Computing 2006; 10(1):37–44.

8. SPINE website. Available at: http://spine.tilab.com, 2009.
9. Z-Stack website. Available at: http://focus.ti.com/docs/toolsw/folders/print/z-stack.html. 2009.
10. Simon D, Cifuentes C. The squawk virtual machine: JavaTM on the bare metal. Companion to the 20th Annual

ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (San Diego,
CA, U.S.A., October 16–20, 2005), OOPSLA ’05. ACM: New York, NY, 2005; 150–151.

11. Malan D, Fulford-Jones T, Welsh M, Moulton S. CodeBlue: An ad hoc sensor network infrastructure for
emergency medical care. MobiSys 2004 Workshop on Applications of Mobile Embedded Systems (WAMES 2004),
Boston, MA, 6 June 2004; 12–14.

12. Lombriser C, Roggen D, Stager M, Troster G. Titan: A tiny task network for dynamically reconfigurable
heterogeneous sensor networks. Verteilten Systemen (KiVS 2007), Bern, Switzerland, 26 February–2 March 2007;
49–57.

13. TinyOS website. Available at: www.tinyos.net. 2009.
14. Najafi B, Aminian K, Ionescu A, Loew F, Büla CJ, Robert P. Ambulatory system for human motion analysis

using a kinematic sensor: Monitoring of daily physical activity in the elderly. IEEE Transactions on Biomedical
Engineering 2003; 50(6):711–723.

15. Hester T, Hughes R, Sherrill DM, Knorr B, Akay M, Stein J, Bonato P. Using wearable sensors to measure
motor abilities following stroke. Proceedings of the 3rd International Workshop on Wearable and Implantable
Body Sensor Networks, (BSN 2006), MIT, Boston, MA, U.S.A., 3–5 April 2006; 5–8.

16. Pansiot J, Stoyanov D, McIlwraith D, Benny Lo PL, Yang GZ. Ambient and wearable sensor fusion for
activity recognition in healthcare monitoring systems. Proceedings of 4th International Workshop on Wearable
and Implantable Body Sensor Networks (BSN 2007), RWTH Aachen University, Germany, 26–28 March 2007;
208–212.

17. Maurer U, Smailagic A, Siewiorek DP, Deisher M. Activity recognition and monitoring using multiple sensors
on different body positions. Proceedings of the 3rd International Workshop on Wearable and Implantable Body
Sensor Networks (BSN 2006), MIT, Boston, MA, U.S.A., 2006; 113–116.

18. Lester J, Choudhury T, Borriello G. A practical approach to recognizing physical activities. International
Conference on Pervasive Computing (PERVASIVE), Dublin, Ireland, 2006; 1–16.

19. Bao L, Stephen Intille S. Activity recognition from user-annotated acceleration data. Proceedings of the 2nd
International Conference on Pervasive Computing (PERVASIVE), Vienna, Austria, 21–23 April 2004; 1–17.

20. Sadilek DA. Prototyping domain-specific languages for wireless sensor networks. Proceedings of the 4th
International Workshop on Software Language Engineering, Nashville, TN, U.S.A., 2007; 237–241.

21. LGPL documentation. Available at: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html, 2009.
22. Giannantonio R, Gravina R, Kuryloski P, Seppä V-P, Bellifemine F, Hyttinen J, Sgroi M. Performance analysis of

health care systems based on the spine framework. Proceedings of the 3rd International Conference on Pervasive
Computing Technologies for Healthcare (Pervasive Health’09), London, U.K., 1–3 April 2009.

23. MicaZ website. Available at: http://www.xbow.com/Products/productdetails.aspx?sid=164, 2009; 1–8.
24. Shimmer website. Available at: http://www.shimmer-research.com/, 2009.
25. Bramer M. Principles of Data Mining. Springer: London, 2007.
26. 802.15.4 Website. Available at: http://www.ieee802.org/15/pub/TG4.html, 2009.
27. Moteiv website. Available at: http://www.sentilla.com/moteiv-endoflife.html, 2009.
28. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Transactions on Information Theory 1967; 13:21–27.
29. Pudil P, Novovicova J, Kittler J. Floating search methods in feature selection. Pattern Recognition Letters 1994;

15(11):1119–1125.
30. Raveendranathan N, Loseu V, Guenterberg E, Giannantonio R, Gravina R, Sgroi M, Jafari R. Implementation of

virtual sensors in body sensor networks with the SPINE framework. IEEE Symposium on Industrial Embedded
Systems (SIES 2009), Lausanne, Switzerland, 8–10 July 2009; 124–127.

31. SPINE HMM. Available at: http://www.essp.utdallas.edu/Main/OpenSource#spine, 2010.
32. Kuryloski P, Giani A, Giannantonio R, Gilani K, Gravina R, Seppä V-P, Seto E, Shia V, Wang C, Yan P, Yang AY,

Hyttinen J, Sastry S, Wicker S, Bajcsy R. DexterNet: An open platform for heterogeneous body sensor networks
and its applications, Body Sensor Networks (BSN 2009), Berkeley, CA, U.S.A., 3–5 June 2009; 92–97.

33. OpenCare Project—SPINE. Available at: http://opencareproject.wikispaces.com/SPINE, 2010.
34. Ember website. Available at: http://www.ember.com, 2009.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:237–265
DOI: 10.1002/spe

