43 research outputs found

    An ε-Constraint Method for Multiobjective Linear Programming in Intuitionistic Fuzzy Environment

    Get PDF
    Effective decision-making requires well-founded optimization models and algorithms tolerant of real-world uncertainties. In the mid-1980s, intuitionistic fuzzy set theory emerged as another mathematical framework to deal with the uncertainty of subjective judgments and made it possible to represent hesitancy in a decision-making problem. Nowadays, intuitionistic fuzzy multiobjective linear programming (IFMOLP) problems are a topic of extensive research, for which a considerable number of solution approaches are being developed. Among the available solution approaches, ranking function-based approaches stand out for their simplicity to transform these problems into conventional ones. However, these approaches do not always guarantee Pareto optimal solutions. In this study, the concepts of dominance and Pareto optimality are extended to the intuitionistic fuzzy case by using lexicographic criteria for ranking triangular intuitionistic fuzzy numbers (TIFNs). Furthermore, an intuitionistic fuzzy epsilon-constraint method is proposed to solve IFMOLP problems with TIFNs. The proposed method is illustrated by solving two intuitionistic fuzzy transportation problems addressed in two studies (S. Mahajan and S. K. Gupta's, "On fully intuitionistic fuzzy multiobjective transportation problems using different membership functions," Ann Oper Res, vol. 296, no. 1, pp. 211-241, 2021, and Ghosh et al.'s, "Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem," Complex Intell Syst, vol. 7, no. 2, pp. 1009-1023, 2021). Results show that, in contrast with Mahajan and Gupta's and Ghosh et al.'s methods, the proposed method guarantees Pareto optimality and also makes it possible to obtain multiple solutions to the problems.MCIN/AEI PID2020-112754GB-I00FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades/Proyecto B-TIC-640-UGR2

    Lexicographic Methods for Fuzzy Linear Programming

    Get PDF
    Fuzzy Linear Programming (FLP) has addressed the increasing complexity of real-world decision-making problems that arise in uncertain and ever-changing environments since its introduction in the 1970s. Built upon the Fuzzy Sets theory and classical Linear Programming (LP) theory, FLP encompasses an extensive area of theoretical research and algorithmic development. Unlike classical LP, there is not a unique model for the FLP problem, since fuzziness can appear in the model components in different ways. Hence, despite fifty years of research, new formulations of FLP problems and solution methods are still being proposed. Among the existing formulations, those using fuzzy numbers (FNs) as parameters and/or decision variables for handling inexactness and vagueness in data have experienced a remarkable development in recent years. Here, a long-standing issue has been how to deal with FN-valued objective functions and with constraints whose left- and right-hand sides are FNs. The main objective of this paper is to present an updated review of advances in this particular area. Consequently, the paper briefly examines well-known models and methods for FLP, and expands on methods for fuzzy single- and multi-objective LP that use lexicographic criteria for ranking FNs. A lexicographic approach to the fuzzy linear assignment (FLA) problem is discussed in detail due to the theoretical and practical relevance. For this case, computer codes are provided that can be used to reproduce results presented in the paper and for practical applications. The paper demonstrates that FLP that is focused on lexicographic methods is an active area with promising research lines and practical implications.Spanish Ministry of Economy and CompetitivenessEuropean Union (EU) TIN2017-86647-

    Fuzzy linear programming problems : models and solutions

    No full text
    We investigate various types of fuzzy linear programming problems based on models and solution methods. First, we review fuzzy linear programming problems with fuzzy decision variables and fuzzy linear programming problems with fuzzy parameters (fuzzy numbers in the definition of the objective function or constraints) along with the associated duality results. Then, we review the fully fuzzy linear programming problems with all variables and parameters being allowed to be fuzzy. Most methods used for solving such problems are based on ranking functions, alpha-cuts, using duality results or penalty functions. In these methods, authors deal with crisp formulations of the fuzzy problems. Recently, some heuristic algorithms have also been proposed. In these methods, some authors solve the fuzzy problem directly, while others solve the crisp problems approximately

    Novel Distance Measure in Fuzzy TOPSIS for Supply Chain Strategy Based Supplier Selection

    Get PDF
    In today’s highly competitive environment, organizations need to evaluate and select suppliers based on their manufacturing strategy. Identification of supply chain strategy of the organization, determination of decision criteria, and methods of supplier selection are appearing to be the most important components in research area in the field of supply chain management. In this paper, evaluation of suppliers is done based on the balanced scorecard framework using new distance measure in fuzzy TOPSIS by considering the supply chain strategy of the manufacturing organization. To take care of vagueness in decision making, trapezoidal fuzzy number is assumed for pairwise comparisons to determine relative weights of perspectives and criteria of supplier selection. Also, linguistic variables specified in terms of trapezoidal fuzzy number are considered for the payoff values of criteria of the suppliers. These fuzzy numbers satisfied the Jensen based inequality. A detailed application of the proposed methodology is illustrated

    Neutrosophic Sets and Systems, Vol. 36, 2020

    Get PDF

    A Theoretical Development of Distance Measure for Intuitionistic Fuzzy Numbers

    Get PDF
    The objective of this paper is to introduce a distance measure for intuitionistic fuzzy numbers. Firstly the existing distance measures for intuitionistic fuzzy sets are analyzed and compared with the help of some examples. Then the new distance measure for intuitionistic fuzzy numbers is proposed based on interval difference. Also in particular the type of distance measure for triangle intuitionistic fuzzy numbers is described. The metric properties of the proposed measure are also studied. Some numerical examples are considered for applying the proposed measure and finally the result is compared with the existing ones

    Data Science: Measuring Uncertainties

    Get PDF
    With the increase in data processing and storage capacity, a large amount of data is available. Data without analysis does not have much value. Thus, the demand for data analysis is increasing daily, and the consequence is the appearance of a large number of jobs and published articles. Data science has emerged as a multidisciplinary field to support data-driven activities, integrating and developing ideas, methods, and processes to extract information from data. This includes methods built from different knowledge areas: Statistics, Computer Science, Mathematics, Physics, Information Science, and Engineering. This mixture of areas has given rise to what we call Data Science. New solutions to the new problems are reproducing rapidly to generate large volumes of data. Current and future challenges require greater care in creating new solutions that satisfy the rationality for each type of problem. Labels such as Big Data, Data Science, Machine Learning, Statistical Learning, and Artificial Intelligence are demanding more sophistication in the foundations and how they are being applied. This point highlights the importance of building the foundations of Data Science. This book is dedicated to solutions and discussions of measuring uncertainties in data analysis problems

    nvestment decision making based on the probabilistic hesitant financial data: model and empirical study

    Get PDF
    This paper proposes a portfolio selection model from the perspective of probabilistic hesitant financial data (PHFD). PHFD can be interpreted as the new form of information presentation that is obtained by transforming real financial data into probabilistic hesitant fuzzy elements. Based on the above data and model, we can derive the optimal investment ratios and give suggestions for investors. Specifically, this paper first develops a transformation algorithm to transform the general share returns into PHFD. The transformed data can directly show all the returns and their occurrence probabilities. Then, the portfolio selection and risk portfolio selection models based on PHFD, namely the probabilistic hesitant portfolio selection (PHPS) model and the risk probabilistic hesitant portfolio selection (RPHPS) model, are proposed. Furthermore, the investment decision-making methods are provided to show their practical application in financial markets. It is pointed out that the PHPS model for general investors is constructed based on the maximum-score or minimum-deviation principles to get the optimal investment ratios, and the RPHPS model provides the optimal investment ratios for three types of risk investors with the aim of obtaining the maximum return or taking the minimum risk. Finally, an empirical study based on the real data of China’s stock markets is shown in detail. The results verify the effectiveness and practicability of the proposed methods

    Unrestricted solutions of arbitrary linear fuzzy systems

    Get PDF
    Solving linear fuzzy system has intrigued many researchers due to its ability to handle imprecise information of real problems. However, there are several weaknesses of the existing methods. Among the drawbacks are heavy dependence on linear programing, avoidance of near zero fuzzy numbers, lack of accurate solutions, focus on limited size of the systems, and restriction to the matrix coefficients and solutions. Therefore, this study aims to construct new methods which are associated linear systems, min-max system and absolute systems in matrix theory with triangular fuzzy numbers to solve linear fuzzy systems with respect to the aforementioned drawbacks. It is proven that the new constructed associated linear systems are equivalent to linear fuzzy systems without involving any fuzzy operation. Furthermore, the new constructed associated linear systems are effective in providing exact solution as compared to linear programming, which is subjected to a number of constraints. These methods are also able to provide accurate solutions for large systems. Moreover, the existence of fuzzy solutions and classification of possible solutions are being checked by these associated linear systems. In case of near zero fully fuzzy linear system, fuzzy operations are required to determine the nature of solution of fuzzy system and to ensure the fuzziness of the solution. Finite solutions which are new concept of consistency in linear systems are obtained by the constructed min-max and absolute systems. These developed methods can also be modified to solve advanced fuzzy systems such as fully fuzzy matrix equation and fully fuzzy Sylvester equation, and can be employed for other types of fuzzy numbers such as trapezoidal fuzzy number. The study contributes to the methods to solve arbitrary linear fuzzy systems without any restriction on the system

    Full Issue

    Get PDF
    corecore