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Abstract: Parameter reduction can be treated as an effective tool in many fields, including pattern
recognition. Many reduction techniques have been reported so far for soft sets, fuzzy soft sets and bipo-
lar fuzzy soft sets to solve decision-making problems. However, there is almost no attention to the pa-
rameter reduction of neutrosophic soft sets. In this present paper we focus our discussion on the pa-
rameter reduction of neutrosophic soft sets as an extension of parameter reduction of soft sets and
fuzzy soft sets. To do that, using the concept of indiscernibility relation, we first define the terms “dis-
pensable set’ and ‘indispensible set’. We utilize these definitions to define the terms ‘decision partition’,
‘parameter reduction” and ‘degree of importance of a parameter’ with a suitable example. Next we pre-
sent an algorithm based on the concept of degree of importance and parameter reduction of a neutro-
sophic soft set. An illustrative example is employed to show the feasibility and validity of our proposed

algorithm based on parameter reduction of neutrosophic soft sets in real life decision making problem.

Keywords: Neutrosophic set, neutrosophic soft set, parameter reduction, decision making.

1. Introduction

Molodstov [31] initiated the concept of soft set theory as a fundamental mathematical tool for mod-
elling uncertainty, vague concepts and not clearly defined objects. Although various traditional tools,
including but not limited to rough set theory [33], fuzzy set theory [41], intuitionistic fuzzy set theory
[10] etc. have been used by many researchers to extract useful information hidden in the uncertain da-

ta, but there are inherent complications connected with each of these theories.

Additionally, all these approaches lack in parameterizations of the tools and hence they
couldn’t be applied effectively in real life problems, especially in areas like environmental, economic

and social problems. Soft set theory is standing uniquely in the sense that it is free from the above
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mentioned impediments and obliges approximate illustration of an object from the beginning, which

makes this theory a natural mathematical formalism for approximate reasoning.

The Theory of soft set has excellent potential for application in various directions some of
which are reported by Molodtsov [31] in his pioneer work. Later on Maji et al. [27] introduced some
new annotations on soft sets such as subset, complement, union and intersection of soft sets and dis-
cussed in detail its applications in decision making problems. Ali et al. [7] defined some new opera-
tions on soft sets and shown that De Morgan's laws holds in soft set theory with respect to these newly
defined operations. Atkas and Cagman [6] compared soft sets with fuzzy sets and rough sets to show
that every fuzzy set and every rough set may be considered as a soft set. Jun [24] connected soft sets
to the theory of BCK/BCl-algebra and introduced the concept of soft BCK/BClI-algebras. Feng et al.[21]
characterized soft semi rings and a few related notions to establish a relation between soft sets and

semi rings.

Chen et al. [15] introduced the concept of parameter reduction of soft sets in 2005. In 2008, Z.
Kong et al [25] introduced the definition of normal parameter reduction in soft sets and presented a
heuristic algorithm of normal parameter reduction. The soft sets mentioned above are based on com-
plete information. However, incomplete information widely exists in various real life problems. H.
Qin et al [34] studied the data filling approach of incomplete soft sets. Y. Zou et al [42] investigated da-
ta analysis approaches of soft sets under incomplete information. In 2001, Maji et al. [28] defined the
concept of fuzzy soft set by combining of fuzzy sets [41] and soft sets [31]. Roy and Maji [35] proposed

a fuzzy soft set based decision making method.

Xiao et al. [39] presented a combined forecasting method based on fuzzy soft set. Feng et al.
[22] discussed the validity of the Roy-Maji method [35] and presented an adjustable decision-making
method based on fuzzy soft set. Yang et al. [40] initiated the idea of interval valued fuzzy soft set
(IVFS-set) and analyzed a decision making method using the IVFS-sets. The notion of intuitionistic
fuzzy set (IFS) was initiated by Atanassov [10] as a significant generalization of fuzzy set [41]. Intui-
tionistic fuzzy sets are very useful in situations when description of a problem by a linguistic variable,
given in terms of a membership function only, seems too complicated. Recently intuitionistic fuzzy
sets have been applied to many fields such as logic programming, medical diagnosis, decision making

problems etc.
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Smarandache [38] introduced the concept of neutrosophic set which is a mathematical tool for
handling problems involving imprecise, indeterminacy and inconsistent data. Maji [30] introduced the
concept of neutrosophic soft set and established some operations on these sets. Mukherjee et al [32] in-
troduced the concept of interval valued neutrosophic soft sets and studied their basic properties. In
2013, Broumi and Smarandache [12, 13] combined the intuitionistic neutrosophic and soft set which
lead to a new mathematical model called” intuitionistic neutrosophic soft set”. They studied the no-
tions of intuitionistic neutrosophic soft set union, intuitionistic neutrosophic soft set intersection,
complement of intuitionistic neutrosophic soft set and several other properties of intuitionistic neutro-

sophic soft set along with examples and proofs of certain results.

Also, in [11] S. Broumi presented the concept of “generalized neutrosophic soft set” by com-
bining the generalized neutrosophic sets [11] and soft set models, studied some properties on it, and
presented an application of generalized neutrosophic soft set [11] in decision making problem. Recent-
ly, Deli [17] introduced the concept of interval valued neutrosophic soft set as a combination of inter-
val neutrosophic set and soft set. In 2014, S. Broumi et al. [14] initiated the concept of relations on in-
terval valued neutrosophic soft sets.l. Deli [18] proposed a new notation called expansion and reduc-
tion of the neutrosophic classical soft sets that are based on the linguistic modifiers. Saha et al. [36]
proposed the concept of data filling of neutrosophic soft sets having incomplete/missing data. Few

more works on neutrosophic soft sets can be found in [9, 19, 23, 37].

Parameter reduction can be treated an effective tool in many fields, including pattern recognition.
Many reduction techniques [8, 15, 16, 20, 25, 26 ] have been reported so far for soft sets, fuzzy soft sets
and bipolar fuzzy soft sets to solve decision-making problems. However, there is almost no attention
to the parameter reduction of neutrosophic soft sets. In this present paper we focus our discussion on
the parameter reduction of neutrosophic soft sets as an extension of parameter reduction of soft sets

and fuzzy soft sets.

This present paper is organized as follows:

Section-2 presents some basic definitions related to fuzzy set theory with their generalizations and soft
set theory with their generalizations. In section-3, we first present the concept of indiscernibility rela-
tions and then based on it, we define the terms ‘dispensable set’, ‘indispensible set’, ‘decision parti-
tion’, “parameter reduction’, ‘degree of importance of a parameter’ with a suitable example in neutro-
sophic soft environment. In the next section (section-4), we have presented an algorithm based on the
concept of degree of importance and parameter reduction supported by an illustrative example to

show the feasibility and validity of our algorithm.
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2. Preliminaries:

2.1 Definition: [41] Let U be a non empty set. Then afuzzy set T on U is a set having the form
T:{(X, ut(x)):x eU} where the function p :U —[0, 1] is called the membership function and

o, (X) represents the degree ofmembership of each element x e U.

2.2 Definition: [10] Let U be a non empty set. Then an intuitionistic fuzzy set (IFS for short) T is an
object having the form 7T= {<X, [V (X), Y. (X)>: X e U} where the functions

p,:U—[0,1] and y:U —[0,1] are called membership function and non-membership function

respectively.

W, (X) and vy, (X) represent the degree ofmembership and the degree of non-membership
respectively of each element xe U and 0<p,_ (X)+ Y. (X) <1 for each x € U.We denote the class of

all intuitionistic fuzzy sets on U by IFSU.

2.3 Definition: [31] Let U be a universe set and E be a set of parameters. Let P(U) denotes the
power set of U and AcE. Then the pair (F, A) is called a soft set over U, where F is a mapping
givenby F: A > P(U).

In other words, the soft set is not a kind of set, but a parameterized family of subsets of U. For ecA,
F (e) < U may be considered as the set of e-approximate elements of the soft set (F , A) .

2.4 Definition: [28] Let U be a universe set, E be a set of parameters and A € E. Then the pair
(F , A) is called a fuzzy soft setover U, where F is a mapping given by F: A — FS".

2.5 Definition: [29] Let U be a universe set, E be a set of parameters and A € E. Then the pair
(F, A) is called an intuitionistic fuzzy soft set over U, where F is a mapping given by F: A — IFS".

ForecA, F (e) is an intuitionistic fuzzy subset of U and is called the intuitionistic fuzzy value set

of the parameter ‘e’.
Let us denote pn F(e) (X) by the membership degree that object ‘X" holds parameter ‘e’ and vy (o) (X) by

the membership degree that object ‘x’ doesn’t hold parameter ‘e’ , where ecA and xe U. Then

F (e) can be written as an intuitionistic fuzzy set such that F(e)={(x, T, (x), Ve (x)): X € U} .

2.6 Definition: [38] A neutrosophicset A on the universe of discourse U is defined as
A= {<x,yA (x),)/A (x),5A (x)> 1X e U}, where u,,7,,6,:U —] 0,1'[ are functions such that the

condition: VxeU, 0< u,(x)+y,(x)+5,(x)<3" is satisfied.

Here 1, (x), 7 (x) ,0, (x) represent the truth-membership, indeterminacy-membership and falsity-

membership (hesitancy membership) respectively of the element x e U .
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Smarandache [25] applied neutrosophic sets in many directions after giving examples of neutrosophic
sets. Then he introduced the neutrosophic set operations namely-complement, union, intersection,
difference, Cartesian product etc.

2.7 Definition: [30] Let U be an initial universe, £ be a set of parameters and 4 — E. Let NP (U )
denotes the set of all neutrosophic sets of U . Then the pair ( f ,A) is termed to be the

neutrosophicsoftset over U , where f is a mapping givenby f : 4 — NP (U ) .

2.8 Example: Let us consider a neutrosophic soft set ( f, A) which describes the “attractiveness of the
house”. Suppose U= {u;,u,,us,uy,us,ug } be the set of six houses under consideration and
E = {e (beautiful), e, (expensive), e; (cheap), e, (good location), e (wooden) }be the set of parameters. Then

a neutrosophic soft set ( fs A) over U can be given by:

U e e e ey es

U (0.8,0.5,0.2) (0.3,0.4,0.6) (0.1,0.6,0.4) (0.7,0.3,0.6) (0.3,0.4,0.6)
122 (0.4,0.1,0.7) (0.8,0.2,0.4) (0.4,0.1,0.7) (0.2,0.4,0.4) (0.1,0.1,0.3)
Uy (0.2,0.6,0.4) (0.5,0.5,0.5) (0.8,0.1,0.7) (0.5,0.3,0.5) (0.5,0.5,0.5)
Uy (0.3,0.4,0.4) (0.1,0.3,0.3) (0.3,0.4,0.4) (0.6,0.6,0.6) (0.1,0.1,0.5)
Us (0.1,0.1,0.7) (0.2,0.6,0.7) (0.4,0.2,0.1) (0.8,0.6,0.1) (0.6,0.7,0.7)
Ug (0.5,0.3,0.9) (0.3,0.6,0.6) (0.1,0.5,0.5) (0.3,0.6,0.5) (0.4,0.4,0.4)

3. Parameter reduction of neutrosophic soft sets:

Suppose U = {x,%,,%;,.., %, be the universe set of objects and E= {¢,e,,e;,., &, be the set of

parameters. Consider a (f,E)

f@)= {{xm (0.8 (Ddp (0)):xT U} for el E

JBCD= & (M) D+ &)y @)+ dre (), 1 U

neutrosophic soft set given by

?/0 given by:

J
We use %‘; (x;) to denote mf(g,)(xi)+ gf(ej)(xi)+ a(f(ej)(xi).

3.1 Definition: For any subset of parameters Bl E, an indiscernibility relation IND is defined as:
INDy = {(x,x )t U U JB(x)= JB(x))}.

For the neutrosophic soft set (f,E), we denote Cy = {{xl,xz,x3,.., Yoo Xiot Xipges B s

X150 ¥ } as a partition of objects in U which partitions and ranks the objects according to
the value of }/E"(x[) based on the indiscernibility relation IND,,. CY is called the decision partition ,
where the sub classes are: {X;,X), X3, X, } 41X 15 X4 250005 X Foeeenis . X Xppgens X, Where s is the

number of sub-classes, and x;* x,% x;° .. 3 x.
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For any sub-class {x,,X,,{,..... ,xz+h}xq,g?/§(xz)g: §?E"(xzﬂ)g: ........ = J/g(xﬁh)g:x , where [.]

denotes the greatest integer function. Thus objects from U with the same value of ?/E"(.) are included

into a same class.

3.2 Example:Let U = {x,X,,X;,.....,Xs} be the set of six houses and E = {e,e,,ée;,.....,6,} be the set of
parameters where the parameters e, e,,e;,e,,65,65 represents ‘beautiful’, ‘in the main town’,

‘expensive’, ‘concrete’, ‘in green surroundings’, ‘wooden’ respectively. Consider the neutrosophic soft
set (f,E) which describes the attractiveness and physical trait of the houses given by the following

table (table-1).

Table-1
U e e, e €, €s Iy 720
X |(0.3,0.7,04) | (0.4,05,0.1) | (0.2,0.2,04) | (0.6,0.3,0.4) | (0.1,0.1,0.3) | (0.2,0.4,0.6) 6.2
x, | (0.4,0.5,0.5) | (0.2,0.2,0.6) | (0.5,0.5,0.1) | (0.2,0.8,0.3) | (0.4,0.3,0.2) | (0.6,0.3,0.4) 7.0
x; | (0.2,0.5,0.7) | (0.3,0.2,0.5) | (0.8,0.2,0.4) | (0.5,0.5,0.3) | (0.2,0.4,0.2) | (0.9,0.6,0.6) 8.0
X, | (0.5,0.3,0.6) | (0.6,0.3,0.1) | (0.2,0.5,0.6) | (0.4,0.4,0.5) | (0.7,0.3,0.2) | (0.5,0.5,0.8) 8.0
x5 | (0.3,0.5,0.6) | (0.4,0.4,0.2) | (0.3,0.3,0.5) | (0.6,0.1,0.6) | (0.7,0.8,0.1) | (0.4,0.6,0.6) 8.0
xs | (0.7,0.3,04) | (0.3,0.5,0.2) | (0.4,0.8,0.5) | (0.50.3,0.5) | (0.1,0.2,0.3) | (0.4,0.4,0.2) 7.0

In this case, Cy = {{x3,24, %5} {00 X}, {31}y § @S JR(3)= 6.2, J2(x0)= 7.0, 72() = 8.0, J2(x, ) = 8.0,
72(x;)= 8.0, 72(x;)= 7.0; where x, = 8,x,= 7,5, = 6.

3.3 Definition:For a neutrosophic soft set (f,E) with E= {e,e,,e;,.....,e,}, if there exists a subset

A= legegef..... ,e‘g}i E satisfying %}(xl)= %}(xz)= %1’()%): ............ = 73(x,), then we say that 4
is dispensable, otherwise A is indispensable. Roughly speaking, Al E is dispensable means that the
difference between among all objects according to the parameters in 4 doesn’t influence the final

decision. A1 E is called a parameter reduction of E if A4 is indispensible and }/E"_ 4(x)= }/E"_ 4(x,)
= ?/EO- (X)) = = ?/E"_ 4(x,)i.e; E-A is the maximal subset of E that keeps the value }/EO_ 4C)

constant.

Clearly after the parameter reduction of E, we have fewer parameters although the partition of
objects have not been changed. In the above definition, %f(x] )= %f(xz)= %’(x3)= ............ = %’(xn)

implies Cy = Cy,. .
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3.4 Example:Using table-1, we have, }2?]1’62’84}(x1 )= %f’g] e} (82T ]q/él ,ez’e4}(x3 )= ;/{gl ,82’64}(x4 )=
?/gl,ez’%}(xs )= ?/gl,ezm}(xﬁ ) = 3.7 . Hence the neutrosophic soft set (f,E) given by Table-1 has a

parameter reduction {63,65,66} and the corresponding neutrosophic soft set (f,A) is displayed in

table-2 given below:

shows

Table-2
U o) e € 750
X | (0.2,0.2,0.4) (0.1,0.1,0.3) (0.2,0.4,0.6) 2.5
X, | (0.5,0.5,0.1) (0.4,0.3,0.2) (0.6,0.3,0.4) 3.3
x; | (0.8,0.2,0.4) (0.2,0.4,0.2) (0.9,0.6,0.6) 4.3
X, | (0.2,0.5,0.6) (0.7,0.3,0.2) (0.5,0.5,0.8) 4.3
X5 | (0.3,0.3,0.5) (0.7,0.8,0.1) (0.4,0.6,0.6) 4.3
Xs | (0.4,0.8,0.5) (0.1,0.2,0.3) (0.4,0.4,0.2) 3.3

and

Table-1 that  72(x)= 62 12(x,)= 12(x)= 7. 70(x)= Jo(x,)= J2(x,)=8

X; or x, or x5 is the optimal choice, x, or x, is the sub optional choice and x; is the inferior choice.

Again according to Table-2, %’(xl)= 2.5,%’(}52): %}(xé)= 3.3,%&1’()53): %’(x4)= %1)(?%)2 43 and so

in this case also x; or x4 or x5 is the optimal choice, x, or x, is the sub optional choice and x, is the

inferior choice. Thus parameter reduction gives the same result as the original one.

We also have Cg. fe.er.es) X535 X45 X5 34510, X6 13516 12 § -

set (f,E) ,

_ . . U _
U= {x,x,,%;,......,x,} is the set of objects, CE—{{xl,xz,xS, ..... 3 X b s A 1 Xy 2aeeeees X hyy e

For the neutrosophic soft

{000 Xs 1oeeees X b }is a decision partition of objects in U. Now deleting the parameter ¢; from E, we

get a new decision partition deleted ¢; denoted by C g Iy which is given by:

Cy = {E,.E

x> By oeeeeeees
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B = X500, Xy Xy

Ey, = X 15X e X b s

=
E- {ei}xl¢: {6 X Xy ,xl.¢}xl¢,

- {e}

" (X 10 Xy pgoeen ,x].¢}x2¢,

3.5 Definition:The degree of importance of e, for the decision partition is denoted by Im(e,) and is

N

defined by Im(e, )= %ﬁ W, where

q-¢r
| |q:1
: _ .
- } E - E- {er}xy¢ ,if $ y¢such that x, = x ,1£ y¢£ s¢1£ g£ s
w’er B 1
¥ Exq , otherwise

The degree of importance of A for the decision partition is defined by:

1 S
Im(4)= —3 where
T
q
¥ Exq - E- Ax, |, I $ y¢such that x, = x  1£ ye€ s¢1£ g£ s
Woa=i
¥ Exq , otherwise

3.7 Example:Consider the neutrosophic soft set given in example 3.2. Then we have:

Cg = {05, %4, Xs}5, {65, X }7, 1%, }6 }, 5=8 and Cg. fe) W63, X4, X5 }65 1%, X6 55 X -

VW, = )= 0OW, =[x ) = 2 W, = | 5,55 = 3. So Tm(e)) = %(0+ 2+ 3)= 0.833.

3.8 Proposition:For the neutrosophic soft set (f,E) where E= {¢,e,,.....e,} ,
0£ Im(e, )£ 1,r=1,2,...,m.
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Proof:
If $ y¢such thatx, = x ,1£ y¢€ s¢1£ g£ s, then W, = E, - E- {e, }xy¢‘£ E, and W, = E. |
otherwise.
\ Im(e,)= Lé’: W, £ Lé’: E, |= l{]Ex1 + B+ ot |E [} L. lu|=1.
o pa Ul =il Y] oyl

Again it is easy to verify that Im(e,)* 0.Thus we have 0£ Im(e,)£ 1.

4. Decision making problem solving based on parameter reductionof neutrosophic soft set:

In this section we first develop an algorithm using parameter reduction of neutrosophic soft set and
then we illustrate this with a real life application.

*= Algorithm:
Step-1: Input the neutrosophic soft set (f, E).

Step-2: Choose a parameter reduction A of E.

Step-3: Compute the choice value of the object x; I U using the formula given below:

¢ =4 Im(e;) ?’;‘i(xi) where eji A.
j .

Step-4: Find k for which ¢, = maxc;.
1
Then ¢;, is the optimal choice object. If k has more than one values, then any one of them can be
chosen by the decision maker.

> An lllustrative example: Consider the neutrosophic soft set given in example 3.2. Now suppose
that Mr. John is interested to buy a house on the basis of his choice parameters e, e,,ée;,.....,&,

which means that out of the available houses in U, he will select that house that qualifies with all
or maximum number of parameters in E.
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Step-1: The neutrosophic soft set (f, E) is given below:

U e e, e, e, es e 720
X | (03,07,04) | (040501) | (02,02,04) | (0603,04) | (0.1,0.1,03) | (02,040.6) | 6.2
X, | (04,0505) | (02,02,06) | (05050.1) | (020803) | (040302) | (0.603,04) | 7.0
X3 | (0.2,0.5,0.7) | (0.3,0.2,0.5) | (0.8,0.2,0.4) | (0.5,05,0.3) | (0.2,04,0.2) | (0.9,0.6,0.6) | 8.0
X, | (0.5,0.3,0.6) | (0.6,0.3,0.1) | (0.2,0.5,0.6) | (0.4,04,0.5) | (0.7,0.3,0.2) | (0.5,0.5,0.8) | 8.0
X5 | (0.3,0.5,0.6) | (0.4,04,0.2) | (0.3,0.3,0.5) | (0.6,0.1,0.6) | (0.7,0.8,0.1) | (0.4,0.6,0.6) | 8.0
X, | (07,03,04) | (03,0502) | (040.805) | (0503,05) | (0.1,0203) | (040402) | 7.0

Step-2: A parameter reduction of Eis 4= {63,65,66 } The corresponding neutrosophic soft set is given

below:

U 12N es € 7450
X | (0.2,02,04) |(0.1,0.1,03) | (0.2,0.4,0.6) 2.5
X, | (0.50.50.1) | (040302 | (0.60.3,0.4) 3.3
X, | (0.8,0.2,04) |(0.2,04,0.2) | (0.90.6,0.6) 4.3
x, | (0.2,05,0.6) | (0.7,0.3,0.2) | (0.50.50.8) 4.3
xs | (0.3,0.3,05) | (0.7,080.1) | (0.4,0.6,0.6) 4.3
Xs | (0.40.805) |(0.1,02,0.3) | (0.4,0.4,0.2) 3.3

Step-3: Cf = {{x3,%,, X5} 45 (X5, X6 }3, 1%}, } and 5= 3.
CZ_ e}~ sty x5 it 10 bt b X6 h )

CZ_ fes} — Wb s s, X6 b 100 o {0 12

CZ_ fes) Wxstas 1 bas X6 12 15 S 2o 100 300 A0 11 3
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VW, =[x xs = 3 W, = o= 2. W, = [ )= &
W, = [rmms = 3., =[x )= 2W, = [} =0
w% - |{x3,x4,x5}|: S’W,eé = |{x2’x6}|: Z,W’% = |{xl}|: 1.

Hence Im(e;) =

Im(eg) = L3

Ul 4

g

q
=1

1
\M,% g

1
»€3 g

B+ 2+ 1= 1,Im(es) =

B+2+D=1.

3

. I ~
malw’es = g(3+ 2+ 0)= 0.83,
=

The computation table for obtaining the choice values is given by:

U 2} es € ¢

X |(0.2,0.2,04) (0.1,0.1,0.3) (0.2,0.4,0.6) €, =(0.2+0.2+0.4)x1+(0.1+0.1+0.3)x0.83
+(0.2+0.4+0.6)x1=2.415

X, | (0.5,0.5,0.1) (0.4,0.3,0.2) (0.6,0.3,0.4) €, =(0.5+0.5+0.5)x1+(0.4+0.3+0.2)x0.83
+(0.6+0.3+0.4)x1=3.147

x; | (0.8,0.2,0.4) (0.2,0.4,0.2) (0.9,0.6,0.6) C3 =(0.8+0.2+0.4)x1+(0.2+0.4+0.2)x0.83
+(0.9+0.6+0.6)x1=4.164

X, | (0.2,0.5,0.6) (0.7,0.3,0.2) (0.5,0.5,0.8) €4 =(0.2+0.5+0.6)x1+(0.7+0.3+0.2)x0.83
+(0.5+0.5+0.8)x1=4.096

x5 | (0.3,0.3,0.5) (0.7,0.8,0.1) (0.4,0.6,0.6) C5=(0.3+0.3+0.5)x1+(0.7+0.8+0.1)x0.83
+(0.4+0.6+0.6)x1=3.828

Xs | (0.4,0.8,0.5) (0.1,0.2,0.3) (0.4,04,0.2) Ce=(0.4+0.8+0.5)x1+(0.1+0.2+0.3)x0.83

+(0.4+0.4+0.2)x1=3.198

Step-4: Since the choice value C3 is maximum, so house x; is the best option for Mr. John.

Conclusion

In this paper we have proposed the concept of parameter reduction for neutrosophic soft sets

and we have used it to solve a decision making problem by developing an algorithm based on degree

of importance of parameters. The experimental results prove that our proposed parameter reduction

techniques delete the irrelevant parameters while keeping definite decision-making choices

unchanged. The parameter reduction presented in this paper may play an important role in some

knowledge discovery problem. Using the concept presented in this paper, one can think of parameter

reduction of

interval valued neutrosophic soft sets.

interval valued neutrosophic soft sets, hesitant neutrosophic soft sets and hesitant
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Abstract. This paper comes as a second step serves the purpose of constructing a
neutrosophic optimization model for the relation geometric programming problems subject
to (max, product) operator in its constraints. This essay comes simultaneously with my
previous paper entitled (Neutrosophic Geometric Programming (NGP) with (max-product)
Operator, An Innovative Model) which contains the structure of the maximum solution. The
purpose of this article is to set up the minimum solution for the (RNGP) problems, the author
faced many difficulties, where the feasible region for this type of problems is already non-
convex; furthermore, the negative signs of the exponents with neutrosophic variables x; €
[0,1]UI . A new technique to avoid the divided by the indeterminacy component (I) was
introduced; Separate the neutrosophic geometric programming into two optimization
models, introducing two new matrices named as the distinguishing matrix and the
facilitation matrix. All these notions were important for finding the minimum solution of the
program. Finally, two numerical examples were presented to enable the reader to understand

this work.

Keyword: Relational Neutrosophic Geometric Programming (RNGP); (V,.) Operator;
Neutrosophic Relation Equations; Distinguishing Matrix; Facilitation Matrix; Minimum

Solution; Incompatible Problem.

1. Introduction

As of 1995 so far, dozens of mathematicians and researchers in many fields of
sciences trying to study and understand the neutrosophic theory, the first mathematician who
set up and put forward the neutrosophic theory was Smarandache F. at 1995 [2,11], he is in
the neutrosophic theory as Lotfi A. Zadeh [12] in fuzzy theory and as K. Atanasov [10] in
intuitionistic fuzzy theory. The importance of the neutrosophic logic comes from its ability to
deal with the indeterminacy component (I), this component makes scholars generalize the
fuzzy and intuitionistic fuzzy logics, give them the ability to put the paradoxes in a new
framework, and it makes the researchers deal with contradicted information in more
relaxation. This paper comes as an establishing article in the relational neutrosophic
programming problems (RNGP) with (V,.) in its constraints. This kind of problems has many
applications in real-world problems, like communication system, civil engineering,
mechanical engineering, structural design and optimization, business management ...etc. The
author published previous articles [1,3,4,6,7,9] to expand the fuzzy theory to be fit with
neutrosophic theory, this essay was one of the series of these articles.

This publication includes three original sections, despite the second section goes to

the basic concepts, but these pure concepts were originated by the author at the

Huda E. Khalid, Neutrosophic Geometric Programming (NGP) Problems Subject to (V,.) Operator; the Minimum
Solution
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simultaneously published paper, which focused on the form of the maximum solution in the
(RNGP) with (v,.) operator, the third section was dedicated to many unprecedented
mathematical formulas such as pre-distinguishing matrices, pre-facilitation matrices, a new
technique to separate the optimization model into two models depending upon the sign of
terms powers in the objective function, and a technique to filter all minimum solutions, the
forth section was for two numerical examples, they are the same examples that presented in
the article [8] which assigned to the maximum solution, the last section includes the

conclusion.

2. Basic Concepts

We call
min f(x) = (c;. x7*) V (cz. x22) v ..V (. x2T)
s.t. Aox = b @

x; €[01]Ul, 1<j<n
A (V,.) (max- product) neutrosophic geometric programming, where 4 = (a;;), 1 <
i<m,1<j<n, a;€[01]is (m xn) dimensional neutrosophic matrix, x = (x;, %, ..., x,)"
an n-dimensional variable vector, b = (by,b,, ...,by)T (b; € [0,1]]UI) an m- dimensional
constant vector, ¢ = (cy,Cy, ..., Cy)T (¢ 2 0) an n- dimensional constant vector, y; is an
arbitrary real number, and the composition operator 0" is (V,.) , i.e. Vi_;(a;;.x;) = b;. Note
that the program (1) is undefined and has no minimal solution in the case of y; < 0 with all

x;'s taking indeterminacy value.

2.1. Definition [8]

%, lf al-]- > bi , al-]- (S [0,1], bi (S [0,1]
ij
Qi X b =11, if a; <b;, a;€[0,1], b; € [0,1] @)
1, lf ai]- S [0,1], bi = nI,n € (0,1]
:%, lf aij>n, aijE[O,l],bi=n1,nE(0,1]
i
ob 1, if ajj<n, a;j €[0,1],b; =nl,n € (0,1] 3
AP0 = 1 not comp. if a;; =ml,me (0,1],b; € [0,1] U )
1 lf ai]-,bl-j € [0,1]
Where x is an operator defined at [0,1], while the operator © is defined at [0,1] U I. Let
% =AZi(a;j®b), (A<j<n) 4)
be the components of the pre maximum solution £,,.(i.e. £,; = (X1, %,, ..., £,,))
Let % = AZ1(a;;0b), (1<j<n), ®)

be the components of the pre maximum solution %,,. (i.e. £,, = (X1, %3, ..., £,))

Now the following question will be raised,

Which one %, or X,,, should be the exact maximum solution?

Neither X,,; nor £,,, will be the exact solution! The exact solution is integrated between them.
Before solving Aox = b, we first define the matrices 4,1, 4,,.

Let A,; be a matrix has the same dimension and the same rows elements of 4 except for those

rows of the indexes i = i, corresponding to those indexes of b;, = nl, those special rows of

Huda E. Khalid, Neutrosophic Geometric Programming (NGP) Problems Subject to (V,.) Operator; the Minimum
Solution
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A, will be zeros. Let A,, be a matrix has the same dimension and the same rows elements of
A except for those rows of the indexes i =i, corresponding to those indexes of b; € [0,1],
those special rows of A,, will be zeros. Consequently,

AoX = b = (Ay10%y1) + (A20%,2) (6)
The formula (6) is the greatest solution in X (4, b).

The maximum value of the objective function f (%) = f(£,1) V f (%,2).

2.2. Theorem [8]

If yj <0 (1<j<n), then the greatest solution to the problem (1) is an optimal

solution.

2.3. Definition [5]
If there exists a solution to x = b, it's called compatible. Suppose X(4,b) = {(xy, X3, ..., X;n)T €
[0,1]" Ul, I"=1,n > 0|x0A = b,x; € [0,1] U I} is a solution set of Aox = b, we define x! <
x* o x! <xf (1<j<n),Vx'x*€X(ADb). Where" < "is a partial order relation on X (4, b).

3. The Structure of the Minimum Solution X.

The feasible region of the solution domain for the neutrosophic geometric
programming (NGP) problems subject to (max-product) operator in its constraints is a
solution to Aox = b , therefore the definition of the solution set X(4, b) and the shape of the
maximum and the minimum solutions are very important to optimize the (NGP) model.

The structure of the maximum solution was introduced by Huda E. Khalid in [8].

The definition (2.3) was constructed by Huda E. Khalid at 2016 [5], this definition was
dedicated for (RNGP) problems subject to (max-min) operator, this definition is also
appropriate for (RNGP) problems with (max, product) operator.

3.1. Definition

If there exists a minimum solution in the solution set X(4, b), then the numbers of the
minimum solutions are not lonesome such as the maximum solution. If we denote all
minimum elements by X(4, b), then another version of X(4,b) can be presented depending

upon the minimum and the maximum solutions as follows:
X(A,b) = Ugexap) x| X¥<x<ZXx€X} @

The following definitions introduce some important new matrices that were constructed by

the author for using them in the filtering rule for finding the minimum solution.
3.2. Definition
LetS; = (sijl)mxn , S8, = (sijz)mxn be two pre - distinguishing matrices of A, where

Q;: a:.X: = b;:
1 L]’ (5] ] L
Sii = o 8
Y {0, ai]-.x]- * bi ( )
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In (8), the X;’s are the components of the pre - maximum solution %,; which supports the

fuzzy part of the problem, while the elements a;; are the elements of the matrix A,;.

S,.Z _ {ai}', aij.xj = bi (9)
Y 0, aljjc\] * bi

In (9), the X;’s are the components of the pre - maximum solution %,, which supports the

neutrosophic part of the problem, while a;; are the elements of the matrix A,,.

Let
§= (Sij)mxn = (sijl)mxn + (Sijz)mxn =5+5; (10)

The matrix § is called the distinguishing matrix of A. It is obvious that the constraints system
Aox = b has a solution if and only if the distinguishing matrix S of A has non zero rows (i.e. S

has at least a nonzero element in each row).
3.3. Definition

LetF; = (fijl)mxn ,F, = (fijz)mxn be two pre - facilitation matrices of A, where

xl']', al‘]’.x]’ =bi

1 _

In (11), the X;’s are the components of the pre- maximum solution £,; which supports the

fuzzy part of the problem, while the elements q;; are the entries of A,,;.

2
fij=

{5('\1']', al]f] = bi (12)

0, al])?] * bi

In (12), the %;’s are the components of the pre - maximum solution £,, which supports the

neutrosophic part of the problem,

Let

F = (fi)mxn = Fij Dmxn + (ijDmxn = FL + Fy (13)
The matrix F is called the Facilitation matrix of A.

Both matrices S and F are first introduced in this paper and they have a key role in finding

the set of all quasi-minimum solutions and then the optimal solution for NGP problems.
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3.4 The Filtration Method for Finding Minimum Solutions

1. Delete the i — th row of F, for which b; =0

2. Atb; >0, find an index z € {1,2, ..., m} such that z > i, if forall j =1,2,..,n
we find f;; # 0 & f;; # 0, then delete the i — th row of F.

3. Denote F for the matrix that gained from the above steps (i.e steps 1&2).

4. To each row of F, in each time, the only nonzero value is selected in every
row with all entries of the rest seen as zero, perhaps all of the matrices are
denoted by Fy, F, ..., E,.

5. To each column of Fj, (1 < k < p), the maximum element is selected, a quasi-

minimum solution ¥; can be obtained through such a method

The set composed of all ¥; is called a quasi-minimum solution, and it includes all
minimum solutions to Aox = b. Delete all repeated solutions, and then all minimum

solutions X (4, b) can be obtained.

As an integrated study for all cases of the exponents (y;) of the terms in the
objective function f(x), we saw that the theorem (2.2) covered the negative
exponents, while the following theorem will cover the positive exponents for the

terms of f(x).
3.5 Theorem

Ify; = 0 (1 <j < n), then a certain minimum solution X to Aox = b is an optimal one

to the program (1).

Proof

Si 50 (<)<, then 2y P15 g
incey; =0 (1 <j<n), then ax; =VjX; = 0.

We have x; € [0,1] U], so x}/j is a monotone increasing function concerning x;, so is
cjx}/j concerning x;. Hence, V x € X(4, b), depending on formula (7), then there exists
X € X(A,b), such that x > ¥ (ie. xj = %) = c]-.x;/j > cj.%}/j 1<j<sn)=fx)=

f(X), this means that the optimal solution to the program (1) must exist in

Huda E. Khalid, Neutrosophic Geometric Programming (NGP) Problems Subject to (V,.) Operator; the Minimum
Solution
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X(A,b).f(¥) =min{ f(¥)| ¥ € X(4,b)}. Then V x € X(4, b), there exists f(x) = f(¥*),

so X* € X(A, b) is an optimal solution to the program (1).

3.6 Two Optimization Models Based on the Sign of y;

Let My ={j|y;<0,1<j<n}, M,={j|y;>0,1<j<n}, then M,NM, =0, M;UM, =] ,
here J = {1,2, ...,n}. It is evident that the terms of the objective function f(x) in the program

(1) having negative powers is
.G =Viem, (.} (14)

While the terms of f(x) that having positive exponents is

£2(x) =Vien, {(-2")} (15)
Based on (14) and (15), we have the following two optimization models,

min f; (x)
s.t.Aox =b (16)
x; € [0,1]U 1

min f5(x)
s.t.Aox =b (17)
Using theorem (2.2), X is an optimal solution for (16). By theorem (3.5), there exists

X* € X(A,b) , where X" is an optimal solution for (17).

3.7 Important Notes

1. In this type of problems, the first step is to search for the maximum solution which is
lonesome for every problem. If the purpose of the program (1) is to optimize it, with
the restriction that all powers of the variables x; are negative, then the greatest
solution is the optimal one {i.e. f(x*) = f(X) = f (X, )Nf (Xp2)}.

2. The second step is to search for the minimum solution which is the set of all minimal
solutions X(A4,b). When the purpose of the program (1) is to optimize it, with the

restriction that some of the exponents are negative and others are positive, then

&) = iGN ().
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3. It should be noticed that the components of £, containing indeterminate values (I)
raised to the negative powers of f(x) must be neglected, otherwise, it will be

undefined program.

The upcoming section covering numerical examples, those examples are the same
that discussed in [8] for its maximal solution, we could not be remote far away from the paper
[8], present paper regarded as the complement of [8] which contained the formula of the

maximum solution, while this present paper introduces the set of all minimum solutions.

4 Numerical examples

We now gaze the (max, product) neutrosophic relation geometric programming examples as

follows

3.1 Example

Solve

1 1
min £ (x) = (0.3.x})V(1.8I .x2)V({I .x¥)

s.t. Adox=0»
x; €[01JUI (1<j<n)

11 .6 1 .2
Where b=(1,§I,EI)T, A=(.5 .2 .1> .
3 3x3

Solution:
o s o oT T & s o onT 2,2 T
Xy1 = (xlfo'xS) = (1,1,1) s Xp2 = (lexZJx3) = (EI'EI' 1) s

6 1 .2 0 0 0
Ar=[0 0 0], An=[.5 .2 .1}
0 0 0 3 .5 .1

It is easy to notice that all exponents of f(x) terms are positive. Therefore
there will not be a need to separate f(x) into f; and f5.
f®) = f(x,1)Vf(X,,) = 1.8I is the maximum solution.
Using theorem (3.5), it is essential to find the set of all minimum solutions for
f(x), where the optimal solution occurs at the minimal solution.

0 1 0 0 0 0 0 1 o0
S1= [0 0 0], S, = [0.5 0 0] , S = [0.5 0 O].

0 0 O 03 05 0 03 05 0
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0 1o 0 1 0 0 1 0
2 2
FE=o o o], =31 O O p=|3 O 0]
0 0O 21 21 o 21 %21 o
3 5 3 5

Using the filtration rule stated in section (3.4),

21 0 0 21 0 0 21 0 0
3 & _ 13

F' = =4 F' = 3 ;F = ’
21 21 0 oo ool o 2o
3' 5 3 5
so the minimum solutions that related to F; and F, are ¥, = [g 1,0,0], X, =
22
21,2101,

fG) = f(x) = %I is the minimum solution.

3.2 Example
Let min f(x) = <0.21. xf) Y <1.3.x§> V(I.x2)V (0.35.x32)

s.t. Adox=0»
x; € [0,1]JUI (1<j<n)

Where b = (0.3,0.71,0.5,0.2D7, A=

S - wr
PN w

Solution

a A & & ~NT 3 T ~ & & & ~ANT
xvl = (xl,xz,X3,X4) = (05,1,2,05) , xvz = (xl,xz,X3,X4) =
2 T

(21,1021,08751) ,

The greatest solution for this problem is f(X) = f(X,1) V f(%,2) = 1.3.

The following calculations are for finding the minimum solution.

2 .3 4 .6 0 0 00
o 0o o o0 (3 .2 9 .8
A=l1 o 1 1)%=\l0 0o 0 0/
0 0 00 0 .5 10
0 .3 .4 .6 00 0 0 0 .3 .4 .6
00 0 0 (o 0 o .8 (o 0o o .8
51711 0 o 1)'52‘ 0 0 0 0)’ =5=11 0 o0 1
00 0 0 00 1 0 00 1 0
0 1%.5 0 0 0 0 0 1 % 5
F,={0 0 0 of F=|00 0 .87 p_fo o o .875I|
5 0 0 .5 0 0 0 0 5 0 0 5
o 0 0 0o 0 1 .21 0 0 1 .21 0
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[0 0 o .8751

F=|5 0 0o .5
01 .21 0

[0 0 0 8751

FF=[5 0 o = ¥ =(51,.21,.875D7,
[0 1 .21

00 0 8751

F,=10 0 o = ¥, = (0,1,.21,.8751)T,
0 1 .21

[0 0 o 8751

Fo=[5 0 o = % =(51,0,.8750)7,
[0 1 o0

0 0 0 8751

F,=|5 0 o0 = ¥, = (5,0,.21,.8751)7,
[0 0 .21

[0 0 o 8751

Fs=|5 0 o0 = ¥ = (.5,1,0,.8751)7,
0 1 o0

00 0 8751

F,=10 0 o = ¥, = (0,1,0,.8751)7,
0 1 0

[0 0 0 8751

F,=|5 0 o0 = ¥, = (5,0,.21,.875D)7,
[0 0 .21

00 0 8751

Fe=[0 0 o = ¥, = (0,0,.21,.875)".
0 0 .21

It is clear that there are two repeated solution,

X5 = (.51,0,.875)" = ¥; , and ¥; = (.5,0,.21,.875)" = ¥,, after deleting all
repeated solutions, the set of all quasi- minimum solutions X(4,b) =
{X1, X2, X3, X4, X, Xg}.

Since the powers of some terms in f(x) are positive while others are negative,

we separate the objective function f(x) into

fi(x) = (0.21.x,*)V (0.35.x72), fo(x) = (13.x)V (I .x2),
First, solve for optimizing
min f; (x)
s.t.Aox =b
€[0,1]uU!
By theorem (2.2), we have f;(x*) = f;(X) = f;(£,1) A f1(X,2) = 1.4, take care

of those terms of %,, that holding indeterminate components must be

neglected and avoid apply them in the terms of f; (x).
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Second, solve for optimizing
min f,(x)
s.t.Aox = b
x; € [0,1]UT
f2(4) =13, /(%) =13, /2(X3) = 1.3, /2(X,) = 4471, f,(Xs) = 1.3,
fz(%s) = 0.447[,
X4, Xg are the optimal for f,(x), (i.e. f2(x*) = 0.447I).
S f(x) =f,(x) A fo(x*) =0.4471

5 Conclusion

The importance of this work comes from the unprecedented notions that were firstly
introduced in this article which are essential mathematical tools to establish the structure of
neutrosophic geometric programming (NGP) problems with (V,.) operator. Any optimization
problem needs to specify its minimum and maximum solution, in this article the author
introduced an effective technique to find the set of all quasi- minimum solution X(4, b), side
by side with the structure of the maximum solution %. This work contains the theoretical rules
with two numerical examples to enable the readers to understand the pure mathematical

concepts.
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Abstract: As a generalization of Fuzzy sets introduced by Zadeh [21] in 1965 and Intuitionistic
Fuzzy sets introduced by Atanassav [8] in 1983, the Neutrosophic set had been introduced and
developed by Smarandache. A Neutrosophic set is characterized by a truth value (membership), an
indeterminacy value and a falsity value (non-membership). Salama and Alblowi [17] introduced
the new concept of neutrosophic topological space (NTS) in 2012, which had been investigated
recently. In 2018, Parimala M et al. introduced and studied the concept of Neutrosophic
homeomorphism and Neutrosophic alp homeomorphism in Neutrosophic topological spaces. The
impact of this article is to introduce and study the concepts of Ngpr homeomorphism and Nigpr
homeomorphism in Neutrosophic topological space. Further, the work is extended to Ngpr open
mappings, Ngpr closed mappings, Nigpr closed mappings and some of their properties are
explored in Neutrosophic topological space.

Keywords: Neutrosophic generalized pre regular closed set, Ngpr open mappings, Ngpr closed
mappings, Ngpr homeomorphism and Nigpr homeomorphism.

1. Introduction

Zadeh [21] introduced the concept of fuzzy set in 1965 and Chang C. L. [9] introduced fuzzy
topological spaces in 1968. Later, Atanassov [8] proposed the concept of intuitionistic fuzzy sets in
1986, where the degree of membership and degree of non-membership are discussed. Intuitionistic
fuzzy topological spaces was introduced by Coker [10] in 1997 using intuitionistic fuzzy sets. As a
generalization of Fuzzy sets and Intuitionistic Fuzzy sets, Neutrosophic set have been introduced
and developed by Florentin Smarandache [12]. He also defined the Neutrosophic set on three
components, namely Truth (membership) (T), Indeterminacy (I) and Falsehood (non-membership)
(F).

Neutrosophic concept has wide range of real time applications in the fields of [1 - 6] Information
Systems, Computer Science, Artificial Intelligence, Applied Mathematics and Decision Making,
Uncertainty assessments of linear time-cost tradeoffs and solving the supply chain problem.

In 2012, Salama A. A and Alblowi [17] introduced the concept of Neutrosophic topological
space by using Neutrosophic sets. Salama A. A. [18] introduced Neutrosophic closed set and
Neutrosophic continuous function in Neutrosophic topological spaces and their properties are
studied by various authors [7 & 11]. Since, Neutrosophic homeomorphism plays an important role
in Neutrosophic topology. Parimala M et al. [14] introduced and studied the concept of
Neutrosophic homeomorphism and Neutrosophic o) homeomorphism in Neutrosophic topological
spaces. In this article, introduce and study few properties of Ngpr open mappings, Ngpr closed
mappings, Nigpr closed mappings, Ngpr homeomorphism and Nigpr homeomorphism in
Neutrosophic topological space. The present study demonstrates some of the related theorems,
results and properties.

2. Preliminaries
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2.1. Definition: [17] Let X be a non-empty fixed set. A Neutrosophic set (NS for short) A in X is an
object having the form A = {(x, pa(x), o0a(x), va(x)): x € X} where the functions pa(x), oa(x) and va(x)
represent the degree of membership, degree of indeterminacy and the degree of non-membership
respectively of each element x € X to the set A.

2.2 Remark: [17] A Neutrosophic set A = {(x, pa(x), oa(x), va(x) ): x € X} can be identified to an

ordered triple A = (x, na(x), oa(x), va(x)) in non-standard unit interval ]0, 1] on X.

2.3 Remark: [17] For the sake of simplicity, we shall use the symbol A = (x, ua, oa, va) for the
neutrosophic set A = {(x, pa(x), oa(x), va(x)): x € X}.

2.4 Example: [17] Every IFS A is a non-empty set in X is obviously on NS having the form
A = {{x, pa(x), 1 — (pa(x) + va(x)), va(x)): x € X}. Since our main purpose is to construct the tools for
developing Neutrosophic set and Neutrosophic topology, we must introduce the NS On and 1n in X
as follows:

On may be defined as:
(0) On={(x,0,0,1): x € X
(02) On={(x,0,1,1): x€X
(0s) On={(x,0,1,0): x € X
(04) On={(x,0,0,0): x € X
1n may be defined as:
(1) In={(x, 1, 0, 0): x € X}
(12) In={(x, 1,0, 1): x € X}
(Is) In={{x, 1, 1, 0): x € X}
(1) In={(x, 1,1, 1): x € X}

}
}
}
}

2.5 Definition: [17] Let A = (ua, 0a, va) be a NS on X, then the complement of the set A [C(A) for
short] may be defined as three kind of complements:

(C1) C(A) = {{x, 1-pa(x), 1-0a(x), 1-va(x)): x € X }

(C2) C(A) = {{x, va(x), 0a(X), pa(x)): x € X}

(Cs) C(A) = {{x, va(x), 1-0a(x), pa(x)): x € X}

2.6 Definition: [17] Let X be a non-empty set and Neutrosophic sets A and B in the form A = {(x,
HA(x), oa(x), va(x)): x € X} and B = {(x, us(x), o8(x), vB(x)): x € X}. Then we may consider two possible
definitions for subsets (A S B).

(1) A € B & pa(x) < ps(x), 0a(x) < o8(x) and pa(x) = us(x) V x € X

(2) A € B & pa(x) < ps(x), 0a(x) = o8(x) and pa(x) = us(x) V x € X

2.7 Proposition: [17] For any Neutrosophic set A, the following conditions hold:
ONCS A, 0N S ON
A C 1IN, INCEIN

2.8 Definition: [17] Let X be a non-empty set and A = {{x, pa(x), oa(x), va(x)): x € X}, B = {{x, ps(x),
08(x), vB(x)): x € X} are NSs. Then ANB may be defined as:

(I1) ANB = (x, pa(x) Aps(x), oa(x) Aos(x) and va(x)Vvs(x))

() ANB = (x, pa(x) Aus(x), oa(x)Vos(x) and va(x) Vvs(x))

AUB may be defined as:

(U1) AUB = (x, pa(x)V us(x), oa(x)Vos(x) and va(x) Avs(x))

(Uz2) AUB = (x, pa(x)V ps(x), oa(x) Aos(x) and va(x) Avs(x))
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2.9 Definition: [17] A Neutrosophic topology [NT for short] is a non-empty set X is a family T of
Neutrosophic subsets in X satisfying the following axioms:
(NT1) On, InET,
(NT2) GinGz€ tforany Gy, G2 €T,
(NTs) UGi€e tforevery (Giti€J} St

Throughout this paper, the pair (X, t) is called a Neutrosophic topological space (NTS for short).
The elements of 7 are called Neutrosophic open sets [NOS for short]. A complement C(A) of a NOS
A in NTS (X, 1) is called a Neutrosophic closed set [NCS for short] in X.

2.10 Definition: [17] Let (X, 1) be NTS and A = {{x, pa(x), oa(x), va(x)): x € X} be a NS in X. Then the
Neutrosophic closure and Neutrosophic interior of A are defined by
NCl(A)=n{K:Kisa NCSin X and A € K}
NInt(A) =U{G: Gisa NOS in X and G € A}
It can be also shown that NCI(A) is NCS and NInt(A) is a NOS in X.
a) Ais NOSif and only if A = NInt(A),
b) A is NCSif and only if A = NCI(A).

2.11 Definition: [13] A NS A = {(x, pa(x), oa(x), va(x)): x € X} in a NTS (X, 1) is said to be
(i) Neutrosophic regular closed set (NRCS for short) if A = NCI(NInt(A)),
(ii) Neutrosophic regular open set (NROS for short) if A = NInt(NCI(A)),
(iii) Neutrosophic pre closed set (NPCS for short) if NCI(NInt(A)) € A,
(iv) Neutrosophic pre open set (NPOS for short) if A € NInt(NCI(A)),
(v) Neutrosophic a- closed set (NSCS for short) if NCI(NInt(NCI(A))) € A,
(vi) Neutrosophic a- open set (NSOS for short) if A € NInt(NCI(NInt(A))).

2.12 Definition: [19] Let (X, ) be NTS and A = {(x, pa(x), oa(x), va(x)): x € X} be a NS in X. Then the
Neutrosophic pre closure and Neutrosophic pre interior of A are defined by

NPCI(A) = N{K: Kisa NPCSin X and A € K]},

NPInt(A) = U{G: GisaNPOS in X and G € A}.

2.13 Definition: [15] A NS A = {(x, pa(x), oa(x), va(x)): x € X} in a NTS (X, 1) is said to be a
Neutrosophic generalized closed set (NGCS for short) if NCI(A) € U whenever A € U and U is a
NOS in (X, t). A NS A of a NTS (X, 1) is called a Neutrosophic generalized open set (NGOS for short)
if C(A) is a NGCS in (X, 7).

2.14 Definition: [20] A NS A = {(x, pa(x), oa(x), va(x)): x € X} in a NTS (X, 1) is said to be a
Neutrosophic generalized pre closed set (NGPCS for short) if NPCI(A) € U whenever A € U and U
isa NOSin (X, T). ANS A of a NTS (X, 1) is called a Neutrosophic generalized pre open set (NGPOS
for short) if C(A) is a NGPCS in (X, ).

2.15 Definition: [13] A NS A = {(x, pa(x), ca(x), va(x)): x € X} in a NTS (X, 1) is said to be a
Neutrosophic generalized pre regular closed set (NGPRCS for short) if NPCI(A) € U whenever A €
U and U is a NROS in (X, 1). The family of all NGPRCSs of a NTS(X, 1) is denoted by NGPRC(X). A
NS A of a NTS (X, 1) is called a Neutrosophic generalized pre regular open set (NGPROS for short) if
C(A) is a NGPRCS in (X, 1).

Every NRCS, NCS, NWCS, NaCS, NGCS, NPCS, NaGCS, NGPCS, NRaGCS, NRGCS is an
NGPRCS but the converses are not true in general.

2.16 Definition: [13] A Neutrosophic topological space (X, t) is called a Neutrosophic pre regular T12
(NPRT12 for short) space if every NGPRCS in (X, t) is NPCS in (X, T).
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2.17 Definition: [13] A Neutrosophic topological space (X, t) is called a Neutrosophic pre regular T*2
(NPRT"12for short) space if every NGPRCS in (X, 1) is NCS in (X, 7).

2.18 Definition: [16] Let (X, t) and (Y, 0) be two NTSs. A mapping f: (X, 1) — (Y, o) is called Ngpr
continuous (resp. NG continuous, NGP continuous) mapping if f1(B) is NGPRCS (resp. NGCS,
NGPCS) in (X, 1) for every NCS B of (Y, 0).

Every Neutrosophic continuous, NG continuous, NGP continuous is a Ngpr continuous
mapping but the converses are not true in general.

2.19 Definition: [16] Let (X, 1) and (Y, 0) be two NTSs. A mapping f: (X, 1) — (Y, o) is called Ngpr
irresolute mapping if f1(A) is NGPRCS in (X, 1) for every NGPRCS A of (Y, 0).

2.20 Definition: [14] Let (X, 1) and (Y, o) be two NTSs. A mapping f: (X, t) — (Y, 0) is called
Neutrosophic closed mapping (resp. Neutrosophic open mapping) (NCM (resp. NOM) for short) if
the image of every Neutrosophic closed set (resp. Neutrosophic open set) in (X, T) is a Neutrosophic
closed set (resp. Neutrosophic open set) in (Y, 0).

2.21 Definition: [14] Let (X, 1) and (Y, o) be two NTSs. A bijection f: (X, ©) — (Y, 0) is called a
Neutrosophic homeomorphism if f and f! are Neutrosophic continuous mapping.

3. Ngpr open mappings and Ngpr closed mappings

In this section introduce Ngpr open mapping, Ngpr closed mapping and Nigpr closed
mapping in the Neutrosophic topological space and study some of their properties. Also established
the relation between the newly introduced mappings and already existing mappings.

3.1 Definition: Let (X, 1) and (Y, o) be two NTSs. A mapping f: (X, 1) — (Y, 0) is called
(i) Neutrosophic generalized open mapping (NGOM for short) if f(A) is NGOS in (Y, o) for
every NOS A of (X, 1).
(i) Neutrosophic a open mapping (NaOM for short) if f(A) is NaOS in (Y, o) for every NOS A
of (X, ).
(iii) Neutrosophic pre-open mapping (NPOM for short) if f(A) is NPOS in (Y, o) for every NOS
A of (X, 1).
(iv) Neutrosophic generalized pre-open mapping (NGPOM for short) if f(A) is NGPOS in (Y, o)
for every NOS A of (X, T).

3.2 Definition: Let (X, t) and (Y, o) be two NTSs. A mapping f: (X, T) — (Y, 0) is called Ngpr open
mapping (NGPROM for short) if f(A) is NGPROS in (Y, o) for every NOS A of (X, ).

3.3 Definition: Let (X, 1) and (Y, o) be two NTSs. A mapping f: (X, 1) — (Y, 0) is called
(i) Neutrosophic generalized closed mapping (NGCM for short) if f(A) is NGCS in (Y, o) for
every NCS A of (X, 7).
(if) Neutrosophic a closed mapping (NaCM for short) if f(A) is NaCS in (Y, o) for every NCS
A of (X, 7).
(iii) Neutrosophic pre-closed mapping (NPCM for short) if f(A) is NPCS in (Y, o) for every NCS
A of (X, 7).
(iv) Neutrosophic generalized pre-closed mapping (NGPCM for short) if f(A) is NGPCS in
(Y, o) for every NCS A of (X, 1).

3.4 Definition: Let (X, ) and (Y, o) be two NTSs. A mapping f: (X, ) — (Y, 0) is called Ngpr closed
mapping (NGPRCM for short) if f(A) is NGPRCS in (Y, o) for every NCS A of (X, 7).
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3.5 Example: Let X={a, b} and Y = {u, v}. Then t = {On, U, 1n} and o = {On, V1, V2, 1n} are Neutrosophic
topologies on X and Y respectively, where U = (x, (0.4, 0.4, 0.5), (0.6, 0.3, 0.4)) and V1= (y, (0.7, 0.5,
0.3), (0.8, 0.4, 0.2)) and V2= (y, (0.6, 0.4, 0.4), (0.7, 0.3, 0.3)). Define a mapping f: (X, 1) — (Y, o) by f(a) =
u and f(b) = v. Here the Neutrosophic set Uc= (x, (0.5, 0.6, 0.4), (0.4, 0.7, 0.6)) is a Neutrosophic closed
set in X. Then f(Uc) = (y, (0.5, 0.6, 0.4), (0.4, 0.7, 0.6)) is a NGPRCS in (Y, o) as f(Uc) S1ln implies
Npcl(f(U<)) = f(Uc) € In where 1IN is a NROS in Y. Therefore f is a Ngpr closed mapping.

3.6 Proposition: Every Neutrosophic closed mapping is Ngpr closed mapping but not conversely in
general.

Proof: Let f: (X, 1) — (Y, 0) be a Neutrosophic closed mapping. Let A be a NCS in X. Then f(A) is a
NCS in Y. Since every NCS is a NGPRCS in Y, f(A) is a NGPRCS in Y. Hence f is a Ngpr closed

mapping.

3.7 Example: Let X={a, b} and Y = {u, v}. Then t = {On, U, 1n} and o = {On, V1, V2, In} are Neutrosophic
topologies on X and Y respectively, where U = (x, (0.4, 0.4, 0.5), (0.6, 0.3, 0.4)) and V1= (y, (0.7, 0.5,
0.3), (0.8, 0.4, 0.2)) and V2=(y, (0.6, 0.4, 0.4), (0.7, 0.3, 0.3)). Define a mapping f: (X, 1) — (Y, o) by f(a) =
u and f(b) = v. Here the Neutrosophic set Uc= (x, (0.5, 0.6, 0.4), (0.4, 0.7, 0.6)) is a NCS in X. Then f(U¢)
=(y, (0.5, 0.6, 0.4), (0.4, 0.7, 0.6)) is a NGPRCS in (Y, 0) as f(Uc) S1n implies Npcl(f(U¢)) = f(U) € 1In
where 1n is a NROS in Y. Therefore f is a Ngpr closed mapping. But f is not a Neutrosophic closed
mapping since Ucis NCS in X but f(U¢) is not a NCS in Y as Ncl(f (U¢)) = In # f(Ue).

3.8 Proposition: Every Neutrosophic generalized closed mapping is Ngpr closed mapping but not
conversely in general.

Proof: Let f: (X, ) — (Y, 0) be a Neutrosophic generalized closed mapping. Let A be a NCS in X.
Then f(A) is a NGCS in Y. Since every NGCS is a NGPRCS in Y, f(A) is a NGPRCSin Y. Hence fis a
Ngpr closed mapping.

3.9 Example: Let X={a, b} and Y = {u, v}. Then T = {On, U, In} and o = {On, V, In} are Neutrosophic
topologies on X and Y respectively, where U = (x, (0.3, 0.5, 0.4), (0.2, 0.5, 0.3) ) and V = (y, (0.6, 0.5,
0.2), (0.4, 0.5, 0.2)). Define a mapping f: (X, 1) — (Y, o) by f(a) = u and f(b) = v. Here the Neutrosophic
set Uc=(x, (0.4, 0.5, 0.3), (0.3, 0.5, 0.2) ) is a NCS in X. Then f(U<) = (y, (0.4, 0.5, 0.3), (0.3, 0.5, 0.2)) is a
NGPRCSin (Y, 0) as f(U<) €1~ implies Npcl(f(U<)) = f(Uc) € In where 1nis a NROS in Y. Therefore f is
a Ngpr closed mapping. But f is not a Neutrosophic generalized closed mapping since Ucis NCS in X
but f(U¢) is not a NGCS in Y as f(U¢) € V implies Ncl(f(U)) =In € V.

3.10 Proposition: Every Neutrosophic a closed mapping is Ngpr closed mapping but not conversely
in general.

Proof: Let f: (X, t) — (Y, 0) be a Neutrosophic a closed mapping. Let A be a NCS in X. Then f(A) is a
NaCS in Y. Since every NaCS is a NGPRCS in Y, f(A) is a NGPRCS in Y. Hence f is a Ngpr closed

mapping.

3.11 Example: Let X={a, b} and Y = {u, v}. Then 1t = {0On, U, In} and o = {On, V, 1n} are Neutrosophic
topologies on X and Y respectively, where U = (x, (0.4, 0.5, 0.4), (0.2, 0.5, 0.3)) and V =y, (0.7, 0.5, 0.2),
(0.3,0.5, 0.2)). Define a mapping f: (X, 1) — (Y, o) by f(a) =u and f(b) = v. Here the Neutrosophic set U¢
= (x, (04, 0.5, 0.4), (0.3, 0.5, 0.2)) is a NCS in X. Then f(U) = (y, (0.4, 0.5, 0.4), (0.3, 0.5, 0.2)) is a
NGPRCS in (Y, 0) as f(U<) €1~ implies Npcl(f(U<)) = f(Uc) € In where 1nx is a NROS in Y. Therefore f is
a Ngpr closed mapping. But f is not a Neutrosophic a closed mapping since Ucis NCS in X but f(U¢)
isnot a NaCS in Y as Ncl(Nint(Ncl(f(U9)))) = In € f(U¢).
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3.12 Proposition: Every Neutrosophic pre-closed mapping is Ngpr closed mapping but not
conversely in general.

Proof: Let f: (X, t) — (Y, 0) be a Neutrosophic pre-closed mapping. Let A be a NCS in X. Then f(A) is
a NPCS in Y. Since every NPCS is a NGPRCS in Y, f(A) is a NGPRCS in Y. Hence f is a Ngpr closed

mapping.

3.13 Example: Let X={a, b} and Y = {u, v}. Then t = {On, U, In} and o = {On, V, 1n} are Neutrosophic
topologies on X and Y respectively, where U = (x, (0.4, 0.5, 0.6), (0.2, 0.5, 0.3)) and V =(y, (0.3, 0.5, 0.7),
(0.3, 0.5, 0.4)). Define a mapping f: (X, 1) — (Y, o) by f(a) =u and f(b) = v. Here the Neutrosophic set U¢
= (x, (0.6, 0.5, 0.4), (0.3, 0.5, 0.2)) is a NCS in X. Then f(U) = (y, (0.6, 0.5, 0.4), (0.3, 0.5, 0.2)) is a
NGPRCS in (Y, 0) as f(U<) €1x implies Npcl(f(Ue)) = (y, (0.7, 0.5, 0.3), (0.4, 0.5, 0.2)) € In where Inis a
NROS in Y. Therefore f is a Ngpr closed mapping. But f is not a Neutrosophic pre-closed mapping
since Ucis NCS in X but f(U¢) is not a NPCS in Y as Ncl(Nint(f(U¢))) = Ve & £f(U¢).

3.14 Proposition: Every Neutrosophic generalized pre-closed mapping is Ngpr closed mapping but
not conversely in general.

Proof: Let f: (X, t) — (Y, 0) be a Neutrosophic generalized pre-closed mapping. Let A be a NCS in X.
Then f(A) is a NGPCS in Y. Since every NGPCS is a NGPRCS in Y, f(A) isa NGPRCS in Y. Hence f is
a Ngpr closed mapping.

3.15 Example: Let X={a, b} and Y = {u, v}. Then t = {On, U, In} and o = {On, V, 1n} are Neutrosophic
topologies on X and Y respectively, where U = (x, (0.3, 0.8, 0.5), (0.4, 0.7, 0.6)) and V =(y, (0.5, 0.2, 0.3),
(0.6, 0.3, 0.4)). Define a mapping f: (X, 1) — (Y, o) by f(a) = u and f(b) = v. Here the Neutrosophic set U¢
= (x, (0.5, 0.2, 0.3), (0.6, 0.3, 0.4)) is a NCS in X. Then f(U) = (y, (0.5, 0.2, 0.3), (0.6, 0.3, 0.4)) is a
NGPRCSin (Y, o) as f(U¢) €1~ implies Npcl(f(U¢)) = In € In where Inis a NROS in Y. Therefore f is a
Ngpr closed mapping. But f is not a Neutrosophic generalized pre-closed mapping since U¢ is NCS
in X but f (U¢) is not a NGPCS in Y as f(U<) €V implies Npcl(f (U<)) =1In € V where Visa NOSin Y.

3.16 Definition: Let (X, 1) and (Y, o) be two NTSs. A mapping f: (X, t) — (Y, 0) is called Nigpr open
mapping (NiGPROM for short) if f(A) is NGPROS in (Y, o) for every NGPROS A of (X, 1).

3.17 Definition: Let (X, 1) and (Y, o) be two NTSs. A mapping f: (X, t) — (Y, 0) is called Nigpr closed
mapping (NiGPRCM for short) if f(A) is NGPRCS in (Y, o) for every NGPRCS A of (X, 7).

3.18 Example: Let X={a, b} and Y = {u, v}. Then t = {On, U, In} and o = {On, V, 1n} are Neutrosophic
topologies on X and Y respectively, where U = (x, (0.5, 0.4, 0.3), (0.7, 0.8, 0.2)) and V =y, (0.7, 0.4, 0.5),
(0.8, 0.5, 0.5)). Define a mapping f: (X, ©) — (Y, o) by f(a) = u and f(b) = v. Hence f(A) is NGPRCS in
(Y, o) for every NGPRCS A of (X, t). Therefore f is a Nigpr closed mapping.

3.19 Proposition: Every Nigpr closed mapping is Ngpr closed mapping but not conversely in
general.

Proof: Let f: (X, T) — (Y, 0) be a Nigpr closed mapping. Let A be a NCS in X. Since every NCS is a
NGPRCS in X, A is a NGPRCS in X. Then f(A) is a NGPRCS in Y. Hence f is a Ngpr closed mapping.

3.20 Example: Let X={a, b} and Y = {u, v}. Then t = {On, U, In} and o = {On, V, 1x} are Neutrosophic
topologies on X and Y respectively, where U = (x, (0.2, 0.5, 0.7), (0.3, 0.5, 0.6)) and V = (y, (0.3, 0.5, 0.6),
(0.4, 0.5, 0.5)). Define a mapping f: (X, 1) — (Y, o) by f(a) = u and f(b) = v. Here the Neutrosophic set U¢
=(x, (0.7, 0.5, 0.2), (0.6, 0.5, 0.3)) is a NCS in X. Then f(U¢) = (y, (0.7, 0.5, 0.2), (0.6, 0.5, 0.3)) is a
NGPRCS in (Y, 0) as f(Uc) €1~ implies Npcl(f(U<)) = f(Uc) € In where 1~ is a NROS in Y. Therefore f is
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a Ngpr closed mapping. But f is not a Nigpr closed mapping since W = (x, (0.3, 0.5, 0.6), (0.4, 0.5, 0.5))
is NGPRCS in X but f(W) is not a NGPRCS in Y as f(W) € V implies Npcl(f(W)) = V¢ € V where Vis a
NROS in Y. Therefore f is not a Nigpr closed mapping.

The relation between various types of Neutrosophic closed mappings is given by

@ > NGPRCM — NiGPRCM

™~

©

0
J

Fig.3.1.1 The reverse implications of Fig.3.1.1 are not true in general in the above diagram.

3.21 Theorem: A mapping f: (X, 1) — (Y, o) is Ngpr closed mapping if and only if Ngprcl(f(A)) S
f(Ncl(A)).

Proof: Let A € X and f: (X, 1) — (Y, o) be a Ngpr closed mapping, then f(Ncl(A)) is NGPRCS in Y
which implies Ngprcl(f(Ncl(A))) = f{(Ncl(A)). Since f(A) € f(Ncl(A)), Ngprcl(f(A)) € Ngprcl(f(Ncl(A)))
= f(Ncl(A)) for every NS A of X.

Conversely, let A be any NCS in (X, t). Then A = Ncl(A) and so f(A) = f(Ncl(A)) 2 Ngprcl(f(A)), by
hypothesis. Since f(A) € Ngprcl(f(A)), therefore f(A) = Ngprcl(f(A)). i.e., f(A) is NGPRCS in Y and
hence f is Ngpr closed mapping.

3.22 Theorem: If f: (X, T) — (Y, 0) is Ngpr open mapping iff for every NS A of (X, 1), {(Nint(A)) €
Ngprint(f(A)).

Proof: Necessity: Let A be a NOS in X and f: (X, t) — (Y, 0) be a Ngpr open mapping then f(Nint(A))
is NGPROS in Y. Since f(Nint(A)) € f(A) which implies Ngprint(f(Nint(A))) € Ngprint(f(A)). Since
f(Nint(A)) is NGPROS in Y, we have f(Nint(A)) € Ngprint(f(A)).

Sufficiency: Assume A is a NOS of (X, t). Then f(A) = f(Nint(A)) S Ngprint(f(A)). But Ngprint(f(A))
€ f(A). So f(A) = Ngprint(f(A)) which implies f(A) is a NGPROS in (Y, o) and hence f is a Ngpr open
mapping.

3.23 Theorem: If f: (X, ©) — (Y, 0) is a Ngpr open mapping then Nint(f1(A)) € f(Ngprint(A)) for
every NS A of (Y, o).

Proof: Let A be a NS in (Y, 0). Then Nint(f'(A)) is a NOS of (X, t). Since f is Ngpr open mapping
which implies f(Nint(f'(A))) is Neutrosophic gpr open in (Y, o) and hence f(Nint(f1(A))) €
Ngprint(f(f(A))) € Ngprint(A). Thus Nint(f'(A)) € £1(Ngprint(A)).

3.24 Theorem: A mapping f: (X, ) — (Y, 0) is Ngpr open mapping iff for each NS A of (Y, 0) and for
each NCS B of (X, 1) containing f1(A) there is a NGPRCS C of (Y, o) such that A € C and {1(C) € B.

Proof: Necessity: Assume f: (X, T) — (Y, 0) is Ngpr open mapping. Let A be the NS of (Y, o) and B be
a NCS of (X, 1) such that f1(A) € B. Then C = (f(B))c is NGPRCS of (Y, o) such that f1(C) € B.

Sufficiency: Assume D is a NOS of (X, t). Then £((f(D))c € De and Deis NCS in (X, t). By hypothesis
there is a NGPRCS C of (Y, o) such that (f(D))c €C and {(C) € De. Therefore D < (f1(C))<. Hence Cc <
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f(D) € {((f'(C))) & Cc which implies {(D) = Ce. Since Cc is NGPROS of (Y, o). Hence {(D) is
Neutrosophic gpr open in (Y, 0) and thus f is Ngpr open mapping.

3.25 Theorem: A mapping f: (X, t) — (Y, 0) is Ngpr open mapping iff {'(Ngprcl(A)) € Ncl(f'(A)) for
every NS A of (Y, o).

Proof: Necessity: Assume f is a Ngpr open mapping. For any NS A of (Y, o), £1(A) & Ncl(f'(A)).
Therefore by Theorem 3.24., there exists a NGPRCS C in (Y, o) such that A € C and f(C) €
Ncl(f1(A)). Therefore we obtain f1(Ngprcl(A)) € £1(C) € Ncl(f'(A)).

Sufficiency: Assume A is a NS of (Y, 0) and B is a NCS of (X, 1) containing f1(A). Put C = Ncl(A),
then A € C and C is NGPRCS, since £1(C) € Ncl(f'(A)) € B. Then by Theorem 3.24., f is Ngpr open

mapping.

3.26 Theorem: If f: (X, T) — (Y, 0) and g: (Y, 0) — (Z, n) be two Neutrosophic mappings and gof: (X, 1)
— (Z, ) Ngpr open mapping. If g is Ngpr irresolute mapping then f is Ngpr open mapping.

Proof: Let A be a NOS of (X, t). Then gof(A) is NGPROS in (Z, n) because gof is Ngpr open mapping.
Since g is Ngpr irresolute mapping and gof(A) is NGPROS of (Z, n) therefore g'(gof(A)) = f(A) is
NGPROS in (Y, o). Hence f is Ngpr open mapping.

3.27 Theorem: If f: (X, T) — (Y, 0) is Neutrosophic open mapping and g: (Y, o) — (Z, n)) is Ngpr open
mapping then gof: (X, t) — (Z, 1) is Ngpr open mapping.

Proof: Let A be a NOS of (X, t). Then f(A) is a NOS in (Y, 0) because f is a Neutrosophic open
mapping. Since g is Ngpr open mapping, g(f(A)) = gof(A) is NGPROS in (Z, n). Hence gof is Ngpr
open mapping.

3.28 Theorem: Let f: (X, 1) — (Y, 0) be a bijective mapping then the following statements are
equivalent:

(i) fisaNgpropen mapping.

(if) fis a Ngpr closed mapping.

(iii) f!is Neutrosophic continuous mapping.

Proof: (i) = (ii): Let us assume that f is a Ngpr open mapping. By definition, A is a NOS in (X, 1),
then f(A) is a NGPROS in (Y, o). Here A is NCS of (X, 1), then X-A is a NOS of (X, 1). By assumption,
f(X-A) is a NGPROS in (Y, o). Hence, Y-f(X-A) is a NGPRCS in (Y, o). Therefore, f is a Ngpr closed
mapping.

(ii) = (iii): Let A be a NCS in (X, 1). By (ii), f(A) isa NGPRCS in (Y, o). Hence, f(A) = (f1)'(A), so f'is a
NGPRCS in (Y, o). Therefore, {1 is Neutrosophic continuous mapping.

(iii) = (iv): Let A be a NOS in (X, ). By (iii), (f')'(A) = f(A) is a Ngpr open mapping.

3.29 Theorem: Let £: (X, T) — (Y, 0) be a mapping. Then the following statements are equivalentif Y is
a NPRT12 space:

(i) fisaNgpr closed mapping.

(if) Npcl(f(A)) € f(Ncl(A)) for each NS A of X.

Proof: (i) = (ii): Let A be a NS in X. Then Ncl(A) is a NCS in X. By (i) implies that f(Ncl(A)) is a
NGPRCS in Y. Since Y is a NPRT12 space, f(Ncl(A)) is a NPCS in Y. Therefore Npcl(f(Ncl(A))) =
f(Ncl(A)). Now Npcl(f(A)) € Npcl(f(Ncl(A))) = f(Ncl(A)). Hence Npcl(f(A)) < f(Ncl(A)) for each NS
A of X.

K. Ramesh, Ngpr Homeomorphism in Neutrosophic Topological Spaces



Neutrosophic Sets and Systems, Vol. 32, 2020 33

(ii) = (i): Let A be any NCS in X. Then Ncl(A) = A. By (ii) implies that Npcl(f(A)) € f{(Ncl(A)) = f(A).
But f(A) € Npcl(f(A)). Therefore Npcl(f(A)) = f(A). This implies f(A) is a NPCS in Y. Since every
NPCS is NGPRCS in Y, f(A) is NGPRCS in Y. Hence f is a Ngpr closed mapping.

3.30 Theorem: If f: (X, t) — (Y, 0) is a mapping where X and Y are NPRT12 space. Then the following
statements are equivalent:

(i) fisaNigpr closed mapping.

(if) f(A)isa NGPROSinY for every NGPROS A in X.

(iii) f(Npint(B)) € Npint(f(B)) for each NS B of X.

(iv) Npcl(f(B)) € f(Npcl(B)) for each NS B of X.

Proof: (i) = (ii): is obvious by definition of Nigpr closed mapping.

(ii) = (iii): Let B be any NS in X. Since Npint(B) is a NPOS, it is a NGPROS in X. Then by hypothesis,
f(Npint(B)) is a NGPROS in Y. Since Y is NPRT12 space, f{(Npint(B)) is a NPOS in Y. Therefore,
f(Npint(B)) = Npint(f(Npint(B))) € Npint(f(B)).

(iii) = (iv) is obvious by taking complement in (iii).

(iv) = (i) Let B be a NGPRCS in X. By Hypothesis, Npcl(f(B)) € f(Npcl(B)). Since X is a NPRT12 space,
B is a NPCS in X. Therefore, Npcl(f(B)) € {(Npcl(B)) = £(B) € Npcl(f(B)) implies f(B) is NPCSin Y and
hence f(B) is a NGPRCS in Y. Thus f is Nigpr closed mapping.

4. Ngpr homeomorphism and Nigpr homeomorphism

4.1 Definition: A bijection f: (X, 1) — (Y, 0) is called Ngpr homeomorphism (resp. NG
homeomorphism, NGP homeomorphism) if f and {f! are Ngpr continuous (resp. NG continuous,
NGP continuous) mapping.

4.2 Example: Let X={a, b} and Y = {u, v}. Then = {On, Uy, Uz, In} and o = {0On, V, In} are Neutrosophic
topologies on X and Y respectively, where U1 = (x, (0.3, 0.5, 0.6), (0.5, 0.5, 0.5)), U2 =(x, (0.2, 0.4, 0.7),
(0.4, 0.5, 0.6)) and V = (y, (0.2, 0.4, 0.7), (0.4, 0.3, 0.6)). Define a mapping f: (X, 1) — (Y, o) by f(a) =u
and f(b) = v. Here V¢ = (y, (0.7, 0.6, 0.2), (0.6, 0.7, 0.4)) is a Neutrosophic closed set in (Y, c). Then
£1(Ve) is a NGPRCS in (X, 1). Therefore f is Ngpr continuous mapping. Here Uic = (x, (0.6, 0.5, 0.3),
(0.5, 0.5, 0.5)) is a Neutrosophic closed set in (X, T). Then f(U1c) is a NGPRCS in (Y, o). Therefore {1 is
a Ngpr continuous mapping. Hence, f and 1 are Ngpr continuous mapping then it is a Ngpr
homeomorphism.

4.3 Theorem: Each Neutrosophic homeomorphism is Ngpr homeomorphism but not conversely in
general.

Proof: Let a bijection mapping f: (X, t) — (Y, 0) be Neutrosophic homeomorphism, in which f and {
are Neutrosophic continuous mapping. Since every Neutrosophic continuous mapping is Ngpr
continuous mapping. Hence f and f! are Ngpr continuous mapping. Therefore, f is Ngpr
homeomorphism.

4.4 Example: Let X={a, b} and Y = {u, v}. Then t = {On, Uy, Uz, In} and o = {On, V, In} are Neutrosophic
topologies on X and Y respectively, where U1 = (x, (0.2, 0.5, 0.7), (0.5, 0.5, 0.5)), U2 = (x, (0.1, 0.4, 0.7),
(0.4, 0.5, 0.6)) and V = (y, (0.4, 0.3, 0.5), (0.3, 0.4, 0.7)). Define a mapping f: (X, 1) — (Y, o) by f(a) =u
and f(b) = v. Here Ve = (y, (0.5, 0.7, 0.4), (0.7, 0.6, 0.3)) is a NCS in (Y, o). Then (V<) is a NGPRCS in
(X, 7). Therefore f is Ngpr continuous mapping. Here Uic= (x, (0.7, 0.5, 0.2), (0.5, 0.5, 0.5)) is a NCS in
(X, 7). Then f(Ur<) is a NGPRCS in (Y, 6). Therefore f is a Ngpr continuous. Hence, f and f! are Ngpr
continuous mapping then it is a Ngpr homeomorphism. However, here Ve¢is a NCS in (Y, o) but it is
not a NCS in (X, 1). Hence, f is not Neutrosophic continuous mapping. Therefore, f is not a
Neutrosophic homeomorphism.
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4.5 Theorem: Each NG homeomorphism is Ngpr homeomorphism but not conversely in general.

Proof: Let a bijection mapping f: (X, ) — (Y, 0) be NG homeomorphism, in which f and f' are NG
continuous mapping. Since every NG continuous mapping is Ngpr continuous mapping. Hence f
and f! are Ngpr continuous mapping. Therefore, f is Ngpr homeomorphism.

4.6 Example: Let X={a, b} and Y = {u, v}. Then 1 = {On, U, In} and o = {On, V, In} are Neutrosophic
topologies on X and Y respectively, where U = (x, (0.4, 0.5, 0.6), (0.3, 0.4, 0.5)) and V =y, (0.8, 0.5, 0.2),
(0.7, 0.7, 0.3)). Define a mapping f: (X, 1) — (Y, o) by f(a) = u and f(b) = v. Here V<= (y, (0.2, 0.5, 0.8),
(0.3, 0.3, 0.7)) is a NCS in (Y, 0). Then (V<) is a NGPRCS in (X, t). Therefore f is Ngpr continuous
mapping. Here Uc=(x, (0.6, 0.5, 0.4), (0.5, 0.6, 0.3)) is a NCS in (X, 7). Then f(Uc) is a NGPRCS in (Y, o).
Therefore f1is a Ngpr continuous mapping. Hence, f and f* are Ngpr continuous mapping then it is
Ngpr homeomorphism. However, here Vcis a NCS in (Y, o) but it is not a NGCS in (X, t). Hence, f is
not Neutrosophic continuous mapping. Therefore, f is not a NG homeomorphism.

4.7 Theorem: Each NGP homeomorphism is a Ngpr homeomorphism but not conversely in general.

Proof: Let a bijection mapping f: (X, t) — (Y, 0) be NGP homeomorphism, in which f and f' are NGP
continuous mapping. Since every NGP continuous mapping is Ngpr continuous mapping. Hence f
and f! are Ngpr continuous mapping. Therefore, f is Ngpr homeomorphism.

4.8 Example: Let X= {a, b} and Y = {u, v}. Then t = {On, Uy, Uz, Uz, In} and o = {On, V, 1In} are
Neutrosophic topologies on X and Y respectively, where U1= (x, (0.3, 0.5, 0.7), (0.2, 0.5, 0.6)), Uz = (x,
(0.6,0.5,0.5), (0.7, 0.5, 0.5)), Us=(x, (0.8, 0.5, 0.2), (0.7, 0.5, 0.1)) and V = (y, (0.3, 0.5, 0.7), (0.3, 0.5, 0.7)).
Define a mapping f: (X, t) — (Y, o) by f(a) =u and f(b) = v. Here Vc=(y, (0.7, 0.5, 0.3), (0.7, 0.5,0.3)) is a
NCSin (Y, 6). Then £1(V¢) is a NGPRCS in (X, 1). Therefore f is Ngpr continuous mapping. Here Uic =
{x, (0.7, 0.5, 0.3), (0.6, 0.5, 0.2)) is a NCS in (X, t). Then f(U¢) is a NGPRCS in (Y, o). Therefore f!is a
Ngpr continuous mapping. Hence, f and f' are Ngpr continuous mapping then it is a Ngpr
homeomorphism. However, here Veis a NCS in (Y, o) but it is not a NGPCS in (X, T). Hence, it is not
NGP continuous mapping. Therefore, it is not a NGP homeomorphism.

The relation between various types of Neutrosophic homeomorphisms is given by

@omeomorphiD

@homeomoth @P homeomorphism>

Fig.4.1.1 The reverse implications of Fig.4.1.1 are not true in general in the above diagram.

NGPR homeomorphism

4.9 Theorem: Let f:(X, 1) — (Y, o) be a Ngpr homeomorphism, then f is a Neutrosophic
homeomorphism if X and Y are NPRT"12 space.

Proof: Let A be a NCSin (Y, 0), then f1(A) is a NGPRCS in (X, T). Since X is NPRT"12 space, f(A) is a
NCS in (X, 1). Therefore, f is Neutrosophic continuous mapping. By hypothesis, {1 is Ngpr
continuous mapping. Let B be a NCS in (X, t). Then (f*)! (B) = f(B) is a NGPRCS in Y. Since Y is
NPRT"12 space, f(B) is NCS in Y. Hence f! is Neutrosophic continuous mapping. Hence f is a
Neutrosophic homeomorphism.
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4.10 Theorem: Let £:(X, t) — (Y, 0) be a bijective mapping. If f is Ngpr continuous mapping then the
following statements are equivalent:

(i) fisaNgpr closed mapping.

(ii) fis a Ngpr open mapping.

(iii) f is a Ngpr homeomorphism.
Proof: (i) = (ii): Let us assume that f be a bijective mapping and a Ngpr closed mapping. Hence f is
Ngpr continuous mapping. Since each NOS in (X, 1) is a NGPROS in (Y, o). Hence, f is a Ngpr open
mapping.
(ii) = (iii): Let f be a bijective mapping and a Ngpr open mapping. Furthermore, {1 is a Ngpr
continuous mapping. Hence f and f! are Ngpr continuous mapping. Therefore, f is a Ngpr
homeomorphism.
(iii) = (i): Let f be a Ngpr homeomorphism. Then f and f! are Ngpr continuous mapping. Since each
NCSin (X, t) is a NGPRCS in (Y, o). Hence f is a Ngpr closed mapping.

4.11 Theorem: The composition of two Ngpr homeomorphisms need not be a Ngpr homeomorphism
in general.

4.12 Example: Let X={a, b}, Y={c,d} and Z={e, f}. Thent={0n, U, In}, 0={0n, V, In} and n={On, W,
1n} are Neutrosophic topologies on X and Y respectively, where U = (x, (0.2, 0.5, 0.8), (0.3, 0.3, 0.7)), V
=(y, (0.4, 0.5, 0.6), (0.3, 0.4, 0.5)), W =(z, (0.8, 0.5, 0.2), (0.7, 0.7, 0.3)). Define a mapping f: (X, 1) — (Y,
o) by f(a) = c and f(b) =d and g: (Y, 0) — (Z, n) by g(c) = e and g(d) =f. Then f and g are Ngpr
homeomorphisms but their composition gef: (X, 1) — (Z, n) is not a Ngpr homeomorphism. Since W¢
is NCS in (Z, n) but it is not NGPRCS in (X, 7).

4.13 Definition: A bijection f: (X, t) — (Y, 0) is called Nigpr homeomorphism if f and f! are Ngpr
irresolute mappings.

4.14 Theorem: Each Nigpr homeomorphism is a Ngpr homeomorphism but not conversely in
general.

Proof: Let a bijection mapping f: (X, 1) — (Y, 0) be Nigpr homeomorphism. Assume that A is a NCS
in (Y, o) implies A is a NGPRCS in (Y, 0). Since f is Ngpr irresolute mapping, f(A) is a NGPRCS in
(X, t). Hence f is Ngpr continuous mapping. Therefore, f and f! are Ngpr continuous mapping.
Hence, f is Ngpr homeomorphism.

4.15 Example: Let X={a, b} and Y = {u, v}. Then t={On, Uy, Uz, In} and o = {Ox, V, In} are Neutrosophic
topologies on X and Y respectively, where U1 = (x, (0.2, 0.5, 0.7), (0.4, 0.5, 0.6)), U2 = (x, (0.2, 0.4, 0.8),
(0.3,0.5,0.7)) and V = (y, (0.5, 0.4, 0.5), (0.4, 0.5, 0.6)). Define a mapping f: (X, 1) — (Y, o) by f(a) =u
and f(b) = v. Here Ve = (y, (0.5, 0.6, 0.5), (0.6, 0.5, 0.4)) is a NCS in (Y, o). Then (V<) is a NGPRCS in
(X, 7). Therefore f is Ngpr continuous mapping. Here Uic= (x, (0.7, 0.5, 0.2), (0.6, 0.5, 0.4)) is a NCS in
(X, 7). Then f(Uic) is a NGPRCS in (Y, o). Therefore {! is a Ngpr continuous mapping. Hence, f and {*
are Ngpr continuous mapping then it is a Ngpr homeomorphism. However, here A = (y, (0.2, 0.4,
0.7), (0.3, 0.5, 0.6)) is a NGPRCS in (Y, o) but it is not a NGPRCS in (X, t). Hence, f is not
Neutrosophic irresolute mapping. Therefore, f is not a Nigpr homeomorphism.

4.16 Theorem: If f: (X, t) — (Y, 0) is a Nigpr homeomorphism then Ngprcl(f'(A)) € £'(Npcl(A)) for
each NS A in (Y, o).

Proof: Let A be a NS in (Y, 0). Then Npcl(A) is NPCS in (Y, o) and since every NPCS is NGPRCS in
(Y, o). Assuming f is Ngpr irresolute mapping, f!(Npcl(A)) is a NGPRCS in (X, 1), then
Ngprcl(f!(Npcl(A))) = £4(Npcl(A)). Here, Ngprcl(f'(A)) € Ngprc(fY(Npcl(A)) = f1(Npcl(A)).
Therefore, Ngprcl(f1(A)) € f1(Npcl(A)) for each NS A in (Y, o).

K. Ramesh, Ngpr Homeomorphism in Neutrosophic Topological Spaces



Neutrosophic Sets and Systems, Vol. 32, 2020 36

4.17 Theorem: If f: (X, 1) — (Y, 0) is a Nigpr homeomorphism then Npcl(f1(A)) = £1(Npcl(A)) for each
NS Ain (Y, 0).

Proof: Given f is a Nigpr homeomorphism, then f is a Ngpr irresolute mapping. Let A be a NS in (Y,
0). Clearly, Npcl(A) is a NPCS in (Y, o). This shows that Npcl(A) is a NGPRCS in (Y, o). Since f1(A) €
f1(Npcl(A)), then Npcl(f'(A)) € Npcl(f'(Npcl(A))) = fY(Npcl(A)). Therefore, Npcl(f1(A)) &
f1(Npcl(A)).

Let f be a Nigpr homeomorphism, f is a Ngpr irresolute mapping. Let us consider NS f1(A) in (X, 1),
which bring out that Npcl(f'(A)) is a NGPRCS in (X, t). Hence Ngprcl(f1(A)) is a NGPRCS in (X, T).
This implies that (f1)1(Npcl(f'(A))) = f{(Npcl(f'(A))) is a NPCS in (Y, o). This proves A = (f1)(f'(A)) €
(£ 1(Npcl(f'(A))) = {(Npcl(f1(A))). Therefore, Npcl(A) S Npcl(f(Npcl(f'(A)))) = f(Npcl(f1(A))), since
f1 is a Ngpr irresolute mapping. Hence f'(Npcl(A)) € f1(f(Npcl(f'(A)))) = Npcl(f'(A)). That is
f1(Npcl(A)) € Npcl(f1(A)). Hence, Npcl(f1(A)) = £1(Npcl(A)).

4.18 Theorem: If f: (X, 1) — (Y, o) and g: (Y, 0) — (Z, n) are Nigpr homeomorphisms, then the
composition gef: (X, 1) — (Z, n) is a Nigpr homeomorphism.

Proof: Let f and g be two Nigpr homeomorphisms. Assume C is a NGPRCS in (Z, n). Then g'(C) is a
NGPRCS in (Y, o). Then by hypothesis, f'(g'(C)) is a NGPRCS in (X, 1). Hence gof is a Ngpr
irresolute mapping. Now, let A be a NGPRCS in (X, t). By assumption, f(A) is a NGPRCS in (Y, o).
Then by hypothesis, g(f(A)) is a NGPRCS in (Z, n). This implies that gof is a Ngpr irresolute
mapping. Hence, gof is a Nigpr homeomorphism.

5. Conclusion

In this article, the new class of Neutrosophic homeomorphism namely, Ngpr homeomorphism
and Nigpr homeomorphism was defined and studied some of their properties in Neutrosophic
topological spaces. Furthermore, the work was extended as the Ngpr open mappings, Ngpr closed
mappings and Nigpr closed mappings and discussed some of their properties. Many results have
been established to show how far topological structures are preserved by this Ngpr
homeomorphism.

Also, the relation between Ngpr closed mappings and other existed Neutrosophic closed
mappings in Neutrosophic topological spaces were established and derived some of their related
attributes. Many examples are given to justify the results.

This concept can be used to drive few more new results of Ngpr connectedness and Ngpr
compactness in Neutrosophic topological spaces.
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1. Introduction

The outdated fuzzy sets is behaviorized by the membership worth or the grade of member-
ship worth. Some times it may be very difficult to assign the membership worth for a fuzzy
sets. This gap was bridged with the introduction of interval valued fuzzy sets. In some real
life problems in expert system, belief system and so forth,we must take in account the truth-
membership and the falsity-membership simultaneously for appropriate narration of an object
in uncertain,ambiguous atmosphere. Fuzzy sets and interval valued fuzzy sets are badly failed
to handle this situation. The importance of intuitionistic fuzzy sets is automatically come in
play in such a hazardous situation.The intuitionistic fuzzy sets can only handle the imperfect
information supposing both the truth-membership or association( or simply membership)and
falsity-membership( or non-membership )values. It fails to switch the indeterminate and in-
consistent information which exists in belief system. Smarandache [14] bounced up conception
of neutrosophic set which is a mathematical technique for facing problems involving imprecise,
indeterminacy and inconsistent data.The words neutrosophy and neutrosophic were introduced
by Smarandache. Neutrosophy (noun) means knowledge of neutral thought, while neutrosophic
(adjective), means having the nature of or having the behavior of neutrosophy. This theory
is nothing but just generalization of ordinary sets, fuzzy set theory [15], intuitionistic fuzzy
set theory [1] etc. Some work have been supposed on neutrosophic sets by some mathemati-
cians in many area of mathematics [4,12]. Many practical problems in economics, engineering,
environment,medical science social science etc.can not be treated by conventional methods,
because conventional methods have genetic complexities. These complexities may be taking
birth due to the insufficiency of the theories of paramertrization tools. Each of these theo-
ries has its transmissible difficulties, as was exposed by Molodtsov [11]. Molodtsov developed
an absolutely modern approach to cope with uncertainty and vagueness and applied it more
and more in different directions such as smoothness of functions, game theory, operations re-
search, Riemann integration, perron integration, and so forth. Meticulously,theory of soft set
is free from the parameterization meagerness condition of fuzzy set theory, rough set theory.
probability theory for facing with uncertainty Shabir and Naz [13] floated the conception of
soft topological spaces, which are defined over an initial universe of discourse with a fixed
set of parameters, and showed that a soft topological space produces a parameterized family
of topological spaces. Theoretical studies of soft topological spaces were also done by some
authors in [2,3,6,[8]. Kattak et al. |9] leaked out the notion of some basic result in soft bi
topological spaces with respect to soft points.These results supposed the engagement of soft
limit point, soft interior point, soft neighborhood, the relation between soft weak structures
and soft weak closures. Moreover the authors also addressed soft sequences uniqueness of limit

in soft weak-Hausdorff spaces, the product of soft Hausdorff spaces with respect to soft points
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in different soft weak open set and the marriage between soft Hausdorff space and the diagonal.
The combination of Neutrosophic set with soft sets was first introduced by Maji [10]. This
combination makes entirely a new mathematical model Neutrosophic Soft Set and later this
notion was improved by Deli and Broumi [7]. Work was progressively continue,later on math-
ematician came in action and defined a new mathematical structure known as neutrosophic
soft topological spaces. Neutrosophic soft topological spaces were presented by Bera in [5].
M. Abdel-Basset et al. [16] proposed some novel similarity measures for bipolar and interval-
valued bipolar neutrosophic set such as the cosine similarity measures and weighted cosine
similarity measures. The propositions of these similarity measures are examined, and two
multi-attribute decision making techniques are presented based on proposed measures. For
verifying the feasibility of proposed measures, two numerical examples are presented in com-
parison with the related methods for demonstrating the practicality of the proposed method.
Finally, the authors applied the proposed measures of similarity for diagnosing bipolar disorder
diseases significantly.

M. Abdel-Basset et al. [17] supposed the objective function of scheduling problem to minimize
the costs of daily resource fluctuations using the precedence relationships during the project
completion time. The authors designed a resource leveling model based on neutrosophic set
to overcome the ambiguity caused by the real-world problems. In this model, trapezoidal neu-
trosophic numbers are used to estimate the activities durations. The crisp model for activities
time is obtained by applying score and accuracy functions. The authors produced a numerical
example to illustrate the validation of the proposed model in this study.

Arif et al. [18] introduced the notion of most generalized neutrosophic soft open sets in neutro-
sophic soft topological structures relative to neutrosophic soft points. The authors leaked out
the concept of most generalized separation axioms in neutrosophic soft topological spaces with
respect to soft points. Gradually the study is extended to deliberate important results related
to these newly defined concepts with respect to soft points. Several related properties, struc-
tural characteristics have been investigated. The convergence of sequence in neutrosophic soft
topological space is defined and its uniqueness in neutrosophic soft most generalized-Hausdorff
space relative to soft points is reflected. The authors further studied and switched over neutro-
sophic monotonous soft function and its characteristics to multifarious results. The authors
lastly addressed neutrosophic soft product spaces under most generalized neutrosophic soft
open set with respect to crisp points.

The first aim of this article bounces the notion of neutrosophic soft p-open set,neutrosophic
soft p-neighborhood and neutrosophic soft p-separation axioms in neutrosophic soft topology
which is defined on neutrosophic soft sets. Later on the important results are discussed related

to these newly defined concepts with respect to soft points. Finally, the concept of p-separation
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axioms of neutrosophic soft topological spaces is diffused in different results with respect to
soft points. Furthermore, properties of neutrosophic soft-Pi-space (i = 0,1,2,3,4) and some
switch between them are discussed. We hope that these results will best fit for future study

on neutrosophic soft topology to carry out a general framework for practical applications.

2. Preliminaries

In this phase we now state certain useful definitions, theorems, and several existing results

for neutrosophic soft sets that we require in the next sections.

Definition 2.1. [14] A neutrosophic set A on the universe set X is defined as:
A = {(,TA(), A(2), FA(@)) 0 € X},
where T, I, F : X —]70, 1*[ and ~0 < T4(z) + I*(z) + r4(z) < 3T.

Definition 2.2. [11] Let X be an initial universe, E be a set of all parameters, and P(x)
denote the power set of X. A pair (F, E) is called a soft set over X, where F is a mapping
given by F : E — P(X). In other words, the soft set is a parameterized family of subsets of
the set X. For A € E, F (\) may be considered as the set of A-elements of the soft set (F, E),
or as the set of A-approximate element of the set, i.e.

(F,E)={(\,F(\)):AN€ E,F : E— P(X)}.

After the neutrosophic soft set was defined by Maji [10], this concept was modified by Deli

and Broumi [7] as given below:

Definition 2.3. [7] Let X be an initial universe set and E be a set of parameters. Let P(X)
denote the set of all neutrosophic sets of X. Then a neutrosophic soft set (F, E) over X is a set
defined by a set valued function f representing a mapping f : E — P(X), where [ is called
the approximate function of the neutrosophic soft set (£, E). In other words, the neutrosophic
soft set is a parameterized family of some elements of the set P(X) and therefore it can be
written as a set of ordered pairs:

(F,E) = {(\ (&, TT N (@), TN (@), FTN ()t 2 € X): X\ € E},

where TV M (z), IF N (z), FFN(z) € [0, 1] are respectively called the truth-membership,
indeterminacy-membership, and falsity-membership function of F (). Since the supremum of
each T, I, F is 1, the inequality 0 < T'F()‘)(l’) + ITWN(z) + Fro (z) < 3 is obvious.

Definition 2.4. [5] Let (£, E) be a neutrosophic soft set over the universe set X. The
complement of (F, F) is denoted by (F, F)¢ and is defined by:

(F,E) = {(\ (z, FT N (2),1 = ITV(2), 7T N(z)):x € X): A€ E}.

It is obvious that ((f, E)°)¢ = (F, E).

Definition 2.5. [10] Let (£, E) and (G, E) be two neutrosophic soft sets over the universe
set X. (F, E) is said to be a neutrosophic soft subset of (G, E) if TF M (z) £ TN (z), 1T V()
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< 160 (g), FFN () = FEN(2) YA € E, ¥z € X. Tt is denoted by (F, E) € (G, E) . (F,E)
is said to be neutrosophic soft equal to (é, E) if (I, E) is a neutrosophic soft subset of (é, E)
and (G, E) is a neutrosophic soft subset of (F, E). It is denoted by (F, E) = (G, E).

3. Applications of Neutrosophic Soft Point and its Characteristics

Definition 3.1. Let (F ', E) and (F 2, E) be two neutrosophic soft sets over universe set X.
Then their union is denoted by (F!, E) U (F%,E) = (3, E) and is defined by:

(F3,E) = {(\ (z, TT N (), IV (2), FFPM(2)) 12 € X) : A € B},

where 77V (z) = max {T7 ' M (), TN (1)},

17O (z) = max {17V (2), 17"V (2)},

FPO(@) = max {7 V(@) r PV (2)},

Definition 3.2. Let (f ', E) and (F 2, E) be two neutrosophic soft sets over the universe set
X. Then their intersection is denoted by (F', E) 1 (F 2, E) = (F 3, E) and is defined by:
where
E) = min {T""V(z), TF W( )}
ﬂ"<A><x> = max {I7'M(x), IV (@)},
FUPN(2) = max {F7" M (2), FFV(2)}.

Definition 3.3. A neutrosophic soft set (f, E) over the universe set X is said to be a null
neutrosophic soft set if 79V N (z) = 0, TNV (z) = 0, FIN(z) = 1; YA€ E, Vo € X. Tt is
denoted by 0(X:F)

Definition 3.4. A neutrosophic soft set (f,E) over the universe set X is said to be an
absolute neutrosophic soft set if 79V (z) = 1, IV (z) = 1, ;T N (z) = 0; VA € E, Vz € X.
It is denoted by 1(5:E),

Clearly, 09X, F) = 15F) and 1°(X, E) = 0(5F),

Definition 3.5. Let NSS(X, E) be the family of all neutrosophic soft sets over the universe
set X and & C NSS(X, E). Then S is said to be a neutrosophic soft topology on X if:

1. 05E) and 158) belong to &

2. the union of any number of neutrosophic soft sets in & belongs to <,

3. the intersection of a finite number of neutrosophic soft sets in & belongs to &

Then (X, S, E) is said to be a neutrosophic soft topological space over X. Each member of

Q' is said to be a neutrosophic soft open set.

Definition 3.6. Let (X, 3, E) be a neutrosophic soft topological space over X and (£, E) be a
subset of neutrosophic soft topological space over X. Then (F , ) is said to be a neutrosophic

soft closed set iff its complement is a neutrosophic soft open set.
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Definition 3.7. Let (X, S, E) be a neutrosophic soft topological space over X and (F, E)be a
subset of neutrosophic soft topological space over X. Then (F , E) is said to be a neutrosophic
soft p-open (NSPO) set if (f, E) C NSint(NScl((f , F)))

Definition 3.8. Let (X, S, E) be a neutrosophic soft topological space over X and (F, E)Dbea
subset of neutrosophic soft topological space over X. Then (F , ) is said to be a neutrosophic
soft p-closed (NSPC) set if (F, E) D NScl(NSint((F ,E)))

Definition 3.9. Let NS be the family of all neutrosophic sets over the universe set X and x
€ X. The neutrosophic set z(®#7) is called a neutrosophic point, for 0 < a, 3, < 1, and is

defined as follow:

3;(0175,’7) (y) — (Oé, B? ’y)a Y’f y =X (1)
(07071)7 ny#.%
It is clear that every neutrosophic set is the union of its neutrosophic points.

Definition 3.10. Suppose that X = {z!, 22}. Then neutrosophic set
A = {{x',0.1,0.3,0.5), (z%,0.5,0.4,0.7)}
is the union of neutrosophic points x'(0.1,0.3,0.5)and x2(0.5,0.4,0.7).

Now we define the concept of neutrosophic soft points for neutrosophic soft sets.

Definition 3.11. Let NSS(X, E) be the family of all neutrosophic soft sets over the universe
set X. Then neutrosophic soft set x)‘(a, B,7) is called a neutrosophic soft point, for every x €

X,0<a,B,7v<1, XA € E, and is defined as follows:

{ (@, 8,7) if X =Nand y =z

AaB7) s o
v M=\ 0.0.0), if ¥ 2 rory 2.

(2)
Definition 3.12. Suppose that the universe set X is given by X = {z', 22} and the set of
parameters by E = {\!, \2}. Let us consider neutrosophic soft sets (f, E) over the universe

X as follows:

F.B) :{ AL = {(2!,0.3,0.7,0.6), (22,0.4,0.3,0.8)} } -

A2 = {(x',0.4,0.6,0.8), (x2,0.3,0.7,0.2) }.

It is clear that( [.E ) is union  of  its neutrosophic  soft point

iL'l A1(0.3,0.7,0.6) 7x1 A2(0.470.6,0.8) ,.’I}2A1, and xQAQ(O.S,O.'?,O.G) _ Here
$1A1(0-3:0-7»0~6) _ >\1 = {<I1’03707706>’ <‘T250507 1>} (4)
A2 = {(2',0,0,1), (x2,0,0,1)}.
+1)2(040608) _ A= {(21,0.3,0.7,0.6), (x2,0,0,1)} )
A2 = {(z',0.4,0.6,0.8), (z2,0,0,1)}. |
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£2)1(04.0.308) _ A = {(z1,0,0,1), (z%,0.4,0.3,0.8)} ©)
A2 = {(2',0,0,1),(z%,0,0,1)}. [~

2)2(030702) _ A= {(z',0,0,1), (22,0,0,1)} -
N2 = {(«1,0,0,1), (1,0.3,0.7,0.2)}. |

Definition 3.13. Let (f,E) be a neutrosophic soft set over the universe set X. We say
that 2P ¢ (F,E) read as belonging to the neutrosophic soft set (F,E) whenever
0 STTO(2),8 £ TV (@) and 7 2 FTW(a).

Definition 3.14. Let (X, S, E) be a neutrosophic soft topological space over X. A neutro-
sophic soft set (F,E) in (X, S, E) is called a neutrosophic soft p-neighborhood of the neutro-
sophic soft point @B € (F,E) , if there exists a neutrosophic soft p-open set (é, E) such
that 22?7 € (G, E) C (F,E).

Theorem 3.15. Let (X,S, E) be a neutrosophic soft topological space and (F,E) be a neu-
trosophic soft set over X. Then (F , E) is a neutrosophic soft p-open set if and only if (F , E)

is a neutrosophic soft p-neighborhood of its neutrosophic soft points.

Proof. Let (F, E) be a neutrosophic soft p-open set and P ¢ (F,E). Then AP ¢
(F,E)C (F,E).

Therefore, (f, E) is a neutrosophic soft p-neighborhood of x/\(a’ﬁ’w.

Conversely, let (F, E) be a neutrosophic soft p-neighborhood of its neutrosophic soft points.
Let 22(*%7) ¢ (F, E). Since (F , E) is a neutrosophic soft p-neighborhood of the neutrosophic
soft point a;’\(a’ﬂm, there exists (G, E) € & such that AP ¢ (G,E) C (F,E). Since (F,E)
=U {:v)‘(a’ﬁ’w AP ¢ (F, E)}, it follows that (F , E) is a union of neutrosophic soft p-open

sets and hence (F, E) is a neutrosophic soft p-open set.

The p-neighborhood system of a neutrosophic soft point x/\(a’ﬁ’w denoted by U

)

(x)\(a,ﬁﬁ)? E), is the family of all its p-neighborhoods.

Theorem 3.16. The neighborhood system U (x’\(a’B’V),E) at 2P i g neutrosophic soft
topological space (X,3, E) has the following properties.

1)If(F,E)e U (:n/\(a’ﬁ’ﬂ/),E) , then P ¢ (F,E) ;

2) If (F,E) € U @*" E) and (F,E) C (H,E) , then (H,E) , then (H,E) € U
(x,\(aﬂn)7E) ;

3) If (F,E) , If (G, BE) € U@*". B | then (F,E) N (G,E) € U@"*? E);

J)If(F,E)eU (:E/\(OC”B”Y), E) , then there exists a (G, E) € U(:L‘)‘(a”B’V),E) such that (G, E)
eU (y/\/(a/ﬁwl),E) , for each y’\/(a/’ﬁlﬁl) € (G, E).
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Proof. The proof of 1), 2), and 3) is obvious from definition 3.12.

4HIf(F,E)eU (3:’\(04’6’7), E) , then there exists a neutrosophic soft p-open set (G, E) such
that 22?7 ¢ (G,E) C (F, E). From Proposition 3.1, (G, E) € U (mA(a’ﬂ’v),E) , so for each
y)‘/(a/’ﬁ,’vl) €(G,E),(G,E)eU (yx(a/’ﬁ,’ﬂ/),E) is obtained.

Definition 3.17. Let 2*?7) and Y (o577) be two neutrosophic soft points. For the neutro-

a,B, (o,8"") . .
(oB:7) over a common universe X, we say that neutrosophic

soft points are distinct points if a:)‘(a’ﬁ’w M y)‘/(a B _ 0 E)
AleBy) (')

sophic soft points z* and yX

It is clear that z and yV are distinct neutrosophic soft points if and only if x

#yor N #\

4. Neutrosophic Soft p-Separation Structures

In this phase, we suppose neutrosophic soft p-separation axioms and neutrosophic soft topo-
logical subspace consisting of distinct neutrosophic soft points of neutrosophic soft topological

space over X.

Definition 4.1. a) Let (X, S, E) be a neutrosophic soft topological space over the crisp set
X and xA(aﬂﬁ)> y,\/(a’ﬁ’ﬁ’)
p-open sets (ﬁ,E) and (é, E) such that
AP ¢ (F,E) and AP (G,E) = 05E) or
y)\/(a 76 ”Y) c (é’ E) and yA’(a 75 77) M (ﬁ,E) — O(X’E),

then (X, S, E) is called a neutrosophic soft- P°-space.

are neutrosophic soft points. If there exist neutrosophic soft

b) Let (X, S, E) be a neutrosophic soft topological space over the crisp set X and OB

y (o",6'") are neutrosophic soft points. If there exist neutrosophic soft p-open sets (ﬁ , E) and
(G, E) such that

A @B87) c (f,E) , oA @B o (é,E) — 0(0E) of

yx(a’vﬁ’,v’) € (G, E), yx(a’,ﬂ’ﬁ’) 1 (F,E) = 000E),

then (X, S, E) is called a neutrosophic soft-P!-space.

ABy)

c) Let (X, S, F) be a neutrosophic soft topological space over the crisp set X, and x >

y (o.6':7) are neutrosophic soft points. If there exist neutrosophic soft p-open sets (ﬁ , E) and
(G, E) such that
2P (B )y VP e (G E) and (F,E) N (G, E) = 05E),

then (X, S, E) is called a neutrosophic soft- P?-space.

Example 4.2. Let X = {z!,2?} be a universe set, E= {\!, A2} be a parameters set, and
(xl))\l(O.I,OA,O.?)’ (xl)A2(0.2,0.5,0.6)7 (xg))\l(o.3,0.3,0‘5)’ and (1‘2))\2(0.4,0.4,0.4) be neutrosophic soft
points. Then the family & = {055 10E) (F1 E) (F2, E), (F3,E), (F*, E),

(F°,E), (FS,E), (F7,E), (F%, E)} , where
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(FY,E) = {2 ,

(F?,B) = {(z)p2020500y

(F3,E) = {(22)21(0.3,0.3,0.5)} ,

(F4E) = (F',E) U (F2,E) ,

(F5,E) = (F',E) U (F3,E) ,

(FS,E) = (F2,E) U (F3,E) ,

(F7,E) = (F',E) U (F?,E) U (F3,E) ,

(ﬁ87E) _ {(xl))\l(o.l,OA,O.?), (ml))\2(042,0.5,0.6)7 ($2))\2(0.3,0.3,0.5)’ (xQ))\Q(OA,OA’ 0.4)}

is a neutrosophic soft topology over X. Hence, (X,<S, F) is a neutrosophic soft topolog-

ical space over X. Also, (X,S, E) is a neutrosophic soft- P’-space but not a neutrosophic

soft- Pl-space because for neutrosophic soft points (z!')A*(0.1,0.4,0.7) and (22)A2(0.4,0.4,0.4)

(X, 3, E) is not a neutrosophic soft- P'-space.

Example 4.3. Let X = N be a natural numbers set and E = {A} be a parameters set. Here

pA OB e neutrosophic soft points. Here we can give (an, fn,yn) appropriate values and

(Ocn,ﬁn,'yn) 7m)\ (om,ﬁn,'yn)

the neutrosophic soft points n* are distinct neutrosophic soft points if

and only if n £ m. It is clear that there is one-to-one compatibitily between the set of natural
numbers and the set of neutrosophic soft points N* = {nA(an’ﬁn’W)}.

Then we give cofinite topology on this set. Then neutrosophic soft set (ﬁ , E) is a neutro-
sophic soft p-open set if and only if the finite neutrosophic soft point is discarded from N?.

Hence, (X, S, E) is a neutrosophic soft- P!-space but not a neutrosophic soft- P2-space.

Example 4.4. Let X = {z!, 22} be a universe set, E = {\', A2} be a parameters set, and
L1)\1(0:1,0.40.7) 112(02,05,0.6)

)

x2A1(0.3,0.3,O.5) 2)\2(0.4,0.4,0.4)

, and x , be neutrosophic soft points. Then the family

S = (0B AEE) (FLE), (F2, E), ... (F'®, E)} , where

(F1,E) = {1 \1O10407)y
(F2,E) = {(= ))\2(020506)}’
(F3, E) = {(z ))\1(0 3,0.3,0.5)} ’
(F4E) = {( ))\2(0.4,0.4,0.4)} ’
(F5,E) = (F',E) U (F%,E) ,
(FS,E) = (F',E) U (F3,E) ,
(F",E) = (F',E) U (F4 E) ,
(F8,E) = (F?,E) U (F3,E)
(F°,E) = (F?,E) U (FLE) ,
(FY,E) = (F*,E) U (F, E) ,
(F',E) = (F', E) U (F?,E) U (F*,E)
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(F'?,F) = (F',E) U (F?,E) U (F, E),
(F3,E) = (F*,E) U (F®,E) U (F4 E)
(F“ E) = (FL,E) U (F3,E) U (F4LE) ,
(F15 E) = {(z ))\1(0.1,0.4,0.7)’ ($1))\2(0.2,0.5,0.6)7 (1'2))\2(0.3,0.3,0.5)’ (1:2))\2(0.4,0.4,0.4)}7

is a neutrosophic soft topology over X. Hence, (X, S, E) is a neutrosophic soft topological

space over X. Also, (X,S, E) is a neutrosophic soft - P2-space.

x

Theorem 4.5. Let (X,S, E) be a neutrosophic soft topological space over X. Then (X, S, E)
is a neutrosophic soft-P'-space if and only if each neutrosophic soft point is a neutrosophic

soft p-closed set.

@B be an arbitrary neutrosophic

(8~ c

Proof. Let(X, S, E) be a neutrosophic soft- P'-space and
A /
soft point. We show that (:c/\(a’ﬁm ) is a neutrosophic soft p-open set. Let y*

>\ / / ! !
(:c)‘(a’ﬁ’w) @B x (@87) are distinct neutrosophic soft points. Hence, x # y

; then z and y
or X # \.
Since (X, S, E) is a neutrosophic soft-P!-space, there exists a neutrosophic soft p-open set
(G, E) such that
@) (G, E) and 2P (G,E) = 0(%E),
Then, since AP (é, E) = 058 we have yx(a,’ﬁ,’q/)
(x,\(oz,ﬁﬁ)))‘

~ A
e (G, B) T (") This

Ala,B,7)

implies that is a neutrosophic soft p-open set, i.e. x is a neutrosophic soft

p-closed set.

Al@,B87)

Suppose that each neutrosophic soft point x is a neutrosophic soft p-closed set. Then

A ol B~
(xA(a,,B,'y)) is a neutrosophic soft p-open set. Let AP v (8 _ 0(X.B), Thus
ol B!~ A A
V(@87 c (:CA(OCWBKY)) and $)\(047577) M (:CA(O‘”BW)) — O(XvE)' Therefore, (Xf:gE) is a neu-

trosophic soft-Pl-space over X. g

Theorem 4.6. Let (X,S, E) be a neutrosophic soft topological space over X. Then (X, S, E)

Ala,B,7) and y,\/(a L)

is a neutrosophic soft-P2-space iff for distinct neutrosophic soft points ,

there exists a neutrosophic soft p-open set (F, E) containing 33/\(04,577) but not y/\’(o/,ﬁ’,’y')
v (@89 does not belong to (F7E)

such that y

Proof. Let x)‘(a’ﬂ’v) and yx (o5"') be two neutrosophic soft points in neutrosophic soft - P2-
space (X, S, F).

Then there exist disjoint neutrosophic soft p-open set (F, E) , (é, E) such that

AP (F,E) ’y,\/(a’,ﬁ’ﬁ’) c (& E).

Since 27 y’\/(a/’ﬁlﬁl) = 0%E) and (F,E) N (G, E) = 0X:E), y’\/(a/’ﬁwl) does not
belong to (F, E) . It implies that y*’ ©E7) does not belong to (ﬁ)
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Next suppose that, for distinct neutrosophic soft points a:)‘(a’ﬁ ’7), yX (ofF'sy ), there exists a

(a :B Y ) SuCh that y}((a nB Y )

does not belong to (f , ). Then yX(a P ¢ ((F,E)) ,ie. (F,E)and ((F,E)) are disjoint
A@,B87) y,\/(a’ﬁ’ﬁ’)

neutrosophic soft p-open set (F, E) containing 2P byt not Y

neutrosophic soft p-open sets containing x respectively.

Theorem 4.7. Let (X, S, E) be a neutrosophic soft-P'-space for every neutrosophic soft point
= (F,E) € . If there exists a neutrosophic soft p-open set (é, E) such that
m)\(avﬁﬂ) c (é,E) C (é’ E) C (F,E),

then (X, S, E) is a neutrosophic soft-P?-space.

A@B) yx(a'ﬁ'ﬂ') — 0(X.B)

Proof. Suppose that z
A@,B87) and y)\’(a B

. Since (X, S, E) is a neutrosophic soft

T'-space, z are neutrosophic soft p-closed sets in &. Thus el €

(y¥ (o, B',7'))¢ € . Then there exists a neutrosophic soft p-open set (G, E) in S such that
$)\(CY”377) e (é’ E) E,(Gj, IE) C (yX(O/,B/,,Y/))c'
Hence, we have y/\/(a P ¢ (G, E))°, @B ¢ (G,E), and (G, E) 1 ((G, E))¢ = 0XE),

i,e. (X,3,E) is a neutrosophic soft P?-space. 0

Remark 4.8. Let (X,S, E) be a neutrosophic soft-Pl-space for i = 0, 1, 2. For each x
# y, neutrosophic points z(a, B,7) and Yl B',~") have neighborhoods satisfying conditions

of-Pi-space in neutrosophic topological space (X, 3*) for each A\ € E because x)‘(a’ﬁ’v) and

y)‘/ (o.5'7) are distinct neutrosophic soft points.

Definition 4.9. Let (X, 3, E) be a neutrosophic soft topological space over X, (F, E) be a
neutrosophic soft p-closed set , and m/\(a’ﬁ’w M (F JE) = 0%E) | If there exist neutrosophic
soft p-open open sets (1, E) and (G2, E) such that AP ¢ (GYE), (F,E) C (G E), and
(C~¥1,E) r (C~¥2,E) = 0X5E) | then (X,$, FE) is called a neutrosophic soft b-regular space.
(X, S, E) is said to be a neutrosophic soft-P3-space if is both a neutrosophic soft p-regular

and neutrosophic soft- P-space.

Theorem 4.10. Let (X, E) be a neutrosophic soft topological space over X, (X, F) is a
neutrosophic soft-P>-space if and only if for every AP o (F,E) € &, there exists (é, E)
€ S such that 277 ¢ (G,E)C (G,E) C (F,E) .

Proof. Let (X,S3, E) be a neutrosophic soft P3-space and @B ¢ (F,E) € . Since

A@B7) and neu-

(X, 3, E) is a neutrosophic soft-P3-space for the neutrosophic soft point x
trosophic soft p-closed set (F, E) , there exist (G!,E) , (G2 E) € S such that AP ¢
(G E) , (F,E)° T (G2 E), and (G, E) N (G2, E) = 0°5F). thus, we have 22" ¢ (G1, B)
C (G2, E) C (F,E). Since (G2, E)® is a neutrosophic soft p-closed set, (G1, E) C (G2, E)° .
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Conversely , let AP (H,E) = 0%5F) and (H, E) be a neutrosophic soft p-closed set.
Thus, AP ¢ (H, E)¢ and from the condition of the theorem, we have AP ¢ (G,E)
C (G,E) C (HE)".

Then 22?7 ¢ (G,E), (H,E) C ((ﬁ))C ,and (G, E) M (C?,iE)C = 0XE) are satisfied,

i.e. (X,3,E) is a neutrosophic soft-P3-space.

Definition 4.11. A neutrosophic soft topological space (X, S, E) over X is called a neutro-
sophic soft p-normal space if for every pair of disjoint neutrosophic soft b-closed set (F !, E) ,
(F2,E) , there exists disjoint neutrosophic soft p-open sets (él, E), (62, E) such that (F 1, E)
C (GYE) and (F%,E) C (G2, E).

(X, 3, E) is said to be a neutrosophic soft b-T“-space if it is both a neutrosophic soft p-

normal and neutrosophic soft- P'-space.

Theorem 4.12. Let (X, S, E) be a neutrosophic soft topological space over X . Then (X, S, F)
is a neutrosophic soft-P*-space if and only if, for each neutrosophic soft p-closed set (F , E)
and neutrosophic soft p-open set (é, E) with (F,E) C (é, E) , there exists a neutrosophic soft
p-open set (]_N),E) such that

(F,E)c (D,E)C (D,E) C (G,E).

Proof. Let (X,S, E) be a neutrosophic soft-P*-space, (F, E) be a neutrosophic soft p-closed
set and (F,E) C (G,E) € §. Then (G, E)° is a neutrosophic soft p-closed set and (F, E)
M (C:‘, E)e = 0X%E) | Since (X, S, E) is a neutrosophic soft-P*-space, there exist neutrosophic
soft p-open sets (D', E) and (D2, E) such that (F,E) C (D% E) , (G,E) C (D%E) , and
(D',E) 1 (D2, E) = 0X:E), This implies that

(F,E)C (D' E)C (D% E) C (G, E).

(D%, E)° is a neutrosophic soft p-closed set and (D', E) C (D2, E)° is satisfied. Thus,

(F,E)C (D', E)C (DY E)C (G,E)

is obtained.

Conversely, let (F!,E) , (F2 E) be two disjoint neutrosophic soft p-closed sets. Then
(FY,E) C (F%, E)° . From the condition of theorem, there exists a neutrosophic soft p-open
set (D, E) such that

(FLE)C (D,E)C (DY E)C (F2, E)°.

Thus, (15, E), ((ﬁ))C are neutrosophic soft p-open sets and (F !, F) C (15, E),(F%E)C
((ﬁ))c cand (D, E) N (D, E))¢ = 05E) are obtained. Hence, (X, S, E) is a neutrosophic

soft-P4-space. g
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Definition 4.13. Let (X, 3, E) be a neutrosophic soft topological space over X and (F, E) be
an arbitrary neutrosophic soft set. Then S(F) = {(F,E)N (H,E) : (H,E) € S} is said to
be neutrosophic soft topology on (F, E) and ((F, E),S"5), E) is called a neutrosophic soft
topological subspace of (X, S, F).

Theorem 4.14. Let (X, S, E) be a neutrosophic soft topological space over X. If (X, S, E) is a
neutrosophic soft-Pt-space, then the neutrosophic soft topological subspace ((F ,E), (B E)

is a neutrosophic soft-P'-space for i = 0, 1, 2, 3.

Proof. Let g (@A) ) y’\l(a/’ﬁlﬁ/) c((F,E), S(F’E), E) such that AP y)‘/(a,’ﬂ/ﬁl) = (5B,
Thus , there exist neutrosophic soft p-open set (F !, E) and (F 2, E) satisfying the conditions
of neutrosophic soft -P-space such that AP ¢ (rL.,E) y’\/(a/’ﬁwl) € (F2,E). Then
P ¢ (FLE)N (F,E) and y)‘/(al’ﬁw/) € (F2,E) N (F,E) . Also, the neutrosophic soft
p-openset (FY,E) M (F,E),(F%E)N(F,E)in (B satisfy the conditions of neutrosophic
soft-P-space fori = 0, 1, 2, 3.

Theorem 4.15. Let (X, S, E) be a neutrosophic soft topological space over X. If (X, 3, F) is
a neutrosophic soft-P*-space and (F , E) is a neutrosophic soft p-closed set in (X,S, E), then
((F,E), S(E), E) is a neutrosophic soft -P*-space.

Proof. Let (X,S, E) be a neutrosophic soft P*-space and (f,E) be a neutrosophic soft p-
closed set in (X,3,FE). Let (F',E) and (F2,E) be two neutrosophic soft p-closed sets in
((F,E),STB) E) such that (F1,E) 1 (F2,E) = 055, When (F,E) is a neutrosophic
soft p-closed set in (X,S,E) , (FY, E) and (F2,E) are neutrosophic soft p-closed sets in
(X,3,E). Since (X,3, E) is a neutrosophic soft-P*-space, there exist neutrosophic soft p-
open sets (G1, E) and (G2, E) such that (F1, E) C (G4 E) , (F%,E) C (G2 E) and (GL, E)
N (G2 E) = 0XE) . Then (FLE) = (GLE) N (F,E) , (FLE) = (GLE) N (F,E) and
(GYE)N (F,E) N (G2 E)N (F,E)) = 0XE) This implies that ((7, E),3"®) E) is a

neutrosophic soft- P*-space.

5. Conclusion

Neutrosophic soft p-separation structures are the most imperative and fascinating notions
in neutrosophic soft topology.We have introduced neutrosophic soft p-separation axioms in
neutrosophic soft topological structures with respect to soft points, which are defined over
an initial universe of discourse with a fixed set of parameters( data,decision variables). We
further investigated and scrutinized some essential features of the initiated neutrosophic soft
p-separation structures. It is supposed that these results will be very very useful for future
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studies on neutrosophic soft topology to carry out a general framework for practical applica-

tions. Applications of neutrosophic soft p-separation structures in neutrosophic soft topological

spaces can be traced out in decision making problems.
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1. Introduction

The notion of fuzzy set has invaded almost all branches of mathematics since its introduction by
Zadeh[20]. Fuzzy sets and fuzzy logic has been applied in many real applications to handle
uncertaintely fuzzy set theory is very successful in handling uncertainties arising from vagueness or
partial belongingness of an element in a set, it cannot model all type of uncertainties pre — veiling in
different real physical problems such as problems involving incomplete information. Turksen [18]
introducted the idea of interval valued fuzzy sets.

Later, Atanassov[10] introduced the concept generalization of fuzzy set, which is known as
intuitionistic fuzzy sets. Intuitionistic fuzzy sets take into account both the degree of membership
and non — membership. Further, intuitionistic fuzzy sets were extended to the interval valued
intuitionistic fuzzy sets[11]. The interval valued intuitionistic fuzzy set uses a pair of interval
[t7,t*],0 <t <tt <1land [f~,ff],0< f < f* <1 with tt+f*<1, to describe the
degree of true belief and false belief. Because of the restriction that t* + f* < 1, intuitionistic fuzzy
sets and interval valued intuitionistic fuzzy sets can only handle incomplete information not the
indeterminate information and inconsistent information which exists commonly in belief systems.

As a generalization of fuzzy set and intuitionistic fuzzy set, neutrosophic set have been
introduced and developed by F. Smaramdache[15,16 & 17 ]. It is a logic in which each proposition is
calculated to have degree of truth(T), a degree of indeterminacy(I) and a degree of falsity(F).

Smarandache’s neutrosophic concept have wide range of real applications for many fields of
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[1,2,3,4,5,6,7 & 8] information system, computer science, artificial intelligence, applied mathematics,
decision making, mechanics, electrical and electronics, medicine and management science etc.

Salama, Albloe[14] proposed the concept of neutrosophic topological space. Later, Wang,
Smarandache, Zhang and Sunderraman introduced the notion of interval valued neutrosophic
set[19]. An interval valued neutrosophic set A defined on X, x = x(T,I,F) € A with T,I and F
being the subinterval of [0,1]. Lupianez discusses the relation between interval value neutrosophic
sets and topology [12]

The purpose of this article is to propose the idea of interval valued neutrosophic topological

space and discuss the some of the basic properties.

2. Preliminaries

Definition 2.1[19] Let X be a space of points (objects), with a generic element in X denoted by x. An
interval valued neutrosophic set(INS) Ain X is characterized by truth — membership function T,
indeterminacy — membership function I, and falsity — membership function F,. For each point x in

X, Ta(x), [y (x), Fy(x) € [0,1].

Example 2.2[19] Suppose, X = {x;,x,,x3}. The strength is x;, the trust is x, and the price is xs.
The x;,x, and x3; values are given in [0,1]. They're obtained from some domain experts '

questionnaire, their choice could be degree of goodness, degree of indeterminacy, and degree of

poorness. A and B are the interval neutrosophic sets of X define by A=<

[02041[0305)[03,05] [05071[00210203] [0.6081[0203}[0203] B =<
X1 X2 X3

[0.5.0.7100.1,0.31[0.1,03] [0.2,0310.20.41[05,0.8] [0.4,0.6[0,0.110.304] _

X1 X2 X3

Definition 2.3[19] An interval neutrosophic set A is empty if andonlyif its infT,(x) =
supT,(x) =0, infl,(x) =suply(x) =1 and infF,(x) = sup F,(x) = 0, for all xin X.

Definition 2.4(Containment) [19] An interval neutrosophic set A is contained in the other interval
neutrosophic set B, A € B, if and only if

inf T, (x) < infTg(x),sup T,(x) < sup Tg(x)

infI,(x) = infIg(x),sup I, (x) = sup Tz (x)

inf F,(x) = inf Fg(x), sup F,(x) = sup Fg(x)

forall x in X.

Definition 2.5[19] Two interval neutrosophic sets A and B are equal, written as A=

B,if and only if A Band B € A.Let 0y =< 0,1,1 > and 1y =< 1,0,0 >.

Definition 2.6[19] The complement of an interval neutrosophic set A is denoted by 4 and is defined
by Tz(x) = F4(x); inflz(x) = 1 —suply(x) ;suplz(x) =1 —infl,(x); Fz(x) = Tp(x) forall x in X.

Example 2.7[19] Let A be the interval neutrosophic set defined in Example 2.3, then

f=c [0.3,0.5],[0.5,0.7],[0.3,0.4]’ [0.2,0.3],[0.8,0],[0.5,0.7]’ [0.2,0.3],[0.7,0.8],[0.6,0.8] S

X1 X2 X3
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Definition 2.8 (Intersection) [19] The intersection of two interval neutrosophic sets 4 and B is an
interval neutrosophic set C = A N B, whose truth-membership, indeterminacy — membership and
false — membership are related to those of A and B by
inf T, (x) = min(inf T, (x),infTg(x)), supT;(x) = min(sup T,(x),sup Tg(x))
infl. (x) = max(infl,(x),infIz(x)), supTc(x) = max(sup l,(x),sup Ig(x))
inf F, (x) = max(inf F,(x),inf F5(x)), supTo(x) = max(sup F,(x),sup Fg(x))

forall xin X.

Example 2.9[19] Let A and B be the interval neutrosophic sets defined in Example 2.3, then AN B =

< [0.2,0.4],[0.3,0.5],[0.3,0.5] [0.2,0.3],[0.2,0.4],(0.5,0.8] [0.4,0.6],[0.2,0.3],[0.3,0.4] S

) )
X1 X2 X3

Theorem 2.10[19] A N B is the largest interval neutrosophic set contained in both A and B.

Definition 2.11(Union) [19] The union of two interval neutrosophic sets A and B is an interval
neutrosophic set C, written as C = A U B, whose truth — membership, indeterminacy — membership
and false membership are related to those of Aand B by
infT, (x) = max(infT,(x),infTg(x)), supTc(x) = max(sup T,(x),sup Tg(x))
infl (x) = min(infI,(x),infIz(x)), sup To(x) = min(sup I,(x),sup Iz(x))
inf Fe (x) = min(inf F,(x), inf Fz(x)), sup T¢(x) = min(sup F,4(x), sup Fg(x))

forall xin X.

Example 2.12[19] Let A and B be the interval neutrosophic sets defined in Example 2.3, then A U

B =< [o.5,0.7],[0.1,0.3],[0.1,0.3]’ [0.5,0.7],[0,0.2],[0.2,0.3]’ [0.6,0.8],[0,0.1],[0.2,0.3] S

X1 X2 X3

Theorem 2.13[19] A U B is the smallest interval neutrosophic set containing both 4 and B.

3. Interval Valued Neutrosophic Topological Spaces

With some examples and results, we give the concept of interval valued neutrosophic topologi

cal spaces.

Definition 3.1 An interval valued neutrosophic topological space of interval valued neutrosophic set
(In short IVN topological space) is a pair (X,7y) where X is a nonempty set and 7y is a family of
IVN sets on X satisfying the following axioms:

1. Oy, 1y Ety

2. ABeEty=>ANBETY

3. Ai € TN,i el ﬁUiEI Ai E Ty

Ty is called an interval valued neutrosophic topology on X. T, members are called interval valued

neutrosophic open sets (In Short IVN open sets).

Example 3.2 Assume that X = {a, b}. Here ais denoted by quality of Computers, b is denoted by
Price of Computers. The value of a and b are in [0,1]. These are collected from some domain
expects questionnaire; their choices could be degree of excellence, degree of indeterminacy, degree

of poorness. The IVN set are
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(([0.1,0.4],[0.2,0.7],[0.4,0.6]) ([0.6,0.8],[0.2,0.31,[0.2,0.3])

1]

a b

Oy = ([0,0],[1,1],[1,1]), 1y =([1,1],0,0],[0,0]), A = ) B=

(([0.1,0.3],[0.3,0.8],[0.5,0.8]) ([0.2,0.71,(0.4,0.81,[0.3,0.7])

’

" - Y. ©v ={0y,15,A,B} is called an IVN topology on X.

(X,ty) is called an IVNTS.

Example3.3 Let X = {a, b} and the IVN sets are

C= (([0.4,0.7],[0.5,0.7],[0.4,0.9]) ([0.2,0.3],[0.4,0.5],[0.7,0.9])) D= <([0.5,0.8],[0.3,0.5],[0.2,0.7]) ([0.5,0.7],[0.1,0.5],[0.3,0.7]))

a b a ! b

Ty = {Oy, 1y, C, D} is called an IVN topology on X. (X,ty) is called an IVN topological space.

Theorem 3.4 Let {ry,:i €I} be a family of IVN topologies of IVN sets on X. Then n; {ty,:i € I} is
also an IVN topology of IVN sets on X.

Proof: (i) Oy, 1y € Ty, for each i € I, Hence 0,,1, € ﬂTN [(ii) Let {A;:i € I} be a arbitrary family

iel
of IVN sets where 4, € ﬂTN_ for each i € I.Then for each i € 1. 4, €1, for i € and since for
iel
each i €I, 7y, isa IVN topology, Therefore UAi € 7, foreach i € I. Hence UA[ € ﬂTN_
iel iel iel

But union of IVN topologies as seen in the following example need not be an IVN topology.

Example: 3.5 In example 3.2 and 3.3 the families Ty, = {Oy,1y,4,B} and Ty, = {Oy,1y,C,D} are
IVN topologies inX. ForX, however their union Ty, Uy, = {Oy,1y,4,B,C,D} is not a IVN
topology.

Definition 3.6 Let (X,ty) be an IVN topological space. An IVN set A of X is called an interval

valued neutrosophic closed set (in short IVN -closed set) if its complement A is an IVN open set

in Ty.

Example 3.7 Let us consider the Example 3.2, the IVN closed sets in (X,ty) are A=

(([0.4,0.6],[0.3,0.8],[0.1,0.4]) ([0.2,0.3],[0.7,0.8],[0.6,0.8])> Be = (([0.5,0.3],[0.2,0.7],[0.1,0.3]) (10.3,0.71,[0.2,0.61,[

0.2,0.7]) ¢
=1
a b a b )r N N

and 1§ = 0y are the IVN - closed setsin (X, y).

Theorem 3.8 Let (X,7y) be an IVN topological space. Then (i) Oy, 1y are IVN — closed sets. (ii)
Arbitrary intersection of IVN — closed setsis IVN — closed set. (iii) Finite union of IVN - closed sets
is IVN - closed set.

Proof: (i) since Oy,1y € Ty, 0F = 1y and 1§ = Oy, therefore 0 and 1§ are IVN - closed sets. (ii)

Let {A;:i € I}be an arbitrary family of IVN - closed sets in (X,7y) and let A=ﬂAi Now

iel

A = [ﬂ A[] = U(AI.)C and A° er, for each i €1, hence U(Ai)c €Ty, therefore A° € 1y.

iel iel iel

Thus A is an IVN- closed set. (iii) Let {Az:k = 1,2, ......... nn} be a family of IVN — closed set in
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(X,ty) and let GZOAk . Now (G)c =( ' Akj =ﬁA,§ and (Ak)c ety for k=12,..... n
k=1

k=1

, SO mA,z e€r,.Hence G° €7, ,thus G is IVN —closed set.
k=1

Definition 3.9 Let both (X,7y,) and (X,7y,) be two IVNTS. If each A € 7, implies A € 7y , then
Ty, is called interval valued neutrosophic finer topology than ), and 7y, is called interval valued

neutrosophic coarser topology than 7y,

Example 3.10 Let X = {a, b} and IVN sets are 4 = (1220710300}[0208) (0406}[0305}10407Dy p

a b

(([o .3,0.71,[0.4,0.61,[0.3,0.8]) ([0.1,0.7],[0.3,0.8],[0.2,0.6] )> C= (([0.5,0.7],[0.3,0.6],[0.2,0.8]) ([0.4,0.7],[0.3,0.5],[0.2,0.6])) D=

’ )

a b a b

(([0307][04a06][0308])'([0107][03’]08] 0407)> Let 7y, = {0y, 15,4, B,C,D} and 1y, = {0y, 1y, 4,C} be

an IVN topologies on X and let (X,7y,) and (X,7y,)bea IVN topological spaces. If 7y, is IVN

finer topology than 7y, andty, is IVN coarser topology than 7y,

Definition 3.11 Let (X,7y) be a IVN topological space. A subcollection B of 1y is said to be base
of 7ty if every element of Ty can be expressed as the arbitray IVN union of some elements of

B, then Bis called an [VN basis for the I[VN topology ty.

Example 3.12 In Example 3.10, for the IVN topology Ty, = {Oy,1y,4,B,C,D}. The sub collection
B ={0y,1y,4,B,C} of P(X) isa IVN basis for the IVN topology ty,.

Definition 3.13 Let (X,7y) be a IVN topological space and A € I[VNs(X), the interior and closure of
Ais denoted by IVN Int(A) and IVN CI(A) are defined as
IVN Int(4) =U{G € t5: G S A}, IVN Cl(4) =n{K € t5: A S K}

Example 3.14 Let us take an Example 3.3 and consider an IVN set

E= (([0.4,0.6],[0.4,0.7],[0.2,0.7]) ([0.3,0.5],[0.3,0.6],

’

. : 0305Dy Now IVN Int(E) = 0y and IVN CL(E) = 1, .

Theorem 3.15 Let (X,ty) be a IVN topological space and A,B € IVNs(X) then the following
properties holds:

(i) IVN Int(A) € A

(i) A S B = IVN Int(A) S IVN Int(B)
(iii) IVN Int(A) € Ty

(iv) A €ty iff IVN Int(A) =

(v) IVN Int(IVN Int(A)) = IVN Int(A)
(vi) IVN Int(0y) = Oy, IVN Int(1y) = 1,

Proof:
(i) Straight forward.
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(ii) A S B = All of the IVN open sets in A that are also in B. Both IVN open sets included
in A also included in B. ie., {K€ty:K<A}c{Gety:G<B}. ie.,U{K€ETy:K<S A} CU
(G €1y:G S B}. ie.,IVN Int(A) € IVNInt(B).

(iii) IVN Int(A) =U {K € ty: K € A}. Itis clear that U{K € 7y:K € A} € Ty. So, IVN Int(A) € ty.

(iv) Let A € ty, then by(i), IVN Int(4A) € A. Now since A € 1y and IVN Int(A) € A. Therefore
ACU{G Ety:G S A} =IVN Int(A), A S INV Int(A). Thus IVN Int(A) = A. Conversely, let
IVN Int(A) = A. Since by (iii), IVN Int(A) € ty. Therefore A € .

(v) By (iii), IVN Int(A) € ty. Therefore by (iv), IVN Int(IVN Int(A)) = IVN Int(A).

(vi) We know that Oy, 1y € Ty, by (iv), IVN Int(0y) = Oy, IVN Int(1y) = 1.

Theorem 3.16 Let (X,7y) bea IVNTS and A, B € IVNs(X) then possess the following properties:
(i) A< IVN CIL(A)
(i) A< B = IVN CI(A) < IVN CI(B)
(iii) (IVN CL(4))° € Ty
(iv) AS € Ty if f IVN Cl(A) = A
(v) IVN CI(IVN CI(A)) = IVN CL(A)
(vi) IVN Cl(0y) = Oy, IVN Cl(1y) = 1y
Proof:

Straight forward.

Theorem 3.17 Let (X,ty) be a IVN topological space and A4, B € [VNs(X)then hold the following
properties:
i) IVN Int(An B) = IVN Int(A) N IVN Int(B)

ii) IVN Int(A U B) 2 IVNInt(A) U IVNInt(B)

(
(
(iii) IVN CI(A U B) = IVN CI(A) U IVNInt(B)
(iv) IVN CI(A n B) € IVN CI(A) N IVN Int(B)
(v) (IVN Int(A))¢ = IVN Cl (A°)
(vi) (IVN CL(A))¢ = IVN Int(A°)

Proof:
(i) By Theorem 3.15(i), IVN Int (A) € A and IVN Int(B) € B. Thus IVN Int(4) N IVN Int(B) €

AN B.Hence IVN Int(A) N IVN Int(B) € IVNInt(A N B) - 1)
Again since ANBS A, by Theorem 3.15(ii). IVN Int(AN B) S IVNInt(A) . Similarly
IVN Int(A n B) € IVNInt(B).
Hence IVN Int(AnB) € IVNInt(A) n IVNInt(B) -------- (2) from (1) and (2) we get,
IVN Int(A n B) = IVNInt(A) n IVN Int(B).

(ii) Since A€ AUB. IVN Int(A) € IVNInt(A U B) by Theorem 3.15(ii). Similarly IVN Int(B) S
IVNInt(A U B). Hence IVN Int(A) U IVN Int(B) < IVNInt(A U B).

(i) By Theorem 3.16(i), A SIVN CI(A) and B SIVNCI(B) . Thus AUB S IVN CL(A) U
IVNCI(B), IVN CI(AU B) € IVN CL(A) U IVNCL(B)---------- 1)
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Again since ASAUB, by Theorem 3.16(ii). IVN CI(A) S IVNCI(AU B) . Similarly
IVN CI(B) € IVNCI(A U B). Hence IVN Cl(A) U IVN CI(B) S IVNCI(A U B)--—--(2) from (1)
and (2) we get IVN CL(A) U IVN CI(B) = IVNCI(A U B).

(iv) Since ANB S A, IVN CI(AnB) € IVN CI(A) by Theorem 3.16(ii), Similarly, IVN CI(AN
B) € IVN CI(B). Hence IVN CI(A N B) S IVN CI(A) N IVNCI(B).

(v) {IVN Int(A)}° = [U{G € Ty: G S A}]° =n {G € 15: A° S G},
{IVN Int(A)} = IVN CL(A)°.

(vi) {(IVN CL(A)}* = [N {G € t5: A° € G}]° =U {G € T5:G S 4},
{IVN CI(A)}* = IVN Int(A)°.

In theorem 3.17((ii) and (iv)), the equality does not hold. Let us display this by an example below

Example 3.18 Let X = {a, b} and the IVN sets are Oy =< [0'0]'[0{'10]'[1'1],[0'0]'[01;0]'[1'1] >;
1, =< [1,1],[0,0],[0,0]'[1,1],[0,0],[0,0] o A=< [0.1,0.4],[0.2,0.7],[0.4,0.6]'[0.6,0.8],[0.2,0.3],[0.2,0.3] >,

a b ’ a b

B =< [0.1,0.3],[0.3,0.8],[0.5,0.8] [0.2,0.7],[0.4,0.8],[0.3,0.7]

’

a b

>, ©y = {0y, 1y,4,B} isan IVN topology on X. Let us

consider two IVN sets C =< [0.1,0.4—],[0.3,0.7],[0.5,0.6],[0.4-,0.8],[0.2,0.3],[0.2,0.3]

> and D =<
a b

[0,0.3],[0.2,2.8],[0.4,0.9]’ [0.6,0.7],[0.31;0.6],[0.2,0.5] >:Now CUD =< [0.1,0.4],[0.2‘;'0.7],[0.4,0.6], [0.6,0.8],[0.21,)0.3],[0.2,0.3] > =

A; IVN Int(C U D) = IVN Int(4) = A; IVN Int(C) = 0y, IVN Int(D) = 0y, IVN Int(C)U

IVN Int(D) = 0y;

Therefore IVN Int(C U D) # IVN Int(C) UIVN Int(D).

By Theorem 3.17(v), IVN CL(C)° = (IVN Int(C))¢ = (05)¢ =1y, IVN CI(D)¢ = (IVN Int(D))¢ =
(0 =1y, IVNInt(C)NnIVN Int(D) =1y; IVN CL(C° N D) =1VN CI((C U D)) = (IVN Int(C U
D))¢ = (IVN Int(A))¢ = AS; IVN CL(CS n D) # IVN CL(C®) U IVN CL(D).

4. Interval Valued Neutrosophic Subspace Topology

In this section we present, along with some examples and findings, the definition of interval

valued neutrosophic subspace topology.

Theorem 4.1 Let (X, 7y) be a IVN topological space on X and Y € P(X). Then the collection tyy =
{Y¥nG:G € Ty} isa IVN topology on X.

Proof:

(i) Since Oy, 1y € Ty, therefore YN0y =0y ETyyand Y N1y =Y € Tpyy.

(ii) Let Y, €tyy,VkE€Il, then Y, =YNG, where G,€7ty for each k€l . Now

UYk :U(YmGk):Ym(UGkJerNy.Since UGk €1, aseach Gy € 1y.

kel kel kel kel
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(iii) Let Yl' Y2 S Tny Yl =Yn Gl and YZ =Yn GZ Where Gl’ Gz € TN NOW Yl n Y2 =

(Y n Gl) n (Y n Gz) =YnNn (Gl n Gz) € TNy, SlnCe Gl n GZ € Ty as Gl‘ GZ € Tn-

Definition 4.2 Let (X, 7y) be an IVN topological space on X and Y is a interval values neutrosophic
subset (In short IVN subset) of X, the collection 7y, ={Y NG:G € 75} is called interval valued

neutrosophic subspace (In short IVN subspace) of Y. Y is called IVN subspace of X.

Example 4.3 Let us consider the IVN topology ty, = {Oy, 15,4, B,C, D} as in Example 3.10 and an

IVN set Y =< [0.4,0.6],[0.3‘,10.7],[0.1,0.5]'[0.5,0.9],[0.:,1],[0.2,0.6

>, 0y =Y noy =0y

G,=YNA G =< [0.4,0.6],[0.3(,10.7],[0.2,0.8],[0.4—,0.6],[0.:,1],[0.4,0.7]

>;

G,=YNB, G, =< [0.3,0.6],[0.4‘,10.7],[0.3,0.8], [0.1,0.7],[0.:,1],[0.2,0.6] >
G,=YNC, Gy =< [0.4,0.6],[0.3‘,10.7],[0.2,0.8], [0.4,0.7],[0.:,1],[0.2,0.6] >
G, =Y ND, G, =< 220el0s07)0308) DADTIOHORT) >, Then Tyy = {On, 1y, Gy, Gy, Ga} is an IVN

subspace topology for 7y, and 7yy is called IVN subspace of (X, ty,).

Theorem 4.4 Let (X,7y) be an [VN topological space, B be an IVN basis for 7y and Y is an IVN
subset of X. Then the family 8By ={Y N G:G € B}is an IVN basis for IVN subspace topology Tyy.
Proof:

Let U € tyy be arbitrary, then there exists an IVN set G € Ty such that U =Y N G. Since B is an

IVN basis for ty, therefore there exists a sub collection {y;:i € I} of B such that G = U X; - Now,
iel
U:YﬂG:U)([ = U(Yﬂ){i). Since Y N y; € By, therefore By is a IVN basis for an IVN
iel iel

subspace topology Tyy.
5. Conclusion

The concept of interval valued neutrosophic topological space, interval valued neutrosophic
interior and interval valued neutrosophic closure of an interval valued neutrosophic sets were
introduced. An interval valued neutrosophic subspace topology of interval valued neutrosophic sets
are also introduced. The newly introduced” Interval Valued Neutrophic Topological Spaces’ is a

stronger version of ‘Neutrosophic Topological Spaces’.
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Abstract: In this paper, the theory of pentagonal neutrosophic number has been studied in a
disjunctive frame of reference. Moreover, the dependency and independency of the membership
functions for the pentagonal neutrosophic number are also classified here. Additionally, the
development of a new score function and its computation have been formulated in distinct rational
perspectives. Further, weighted arithmetic averaging operator and weighted geometric averaging
operator in the pentagonal neutrosophic environment are introduced here using an influx of
different logical & innovative thought. Also, a multi-criteria group decision-making problem
(MCGDM) in a mobile communication system is formulated in this paper as an application in the
pentagonal neutrosophic arena. Lastly, the sensitivity analysis portion reflects the variation of this

noble work.

Keywords: Pentagonal neutrosophic number, Weighted arithmetic and geometric averaging

operator, Score functions, MCGDM.

1. Introduction
1.1 Neutrosophic Sets

Handling the notion of vagueness and uncertainty concepts, fuzzy set theory is a dominant field,
was first presented by Zadeh [1] in his paper (1965).Vagueness theory has a salient feature for
solving engineering and statistical problem very lucidly. It has a great impact on social-science,
networking, decision making and numerous kinds of realistic problems. On the basis of ideas of
Zadeh's research paper, Atanassov [2] invented the prodigious concept of intuitionistic fuzzy set
where he precisely interpreted the idea of membership as well as non membership function very
aptly. Further, researchers developed the formulation of triangular [3], trapezoidal [4], pentagonal
[5] fuzzy numbers in uncertainty arena. Also, Liu & Yuan [6] established the concept of the

triangular intuitionistic fuzzy set;Ye [7] put forth the basic idea of trapezoidal intuitionistic fuzzy set
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in the research field. Naturally, the question arises, how can we evolve the idea of uncertainty
concepts in mathematical modelling? Researchers have invented disjunctive kinds of methodologies
to define elaborately the concepts and have suggested some new kinds of ambivalent parameters. To
deal with those kinds of problems, the decision-makers’ choice varies in different areas. F.
Smarandache [8] in 1998 generated the concept of a neutrosophic set having three different
integrants namely, (i) truthiness, (ii) indeterminacies, and (iii) falseness. Each and every
characteristic of the neutrosophic set are very pertinent factors in our real-life models. Later, Wang et
al. [9] proceeded with the idea of a single typed neutrosophic set, which is very productive to sort
out the solution of any complicated kind of problem. Recently, Chakraborty et al. [10, 11]
conceptualized the dynamic idea of triangular and trapezoidal neutrosophic numbers in the
research domain and applied it in different real-life problem. Also, Maity et al. [12] built the
perception of ranking and defuzzification in a completely different type of attributes. To handle
human decision making procedure on the basis of positive and negative sides, Bosc and Pivert [13]
cultivated the notion of bipolarity. With that continuation, Lee [14] elucidated the perception of
bipolar fuzzy set in their research article. Further, Kang and Kang [15] broadened this concept into
semi-groups and group structures field. As research proceeded, Deli et al. [16] germinated the idea
of a bipolar neutrosophic set and used it as an implication to a decision-making related problem.
Broumi et al. [17] produced the idea of bipolar neutrosophic graph theory and, subsequently, Ali
and Smarandache [18] put forth the concept of the uncertain complex neutrosophic set. Chakraborty
[19] introduced the triangular bipolar number in different aspects. In succession; Wang et al. [20]
also introduced the idea of operators in a bipolar neutrosophic set and applied it in a
decision-making problem. The multi-criteria decision making (MCDM) problem is a supreme
interest to the researchers who deal with the decision scientific analysis. Presently, it is more
acceptable in such issues where a group of criteria is utilized. Such cases of problems relating to
multi-criteria group decision making (MCGDM) have shown its fervent influence. Also MCDM has
broad applications in disjunctive fields under various uncertainty contexts.We can find many
applications and development of neutrosophic theory in multi-criteria decision making problem in
the literature surveys presented in [21-25], graph theory [26-30], optimization techniques [31-33] etc.
In this current era, Basset [34-40] presented some worthy articles related to neutrosophic sphere and
applied it in many different well-known fields.Also, K.Mondal [41,42] successfully

applied the notion of neutrosophic number

in faculty recruitment MCDM problem in education purpose. Recently, the viewpoint of
plithogenic set is being constructed by Abdel [43] and it has an immense influential motivation in
impreciseness field in various sphere of research field. Also, Chakraborty [44] developed the

conception of cylindrical neutrosophic number is minimal tree problem.

Neutrosophic concept is very fruitful & vibrant in a realistic approach in the recent research field. R.
Helen [45] first germinated the idea of the pentagonal fuzzy number then Christi [46] utilized the
conception of pentagonal fuzzy number into pentagonal intuitionistic number and skillfully applied
it to solve a transportation problem. Additionally, Chakraborty [47, 48] put forward the notion of
pentagonal neutrosophicnumber and its different and disjunctive representation in transportation

problem and graph-theoretical research arenas. Subsequently, Karaaslan [51-56] put forth some
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innovative idea on multi-attribute decision making in neutrosophic domain. Also, Karaaslan [57-61]
presented the notion of soft set theory with the appropriate justification of neutrosophic fuzzy
number. Recently, Broumi et.al [62-66] manifested the conception of the graph-theoretical shortest
path problem under neutrosophic environment. Further, Broumi [67] implemented the concept of
neutrosophic membership functions using MATLAB programming. A few works [68-71] are also
established recently, based on impreciseness domain.

In this article, we mainly focus on the different representation of pentagonal neutrosophic number
and its dependency, independency portions. We generate a new logical score function for
crispification of pentagonal neutrosophic number. Additionally, we introduce two different logical
operators namely i) pentagonal neutrosophic weighted arithmetic averaging operator (PNWAA), ii)
pentagonal neutrosophic weighted geometric averaging operator (PNWGA) and established its
theoretical developments along with its different properties. Also, we discussed the utility of these
operators in real-life problems. Later, we consider a mobile communication based MCGDM problem
in neutrosophic domain and solve it using the established two operators & score function.Sensitivity
analysis of this problem is also addressed here which will show distinct results in different aspects.
Finally, comparison analysis is performed here with the established methods which give an
important impact in the research arena. This noble thought will help us to solve a plethora of daily

life problems in uncertainty arena.

1.2 Motivation for the study

With the advent of vagueness theory the arena of numerous realistic mathematical modeling,
engineering structural issues, multi-criteria problem have immensely achieved a productive and
impulsive effect.Naturally it is very intriguing to the researchers that if someone sheds light on the
pentagonal neutrosophic number then what will be it in the form of linearity and its classification?
Based on this perception we impose three components on a pentagonal neutrosophic number i.e.
truthiness, indeterminacy and falsity. Proceeding with the PNNWAA and PNNWGA operators and
based on the score function of pentagonal neutrosophic numbers, an MCGDM method is built up

and some interesting and worthy conclusions are tried to extract from this research article.
1.3 Novelties of the work

Recently, researchers are utmost persevere to develop theories connecting neutrosophic field and
constantly try to generate its distinct application in various sphere of neutrosophic arena. However,
justifying all the perspectives related to pentagonal neutrosophic fuzzy set theory; numerous
theories and problems are yet to be solved. In this research article our ultimate objective is to shed
light some unfocussed points in the pentagonal domain.

(1) Classification of Pentagonal Neutrosophic Number.

(2) Hlustrative demonstration of aggregation operations and geometric operations on

Pentagonal Neutrosophic Number’s.
(3) Proposed new score function and its utility.

(4) Execute the idea of Pentagonal Neutrosophic Number’s in MCGDM problem.

2. Preliminaries
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Definition 2.1: Fuzzy Set: [1] Let 4 be a set such that A = {(B, az(B)): BeA, az(B)e[0,1]} which is
normally denoted by this ordered pair(B, ag(B)), here f is a member of the setdand 0 < az(B) <1,

then set A is called a fuzzy set.

Definition 2.2: Neutrosophic Set:[8] A set Ay, in the domain of discourse A, most commonly
stated as € is called a neutrosophic set if Ay., = {(E; [(pA*I\;u(E), Yino, (€), Oinz, (E)]) HS
EA} ;where ¢;— (€):A -] — 0,1+ [ symbolizes the index of confidence, ysy (€):4—->]—0,1+
[symbolizes the index of uncertainty and § . (€): 4 =] — 0,1 + [symbolizes the degree of falseness
in the decision making procedure. Where, [‘PAT\,E (€), Va7, (6), 6457, (€)] satisfies the in the equation

-0< (pAm(E) + )/A’N‘;M(E) + (SA’N‘;M(E) <3+

Definition 2.3: Single Typed Neutrosophic Number: [8]Single Typed Neutrosophic Number (i) is
denoted as 7 = ([(u', v, w',x"); al, [(w? v?, w?,x?); B, [(u?, v3, w3, x°); y])wherea, B,y € [0,1],
where(¢z):R - [0,a], (y5):R - [B,1] and (63):R - [y,1] is given as:

€5;(€) when u! <e<v?
a when v <e<w?

€70(€) when w! <e< xV
0 otherwise

@(€) =

Y71(€) when u? <e< v?
_ B whenv? <e<w?
Eﬁ.(e) - 2 2
Vau(€) when w* <e€< x
1 otherwise
and

U (€) when u?® <e< v®
Y whenv® <esw?
8:(€) =
n(®) Wiy (€) when w? <€< x3
1 otherwise
Definition 2.4: Single-Valued Neutrosophic Set:[9] A Neutrosophic set in the definition 2.2 is

Ayeysaid to be a Single-Valued Neutrosophic Set (Aye,) if € is a single-valued independent
variable. Ay, = {(E; [a,quu(E), ﬁgNeu(e),y,quu(E)]) i€ EA} , where az,, (€), B, (E)&Yiy,,(€)
denote the idea of accuracy, ambiguity and falsity membership functions respectively.SnSis named
as neut-convex, which implies that SnS is a subset of R by satisfying the following criterion:
i iy (0 + (1 —8)ay) = minfaz,,, (a1), az,,, (az))
i By, (8ay + (1= 8)ay) < max(Bay,, (@), Bay,, (a2))
i Viy,(6a + (1 = 8)ay) < max(yay,, (a1), Viy,,(a2))

wherea, &a,eRandée[0,1]
3. Single Type Linear Pentagonal Neutrosophic Number:

In this section we introduce different type single type linear pentagonal neutrosophic number. For

the help of the researchers we pictorially draw the following block diagram as follows:
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Uncertain parameter

Interval number Intuitionistic Neutrosophic Other tvpe

Fuzzy number number of uncertain

'

Triangular Neutrosophic Trapezoidal Neutrosophic Pentagonal Neutrosophic
Number Number Number

!
¢ 4 l

Category 1 Category 2 Category 3

Figure 3.1: Block diagram for a different type of uncertain numbers and their categories

Definition 3.1: Single-Valued Pentagonal Neutrosophic Number: [47]A Single-Valued Pentagonal
Neutrosophic Number (Npg,) is defined asNp,, =

([(hy, g, ha, hy, hs); ], [(hy, Ry, hs, Ry, hs); 1, [(hy, by, ha, by, hs); o]), wherer, i, o € [0,1]. The accuracy
membership function(zs): R - [0, 7], the ambiguity membership function (95):R - [p,1] and the
falsity membership function (&5): R = [0,1] are defined by:

T(x—hq)
m when hl <x< hz
m(x—hz)
@ when hz <x< h3
75(x) =« n(hf_x) when x = hs ,
m when h3 <x< h4
1t (hg—x)
m when h4 <x< hS
0 otherwise
h, —x+ pu(x — hy)
henh; <x<h
(hy—hyy M EEER
h; —x+ p(x — hy)
henh, <x<h
(hs — hz) vt = A
whenx = h
95(x) = # 3
’ * ~hs + p(hy %) when hy; <x <h
(hy — h3) : -
x — hy + p(hs — x)
whenh, <x<h
(hs — ha) ' °
1 otherwise

and
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h, —x+o(x—hy)

henh, <x<h
(hy—hy)  HEAER
hy — —h
smxtol 2) when h, < x < h;
(hs — hy)
. — o when x = hg
0= *~hs +olhy — %) whenh; <x<h
(hy — h3) ST
x_h4+0(h5_x)
whenh, <x<h
(hs — hy) ! °
1 otherwise

4. Proposed Score Function:
Score function of a pentagonal neutrosophic number entirely depends on the value of truth
membership indicator degree, falsity membership indicator degree and uncertainty membership
indicator degree. The necessity of score function is to draw a comparison or transfer a pentagonal
neutrosophic fuzzy number into a crisp number. In this section, we will generate a score function as
follows.For any Pentagonal Single typed Neutrosophic Number (PSNN)

APt = (81,52, 53, S4, S5; T, W4, 0)

We define the score function as
1
SPL' =E(51+52 +S3 +S4_+SS) X(2+T[—O—_‘U)

Here, Sp; belongs to [0,1].

4.1Relationship between any two pentagonal neutrosophic fuzzy numbers:

Let us consider any two pentagonal neutrosophic fuzzy number defined as follows
Aptr = (Spt11, Spr12, Spt13s Spe14» Spe1s; Tper, Mpe1s Opr)andApy, =

(Spt21) Spe22 SPt23s SPt24s SPe25ss Tpezs Hpe2 Ope2)
The score function for the are

Spt1 = E(SPtll + Spe1z + Spr1z + Spera + Speas) X (2 + Tper — Oppr — Hper)

and

Spt2 = E(Sptm + Spt22 + Sptaz + Sprza + Spras) X (2 4 Tpez — Oprz — Hpr2)
Then we can say the following
1) Apey > Apez if Spey > Spea
2) Apey < Appif Spey < Spea
3) /Ipn = Aptz if Spe1r = Spra

Table 4.1: Numerical Examples

Pentagonal Neutrosophic Number (4p,) Score Value (Sp;) Ordering
Apyy =< (0.2,0.3,0.4,0.5,0.6;0.4,0.5,0.6) > 0.17333
Apy; =< (0.35,0.4,0.45,0.5,0.55;0.6,0.3,0.4) > 0.28500 Aprs > Apey > Appr > Apes
Apez =< (0.15,0.2,0.25,0.3,0.35;0.6,0.4,0.5) > 0.14167
Apy, =< (0.7,0.75,0.8,0.85,0.9;0.3,0.2,0.6) > 0.40000
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4.1 Basic Operations for pentagonal neutrosophic fuzzy number:
Let D1 = ((¢1, €2, €3, Cay C5); gy, U Oz ) and Py = ((dy, dy, d3, dy, ds); T, U5, 05 ) be two IPFNs and
a = 0. Then the following operational relations hold:
4.1.1 Addition:
D1+ Dz =((c; +dy,c; +dy, 03 +ds, 04 +dy, C5 +ds); s + Ty — T3, s s Op; O )
4.1.2Multipliction:
D10z = ((c1dq, C2d,, c3d3, C4dy, C5ds); T g5, Ups +, i — M Mpsr Op; + Op; — Op; Op)
4.1.3 Multiplication by scalar:
apy = {(acy, acy, acs, acy, acs); 1 — (1 — )%, ups “, 057 %))
4.1.4 Power:

i = ((c1% % 3%, ¢4%, c5%); ”z’ﬂa: a- Hﬁ)ax a- O'ifl)a)
5. Arithmetic and Geometric Operators:

5.1 Two weighted aggregation operators of Pentagonal Neutrosophic Numbers

Aggregation operators are such pertinent tool for aggregating information to tactfully handle the
decision making procedure, this section generates a brief understanding between two weighted
aggregation operators to aggregate PNNs as a generalization of the weighted aggregation operators

for PNNSs, which are broadly and aptly used in decision making.

5.1.1 Pentagonal neutrosophic weighted arithmetic averaging operator
Let p; = ((¢j1, Cjz) Cj3) Cjar Cjs )5 Ty, Uy 0570 = 1,2,3,....,n) be a set of PNNs, then a PNWAA

operator is defined as follows:
PNWAA (P, D2, e, Pn) = Xljq @; P (5.1)

wherew; is the weight of p;(j = 1,2,3, ....,n) such that w; > 0 and Z;-;l w; = 1.
In accordance with the result ofSection 4.1 and equation (5.1) we can introduce the following

theorems:

Theorem 5.1. Let p; = ((¢j1, ¢j2, ¢j3, Cjas Cjs); Ty Mppr 0p5)(J = 1,2,3, ....,m) be a set of PNNs, then
according to Section 4.1 and equation (5.1) we can give the following PNWAA operator

n
PNWAA (B1, D2y e s Pn) = Z 5 Pj
j=1
~(Zf=1 wj 61, X1 ; Gg, s @) 63, Bl @) G, Eeq 0 65 )i 1 — [Ty (1 =
5:) 0 [y iy =1 05;7)
Where w; is the weight of §;(j = 1,2,3,....,n) such that w; >0 and ¥}, w; = 1.

Theorem 5.1 can be proved with the help of mathematical induction.

Proof: When n = 2 then,
by = (( ) 11— (1 - )ml w2 w1 1)
W1P1 = ((W1C11, W1C12, W1C13, W1C14, W1C15 ); Tg:) Op; < Mpy 0py

~ w2
and w,P, = ((W;C21, W3Ca2, WyCa3, WoCos, WCa5 ); 1 — (1 - ”ﬁ;) "uﬁwz'aﬁwz)
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Thus, PNWAA (p1,02) = w1P1 + w,P,

=((W1611 + @261 + W1C15 + WoCop + W1 13 + WaCo3 + W1C14 + WC4 + W1C15 + WyCy5); 1 —
(1= mp)" + 1= (1= 755) (1 = (1 = 75) DA = (1 = 715) ™), 1“2 15, 01 05 2)
When applying n = k, by applying equation (5.1) , we get

PNWAA (1, Pzs e Pi) = 2=y w; ;(5.2)

= (=1 @5 61, B=1 @ 6, Bjoa @ 63, Lfr @) Gja, Lfea @5 G5 )i 1= [Tj=a(1 =
T[ﬁ])w] ) ?:1.“?7‘]&)]' , ?:1 o_ﬁ;w]>
When n = k + 1, by applying equations (5.1) and (5.2) we can yield
PNWAA (B, Bz, -, Pr1) = L1 w; B;(5.3)
wj
= (T2 wj ¢, T2 w) cjp, X2 wj 63, T2 ) cja, T2 wj s )5 1= T2y (1 - ”17’7) +1-

Wk+1 y1k+1 Wi k+1 wj
(1—775;5;;1) ,Hj=1llf;7 U AR 055 7)

= (CKH wj oy, T w iy, T2 ) ¢j3 X2t wj ¢jg X wjci5 )31 — H}C;Hl(l -
w50 T2 gy T 2L 05, %7)

This completes the proof.

Obviously, the PNWAA operator satisfies the following properties:

i) Idempotency: Let piG=123,...,n) be a set of PNNs. If piG=123,...,n)is equal , i.e. pj=p
forj=1,2,3,....nthen PNWAA (P, P, ....,Dn) = D.

Proof: Since p; = p for j =1,2,3,...,n we have,

n
PNWAA (1,02, - » Pn) = Z w; b

Jj=1

=((Z?:1 Wj Cjq, 27:1 Wj Cjp, Z}Iﬂ wj Cj3, Z}Iﬂ Wj Cjg, Z}I=1 wj Cjs ) 1- ?:1(1 -

Tl'@)wj ;H?:Lui)jwj; ?:1 O'f,‘l'wj>

= ((01 2J=1Wj,C Xoq Wj,C3 X]=q W), C4 Xj—q Wj,C5 Xj—g wj)i 1- (1 -
Shoiwj Sho o) S wj

7'[@7)) J=1 J’yfp»] J=1 ]ro-’p”] J=197)

=(( C1,C2,C3,Cy, CS); 1- (1 - T[ﬁ)' :ufiiﬂo-ﬁ{) = ﬁ

ii) Boundedness: Let §;(j=1,2,3,....,n) be a set of PNNs and let

p- = ((min]-(cj1 ), minj(cjz ),minj(cj3 ), minj(cj4 ), minj(cjs ));minj (n@),maxj (upv}) ,max; (abv]))

and pt =

((maxj(cj1 ) maxj(cjz ) maxj(cj3 ) maxj(cj4 ) maxj(cjs )) ;max; (nﬁ),minj (yi,j),minj (Uizj))

Then p~ < PNWAA (B, Byy .., D) < P
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Proof: Since the minimum PNN is p~ and the maximum is p*there is p~ < p; < p*. Thus there is
e is

Yieawip” ¥ wip; < Y-y w;pt . According to the above property (i) ther P < Yj-1wiDj <

st

P,
i.e.,p~ < PNWAA (By, By .., By) < PP

iii) Monotonicity: Let p;(j = 1,2,3,...,n) beaset of PNNs.If p; < ﬁj* forj=j=1,2,3,....n, then
PNWAA (B, P, .., Pn) < PNWAA(P] P393 Pa,Ps,)
Proof: Since p;<p;" for j=j=123,...,n there is X}, w;p; <Y} w;jp; ie

PNWAA (p1, P2, ..., Dn) < PNWAA(P] P; P3 Pa Ps)-Thus we complete the proofs of all the properties.
5.2 Pentagonal neutrosophic weighted geometric averaging operator

Let p; = ((¢j1, Cj2) Cj3) CGjar Cj5 ) Tpy) Mpy 0570 = 1,2,3,....,n) be a set of PNNs, then a PNWGAA
operator is defined as follows:

PNWGA (P1, Dz v -» Pn) = ?:1p1“1(5.4)

wherew; is the weight of p;(j = 1,2,3, ....,n) such that w; > 0 and Z?Zl w; = 1.

Theorem 5.2. Let p; =< (¢j1, G2, Cj3) Cjar Cjs )5 Tpy, Mpy» 057 > (F = 1,2,3,....,n) be a set of PNNs, then

according to Section 4.1 and equation (5.4) we can give the following PNWGA operator

PNWGA (py, Bz, ., Bn) = [I}=10,” (5.5)

= ((T}=1 1 1, [Tj=1 ¢z i A= ¢3 i A1 ¢a i, [Tj-1¢s “r; [Tj=1 ”i)‘]wj A-11-(1 - /Ji:j)wj 1=
T (1= 05)Y)

wherew; is the weight of p;(j = 1,2,3, ....,n) such that w; > 0 and Z;'l=1 w; = 1.

By the similar proof manner of Theorem 5.1 we can prove the Theorem 5.2 which is not repeated

here.

Obviously, the PNWGA operator satisfies the following properties:

i) Idempotency: Let p;(j = 1,2,3, ....,n) be a set of PNNs.
If p;G=123,...,n)isequal ,ie. p; =p for j =1,2,3,...,n then PNWGA (py,D,,....Pn) = P.

ii) Boundedness: Let §;(j = 1,2,3, ....,n) be a set of PNNs and let

p~ =((min;(cj; ), min;(cj; ), min;(cj3 ), min;(cjs ), min;(cjs ); min; (n@),maxj (yi,v}),maxj (ai)v}))

and

pr=((max;(c;; ), max;(c;, ), max;(cj3 ), max;(cjs ), max;(cjs ); max; (T[;,vj),minj (ug}),minj (ai)v}))
Then p~ < PNWGA (Py,B,,....Pn) < B*.

iii) Monotonicity: Let p;(j = 1,2,3,....,n) be a set of PNNs. If p; <p;"for j= j=123,...,n,

then
PNWGA (py, Py, ----, Pn) = PNWGA(P] D393 Dz, Ps)

Avishek Chakraborty, Baisakhi Banik ,Sankar Prasad Mondal and SharifulAlam; Arithmetic and Geometric Operators of
Pentagonal Neutrosophic Number and its Application in Mobile Communication Based MCGDM Problem



Neutrosophic Sets and Systems, Vol. 32, 2020 70

As the proofs of these properties are similar to the proofs of the above properties, so we don’t repeat

them.

6. Multi-Criteria Group Decision Making Problem in Pentagonal Neutrosophic Environment

Multi-criteria group decision-making problem is one of the reliable, logistical and mostly used topics
in this current era. The main goal of this process is to find out the best alternatives among a finite
number of distinct alternatives based on finite different attribute values. Such decision-making
program may be raised powerfully by the methods of multi-criteria group decision analysis
(MCGDA) which is extremely beneficial to produce decision counselling and offers procedure
benefits in terms of upgraded decision attributes,delivers improvised communication techniques
and enrichesresolutions of decision-makers.The execution process is not so much easy to evaluate in
the pentagonal neutrosophic environment. Using some mathematical operators, score function

technique, we developed an algorithm to tackle this MCGDM problem.

In this section, we consider a multi-criteria group decision-making problem based on mobile
communication provider services in which we need to select the best service according to different

opinions from people. The developed algorithm is described briefly as follows:
6.1 Illustration of the MCGDM problem
We consider the problem as follows:

Suppose G = { Gy, Gy, Gs ... ... ..... Gy, } is a distinctive alternative set and H = { H;, H,, Hs ... ... ..... H,}
is the distinctive attribute set respectively. Let w = { w1, w;, 3 ... ... .....w,} be the corresponding
weight set attributes where each w >0 and also satisfies the relation},;-; w; = 1. Thus we consider
the set of decision-maker A = {4;,4;, 45 ........... A} associated with alternatives whose weight
vector is stated as Q ={Q,Q;, Q5 ...........Q} where each Q; > 0 and also satisfies the
relation}*_, Q; = 1, this weight vector will be chosen in accordance with the decision-makers

capability of judgment, experience, innovative thinking power etc.
6.2 Normalisation Algorithm of MCGDM Problem:
Step 1: Composition of Decision Matrices

Here, we construct all decision matrices proposed by the decision maker’s choice connected with
finite alternatives and finite attribute functions. The interesting fact is that the member’s s;; for each

matrix are of pentagonal neutrosophic numbers. Thus, we finalize the matrix and is given as follows:

/ . H1 Hz H3 C Hn\
k k k k
I Gy s;t1 S12 S13 - .. . Sip I
k k k k
XK =| GZ S%l S 573 . .o Son | (61)
. . ,; ,-C .
\Gm sk, Smz Smz . . . S,’fm/

Step 2: Composition of Single decision matrix
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For generating a single group decision matrix X we have promoted the logical pentagonal
neutrosophic weighted arithmetic averaging operator (PNWAA) as, s{; = ¥/, w; s, for individual

decision matrix X*, wherek = 1,2,3....n. hence, we finalize the matrix and defined as follows:

. H, H, H; . . . H,
! ! ! !
1 S11 S12 S13 - -+ - Sin
! ! r !
le G, S31 S22 Sz - - . Sy | (6.2)
|G3 - . . ) .. |
) . /' l. !
\Gm Sr,nl Sm2 Smz . . . Sr,nn/

Step 3: Composition of leading matrix
To illustrate the single decision matrix we have promoted the logical pentagonal neutrosophic
weighted geometric averaging operator (PNWGA ) as, s;; = H}l:lg;“ﬁ for each individual column
and finally, we construct the decision matrix as below,
. H
/ Gy s1h \

X=| G s31 [(6.3)
Gm ST’rIll
Step 4: Ranking
Now, considering the score value and transforming the matrix (6.3) into crisp form, we can evaluate
the best substitute corresponding to the best attributes. We align the values as increasing order
according to their score values and then detect the best fit result. The best result will be the highest

magnitude and the worst ones will be the least one.

6.3.1 Flowchart:

Composition of Decision matrices

y

Composition of Single Decision matrix

y

Composition of leading matrix

y

ComputeRanking using Score Value.

y

Sensitivity Analysis

Figure 6.3.1: Flowchart for the problem
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6.3 Illustrative Example:

Here, we consider a mobile communication service provider based problem in which there are three
different companies are accessible. Among those companies, our problem is to find out the best
mobile communication service provider in a logical and meaningful way. Normally, mobile
communication service providers mostly depend on attributes such as Service & Reliability, Price &
Availability, and Quality & Features of the system. Here, we also consider three different categories
of people i) youth age ii) adult age iii) old age people as a decision-maker. According to their
opinions we formulate the different decision matrices in the pentagonal neutrosophic environment
described below:
G, = Mobilecommunicationserviceprovider 1,
G, = Mobilecommunicationserviceprovider 2,
G5 = Mobilecommunicationserviceprovider 3
are the alternatives.
Also
H; =Service & Reliability,
H, =Price & Availability,
H; = Quality & Features
arethe attributes.
Let, D; = Youthagepeople ,D, = Adultagepeople, D; = Senioragepeople having weight allocation
D ={0.31,0.35,0.34 } and the weight allocation in different attribute function is A= {0.3,0.4,0.3}.A
verbal matrix is built up by the decision maker’s to assist the classification of the decision matrix.
Attribute vs. Verbal Phrase matrix is given below in Table 6.3.1. The total MCGDM problem is
graphically described as below:

Mobile Mobile Mobile
Communication Communication Communication

Quality &
Service & Features

Reliability
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Table 6.3.1: List of Verbal Phrase

Sl no. Attribute Verbal phrase
Quantitative Attributes
1 Service & Reliability Very High (VH), High (L), Intermediate (I), Small (S), Very
small (VS)

2 Price & Availability Very high (VH), High (H), Mid (M), Low (L),
Very low (VL)

3 Quality & Features Very high (VH), High (H), Standard (SD), Low (L),
Very low (VL)

Table 6.3.2: Relationship between Verbal Phrase and PNN

Verbal Phase Linguistic Pentagonal Neutrosophic Number (PNN)
Very Low (VL) < (0.1,0.1,0.1,0.1,0.1; 0.4,0.4,0.4) >
Low (L) < (0.2,0.3,0.4,0.5,0.6; 0.5,0.3,0.3) >
Moderate (M) < (0.4,0.5,0.6,0.7,0.8; 0.7,0.2,0.2) >

Little High (LH) < (0.5,0.6,0.7,0.8,0.9;0.75,0.18,0.18) >

High (H) < (0.6,0.7,0.8,0.9,1.0; 0.8,0.15,0.15) >

Very High (VH) < (1.0,1.0,1.0,1.0,1.0; 0.95,0.05,0.05) >

Step 1

In accordance with finite alternatives and finite attribute functions the decision matrices are
constructed by the proposal of decision maker’s choice. The noteworthy fact is that the entity s;; for

each matrix are of pentagonal neutrosophic numbers. Finally, the matrices are presented as follows:
Dl

. H, H, Hy
G,  <0.2,0.3,04,0.5,0.6;0.4,0.6,0.5 > <0.1,0.2,0.3,0.4,0.5; 0.5,0.6,0.7 > < 0.3,0.4,0.5,0.6,0.7; 0.6,0.3,0.3 >
G, <0.15,0.25,0.35,0.45,0.5;0.5,0.60.5> < 0.3,0.4,0.5,0.6,0.7;0.7,0.3,0.5 > < 0.4,0.5,0.55,0.6,0.7;0.8,0.7,0.3 >
G,  <0.4,0506,0708060403>  <0.250.3,0.35,0.4,0.45;0.4,0.60.5 > < 0.35,0.4,0.45,0.5,0.55; 0.6,0.3,0.4 >

Youth's opinion

. H, H, H;
D? = G, < 0.15,0.2,0.25,0.3,0.35;0.6,0.4,0.5 > < 0.1,0.15,0.3,0.35,0.4;0.7,0.5,0.3 > < 0.7,0.75,0.8,0.85,0.9;0.3,0.2,0.6 >
|6, <0.2,0.250.3,0.350.4;0.7,0.50.4 > < 0.2,0.25,0.3,0.4,0.45;0.6,0.3,0.3 > < 0.4,0.5,0.55,0.6,0.7; 0.8,0.7,0.4 >
G; <0.3,0.35,0.4,0.45,0.5;0.7,0.5,03 > < 0.5,0.55,0.6,0.7,0.8;0.5,0.6,0.7> < 0.6,0.7,0.75,0.8,0.9; 0.6,0.5,0.6 >
Adult's Opinion
: H, H, Hy
D3 = G, <0.2,0.25,0.3,0.4,0.45;0.6,0.3,0.3 > < 0.2,0.3,0.4,0.5,0.6;0.4,0.6,0.5> < 0.7,0.75,0.8,0.85,0.9; 0.3,0.2,0.6 >

G, <0.3,04,0.5,0.6,0.7,0.7,0.3,05> <0.60.7,0.75,0.8,0.9;0.6,0.5,0.6 > < 0.7,0.75,0.8,0.85,0.9; 0.3,0.2,0.6 >
G; <0.3,0.35,0.4,045,0.5;0.7,0.5,0.3 > < 0.4,0.5,0.55,0.6,0.7;0.8,0.7,0.3 > < 0.15,0.2,0.25,0.3,0.35; 0.6,0.4,0.5 >

Senior 's Opinion

Step 2: Composition of Single decision matrix
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In this step we generate a single group decision matrix M and have incorporated the idea of logical

pentagonal neutrosophic weighted arithmetic averaging operator (PNWAA) as, s{; = ¥, w; sf; , for

j=1 ij
individual decision matrix D¥, wherek = 1,2,3 ....n . Thus we finalize the matrix which is presented

as follows:

M

. H, H, H,

G, <0.18,0.250.31,0.4,0.46;1.00,041,042 > < 0.13,0.22,0.33,0.42,0.50;0.99,0.56,0.46 > < 0.58,0.64,0.70,0.77,0.84; 0.98,0.23,0.43 >
G, < 0.22,0.30,0.38,0.47,0.53;1.00,0.44,0.46 > < 0.38,0.45,0.52,0.60,0.68;1.00,0.36,0.44 > < 0.42,0.48,0.53,0.58,0.65; 1.00,0.40,0.39 >
Gs < 0.33,0.40,0.46,0.53,0.59;1.00,0.47,0.30 > < 0.39,0.46,0.51,0.57,0.66;1.00,0.41,0.47 > < 0.37,0.48,0.49,0.58,0.60; 1.00,0.40,0.50 >

Step 3: Composition of leading matrix
To define the single decision matrix we have employed the concept of the logical pentagonal

neutrosophic weighted geometric averaging operator (PNWGA) as, sj; =][j=;s,”’ for each

individual column and finally, we present the decision matrix as below

(0.26,0.35, 0.44, 0.56, 0.60; 0.99,0.98,0.99)
M =|{ (0.33,0.41,0.48,0.55,0.62; 1.00,0.98,0.99)
(0.36,0.43,0.48,0.54,0.62; 1.00,0.99,0.99)
Step 4: Ranking

Now, we examine the proposed score value for crispification of the PNN into a real number, thus we

< 0.1503 >
M= << 0.1641 >>
< 0.1652 >
Here, ordering is 0.1503 < 0.1641 < 0.1652. Hence, the ranking of the mobile communication

get the ultimate decision matrix as

service provider is G3 > G, > G;.

6.4 Results and Sensitivity Analysis

To understand how the attribute weights of each criterion affect the relative matrix and their ranking
a sensitivity analysis is done. The basic idea of sensitivity analysis is to exchange weights of the
attribute values keeping the rest of the terms are fixed. The below table is the evaluation table which
shows the sensitivity results.

Attribute Weight Final Decision Matrix Ordering
<(0.3,0.3,0.4)> << 0.1367 >) G = oy = 6

<0.1617 >
< 0.1650 >

<(0.33,0.35,0.32)> << 0.1387 >> Gs > G, > Gy

<0.1641 >
< 0.1666 >

<(0.3,0.37,0.33)> << 0.1394 >) G = oy = 6

<0.1621 >
<0.1692 >

<(0.45,0.25,0.3)> << 0.1415 >> Gs > G, > G,

<0.1641 >
<0.1699 >

<(0.25,0.45,0.3)> << 0.1799 >) Gy > Gs > G,

< 0.1559 >
<0.1623 >

Avishek Chakraborty, Baisakhi Banik ,Sankar Prasad Mondal and SharifulAlam; Arithmetic and Geometric Operators of
Pentagonal Neutrosophic Number and its Application in Mobile Communication Based MCGDM Problem



Neutrosophic Sets and Systems, Vol. 32, 2020 75

< 0.1669 >
< 0.1680 >

<(0.4,0.3,0.3) > << 0.1544 >) G, > Gy > G,
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Figure 6.4.1: Sensitivity analysis on attribute functions
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6.5 Comparison Table

This section actually contains a comparative study among the established work and proposed
work.Comparing with 50, we find that the best service provider among those three and it is noticed
that in each case Gibecomes the best mobile communication service provider. The comparison table

is given as follows:
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Approach Ranking
Deli® G; > G, > Gy
Garg> G; > G, > G,

Proposed method G; > G, > Gy

7. Conclusion and future research scope

The idea of pentagonal neutrosophic number is intriguing, competent and has ample scope of
utilization in various research domains. In this research article, we vigorously erect the perception of
pentagonal neutrosophic number from different aspects. We also resort to the perception of
truthiness, falsity and ambiguity functions in case of pentagonal neutrosophic number when the
membership functions are interconnected to each other and a new score function is formulated here.
Also, two logical operators have been developed here theoretically as well as applied it in MCGDM
problem. Finally we perform a sensitivity analysis and also demonstrate a comparative study with
the other results derived from other research articles to enumerate our proposed work and conclude
that our result is pretty satisfactory as we consider the pentagonal neutrosophic value in the
problem of multi-criteria decision making.

Further, researchers can immensely apply this idea of neutrosophic number in numerous flourishing
research fields like an engineering problem, mobile computing problems, diagnoses problem,
realistic mathematical modelling, cloud computing issues, pattern recognition problems, an
architecture based structural modelling, image processing, linear programming, big data analysis,
neural network etc. Apart from these there is an immense scope of application basis works in

various fields which can be constructed by taking the help of pentagonal neutrosophic numbers.
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Abstract: As an extension of neutrosophic soft sets, Q-neutrosophic soft sets were established to deal with two-
dimensional indeterminate data. Different hybrid models of fuzzy sets were utilized to different algebraic structures,
for example groups, rings, fields and lie-algebras. A field is an essential algebraic structure, which is widely used
in algebra and several domains of mathematics. The motivation of the current work is to extend the thought of
Q-neutrosophic soft sets to fields. In this paper, we define the notion of Q-neutrosophic soft fields. Structural charac-
teristics of it are investigated. Moreover, the concepts of homomorphic image and pre-image of Q-neutrosophic soft
fields are discussed. Finally, the Cartesian product of Q-neutrosophic soft fields is defined and some related properties
are discussed.

Keywords: Neutrosophic soft field, Neutrosophic soft set, Q-neutrosophic soft field, Q-neutrosophic soft set.

1 Introduction

Fuzzy sets were established by Zadeh [1] as a tool to deal with uncertain data. Since then, fuzzy logic has
been utilized in several real-world problems in uncertain environments. Consequently, numerous analysts
discussed many results using distinct directions of fuzzy-set theory, for instance, interval valued fuzzy set [2]
and intuitionistic fuzzy set [3]. These extensions can deal with uncertain real-world problems but it does not
cope with indeterminate data. Thus, Smarandache [4] initiated the neutrosophic idea to overcome this problem.
A neutrosophic set (NS) [5] is a mathematical notion serving issues containing inconsistent, indeterminate,
and imprecise data. Molodtsov [6] introduced the concept of soft sets as another way to handle uncertainty.
Since its initiation, a plenty of hybrid models of soft set have been produced, for example, fuzzy soft sets [7],
neutrosophic soft sets (NSSs) [8]. Accordingly, NSSs became an important notion for more deep discussions
[9-17]. NSSs were extended to Q-neutrosophic soft sets (Q-NSSs) [18] a new model that deals with two-
dimensional uncertain data. Q-NSSs were further investigated and their basic operations and relations were
discussed in [18, 19].

Different hybrid models of fuzzy sets and soft sets were utilized in different branches of mathematics,
including algebra. This was started by Rosenfeld in 1971 [20] when he established the idea of fuzzy subgroup.
Since then, the theories and approaches of fuzzy soft sets on different algebraic structures developed rapidly.
Mukherjee and Bhattacharya [21] studied fuzzy groups, Sharma [22] discussed intuitionistic fuzzy groups.
Recently, many researchers have applied different hybrid models of fuzzy sets and soft sets to several algebraic
structures such as groups, semigroups, rings, fields and BCK/BCl-algebras [23-32]. NSs and NSSs have
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received more attention in studying the algebraic structure of set theories dealing with uncertainty. Cetkin
and Aygun [33] established the concept of neutrosophic subgroup. Bera and Mahapatra introduced the notion
of neutrosophic soft group [34], neutrosophic soft fields [35]. Moreover, two-dimensional hybrid models
of fuzzy sets and soft sets were also applied to different algebraic structures. Solairaju and Nagarajan [36]
introduced the notion of Q-fuzzy groups. Thiruveni and Solairaju defined the concept of neutrosophic Q-fuzzy
subgroup [37], while Rasuli [38] established the notion of Q-fuzzy subring and anti Q-fuzzy subring. The
concept of Q-NSSs was also implemented in the theories of groups and rings [39,40].

Inspired by the above works and to utilize Q-NSSs to different algebraic structures, in the current paper,
we continue the work presented in [41] about Q-neutrosophic soft fields (Q-NSFs) and investigate some of
its structural characteristics; we give some theorems that simplifies the main definition, also we discuss the
intersection and union of two Q-NSFs . The concepts of homomorphic image and pre-image of Q-NSFs are
investigated. Also, we discuss the Cartesian product of Q-NSFs and discuss some related properties.

2 Preliminaries

In this section, we recall the basic definitions related to this work.

Definition 2.1 ( [18]). Let X be a universal set, () be a nonempty set and A C F be a set of parameters. Let
QN S(X) be the set of all multi Q-NSs on X with dimension [ = 1. A pair (I'g, A) is called a Q-NSS over
X, where T'g : A — p!QNS(X) is a mapping, such that Tg(e) = ¢ if e ¢ A.

Definition 2.2 ( [19]). The union of two Q-NSSs (I'g, A) and (Vq, B) is the Q-NSS (Ag, C) written as
(Tg, A) U (Vg,B) = (Ag,C), where C = AU B and forall c € C, (z,q) € X x (), the truth-membership,
indeterminacy-membership and falsity-membership of (Ag, C) are as follows:

TFQ(C)(x,q) ifce A— B,
Tag(o)(®, @) = § Tug(o) (2, 9) ifce B— A,
max{7Tr,)(z,q), Tvy)(7,q)} ifce ANDB,

(IFQ(C)(LE,(]) ifce A— B,
Ing(o)(:0) = § Twge) (2, q) ifce B— A,
(min{/ry,)(,q), lvy(o(7,q)} ifce ANDB,

(Fro(o)(2,9) ifce A— B,
Fage)(#,q) = § Fugo(@,q) ifce B— A,
(min{ Fry, (o) (7, q), Fugo(z,q)} ifc€e ANB.

Definition 2.3 ([19]). The intersection of two Q-NSSs (I'g, A) and (¥, B) is the Q-NSS (A, C') written as
(Fg, A)N(Vg, B) = (Ag,C), where C = AN B and forall c € C'and (z,q) € X x @ the truth-membership,
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indeterminacy-membership and falsity-membership of (Ag, C) are as follows:

TAQ(c)(xv Q) = min{TFQ(c)<x7 Q)v T\I/Q(c) ([E, Q)}7
]AQ(C)(:E7 Q) = maX{IFQ(c) (ZL’, Q)a ]‘IJQ(C)(:E7 Q)}y
FAQ(C)(xy Q) = maX{FFQ(C) (ZL‘, Q)a F\IIQ(C)(x7 Q)}

3 Q-Neutrosophic Soft Fields

In this section, we define the notion of Q-NSF and discuss several related properties.

Definition 3.1. Let (I'g, A) be a Q-NSS over a field (F,+,.). Then, (I'g, A) is said to be a Q-NSF over
(F,+,.)if foralle € A, T'g(e) is a Q-neutrosophic subfield of (F,+,.), where I'p(e) is a mapping given by
Tole) : F x Q — [0, 1.

Definition 3.2. Let (£, +,.) be a field and (I'g, A) be a Q-NSS over (F, +,.). Then, (I'g, A) is called a Q-NSF
over (F,+,.)ifforall z,y € F,q € Q) and e € A it satisfies:

1. Troe)(z + y,q) = min {Try ) (%, q), Trg©) (¥, @) }> Irge) (@ + ¥, q) < max {Ir, @) (2, q), Irge) (v, 9) }
and FFQ(@) (Z' + v, Q) < max {FFQ(E) (ma Q)u FFQ(@)(y7 Q>}

2. TFQ(e)(_x> q) > TFQ(e)<x> Q), IFQ(e)(_xa q) < [FQ(e)(xa q) and FFQ(e)(_x> Q) < FFQ(e)(xa Q>

> min {1t () (2, 4); Troe) (> 0) }+ Irge) (@9, ¢) < max {Iry ) (2, q), Irge)(y, q) } and
< max {FFQ(e) (x, q), FFQ(e)(?/, Q)}

4. Troe) (71 q) = Troe) (2, 0) Irge)(#7", @) < Irg(e)(z,q) and Frg, ey (27", q) < Frye)(, ).

Example 3.3. Let I' = (R, +,.) be the field of real numbers and A = N the set of natural numbers be the
parametric set. Define a Q-NSS (I'g, A) as follows for ¢ € ), € Rand m € N

0 if z 1s rational

. . . . )
if z is irrational

TFQ(m)<x7 Q) = { 1
9m
if z 1s rational

1— L
Ji (T, — 3m s
ro(m) (2, 9) {0 if x is irrational

1+ if z 1s rational

0 if x is irrational

3
m

FFQ(m)(xa Q) = {

It is clear that (I'p, N) is a Q-NSF over F.

Proposition 3.4. Let (I'g, A) be a Q-NSF over (F,+,.). Then, for the additive identity O and the multiplica-
tive identity 1p, forall v € F,q € () and e € A the following hold

1. TFQ(e) (OF> Q) > TFQ(e) (.CI?, q)a [FQ(e) (OFa Q> < [FQ(e) (337 Q) and FFQ(e) (OFa Q) < FFQ(e) (1', Q)
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2. TFQ(e)(1F7 Q) > TFQ(e)($7 Q)a IFQ(e)(lFa Q) < IFQ(e)(xa q) and FFQ(e)(lFa Q) < FFQ(e)(xa Q)afor T 7é Op.
3. TFQ(e) <0F7 q) > TFQ(6)<1F7 Q), IFQ(e) (OF> Q) < IFQ(e)(lFa Q) and FFQ(e)(OFa Q) < FFQ(e)(lFa Q)

Proof. Vx € F,qe Qande € A
1. Try ) (0r, @) = Trg(e)(z — 2, q) = min {Try ) (2, ), Trge) (2, 9) } = Troe) (2, ),
It o) (0F, @) = Irge (x — 2,¢) < max {Irg(e) (7, ), Irg(e) (2, 0) } = Irg(e) (2, q),
Fro(e)(0r, ) = Fro(e)(z — 2,q) < max {Frq() (2, 9), Fro@) (2, 4) } = Frg (2, 9).

2. TFQ(€)<1F7 Q) = TFQ(S)(ZE.QZ_l, Q) > min {TFQ(e)(xa q)v TFQ(e) ($, Q)} - TFQ(e) (ZE, Q)a
Irg ) (1r,q) = Irge)(z.27", q) < max { I, (x ), Irge) (2 Q)} = Iry(0)(2,9),
Fro©(1r, @) = Frge(z.a™, q) < max {Fry, ) (%, q), Fro@) (@, 0) } = Froe (2, q).

3. Follows directly by applying 1. 0
Theorem 3.5. A O-NSS (I, A) over the field (F,+,.) is a Q-NSF if and only if for all z,y € F,q € Q) and
ec A

1. Troe)(z —y,q) = min {Try, ) (2, q), Try e y @)} Irge) (@ — v, q) < max {Ir, (2, q),
IFQ e)( Y,q } FFQ e) - Y, q) S maX{FFQ e) x q) FFQ(E)(y Q)}

2. TFQ(e)(:U Yy >Q) > min {TFQ e) x Q) TFQ y7 } IFQ(e Ty Q) < maX{IFQ(e)<x7Q)7
Irge) (¥, ) by Froe(zy™, q) < maX{FrQ<e ,q), Fro ) (, Q)}

Proof. Suppose that (I'g, A) is a Q-NSF over (F, +,.). Then,

Tro(e)(x =y, q) =min {Tr ) (2, 0), Trg ) (—y, @) } = min {Try ) (@, 9), Tro (v, ) }
Irg(e)(x =y, q) <max {Irye)(z,q), er(e) q)} < max {Ir, (%, ), Irge) (v, )},
FFQ(G)(:‘U_%Q) SmaX{FFQ( ,q), FFQ 6)( )} < aX{FFQ(e z,q), FFQ()< Q)}

Also,

> min {TFQ e) x, q) TFQ( )( q)}’
< max {IrQ(e z C]) [FQ(e)<y ‘1)}
< max { Frg () (2, 9), Fro e (4, 9) }-

TFQ(@) (x'y_l’ ¢) = min {TFQ(e ,q), TFQ )}
IFQ(@)(x'y_l’Q) §max{[pQ( (z.q), [FQ )}
FFQ(@)(w'yilvq) Sma“X{FFQ( (z,q), FFQ(e ( q)}
Conversely, Suppose that conditions 1 and 2 are satisfied. We show that for each e € A, (I'g, A) is a
Q-neutrosophic subfield
Troe)(=2,4) = Trq(e)(OF — 2,4) = min {Trq()(0r, 4), Troe) (2. 4) }
> min {TFQ (7, 9), Trg (o) (7, q )} = Troe) (2, q),
It () (—=7,q) = Ity e)(0F — 7, q) < max {IpQ y(OF, @), Irye)(, q)}
< maX{IpQ ) (7, q), Irg(e) (T, q)} = Ity (7, q),
Or,q), Fr, e)(x 9}
2,9), Fro@(%,0)} = Froe)(2,9)}

Froe)(—2,q) = Frye)(0F — 2, q) < max { Fr(
< max {FFQ

)(
)

Majdoleen Abu Qamar, Abd Ghafur Ahmad and Nasruddin Hassan, On Q-Neutrosophic Soft Fields.



Neutrosophic Sets and Systems, Vol. 32 2020 84

also,
TFQ(e) (33 +Y, Q) = TFQ(e)(x - (_y)a Q) > min {TFQ(e) (l’, Q), TFQ(G) (y> q>},
IFQ(S)(:L. +Y, q) = IFQ(e)(x - (_y)7 Q) < max {IFQ(S)(x7 Q)a IFQ(e) (ya Q)}v
Fro@e(@+9,9) = Froe(z — (—y),q) < max { Fry (2, 9), Froe (¥, 9) }-
Next,
Troe) (7, q) = Troe(Lpx™", q) = min {Tr, ) (1p, q), Try, e)(x 9}
2 min {TFQ (.CIZ,Q) TFQ e) z,q } TFQ )(:U7Q)7
Inge) (", q) = Irge(lr-x™, q) < max {Iry ) (1r. q), Irge (2, ) }
< maX{IFQ e)(.T,Q) IFQ ( 7Q)} - IFQ(e)(‘r7Q)7
Fro@(,0) = Froe(lra™, q) <max {Fry(1r, ), Frge )( Q) }
SmaX{FI‘Q(e) x C]) FFQ :L‘ »q } FFQ )(ZE,C])}
and
TFQ(e)(x'y; Q) = TFQ(e) (x(y_l)_lv Q) > min {TFQ(e)(w7 Q)7 TFQ(G) (ya Q)},
IFQ(e) ($.y, Q) = IFQ(e) (x(y—l)—l’ Q) < max {IFQ(e) (7;7 Q)’ IFQ(E) (ya CD}?
FFQ(e)(x'ya Q) - FFQ(e) (x(y_l)_la Q) < max {FFQ(e) (33, Q)a FFQ(6)<y7 Q)}
This completes the proof. [l

Theorem 3.6. Let (I'g, A) and (Y, B) be two Q-NSFs over (F,+,.). Then, (I'q, A)N (Y, B) is also Q-NSF
over (F,+,.).

Proof. Let (I'g, A) N (Vg, B) = (Ag, AN B). Now, Vz,y € F,ge Qande € AN B,

Thro(e)(T — y,q) = min {TFQ<e) (= y,9), Twge)(z — v, Q)}
> mln{mln {Tro)(@,0); Tro ) (v, @) b, min { Ty o) (@, ), Twge)(y Q)}}
= min { min { T () (2, ), Twge) (@, ¢) b min {Trg ) (4, @), Twge) (¥ q)}}
= min {TAQ(e)(% 0); Tage) (Y, Q>}7
also,
Ing)(® =y, q) = max § I, (o) (T — ¥, 9), T (o) (T — ¥, Q)}
<m

X{maX{IrQ T q),TFQ(e)(y,q)},maX{wa(e)(fE,Q),IWQ<e)(y,Q)}}
= max{maX{IFQ(e 7,q), Luy(e) (T, q) } maX{er o, 0), Twg ) (Y, Q)}}

= max {IAQ(e) (z,9), Ing(e) (v, Q)}a
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similarly, Fi,(¢)(z — y,¢) < max {FAQ(e) (7,9), Fage) (¥, q)} Next,

Thge)(z.y ", ¢) = min {TFQ@(w-y‘l, q), TmQ(e>(flf-y‘1, q)}

> mm{mm {TFQ ©(x,q), Tt e) } min {Tg/Q(e z,q), T\I/Q(e)(y Q)}}
= m1n{m1n {TFQ e) x q) Tq,Q } min {TFQ e) y Q) T\IJQ(@)(y Q)}}
= min {TAQ<6) (@, ), Tag(e) (¥ q)},

also,

IAQ(E)(x.y_l,q max § Ire) (2. y~! ),I\I,Q(e)(x.y_l,q)}

| /\

{

X{maX{IpQ (z,q), Irg(e) (y,q } maX{LpQ x Q)a]qJQ(e)(y»Q)}}
{maX{IFQ 2,q), Tug(e) (2, q) b max {Irg ) (Y, q), Twg (e )(%@}}
maxe {

Ing(e)(,q), IAQ<>(y,q)}

similarly, we can show Fj, () (r.y™!,q) < max {FAQ(E) (7,9), Fag(e) (¥, q)} This completes the proof. O

Remark 3.7. For two Q-NSFs (I'g, A) and (U, B) over (F,+,.), (I'g, A) U (¥, B) is not generally a Q-
NSF.

For example, let /' = (Q, +,.), £ = 2Z. Consider two Q-NSFs (I', £') and (¥, E) over F as follows: for
r€Q,geQandm e Z

0.50 ifz—dtm,3t € Z,
Trqam (. 9) = otherwise

0 if v =4tm, 3t € Z,
]FQ 4m .
0.25 otherwise,

e 0.40 ifz=4tm,dt e Z,
m w .
ro(tm) (7, ) 0.10 otherwise,

and

0.70 ifx = 6tm,dt € Z,

Ty (4m) (z,q)
o otherwise,

I if x =6tm,dt € Z,
wo(um)( 0.50 otherwise,

0.20 ifx = 6tm,dt € Z,
0.40 otherwise.

F‘IJQ(4m)($aQ) = {
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Let (g, A) U (Y, B) = (Ag, E). Form = 2,z = 8,y = 12 we have

Trge)(8 —12,q) = Thy(s)(—4, q) = max {TFQ(8)<_47 q), Tw,(8)(—4, Q)} = max{0,0} =0
and
min {TAQ(S) (87 Q)vTAQ( )(127 Q)}
max {TFQ (8,9), Twy(s) } max {TFQ(S) (12,9), Tw,(s )(12,q)}}

min |
n{maX{O 20, O} maX{O 07}}
{

min {0.50, 070}—050

Hence, T, (s)(8 — 12, ¢) < min {TAQ(g) (8,9), Thys)(12, q)} Thus, the union is not a Q-NSF.

4 Q-Neutrosophic Soft Homomorphism

In this section, we define the Q-neutrosophic soft function, then define the image and pre-image of a Q-
NSS under a Q-neutrosophic soft function. In continuation, we introduce the notion of Q-neutrosophic soft
homomorphism along with some of it’s properties.

Definition 4.1. Letg: X X Q — Y x Q and h : A — B be two functions where A and B are parameter sets.
Then, the pair (g, h) is called a Q-neutrosophic soft function from X x Q to Y x Q.

Definition 4.2. Let (I'g, A) and (¥, B) be two Q-NSSs defined over X x () and Y x (), respectively, and
(g, h) be a Q-neutrosophic soft function from X x @ to Y x . Then,

1. The image of (I'g, A) under (g, h), denoted by (g, h)(I'g, A), is a Q-NSS over Y x @) and is defined by:

(9.1)(Tq. 4) = (9(T). h(4)) = {{b.9(Ta)(b) : b € h(A)) }.

where forall b € h(A),y € Y and q € Q,

T _J maxg g~y Maxn@-b[Tro (2, ¢)]  if (z,9) € g7 (y, q),
o) (¥:9) =1 otherwise

I ) miNg(zg)=(y,q) minh(a)zb[—]FQ(a) (z,q)] if(z,9) € 97 (y,q),
ro)e)(y:4) = 1 otherwise,

F,

. ming(az,q):(y,q) minh(a)zb[FFQ(a) (ZE, Q)} if (ZL’, q) € gil(ya q)v
ore)) (Y, 4) =

1 otherwise,

2. The preimage of (¥, B) under (g, h), denoted by (g, h) ' (¥q, B), is a Q-NSS over X and is defined
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by:
(9.0)7 (q. B) = (97 (). ™ (B)) = { {a.7"(¥a) @) : a € h7(B) ) |.
where foralla € h™1(B),z € X and q € Q,

Ty-1w0) @) (7, @) = Tugn@)(9(7, q)),
L1 we)(@)(7, @) = Tugn) (9(7,0)),
Fo1w0)(@) (T, @) = Fugin@)(9(7, q))-

If g and h are injective (surjective), then (g, h) is injective (surjective).

Definition 4.3. Let (g, h) be a Q-neutrosophic soft function from X x @ to Y x Q. If g is a homomorphism
from X x QtoY x @, then (g, h) is said to be a Q-neutrosophic soft homomorphism. If g is an isomorphism
from X x Q toY x Q and h is a one-to-one mapping from A to B, then (g, h) is said to be a Q-neutrosophic
soft isomorphism.

Example 4.4. Let A = N (the set of natural numbers) be the parametric set and F' = (Z;, +,.) be a field.
Define a Q-NSS (I'g, A) as follows, forany a € A, q € Q) and = € Zs,

0 ifzre{l3
Tro ()2, q) = . I,
@ 5 ifze{0,2,4}
-1 ifre{1,3}
I a M - 7’7 - )
ro(@(®:4) {0 if z € {0,2,4)

S- ifx e {1,3}
Froy (2, q) = 4 ot RC I
Fo(@) (@:4) {0 if 2 € {0,2,4)
Now, let g : Zs x Q — Zs x Q and h : N — N be given by g(z,q) = 3z + 1 and h(a) = a*. Then for
be N2 y e 3Zs+ 1, the image of (I, A) under (g, h) as follows :

- .0 0 if y € {0,2,4}
o) (¥:q) = . = Ay
e s ifye{L3}
1— = ifye{0,2,4}
Ty (Y, q) = {0 Ve ity € {1,3)
L ity e{0,2,4)
Fyro)m(y:q) = {5*“5 ity € (1.3)

Theorem 4.5. Let (I'g, A) be a Q-NSF over Fy and (g, h) : Fy x Q — Fy x ) be a Q-neutrosophic soft
homomorphism. Then, (g,h)(L'g, A) is a Q-NSF over F.

Proof. Letb € h(A) and yy,y € Fy. For g7 (y1,q) = ¢ or g (y2, q¢) = ¢, the proof is straight forward.
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So, assume there exists z1, o € F such that g(z1,q) = (y1,q) and g(x2,q) = (y2,q

Tyro)v) (V1 — Y2, q) = max max |:TFQ(a) (z, Q)}

9(z,9)=(y1—y2,q) h(a)=b

> _T a - ) :|
> hr(%?fb ol ) (1 — 22, q)

> max | min {TFQ(G)(m,q),TFQ(a)(—$27Q)H

h(a)=b L

> max | min {TFQ(Q)(M,C])aTFQ(a)(xQ,Q)}]

|:TFQ(0,)<:U27 Q)} }

h(a)=b L

= min{ max [TFQ(G)(ILQ)}

h(a)=b

max
h(a)=b

Toro)wy(1-y2',¢) =  max  max [Tw ) (z, q)]

9(z,q)=(y1.y5 ") h(a)=b

> }f(rcllf)ii(b _TFQ(G) (»ﬁ-xz_ 7Q)}

> max | min {TFQ(Q)(xlaq>’TFQ(a)(x2_17Q)}:|

h(a)=b L

> max | min {TFQ(G)(.CL'l,Q),TFQ(a)(lQaq)}]

|:TFQ(a)<x27 CI)} }

h(a)=b L

= min{ max |:T1“Q(a)(x17q>i|7

h(a)=b

Since, the inequality is satisfied for each =1, xo € F}, satisfying g(z1,q) =

Then,

T - 9 >
oC)) (Y1 — Y2, q) = 9(@1,0)=(y1,0) ha)=b

"

ln{Tg ) (y1:a), Tyr ><b>(y27q)}-
’
e

I
=]

T, ,q) > min
b)) (Y192 ) > (21.0)=(y1,) h(a)=b

min 3 Tyro)m) (Y1, @), Tor )(b)(yz,Q)}-

Similarly, we show that

oo (1 — ¥2, ¢) < max {fng)(b)(yh ) Lgro) ) (v2; Q)}a
Lyrg)w)(¥1-92 |5 q) < max {fg<rQ><b>(y17 Q) Lyrg) o) (Y2, 9) }
Fyro)) (Y1 — ¥2,q) < max {Fg(rQ)(b)(yu ), Fy(ro)m) (Y2, Q)},
Fyrg)w)(y1-y2 '+ q) < max {Fg@Q)(b)(?Jb 1), Fyrg)w) (y2, CJ)}-

maX max [TFQ( y (21, q)],

maX max [TFQ( y (21, Q)]v

max

h(

a)=b

max max
g(x2,q)=

(y1,9) h(a)=b

max max
g(x2,9)=

(y1,9) h(a)=b

). Then,

(y1,9) and g(x2,q) = (42, ).

[TFQ( )(552, Q)} }

[TFQ( )(!E2> Q)} }
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Theorem 4.6. Let (Y, B) be a Q-NSF over F, and (g,h) be a Q-neutrosophic soft homomorphism from
Fy X Q to Fy x Q. Then, (g,h)"* (¥, B) is a Q-NSF over over F}.

Proof. Fora € h™*(B) and x,, x5 € I}, we have

Ty-1(w0)@) (1 — 22,q) = Tuyn@)(9(21 — T2, q))
= Tuqn)(9(21,9) — 9(z2,q))

> min {T\I,Q[h g(z1, q)),T\pQ[h(a)}(_g<$2, Q))}
> min {T\I,Q[h 9(z1,0)), Tugin) (9(22, Q))}

= min {T “1(Wg)(a) $1, )7Tg*1(‘lfQ)(a) (@2, Q)}
and

Ty1wo)@) (1235 q) = Tugm@) (9(21.23 ", q))
= Tugn)(9(z1,9)-9(23", q))
2 min {T‘PQ[h(a)]@(xla 7)), Twona(9(22,9)~ 1)}
2 min {T‘I’Q[h(a)](g<x1aQ))aT\PQ[h(a (g(x2, ))}

= min {Tg_l(%)(a)(xl, q), Tg—l(\pQ)(a) (2, C])}
Similarly, we can obtain

I H¥g)(a) ( — 2,4 )Smax 971 (¥q)(a) x17q>7lg

o0 (@0}
(w20,

2,4
2,4
Fo1w0)(0) (215 9); Fy=1(w5)(a) (T2,

Iy-1(wo)a o) (T1.25 ,q)gmax{] ~1(Wg)(a) (21,9), 1, “1(Wo)(a
Fy-1(wg)@) (21 — 22,4 {

3
J

q) q)
Fy1(wg)a) (@123, q) < max ¢ Fymiqwg)(a) (01, 0)s Fy-1(wg)(a) (22, 9)

Thus, the theorem is proved. O]

S Cartesian Product of Q-Neutrosophic Soft Fields

In this section, we define the Cartesian product of Q-NSFs and prove that it is also a Q-NSFE.

Definition 5.1. Let (I'g, A) and (U, B) be two Q-NSFs over ([, +, .) and (F», +, .), respectively. Then, their
Cartesian product (Ag, A x B) = (I'g, A) x (¥g, B), where Ag(a,b) = I'g(a) x Vg(b) for (a,b) € A x B.
Analytically, forx € Fy,y € Frand g € )

Agla.) = { (@), ), Txgan ((#,9),0). Lng(an ((2,9).4). Fagian (2,9).4) ) }. where
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TAQ(a,b) ((ZE, y)v Q) =min {TFQ(a) (:B7 q) ’ T\I/Q(b) (f% Q) }7

IAQ(a,b) ((l’, y)a Q) = max {[FQ(UL) ([E, Q) ) [\IJQ(b) (Z/, q }a

FAQ(a,b) ((xa y)a Q) = nax {FFQ((Z) (l’, Q)a FlIfQ(b) Y, Q)
Theorem 5.2. Let (I'g, A) and (Y, B) be two Q-NSFs over (Fy,+,.) and (Fy, +, .), respectively. Then, their
Cartesian product (I'g, A) x (Y, B) is a Q-NSF over (Fy x F3).

Proof. Let (A
for ((xla y1)7 q),

Qs
)
TAQ(a,b)<((x17y1) - ($27y2)761)>

= Thrg(ab) ((1’1 — T2, Y1 — Y2), Q)
= min {TFQ(Q) ((1’1 ), Q) T\IIQ(b ((yl - y2)7 Q)}

)
). Trqte) (= 22.0) }.min { T (. 0). Togon (~ v2.0)} |
0 (22:9). Trqgeo (22.0) }.min { Togo) (1. 9). Togn (v2.9) } }
o (21:9). Toge (91.9) b min {Trg o) (22.). Togio (12 } }

in § Tag(an) ((21,91),9), TAQ(a,b)((w27y2)7Q)}

Ax B) = (Ig,A) x (Yo, B), where Ag(a,b) = Tg(a) x Ug(b) for (a,b) € A x B. Then,
((332,92)&) € (F} x F») x @ we have,

\%

> min { min {TFQ (a) (:L’l, q TFQ

[V

=

)

=

)
—

=
)

min {TFQ( (xl,

I
=

Il
= E
B

also,

Ixg(ab) <((901,y1) — (72,92), Q))
= Ing(ap) (21 — 22,91 — 12),q)
= max {Irg(w (21 = 22), ), Lugw (1 — 12),9) }
< max{max {Iro0)(21,4), Irg @) ( — 22,9 )} max { Ly, (y1,4), Tvom (— yQ,Q)}}

)(
<maX{maX{IFQ<a>($17Q)=IFQ<a)($2a q) }, max { Lyo ) (¥1.9), f%w)(yzaQ)}}
(.0) b max { T (22.) T (92:0) }

g () (@2, 92), )}

= max { max {IFQ(Q ($1, A0

= mnax {IAQ(CL b)( Iy, yl ) Q)
similarly, F,(a,0) (((xl, y1) — (z2,92), ) max {FAQ xl, y1), ) Frgab) ((l‘g, Ya2), q) } Next,

TAQ(a,b)<(($17y1)-($2,92)717Q)>
= TAQ(a,b) ((xl-xglu yl'y2_1)7 q)
= min {Trg ) ((r1.221),9), Togm (192 ), 9) }

> min { min {Trg( (21,4), Trow (22 ",0) } min { T (01, ), Tog (v ",0) } |
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> min { min { Tty @) (21, 9), Tro(a) (22, ) } min {Tu o0 (v1,0) Togm) (42, ) }}
= min { min {TFQ(a) (21,9), Twowm) (v1, ) b, min {Trg ) (22, 4), Twgm) (42, ) }}

= min {TAQ(a,b) ((xb yl)a Q> ) TAQ(a,b) ((an y2)7 q)}a

Trgad) (((1’17 y1)-(2,92) ", Q)>
= IAQ(a,b) ((x1~x2_1a 91-92_1)7 Q)
max {]FQ(a) ((m-xg_l), C]), fpr(b) ((yl'yz_l), 61)}

< max { max { Fro o) (21, 0), Trte (23" 0) } max { T (41, ), Tugey (v ",0) } |
< max { max {Irg(a (21,0), Trg( (22, @) b max { Fug (91, ), Tug (v200) } |

= max { max { Irg (@) (21, 9) Twg v (1, @) - max { Irga) (22, ), Tug ) (v2, 9) }}

= max {IAQ(a,b) (@1, 91), ), Ing ) (22, 42), ) },

similarly, FAQ(a,b)(((5517y1)79)-(($2,y2>_1;Q)> < maX{FAQ(a,b)(('rlayl)7Q)uFAQ(a,b)<(I27y2)7Q)}' This
completes the proof. 0

6 Conclusions

In this study, we have introduced the concept of Q-neutrosophic soft fields. We have investigated some of
its structural characteristics. Also, we have discussed the concepts of homomorphic image and pre-image of
Q-neutrosophic soft fields. Moreover, we have defined the Cartesian product of Q-neutrosophic soft fields and
discussed some related properties. The proposed notion enriches knowledge on neutrosophic sets in the branch
of algebra. Also, it illuminates the way for more further deep discussion in algebra under neutrosophic and
Q-neutrosophic soft environment for example, by establishing the notions of n-valued neutrosophic soft fields
Q-neutrosophic soft modules and more.
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Abstract. A significant area of module theory is the concept of free modules, projective modules and injective
modules. The goal of this study is to characterize the projective G-modules under a single-valued neutrosophic
set. So we define neutrosophic G-submodule as a generic version of projective G-submodule. It also describes
and derives fundamental algebraic properties including quotient space and direct sum of neutrosophic projective

G-submodules

Keywords: Neutrosophic set; Neutrosophic G-module;Direct sum; Projective G-module; Neutrosophic projec-

tive G-module

1. Introduction

The projective G-module in the abstract algebra plays a pivotal role to analyze the algebraic
structure G-module and its characteristics. Cartan and Eilemberge [16] introduced the concept
of projective modules that offer significant ideas through the theoretical approach to module
theory. The algebraic structure G-module widely used to study the representation of finite
groups developed by Frobenius G and Burnside [11] in the 19th century. Several researchers
have studied the algebraic structure in pure mathematics associated with uncertainty. Since
Zadeh [35] introduced fuzzy sets, fuzzification of algebraic structures was an important mile-
stone in classical algebraic studies. The notion of a fuzzy submodule was introduced by Negoita
and Ralescu [25] and further developed by Mashinchi and Zahedi [24]. This basic notion has
been generalized in several ways after Zadeh’s implementation of fuzzy sets [4,5]. In 1986
Atanassov [6] put forward intuitionistic fuzzy set theory in which each element coincides with
membership grades and non-membership grades. Biswas [9] applied the idea of the intuitionis-

tic fuzzy set to the algebraic structure group and K. Hur et.al. [21] additionally studied it. In
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2011 P. Isaac, P.P.John [22] studied about algebraic nature of intuitionistic fuzzy submodule
of a classical module.

The theory of neutrosophy first appeared in philosophy [30] and then evolved neutrosophic
set as a mathematical tool. In 1995, Smarandache [31] outlined the neutrosophicset as a
combination of tri valued logic with non-standard analysis in which three different types of
membership values represent each element of a set. The main objective of the neutrosophic set
is to narrow the gap between the vague, ambiguous and imprecise real-world situations. Neu-
trosophic set theory gives a thorough scientific and mathematical model knowledge in which
speculative and uncertain hypothetical phenomena can be managed by hierarchal membership
of the components “ truth / indeterminacy / falsehood ” [2}/3,32]. Neutrosophic set generalizes
a classical set, fuzzy set, interval-valued fuzzy set and intuitionistic fuzzy set that can be used
to make a mathematical model for the real problems of science and engineering. From a scien-
tific and engineering perspective, Wang et.al. [20] specified the definition of a neutrosophic set,
which is called a single-valued neutrosophic set. Several scientists dealt with the neutrosophic
set notion as a new evolving instrument for uncertain information processing and a general
framework for uncertainty analysis in data set [1,[7,|17,28].

The consolidation of the neutrosophic set hypothesis with algebraic structures is a growing
trend in mathematical research. Among the various branches of applied and pure mathematics,
abstract algebra was one of the first few topics where the research was carried out using
the neutrosophic set concept. W. B. Vasantha Kandasamy and Florentin Smarandache [23]
initially presented basic algebraic neutrosophic structures and their application to advanced
neutrosophic models. Vidan Cetkin [12}13] consolidated the neutrosophic set theory and
algebraic structures, creating neutrosophic subgroups and neutrosophic submodules. F. Sherry
[18,[19] introduced the concept of fuzzy G-modules in which the concept of fuzzy sets was
combined with G-module and the theory of group representation. One of the key developments
in the neutrosophic set theory is the hybridization of the neutrosophic set with the algebraic
structure G-module. The above fact leads to inspiration for conducting an exploratory study
in the field of abstract algebra, especially in the theory of G-modules in conjunction with
neutrosophic set. In this paper we described neutrosophic projective G-submodule as the
general case of projective G-module and derived its algebraic properties.

The reminder of this work is structured as follows. Section 2 briefs about necessary pre-
liminary definitions and results which are basic for a better and clear cognizance of next
sections. Section 3 defines neutrosophic projective G-modules, algebraic extension of pro-
jective G-submodules and derive the theorems related to quotient space and direct sum of
neutrosophic G-submodules. A comprehensive overview, relevance and future study of this

work is defined at the end of the paper in Section 4.
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2. Preliminaries

In this section, we recall some of the preliminary definitions and results which are essential

for a better and clear comprehension of the upcoming sections.

Definition 2.1. [14] Let (G,x*) be a group. A vector space M over the field K is called a
G-module, denoted as Gy, if for every g € G and m € M; 3 a product (called the action of
G on M), g-m € M satisfies the following axioms

(1) 1g-m=m; VYm € M (lg being the identity element of G)

(2) (gxh)-m=g-(h-m); Vme M and g,h € G

(3) g (kimi + kama) = k1(g-m1) + ka(g - ma);V ki, ko € K;my,mg € M 7.

Example 2.1. [18] Let G = {1,—1,4,—i} and M = C"™; (n > 1). Then M is a vector space
over C and under the usual addition and multiplication of complex numbers we can show that
M is a G-module.

Definition 2.2. [15] Let M be a G-module. A vector subspace N of M is a G-submodule if

N is also a G-module under the same action of G.

Definition 2.3. [15] Let M and M* be G-modules. A mapping f : M — M* is called a
G module homomorphism (Homg (M, M*)) if ¥V ki, ks € K,m1,mg € M, g € G satisfies the
following conditions

(1) f(kimi + kama) = k1 f(m1) + ka2 f (m2)

(2) flgm) = gf(m)

Definition 2.4. [10,29] A G-module M is projective if for any G-module M* and any G-
submodule N* of M*, every homomorphism ¢ : M — M*/N* can be lifted to a homomorphism
: M — M* or wot) = where 7 : M* — M*/N*.

Remark 2.1. A G-module M is projective if and only if M is M™ projective for every G-
module M*

Theorem 2.2. [29] Let M and M* be G-modules such that M is M* projective. Let N* be
any G-submodule of M*. Then M is N* projective and M is M*/N* projective.

Proposition 2.1. [29] Let M and M; be G-modules.Then M is @} ; M;-projective if and
only if M is M;-projective V i

Definition 2.5. [32,34] A neutrosophic set P of the universal set X is defined as P =
{(n,tp(n),ip(n), fr(n)) : n € X} where tp,ip, fp : X — (70,1%). The three components

tp,ip and fp represent membership value (Percentage of truth), indeterminacy (Percentage
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of indeterminacy) and non membership value (Percentage of falsity) respectively. These com-

ponents are functions of non standard unit interval (70,17) [27].

Remark 2.3. [20,32]
(1) If tp,ip, fp : X — [0,1], then P is known as single valued neutrosophic set(SVNS).
(2) In this paper, we discuss about the algebraic structure R-module with underlying set
as SVNS. For simplicity SVNS will be called neutrosophic set.

(3) UX denotes the set of all neutrosophic subset of X or neutrosophic power set of X.

Definition 2.6. [26,[32] Let P,Q € UX. Then P is contained in Q, denoted as P C Q if
and only if P(n) < Q(n) Vn € X, this means that tp(n) < tg(n),ip(n) < ig(n), fr(n) >
fom), VneX.

Definition 2.7. [26,[33]|For any neutrosophic subset P = {(n,tp(n),ip(n), fr(n)) : n € X},
the support P* of the neutrosophic set P can be defined as P* = {n € X,tp(n) > 0,ip(n) >

Definition 2.8. [§] Let (G, *) be a group and M be a G module over a field K. A neutrosphic
G-submodule is a neutrosophic set P = {(n,tp(n),ip(n), fr(n)) : n € M} in Gy such that the

following conditions are satisfied;

(1) tp(on+70) > tp(n) ANtp(0)
ip(on+16) > ip(n) Nip(0)
fe(on+170) < fp(n) Vv fr(0),
Vn,0e M, oTe K

(2) tp(&n) = tp(n)
ip(§n) > ip(n)
frEn) < frimVEeGneM

Remark 2.4. We denote neutrosophic G-submodules using single valued neutrosophic set by
U(Gu).

Example 2.2. Consider the example for G-module M. Define a neutrosophic set

P={n,tp(n),ir(n), fr(n) :n € M}
of M where

1 ifn=0 1 ifn=20 0 ifn=20
tp(n) = Z,f T i) = Zf ! , fe(n) = Z,f !
0.5 ifn=#0 0.5 ifn+#0 025 ifn#0

Then P is a neutrosophic G-submodule of M.
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Definition 2.9. [8] Let P = {(z,tp(x),ip(x), fp(x)) : € X} € U({®™)). The support
P* of the neutrosophic G-submodule P can be defined as P* = {z € X,tp(z) > 0,ip(x) >
0, fp(z) < 1,Vx € G}

Proposition 2.2. If P € U(G)y), then the support P* € G,y .

Definition 2.10. [§] Let P € U(Gyr) and N be a G-submodule of M. Then the restriction
of P to N is denoted by P|x and it is a neutrosophic set of N defined as follows P|y(n) =

(77’ tP|N (7])7 iP\N (77)’ fP\N (77)) where
tpy () =tp(n), ipy () =ir(n), friy(n) = fp(n), ¥ne N,

Proposition 2.3. [8] Let P € U(Gys) and N C M then P|y € U(Gn).

Definition 2.11. [8] Let M € G and N be a G-submodule of M. Then the neutrosophic
set Py of M/Ndefined as Py(n+ N) = {n+ N,tpy(n+ N),ipy,(n+ N), fpy(n+ N)},where

tpy(n+N)=Vtp(n+n):neN
ipy(n+ N)=Vip(n+n):neN
fey(n+N)=Afp(n+n):neN,¥ne M

Proposition 2.4. [8] Let M € G. Let N be a G-submodule of M. Then Py € U(Gyy/n)-

Proposition 2.5. [8] Let P € U(Gy) and Q € U(Gpr+) where M and M* are G-modules
over the field K. Let r € [0,1], the neutrosophic set Q, = {n,tq,(n),iq,(n), fo,(n) :n € M*}
defined by tq,(n) = to(n) A, iq.(n) =ign) A1, fo,(n) = fon) V(1 —r)V ne M* bea

neutrosophic G-submodule.

Definition 2.12. [8] Let M and M™* be G-modules over K and a mapping Y : M — M* is
a G-module homomorphism. Also P € U(Gys) and Q € U(Gpr+). A homomorphism Y of M
on to M* is called weak neutrosophic G-submodule homomorphism of P into @ if T(P) C Q.
If T is a weak neutrosophic G-module homomorphism of P into (), then P is weakly
homomorphic to ) and we write P ~ Q.

A homomorphism T of M on to M* is called a neutrosophic G-module homomorphism

of P onto @ if T(P) = @ and we represent it as P ~ Q.

3. Neutrosophic Projective G module

In this section we discuss the generalized notion of projective G-modules, called neutro-
sophic projective G-modules, and study several characteristics of projective G-modules in the

neutrosophic domain.
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Definition 3.1. Let M and M* be G-modules. Let P = {n,tp(n),ip(n), fr(n) : n € M} be
neutrosophic G submodule of M and Q = {n,tq(n),ig(n), fo(n) : n € M*} be neutrosophic
G-submodule of M™. Then P is said to be @) projective, if the following conditions are satisfied;

1) M is M* projective

(1)

(2) tp(n) <tq((n))

(3) ir(n) < iq(v(n))

(4) fr(n) = fo(b(n), V¢ € Hom(M,M*), ne M

Theorem 3.1. Let P and ) be neutrosophic G-submodules of finite dimensional G-modules

of M and M* respectively and M is M* projective. Let {f1, 52, ..., Bn} be a basis for M*. If

(1) tP(U) < mzn{tQ(ﬁj)vj = 1727 7n}
(2) ir(n) < min{iq(B;);j =1,2,...,n}
(3) fp(n) =2 maz{fo(B;);j =1.2,...,n},VneM

Then P is Q)-projective.

Proof. Let Q = {n,ts(n),ig(n), f(n) : n € M*} be a neutrosophic G submodule of M*. Then
Vo, me € M¥5 0,7 € K;

) > to(m) Ato(n2)
2) ig(om +7m2) > ig(m) Nig(ne)
3) folom +1n2) < fo(m) V fo(n2)

)

Also P is a neutrosophic G-submodule of M and M is M* projective G-module and 1 €
Hom(M, M*) be any G-module homomorphism. For any n € M, ¥(n) € M*.
1/)(17) =181+ aefe+ ...+ anfp, oy € K,8, € M*, i =1,2,....n

t(b(m) = tolaafi+azfe+ ...+ anfh)
> tQ(B1) Ng(B2) A
AtQ(Bn)
= mini{tq(p1), to(B2), ...
tQ(Bn)}
> tp(n)
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Similarly iq(¢(n)) = ip(n)
fo(m) = folarBi+ azB + ... + anfBn)
< fo(B1) Ntg(B2) A ... ANtg(Bn)
= maz{fQ(B1), fQ(B2),
-5 fo(Bn)}
fr(n)

IN

. P is Q projective.

Theorem 3.2. Let P € U(Gyy), Q € U(Gp+) and P is @ projective. If N* is a G-submodule
of M* and C € U(Gp~), then P is C-Projective if Q|ny« C C

Proof. Given P is @) projective, then
(1) M is M* projective
(2) tp(n) <to(¥()),
ir(n) <iq(¥(n))
fr(n) = fo(v(n))
V€ Homg(M,M*), n € M. Since N* is a G-submodule of M*, by a theorem M is N*
projective. Let ¢ € Homg(M,N*) and 6 : N* — M* be the inclusion homomorphism. Then
bop=1
.. from the condition 2
tp(n) <tq(v(n)) =tq(0op)(n)
= tq(0(e(n))) = tq(e(n)).
Similarly ip(n) <ig(e(n)) and fp(n) > fo(e(n) ¥V n € M, ¢ € Homa(M,N¥).
Given C € U(Gn+), ¢(n) € N* and Q|ny- C C

toin- () = tqlen) < tcle(n)

= tp(n) < to(e(n)). Similarly, ip(n) < ic(p(n)) and fr(n) > fo(e(n)). Hence P is C-

Projective.

Theorem 3.3. Let M and M* be G-modules where P and () are neutrosophic G-submodules
of M and M* respectively. Let r € [0,1], the neutrosophic set Q, = {n,tq, (1),iq,(n), fo.(n) :

n € M*} defined by tq, (n) = to(n) Ar, iq.(n) =iqn) Ar, fo.(n) = fon)V(L—r)VneM*
be a neutrosophic G- submodule. If P is @), projective, then P is () projective.
Proof. Consider P as @, projective where r € [0,1]. Then

(1) M is M* projective
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~

(2)

p(n) <
<

n
ip(n

~—
|

Since Qr C Q, = tq, (¥(n)) < to(v(n),
io, (1)) <ig((n)) and

fo. (M) > fo(v()),¥ ¥(n) € M*.
= tp(n) < to(v(n)),

ip(n) <ig(¥(n)) and

fe(n) = fo(b(n)) ¥ ne M.
.. P is Q projective.

Proposition 3.1. Let M = &} M; be a G-module where M/s are G-submodules of M. If
P, € U(Gp;) (1 < i < n), then the neutrosophic set P of M defined by tp(n) = A{tp, (m:) :

i=1,2,..,n} ip(n) = A{ip,(mi) i =1,2,

.,n}and fp(n) = V{fp,(m) i =1,2,...,n} where

n= Z;z?(m), n; € M;, is a neutrosophic G-submodule of M.

Proof. Let n,v € M where n = 32'=" 5, and v = Y'=7 v

Each n;, v; € M; and 90,b € K.

Then by definition, on + 7v = S>'=}[on; + Tv;] where on; 4+ Tv; € M; (1 <4 < n). Now

tp(on+71v) =

Y

Similarly ip(on + 7v) > ip(n) Nip(v)

Now consider

Now, for g e G,n e M

tp(gn)

A tPi(Qni + TVi)
A {tPi (m)JPi(Vz’)}
{Atp(m)} AN tp (1)}

tp(n) Ntp(v)

vV fp,(oni + Tvi)

VA (mi), fr,(vi)}

{V fa(m)} VAV fe(vi)}
fe(m)V fp(v)

= Atp(gm)
> A{tp(ni)}

= tp(n)

Binu R & Paul Isaac,Neutrosophic projective G-submodules



Neutrosophic Sets and Systems, Vol. 32, 2020 102 D

Similarly ip(gn) > ip(n), fr(gn) < fr(n) .. P € U(Gum)- 0

Definition 3.2. Let M = &}, M; be a G module where M/s are G-submodules of M. If P; €
U(Gn;) (1 <i<n)and P € U(Gu=gr_ m;) with tp(0) =tp,(0),ip(0) = ip,(0) and fp(0) =
fp,(0) ¥ i Then P is called the direct sum of P; and it is denoted as P = @' | P;.

Theorem 3.4. Let M = &} ;M; be G module where M/s are G submodules of M. Let
P e U(Gy) and Q; € U(Gyy,) such that Q = @ Q. Then P is @ projective if and only if
P is Q; projective Vi.

Proof. Assume that P is Q-projective, then
(1) M is M projective
(2) tr(n) <tq(¥(n),
ir(n) < ig(v(n)
fp(n) = fo(d(n)
v € Homg(M,M);n e M
To prove that P is @); projective where ¢ = 1,2,...,n, it is enough to prove the following
conditions.
(1) M is M; -projective
(2) tr(n) <tq,(¢(n)),
ip(n) <iq:(¢(n))
frn) = fa.(e(n))
where V ¢ € Homg(M, M;),n € M.
Here M is M = @}, M;-projective and by the the proposition M is M; projective V i =
1,2,...,n. Let ¢ € Homg(M,M;) and 0 : M; - M € Homg(M;, M) (inclusion) such that
Y =0o0p. ThenV ¢ € Homg(M, M;)

tp(n)

IN
~
Lo

Similarly ip(n) <ig(p(n)) and

fe(m) = fo(¥(n))
= fa((@op)(n)
= fo(0(e(n))
= Jale(m)
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Now ¢(n) € M; C M and n € M and consider

e =040+ ..+¢n)+..4+0
Then

telem) = tQ0+0+..+¢(m) +..+0)
= t,(0) Ntg,(0) A... Atg, () A ... ANtg, (0)

= tq,(¢(n))

Similarly ig(¢(n)) = ZQZ( (n)) and
folen) = fo,(e(n) v

= tp(n) <tgle(n)) = tQi(w(n))-
Also ip(n) <ig(p(n)) =iq,(»(n) and

fr(n) = fqle(n) = le( (n),V'n €M, p € Homag(M, M;).
Then P is Q); projective.

Conversely Assume that P is Q); projective where ¢ = 1,2, ..., n. Then

(1) M is M;-projective

(2) tp(m) < tq,(pi(m)),

p(m) <iq,(¢i(m) and
fP(m) 2 fQi(Qpi(m)’

vi € Homg(M, M;);m € M

~

To prove P is (Q projective, it is enough to prove the following conditions

(1) M is M projective
(2) tp(n) < to(¥(n)),

ir(n) <iq(¥(n))
fe(n) > fo(¥(n)), ¥ € Homg(M, M);n e M

- Since P is Q; projective and proposition 2.1, M is M-Projective where M = @7 M;.
2. :- Let v € Homg (M, M) where M = @ M, such that ¥V n e M,
() € M, ie. Yv(n) =m+n2+ .. +n,,V 1 € Mj;1 < i <nandm : M — M; be the
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projection map where i = 1,2, ..., n such that m;(¢(n)) = n;, V i., then

Yv(m) = m+nm+..+n,
V€ M,1<i<n
= m((n)) + m(() + ...
et TR (Y (1)
= (moy)n)+ (mog)(n)+...+
(75 0 10) (n)
= o1(n) +p2(n) + ... + n(n)

Also

tq(n) = toler(n)) +ige2(n)) + ... +
tQ(en(n))
= Mtg.(pin):0<i<n}
[by the proposition

tp(n)

v

Similarly iq(v(n)) = ip(n) and

fom) = folei(n) + fole2(n)) +
.+ fo(en(n))
< V{fq:(pi(n) : 0 <i <n}

< fp(m)

.. Ais @ projective.

4. Conclusion

The study of G-module in a neutrosophic set domain using a single-valued neutrosophic set
provides a new step in the algebra sector and helps to analyze group action in application level
on a vector space. Projective G-modules expand the free G-modules class by maintaining a
portion of the free module’s primary properties. Neutrosophic projective G-module is one of
the most generalizations of classical projective G-module. This paper has developed, the notion
of projectivity of neutrosophic G-modules and its quotient and direct sum properties of M
projectivity. This analysis leads to the extension of the quasi projective module, neutrosophic

injective & projective modules and its features in neutrosophic domain.
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Abstract. In this paper we have introduced the concept of score and accuracy function of the Quadriparti-
tioned Single valued Neutrosophic Numbers (QSVNN) and also defined ranking methods between two QSVNNs
which is based on its score function. Dombi operators are used in solving many Multicriteria Attribute Group
decision making (MAGDM) problems because of its very good flexibility with a general parameter.Here Dombi
T-norm and T-conorm operations of two QSVNNs are defined. Based on this Dombi operations, we introduced
two Dombi weighted aggregation operators QSVNDWAA and QSVNDWGA under Quadripartitioned Single
valued Neutrosophic environment and also studied its properties. Finally, we discussed about Multicriteria
Attribute Decision making method (MADM) using QSVNDWAA or QSVNDWGA operator and also an illus-
trative example is given for the proposed method which gives a detailed results to select the best alternative

based upon the ranking orders.

Keywords: Quadripartitioned single valued neutrosophic sets, Score and Accuracy functions, Dombi Weighted

Aggregation Operators .

1. Introduction

Fuzzy sets which allows the elements to have a degrees of membership in the set and it was
introduced by Zadeh [31] in 1965. The degrees of membership lies in the real unit interval
[0, 1]. Intuitionstic fuzzy set (IFS) allows both membership and non membership to the ele-
ments and this was introduced by Atnassov |1] in 1983. By introducing one more component
in IFS set neutrosophic set was introduced by Smarandache [19] in 1998. Neutrosophic set
has three components truth membership function, indeterminacy membership function and
falsity membership function respectively. This neutrosophic set helps to handle the indetermi-
nate and inconsistent information effectively. Later Wang [21] (2010) introduced the concept

of Single valued Neutrosophic set (SVNS) which is a generalization of classic set, fuzzy set,
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interval valued fuzzy set and intuitionstic fuzzy set.

In 1982 Pawlak [17] defined the standard version of rough set theory which is given in terms
of a pair of sets that is lower and upper approximation sets. It provided a new approach
to vagueness which is defined by a boundary region of a set. Later Yang(2017) [23] defined
a new hybrid model of single valued neutrosophic rough set model and it has many appli-
cations in medical diagnosis, decision making problems, image processing etc., Neutrosophic
set helps to solve many real life world problems [2-6] because of its uncertainty analysis in
data sets. K.Mohana, M.Mohanasundari [15] studied On Some Similarity Measures of Sin-
gle Valued Neutrosophic Rough Sets and applied the concept in Medical Diagnosis problem.
When indeterminacy component in neutrosophic set is divided into two parts namely ’Con-
tradiction’ ( both true and false ) "Unknown’ ( neither true nor false) we get four components
that is T,C,U,F which define a new set called ’Quadripartitioned Single valued neutrosophic
set” (QSVNS)introduced by Rajashi Chatterjee., et al. [18] And this is completely based on
Belnap’s four valued logic and Smarandache’s ’Four Numerical valued neutrosophic logic’.
By combining the concept of rough set and QSVNS a new hybrid model of ’Quadriparti-
tioned Single valued neutrosophic Rough set’ (QSVNRS) was introduced by K.Mohana and
M.Mohanasundari. [16]

Many mathematical operations like average, aggregate, sum, count, max, min are performed
with the help of aggregation operations.Multicriteria Attribute decision making (MADM) is
an approach which is used to select a best one when several alternatives are included un-
der consideration of many attributes. So many researchers [8}/11,[2427,29] pay attention to
solve the Multicriteria Attribute decision making problems using the concept of various cor-
relation coefficients of the different sets like fuzzy set, IFS, SVNS, QSVNS. And also many
researchers [12-14, 20,22} 28,30,33] used aggregation operators as one of the tool to solve a
Multicriteria decision making problem and also studied its properties. Dombi Bonferroni mean
operators were introduced by Dombi [10] in 1982 which is used in many Multicriteria Attribute
Group decision making (MAGDM) problems because of its very good flexibility with a general
parameter. J.Chen and J.Ye [7] studied Some Single-valued Neutrosophic Dombi Weighted
Aggregation Operators for Multiple Attribute Decision-Making problem.

In this paper Section 2 deals about the basic definitions of Quadripartitioned Single valued
neutrosophic sets, Score and accuracy function of single valued neutrosophic number, Dombi
T norm and T conorm operations of two single valued neutrosophic numbers(SVNN) and its

properties. We have defined Score and accuracy function of quadripartitioned single valued
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neutrosophic number, Dombi T norm and T conorm operations of two quadripartitioned single
valued neutrosophic numbers(QSVNN) in Section 3. Based on the operations of Dombi T norm
and T conorm on two QSVNNs we have defined two aggregation operators QSVNDWAA and
QSVNDWGA and also studied its properties. Section 4 deals about Multicriteria Attribute
Decision making (MADM) method using the above proposed operators QSVNDWAA and
QSVNDWGA. Finally an illustrative example is given in the method which we have discussed

in Section 4.

2. Preliminaries

2.1 Quadripartitioned single valued neutrosophic sets

Definition 2.1. [19]
Neutrosophic set is defined over the non-standard unit interval |70, 11| whereas single valued
neutrosophic set is defined over standard unit interval [0, 1].It means a single valued neutro-

sophic set A is defined by
A={{z,Ta(x),Ia(x), Fa(z)) :xz € X}
where T4 (z), Ia(z), Fa(z) : X — [0, 1] such that 0 < Ts(z) + La(x) + Fa(x) <3

Definition 2.2. [18§]

Let X be a non-empty set. A quadripartitioned single valued neutrosophic set (QSVNS)
A over X characterizes each element in X by a truth-membership function T4(z), a con-
tradiction membership function C4(z), an ignorance membership function Ug(z) and a
falsity membership function F4(z) such that for each x € X | Ty,Cux,Uxs,Fy € [0,1]
and 0 < Ty(x) + Ca(x) + Ua(x) + Fa(zr) < 4 when X is discrete, A is represented as
A=300 (Ta(:), Calwi), Ua(xi), Fa(wi)) /i, zi € X.

Definition 2.3. [1§]

The complement of a QSVNS A is denoted by A and is defined as,

AC =350 (Fa(x), Ua(z:), Ca(xi), Ta(y)) Jwi, 2 € X ice., Tac(x;) = Falw;),
Cyo(x;) =Ua(xy),Uge (i) = Calxy), Fpo(x;) = Ta(zi),x; € X

Definition 2.4. [1§]
Consider two QSVNS A and B, over X. A is said to be contained in B, denoted by A C B iff
Ta(x) <Tp(x),Ca(z) < Cp(z),Us(x) > Up(zx), and Fa(x) > Fp(x)

Definition 2.5. [18]
The union of two QSVNS A and B is denoted by AU B and is defined as,
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AUB = Z?:l <TA(331‘) V TB(l‘i), CA(-%) vV CB(l‘i), UA($1) A UB(J}Z'), FA(QS‘z) VAN FB($2)> /
T, x; € X

Definition 2.6. [18§]
The intersection of two QSVNS A and B is denoted by AN B and is defined as,

ANB =320 (Ta(wi) ATs(xi), Calwi) A Cplai), Ualxi) V Up(zi), Fa(wi) V Fp(xi)) /
Xi, T; € X

Definition 2.7. [2]]
Let X be a universal set. A SV NS N in X is described by a truth-membership function ¢ (z) ,
an indeterminacy-membership function uy (), and a falsity-membership function vy (z). Then

a SVNS N can be denoted as the following form:

N = {{z,ty(z), un(z), vy (2)) [r € X}
where the functions ty(x), un(z),vn(z) € [0,1] satisfy the condition 0 < ty(x) + un(z) +
vy(z) < 3 for x € X. For convenient expression, a basic element (x,ty(z),un(z), vy(x)) in
N is denoted by s = (t,u,v,) which is called a SVNN. For any SVNN s = (¢, u, v, ), its score

and accuracy functions can be introduced, respectively as follows:
E(s)=(24t—u—v)/3, E(s)€]|0,1],
H(s)=t—wv, H(s)e[-1,1]
According to the two functions E(s) and H(s), the comparison and ranking of two SVNNs are
introduced by the following definition.

Definition 2.8. [32] Let s1 = (t1,u1,v1) and so = (to,us,v2) be two SVNNs. Then the

ranking method for s; and ss is defined as follows:

(1) If E(s1) > E(s2) then s1 > sa,
(2) If E(s1) = E(s2) and H(s1) > H(s2) then s1 > s9,

(3) If E(s1) = E(s2) and H(s1) = H(sz2) then s; = sa.

Definition 2.9. [10] Let p and g be any two real numbers. Then, the Dombi T-norm and

T-conorm between p and ¢ are defined as follows:

Op(p,q) = T
’ w{ (5 (5}
c _ 1 _ 1
Oblea =1 1+{(1‘fp)p+<413q)p}1/p7
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where p > 1 and (p, q) € [0,1] x [0, 1].

According to the Dombi T-norm and T-conorm, we define the Dombi operations of SVNNs.

Definition 2.10. [7] Let s; = (t1,u1,v1) and sy = (t2,u2,v2) be two SVNNs, p > 1, and
A > 0. Then, the Dombi T-norm and T-conorm operations of SVNNs are defined below:

(1) 51 2] S92 =

<1_ t pl ty \P1/P’ 1wy pl 1wy \P1 /P 1—v; pl 1—vg \” 1/p>
) () ) ()T ) ()

(2) s1 ® 52 =

< 1t pl 1ty )P 1/p’1_ uy Pl ug \P 1/071_ vy pl vy \P 1/P>
)+ (52 () (7)) w{() (%))
3) ds1=(1— 1 1 1
0 = T ST T
1 1 1

(4) 57 = 11— 1 —
AP b)Y )
Definition 2.11. [7] Let s; = (tj,u;,v;)(j = 1,2,...,n) be a collection of SVNNs and
w = (w1, w2, ..., wy) be the weight vector for s; with w; € [0,1] and > %_; w; = 1. Then, the
SVNDWAA and SVNDWGA operators are defined respectively as follows:

SVNDWAA (s1,592,...,5n) = D wjs;
j=1

n

SVNDWGA (s1,52,...,5,) = @ s;{]j
j=1

3. Quadripartitioned single valued Neutrosophhic Dombi Operations

Definition 3.1. For an QSVNNs g = (¢, ¢, u, f) its score and accuracy functions are defined
by,

E(q) = (B+t—c—u—f)/4, E(q) €l[0,1], (1)

H(q)=t—f, H(q) €[-1,1] (2)

The following definition defined the comparison and ranking of any two QSVNNs based on
the two functions E(s) and H(s).

Definition 3.2. Let ¢; = (t1,c1,u1, f1) and g2 = (t2, ca, uz, f2) be two QSVNNs. Then the

ranking method for ¢; and g3 is defined as follows:
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(1) If E(q1) > E(q2) then ¢ > g2,

(2) If E(q1) = E(q2) and H(q1) > H(q2) then ¢1 > gqo,

(3) If E(q1) = E(q2) and H(q1) = H(g2) then q1 = go.

Definition 3.3. The Dombi T-norm and T-conorm operations of any two QSVNNs ¢; =

(t1,c1,u1, f1) and g2 = (to, ca, ug, fo) are defined as follows:

1 =(1- L 1— 1 :
e < ) )T ) )T
1 1
() ()} e () ()Y
_ 1 1

(2) Q1 Qg2 = <1+{(1tfl)9+(1t52)p}1/w 1+{(1:fl>0+(1252>p}1/p7

1= ug pl g pl/p’l_ 1 pl 7o pl/p>

{(27) + (25)") +{ () +(55)")
Aq1 = — 1 — 1 1 1

(3) q1 <1 1+{)\<1i1t1)p}1/p?1 1+{)\<1ilcl>p}1/p’ 1+{/\<%>p}1/p’ 1+{)\<1;1f1)9}1/ﬂ

1

(4) Qi\:< 1,1t1 pY1/p) 1,161 3 l/p’l_ ull py1/p2~ fll P 1/p>
D) T () {0 (2)") =0 ()"

4. Dombi Weighted Aggregation Operators of QSVNNs

In this section we introduce two Dombi weighted aggregation operators QSVNDWAA and
QSVNDWGA which is based on the Dombi operations of QSVNNs in Definition 3.3 and also

studied its properties.

Definition 4.1. A collection of QSVNNSs is denoted by ¢; = (t;,¢j,u;j, fj) (j = 1,2,...,n) and
w = (w1, ws, ..., wy) be the weight vector for ¢; with w; € [0, 1] and Z?:l w; = 1. Then the
QSVNDWAA and QSVNDWGA operators are defined as follows.

QSVNDWAA (g1, 92, -, qn) = D wjq;
j=1
QSVNDWGA (Q17CI27 ey QTL) = ® q;UJ
j=1
Theorem 3.1 A collection of QSVNNSs is denoted by ¢; = (¢j,¢j,uj, fj) (7 = 1,2,...,n)

and w = (wy, wa, ..., wy) be the weight vector for ¢; with w; € [0,1] and Z;L=1 wj = 1. Then
the aggregated value of the QSVNDWAA operator is still a QSVNN and is calculated by the
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following formula,

We can prove this theorem using mathematical induction.
Proof: When n = 2 by using the Dombi operations of QSVNNs in Definition (3.3) we can have

the following result

QSVNDWAA(q1,q2) = q1 P q2

—(1- ! - 1 ,
4\ t \P 1/p e\ Y 1/p
1+{w1 (1—t1> + wo <1_t2> } 1+{w1<1_cl) + wo (1_62) }
1 1 >
P py1/p’ P NPy 1/p
1+%“CJ0 +W<i?>} 1+{W(Uf>+w4ﬁf>}

when n = k, Equation (1) becomes,

QSVNDWAA(Ql,(]Q, ...,qk) = <1 — L 1-— !
1+ {Z

o () S ()}
1 1
1+ {5 (ij}w’ L+ { S (?)p}l/p>
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When n =k + 1 we have the following result

1 1

QSVNDWAA(Ql>q27"'7QI€7qk+1) = <1_ 1—

s ()Y e (S ()]

1 1

; D Wk+19k+1
k 1—u; \PY 1P k 1-£\P 1/P>
e () 1 (S (5R)'

1 1

b (St ()" s ()

Hence we proved that Theorem 3.1 is true for n = k + 1 . Thus Equation (1) is true for all n.
The operator QSVNDWAA satisfies the following properties.
(1) Reducibility : If w = (1/n,1/n,...,1/n), then it is obvious that there exits,

QSVNDW AA(q1, g2, -, 4n) = <1— - ,
et 1+ {4 (%j)p}l/p 1+ {50 (%)p}w

(2) Idempotency : Let all the QSVNNs be denoted by ¢; = (tj,¢j,uj, f;) = q(j = 1,2,...,n).
Then QSVNDWAA (q1,92,-,qn) =q -

(3) Commutativity: Let any QSVNS (qll, q/27 e q;L) be any permutation of (¢1, 2, ..., qn). Then
there is QSVNDWAA (¢;, qy, ..., q,,) = QSVNDWAA (q1, G2, ... ¢n)-

(4) Boundedness: Let gmin = min(si, 2, ..., $n) and ¢maz = max(s1, $2, ..., Sn). Then gupin <
QSVNDW AA(q1,92, -, qn) < Gmax

Proof: (1) Given q; = (t;,¢j,u;, f;) = q(j = 1,2,...,n) Property (1) is trivially true based on
equation (3)
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(2) The following result is derived from the equation (3) and we get,

QSVNDWAA (q1, 92, ---,Gn) = q holds.

(3) This property is obvious.

(4) Consider ¢min = min(q1,q2, ..., qn) = {7, ¢ ,u™, f7) and ¢max = max(q1,q2,...,qn) =
(tt, et ut, fT) Then,

£ = min(t;), e = min(e;),u” = max(u;), f~ = max(f;)

£ = max(ty), ¢ = max(e;), 't = min(uy), £ = min( )

Therefore we get the following inequalities.

1— L <1- L <1- 1
1+{Z;}:1wj(1:—)p}l/p 1_’_{2?:111}]_(1?%7_);)}1/#7 1+{Z?:1w3(1i+)p}l/p
1-— L <1-— 1 <1-— 1
W) mne() T e (ER) Y
1 1
()T ()T

—_

1 T <
1+{Z}l:1wj<1;f)p} /p = 1+{
1 1
1+

H_{Zn Vﬂpl/pg N 1/p§ - .ipl/”
j:lw]< I ) } { j( fj]) } H‘{Zj:le( = ) }

Hence gmin < QSVNDW AA(q1,92, -, Gn) < Gmaz holds.

Theorem 3.2 A collection of QSVNNSs is denoted by ¢; = (tj,¢j,u5, f;) (J = 1,2,...,n)
and w = (w1, W, ..., wy,) be the weight vector for ¢; with w; € [0,1] and >7%_; w; = 1. Then
the aggregated value of the QSVNDWGA operator is still a QSVNN and is calculated by the

following formula:

2?21 w,
2w
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1 1

e (e () Y 1 S (52))

1 1

QSVNDWGA(q1, G2, - qn) = <

1-— 1-

1+ {2?21 w; <1372j)p}1/p’ 1+ {Z?:l wj <1fjf])p}1/p>

The proof is similar to the proof of Theorem (3.1).
This QSVNDWGA operator also satisfies the following properties.

(1) Reducibility : If w = (1/n,1/n,...,1/n), then it is obvious that there exits,

1 1

<1zjtj)p}1/p’ 14 {Z?:l % (1;9)!)}1/,0,

1 1

i T NP 1/p>

(e ()T e ()
(2) Idempotency : Let all the QSVNNs be denoted by ¢; = (tj,¢j,uj, fj) = q(j = 1,2, ...,n).
Then QSVNDWGA (g1, 92, ...,qn) = q -
(3) Commutativity: Let any QSVNS (g, gy, ..., ¢,,) be any permutation of (g1, ¢z, ..., ¢»). Then
there is QSVNDWGA (g, s, .., ¢,) = QSVNDWGCA (q1, 2, ..., qn)-

(4) Boundedness: Let ¢mnin = min(qi, q2,...,qn) and ¢mez = maz(qi,q2,...,qn). Then
Gmin < QSVNDWGA(QbQQa --an) < Gmaz

QSVNDWGA(q1,q, -y qn) = <

3=

1+ {Z}Ll

To prove the above properties it is similar to the operator properties of QSVNDWAA. Hence

it is not repeated here.

5. MADM method using QSVNDWAA operator or QSVNDWGA operator

This section deals about the MADM method to handle the MADM problems effectively
with QSVNN information by using the QSVNDWAA operator or QSVNDWGA operator.
Let A = {4y, As,...., Ay} and C = {C1,C,...,C,,} be a discrete set of alternatives and at-
tributes respectively. The weight vector of the above attributes is given by w = {w1, wa, ..., w, }

such that w; € [0,1] and > 7, w; = 1.
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To make a better decision to choose the alternative A;(i = 1,2,...,m), a decision maker
needs to analyse the attributes C;(j = 1,2,...,n) by the QSVNN g¢;; = (tij, cij, wij, fij) (i =
1,2,...,m;j =1,2,...,n) then we get a QSVNN decision matrix D = (d;;)

mxn

The following decision steps are needed to handle the MADM problems under QSVNN in-
formation by using the operator QSVNDWAA or QSVNDWGA.

Step 1 : Collect the QSVNN ¢;(i = 1,2,...,m) for the given alternative A;(i = 1,2,...,m)
by using the operator QSVNDWAA

¢ = QSVNDW AA(gi1, ¢i2, s Qin)
1 1

:<1_ oY P T e \PY /P’
L {Sie () {Se ()

1 1
14 {Z?:1 w; (1;Zij>p}1/p’ 14 {22:1 w; <1szj)p}1/p>

or by using QSVNDWGA operator

¢ = QSVNDWGA(qi1, G2 -, Gin)
1 1

<1 - {2?21 w; <ﬂ)p}w, 1+ {Z?;l w; (1__c_ij)p}1/p

tij Cij

1 1

1=
T T e BT

where w = (w1, w2, ..., wy) is the weight vector such that w; € [0,1] and >°7_; w; =1

Step 2: Score values E(g;) can be calculated by using Equation (1) with the collective
QSVNN ¢;(i =1,2,...,m)

Step 3: Select the best one according to rank given to the alternatives.

6. Illustrative Example

This section illustrates an example for a MADM problem about investment alternatives

under a QSVNN environment. An investment company chooses three possible alternatives for
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investing their money by considering the four attributes. Let Ay, As, A3 be three alternatives
which represent food, car and computer company respectively. Let C,Cy, Cs, C4 be the four
attributes which denotes i) Knowledge (or) Expertise ii) Start up costs iii) Market or Demand
iv) Competition respectively. Here the alternatives under given attributes are expressed by
the form of QSVNNs. When three alternatives under four attributes are evaluated we get
a quadripartitioned single valued neutrosophic decision matrix D = (g;;)

<tij, Cij, Uij, fl]> (Z = 1, 2, 3;j = 1, 2, 3, 4) which is given below.

mxn Where q;; =

(0.5,0.6,0.2,0.1) (0.4,0.2,0.3,0.1) (0.4,0.2,0.3,0.1) (0.6,0.7,0.1,0.5)
D= (0.5,0.1,0.8,0.7) (0.2,0.1,0.8,0.7) (0.5,0.4,0.7,0.3) (0.5,0.4,0.7,0.3)
(0.1,0.2,0.5,0.7) (0.1,0.5,0.3,0.4) (0.3,0.2,0.7,0.8) (0.9,0.8,0.4,0.1)

The weight vector for the above four attributes is given as w = (0.35,0.25,0.25,0.15). Hence
the proposed operator of QSVNDWAA (or) QSVNDWGA are used here to solve MADM prob-
lem under QSVNN information.

The following steps are needed to solve MADM problem when we use the operator QSVND-
WAA. Step 1 : By using Equation(1) for p = 1 derive the collective QSVNNs of ¢; for the
alternative A;(i = 1,2,3) which is given below.

q1 = (0.4760,0.6667,0.2034,0.1136) ,

g2 = (0.4483,0.25,0.7568, 0.4565) ,

g3 = (0.6038,0.5,0.4414, 0.3404)

Step 2 : Score values E(g;) can be calculated by using Equation (1) of the collective QSVNN
qi(i = 1,2, 3) for the alternatives A;(i = 1,2, 3) gives the following results.

E(q1) = 0.6231, E(q2) = 0.4962, E(q3) = 0.5805

Step 3: The ranking order is given according to the obtained score values
q1 > q3 > q2 and the best one is ¢;

The same MADM problem can also be solved by using the another proposed operator that
is QSVNDWGA. The following steps are needed to solve the MADM problem.

Step 1 : By using Equation (4) for p = 1 derive the collective QSVNNSs of ¢; for the alter-
native A;(i = 1,2,3) which is given below.
q1 = (0.4545,0.3033,0.2416,0.1965) ,
g2 = (0.3636,0.1429,0.7692,0.6111) ,
g3 = (0.1429,0.2712,0.5328, 0.6667)
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Step 2 : Score values E(g;) can be calculated by using Equation (1) of the collective QSVNN

qi(i = 1,2, 3) for the alternatives A;(i = 1,2, 3) gives the following results.

E(q) = 0.6783, E(gz) = 0.4601, E(g3) = 0.4181

Step 3: The ranking order is given according to the obtained score values

q1 > q2 > g3 and the best one is ¢

The following Table 1 and 2 shows the ranking results for the parameters of p € [1,10] of

the quadripartitioned single valued neutrosophic Dombi weighted arithmetic average (QSVND-

WAA) operator and quadripartitioned single valued neutrosophic Dombi weighted geometric

average (QSVNDWGA) operator respectively.

We can observe the following results from Tables 1 and 2.

1) Different aggregation operators that is QSVNDWAA and QSVNDWGA shows different

ranking orders. But the ranking orders due to different operational parameters are same ac-

cording to the one operator. This results that the operational parameter p is not sensitive

in this decision making problem since we get the same ranking orders corresponding to the

QSVNDWAA and QSVNDWGA operator.

TABLE 1. Ranking results of the operator QSVNDWAA for different opera-

tional parameters.

p | E(a)E(g2),E(g3) | Ranking Order
1 | 0.6231,0.4962,0.5805 ¢G> g3 > g
2 | 0.6596,0.5044,0.6323 Q> a > @
3| 0.6601,0.5089,0.6468 Q> a > @
4 |0.6619,0.5118,0.6535 Q> >
5 | 0.6637,0.5139,0.6577 Q> > @
6 | 0.6652,0.5154,0.6605 ¢G> g3 > @
7 | 0.6665,0.5166,0.6626 Q> > g
8 | 0.6675,0.5181,0.6641 Q> q > @
9 | 0.6683,0.5184,0.6654 Q> a > @
10 | 0.6689,0.5191,0.6664 Q> >
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TABLE 2. Ranking results of the operator QSVNDWGA for different opera-

tional parameters.

p | E(q1),E(q),E(¢q3) | Ranking Order
1 | 0.6783,0.4601,0.4181 0> g > q
2 | 0.6619,0.4424,0.3994 > @ > g
3 0.6475,0.4308,0.3877 Q> q > q3
4 | 0.6380,0.4236,0.3799 a1 >q2>q3
5 |0.6315,0.4196,0.3745 Q1> q>qs
6 0.6269,0.4158,0.3706 qQ > q2 > g3
7 0.6236,0.4136,0.3678 Q> q > q3
8 0.6204,0.4119,0.3656 Q> q > q3
9 0.6185,0.4105,0.3638 Q> q > q3
10 | 0.6167,0.4094,0.3624 Q> q > q3

1) The ranking orders according to the operators QSVNDWAA and QSVNDWGA are dif-
ferent
2) Ranking orders are not affected by different operational parameters of p € [0, 1] in both the
operators which shows that p is not sensitive in this decision making problem.
3) These aggregation methods of the operators QSVNDWAA and QSVNDWGA provides new
method to solve MADM problems under an QSVNN environment.

7. Conclusion

In this paper we have studied the Dombi operations of QSVNN based on the Dombi T-norm
and T-conorm operations and also we have proposed the two weighted aggregation operators
QSVNDWAA | QSVNDWGA and investigate their properties. Multiple Attribute Decision
making is one of the effective approach which helps us to the problems involving a selection
from a finite number of alternatives are included under finite number of attributes. To solve
these type of MADM problems ranking orders are used to select the best one among the given
alternatives. This paper also deals about MADM method by using the proposed QSVNDWAA
and QSVNDWGA operator under a QSVNN environment. Using these aggregation operators
we calculate the score function of the alternatives with respect to the given attributes and this
score function helps us to rank the alternatives and choose the best one. Finally we illustrated

an example of a MADM problem for the proposed aggregation operators.
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Abstract: k-polar generalized neutrosophic set is introduced, and it is applied to BCK/BClI-algebras. The notions
of k-polar generalized subalgebra, k-polar generalized (€, € Vq)-neutrosophic subalgebra and k-polar generalized
(¢, € Vq)-neutrosophic subalgebra are defined, and several properties are investigated. Characterizations of k-polar
generalized neutrosophic subalgebra and k-polar generalized (€, € Vg)-neutrosophic subalgebra are discussed, and
the necessity and possibility operator of k-polar generalized neutrosophic subalgebra are are considered. We show
that the generaliged neutrosophic g-sets and the generaliged neutrosophic € \g-sets subalgebras by using the k-polar
generalized (€, € Vq)-neutrosophic subalgebra and the k-polar generalized (g, € V¢)-neutrosophic subalgebra. A
k-polar generalized (€, € Vq)-neutrosophic subalgebra is established by using the generaliged neutrosophic € Vg-
sets, conditions for a k-polar generalized neutrosophic set to be a k-polar generalized neutrosophic subalgebra and a
k-polar generalized (g, € V¢)-neutrosophic subalgebra are provided.

Keywords: k-polar generalized neutrosophic subalgebra, k-polar generalized (€, € Vq)-neutrosophic subalgebra,
k-polar generalized (g, € Vq)-neutrosophic subalgebra.

1 Introduction

In the fuzzy set which is introduced by Zadeh [35], the membership degree is expressed by only one function so
called the truth function. As a generalization of fuzzy set, intuitionistic fuzzy set is introduced by Atanassove
by using membership function and nonmembership function. The membership (resp. nonmembership) func-
tion represents truth (resp. false) part. Smarandache introduced a new notion so called neutrosophic set by
using three functions, i.e., membership function (t), nonmembership function (f) and neutalitic/indeterministic
membership function (i) which are independent components. Neutrosophic set is applied to BCK/BCI-
algebras which are discussed in the papers [13, 19, 20, 21, 22, 26, 27, 30]. Indeterministic membership func-
tion is leaning to one side, membership function or nonmembership function, in the application of neutrosophic
set to algebraic structures. In order to divide the role of the indeterministic membership function, Song et al.

R.A. Borzooei, F. Smarandache, Y.B. Jun, Polarity of generalized neutrosophic subalgebras in
BCK/BCl-algebras.
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[31] introduced the generalized neutralrosophic set, and discussed its application in BCK/BCl-algebras. Bor-
zooei et al. [8] introduced the notion of a commutative generalized neutrosophic ideal in a BCK-algebra, and
investigated related properties. They considered characterizations of a commutative generalized neutrosophic
ideal. Using a collection of commutative ideals in BCK-algebras, they established a commutative generalized
neutrosophic ideal. They also introduced the notion of equivalence relations on the family of all commutative
generalized neutrosophic ideals in BCK-algebras, and investigated related properties. Zhang [36] introduced
the notion of bipolar fuzzy sets as an extension of fuzzy sets, and it is applied in several (algebraic) structures
such as (ordered) semigroups (see [12, 7, 10, 28]), (hyper) BCK/BClI-algebras (see [0, 14, 15, 23, 16, 17])
and finite state machines (see [18, 32, 33, 34]). The bipolar fuzzy set is an extension of fuzzy sets whose
membership degree range is [—1, 1]. So, it is possible for a bipolar fuzzy set to deal with positive information
and negative information at the same time. Chen et al. [9] raised a question: “How to generalize bipolar
fuzzy sets to multipolar fuzzy sets and how to generalize results on bipolar fuzzy sets to the case of multipolar
fuzzy sets?” To solve their question, they tried to fold the negative part into positive part, that is, they used
positive part instead of negative part in bipolar fuzzy set. And then they introduced introduced an m-polar
fuzzy set which is an extension of bipolar fuzzy sets. It is applied to BCK/BClI-algebra, graph theory and
decision-making problems etc. (see [4, 2, 1, 3, 29, 5, 25]).

In this paper, we introduce k-polar generalized neutrosophic set and apply it to BCK/BClI-algebras to study.
We define k-polar generalized neutrosophic subalgebra, k-polar generalized (€, € VV¢)-neutrosophic subalge-
bra and k-polar generalized (¢, € V¢q)-neutrosophic subalgebra and study various properties. We discuss char-
acterization of k-polar generalized neutrosophic subalgebra and k-polar generalized (€, € Vg)-neutrosophic
subalgebra. We show that the necessity and possibility operator of k-polar generalized neutrosophic subalgebra
are also a k-polar generalized neutrosophic subalgebra. Using the k-polar generalized (€, € Vq)-neutrosophic
subalgebra, we show that the generaliged neutrosophic g-sets and the generaliged neutrosophic € Vg-sets sub-
algebras. Using the k-polar generalized (¢, € Vgq)-neutrosophic subalgebra, we show that the generaliged
neutrosophic g-sets and the generaliged neutrosophic € Vg-sets are subalgebras. Using the generaliged neu-
trosophic € Vg-sets, we establish a k-polar generalized (€, € Vq)-neutrosophic subalgebra. We provide
conditions for a k-polar generalized neutrosophic set to be a k-polar generalized neutrosophic subalgebra and
a k-polar generalized (¢, € Vq)-neutrosophic subalgebra.

2 Preliminaries

If a set X has a special element 0 and a binary operation x* satisfying the conditions:
D Vu,v,w € X) (((u*xv)* (u*xw))* (wxv)=0),
) (Vu,v € X) (u* (uxv))*xv=0),
M) (Yu € X) (u*xu=0),
IV) Vu,v € X) (uxv=0,vxu=0 = u=v),
then we say that X is a BCl-algebra. If a BCl-algebra X satisfies the following identity:
(V) (Vue X) (0*xu=0),

then X is called a BC'K-algebra.
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Any BCK/BClI-algebra X satisfies the following conditions:

(Vu € X) (ux0=u), 2.0
Vu,v,w € X)(u<v = uxw <vkw, wxv < w*u), (2.2)
(Vu,v,w € X) (u*v) xw = (uxw)*v) (2.3)

where v < v if and only if u x v = 0. A subset S of a BCK/BClI-algebra X is called a subalgebra of X if
uxv € Sforall u,v € S.

See the books [1 1] and [24] for more information on BCK/BCI-algeebras.

A fuzzy set 1 in a BCK/BCl-algebra X is called a fuzzy subalgebra of X if p(u % v) > min{u(u), u(v)}
for all u,v € X.

For any family {a; | i € A} of real numbers, we define

: | max{a; | i€ A} if Ais finite,
\/{az [i€A}:= { sup{a; | i € A}  otherwise.

: | min{a,; | i € A} if Ais finite,
/\{al i€ A} = { inf{a; | i € A}  otherwise.
If A ={1,2}, we will also use a; V as and a; A as instead of \/{a; | i € A} and A{a; | i € A}, respectively.

3 k-polar generalized neutrosophic subalgebras

A k-polar generalized neutrosophic set over a universe X is a structure of the form:

E:: {(ZT(Z),ZIT(z)Z (Z)) ’ Ze 4 ZIT(Z) * ZIF(Z) = i} G-b

7ZIF(Z)’ZF

where ZT, ET, Z] r and 7, r are mappings from X into [0, 1]’f . The membership values of every element z € X
in {7, {rr, Urr and { are denoted by

(3.2)

~
o
—~
I
N—
\
/N
—
N
—_
@)
N
A
SN~—
—
I
SN~—
N
¥
@)
)
&
SN~—
—~
I
~
—
N
B
O
S
A
~
—~
I
~

respectively, and satisfies the following condition
(mi 0 Lrr)(2) + (mi 0 rp)(2) < 1

forall:=1,2,--- k.
We shall use the ordered quadruple L= (ZT, ET, ZI 7, 7, F) for the k-polar generalized neutrosophic set in
(3.1).
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Note that for every k-polar generalized neutrosophic set L= (ZT, ZIT, ZI ", 7, F) over X, we have
(V2 € X) (6 < Up(2) + Orp(2) + Lrp(2) + Op(2) < 3) ,

thatis, 0 < (m; 0 07)(2) + (m; 0 Lyp)(2) + (w0 Cyp)(2) + (mi0 lp)(2) < 3forall 2 € X andi =1,2,--- , k.
Unless otherwise stated in this section, X will represent a BCK/BCl-algebra.

Definition 3.1. A k-polar generalized neutrosophic set L = (ZT, ZIT, Z]F, ZF) over X is called a k-polar
generalized neutrosophic subalgebra of X if it satisfies:

EIT(Z *x y) = [T(Z) A €IT
Vz, X - —~ ~ , 3.3
A (2 *y) Sfm(z) v e(y) ! G
Toeey) < T2 VInly) )
that is,
[ (miolr)(z*y) > (70 br)(2) A (i 0 Ir) (v)
{ (WzoliIT)(Z*y) > (WiOfIT)(Z)/\(WzofAIT)(y) 3.4)
(i Ole) zxy) < (m OA@IF)(Z) V (m; iglF)(Z/)
L (miolp)(z*y) < (molp)(2)V (miolr)(y)

fort =1,2,--- k.

Example 3.2. Consider a BC' K -algebra X = {0, o, 3, v} with the binary operation “x” which is given below.

= L O *
= L oo
=2 O O
= O 0 o™
O™ R o

Let £ := (ZT, ZIT, EAI 2 7, F) be a 4-polar neutrosophic set over X in which ZT, ZIT, Z[F and ZF are defined as

follows:
r (0.6,0.7,0.8,0.9) if z =0,
~ A (0.4,0.4,0.8,0.5) if z = a,
br: X =01 2= { (05,0.6,0.7,03) if z =6,
L (0.3,05,04,0.7) if 2z =1,
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( (0.7,0.6,0.8,0.9) if = =0,
~ 4 (0.6,0.4,0.7,0.5) if z = a,
br: X =01, 2 { (0.5,0.5,0.4,0.8) if z =,
L (0.2,0.6,0.5,0.7) if z =1,
( (0.2,0.3,04,0.5) if z=0,
~ . (0.4,0.7,0.5,0.8) if z = a,
lp: X = (0.1, 2 { (0.5,0.5,0.8,0.6) if z =8,
L (0.7,0.3,0.6,0.7) if z =7,
((04,0.4,0.3,02) if z=0,
- y (0.8,0.7,0.5,0.3) if z = a,
i X201, 2= { (0.6,0.5,0.6,0.6) if z =,
L (0.4,0.6,0.8,0.4) if z =1,

It is routine to verify that L= (ZT, ZIT, EAI 2 7, F) is a 4-polar generalized neutrosophic subalgebra of X.
If we take z = y in (3.3) and use (III), then we have the following lemma.

Lemma 3.3. Let L = <ZT, ZIT, Z[F, 7, F) be a k-polar generalized neutrosophic subalgebra of a BCK/BCI-
algebr X. Then

r(0) > Cr(2), Lrr(0) > rr(2)
T2 € X) 7 00) < Buel2), n(0) < Bn(2) ) | )

Proposition 3.4. Let L= (ZT, ET, EAI 7, 7, F) be a k-polar generalized neutrosophic set over X. If there exists
a sequence {z,} in X such that lim ZT<ZH) =1 = lim ZIT(zn) and lim le(zn) =0 = lim Zp(zn), then
n—oo n—o0 n—o0 n—00

Proof. Using Lemma 3.3, we have

n—oo n—o0

This completes the proof. ]

Proposition 3.5. Let L= (ZT, ZIT, Z] F 7 F) be a k-polar generalized neutrosophic subalgebra of X such that

(Vz.y € X) br(zxy) 2 br(y), bir(z+y) 2 br(y) ) ‘ 3.6)
Cir(zxy) < Lie(y), Lr(z xy) < Lp(y)

Then L is constant on X, that is, {1, {11, 1r and {r are constants on X.
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Proof. Since z x 0 = z for all z € X, it follows from the condition (3.6) that

), Urr(2) = Lrp(z % 0) > £17(0), (3.7)

Ur(2) = br(z % 0) > )
#(0), Up(z) = Up(z 0) < U5(0) (3.8)

> 07(0
Ur(2) = Lip(2 % 0) < &

for all z € X. Combining (3.5) and (3.7) induces ET( ) = ZT(O), ET(z) = ET(O), pr(z) = ZIF(O) and
EF( ) = EF(O) for all = € X. Therefore ET, KIT, EIF and /p are constants on X, that is, £ is constant on
X. OJ

Given a k-polar generalized neutrosophic set L = (ZT, EA[T, ZIF, 7, F) over a universe X, consider the
following cut sets.

Ulr,ivy) = {z € X | In(2) > ir),
U(lrr, i) = {zGXMIT( ) > A},
L(Z]FyﬁIF) = {ZEX|ZIF( ) < Ak,
L(lp, i) :={z € X | lp(z) < Ap}

for Ay, iurp, frr, ip € [0, 1]%, that is,

U(lp, i) == {z € X | (m;0lr)(2) > dd foralli = 1,2, -+, k},

U(lrr,ir) i={z € X | (m; 0 lyp)(2) > iy foralli = 1,2, , k},

L(lyp, fup) = {z € X | (m; 0 l)(2) < Ay foralli = 1,2, -, k},

L(lp,ip) ={z € X | (m; 0 lp)(2) < A foralli =1,2, -, k}
where iy = (np, N7, -+, n}), ur = (nm nir, -+ nip), e = (nip, n%F, o nip) and np = (g,
nF,«~ nk.). Tt is clear that U(ET,nT) ﬂl 1U(ET,nT) U(lrr,nr) = ﬂz 1U(€IT,nIT) (KIF,nIF) =

ml 1L(€]F,7”L[F) and L(ﬁF,TLF) ml 1L(€F,TLF> where

U(lr,nr)" = {z € X | (m; 0 br)(2) > it} },
U(EA Jarp) = {z € X | (m OZIT)(Z) > g},
Lrp,up) = {2 € X | (m 0 lrp)(2) < g},
L(lp,ip) = {z € X | (m; 0 lp)(2) < itf}

fort =1,2,--- k.

We handle the characterization of k-polar generalized neutrosophic subalgebra.
Theorem 3.6. Let L :— <ZT, ZIT, ZIF, 7, F) be a k-polar generalized neutrosophic set over X. Then Lisak-
polar generalized neutrosophic subalgebra of X if and only if the cut sets U (?T, nr), U (Z[T, nrr), L(E 7y NF)

and L(@\F, fir) are subalgebras of X for all i, fuyr, A, ip € [0, 1]F.

Proof. Assume that L is a k- -polar generalized neutrosophlc subalgebra of X. Let z,y € X. If z,y €
U(ET,nT) for all A € [0,1]%, then (7; o ET)(z) > n’. and (m; o ET)( ) > nbfori = 1,2+ k. It fol-
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lows that R R R 4

(mi o lr)(z *y) = (mi o lr)(2) A (mi o lr)(y) = ny
i=1,2,--- k. Hence z xy € U(lr,nr), and so U(Lr, i) is a subalgebra of X. If z,y € L({p, aup) for all
np € [0,1]%, then (m; 0 £r)(2) < n' and (m; 0 £p)(y) < ni fori=1,2,--- k. Hence

(mi 0 bp)(2 % y) < (mi o lp)(2) V (m; 0 ) (y) < nl

1=1,2,--- ,k,andso z x y € L(ZF, nr). Therefore L(ZF, nr) is a subalgebra of X. Similarly, we can verify
that U (¢, nyr) and L({;p, nyp) are subalgebras of X.

Conversely, suppose that the cut sets U (ZT, nr), U (Z[T, nrr), L(£ IF, nIF) and L(€ r, np) are subalgebras
of X for all A, fiyp, fyp, ip € [0, 1], If there exists o, 5 € X such that EIT(a x 3) < KIT( ) A KIT(ﬂ) that
is,

<7TZ' e} EIT)(oz * 6) < (7'('1' ¢} E[T)(Oé) A (7Ti e} é[T)(B)
fori=1,2, -,k theno, 3 € U(lyr, yr) and axB ¢ U(Crr, uyr)' where Aty = (w0077 ) () A(mi0lr7)(B)
for forz = 1,2, --- , k. This is a contradiction, and so

-~

Uz % y) > Ur(2) A lr(y)

for all z,y € X. By the similarly way, we know that ZT(z xy) > ZT(Z) A ?T(y) for all z,y € X. Now, suppose
that {r(a * 3) > lp(a) V Lp(5) for some «, f € X. Then

(i 0 Lp)(a* B) > (mi o lp)(a) V (m; 0 L) (B)

fori =1,2,--- k. If we take ni, = (m; 0 {p)(a) V (m; o {p)(B) fori = 1,2,--- ,k, then o, B € L(lp, ip)’
but o (3 ¢ (E F,nF) a contradiction. Hence

~

Up(z % y) < lp(2) V Ip(y)

o~

for all z,y € X. Similarly, we can check that Z[F(Z xy) < lip(z)V Z[F(y) for all z,y € X. Therefore Lisa
k-polar generalized neutrosophic subalgebra of X. O]

Theorem 3.7. Let L :— (ZT, Z]T, ZIF, 7, F) be a k-polar generalized neutrosophic set over X. Then Lisa

k:—polar generalized neutrosophic subalgebra of X if and only if the fuzzy sets m; o KT, ; O 7, 1T, T O E and
oﬂﬁF are fuzzy subalgebras of X where (T; o 05 “)(z) =1—(m oép)( ) and (; ofﬁF)( )=1—(m OKIF)( )
forall z € X and i = k.

Proof. Suppose that Lis a k-polar generalized neutrosophic subalgebra of X. Forany i = 1,2,--- £k, itis
clear that 7; o {1 and 7; o {; are fuzzy subalgebras of X. For any z,y € X, we get
(miol&)(zxy) =1— (molp)(zxy) =1— (mo0lp)(z)V (m o lp)(y)
=1 = (molp)(z)) AL = (molr)(y))
= (m; 0 L) (2) A (mi 0 L%)(y)
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and

(o lsp)(zxy) =1 — (molip)(z%y) = 1 — (m;0 1p)(2) V (m; 0 1) (y)
= (1~ (molp)(2)) AL~ (mi0 ) (y))
= (mi 0 6p)(2) A (mi 0 G ) (y).

Hence 7; o EC and 7; o EC ¢ are fuzzy subalgebras of X .

Conversely, suppose that the fuzzy sets m; o ET, m; O /, T, T; O E and m; o E? r are fuzzy subalgebras of X
fort =1,2,--- ,kandlet z,y € X. Then

(mi 0 br)(2 % y) > (mi 0 lp)(2) A (i 0 Ir)(y),
(mi 0 lrr) (2 % y) > (mi 0 L) (2) A (7 0 Urr) (y)
forall: =1,2,--- , k. Also we have
1 (m; 0 lp)(zxy) = (mi 0 (5) (2 % y) > (w0 65:)(2) A (0 65) ()
= (1= (m 0 lp)(2)) A (L= (m; 0 Ip)(y))
1= ((m; 0 lp)(2) V (m; 0 Ip)(y))

and

(m5 0 Cp)(2 % y) > (13 0 5) (2) A (0 Eop) (y)
(1= (m 0 lrp)(2)) A (L= (m; 0 Lrr)(y))
1~ ((m 0 L1p)(2) V (m; 0 1r) (y))

which imply that (7; o (7)(z % y) < (m; 0 {)(2) V (m; 0 {r)(y) and

1— (mozfp)(z*y) =

(w0 L)z *y) < (w0 i) (2) V (mi 0 L1 (9)
forall: =1,2,--- k. Hence Lisa k-polar generalized neutrosophic subalgebra of X . [
Theorem 3.8. If L= (ZT, Z[T, EAI 2 7, F> is a k-polar generalized neutrosophic subalgebra of X, then so are
DE = (ZT, Z[T, Z?T’ Z%) and OE = (Z?Fv Z%, ZF, Z[F)
Proof. Note that (m;0l17)(2)+(mi0l57)(2) = (miolrr)(2)+1—(miolrr)(2) = 1and (miolp)(2)+(miol5)(2) =
(w,oﬁp)( )+ 11— (moép)( ) = 1, that s, EIT( ) +€IT( ) =1and (p(2) + (5(z) = 1 forall z € X. Hence
Oz = (lr, EIT,KIT, KCT and OL = £§F, EF, lr, 61F> are k-polar generalized neutrosophic sets over X. For
any z,y € X, we get
(w0 Gip) (2 #y) = 1= (mi 0 lrr) (= ) < 1= (w0 Lrr)(2) A (s 0 1) ()
= (1= (miolmr)(2)) V(1= (molir)(y))
= (mi o L) (2) V (mi 0 i) (y),
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(mols)(zxy) =1 — (molr)(zxy) <1 —((m0lr)(2) A (m 0 lr)(y))
= (1~ (molr)(2)) V (1~ (molr)(y))
= (mi 0 65)(2) V (mi 0 63)(y),

(o Cp)(zxy) =1 — (m0 pr(z ) 2 1= ((mo Ur)(2) V (70 L) (y))
= (1~ (m o lrr)(2)) A (1= (m; 0 L) (y))
= (m; 0 651)(2) A (mi 0 L) (),

and
(0 i) (z%y) = 1= (m 0 lp)(z % y) 2 1= (w0 lp)(2) V (w5 0 O) (1)
= (1= (m 0 lp)(2)) A (1= (m; 0 IF)(y))
= (mi 0 05)(2) A (mi 0 £5) (1)
Therefore OL := (ZT, ZIT, @T, ?%) and & < 7 I a 7, F, ZIF> are kpolar generalized neutrosophic subal-
gebras of X. ]

Theorem 3.9. Let Ay x Ao x---x Ay C [0, 1]%, thatis, A; C[0,1)fori =1,2,--- k. LetS; == {S;, | t: € A;}
be a family of subalgebras ofoor 1 =1,2,--- , k such that

x=1Js;, (3.9)
t;€N;
(Vsi,ti € Az) (Si >t = SSi C Stl) (3.10)

fori=1,2,--- k. Let L= (?T, KAIT, Z[F, ?F) be a k-polar generalized neutrosophic set over X defined by

(V2 € X) (3.11)

(mi 0 Ir)(2) = V{a € Ai | 2 € Sy} = (mi 0 lir)(2), )
(miolip)(z) = N{ri€ N | z€ S,,} = (m0lp)(2)

fori=1,2,--- k. Then L= (ZT, EAIT, EA[F, ZF) is a k-polar generalized neutrosophic subalgebra of X.
Proof. Forany: = 1,2, ---  k, we consider the following two cases.

t; = \/{Qz €N | ¢ <t}andt; # \/{QZ e A | g <t}
The first case implies that

2 €U(lr,t) & (Y < t)(z € S,) & z€ ) Su

qi<t;

2 e Ul t:) < (Vg < t:)(z € Sy) &z € ﬂ Sqi-

qi<t;
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Hence U(ZT,t,-) = (S, = U(@T,ti), and so U(Z\T,ti) and U(@T,ti) are subalgebras of X for all i =

i<ty

1,2,..., k. Hence U(ZT,f) = N U(?T,ti) and U(ET,f) = N U(Z[T,ti) are subalgebras of X. For
i=1,2,....k i=1,2,....k
the second case, we will show that U((r,t;) = | S, = U(lyr,t;) foralli = 1,2,... k. If z € | S,

qi>t qi>t
then z € S,, for some ¢; > t;. Hence (m; o {;7)(z) = (m; o lr)(2) > ¢; > t;, and so z € U({r,t;) and
ze Ul t;). Ifz ¢ |J S, then z ¢ S, for all ¢; > t,. The condition ¢; # \/{¢; € A; | ¢; < t;} induces

qi>t;
(ti — ei,t;) N A; = () for some ¢; > 0. Hence z ¢ S,, for all ¢; > t; — ;, which means that if z € S, then
¢ <t;—¢e;. Hence (m; 0 lyr)(2) = (m0lr)(z) <t; —e; < tiandso z ¢ U({yp,t;) = U(lp,t;). Therefore
U(lr,t;) =Ulr,t;) € |J S, Consequently, U(lr,t;) = U(lrr,t;) = |J S, which is a subalgebra of X,

qi>t; qi>t;
and therefore U ((p,t) = () U(lp,t;) and U(lyp, 1) = U(l;r,t;) are subalgebras of X. Now, we
i=1,2,....k i=1,2,...k

consider the following two cases.

S; = /\{'r’l €N |r;>s;}and s; # /\{n €N | > s}
For the first case, we get

z € L(Ep,si) < (Vsp<ri)(z€85,)ez¢e m Sris
T >8;
2 € L(lp,s;) & (Vs; <r)(z€8,) & 2€ [ S

T >S;

It follows that L(ZIF, Si) = L(Z 7 Si) = [) S, which is a subalgebra of X. The second case induces

r;>8;

(siysi+ei)NA; =0 forsomee; >0.Ifz€ |J S, then z € S,, for some r; < s;, and thus (7; o Z[F)(Z) =

r; <8;

(w0 0p)(2) < r; < siie., 2 € L(lyp,s;) and z € L(lp,s;). Hene | S,, € L({1r,s;) = L(lp,s:).

r; <8;
If 2 ¢ |J S, then z ¢ S,, for all ; < s; which implies that z ¢ S, for all r; < s; + ¢;, that is, if

ri<sg
z € S, thenr; > s; +¢;. Thus (m; 0 lrp)(2) = (m0lp)(2) > 85 +¢e; > s;and so 2 & L(lrp,s;) =
L({p, s;). This shows that L({;p, s;) = L({p,s;) = | S, which s a subalgebra of X. Therefore L({f, §) =

r;<8;

N L(ZF, s;) and U(Z[F, )= N L(ZIF, s;) are subalgebras of X. Using Theorem 3.6, we know that
i=1,2,...k i=1,2,...k

L= (ZT, ZIT, ZI F 7, F) is a k-polar generalized neutrosophic subalgebra of X. O

4 k-polar generalized (€, €\/¢)-neutrosophic subalgebras

N 12 E\ & (1 2 EY ~ (1 2 k N1 2
Let iy = (ng, ng, ==+ ,np), e = (N, Nip, ==+, Nip), Nup = (Mg, Nfp, -+, njp) and np = (N, ng,

,n'}) in [0, 1]’C . Given a k-polar generalized neutrosophic set L= (?T, KA[T, ZIF, 7, F) over a universe X,
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we consider the following sets.

T,(0r, fip) = {z € X | {r(2) + fp > 1},
IT,(Crr,hyr) o= {z € X | {yp(2) + Ayp > 1},
[F,(Crp, i) i={z € X | {yp(2) + Agp < 1},
Fy(lp, i) = {z € X | lp(2) + ap < 1},

which are called generaliged neutrosophic q-sets, and

Tevy(lr, fir) = {z € X | {r(2) > g or lp(2) + fp > 11,
ITEVq(EITanT) ={ze X| Orr (2) > fyp or fIT( ) + furr > 1},
IFe(Cip iuyp) i={z € X | {yp(2) < fgp or Up(2) + fupp < 1},
Fevg(lp,ip) i={z € X | lp(2) < g or lp(z) + p < 1}

which are called generaliged neutrosophic €\ q-sets. Then

k k
Ty(br, o) = ﬂTq(gTﬁT)i, IT (b, urr) = ﬂ ITy(rr, ur)’s

i=1 i=1
k k

[F,(l1p, iipp) = m IF,(Crp,ivrr)'s Fy(lp,iip) = ﬂ Fy(lp,ivp)’

i=1 =1
and

k
Tevy(bryir) = (| Tev(lr, i)' ITev(rr, r) = (I Tew(lrr, ur)',

i=1 =1
IFey(lip ur) = (IFewq(ir,tir)'s Felp iip) = () Fevq(lr, iip)'
=1 =1

where

(ET,nT) ={ze X |(mo €T)(z) +nk > 1},
]Tq(EIT,nIT) ={zeX|(m OEIT)(Z') +nbp > 1},
[F,(Crpyivp)t = {2 € X | (mi 0 lrp)(2) + nip < 1},

(EF,TLF) ={zeX|(m oﬁp)(z) +nt < 1}
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and
Tevy(lr,fip) = {z € X | (mi 0 r)(2) > n or (m; 0 bp)(2) + nk > 1},
ITeq(Crr,r) = {z € X | (m; 0 lyp)(2) > niyor (m; 0 ip)(2) + nbyp > 1},
IFevy(lrp,fup) = {2 € X | (70 ip)(2) < nip of (w0 L) (2) + nip < 1},
Fevg(lp,ip) = {z € X | (mi0lp)(2) < nk or (m; 0 lp)(2) + n’ < 1}.
It is clear that T@q(zz,ﬁT) = U(ZT,IALT> U Tq(Z\T,ﬁT), I/\Tevq(z}T,ﬁ[2> = U(Z[T,/T:UT> U ITq(Z]T,TAl[T),

[Fesy(lrp,iure) = L(Crp,ivre) U TE,(Crp, ive), and Feyg(Cp, fip) = L(lp, ) U Fy(Cp, fip).
By routine calculations, we have the following properties.

Proposition 4.1. Given a k-polar generalized neutrosophic set L := (KT, Cir lrp, b F) over a universe X, we

have
L. Iffup, fuyp € [0,0.5)F, then Teyq(br, ip) = U(ly, ag) and ITeyy(Crr, Aur) = U(lrr, furr).
2. Iffup, yp € [0.5,1]F, then IF ey ((rp, up) = L(lyp, fip) and Fe,(Cp, fip) = L(Up, Ap).
3. Iffup, i € (0.5,1)%, then Teayy(br, ip) = T,(tr, fir) and IT eyq(Urr, for) = ITy(Crp, ).
4. If iup, e € [0,0.5)%, then IF ayy(Crp, fuup) = IF, ({15, firp) and Feay(Cp, ip) = F,((p, ip).
Unless otherwise stated in this section, X will represent a BCK/BClI-algebra.

Definition 4.2. Let £ := (ZT, ZIT, ZI F, 7, F) be a k-polar generalized neutrosophic set over X . Then L is called

a k-polar generalized (€, €\ q)-neutrosophic subalgebra of X if it satisfies:

zZ e U(ZT,ﬁT), (VRS U(ZT,ﬁT) = Z*xyY E Te\/q(ZT,ﬁT),

z e U(ZITaﬁIT)7 Yy e U(ZIT7ﬁIT) = z*y € ITEVq(ZITvﬁlT)a @.1)
lip,nr), Yy € LUp,nyp) = 2%y € IFaq(lip, Nir),
ZF7

nr), Y € L(ZFJALF) = Zxyc FEVq(ZFaﬁF>

[\

m

™~
—~~

forall 2,y € X, fip, iyp € (0,1]F and Aup, App € [0, 1)".

Example 4.3. Consider a BC'[-algebra X = {0, 1,2, a, 8} with the binary operation “*” which is given below.

™R N O
™o N = OO
S0 NO O
™R O~ O
— OO0 ™|
SO Q Qo™
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Let £ := <ZT, ZIT, E , 7, F) be a 3-polar neutrosophic set over X in which ZT, ET, ZI r and 7,  are defined as
follows:

((0.6,0.5,0.5) if z=0,
~ (0.7,0.7,0.2) if » =1,
Ir: X = 0,1, 2 i (0.7,0.8,0.5) if » =2,

(0.3,0.4,0.5) if = = a,

L (0.3,04,0.2) if z =B,

 (0.6,0.5,0.6) if z=0,
R (0.4,0.3,0.7) if » =1,
O X = [0,12, 2 — { (0.6,0.8,0.4) if z =2,

(0.7,04,0.1) if z = a,

L (0.4,0.3,0.1) if z =8,

((0.3,0.1,05) if 2 =0,
~ (0.8,0.3,0.7) if » =1,
Dir: X = 0,1, 2 { (0.3,0.8,0.5) if » =2,

(0.7,0.9,0.6) if z = a,

L (0.8,09,0.7) if z =3,

((0.2,0.2,05) if =0,
- (0.3,0.9,0.8) if » =1,
U X = [0,1%, 2 { (0.5,0.2,0.4) if » =2,

(0.6,0.4,0.6) if z = «,

L (0.6,0.9,0.8) if z =3,

It is routine to verify that L= (ZT, Z[T, ZI F, 7, F> is 3-polar generalized (€, € Vq)-neutrosophic subalgebra.

Theorem 4.4. If L = (ZT, Z]T, ZIF, 7, p) is a k-polar generalized neutrosophic subalgebra of X, then the

generaliged neutrosophic q-sets Tq(ZT, nr), ]TQ(Z[T, nr), IFQ(Z[F, nrr) and Fq(zp, ng) are subalgebras of
XfOI’ all ﬁT, /fLIT S (O, 1]k and ﬁF, TAL[F € [O, 1)k

Proof. Let z,y € Ty({y,fr). Then (r(2) + gy > 1 and lp(y) + fp > 1, thatis, (m; 0 £7)(2) + ni > 1 and
(m; 0 lr)(y) +ni > 1fori =1,2,--- , k. It follows that

(7; © ZT)(z *y) + nk

v

(i 0 Cr)(2) A (7 0 br) (y)) + i
((mi 0 br)(2) + nz) A (i 0 Ir) (y) + nr)' > 1

fori =1,2,--- k. Hence ZT(z*y) +7p > 1, thatis, zxy € Tq(z\T,ﬁT). Therefore Tq(ZT,ﬁT) is a subalgebra
of X. Let z,y € IF,(¢{;r,nr). Then (m;0r)(2) +nbp < land (w0 rp)(y) + nip < 1fori =1,2,--- k.
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Hence

(m; 0 Urp) (2 % y) +nbp < ((m; 0 §F><z> V (15 0 0rr) (y) + g
= ((m; 0 Urr)(2) + np)' V (15 0 Urp) (y) + nyp)' < 1

fori =1,2,---,k and so pr(z*y) +fiyp < 1. Thus zxy € ]FQ(EF,ﬁIF) and ]Fq<Z[F,ﬁ[F) is a subalgebra
of X. By the similar way, we can verify that /7, (¢;r, n;r) and F, (¢, np) are subalgebras of X. O

We handle characterizations of a k-polar generalized (€, € Vq)-neutrosophic subalgebra.

Theorem 4.5. Let L :— (ZT, Z[T, Z[F, 7, F) be a k-polar generalized neutrosophic set over X. Then Lisa
k-polar generalized (€, €V q)-neutrosophic subalgebra of X if and only if it satisfies:

( lr(z %) 2 Mlr(2), lr(v), 05} \
(Vg € X) (2 y) > M (2), ir(y), 0.5} 42)
’ b lir(z %) < V{lr(2), Gir(y ) 0.5} |

Dol y) < V{Te(2), Bely). 03} /

that is,
[ (miolr)(z % y) > M{(mi o r)(2), (i 0 £r)(y), 0.5}
{ (mi 0 brr) (2 xy) = N{(mi 0 ) (2), (7 0 L17)(y), 0.5}, 43)
(mi o Lrr)(2 xy) < V{(mi o lir)(2), (mi o Lrr)(y), 0.5},
L (miolp)(zxy) < V{(molr)(z), (m o lp)(y), 0.5}

forall z,y e Xandi=1,2,--- k.

Proof. Suppose that L= (ZT, ZIT, 0 Fs l, F> is a k-polar generalized (€, € Vg)-neutrosophic subalgebra of X
andlet z,y € X. Foranyi = 1,2,..., k, assume that (7; o ?]T)(z) A (m; 0 ZIT)(y) < 0.5. Then

(ms 0 brp) (2 % y) > (mi 0 Lrr)(2) A (mi 0 Lrr) ()
because if (7; o ZIT)(Z *y) < (m; o0 ET)(z) A (m; o @T)(y), then there exists ni € (0, 0.5) such that
(13 0 Lrr) (2 % y) < nip < (w30 7)) (2) A (7 0 ) (y).

It follows that z € U(Z[T, nrr)tandy € U(ET,nIT)i but zxy ¢ U(ET,nIT)i. Also (ﬂioET)(z*y)jLn}T <1,
ie.,zxy & IT,({rr,nyr). Hence z x y ¢ IT ¢, ({17, nrr) which is a contradiction. Therefore

(mi 0 lrr) (2 % y) 2 N 0 Gr)(2), (m; 0 Lrr) (y), 0.5}

forall z,y € X with (m; o ET)(,Z) A (0 Z[T)(y) < 0.5. Now suppose that (; o ZIT)(Z) A (m; 0 @T)(y) > 0.5.
Then z € U(KIT, 05)Z and Yy € U(f[T, 05)1, and so z * Y € [TEVq<£IT: 05)z = U(g[T, 05)1 U [Tq(ng, 05)Z
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Hence z xy € U(ZIT, 0.5). Otherwise, (m; o Z[T)(z xy)+0.5 < 0.540.5 = 1, a contradiction. Consequently,

(mi 0 Lrr)(z % y) = N\{(mi 0 lrr)(2), (i 0 Lrr) (y), 0.5}

for all z,y € X. Similarly, we know that
(w0 br)(z % y) 2 \{(mi 0 Tr)(2), (w0 br) (1), 0.5}

forall z,y € X. Supposethatzp( W (y) > 05. If Cp(zxy) > (p(z )\/EF( ) :=fip, then 2,y € L(lp, Aup),
zxy & (KF,nF) and €F(z * y) +ip > 20p > 1,06, 2%y ¢ F, (€F,np) This is a contradiction, and so
Up(zxy) < \/{EF( ), 0r(y),0.5} wheneverﬁp( )W lr(y /) > 0.5. Now assumethatép( )\/ﬁp( ) < 0.5. Then
2,y € L(EF,O 5) and thus z x y € Fe\/q(ﬁp,o 5) = L(ﬁF,O 5) U F, (EF,O 5). If zxy ¢ (€F,O 5), that is,
KF(Z xy) > 0.5, then EF(z*y) +05> 0.5 5+0 5=1,ie,2%xy¢F, (€F,O 5). This is a contradiction. Hence
ép(z*y) < 0. 0.5 and soEF(z*y) < \{lp(2),lp(y),0.5} Wheneverfp( )W r(y) < 0.5. ThereforeEF(z*y)
\/{EF( ), x(y),0.5} for all z,y € X. By the similar way, we have €1F(z xy) < \/{EIF( ) KIF( ),0.5} for
all z,y € X.

Conversely, let L= <ZT, ET, Z[F, 7, F) be a k-polar generalized neutrosophic set over X which satisfies

the condition (4.2). Let 2,y € X and fip = (np, n7, -+ ,nf) € [0,1]*. If z,y € U(Cr, Air), then Uy (2) > Ay
and (7 (y) > . If (p(z % y) < g, then £p(z) A lp(y) > 0.5. Otherwise, we get
lr(zxy) 2 N{lr(2),0r(y), 05} = lr(2) Alr(y) 2 i,

which is a contradiction. Hence
Up(z % y) + iy > 2r(z % y) > 2 \{lr(2), r(),05} = 1

andso z xy € T, (ET, nr) C Teyy (ET, nr). Similarly, if z,y € U(Z[T,ﬁ[T), then z x y € [T@q(@T, nyr) for
r = (npp, nip, -+ njp) € [0,1]F. Now, let 2,y € L({1p, nyp) for iy = (ngp, nz\F, e nkn) e [0, 1]k
Then EIF( ) < n;F and lrr(y) g nip. Wlp(zxy) > nyp, then {1p(2) V €rp(2) < 0.5 because if not, then
Urp(z % y) < \{lp(2), lp(y), 05} < Crp(2) V {p(y) < fuyp, which is a contradiction. Thus

Ejp(z*y)+nlp<2€fp(z*y <2\/{£1F E[F( ) 05}21

andso z xy € IF, (EIF,nIF) C IFEVq(EIF, nIF) Similarly, we know that if z,y € L(ZF, np), then z x y €
Fy(lp,fip) C Fayy(lp,ip) for ip = (nk, nZ, --- nk) € [0,1]%. Therefore L is a k-polar generalized (€,
€ Vq)-neutrosophic subalgebra of X. ]

Using the k-polar generalized (€, € Vq)-neutrosophic subalgebra, we show that the generaliged neutro-
sophic g-sets subalgebras.
Theorem 4.6. IfE = (ZT, ZIT, ZIF, Zp) is a k-polar generalized (€, € \/q)-neutrosophic subalgebra of X,

then the generaliged neutrosophic q-sets Tq(ZT, nr), ITq(@\IT, nr), IFQ(ZIF, nr) and Fq(zp, ng) are subal-
gebras of X for all iy, fiyr € (0.5,1]F and fip, irp € [0,0.5)F,
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Proof. Suppose that L= (@\T, ZIT, ZIF, 7, F) is a k-polar generalized (€, € Vq)-neutrosophic subalgebra of

X. Letz,y € X. If 2,y € ITy({yp, ) for A € (0.5, 1)F, then Uy (2) + fp > 1 and £yp(y) + fgp > 1. It
follows from Theorem 4.5 that

ZIT(Z *y) + ur = /\{ZIT<Z)7 ZIT(y), 6\5} + np
= /\{ZIT(Z) + nrr, ZIT(?J) + Ny, 0.5+ nrr}
>1,

ie,zxy € ITQ(Z[T,ﬁ[T). Thus ITq(ET,ﬁIT) is a subalgebra of X. Suppose that z,y € Fq(ZF,’fLF> for
firp €[0,0.5)%. Then (7; 0 £r)(2) + ni < 1 and (m; o £r)(2) + n% < 1. Using Theorem 4.5, we have

(mi 0 Lp) (2 % y) + nfp < \/{(mi 0 r) (2), (mi © L) (y), 0.5} + nip
= \/{(m 0 lr)(2) + ni, (ms 0 Cr) () + 0, 0.5 + 1}

<1

and thus z x y € Fy((p,p) forall i = 1,2,--- k. Hence zxy € (o, Fy(lp,p)' = Fy((p,ip), and
therefore F,({r,np) is a subalgebra of X. Similarly, we can induce that T, (¢r,r) and [ F,({rp, nyp) are
subalgebras of X for iy € (0.5,1]F and 2p € [0,0.5)F. O

Using the generaliged neutrosophic € Vg-sets, we establish a k-polar generalized (€, € V¢)-neutrosophic
subalgebra.

Theorem 4.7. Given a k-polar generalized neutrosophic set L= (ZT, ZIT, ZI 2 7 F) over X, if the generaliged

neutrosophic €\ q-sets Tevq(ZT, nr), ITEVq(?IT, nrr), [Fe\/q(ZIF, nrr) and Feyy (ZF, ng) are subalgebras of
X for all iy, nrr € (0,1)F and np,nrp € [0,1)%, then L is a k-polar generalized (€, € \Vq)-neutrosophic
subalgebra of X.

Proof. Assume that there exist o, 5 € X such that
(m; 0 Or) (e B) < N\{(mi 0 Tr) (@), (m; 0 £r)(8), 0.5}
fori =1,2,--- k. Then there exists n’. € (0,0.5] such that
(mi 0 lr)(ax B) < nfp < N\{(m; 0 br) (@), (mi 0 lr)(B), 0.5,

Hence o, 8 € U(lr, fip), and so o, B € (F_, U Uy, fip)' = U(ZT,ﬁT) C T@q(ZT, Ar). Since Teyq(lr, Air) is
a subalgebra of X, it follows that o * 3 € Tevq(ZT, i) = Nr, Tevq(éT, nr)’. Thus (m; o KT)(a * ) > nk
or (m; o ZT)(& x B) +ni > 1fori = 1,2,--- k. This is a contradiction, and thus (m; o KT)(z *y) >
N{(m; 0 ?T)(z), (m; 0 ZT)(y), 0.5} forall z,y € X andi = 1,2,--- , k. Now, if there exist , 5 € X such that

(7r; oEIF (ax () > \/{ OKIF (iOZIF)(/B)aob}
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fort =1,2,---  k, then
(mi 0 r) (o s B) > nipp 2 \[{(ms 0 1) (@), (mi 0 1) (8), 0.5} (44)

for some ni, € [0.5,1). Hence a, 8 € L({;p,up)’, and so o, B € N, L(lrr, ivrr) = L(lrp, rp) C
IFe ({1, fip). This implies that & % 8 € IFey({1r, fip), and (4.4) induces o 8 ¢ L({;p,fyp)' and
(mi 0 lyp) (o % B) + nip > 2nip > 1fori = 1,2, k. Thus a % 8 & (', LUy, fuyr)' = L(lyp, fipp)
and a *x 0 ¢ ﬂle IFq(EAIF, Nrp) = [Fq(EF,ﬁIF). Hence a % 5 ¢ IFevq(Z[F, nr) which is a contradiction.
Therefore

(w0 L1r) (2 % y) < \/{(mi 0 l1r)(2), (mi 0 L) (y), 0.5}

forforall z,y € X andi =1,2,--- |k, i.e, Z]F(z xy) < V{@F(z),ap(y),(ﬁ} for all z,y € X. Similarly,

we show that (m;0r7) (2 9) = A{(m0 i) (2), (w0 L) (), 0.5} and (m;00p) (2 ) < V{(mi0Lr)(2), (w0
lr)(y),0.5} forall z,y € X and i = 1,2,--- k. Using Theorem 4.5, we conclude that £ is a k-polar
generalized (€, € Vq)-neutrosophic subalgebra of X. O

Using the k-polar generalized (€, € V¢)-neutrosophic subalgebra, we show that the generaliged neutro-
sophic € Vg-sets subalgebras.

Theorem 4.8. If,CA = (ZT, ZIT, ZIF, Zp) is a k-polar generalized (€, € \/q)-neutrosophic subalgebra of X,

then the generaliged neutrosophic €\ g-sets ¢, (Z\T, nr), 1T, (ET, nr), ]Fevq(ZIF, nr) and Fevq(zp, np)
are subalgebras of X for all iy, nyr € (0,0.5]% and np, frp € (0.5, 1)".

Proof. Let z,y € ITevq(ZIT, ny7r). Then
z € U((Z[T,mT)" orz e ]Tq((ET,fLIT)i
and
y € U((Uyr,ayr) ory € IT,((Lrp, fuyp)’
forv =1,2,--- , k. Thus we get the following four cases:
() z € U((Lyr,fur)i and y € U((Lrp, urr)',
(ii) z € U((rr, fupr) and y € IT,((Crp, Rupr)'s
(iii) z € IT,((Cyr, yr) and y € U((Crr, Aupr)'
(iv) z € IT,((Cyp, Ayr) and y € IT,((Crr, furr)'.

For the first case, we have z x y € ITevq((ET, ngr)t fori =1,2,--- , kand so

k
ZxY € ﬂ ITG\/q(<€[T,’IA7,[T)i = ITG\/q<€[T,’fAL[T).

i=1
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In the the case (ii) (resp., (iii)), y € IT,(({rr, Aur) (tesp., z € IT,((Cry, fupr)) induce Crp(y) > 1—niy > iy
(resp., {rr(2) > 1 —nbp > nip), thatis, y € U(({rp,nyr)" (resp., z € U((rr,fr)?). Thus z xy €
ITe((rr, ayr) fori =1,2,---  k which implies that

k
2y € (VITewq((Lrr,fiur)’ = ITesg(Crr, fur).

i=1

The last case induces (;7(z) > 1 — nip > nip and (r(y) > 1 — nig > nig, ie., 2,y € U((Crp, fuyr)' for
1=1,2,--- k. It follows that

k
Zxy € m ITevg((rr, ur)’ = ITeq(Crr, furr).

=1

Therefore [ Te\/q(ZIT, nyr) is a subalgebra of X for all n;r € (0, 0.5]’g . Similarly, we can show that the set
Tesq(lr,fir) is a subalgebra of X for all i € (0,0.5]%. Let 2,y € Feyy({r, r). Then

~

éF(Z) S ’fAZF or ZF(Z) + ﬁF < j_

and

lp(y) < npor Zp(y) +hp < 1.

If {r(2) < Aip and Cp(y) < Aip, then

o~

lp(zxy) < \/{lp(2), (p(y),05} < ip Vv 0.5 = ip
by Theorem 4.5, and s0 z * y € L({p, fip) C Fe\/q(ZF,le). If {(2) < Aup or Lp(y) + Ap < 1, then
lr(z xy) < \[{lr(2). Tr(y), 05} < \/{ip, 1 —p, 0.5} = i

by Theorem 4.5. Hence z * y € L({p,ip) C Feyy(lp, fip). Similarly, if p(2) + ap < 1 and lp(y) < Ap,
then z x y € Feyy(lp, ). If (p(2) + fip < 1and £p(y) + fp < 1, then

—~ ~ —~ —~

Up(zxy) < \/{lr(2), lr(y),05} < (1 —ip) V0.5 =05 < ip

by Theorem 4.5. Thus z x y € L(ZF,ﬁp) C Fevq(zp, nr). Consequencly, Fevq(zp, np) is a subalgebra of

X for all A € [0.5,1)*. By the similar way, we can verify that [ Fe\/q(Z] F,Nr) is a subalgebra of X for all
fp € [0.5,1)", 0
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5 k-polar generalized (¢, €\ ¢)-neutrosophic subalgebras

Definition 5.1. Let £ := (ZT, ZIT, ZI 2 7 p> be a k-polar generalized neutrosophic set over X. Then L is called

a k-polar generalized (q, €\ q)-neutrosophic subalgebra of X if it satisfies:

2 € T(lr,ivr), y € Ty(br,ivr) = 2%y € Teyy(lr,ivy),

z € ITq(Z[T,ﬁ[T), Y E ITq(ZIT,ﬁIT> = Z*YC ITEVq(ZITaﬁIT)a (5 1)
z € IFq(KIF,TALIF), Yy < [Fq(g[p,ﬁ[}?) = Z*xy € IFE\/q(EIF,fL[F),

A FQ(ZF,ﬁF>, Yy < Fq(ZF,TALF) = Z*xyE Fe\/q(ZF,TALF)
for all z2,y € X, TALT,TAL[T € (0, 1}k and ﬁp,ﬁ[p € [O, 1)k

Example 5.2. Let X = {0, 1,2, a, $} be the BCI-algebra which is glven in Example 43. Let £ := (ET, 7, T
7, 17, L F) be a 3-polar generalized neutrosophic set over X in which KT, 7, T, 7, rr and /, 1 are defined as follows:

(0.6,0.7,0.8) if z =0,

R (0.7,0.0,0.0) if = =1,
Ir: X = 0,17, 2 { (0.0,0.0,0.9) if » =2,
(0.0,0.0,0.0) if z = a,

L (0.0,0.0,0.0) if z =3,

((0.6,0.7,0.8) if = =0,

(0.7,0.0,0.0) if 2 =1,

O X = (0,12, 2 { (0.5,0.8,0.9) if z =2,
(0.0,0.0,0.7) if z = «,

L (0.0,0.0,0.0) if z =B,

( (0 ) if 2=0,
R (1 ) if 2 =1,
Or: X = 0,1, 2 { (0.3,0.4,1.0) if z =2,
(0 ) if z=a,

L )

if z=2,

( (0 ) if 2 =0,

(0 ) if 2 =1,

Tr: X =0, 1],2»—>{ 8.0,0.2,0.1; %ﬁz:Q,
if z=q,

L )

if z=2,

It is routine to verify that L= (ZT, ET, EI 2 7, F) is a 3-polar generalized (¢, € V¢)-neutrosophic subalgebra
of X.
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Using the k-polar generalized (¢, € V¢)-neutrosophic subalgebra, we show that the generaliged neutro-
sophic g-sets and the generaliged neutrosophic € V¢-sets are subalgebras.

Theorem 5.3. If L= (ZT, ZIT, ZIF, ZF> is a k-polar generalized (q, € \Vq)-neutrosophic subalgebra of X,

then the generaliged neutrosophic q-sets Tq(ZT, nr), [Tq(Z[T, nr), IFq(ZIF, nr) and Fq(zp, ng) are subal-
gebras of X for all iy, fyr € (0.5,1]F and fup, irp € [0,0.5).

Proof. Let z Y € T, (ZT,ﬁT) Then z x y € Tevq(ZT,ﬁT), and so z x y € U(ZT,ﬁT) orz*y € Tq(EAT,ﬁT).
If zxy € U(ET,nT) then (m; o Or)(z % y) > nin > 1 — ni since ni, > 0.5 forall i = 1,2, --- , k. Hence
zxy €T, (ET, nr),and so 7T, (ET, nr)isa subalgebra of X. By the similar way, we can verify that /T, (KIT, nr)
is a subalgebra of X. Let z,y € F, (fp,np) Then z x y € Fevq(EF,nF) and so z x y € L(ép,np) of
Z2xy € Fq(ZF,ﬁF). If zxy € L(Zp,ﬁp), then (m; o EF)(z xy) < nt < 1 —ni since nt, < 0.5 for all
i =1,2,--- k. Thus z xy € FQ(ZF,TALF), and hence Fq(z\p,ﬁp) is a subalgebra of X. Similarly, the set
IFQ(ZIF, nsr) is a subalgebra of X. O

Theorem 5.4. IfﬁA = <ZT, ZIT, ZIF, ZF> is a k-polar generalized (q, € \Vq)-neutrosophic subalgebra of X,

then the generaliged neutrosophic €\ q-sets T@q(zT, nr), ]T@q(z]T, nr), IFEVQ(ZIF, nyr) and F@q@, ng)
are subalgebras of X for all iy, fyr € (0.5,1]% and fip, fyp € [0,0.5)k.

Proof. Let z,y € Tevq(ZT,ﬁT) for ip € (0.5,1]%. If 2,y € Tq(ZT, nr), then obviously z x y € Tevq(ZT,ﬁT).
If = € U(lr,ar) and y € T,(Cr,Ar), then p(2) + Ay > 20y > 1, ie., z € Ty(lp, ). It follows that
Zxy € Tevq(ZT,ﬁT) We can prove z x y € T@q(ZT,ﬁT) whenever y € U(ZT,ﬁT) and z € Tq(ZT,’fLT)
in the same way. If 2,y € U(ET,nT) then ET( )+ np > 2ﬁT > 1 and ?T( )+ fp > 207 > 1 and so
z,y €T, (ET, nr). Thus z xy € Tevq(KT, nir). Therefore Tevq(éT, nir) is a subalgebra of X for ny € (O 5, 1]~

Now, let 2 A Fevq(fp,np) for np € [0,0. 5)’c If z,y € F, (Ep,np) then obv10usly Z2xy € Fevq(ﬁp,np)
If z € L(EF,nF) and y € F(ﬁp,np) then EF( )—i—np < 2y < 1,ie, 2z € F(ﬁp,np) Hence z x y €
F@q(zp,ﬁp) Similarly, we can prove that if y € L(€F,np) and z € F, (KF,nF) then zxy € Fevq(ﬁp,np) If
Z,y € L(?F,np) then EF( )+ np < 2nF < 1and EF( )+ hp < 20p < 1, thatis, z,y € F, (Ep,np) Hence
Zxy € F@q(zp,ﬁp). Therefore Fe\,q(fp, fir) is a subalgebra of X for all iy € [0,0.5)*. In the same way, we

can show that ITevq(ZIT, fizr) is a subalgebra of X for 777 € (0.5, 1]F and IFEVq(ZIF, nsr) is a subalgebra of
X for all Ay € [0,0.5). O

We provide conditions for a k-polar generalized neutrosophic set to be a k-polar generalized (¢, € Vq)-
neutrosophic subalgebra.

Theorem 5.5. For a subalgebra S of X, let L= (ZT, ET, Z] F, 7, p) be a k-polar generalized neutrosophic set
over X such that

o~

(Vz € S)(br(z) > 0.5,
(Vz € X\ S)(lr(z)

e~ o~ P N o~

Urr(2) > 0.5, Urp(z) <05, Ip(2) <0.5), (5.2)
0="0rr(2), lp(2) =1 =lp(z (5.3)

/—\
\_/
~—

Then L is a k-polar generalized (q, €V q)-neutrosophic subalgebra of X.
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Proof. Let z,y € Ty((r, fir) = (N, T, (¢r, ). Then (m;007)(2) +n > 1 and (m; 0 b7)(y) +nip > 1 forall
i=1,2,--- k. Ifzxy ¢ S,thenz € X\ Sory € X\ S since S is a subalgebra of X. Hence (moZ\T)(z) =0
or (m; o ) (y) = 0, which imply that n’ > 1, a contradiction. Thus z x y € S and so (m; o ZT)(Z xy) > 0.5
by (5.2). IfnT > 0.5, then (wlofT)(z*y) +nb > 1,ie., 2%y € T(KT,nT) foralli = 1,2,--- , k. Hence
2%y € ﬂl 1T (ET,nT) =T (ET,nT) Similarly, if z,y € IT, (KIT,nIT) then z x y € ITq(ZIT,ﬁ]T). Let
2y € IF,(lip,nyr) = (V) IF,({1p, fiyp). Then (m; oem( ) + i < Land (m 0 [p)(y) + nip < 1
for all i = 1,2,-- K, Wthh implies that z x y € S. If nIF > 0.5, then (m o KIF)(Z * y) < 0.5 < nip
forall i = 1,2,---,k which shows that z x y € ﬂl 1L(€IF,nIF) = L(ﬁ;p,nm) If n. < 0.5, then
(mi o Lip)(2 + y) + njp < Lforalli = 1,2+ kand so zxy € oy IF,(Crp, i)' = LFy(Lrp, fup).
Similarly way is to show that if z,y € F, (EF, nF) then z x y € Fe\/q(éF, nr). Therefore Lis a k- -polar
generalized (¢, €\ q)-neutrosophic subalgebra of X. O]

Combining Theorems 5.3 and 5.5, we have the following corollary.

Corollary 5.6. If a k-polar generalized neutrosophic set L = (ZT,ZIT,ZIF,Z F) satisfies two conditions

(5.2) and (5.3) for a subalgebra S of X, then the generaliged neutrosophic q-sets TQ(ZT, nr), ITQ(EIT, nrr),
IF,((;r,nr) and F,({p, 1) are subalgebras of X for all i, iurr € (0.5,11F and g, ire € 10,0.5)%.

6 Conclusions

We have introduced k-polar generalized neutrosophic set and have applied it to BCK/BCI-algebras. We have
defined k-polar generalized neutrosophic subalgebra, k-polar generalized (€, € Vq)-neutrosophic subalge-
bra and k-polar generalized (g, € Vq)-neutrosophic subalgebra and have studid various properties. We have
discussed characterization of k-polar generalized neutrosophic subalgebra and k-polar generalized (€, € Vq)-
neutrosophic subalgebra. We have shown that the necessity and possibility operator of k-polar generalized
neutrosophic subalgebra are also a k-polar generalized neutrosophic subalgebra. Using the k-polar gener-
alized (€, € Vq)-neutrosophic subalgebra, we have shown that the generaliged neutrosophic g¢-sets and the
generaliged neutrosophic € Vg-sets subalgebras. Using the k-polar generalized (¢, € V¢)-neutrosophic sub-
algebra, we have shown that the generaliged neutrosophic g-sets and the generaliged neutrosophic € Vg-sets
are subalgebras. Using the generaliged neutrosophic € Vg-sets, we have established a k-polar generalized (€,
€ Vq)-neutrosophic subalgebra. We have provided conditions for a k-polar generalized neutrosophic set to be
a k-polar generalized neutrosophic subalgebra and a k-polar generalized (g, € Vq)-neutrosophic subalgebra.
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Abstract: The objective of this article is to introduce a new hybrid model of neutrosophic N-soft set
which is combination of neutrosophic set and N-soft set. We introduce some basic operations on
neutrosophic N-soft sets along with their fundamental properties. For multi-attribute decision-
making (MADM) problems with neutrosophic N-soft sets, we propose an extended TOPSIS
(technique based on order preference by similarity to ideal solution) method. In this method, we first
propose a weighted decision matrix based comparison method to identify the positive and the
negative ideal solutions. Afterwards, we define a separation measurement of these solutions. Finally,
we calculate relative closeness to identify the optimal alternative. At length, a numerical example is

rendered to illustrate the developed scheme in medical diagnosis via hypothetical case study.

Keywords: Neutosophic N-soft set, operations on neutosophic N-soft sets, MADM, TOPSIS, medical
diagnosis.

1. Introduction

In contemporary decision-making science, multi-attribute decision-making (MADM) phenomenon
plays a significant role in solving many real world problems. To deal with uncertainties, researchers
have introduced different theories including, Fuzzy set (FS) [54] that comprises a mapping
communicating the degree of association and intuitionistic fuzzy set (IFS) [10, 11] that comprises a
pair of mappings communicating the degree of association and the degree of non-association of
members of the universe to the unit closed interval with the restriction that sum of degree of
association and degree of non-association should not exceed one. Smarandache [46, 47] introduced
neutrosophic sets as an extension of IFSs. A neutrosophic object comprises three degrees, namely,
degree of association, indeterminacy, and the degree of non-association to each alternative.

Smarandache's Neutrosophic Set [50] is a generalization of Intuitionistic Fuzzy Set, Inconsistent
Intuitionistic Fuzzy Set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean Fuzzy Set (Atanassov’s
Intuitionistic Fuzzy Set of second type), g-Rung Orthopair Fuzzy Set, Spherical Fuzzy Set, and n-
Hyper-Spherical Fuzzy Set; while Neutrosophication is a generalization of Regret Theory, Grey
System Theory, and Three-Ways Decision. In 1999, Molodtsov [32] presented the notion of soft set as
an important mathematical tool to deal with uncertainties. In 2007, Aktas and Cagman [6] extended
the idea of soft sets to soft groups. In 2010, Feng ef al. [18, 19] presented several results on soft sets,
fuzzy soft sets and rough sets. In 2009 and 2011, Ali et al. [7, 8] introduced various properties of soft
sets, fuzzy soft sets and rough sets. In 2011, Cagman et al. [12], and Shabir and Naz [51] independently

presented soft topological spaces. Arockiarani et al. [9], in 2013, introduced the notion of fuzzy
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neutrosophic soft toplogical spaces. In 2016, Davvaz and Sadrabadi [16] presented an interesting
application of IFSs in medicine. Nabeeh et al. [33, 34] worked on neutrosophic multi-criteria decision
making approach for IoT-based enterprises and for personnel selection used the neutrosophic-
TOPSIS approach in 2019. Chang et al. [35] worked towards a reuse strategic decision pattern
framework-from theories to practices. Garg and Arora [20]-[23] introduced generalized intuitionistic
fuzzy soft power aggregation operator, Dual hesitant fuzzy soft aggregation operators, a novel scaled
prioritized intuitionistic fuzzy soft interaction averaging aggregation operators and their application
to multi criteria decision-making. Peng and Dai [36] presented some approaches to single-valued
neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function.
Hashmi et al. [24] introduced m-polar neutrosophic topology with applications to multi-criteria
decision-making in medical diagnosis and clustering analysis. In 2019, Naeem et al. [29] presented
pythagorean fuzzy soft MCGDM methods based on TOPSIS, VIKOR and aggregation operators. In
2019, Naeem et al. [30] established pythagorean m-polar fuzzy sets and TOPSIS method for the
selection of advertisement mode. In 2019, Riaz et al. [37] introduced N-soft topology and its
applications to multi-criteria group decision making (MCGDM). Riaz and Hashmi [38] introduced
the concept of cubic m-polar fuzzy set and presented multi-attribute group decision making
(MAGDM) method for agribusiness in the environment of various cubic m-polar fuzzy averaging
aggregation operators. Riaz and Hashmi [39] introduced the notion of linear Diophantine fuzzy Set
(LDEFS) and its applications towards multi-attribute decision making problems. Riaz and Hashmi [40]
introduced soft rough Pythagorean m-polar fuzzy sets and Pythagorean m-polar fuzzy soft rough sets
with application to decision-making. Riaz and Tehrim [41, 42, 43] substantiated the idea of bipolar
fuzzy soft topology, cubic bipolar fuzzy set and cubic bipolar fuzzy ordered weighted geometric
aggregation operators and their application using internal and external cubic bipolar fuzzy data. Riaz
and Tahrim [44] introduced the concept of bipolar fuzzy soft mappings with application to bipolar
disorders.

Smarandache [48] introduced a unifying field in logics: Neutrosophic Logic. Neutrosophy,
Neutrosophic Set, Neutrosophic Probability and Statistics. Smarandache [49] introduced
Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset. Similarly for Neutrosophic
Over-/Under-/Off- Logic, Probability, and Statistics.

Soft sets provide binary evaluation of the objects and other mathematical models like fuzzy sets,
intuitionistic fuzzy sets and neutrosophic sets associate values in the interval [0,1]. These models fail
to deal with the situation when modeling on real world problems associate non-binary evaluations.
Non-binary evaluations are also expected in rating or ranking positions. The ranking can be
expressed in multinary values in the form of number of stars, dots, grades or any generalized
notation. Motivated by these concerns, in 2017, Fatimah et al. [17] floated the idea of N-soft set as an
extended model of soft set, in order to describe the importance of grades in real life. In 2018 and 2019,
Akram et al. [1]-[3] introduced group decision-making methods based on hesitant N-soft sets and
intuitionistic fuzzy N-soft rough set.

The technique for the order of preference by similarity to ideal solution (TOPSIS) was initially
developed by Hwang and Yoon [26] in 1981. The core idea in the TOPSIS method is that selected
alternative should have least geometric distance from positive ideal solution and maximum

geometric distance from negative ideal solution. Positive ideal solution represents the condition for
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best solution whereas negative ideal solution represents the condition for the worst. In 2000, Chen
[13] extended the TOPSIS method to fuzzy environment and solved a decision making problem based
on fuzzy information. Later, in 2008, Chen and Tsao [14] developed interval-valued fuzzy TOPSIS
method. TOPSIS method in intuitionistic fuzzy framework was proposed by Li and Nan [31] in 2011.
Joshi and Kumar [28] discussed TOPSIS method based on intuitionistic fuzzy entropy and distance
measure for multi-criteria decision making. Recently, in 2016 Dey et al. [15] employed TOPSIS method
for solving decision making problem under bipolar neutrosophic environment. In 2013, Xu and
Zhang [53] developed a novel approach based on maximizing deviation and TOPSIS method for the
explanation of multi-attribute decision making problems. In 2014, Zhang and Xu [55] presented an
extension of TOPSIS in multiple criteria decision making with the help of Pythagorean fuzzy sets.
Chen and Tsao [14] proposed interval-valued fuzzy TOPSIS method and its experimental analysis in
2016. In 2018, Akram and Arshad [4] presented a novel trapezoidal bipolar fuzzy TOPSIS method for
group decision-making. In 2019, Akram and Adeel [5] presented TOPSIS approach for MAGDM
based on interval-valued hesitant fuzzy N-soft environment. In 2019, Tehrim and Riaz [45] presented
a novel extension of TOPSIS method with bipolar neutrosophic soft topology and its applications to
multi-criteria group decision making (MCGDM). Riaz et al. [56]-[57] introduced novel concepts of
soft rough topology with applications to MAGDM.
The goal of this paper is to present a new hybrid model "neutrosophic N-soft set" and their
applications to the decision making (DM). Neutrosophic N-soft set is the generalization of N-soft set,
fuzzy N-soft set and intuitionistic fuzzy N-soft.
The comparison analysis of the proposed model with some existing models is given in Table 1.

Sets Parametrization =~ Non Binary Truth Falsity Indeterminacy

Evaluation =~ Membership Membership

Fuzzy set [54] X X X
Intutionistic X X v
fuzzy set [10]
Neutrosophic x X v v
set [46]
Soft Set [12] v X X X X
N-soft Set [17] v x
Fuzzy N-soft v v X X
Set[1]
Intutionistic v v v X
N-soft Set [3]
Neutrosophic v 4 v v
N-soft Set
(Proposed)

Table 1: Comparison with other existing theories
The rest of paper is organized as follows. In Section 2, we recall some fundamental concepts of N-
soft set, fuzzy neutrosophic set and fuzzy neutrosophic soft set. In Section 3, we propose our new
hybrid model fuzzy neutrosophic N-soft set along with their examples. We also present some basic

operations on fuzzy neutrosophic N-soft set with illustrations. We also investigate fundamental
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properties of the proposed model by using defined operations. In Section 4, we construct relations
by using fuzzy neutrosophic N-soft set and define composition of fuzzy neutrosophic N-soft sets
using relations. We also define some new choice functions and score functions in connection with
fuzzy neutrosophic N-soft sets. In Section 5, we proposed DM method for medical diagnosis by the
model. In Section 6, we give a numerical example of this diagnosis method via conjectural case study.
In Section7, we conclude with some future directions and give suggestions for future work.
2. Preliminaries

In this segment, we review some essential definitions and a few aftereffects of N-soft and
neutrosophic sets that would be accommodating in the following segments.
Definition 2.1 [54] A fuzzy set ¥ in X is assessed up by a mapping with X as domain and
membership degree in [0,1]. The accumulation of all fuzzy sets (FSs) in the universal set X is
signified by 9(X).
Definition 2.2 [46,47] A neutrosophic set (NS) P over the universe of discourse X is defined as

P = (¢, (Tp(¢), Ip(®), Fp(9))): ¢ € X}
where Tp, Ip, Fp: X -]70,1*[ and ~0 < Tp(@) + Ip(p) + Fp(p) < 3*.
The mapping Tp stands for degree of membership, Ip is the degree of indeterminacy and Fp is the
degree of falsity of points of the given set. From philosophical perspective, the neutrosophic set takes
the entries from some subset of |70, 1*[. But it many actual applications, it is inconvenient to utilize
neutrosophic set with entries from such subsets. Therefore, we consider the neutrosophic set which
takes the entries from some subset of [0,1].
Definition 2.3 [9] Let X be a space of objects (points). A fuzzy neutrosophic set (FNS) P in X is
dispirit by a truth-membership function Tp, an indeterminacy membership-function I, and a
falsity-membership function Fp. In mathematical form, this collection is expressed as
P = {(¢, (Tp(9), Ip(p), Fp(@))): ¢ € X, Tp, Ip, Fp € [0,1]}
with the constraint that sum of Tp(@), Ip(¢) and Fp(e) should fall in [0,3] i.e.
0 < Tp(p) +Ip(p) + Fp(p) <3
Definition 2.4 [32] Let X be the set of points and E be the set of attributes with £ in E. Assume that
P(X) denotes collection of subsets of X. The pair ({,£) is said to be a soft set (SS) over X, where {
is a function given by {: L - P(X)
Thus, an SS is expressed in mathematical form as
(€,£) ={(,¢(£):¢ € L}.
Definition 2.5 [9] Let X be the initial universal set and E be the set of parameters. We consider the
non-empty set £ € E. Let P(X) signifies the set of all NSs of X. The accretion Q, is called the
neutrosophic soft set (NSS) over X, where Q, is a function given by Q: £ - P(X). We can write it as
Qp = {6 {@, Ty (@), Ly (9), Frey(@)): 0 € X}):§ € E}
Notice that if Q,(§) = {{(,0,1,1): ¢ € X}, then NS-element (£,Q,(§)) does not seem to appear in the
NSS Q. The set of all NSSs over X is symbolized by NS(Xg).
Definition 2.6 [17] Let X be a set of points and E be a set of attributes with £ in E. Let § =
{0,1,2,---,N — 1} be the set of ordered grades where N € {2,3,---}. The N-soft set (NSS) on X is
denoted by ({,£,N) where {: £ - 2%V is a map characterized by
() = (o, ’V’L(f))
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V(p € X,f € L,’I"’L(f) € g
Definition 2.7 [17] A weak complement of N-soft set ({,£L,N) is another N-softset ({%,£,N) gratifying
IONIE) =0 ¥ EX
Definition 2.8 [17] A top weak complement of N-soft set ({,L,N) is an N-soft set ({*, £, N), where
L) = {C(f) = (@N=1, ifryn@) <N-1
T () = (9,0), ifree(@)=N-1
Definition 2.9 [17] A bottom weak complement of N-soft set ({, L, N) is one more N-soft set ({,, L, N),

where

_(S6) = (9,0, ifre (@) >0,
(G M) = {z(e) — (@ N=1), ifree@) =0,

3 Neutrosophic N-soft Set

In this section, we propose a novel structure neutrosophic N-soft set (NNSS), which is blend of NS and
NSS. We present some definitions and operations on NNSS too. Some properties of NNSS associated
with these operations also have been set up.
Definition 3.1 Let X be the initial universe set, E the set of attributes and § the aggregate of
ordered grades. We consider non-empty subset £ of E.Let P(X X §) be the collection of all NSSs of
XX G. A mneutrosophic N-soft set (NNSS) is signified by (4,€, N), where Q = ({,£,N) is an NSS. If
there is no ambiguity, we can abbreviate it as 1, represented by the mapping

AL > P(Xx Q)
Mathematically,
A = L& L) T () = (e, Trey (9), Loy (0D, Friy (@) 726y (9)), 71 € G,
p €X T, I, F€[01]},§ € E}
In short form, we may write
A ={(§ Te(§):$ € E}
where
[(6) = {{e, Ty (0), Loy (@), Freey (@) 7oy (9)): 7 € G, 0 € X, Ty, I, Fr € [0,1]3

The accretion of all NNSSs is denoted by NNS(X).
Our proposed structure is more generalized then other existing models. The existing models are

special cases of our proposed model, as shown in Table 2

Neutrosophic N-soft Set (Proposed) & (o, Toey (@), Ly (@), Frey(@0)), 716 (@)
Intutionistic N-soft Set [3] & U@, Ty (9,0, Frey (@), 726y ()
Fuzzy N-soft Set [1] & (@, Ty (9),0,0), 715 (9))
N-soft Set [17] 72 (9)

Table 2: Comparison with N-soft set and it's other existing generalization

Example 3.2 Let X = {@,,9,} and E = {{;,¢;,&3}. Consider E 2 L = {§;,§,}. Define N8SS as 1, =
{(&;, T.(€)): & € L,i = 1,2}, where 8SS is given in Table 3 below:

(¢.£,8) & $2
P1 6 3
0] 4 5
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Table 3: Tabular representation of 85S
Now, we define N8SS as
I:(¢) = {({¢4,0.8,0.5,0.1),6), ({¢,,0.6,0.2,0.9),4)}

It (&) = {({¢1,0.5,0.7,0.3),3), ({95, 0.7,0.4,0.8),5)}
The tabular representation of N8SS is given in Table 4.

At 31 $2
® ({0.8,0.5,0.1),6) ((0.5,0.7,0.3),3)
@, ((0.6,0.2,0.9),4) ((0.7,0.4,0.8),5)

Table 4: Tabular representation of N8SS

Remarks:
1. Every N25SS (4,Q,2) is generally equal to NSS.

2. Any arbitrary NNSS over the universe X can also be thought of as N(N + 1)-soft set. For example
an N8SS can also be treated as an N9SS for the grade 8 is never used as can be seen in Table 4.

This observation may be extended on the parallel track.

Now, we head towards presenting some arithmetical notions related to NNSS.
Definition 3.3 Let A, Ay, ENNS(X). A, is said to be NNS- subset of Ay, if
LEM,
Tr) (@) < Tace) (@),
L&) (@) = Tneee) (@),
Friey (@) = Farey (@),
726 (@) < 7 (@)
VEEE,p € X,r; €G. We demonstrate itby A; E A,;. Ay, is said to be NNS- superset of 4.

Example 3.4 Let X = {¢,,¢,} and E = {&,§,,&;}. Consider E 2 L = {£;,&,}. Consider N8SS 4, as
given in Example 3.2. Let M = E. Define N8SS A, as

Aae = {0 T (§)): 6 € M, 1 =1,2,3}
where 8SS is given in Table 5 below.

$1 $2 $3
(¢, M,8)
¥4 7 4 6
@, 5 7 3
Table 5: Tabular representation of 8SS
Now, we define N8SS

The(€1) = {({(1,0.9,0.4,0.0),7), ({¢2,0.7,0.1,0.8),5)}
e (&) = {({91,0.6,0.5,0.2),4), ({¢2,0.9,0.3,0.8),7)}
The(é5) = {({¢1,0.8,0.5,0.1),6), ({¢3, 0.5,0.7,0.3),3)}

having tabular form
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A $1 $2 $3
0 ((0.9,0.4,0.0,7) ((0.6,0.5,0.2),4) ({0.8,0.5,0.1),6)
®; ({0.7,0.1,0.8),5) ((0.9,0.3,0.8),7) ({0.5,0.7,0.3),3)

Table 6: Tabular representation of N8SS
It can be seen from Table 4 and Table 6 that A; E A,,.
Definition 3.5 Let Ay, Ay ENNS(X). Then A, and A;, are said to be NNS- equal, if
L=M,
Triey (@) = Tace)y (@),
L&) (@) = T (@),
Fee) (@) = Fargey (@),
726 (@) = 7m @) (@)
VEEE, ¢ €X,r; €G. Wedemonstrate it by A, = Ay,.
Definition 3.6 Let A, ENNS(X). If T, (@) = 0,1l (@) =1, Fre (@) =1 and 745 (p) =0, V€
E, 9 € X, r; € G; then A is called null NNSS and symbolized by 4.
Example 3.7 Let X = {¢,,¢,} and E = {{;,&;,&}. Consider E 2 £ = {£3,§,}. Define null N8SS as
Ar, = {(50 Ty (§0): & € L,1 = 1,2} where
I, (§1) = {({(91,0,1,1),0), ({92, 0,1,1),0)}
I (€2) = {({91,0,1,1),0), ((¢2,0,1,1),0)}

The tabular form given in Table 7

Aﬂqb 3t $2
(pl ((01111)'0) ((0,1,1>,0)
®2 (0,1,1),0) ((0,1,1),0)

Table 7: Tabular representation of null N8SS

Definition 3.8 Let A, ENNS(X). If T, (¢) = 1,1, () = 0,F. () =0 and 7, (@) =N —1,
v € E,p € X,7; € G, then A, is called absolute NNSS and symbolized by 4;.
Example 3.9 Let X ={¢;,¢,} and E = {&,¢§,,&3}. Consider E 2 L = {£,&,}. Define absolute N8SS
as Az = {(&,T:(&)): & € L,i = 1,2} where

I[:($1) = {91, 1,0,0),7), ({92, 1,0,0),7)}

[£($2) = {((91,1,0,0),7), {92, 1,0,0),7)}
having tabular representation that is given in Table 8:

A & $2
®1 ((1,0,0),7) ((1,0,0),7)
(pZ ((1'01())'7) ((1'())0))7)

Table 8: Tabular representation of absolute N8SS
Proposition 3.10 Let Ay, A, Apr ENNS(X). Then,
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1. A, E Az
2. Ay E Ay
3. A C A,
4. Ay EA; and A, E Ay = Ay E Ay
Proof. The proof follows directly from definitions of related terms.
Proposition 3.11 Let Ay, A;, Apr ENNS(X). Then,
1. A = A, and A, = Ay = Ay = Ay
220 EAy and Ay, E A 2 A = Ay,
Proof. Straight forward.
Definition 3.12 Let 1, ENNS(X). Then weak complement of NNSS A, is symbolized by A% and defined
as
2f = (. T)):¢ € B}
where
It = {((@, Frey (@)1 — HL({’)((/))'TL({)((/’))"VLC({) (@):p € X}
Here 4”& £)(9) denotes weak complement defined in Definition 2.7.
Example 3.13 Let X = {¢4,¢,} and E = {£,¢,,&}. Consider E 2 £ = {§;,,}. Define complement
of N8SS 1, given in Example 3.2 as A = {(&;, T5(&)):& € L,i = 1,2} i.e.
TE(E) = {({¢1,0.1,0.5,0.8),5), ({92, 0.9,0.8,0.6),7)}
TH(&,) = {({(91,0.3,0.3,0.5),4), (¢, 0.8,0.6,0.7),2)}

The tabular form is given in Table 9.

A i &
0, ((0.8,0.5,0.1),5) ((0.5,0.7,0.3),4)
®, ((0.6,0.2,0.9),7) ((0.7,0.4,0.8),2)

Table 9: Tabular representation of weak complement of N85S

Proposition 3.14 Let 1, ENNS(X), then

L D # 1.

2. 2, # Az

3. 25 # Mg,
Proof. Straight forward.
Definition 3.15 Let 4, ENNS(X). Then top weak complement of NNSS A is symbolized by A; and
defined as

4= (T € E)
Where,
I7 ={({p, Fre) (@)1 — Iy (), Ty (9)), 776y (@0)): ¢ € X}

where, 4"[( 5 (@) denotes top weak complement defined in Definition 2.8.

Example 3.16 Let X = {@4,¢,} and E = {£,¢,,&}. Consider E 2 £ = {§;,§,}. Define complement
of N8SS A, givenin Example 3.2 as A; = {(;, [/ (§)):& € £,i =12} ie.

I7 (&) = {({p1,0.1,0.5,0.8),7), ({¢3,0.9,0.8,0.6),7)}
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[7 (&) = {({¢4,0.3,0.3,0.5),7), ({¢,0.8,0.6,0.7),7)}

In tabular form given in Table 10.

2z $1 2
o ((0.8,0.5,0.1),7) ((0.5,0.7,0.3),7)
®, ({0.6,0.2,0.9),7) ((0.7,0.4,0.8),7)

Table 10: Tabular representation of top weak complement of N8SS
Proposition 3.17 Let 1, ENNS(X). Then,
1. (A" # Ag.
2. Xy = Az
3.4 =1, "
Proof. The proof follows quickly from definitions of relevant terms.
Definition 3.18 Let 1, ENNS(X). Then bottom weak complement of NNSS A, is symbolized by A, and
defined as follows
Ae, = {(€,T,,):€ € E}
where
I, = {(@, Frey (@)1 = L) (90), Ty (0), 7e6), (9)): ¢ € X}
Here 7, (¢) denotes top weak complement defined in Definition 2.9.
Example 3.19 Let X={g,,¢,} and E ={{,,,&}. Consider E 2 L ={£,&,}. Bottom weak
complement of N8SS A, defined in Example 3.2 as A, = {(;, I, (§)): & € £,i = 1,2} where
I, (1) = {({¢4,0.1,0.5,0.8),7), ({(¢,,0.9,0.8,0.6),7)}
I, (&) = {({(¢1,0.3,0.3,0.5),7), ({¢,, 0.8,0.6,0.7),7)}

In tabular form the bottom weak complement of N8SS is given in Table 11.

Ag, & &
0 ((0.8,0.5,0.1),0) ((0.5,0.7,0.3),0)
o ((0.6,0.2,0.9),0) ((0.7,0.4,0.8),0)

Table 11: Tabular representation of bottom weak complement of N85S
Proposition 3.20 Let 1, ENNS(X). Then,
L (). # e
2. (Agy)se = Az
3. g, = Agy
Proof. Straight forward.
Definition 3.21 Let Ay, Ay ENNS(X). Then difference of A, and A,; is symbolized by A;\15; and
is defined as
A\ = {E U@ Tronmee (@) Leenaee (@) Freonae @ (@) 7 cionme (9)):
¢ €X}):§ € E}
where Ty (@), Leenaee) (@) and Frepaee) (@) are defined as
T (@) = min{T, &) (@), Fare) (@)}
I e (@) = max{ll g (9),1 — D) ()}
Freenaee) (@) = max{Fp (@), Tare) ()}
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726 (@) — @) (@), Uf e (@) > 1) (@),

/;,v =
zew© (@) {(), otherwise

Definition 3.22 Let 4,45 ENNS(X). Then addition of A, and A, is symbolized by A; @ Ay,
and is defined as
A ® A = {E AU, Trnyome (@) Leyome (@), Froome (@) mr@ome (@) ¢ €X}):$ € E}
where Tega ) (9D Leonme (@) and Frgeme (@) are given as
Trey@mce) (@) = min{T ) (@) + Tar) (9)1}
Leeyonm @ (@) = min{ly g (@) + I (@)1}
Fryome (@) = min{F i (@) + Fare) (9),1}
@ (@) = {;’V“L(_s)l(@ + v (@), ?;23 726 (@) + ) (@) <_N -1,
, &) (@) + (@) =N —1
Definition 3.23 Let A, A5 € NNS(X) be expressed as A; = (13,Q4,N) and A5 = (4,,Q5,N;)
where Q; = ({3,£L,N;) and Q, = ({;, M, N;) are NSSs. Then their restricted union is symbolized by
(A4, 94, Ny) Ug (A,,9Q,,N;) and defined as (w,Q; Ug Q,, max(N;,N,)) where Q; Ug Q, = (W, LN
M, max(Ny, N,)) i.e.
(A1, Qq, Np) Ug (A3, Qp, Ny )
={ Al Ty (@) V Tarey (9), Ly (@) A lpeey (90, Frey () A Faeey (9)), 726y ()
Ve (@)@ € XN:é e Lnm}
Example 3.24 Consider again A;, A5, as given in Examples 3.2 and 3.4 respectively. The restricted

union A; Lk Ay, is given in Table 12.

Ag Uy Apg 1 &
0, ((0.9,0.4,0.0),7) ((0.6,0.5,0.2),4)
®, ((0.7,0.1,0.8),5) ((0.9,0.3,0.8),7)

Table 12: Tabular representation of restricted union of two N8SSs

Definition 3.25 Let 4,145 € NNS (X) be expressed as A; = (43,94, N) and Ay = (4,,Q;,Np)
where Q; = ({1, £,N,) and Q, = ({;, M, N;) are NSSs. Then their extended union is symbolized by
(A4, Q4,Ny) Ug (A5,Q,,N;) and defined as (w,Q; Ug Q,, max(N;,N,)) where Q; U Q, =W, LU
M, max(Ny, N,)) i.e.

(A1, Qq, No) Ug (A2, Q5 Np) = {( {«@, Ty (@) V Ty (@), L) (@) A Lpeey (90), Friey (@0) A Fageey (90)),

76 (@) Ve (@) ¢ €X}):§ € LUM}
Example 3.26 Consider again A;, A, as given in Examples 3.2 and 3.4 respectively. The extended

union A; Ug 4y, is given in Table 13.

AL U£ A’M {1 62 63
0, ((0.9,0.4,0.0),7) ((0.6,0.5,0.2),4) ((0.8,0.5,0.1),6)
0, ((0.7,0.1,0.8),5) ((0.9,03,0.8),7) ((0.5,0.7,0.3),3)

Table 13: Tabular representation of extended union of two N8SSs
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Theorem 3.27 Let A, A3 ENNS(X). Then their extended-union Ay Ug Ay is the smallest NNSS containing
both A; and Ay.
Proof. Straight forward.
Definition 3.28 Let A, A5 € NNS(X) be expressed as A; = (13,Q4,N) and A5 = (4,,Q,,N;)
where Q; = ({3,£,N;) and Q, = ({;, M, N;) are NSSs. Then their restricted intersection is symbolized
by (41, Q4, N;) Mg (A, Q,, N;) and is defined as (y, Q; Lg Qy, min(N;, N;)) where Q; Mg Q, = (Y, LN
M, min(Ny, N;)) i.e.

(A1, Q4, N2) Nz (A2, Q2, N1) = {(§, {{{@, T(ey (@) A Tariey (), L) (0) V Loy (0), Fr) (@) V Fargey (),

7 (@) A (@)@ € X}):§ € LT M}

Example 3.29 Consider again A;,A;; as given in Examples 3.2, 3.4 respectively. The restricted

intersection A; Mg 4, is given in Table 14.

Ar Ny Ape 31 &
0, ((0.8,0.5,0.1),6) ((0.5,0.7,0.3),3)
0, ((0.6,0.2,0.9),4) ((0.7,0.4,0.8),5)

Table 14: Tabular representation of restricted intersection of two N8SSs
Theorem 3.30 Let A, Ay ENNS(X). Then their restricted-intersection Ay Mg App is the largest NNSS
contained in both A; and Ay,.
Proof. Straight forward.
Definition 3.31 Let A, A5 € NNS(X) be expressed as A; = (13,Q4,N) and A, = (4,,Q,,N;)
where Q; = ({3, L,N;) and Q, = ({;, M, N;) are NSSs. Then their restricted intersection is symbolized
by (44,Q4,Ny) Mg (A3,Q;,N;) and defined as (y,Q; Mg Qy, min(Ny;, N;)), where Q, N Q, = (Y, LU
M, min(Ny, N;)) i.e.
(A1, Qq, N3) Mg (A2, Q2, Np) = {(§, {{{@, Ty (@) ATy (0, Loy (@) V g6y (90, Frey (@) V Fagey (9)),
726 (@) Ay (@) € XD):§ € LU M}
Example 3.32 Consider again A.,4;; as given in Examples 3.2, 3.4 respectively. The extended

intersection A, Mg A, is given in Table 15.

A Mg Ay 31 & &3
01 ((0.8,0.5,0.1),6) ((0.5,0.7,03),3) | ((0.8,0.5,0.1),6)
®, ((0.6,0.2,0.9),4) ((0.7,0.4,08),5) | ((0.5,0.7,0.3),3)

Table 15: Tabular representation of extended intersection of two N8SSs
For any two NNSS A, and A;; over same set of points X and using the operations defined above,
we conclude the following proposition:
Proposition 3.33 Let 4, and A1), be two NNSS
(1) AUy = A
(2) Ag Ug Ape = Ap Ug A
B) A Nr iy =4
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(4) Ac Mg Ape = Ape N A
(5) ApUgAry = Ar
(6) AL NrAry = Ary
For any three NNSS 4, , 4;; and 4, over same set of points X and using the operations defined
above, we conclude the following proposition:
Proposition 3.34 Let 1, , 4;; and A, be three NNSS

(1) Ag Ug (Aar Ug Ay) = (Ap Ug App) Ug Ay

(2) A Mg (Aae Mg Ay) = (AL Nz Ap) Nz Ay

(3) Ag Ug (Aa Mz Ay) = (A Ug Apr) Nz (Ag Ug Ay)

(4) A Ny (Aae U Ax) = (A Mg Apg) Ug (Ag Nz Ay)
Definition 3.35 Let A, A5 € NNS(X) be expressed as A; = (13,Q4,N) and A = (4,,Q5,N;)
where O, = ({3,L,N,) and Q, = ({,,M,N;) are NSSs. Then AND Operation symbolized by
(A1, 94, N3) A (A3,Q5,Ny) or shortly A, Ay and is defined as (44,4, N) A (A2, Q3,Np) = (A, £ X

M, min(Ny, N,)), where degree of membership , indeterminacy and non-membership are given as

follows:
Tacce (@) = min{Tre (@), Tare )y (9D}
{Ieep @) +aes H (@)}
]I:K(Eirfj)((p) = > —
Frcceip (®) = max{Fre (), Facey (9D},
Tac(6p) (@) = max{ry g (@), ey (@)}, VS € L,§; €M
forall ¢ € X.

Definition 3.36 Let A, 1) ENNS(X) be two NNS be expressed as A; = (4;,Q;,N) and Ay =
(13,Q5,N;) where Q; = ({;,£L,N,) and Q, = ({,, M, N;) are NSSs. Then OR operation is symbolized
by (41, Q4,No) V (4,,Q,,Ny) or shortly A,V Ay, and is defined as (41, Q4, No) V (4,5, Q,N1) = (A, L X

M, min(Ny, N;)), where degree of membership ,indeterminacy and non-membership are given as

follows:
Treigp (@) = max{Tree, (9D, Tacs ()3
(g (@) +ace ()}
Tocgi6 (@) = ——
Frecsig(9) = min{F g (9), Facee) (9D},
P56 (@) = Min{rr ey (), e (@)} VS € LS €M
forall ¢ € X.

Definition 3.37 The Truth-favorite of an NNSS 1, is denoted by 1,; =A 1, and is defined by

Ty (@) = min{T, ) (@) + Iz (@)1}
Iy (@) =0
Friey (@) = Farey (@)
L) (p) = M (€) ()
forall ¢ € X, ¢ € L.
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Definition 3.38 The Falsity-favorite of an NNSS A is denoted by A5y =V A, and is defined by

Triey (@) = Tace) (@)
Iee (@) =0
Frey (@) = min{F £ (@) + L. (@), 1}
726 (@) = ) (@)
forall ¢ € X,é € L.
Proposition 3.39 Let A, be an NNSS, then
1. AR A, =A A,
2. VYA, =V A,
Proof. Follows immediately from definitions.
Definition 3.40 Let 2, ENNS(X). Then scalar multiplication of A, with a is symbolized by 1, @ «
and is defined as
A ®a={¢{({e T (@) ® Iy (@) Q@ a,Frn () ® a), 75 (p) ® a): ¢ € X}):

£ € E)
where T, 50q(9) )0 (@)Fre)0e (@) and 71 (@) ® a are defined by

T (@) ® a = min{T, ) (¢) X a, 1}
Iry(9) ® a = min{l ¢ (¢) X a, 1}
Frie) (@) ® a = min{F, ) (¢) X a,1}

_(Tro@) X, if0s7rpg(@) Xa<N-1,
e (@) B a (N -1 otherwise

Definition 3.41 Let A, ENNS(X). Then scalar division of A; by a is symbolized by A,/a and is
defined as

Aefa = {(E U Toey (@) Ly (@), Friey (@) ), 7y (@) @): @ € X): € € E}
where T;£74(9), 1570 (@) Fr 570 (9) and rﬁ(g)(<p)70{ are defined by

Teey(@)/a = min{T ) (@) /a, 1}
Ieeey(9)/a = min{ly s (@) /a, 1}
Frey(@)/a = min{F ;) (¢)/a, 1}

ree(@)/a, if0<rpe(@)/a<N-1,

4”5(5)(([))/0( - (N -1, otherwise

rre(@)/a, if0<rye(@)/a<N-1,
N —1, otherwise

4’L(§)((P)7Uf = {
4 Relations On Neutrosophic N-Soft Sets
Definition 4.1 Let A, and A,; be two NNSSs defined over the universe (X,£) and (X, M)
respectively. Neutrosophic N-soft relation R is defined as ﬁ(fi,fj) = A.(&) Mg Axe (§5), V¢ € L and
V¢ €M, where
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R: NV - P(X)
is an NNSS over (X,N), where WV E L X M.
Definition 4.2 The composition o of two neutrosophic N-soft relations R, and R, is defined by
Ry o R (L) = R, (L, m) N R,(m,n)
where R, is neutrosophic N-soft relations from A; to A, over the universe (X,£) and (X, M)
respectively and R, is neutrosophic N-soft relations from A, to A, over the universe (X, M) and
(X, V') respectively.
Definition 4.3 Let R, is neutrosophic N-soft relation over the universe (X,£) and &, is
neutrosophic N-soft relation over the universe (X, M). The union and intersection of R, and R,
defined as below
(R U Rp)(Lm) = max{R; (I, m), R, (L, m)}
(R, N R)(Lm) = min{R, (1, m), R, (L, m)}

where R;: L x M - P(X) and R,: L x M - P(X).
Definition 44 Let 1, in (X, £) be a neutrosophic N-soft set. Let R for A; to Ape. Then max-min-
max composition of neutrosophic N-soft set with A, is another neutrosophic N-soft set A;; of (X, M)
which is denoted by % ¢ ;. The membership function, indeterminate function, non-membership
function and grading function of 4,; are defined, respectively, as

T, (M) = max{min(T, (1), T, ([, m))},

It02, (m) = min{max (I (1), I (L, m))},

Fgoa, (m) = min{max(F. (D), F, (L, m))},

PGz, (M) = mlax{min(fﬁ(l), 7:(l,m))},

vieLmeM,r; €EG.
Definition 4.5 Let A; be a neutrosophic N-soft set. Then the choice function of A, is defined as

CA)=7r;+T, -1, —F,
Definition 4.6 Let 1, and A,; be two neutrosophic N-soft sets. Then the score function of A, and
Ay is defined as
Sim = C(Ar) = C(Ay)

Definition 4.7 Let A; be a neutrosophic N-soft set. We define score function for 1, as

SL=’VVi+Ti—HiIFi

5 Application of Neutrosophic N-Soft Set to Medical Diagnosis

In this Section, we discuss the execution of N-soft set and neutrosophic set in medical diagnosis . In
some previous studies of the neutrosophic set and neutrosophic soft set, there are many examples of
medical diagnosis but all of them have lack of parameterized evaluation characterization. First we
propose Algorithm 1 as given below.

Algorithm 1

Step 1: Input a set B of patients, a set S of symptoms as parameter set and a set D of diseases .
Step 2: Construct a relation (p © §) between the patients and symptoms.

Step 3: Construct a relation a relation (S © D) between the symptoms and the diseases.

Step 4: Compute the composition relation Jt(f © D) the relation of patients and diseases by using
Definition 4.4.
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Step 5: Obtain the choice function of Jt by using Definition 4.5.

Step 6: Choose the highest choice value of patient corresponding to disease gives the higher
possibility of the patient affected with the respective disease.

Flow chart portrayal of Algorithm 1 is given in Figure 1:

Figure 1:Flow chart representation of Algorithm 1

Now we demonstrate how neutrosophic N-soft set (NNSS) can be efficiently employed in multi-
criteria group decision making (MCGDM). First of all, we propose an extension of TOPSIS to NNSS.
In this study, we choose TOPSIS because our goal is to solve a medical diagnosis decision making
problem. Since medical diagnosis involves similarities (in symptoms) and TOPSIS method is most
appropriate method for handling such problems. A detailed study of TOPSIS may be found in [26].
The procedural steps of Neutrosophic N-soft set TOPSIS Method to examine critical situation of each
patient is given in Algorithm 2.

Algorithm 2 (Neutrosophic N-soft set TOPSIS Method)

Step 1: Constructing weighed parameter matrix H by using ranking values obtained in Step 4 of

Algorithm 1 composition relation 9t(f D) and relates it with linguistic ratings from Table 26.

711 712 Tin
121 712 on

H=1"a T2 = T |= [Tl
Tm1  Tm2 Y'mn

Step 2: Creating normalized decision matrix B. Throughout from now, we shall use

L,={123,--,n} VneN

b = —4

—_— 1)
Y ‘/Z;crl:ﬂ’l?j
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bll b12 bln
b21 b12 b2n

B=|by by - by |= [bij]mxn
bml bm2 bmn

Step 3: Creating weighted vector W = {W;, W,, W3, ---,W,,} by using the expression

1
W, = kazljwk'wk = —Xi%1 by 2)
Step 4: Constructing weighted decision matrix p.
(M1 Hiz o Han g
Hz1 M1z = Hon
u=\lin Bz tin | = [Wi]mxn
Hm1 Hmz - Hmn
where Wij = “’]bl] (3)

Step 5: Finding positive ideal solution (PIS) and negative ideal solution (NIS) by using the Equations

PIS = {uf, 13, 13, uf -, i} = {max(uy;): i € Ly} (4)
NIS = {”1_' Mo, Pz, ,‘LI.J_ ,‘Ll;} = {mln(.u'u) S Ln} (5)
Step 6: Calculate separation measurements of PIS (§;") and NIS (S;") for each parameter by using the
equations
St = \/2;!:1 (ij — 1% Vi€Lpy (6)
and
ST = (S Gy —upy, viel, )

Step 7: Calculating of relative closeness of alternative to the ideal solution by using the equation

= Si_i;, 0<Cr <1, Vi€Lpy, (8)

Step 8: Ranking the preference order.
Flow chart portrayal of neutrosophic N-soft set TOPSIS method is shown in Figure 2.

M. Riaz, K. Naeem, I. Zareef and D. Afzal, Neutrosophic N-Soft Sets with TOPSIS method



Neutrosophic Sets and Systems, Vol. 32,2020 162

Figure 2: Flow chart of neutrosophic N-soft set TOPSIS method

5.1 Numerical Example

Now we employ the above Algorithm 1 to find the decision factor about the following top four
deadliest diseases in the world. Due to the following risk factors, these diseases progress slowly. Here
is some detail about these diseases:

D;: Coronary artery disease (CAD)

CAD occurs when the vessels that transfer blood towards heart become narrowed. CAD leads to

heart failure, arrhythmias and chest pain. Risk factors for CAD are

High blood High cholesterol Smoking

pressure

Family history Diabetes Obesity
of CAD

Table 16: Risk factors for CAD

D,: Stroke
This fatal disease occurs when some artery is in brain blocked or leaks. The risk factors for Stroke are:
High blood [Being female Smoking
pressure

Family history |Being American| Being African

of stroke

Table 17: Risk factors for Stroke

D3: Lower respiratory infections (LRI)
This disease occurs due to tuberculosis, pneumonia, influenza, flu, or bronchitis. Risk factors for LRI

contain
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Poor air quality | Asthma Smoking

Weak immune HIV Crowded child-care

system settings
Table 18: Risk factors for LRI
D,: Chronic obstructive pulmonary disease (COPD)

This disease is a long-term, progressive lung disease that makes breathing difficult. Risk factors for

COPD are

Family history Lungs irritation

History of respiratory infections Smoking

Table 19: Risk factors for COPD
Ds5: Trachea, bronchus and lungs cancers
Respiratory cancers incorporate diseases of the bronchus, larynx, lungs and trachea. The risk factors

for Trachea, bronchus and lungs cancers involve

Use of coal for Tobacco |Poor air quality

cooking usage

Family history of | Smoking | Diesel fumes

disease

Table 20: Risk factors for Trachea, bronchus and lungs cancers
Core in certain sense is the most basic part occurring in the considered knowledge. Core can be
translated as the arrangement of most trademark some portion of knowledge, which cannot be
abstained from when decreasing the data. The core risk factor of all diseases discussed above is
"smoking". For computational purpose, let's decide the grading values depending upon the degree

of membership function as in Table 21:

Degree of membership Grading values
function

T=0 0
0<T=<02 1
02<T=<04 2
04<T<06 3
06 <T=<08 4
08<T<1.0 5

Table 21: Ranking scale

Table 22 yields relation between symptoms and patients:
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e Headache(s,) Shortness of breath(s,) Angina(s;)
P ((0.7,0.2,0.5),4) ((0.6,0.3,0.4),3) ((0.4,0.6,0.5),2)
P, ((0.9,0.3,0.1),5) ((0.7,0.4,0.3),4) ((0.8,0.5,0.2),4)
Ps ((0.6,0.6,0.4),3) ({0.5,0.5,0.8),3) ((0.2,0.4,0.8),1)
s ((0.2,0.5,0.8),1) ((0.3,0.1,0.7),2) ((0.7,0.1,0.3),4)

Table 22: Relation between symptoms and patients

The relation between the symptoms and the diseases is given in Table 23:

SIR @1 @2 @3 ®4-
Headache(s,) ((0.8,0.4,0.2),4) | ((0.9,0.2,0.1),5) | ({0.6,0.3,0.4),3) | ({0.7,0.5,0.3),4)
Shortness of ({0.1,0.8,0.9),1) | ({0.2,0.9,0.8),1) | ((0.5,0.7,0.5),3) | ((0.3,0.7,0.6),2)
breath(s,)
Angina(s;) ((0.5,0.7,0.5),3) | ((0.4,0.6,0.6),2) | ({0.3,0.5,0.7),2) | ({0.9,0.1,0.1),5)

Table 23: Relation between the symptoms and the diseases

The composition relation of patients and diseases in Table 24:

m Dl @2 93 94

Py ((0.7,0.4,0.5),4) ((0.7,0.2,0.5),4) ((0.6,0.3,0.5),3) ((0.7,0.5,0.5),4)
P2 (¢(0.8,0.4,0.2),4) (¢(0.9,0.3,0.1),5) ({(0.6,0.3,0.4),3) ({(0.7,0.5,0.2),4)
P3 ((0.6,0.6,0.4),3) ((0.6,0.6,0.4),3) ({0.6,0.6,0.4),3) ({0.60.4,0.4),3)
Ps ((0.5,0.5,0.5),3) (¢(0.4,0.5,0.6),2) ((0.3,0.5,0.7),2) ((0.7,0.5,0.3),4)

Table 24: Composition relation of patients and diseases
Table 25 gives choice values of the relation 9t:

N D, D, D3 Dy

P1 3.8 4 2.8 3.7

P 4.2 5.5 29 4

P3 2.6 2.6 2.6 2.8

Pa 2.5 1.3 1.1 3.9

Table 25: Choice values of relation 9t
From Table 25, we conclude that the patients p; and p, are likely to be suffering from D, whereas

p3 and p, are suffering from D,.
In order to examine the intensity level of the disease of the patients, we use neutrosophic N-soft

TOPSIS method which is demonstrated in Algorithm 2. First, we decide the grading values as a

function of linguistic terms as Table 26:
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Linguistic Terms Grading Values
Undetermined (U) 0
Very Stable (VS) 1
Stable (S) 2
Grave (G) 3
Critical (C) 4
Very Critical (VC) 5

Table 26: Linguistic terms for evaluation of parameters

Now we construct weighted parameter matrix by using Step 9 and Table 26 as

IS
N W Ul

1
|
| =
|
|

Creating normalized decision matrix B by using Equation 1

0.57 0.54 0.54 0.53
0.57 0.68 0.54 0.53
B=1043 041 054 0.40
l0.43 0.27 0.36 0.53J

w W
NW W W
QOO0
A <O

)
a9
e e e s ]

[ [
| |
= |
i i

Now by using Equation 2 construct weight vector
W = {W,, W,, W,, W,} = {0.58,0.14,0.14,0.14}
By using Equation 3 the weighted decision matrix p is

0.33 0.07 0.07 0.07
0.33 0.09 0.07 0.07
u=1{025 0.06 0.07 0.06
0.25 0.04 0.05 0.07

The positive ideal solution (PIS) and negative ideal solution (NIS) by using the Equations 4 and 5 as
PIS = {0.33,0.09,0.07,0.07}
NIS = {0.25,0.04,0.05,0.06}

The separation measurements of PIS and NIS for each parameter by using the Equations 6 and 7 are

S =011
Sy =0.06
§3 =0.02
Sy =0.01
Sy =011
S, =0.06
§; =0.03
Sy =0.02
The relative closeness of alternatives to the ideal solution by using Equation 8 are
¢ =05
¢S =05
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Ranking the preference order is
Cf=cf=cy=cf
which indicates that condition of patient p, is most critical. The pictorial representation of the

rankings of the patients is demonstrated with the assistance of a chart as given in Figure 3.

Figure 3: Ranking of patients w.r.t. intensity level of disease

5. Conclusion

The purpose of this work is to lay the foundation of theory of neutrosophic N-soft set as a hybrid
model of neutrosophic sets and N-soft sets. We established some basic operations on neutrosophic
N-soft sets along with their fundamental properties. We introduced the notions of NNS-subset, null-
NNS, absolute-NNS, complements of NNS, truth-favorite, falsity-favorite, relations on NNS,
composition of NNSS and score function of NNS. We explained these concepts with the help of
illustrations. We presented a novel application of multi-attribute decision-making (MADM) based on
neutrosophic N-soft set by using Algorithm 1. We proposed neutrosophic N-soft sets TOPSIS method
as demonstrated in Algorithm 2 for MADM in medical diagnosis. We defined separation
measurements of positive ideal solution and negative ideal solution to compute a relative closeness
to identify the optimal alternative. Lastly, a numerical example is given to illustrate the developed
method for medical diagnosis.

This may be the starting point for neutrosophic N-soft set mathematical concepts and information
structures that are based on neutrosophic set and N-soft set theoretic operations. We have studied a
few concepts only, it will be necessary to carry out more theoretical research to recognize a general
framework for the practical applications. The proposed model of neutrosophic N-soft set can be
elaborated with new research topics such as image processing, expert systems, soft computing

techniques, fusion rules, cognitive maps, graph theory and decision-making of real world problems.
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We hope that this study will prove a ground-breaking and will open new doors for the vibrant
researchers in this field.
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1 Introduction

The concept of fuzzy sets was introduced by Zadeh [16]. consequent to the introduction of fuzzy sets, fuzzy
logic has been applied in many real life situations to handle uncertainty. Chang [7] introduced the concept
of fuzzy topological spaces. There are several kinds of fuzzy set extensions such as intuitionistic fuzzy set,
interval-valued fuzzy sets, etc. After the introduction of intuitionistic fuzzy sets and its topological spaces
by Atanassov [6] and Coker [8], the concept of imprecise data called neutrosophic sets was introduced by
Smarandache [9]. The concept of neutrosophic topological space was introduced by Salama [15]. Later
R.Narmada Devi [10,11,12,13,14] introduced the concepts of intuitionistic fuzzy G sets, intuitionistic fuzzy
exterior spaces and neutrosophic complex topological spaces. Moreover, the neutrosophic theory plays a vi-
ral role in all fields of branches like medial diagnosis [1,2,5], multiple criteria group decision making [3,4],
etc. In this paper, the concepts of neutrosophic 7-structure ring spaces, neutrosophic (G5 rings, neutrosophic
first category rings, neutrosophic 7-structure ring G577/, spaces and neutrosophic 7-structure ring exterior B
spaces and neutrosophic 7-structure ring exterior V' spaces are introduced. Further, neutrosophic 7-structure
ring continuous (resp. open, hardly open) functions and somewhat neutrosophic 7-structure ring continuous
functions are presented. Some interesting properties among of functions along with the spaces are discussed
and necessary examples are provided.

2 Preliminiaries

We need the following basic definitions for our study.
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Definition 2.1. [9] Let X be a nonempty set. A neutrosophic set A in X is defined as an object of the form A =
{{z, Ts(z), [a(x), Fa(z)) : x € X} suchthat Ta, [4, Fa: X — [0,1]. and 0 < Ty(z) + Ia(x) + Fa(z) < 3.

Definition 2.2. [9] Let A = (z,T4(x), [a(x), Fa(z)) and B = (z,Tp(zx), Ig(z), Fp(z)) be any two neutro-
sophic sets in X. Then

(i) AUB = (x, TAUB( ), Laus(x), Faup(x)) where Taup(z) = Ta(z) VTp(x), Laup(x) = La(z) V Ig(x)
and Fyup(z) = Fa(x) A Fp(x).
(

(i) ANB = (x,Tanp(z), Lanp(x), Fanp(x)) where Tanp(x) = Ta(x) ANTs(2), Ianp(z) = La(x) A Ip(x)
and Fanp(z) = Fa(z) V Fp(z).

(il) AC Bif Ty(x) < Tg(x),I4(x) < Ip(x)and F4(x) > Fp(x), forallz € X.

(iv) the complement of A is defined as C'(A) = (@, To(a) (), Iocay(x), Focay(x)) where Teay(z) = 1 —
T ( )7IC(A)< )—1—[A( )andFG ($) 1—FA l’)

(v) Ox = {(2,0,0,1) :z € X} and 1y = {(2,1,1,0) : z € X}

Definition 2.3. [10,11] Let (X, 7") be an intuitionistic fuzzy topological space. Let A = (z, 1ia,74) be an
intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X, T'). Then A is said be an intuitionistic
fuzzy Gs setif A = (.2, A;, where A; = (z, jua,,7v4,) is an intuitionistic fuzzy open set in an intuitionistic
fuzzy topological space (X, 7). The complement of an intuitionistic fuzzy Gy set is said to be an intuitionistic
fuzzy F, set.

Definition 2.4. [12,13] Let A = (14, 74) be an intuitionistic fuzzy set on an intuitionistic fuzzy topological
space (X, 7). An intuitionistic fuzzy exterior of A is defines as follows: if [ FExt(A) = I Fint(A)

Definition 2.5. [12,13] Let R be a ring. An intuitionistic fuzzy set A = (x, pa,7v4) in R is called an in-
tuitionistic fuzzy ring on R if it satisfies the following conditions on the membership and nonmembership
values:

3 Properties of neutrosophic 7-Structure Ring Exterior B Spaces

Definition 3.1. Let R be aring. A neutrosophic set A = (z, Ta(x), [a(x), Fa(x)) in R is called a neutrosophic
ring on R if it satisfies the following conditions:

() Ta(xr +y) > Ta(z) ANTa(y) and Ta(zy) > Ta(x) A Ta(y)

(i) Ta(z +y) > Ia(x) A Ta(y) and Ta(zy) > Ta(x) A Ta(y)
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(i) Fa(z+y) < Fa(x)V Fa(y) and Fa(xy) < Fa(x) V Fa(y), forall z,y € R.

Definition 3.2. Let R be aring. A family .¥ of a neutrosophic rings in R is said to be neutrosophic 7-structure
ring on R if it satisfies the following conditions:

(1) Oy, 1y € 5
(11) G1 ﬂGQ € fforany Gl,GQ e ..
(iii) UG; € & for arbitrary family {G; |i € [} C ..

The ordered pair (R,.7) is called a neutrosophic 7-structure ring space. Every member of .7 is called a
neutrosophic 7-open ring in (R,.¥’). The complement C'(A) of a neutrosophic 7-open ring A is a neutrosophic
T-closed ring in (R,.%).

Example 3.1. Let R = {0, 1} be a set of integers module 2 with two binary operations "+’ and ’.” are specified
by the following tables:

+10]1 101
0/{O0|1]and|{ 0|0 |O
110 1101

Then (R,+,-) is a ring. Define neutrosophic rings B and D on R as follows: T5(0) = 0.5,75(1) =
0.7,15(0) = 0.5, I5(1) = 0.7, F5(0) = 0.3, Fg(1) = 0.2, Tp(0) = 0.3, Tp(1) = 0.4, Ip(0) = 0.3, Ip(1) =
0.4, Fp(0) = 0.5, Fp(1) = 0.6. Then . = {Oy, B, D, 15} is a neutrosophic 7-structure ring on R. Thus the
pair (R, .#) is a neutrosophic 7- structure ring space.

Notation 3.1. Let (R,.¥) be any neutrosophic 7-structure ring space. Then NO(R) (resp. NC(R) ) denotes
the family of all neutrosophic 7-open( resp. closed ) rings of (R, .%).

Definition 3.3. Let (R,.”) be any neutrosophic 7-structure ring space. Let A be a neutrosophic ring in R.
Then the neutrosophic ring interior and neutrosophic ring closure A are defined and denoted as N Frint(A) =
U{B| B € NO(R)and B C A} and NFrcl(A) =N{B | B € NC(R) and A C B respectively.

Remark 3.1. Let (R,.¥) be any neutrosophic 7-structure ring space. Let A be any neutrosophic ring in R.
Then the following statements hold:

(i) NFgcl(A) = Aif and only if A is a neutrosophic 7-closed ring.

(ii) NFgint(A) = Aif and only if A is a neutrosophic 7-open ring.

(iii) NFgint(A) C A C NFgcl(A).

(iv) NFgint(1y) = 1y and N Frint(Oy) = Oy.

(v) NFgpcl(1y) = 1y and N Frel(0y) = Oy.

(vi) NFgcl(C(A)) = C(NFRrint(A)) and N Frint(C(A)) = C(N Fgcl(A)).
(vii) UX, N Fpcl(A;) € NFrel (U2, A;).
(viii) N2, NFrel(A;) = NFrel(UP, A;).
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Definition 3.4. Let (R,.”) be any neutrosophic 7-structure ring space. Let A be a neutrosophic ring in R.
Then N Frint(C(A)) is called a neutrosophic ring exterior of A and is denoted by N FrExt(A).

Proposition 3.1. Let (R, .¥) be any neutrosophic 7-structure ring space. Let A and B be any two neutrosophic
rings in R. Then the following statements hold:

(i) NFrExt(A) C C(A).
(ii) NFrExt(A) = C(NFgcl(A)).
(iii) NFrExt(NFrExt(A)) = NFrint(NFrcl(A)).
(iv) If A C B then NFpExt(A) D NFpExt(B).
(v) NFpEzt(1y) = Oy and NFRExt(0y) = 1.
(vi) NFRExt(AU B) = NFpExt(A) N NFrExt(B).

Definition 3.5. Let (R,.”) be a neutrosophic 7-structure ring space. Let A be any neutrosophic ring in R.
Then A is said be to a neutrosophic Gy ring in (R,.) if A = (2, A;, where A; = (x,Ta,, I4,, Fa,) is a
neutrosophic 7-open ring in (R, .#). The complement of a neutrosophic G ring is a neutrosophic F, ring in
(R,.7).

Definition 3.6. Let (R,.”) be a neutrosophic 7-structure ring space. Let A be any neutrosophic ring in R.
Then A is said be to a

(i) neutrosophic dense ring if there exists no neutrosophic 7-closed ring B in (R,.¥) such that A C B C
In.

(ii) neutrosophic nowhere dense ring if there exists no neutrosophic 7-open ring B in (R,.#) such that
B C NFRCZ(A) That is, NFRZTlt<NFRCl<A)) = 0Opy.

Definition 3.7. Let (R,.”) be any neutrosophic 7-structure ring space. Let A be any neutrosophic fuzzy
ring in R. Then A is said be to a neutrosophic first category ring in (R,.”) if A = U2, A; where A;’s
are neutrosophic nowhere dense rings in (R,.”’). The complement of a neutrosophic first category ring is a
neutrosophic residual ring in (R, .).

Proposition 3.2. Let (R,.”) be any neutrosophic 7-structure ring space. If A is a neutrosophic G4 ring and
the neutrosophic ring exterior of C'(A) is a neutrosophic dense ring in (R,.7), then C'(A) is a neutrosophic
first category ring in (R, .7).

Proof:

A being a neutrosophic G ring in (R,.), A = N2, A; where A;’s are neutrosophic 7-open rings. Since
the neutrosophic ring exterior of C'(A) is a neutrosophic dense ring in (R, %), NFrcl(NFrExt(C(A))) =
1n. Because NFpFExt(C(A)) € A C NFgcl(A), one has NFpFExt(C(A)) C NFgcl(A).

This implies that N Frcl(NFrExt(C(A))) € NFgcl(A), thatis, 1y C NFrcl(A). Therefore, N Frcl(A) =
1n. Thatis, NFgcl(A) = NFgrel(N2,A;) = 1n. However, I Frcl(N2,;A;) € N, NFrel(A;). Hence,
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Iy € N2 NFgrel(A;). Thatis, N5, N Frel(A;) = 1y. This implies that N Frcl(A;) = 1y, for each A; €
. Hence NFgcl(NFgrint(4;)) = ly. Now, NFrint(NFgcl(C(A;))) = NFgint(C(NFrint(4;))) =
C(NFgcl(N Fgint(A;))) = Oy. Therefore, C'(4;) is a neutrosophic nowhere dense ring in (R,.”). Now,
C(A) = C(NX,A;) = U2, C(A;). Hence, C(A) = U2, C(A;) where C'(A;)’s are neutrosophic nowhere
dense rings in (R,.7). Consequently, C'(A) is a neutrosophic first category ring in (R, .7).

Proposition 3.3. If A is a neutrosophic first category ring in a neutrosophic 7-structure ring space (R,.7)
such that B C C'(A) where B is non-zero neutrosophic G ring and the neutrosophic ring exterior of C'(B) is
a neutrosophic dense ring in (R, .#), then A is a neutrosophic nowhere dense ring in (R, .7).

Proof:

Let A be a neutrosophic first category ring in (R,.#). Then A = U°; A; where A;’s are neutrosophic
nowhere dense rings in (R,.). Now C(N Fgcl(A;)) is a neutrosophic 7-open ring in (R,.”). Let B =
N2, C (N Frcl(A;)). Then B is non-zero neutrosophic Gy ring in (R,.%). Now, B = N2, C(NFrcl(A;)) =
C(UX{NFRgcl(A;)) C C(U2,A;) = C(A). Hence B C C(A). Then A C C(B). Now,

N Frint(N Frel((A)) € N Fgint(NFrel((C(B)))
= NFgint(C(N Fgrint(B)))
= O(N Fcl(N Frint(B)))
= C(NFgcl(NFrEzt(C(B)))

Since N FrExt(C(B)) is a neutrosophic dense ring in (R,.¥), N Fgrcl(Exzt(C(B)))
= 1n. Therefore, N Frint(N Frcl(A)) C Oy. Then, N Frint(N Frcl(A)) = On. Hence A is a neutrosophic
nowhere dense ring in (R,.%).

Definition 3.8. Let (R, .#) be a neutrosophic 7-structure ring space. Let A be any neutrosophic ring in R. Then
A is said to be a neutrosophic 7-regular closed ring in (R,.”) if NFrcl(N Frint(A)) = A. The complement
of a neutrosophic 7-regular closed ring in (R..#) is a neutrosophic T-regular open ring in (R..7).

Remark 3.2. Every neutrosophic 7-regular closed ring is a neutrosophic 7-closed ring.

Definition 3.9. Let (R,.”) be a neutrosophic 7-structure ring space. Then (R,.¥) is called a neutrosophic
T-structure ring G571 /2 space if every non-zero neutrosophic G’ ring in (R, .”) is a neutrosophic 7-open ring
in (R,.7).

Proposition 3.4. If the neutrosophic 7-structure ring space (R, .”) is a neutrosophic 7-structure ring G571
space and if A is a neutrosophic first category ring in (R,.7), then A is not a neutrosophic dense ring in
(R,.7).

Proof:

Assume the contrary. Suppose that A is a neutrosophic first category ring in (R,.”) such that A is a
neutrosophic dense ring in (R,.¥), that is, N Frcl(A) = 1y. Then, A = U2, A; where A;’s are neutrosophic
nowhere dense rings in (R,.7). Now, C(N Fgcl(A4;)) is a neutrosophic 7-open ring in (R,.%). Let B =
N2, C(N Frcl(A;)). Then, B is non-zero neutrosophic G ring in (R,.7). Now, B = N2, C(N Frcl(4;)) =
C(U2 N Fgcl(4A;)) € C(UR,A;) = C(A). Hence B C C(A). Then, N Fgrint(B) C NFgint(C(A)) C
C(NFgcl(A)) = Oy. Thatis, NFrint(B) = Oy. Since (R,.) is a neutrosophic 7-structure ring G577/
space, B = N Frint(B), which implies that B = Oy. This is a contradiction. Hence A is not a neutrosophic
dense ring in (R,.¥).
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Proposition 3.5. If (R,.”) is a neutrosophic 7-structure ring G571 /> space, then NFrExt(U2,C(4A;)) =
NX A,
Proof:

Let (R,.7) be a neutrosophic 7-structure ring G571 /> space. Assume that A;’s are neutrosophic T-regular
closed rings in (R,.7). Then, the A;’s are neutrosophic 7-closed rings in (R,.%), which implies that C'(A4;)’s
are neutrosophic 7-open rings in (R,.”). Let B = N, A;. Then B is a non-zero neutrosophic G ring in
(R, ). Since (R, .”) is a neutrosophic 7-ring G517 /5 space, B = N Frint(B) is a neutrosophic 7-open ring,
which implies that N Frint(N2, A;) = N2, A;. Now, NFrExt(U2,C(A;)) = NFgint(C(U2,C(4;))) =
NFgrint(N2,A;) = N2, A;. Hence the proof.

Definition 3.10. Let (R,.) be a neutrosophic 7-structure ring space. Then (R,.7) is called a neutrosophic
T-structure ring exterior B (in short, ExtB ) space if N Fr Ext(N2,C(A;)) = Oy where A;’s are neutrosophic
nowhere dense rings in (R,.7).

Example 3.2. Let R = {0, 1} be a set of integers of module 2 with two binary operations provided by the
following tables:

+ 101 1011

0[Ol |and|O |0 O

1({1]0 1101
Then (R, +,-) is a ring. Define neutrosophic rings A, B, M, D, E, F and G on R as follows: T'4(0) =
0.5, Ta(1) = 0.7, 14(0) = 0.5, Ia(1) = 0.7, F4(0) = 0.3, Fo(1) = 0.3, T(0) = 0.5, Tis(1) = 0.7, I;(0) =
0.5, I5(1) = 0.7, F5(0) = 0.3, F(1) = 0.2, Tas(0) = 0.3, Tas(1) = 0.4, I3,(0) = 0.3, In;(1) = 0.4, Fy(0) =
0.5, Fy(1) = 0.6, Tp(0) = 0.4, Tp(1) = 0.5, Ip(0) = 0.4, Ip(1) = 0.5, Fp(0) = 0.3, Fp(1) = 0.5, T(0) =
0.3, Tx(1) = 0.2, I5(0) = 0.3, I5(1) = 0.2, F(0) = 0.5, Fp(1) = 0.7, Tp(0) = 0.3, Tp(1) = 0.2, I5(0) =
0.3, Ip(1) = 0.2, Fp(0) = 0.5, Fp(1) = 0.8, T(0) = 0.3, T(1) = 0.2, I5(0) = 0.3, Ic(1) = 0.2, Fz(0) =

0.6, Fo(1) = 0.7, Ty (0) = 0.3, Ty(1) = 0.2, I5(0) = 0.3, I5r(1) = 0.2, Fy(0) = 0.6, Fyz(1) = 0.8. Then
& = {0n,A, B,M,D,1x} is a neutrosophic 7-structure ring on R. Thus the pair (R,.¥) is a neutrosophic
T-structure ring space. Let { £, F, G, H} be neutrosophic nowhere dense rings in (R, .7).

Then N FrExzt(N{C(E),C(F),C(G),C(H)}) = NFrExt(C(E)) = NFgint(E) = Oy. Therefore,
(R,.%) is a neutrosophic T-structure ring FztB space.

Proposition 3.6. Let (R,.¥) be a neutrosophic 7-structure ring space. Then the following statements are
equivalent:

(i) (R,.7)is a neutrosophic 7-structure ring E'xtB space.
(i) N Fgint(A) = Oy, for every neutrosophic first category ring A in (R, .%).
(iii) NFRrcl(A) = 1y, for every neutrosophic residual ring A in (R, .7).

Proof:
(i)=(ii)

Let A be any neutrosophic first category ring in (R,.%). Then A = U, A; where A;’s are neutro-
sophic nowhere dense rings in (R,.). Now, N Frint(A) = N Frint(U2,A;) = NFrint(C(N2,C(A;))) =
NFrEzt(N2,C(4;)). Since (R,.) is a neutrosophic 7-structure ring Fxt B space, N FrExt(N°,C(A;)) =
On. Therefore, N Frint(A) = Oy. Hence (i) = (ii).

(ii)=-(iii)
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Let A be any neutrosophic residual ring in (R,.”). Then C(A) is a neutrosophlc first category ring in
(R,.”). By (ii), NFgint(C(A)) = Oy. That is, NFgint(C(A)) = On = C(NFRgcl(A)). Therefore,
NFgcl(A) = 1y. Hence (ii) = (iii).

(ii)=(i)

Let A be any neutrosophic first category ring in (R,.%). Then A = U2, A; where A;’s are neutrosophic
nowhere dense rings in (R, .7). Since A is a neutrosophic first category ring, C'(A) is a neutrosophic residual
ringin (R, .7). Thenby (iii), N Frcl(C(A)) = 1y. Now, NFrExt(N2,C(A;)) = N Frint(C(N2,C(4;))) =
NFgrint(U2,A;) = NFgrint(A) = C(N Fgrel(C(A))) = Oy. Hence, NFrExt(N2,C(A;)) = Oy where A;’s
are neutrosophic nowhere dense rings in (R, .”). Therefore, (R,.7) is a neutrosophic 7-structure ring FztB
space.

Proposition 3.7. If A is a neutrosophic first category ring in a neutrosophic 7-structure ring space (R,.7)
such that B C C'(A) where B is non-zero neutrosophic G ring and the neutrosophic ring exterior of C'(B) is
a neutrosophic dense ring in (R, .), then (R,.¥) is a neutrosophic 7-structure ring ExtB space.

Proof:

Let A be any neutrosophic first category ring in (R,.¥) such that B C C(A) where B is non-zero neu-
trosophic Gy ring and the neutrosophic ring exterior of C'(B) is aneutrosophic dense ring in (R,.%). Then
by Proposition 3.3., A is a neutrosophic nowhere dense ring (R,.7), that is, N Frint(NFrcl(A)) = On.
Then, N Frint(A) C N Fgrint(N Frcl(A)) implies that N Frint(A) = Oy. By Proposition 3.6., (R,.%) is a
neutrosophic 7-structure ring FxtB space.

Proposition 3.8. If (R, .7) is a neutrosophic 7-structure ring ExtB space and if U A; = 1y where A;’s are
neutrosophic 7-regular closed rings in (R,.¥), then N Frcl(U2, N FrExt(C(4;))) = 1y.
Proof:

Let (R,.#) be any neutrosophic 7-structure ring ExtB space. Assume that A;’s are neutrosophic 7-
regular closed rings in (R,.7). Suppose that N Frint(A;) = Oy, for each i € J. Since A; is a neutrosophic
7- regular closed ring in (R,.”), A; is a neutrosophic 7-closed ring in (R,.”). Also, N Frint(A4;) = On
implies that N Frint(N Fgcl(A;)) = Oy. Therefore, A;’s are neutrosophic nowhere dense rings in (R,.7).
Since U A, = 1y, NFgExt(N2,C(A;)) = NFrExt(C(UX,A;)) = NFrint(UX,A;) = NFgint(ly) =
1n. Hence, NFrExt(N2,C(4;)) = 1n. Since (R,.”) is a neutrosophic 7-structure ring ExtB space,
NFgrExt(N2,C(A;)) = Oy, which is a contradiction. Hence N Fgrint(A;) # Oy, for atleast one i €
J. Therefore, U°; N Frint(A;) # Oy. Since A; is a neutrosophic 7-regular closed rings in (R,.”) and
UX NFgrcl(A;) € NFgel(U, A,

= U2 NFgcl(N Fgrint(A;)) € NFgcl(U2, N Frint(A;))
= UX,A; C NFgel(U2, NFrint(A;))

= U2 A; C NFRcl(UX NFrExt(C(4;)))

= 1ny € NFrcl(U2y NFrExzt(C(A;))).

But 1y O NFgcl(U2 NFrExt(C(A;))). Hence, N Frcl(U2, NFrExt(C(A;))) = 1n.

4  On neutrosophic 7-Structure Ring Exterior IV Spaces

Definition 4.1. Let (R,.7) be any neutrosophic 7-structure ring space. Then (R, .¥) is called a neutrosophic
T-structure ring exterior V' ( in short, ExtV )space if N Frcl(N}'_;A;) = 1y where A;’s are neutrosophic Gy
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rings and the neutrosophic ring exterior of C'(A;)’s are neutrosophic dense rings in (R, .%).

Example 4.1. Let R = {0,1,2} be a set of integers of module 3 together with two binary operations as
follows:

+10|1]2 -0 1]2
0]01]2 0/]0(0]0
rft20™1o1]2
2121011 2101211
Then (R, +,-) is a ring. Define neutrosophic rings A, B and D on R as follows: T4(0) = 1,T4(1) =
0.2,Ta(2) = 0.9,14(0) = 1, 14(1) = 0.2, 14(2) = 0.9, Fo(0) = 0, Fa(1) = 0.8, Fa(2) = 0.1, T(0) =
0.3, Tp(1) = 1,T5(2) = 0.2,15(0) = 0.3, I5(1) = 1,15(2) = 0.2, F5(0) = 0.7, F5(1) = 0, Fp(2) =
0.8, Tp(0) = 0.7, Tp(1) = 0.4, Tp(2) = 1,1p(0) = 0.7,Ip(1) = 0.4,Ip(2) = 1, Fp(0) = 0.3, Fp(1) =
0.6, Fp(2) = 0.

Then . = {On, A, B, D, ANB, AUB, AND, AUD, BND, BUD, DN(AUB), AU(BND), BU(AND), 1x}
is a neutrosophic 7-structure ring on R. Thus the pair (R, .¥’) is a neutrosophic 7-structure ring space.

Now, AND ={BU(AND),DN(AUB),D,A}and DN(AUB) =nN{AUB,DN(AUB),AUD} are
neutrosophic G rings in (R, .). Also, the neutrosophic ring exterior of C(A N D) and C(D N (AU B)) are
neutrosophic dense rings in (R, .7). Now, N Frcl(N{AND, DN(AUB)}) = NFgrcl(AND) = 1y.Therefore,
(R,.7) is a neutrosophic 7-structure ring ExtV space.

Proposition 4.1. Let (R,.¥) be a neutrosophic structure ring space. Then (R, .#) is a neutrosophic 7-structure
ring ExtV space iff N Frint(U}_,C(A;)) = Ox where A;’s are neutrosophic G rings and the neutrosophic
ring exterior of C'(A4;)’s are neutrosophic dense rings in (R, .%).

Proof:

Let (R,.%) be a neutrosophic ring EztV space. Assume that A;’s are neutrosophic G4 rings and the
neutrosophic ring exterior of C'(A;)’s are neutrosophic dense rings in (R,.¥). Since (R, .¥) is a neutrosophic
T-structure ring ExtV space, N Frel(N; A;) = 1n. Now, N Frint(Ul_,C(A;)) = NFrint(C(N{_,A;)) =
C(NFrel(Ni-,A;)) = On. Therefore, N Frint(U_,C(A;)) = On where A;’s are neutrosophic G rings and
the neutrosophic ring exterior of C'(A;)’s are neutrosophic dense rings in (R,.7).

Conversely, let N Frint(U,C(A;)) = Oy where A;’s are neutrosophic G rings and the neutrosophic ring
exterior of C'(A;)’s are neutrosophic dense rings in (R,.7). Now, N Frcl(N?_;A;) = NFrcl(C(U,A;)) =
C(N Fgrint(U?_,A;)) = 1n. Therefore, (R,.#) is a neutrosophic 7-structure ring ExtV space.

Proposition 4.2. Let (R, .¥) be a neutrosophic 7-structure ring space. If every neutrosophic first category ring
in (R,.7) is formed from the neutrosophic G rings and the neutrosophic ring exterior of its complements are
neutrosophic dense rings in a neutrosophic 7-structure ring ExtV space (R, .7 ), then (R, . ) is a neutrosophic
T-structure ring FxtB space.

Proof:

Assume that A;’s are neutrosophic G rings in (R,.#’) and the neutrosophic ring exterior of C'(A4;)’s are
neutrosophic dense rings in (R,.¥), fori = 1,...,n. Since (R,.¥) is a neutrosophic 7-structure ring ExtV
space and by Proposition 4.1., N Fint(U?_,C(A;)) = On. But U, N Frint(C(A;)) C N Frint(U?_,C(4,;)),
which implies that U N Frint(C(A;)) = On. Then N Frint(C(A;)) = 0. Since A;’s are neutrosophic G
rings in (R,.7) and the neutrosophic ring exterior of C'(A;)’s are neutrosophic dense rings in (R,.¥), for
i = 1,...,n. By Proposition 3.2., C'(A;)’s are neutrosophic first category rings in (R,.”), fori = 1,....n
Therefore, N Frint(C(A;)) = Oy, for every C(A;) is a neutrosophic first category rings in (R,.%). By
Proposition 3.6., (R,.¥) is a neutrosophic 7-structure ring ExtB space.
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Definition 4.2. Let (R;,.7) and ( Ry, .5 ) be any two neutrosophic 7-structure ring spaces. Let f : (Ry,.%) —
(R2,-%,) be any function. Then f is said to be a

(i) neutrosophic 7-structure ring continuous function if f~*(A) is a neutrosophic 7-open ring in (Ry,.77),
for every neutrosophic 7-open ring A in (Ry, .%3).

(ii) somewhat neutrosophic 7-structure ring continuous function if A € % and f~'(A) # 0. implies that
there exists a neutrosophic 7-open ring B in (Ry,.#]) such that B # Oy and B C f~1(A).

(iii) neutrosophic 7-structure ring hardly open function if for each neutrosophic dense ring A in (Ry, %)
such that A C B C 1y for some neutrosophic 7-open ring B in (R, %), f _1(A) is a neutrosophic
dense ring in (Ry,.77).

(iv) neutrosophic 7-structure ring open function if f(A) is a neutrosophic 7-open ring in (Rs, .%%), for every
neutrosophic 7-open ring A in (Ry,.%).

Proposition 4.3. Let (R, .71 ) and (R», .%3) be any two neutrosophic 7-structure ring spaces. Let f : (Ry, %)) —
(Rs, %) be any function. Then the following statements are equivalent:

(i) f is a neutrosophic 7-structure ring continuous function.

(i) f~!(B)is a neutrosophic T-closed ring in (Ry, .7} ), for every neutrosophic 7-closed ring B in (Ry, .%).
(iii) NFgel(f~*(A)) C f~1(NFgcl(A)), for each neutrosophic ring A in (R, .%3).
(iv) f~Y(NFgint(A)) C NFgint(f~'(A)), for each neutrosophic ring A in (Ry, .%).

Remark 4.1. Let (R;,.%)) and (Ry, %) be any two neutrosophic 7-structure ring spaces. If f : (Ry,.%) —
(Rz,.,) is a neutrosophic 7-structure ring continuous function, then f (N FrExt(C(A)) C NFrExt(C(f~1(A))),
for each neutrosophic ring A in (Rz, .%%).

Proof: The proof follows from the Definition 3.4 and Proposition 4.3..

Proposition 4.4. If a function f : (R,.71) — (Ra,.%) from a neutrosophic 7-structure ring space (R1,.77)
into another neutrosophic 7-structure ring space ( Ry, .%2) is neutrosophic 7-structure ring continuous, 1-1 and
if A is a neutrosophic dense ring in (Ry,.%}), then f(A) is a neutrosophic dense ring in (Ry, .%%).

Proof:

Suppose that f(A) is not a neutrosophic dense ring in ( Rz, .%5). Then there exists a neutrosophic 7-closed
ring in (Ry,.%) such that f(A) € D C 1ly. Then, f~'(f(A)) C f~YD) C f(1y). Since f is 1-1,
f7Y(f(A)) = A. Hence A C f~'(D) C 1y. Since f is a neutrosophic 7-structure ring continuous function
and D is a neutrosophic T-closed ring in (Ry, %), f~!(D) is a neutrosophic 7-closed ring in (Ry,.%;). Then
N Fgcl(A) # 1y, which is a contradiction. Therefore f(A) is a neutrosophic dense ring in (R, .%%).

Remark 4.2. Let (R;,.7]) and (Ry,.%%) be any two neutrosophic 7-structure ring spaces. Then

(i) the neutrosophic 7-structure ring continuous image of a neutrosophic 7-structure ring EztV space
(Ry,.#1) may fail to be a neutrosophic 7-structure ring ExtV space (R, .%).

(ii) the neutrosophic 7-structure ring open image of a neutrosophic 7-structure ring ExtV space (Ry,.77)
may fail to be a neutrosophic 7-structure ring ExtV space (Ry, .%%).
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Proof: 1t is clear from the following Examples.

Example 4.2. Let R = {0,1,2} be a set of integers of module 3 together with two binary operations as
follows:

+ (012 0| 1]2

0/[0|1]2 0/]0(0]|0

iz 0™ T ol1]2

212101 210121
Then (R, +,-) is a ring. Define neutrosophic rings A, B,V, D, E, and F' on R as follows: T4(0) =
1,T4(1) = 0.2,T4(2) = 0.9,14(0) = 1,14(1) = 0.2, ]A(2) = 0.9, F4(0) = 0,F4(1) = 0.8, F4(2) =
0.1,75(0) = 0.3, T5(1) = 1,T5(2) = 0.2,15(0) = 0.3,15(1) = 1,15(2) = 0.2, F5(0) = 0.7, Fg(1) =
0,Fp(2) = 0.8, Ty(0) = 0.7,7y(1) = 04,Ty(2) = I 0) = 0.7,Iy(1) = 04,1,(2) = 1F,(0) =
0.3, Fy(1) = 0.6, Fv(2) = 0,7p(0) = 0.9,Tp(1) = TD<2) 0.2,Ip(0) = 0.9,Ip(1) = 1,Ip(2) =
0.2, Fp(0) = 0.1, Fp(1) = 0, Fp(2) = O.S,TE(O) 2,Te(l) = 0.2,Tg(2) = 1,15(0) = 0.2,1(1) =
0.2,1g(2) = 1,Fg(0) = 0.8, Fg(1) = 0.8, F(2) = 0 TF( ) = 1,Tp(1) = 0.7,T¢(2) = 04,1r(0) =

1,1p(1) = 0.7, Ip(2) = 0.4, Fp(0) = 0, Fp(1) = 0.3, Fp(2) = 0.6.

Then.”) = {On, A, B,V,ANB, AUB, ANV, AUV, BNV, BUV,VN(AUB), AU(BNV), BU(ANV), 15}
and % = {0y, D, E, F, DNE, DUE, DNF, DUF, ENF, EUF, FN(DUE), DU(ENF), EU(DNF), 1y}
are two neutrosophic 7-structure rings on R. Thus the pair (R,.%;) and (R, .#5) are neutrosophic 7-structure
ring spaces. Now, ANV = N{BU(ANV),VN(AUB),V, A} and VN(AUB) = N{AUB,VN(AUB), AUV}
are neutrosophic Gy rings in (R, .#). Also, the neutrosophic ring exterior of C(AN V) and C(V N (AU B))
are neutrosophic dense rings in (R,.77). Now, NFrcl(M{ANV,VN(AUB)}) = NFgcl(ANV) = 1u.
Therefore, (R,.7) is a neutrosophic 7-structure ring ExtV space. Define a function f : (R,.%]) — (R, %)
by f(0) = 1, f(1) = 2 and f(2) = 0. Clearly, f is a neutrosophic 7-structure ring continuous function.
Also, f(A) = D, f(B) = Eand f(V) = F. Now, D = n{D,DUE,DU(ENF)}, DNF =n{F,D U
FFDNEF,FN(DUE)}and E = N{E,EUF,EU (DN F)} are neutrosophic Gy rings in (R, .%). Also,
the neutrosophic ring exterior of C'(D), C(F') and C'(D N F') are neutrosophic G rings in (R,.%). But,
NFrc(N{D,E,DNF})=C(ENF) # 1y. Therefore, (R, .#>) is not a neutrosophic 7-structure ring FxtV
space. Therefore the neutrosophic 7-structure ring continuous image of a neutrosophic 7-structure ring FxtV
space (R1, .7 ) may fail to be a neutrosophic 7-structure ring ExtV space (Ry, .-%%).

Example 4.3. Let R = {0,1,2} be a set of integers of module 3 together with two binary operations as

follows:

+(0]|1]2 0|12

0j|0[1]2 00|00

rl20™1[ol1]2

2121011 2101211

Then (R, +, -) is a ring. Define neutrosophic rings A, B,V and D on R as follows: T4(0) = 1,7T4(1) =

0.2,T4(2) = 0.9 IA(O) =L Ia(1) = 0.2, 14(2) = 0.9, F4(0) = 0, Fa(1) = 0.8, Fa(2) = 0.1, Tp(0) =
0.3,Tp(1) = 1,T5(2) = 0.2,15(0) = 03 13(1) = 1,15(2) = 0.2, F5(0) = 0.7, F5(1) = 0, Fp(2) =
0.8, Ty (0) = 0.7, Ty (1) = 0.4, Ty (2) = 1, 1(0) = 0.7, Iy (1) = 0.4, Iy(2) = 1, Fy(0) = 0.3, Fy(1) =
0.6, F/(2) = 0,Tp(0) = 0.5, Tp(1) = 0.6,Tp(2) = 0.4, Ip(0) = 0.5, Ip(1) = 0.6, 1(2) = 0.4, Fp(0) =
0.5,FD(1) = 0.4, Fp(2) = 0.6.

Then.#; = {0y, A, B,V, ANB, AUB, ANV, AUV, BNV, BUV, VA(AUB), AU(BNV), BU(ANV), 1y}
and % = {0y, A, B,V,D,AUB,AUV,AUD,BUV,BUD,VUD,ANB,ANV,AND,BNV,BN
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DVND,DUANV),VN(AUB),AU(BNV),BU(ANV), 1y} are two neutrosophic 7-structure
rings on R. Thus the pair (R,.#]) and (R,.#3) are neutrosophic 7-structure ring spaces. Now, ANV =
MN{BUMANV),VN(AUB),V,A}and VN (AUB) =n{AUB,VN(AUB),AUV} are neutrosophic
Gy rings in (R,.77). Also, the neutrosophic ring exterior of C(AN V) and C(V N (AU B)) are neutrosophic
dense rings in (R,.77). Now, NFrcl(N{ANV, VN (AUB)}) = NFrcl(ANV) = 1y. Therefore, (R,.7)
is a neutrosophic ring EztV space. Define a function f : (R,.%]) — (R, %) by f(0) =0, f(1) = 1 and
f(2) = 2. Clearly, f is a neutrosophic 7-structure ring open function. Also, f(A) = A, f(B) =B, f(V) =V
and f(D) = D.Now, A=N{A,AUB, AUV, AU(BNWV)}, DUANV)=n{V,VUD ANV, DU(AN
V),VNn(AUB)}and B=N{B,BUV,BUD,BU(ANV)} are neutrosophic G rings in (R, .#3). Also,
the neutrosophic ring exterior of C'(A), C'(B) and C'(D U (ANV)) are neutrosophic G rings in (R, .%). But,
NFgcl(M{A,B,DU(ANV)}) =C(BNV) # 1y. Therefore, (R,.7,) is not a neutrosophic 7-ring EztV
space. Therefore the neutrosophic 7-structure ring open image of a neutrosophic 7-structure ring ExtV space
(R1,-%1) may fail to be a neutrosophic 7-structure ring ExtV space (Ra, 7).

Proposition 4.5. Let (R, .71 ) and (R», .%3) be any two neutrosophic 7-structure ring spaces. If f : (Ry,.%1) —
(Rs, #5) is onto function, then the following statements are equivalent:

(i) f is a neutrosophic 7-structure ring hardly open function.

(ii) NFgrint(f(A)) # On, for all neutrosophic ring A in (R, .#]) with N Frint(A) # Oy and there exists a
neutrosophic 7-closed ring B # Oy in (Ry,.%%) such that B C f(A).

(iii) NFgrint(f(A)) # Oy, for all neutrosophic ring A in (Ry,.#1) with N Frint(A) # Oy and there exists a
neutrosophic 7-closed ring B # Oy in (Ry,.%) such that f~1(B) C A.

Proof:
(i)=(ii)

Assume that (i) is true. Let A be any neutrosophic ring A in (Ry,.”1) with NFgrint(A) # Oy and
B # 0Oy be a neutrosophic 7-closed ring in (Ry,.#%) such that B C f(A). Suppose that N Frint(A) =
On. This implies that N Frcl(C(f(A))) = 1n. Thus, C(f(A)) is a neutrosophic dense ring in (Rs,.%5)
and C(f(A)) C C(B). By assumption, f~!(C(f(A))) is a neutrosophic dense ring in (Ry,.#;). That is,
NFrel(f~H(C(f(A)))) = 1n. Now, NFgint(A) = NFgint(f~'(f(A))) = C(NFrc(C(f7'(f(A))))) =
C(NFgel(f~Y(C(f(A))))) = Oy. This is a contradiction. Hence (i)=-(ii).

(ii)=(iii)

Assume that (ii) is true. Since f is onto function and by assumption, B C f(A). This implies that
S7YB) C fH(f(A)), thatis, f~'(B) C A. Hence (ii)=-(iii).

(>iii)=(1)

Let V' C C(D) where C is a neutrosophic dense ring and D is non-zero neutrosophic 7-open ring in
(Ry, S). Let A= f~1(C(V)) and B = C(D). Now, f~1(B) = f~1(C(D)) C f~1(C(V)) = A.

Consider, NFgrint(f(A)) = NFgint(f(f~Y(C(V))) = NFrint(C(V)) = C(NFrint(V)) = Oy.
Therefore, N Frint(A) = Oy, which implies that N Frint(f~(C(V))) = NFrint(C(f~1(V))) = Oy.
Therefore, C(N Frcl(f~1(V))) = Oy. Thus, NEgcl(f~'(V)) = 1y. Therefore, f~1(V) is a neutrosophic
dense ring in (Ry,.%;). This implies that f is a neutrosophic 7-structure ring hardly open function. Hence
(i11))=-(1). This completes the proof.

Proposition 4.6. If a function f : (R, %)) — (Rs, %) from a neutrosophic 7-structure ring space (R, .7])
onto another neutrosophic 7-structure ring space ( Ry, .%5) is neutrosophic 7-structure ring continuous, 1-1 and
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neutrosophic 7-structure ring hardly open function and if (R;,.7)) is a neutrosophic 7-structure ring FztV
space, then (Ry,.%5) is a neutrosophic 7-structure ring ExtV space.
Proof:

Let (Ry,.#1) be a neutrosophic 7-structure ring ExtV space. Assume that A;’s (i = 1,...,n) are neu-
trosophic Gy rings in (Ry,.%3) and the neutrosophic ring exterior of C'(A4;)’s are neutrosophic dense ring in
(Rg, ). Then NFrcl(NFrExt(C(A;))) = 1y and A; = N3, B;; where B;;’s are neutrosophic 7-open
rings in (Ry, .%3). Hence

A = UL By) = M2y f~1(By) (4.1)

Since f is a neutrosophic 7-structure ring continuous function and B;;’s are neutrosophic 7-open rings
in (Ry, %), f~'(By)’s are neutrosophic 7-open rings in (Ry,.#1). Hence f~'(A;) = N, f~'(Bj;) is an
neutrosophic Gy rings in (Ry,.#). Since f is a neutrosophic 7-structure ring hardly open function and
NFrExt(C(4;)) is a neutrosophic dense ring in (Ry, %), f~'(NFrExt(C(4;))) is a neutrosophic dense
ring in (Ry,.7). Now,

fTHNFrExt(C(A))) = f (N Fgint(A;))
C NFgint(f~1(A)))
= NFpExt(C(f~(A))).

Therefore 1y = NFrcl(f'(NFrExt(C(A;)))) € NFrcl(NFrExt(C(f~'(A;)))), which implies that
Iy = NFRc(NFrExt(C(f7'(A;)))). Hence N FrExt(C(f~'(A;))) is a neutrosophic dense ring in (Ry, ).
Since (Ry,.#,) is a neutrosophic 7-strucuture ring ExtV space, N Frel(N?, f~1(A;)) = 1 where f71(A;)’s
are neutrosophic G rings in (R;,.#}) and the neutrosophic ring exterior of C(f~(A;))’s are neutrosophic
dense ring in (R, .%}). Thus, N Frel(N, f~1(A;)) = 1y = NFpel(f~1(NI A;)). Therefore, f~1(N, A;)
is a neutrosophic dense rings in (R;,.%;). Since f is a neutrosophic 7-structure ring continuous, 1-1 and by
Proposition 3.4., f(f~1(N"_, A;)) is a neutrosophic dense ring in (Ry,.%). Hence N Frcl(f(f~1 (N, A;))) =
ly. Since fis 1-1, f(f~'(N™,A;)) = N, A;. Then, NFrcl(N?,A;) = ly. Therefore, (Ry, %) is a
neutrosophic 7-structure ring ExtV space.

Conversely, let (R, .#%) be a neutrosophic 7-structure ring ExtV space. Assume that A;’s (i = 1,...,n)
are neutrosophic Gy rings in (Rs,.%,) and the neutrosophic ring exterior of C'(A;)’s are neutrosophic dense
rings in (Ry, .7%).

Then N Frcl(NFrExt(C(4;))) = 1y and A; = N2, By; where Bj;’s are neutrosophic 7-open rings in
(Rq,.%). Hence

f7HA) = UM By) = N2y fH(By) (4.2)

Since f is a neutrosophic 7-structure ring continuous function and B;;’s are neutrosophic 7-open rings
in (Ry, %), f~'(Bj;)’s are neutrosophic 7-open rings in (Ry,.#1). Hence f~'(A4;) = N2, f~(By) is a
neutrosophic Gy rings in (R;,.#7). Since f is a neutrosophic 7-structure ring hardly open function and
NFRrExt(C(A;)) is a neutrosophic dense ring in (Ry, %), f 1 (NFrExt(C(A;))) is a neutrosophic dense
ring in (Ry, %1). By Remark 4.2., f~Y(NFrExt(C(A;))) € NFrExt(C(f~1(A))).
Thus, NFRCl(f_l(NFRECL’t(O(AZ)))) =1y C NFRCZ(NFREIt(C(f_l(Al)))) Hence, NFREZL‘t(O(f_l(AZ)))
is a neutrosophic dense ring in (Ry,.#;). Suppose that N Frcl(N?_; f~1(A;)) # 1y. This implies that

NFRCl(ﬂlnzlf_l(Ai) ?é On
= NFrint(UL,C(f~1(4))) # On
= NFgint(U, f~1(C(A))) # On.
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Then, there is a non-zero neutrosophic 7-open ring E; in (Ry,.#;) such that E; C U, f~1(C(4;)). Now,

F(E) C FUL fHC(A))
C UL f(fHC(AY))

C UL, C(4)

A).

= C(NiLy
Since (Rq,.%) is a neutrosophic 7-structure ring FxtV space, N Fgrcl(N,;A;) = 1y. Hence from

(4.3), NFgint(f(E;)) € Oy. This implies that N Frint(f(E;)) = Oy, which is a contradiction. Hence
NFrel(M, f7Y(A;)) = 1x. Therefore, (Ry,.#,) is a neutrosophic 7-structure ring ExtV space.

Proposition 4.7. Let (R;, .7, ) and ( Rs, .%,) be any two neutrosophic 7-structure ring spaces. Let f : (R, .%]) —
(R2,.%,) be any bijective function. Then the following statements are equivalent:

(i) f is somewhat neutrosophic 7-structure ring continuous function.

(ii) If A is a neutrosophic 7-closed ring in (R, .%) such that f~!(A) # 1y, then there exists a neutrosophic
7-closed ring Oy # E # 1y in (Ry,.#7) such that f~1(A) C E.

(iii) If A is a neutrosophic dense ring in (Ry,.% ), then f(A) is a neutrosophic dense ring in (R, .%5).

Proof:
(D)=(ii)

Assume that (i) is true. Let A be a neutrosophic 7-closed ring in (Rg,. %) such that f~1(A) # 1.
Then C'(A) is a neutrosophic 7-open ring in (Ry,.#) such that C(f~1(A)) = f~1(C(A)) # Oy. Since f
is somewhat neutrosophic 7-structure ring continuous, there exists a neutrosophic 7-open ring F in (R;,.%])
such that £ C f~!(C(A)). Then there exists a neutrosophic 7-closed ring C(E) # Oy in (Ry, %) such that
C(E) C f~(A). Hence (i)=(ii).

(ii)=-(iii)

Assume that (ii) is true. Let A be a neutrosophic dense ring in (R;,.7]) such that f(A) is a neutrosophic

dense ring in (Ry, .#2). Then, there exists a neutrosophic 7-closed ring C'in ( Rz, .%5) such that

f(A) C E C 1y.

This implies that f~!(E) # 1. Then by (ii), there exists a neutrosophic 7-closed ring O # D # 1y such
that A C f~'(E) C D C 1y. This is a contradiction. Hence (ii)=(iii).
(iii)=(ii)

Assume that (iii) is true. Suppose (ii) is not true. Then there exists a neutrosophic 7-closed ring A in
(Ry, ) such that f~!(A) # 1. But there is no neutrosophic 7-closed ring Oy # E # 1y in (Ry,.#) such
that f~'(A) C E. This implies that f~'(A) is a neutrosophic dense ring in (R;,.#}). But from hypothesis
f(f71(A)) = A must be neutrosophic dense ring in (Ry, %), which is a contradiction. Hence (iii)=(ii).
(ii)=(1)

Let A be a neutrosophic 7-open ring in (R, %) and f~'(A) # On. Then, f~1(C(A)) = C(f~'(A)) =
Ox. Then by (ii), there exists a neutrosophic 7-closed ring O # B # 1y such that f~*(C(A)) C B. This
implies that C'(B) C f~!(A) and C(B) # Oy is a neutrosophic 7-open ring in (Ry,.#]). Hence (ii))=-().
Hence the proof.
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Proposition 4.8. If a function f : (Ry,.%)) — (Rs, %) from a neutrosophic 7-structure ring space (R, .7;)
onto another neutrosophic 7-structure ring space (Rs,.75) is somewhat neutrosophic 7-structure ring contin-
uous, 1-1 and neutrosophic 7-structure ring open function and if (R;,.7#]) is a neutrosophic 7-structure ring
ExtV space, then ( Ry, .%) is a neutrosophic 7-structure ring ExtV space.

Proof:

Let (Ry,.#1) be a neutrosophic 7-structure ring FxtV space. Assume that A;’s (i = 1,...,n) are neu-
trosophic Gy rings in (R;,.#) and the neutrosophic ring exterior of C'(A;)’s are neutrosophic dense rings in
(R1,1). Then, NFrcl(NFrExt(C(A;))) = 1y and A; = N3, B;; where By;’s are neutrosophic 7-open
rings in (Ry,.7)). Since f is a neutrosophic 7-structure ring open function, f(B;;)’s are neutrosophic T-open
rings in (R, #2). Now, N2, f(B;;) is a neutrosophic G rings in (R, #3). Since f is 1-1,

JTHOZ L F(Biy) = M52, f~ (f(Byy)) = M2, By = A; (4.4)
Since [ is onto, f(A;) = f(f7H(N52,f(Bij))) = N2, f(Bij) (4.5)

Therefore, f(A;) is a neutrosophic G rings in (Ry,.#2). Since f is somewhat neutrosophic 7-structure
ring continuous function, N Fr Ext(C(A;%)) is a neutrosophic dense ring in (R;,.%;) and by Proposition 4.7.,
f(NFrExt(C(A;))) is a neutrosophic dense ring in (R, .%%), which implies that NFrExt((f(A;))). Now
we claim that N Frcl(N52, f(A;)) = 1n. Suppose that N Frel(N, f(A;)) # 1y. This implies that

C(NFrel(MiZy f(A))) # On
= NFgint(Ui,C(f(Ai))) # On
= NFRZnt<U:L:1f(C(AZ>>) 7& On.

Therefore there is an non-zero neutrosophic 7-open ring E; in (Rz,.%5) such that £; C U, f(C(4;)).
Then f~(E;) C f~1 (U, f(C(A;))). Since f is somewhat neutrosophic 7-structure ring continuous function
and E; € %, NFrint(f~'(E;)) # Oy implies that N Frint(f (U, f(C(A;)))) # On.

Then N Frint(U, f~(f(C ( :)))) # On. Since fis a bijective function, N Frint(N}_,C(A;)) # Oy, which
implies that C'(N Frel(N?_,A;)) # On. That is, NFgcl(N?_;A;) # 1x. This is a contradiction. Hence
(R2, %) is a neutrosophic 7-structure ring EztV space.

Conversely, let ( Ry, -#2) be a neutrosophic 7-structure ring ExtV space. Assume that A;’s (i = 1,...,n) are
neutrosophic G rings in (Ry,.#]) and the neutrosophic ring exterior of C'(A;)’s are neutrosophic dense ring
in (Ry, #1). Then N Frel(NFrExt(C(A;))) = 1y and A; = M52, B;; where B;;’s are neutrosophic 7-open
rings in (Ry,.77). Since f is somewhat neutrosophic 7-structure rlng contlnuous function, NFrExt(C(A;))’s
are neutrosophic dense rings in (R;,.%;) and By Proposition 4.7., f(NFrEzt(C(A4;))) is a neutrosophic
dense ring in (Ry,.%%). That is, N Frcl(N FrExt(C(A;))) = 1. Since f is a neutrosophic 7-structure ring
open function and B;;’s are neutrosophic 7-open rings in (Ry,.%1), f(B;;)’s are neutrosophic 7-open rings in
(Rg,.#2). Hence N3, f(B;;) is a neutrosophic G5 ring in (R, .#3). Since f is 1-1,

FHMZL f(Biy)) = My (f 71 (f(Bij)) = Mizy Byj. (4.6)

Since f is onto,

JA) = fF(FHNL f(Bi)) = M52, f(Byj). 4.7)
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Hence f(A;) is a neutrosophic Gy ring in (Ry, .%5). Now,

NFRc(NFrExt(C(f(Ai))) = NFrcl(NFrExt(f(C(A))))
= NFgrcl(NFrint(f(A;))
O NFgcl(f(N Fgrint(A;))
O f(NFgcl(N Frint(A;)))
= f(ly) = 1n.

This implies that NFrExt(C(f(A;)) is a neutrosophic dense ring in (R»,.%>). Hence the neutrosophic
ring exterior of C'(f(A;)) is a neutrosophic dense ring in (Ry,.#3). Since (Ry,.%%) is a neutrosophic 7-
structure ring ExtV space, N Frcl(N, f(A;)) = 1n. Now we claim that N Frel(N?_, f(A;)) = 1y where
A;’s (i = 1,...,n) are neutrosophic G, rings in (R;,.%;) and the neutrosophic ring exterior of C'(A;)’s are
neutrosophic dense rings in (R;,.7]). Suppose that N Frcl(N!_, A;) # 1. This implies that

C(N Frel(Fy A)) # Oy
= NFRmt(C'(ﬂ? 1 )) # Oy

Then there is a non-zero neutrosophic 7-open ring E; in (R, .77) such that £; C U ,C(A;). Now,

Then, N Frint(f(E;)) € NFrint(C(NiZ,f(A))) € C(NFrel(Miz, f(Ai))) (4.8)

Since (Rq,.%) is a neutrosophic 7-structure ring ExtV space, N Frcl(N?_,f(A;)) = 1y. Hence from
(4.8), NFgint(f(E;)) € Oy, which implies that N Frint(f(E;)) = Oy, which is a contradiction. Hence
NFgrel(N}_,A;) = 1y. Therefore (Ry,.7) is a neutrosophic 7-structure ring ExtV space.

5 Conclusion

A neutrosophic set model provides a mechanism for solving the modeling problems which involve indetermi-
nacy, and inconsistent information in which human knowledge is necessary and human evaluation is needed.
It deals more flexibility and compatibility to the system as compared to the classical theory, fuzzy theory
and intuitionistic fuzzy models. In this paper, a new idea of a neutrosophic 7-structure ring spaces, neutro-
sophic 7-structure ring G577/, spaces and neutrosophic 7-structure ring exterior B spaces and neutrosophic
T-structure ring exterior V' spaces have been introduced. Further, neutrosophic 7-structure ring continuous
(resp. open,hardly open)functions, somewhat neutrosophic 7-structure ring continuous functions are studied.
Their characterization are derived and illustrated with examples.
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Abstract. Neutrosophic cubic fuzzy sets (NCF'Ss) involve interval valued and single valued neutrosophic sets,
and are used to describe uncertainty or fuzziness in a more efficient way. Aggregation of neutrosopic cubic fuzzy
information is crucial and necessary in a decision making theory. In order to get a better solution to decision
making problems under neutrosophic cubic fuzzy environment, this paper introduces an aggregating operator to
neutrosophic cubic fuzzy sets with the help of Bonferroni mean and geometric mean, and proposes neutrosophic
cubic fuzzy geometric Bonferroni mean operator (NCFGBM™") with its properties. Then, an efficient decision
making technique is introduced based on weighted operator WNCFGBM.". An application of the established

method is also examined for a real life problem.

Keywords: Neutrosophic Sets; Cubic Fuzzy Sets; Bonferroni Geometric Mean; Aggregation Operators; MCDM

1. Introduction

Fuzzy set |1] deals with fuzziness in terms of degree of truthness or membership within the
range of interval [0,1]. The traditional fuzzy sets are not efficient when the decision makers
face more complex problems and it is difficult to quantify their truth values. Y.B.Jun et al. [2]
introduced the notion of cubic sets which represents the degree of belongingness or certainty
by interval valued fuzzy sets and single valued fuzzy sets simultaneously. Therefore, cubic sets
are made up of two parts, where the first one is the interval valued fuzzy sets which represents
belongingness in a particular range of interval, and the second one is exact belongingness or

fuzzy sets.
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Smarandache [3] introduced the philosophical idea of neutrosophic sets (NS) which is formu-
lated from the general concept of fuzzy sets and many real life applications are avaliable under
NS. Ajay, D., et al. used neutrosophic theory in fuzzy SAW method [4] and Abdel-Basset.M
et al. utilized neutrosophic sets to asseses the uncertainty of linear time-cost tradeoffs [5] and
also they applied to resource levelling problem in construction projects |6]. Further, biploar
neutrosophic sets have been used in medical diagnosis [7] and decision making suituations [8].
Moreover, Y.B.Jun et al. |9 and M.Ali et al. [10] effectively utilized cubic fuzzy sets to the
neutrosophic sets and introduced the concept of neutrosophic cubic fuzzy sets (NCFSs) with
some basic operations. Therefore the hybrid form of neutrosophic cubic fuzzy set may be
more adequate to address problems of more complexity using interval valued and exact val-
ued neutrosophic information and it has been broadly used in the fields of MCDM [12419].
Neutrosophic cubic fuzzy sets contain more information than general form of NS and therefore
NCEFSs provide better and efficient solution in MCDM.

Aggregating the fuzzy information plays an important role in decision theory and in partic-
ular decision making in real life problems. Variety of aggregating operators exist, but very few
aggregating operators are available under neutrosophic cubic fuzzy numbers such as Heronian
mean operators [21], Einstein Hybrid Geometric Aggregation Operators [22,23], Dombi Ag-
gregation Operators [24], weighted arithmetic averaging (NCNWAA) operator and weighted
geometric averaging (NCNWGA) operator [25]. Still the Bonferroni geometric mean aggregat-
ing operator has not been studied in NCF environment. So the main purposes of this study
are: (1) to establish a neutrosophic cubic fuzzy Bonferroni weighted geometric mean operator
WNCFBWGM,y".(2) to develop an MCDM method using WNCFBW GM,," operator to
rank the alternatives under NCFS environment.

The content of the paper is organized as follows. Section 2 and 3 briefly introduce the basic
concepts and operations of neutrosophic cubic fuzzy sets. The concepts of Bonferroni mean and
geometric Bonferroni mean are explained in section 4. The neutrosophic cubic fuzzy geometric
Bonferroni mean NCFGBM™" and weighted neutrosophic cubic fuzzy geometric Bonferroni
mean WNCFGBM,,"’ operators are established and examined with their properties in section
5. An MCDM method based on W NCFGBM," is presented in section 6. Finally conclusions

and scope for future research are given in section 7.

2. Neutrosophic Cubic Fuzzy Set

Definition 2.1. [9] Let X be a non empty universal set or universe of discourse. A neutro-

sophic cubic fuzzy set S in X is constructed in the following form:

§ = {x,(T(x),1(x), F(2)) ; (Ta(x), Ir(2), F(2)) |2 € X}
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where T'(x), I(z), F(z) are interval valued neutrosophic sets; T'(z) = [T~ (z), T (z)] C [0,1] is
the degree of truth interval values; I(z) = [~ (z), I'T(z)] C [0,1] is the degree of indeterminacy
interval values; F(z) = [F~(z), F*(z)] C [0,1] is the degree of falsity interval values; and
(T\(x), In(z), Fx(x)) € [0, 1] are truth, indeterminacy, and falsity degrees of membership values
respectively. For convenience, a neutrosophic cubic fuzzy element in a neutrosophic cubic fuzzy
set (NCFSs) S is simply denoted by S = {(T, I, F);(Ty, I, F\)}, where (T, I, F) C [0, 1] and
(T, I, Fy) € [0,1], satisfying the conditions that 0 < (T, It FT) <3 and 0 < (Ty, I, F)) <
3.

Definition 2.2. [10] Let S be a neutrosophic cubic fuzzy set in X given by

S={[T"(),T"(@)], [I"(2),I"(2)], [F~(2), F* (2)] ; (Ta(x), Ix(2), Fx(2)) |z € X}

S is said to be internal NCFSs if T~ (z) < Th\(z) < TH(z), I~ (z) < I\(z) < It (z), F(z) <
F\(z) < FT(z)Vz;S is said to be external NCFSs if Ty(z) ¢ [T~ (z), T+ (2)],I\(z) ¢

I (2), I* (2)], Fa() ¢ [F~ (), F* ()] Vo

Definition 2.3. Let S be a neutrosophic cubic fuzzy set in X. Then the support of neutro-
sophic cubic fuzzy set S* is defined by

S* ={[T~(x),T"(x)] > [0,0], [I~(x), I"(x)] [0,0], [F~(z), F*(x)] C [1,1];
(Th(x) > 0,1)(x) > 0,F\(z) <1)|zr € X}

Definition 2.4. [25] Let S be a non empty neutrosophic cubic fuzzy number given by

S = {$7 <T(l‘), I(l‘), F($)> ) <T/\(.%'),I)\(J}), F)\(l’» |.%' € X}
={[T (2),T* ()], [I"(z), 1" (z)], [F (z), F"(2)] ; (Ta(2), Ix(z), FA(2)) |z € X},
then its score, accuracy and certainty functions can be defined respectively, as follows:

[A4+T~ ()~ (2)—F~ (2)+T* (z)—I* (z) - F* (x)] n (24T (z)— I (z)— Fy (z)]

S(S) = : 9 3 ) (1)
o(§) - T =P @)+ T - P @) 2+ ) = o) o)
o§) = DT PADOL - (5).0(8).(8) € 0.1 Q

3. Operations on NCFNs

Let Ai(x) = {[T;,T;7], [I;, L], [F; F; ] 5 (Tni, Inis Fi) |t € X} (i = 1,2,3,---n) and
Aj(y) = {[Tj ,T;] [IJ ,[j] [Fj ,F;L] Ty, D, Fag) ly € Y} (j =1,2,3,--n) be two col-

lections of NCFNs. Then the following operations are defined [25]:
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(1) Union

Ai(x) UA;(y) = {[min(Ti—,Tj_),maa:(Tf,T;)} [mam([z A7), mm(I;“,If)} ,

max(F[, Fji)v min(F’iJr’ F]+)i| ) <ma$(T)\i7 T)\j)a min(l)\ia I)\j)’ min(F)\h F/\])>}

(2) Intersection

i P07

Ai(x)NAj(y) = {[max(T{,T;),min(ﬂJr,I?)} [mm([ I7),max (L’ Iﬂ} ,

[min(Fi_, Fj_), maa:(Ff, F;)} s (min(Tg, Thj), max(Ixi, In;), max(Fy;, F,\j)>}
(3) Complement

Azc(x) = {[Fi_aF‘i—’—} 3 [I_I’L_al_lj_] ) [1}_71—;+];<F)\i71_1)\i7T)\i> ‘ZCEX}

AR

(4) Ailw) € Ajly) if and only it [77, 7] € |17, 77| (17, 17] 2 [17, 1) (R R 2
£y F}| and Ty < Tai, I > Ly, Fy > FyVa € X,y €Y,

(5) Ai(z) = Aj(y) if and only if A;(z) C A;(y) and Ai(z) D A;(y) ie. [T, 1] =
T 1| ) = |G 0| [ B = (B F | (T T, B = (T, L, Fy)

107

(6) For w >0
wA ={[1-(1-177)" 1= =1, [(;)". (L)), [(F7)" (55"
(1= (1—=T)", (D))", (Fx)“)}
(7) For w >0
(A ={[(T7)". (")), - (- 17)" 1= (1= 11)7],
[1-(1-F)" 1= (1-FN*]: (1)1 - (1 - Ly)*,1— (1 - Fx))}

(8) Algebraic Sum
Ai(z) ® Aj(y) = { [T; T - TT T 4T - TjTj] [1 I ,Ijﬁ]
|:Fi_Fjj_7 FZ-+F]-+} i (Tni + T — ToiThgs il F)\iFAj>}
(9) Algebraic Product

Ao Ay) = {|TT T I - L I I -

Jjori

i+ Fy = FFy B+ F = FF | (0D, Da + Dy — Dalg, Fai + By = FaiFy) }
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4. Geometric Bonferroni Mean

Bonferroni proposed the concept of Bonferroni mean (BM) which is defined as follows:

Definition 4.1. [11] Let s;(s = 1,2,...,n) be n number of positive crisp data. For any
u,v > 0,

RPN ST .

o n(n —1)
b,j= 1,
\ i#j }
We call Eq.(4) as the Bonferroni mean (BM) operator. Especially, if v=0, Eq.(4) reduces to

the generalized mean operator given by

g+ )N
w05y, 80, ..., 8n) = gZSg n—
B \i:1 \( #] /} (5)

S5

i=1

3

S|

If u =1 and v = 0, the above equation produces the very known arithmetic mean (AM):
1 n
1,0
37(81,32,...,%):”;33 (6)
1=

With the usual notion of geometric mean and the BM, the geometric Bonferroni mean

operator is formulated.

Definition 4.2. Let u,v > 0, and s;(¢ = 1,2,...,n) be a collection of non negative crisp
numbers. If
1 n
u,v _ nn_
GB (81’82’...’871)7(11,—1- || us,—i—vs)( iy (7)

]:
it
then GB™" is called the geometric Bonferroni mean (GBM).

Obviously, the GBM statisfies the following properties:
(1) GB*¥(0,0,...,0) =0
(2) GB""(s1,82,...,8,) =sif s;=s, foralli=1,2,... n.
(3) GB™"(81,82,...,8,) > GB""(t1,ta,...,t,) if s; > t; Vi that is, GB"" is monotonic.
(4) Min(s;) < GB™" < Max(s;).

Furthermore, if v = 0, Fq.(7) generates the geometric mean:

n n

1 1
GBU70 (317 S92, ..., Sn) = E H (USZ‘)"("*I) — H(Sl)% (8)
i,j:l, 'L:l
i
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5. Neutrosophic Cubic Fuzzy Geometric Bonferroni Mean

Definition 5.1. Let S; = {[T;,Tf] [I I+] [F{,Fj] ;<T,\i,I,\i,F,\i)} be a collection of

)

neutrosophic cubic fuzzy numbers (NCFN). For any u,v > 0,

1 { " 1 \
—1'® ((uS & vS;) 7D 1>)
e /

is called the neutrosophic cubic fuzzy geometric bonferroni mean operator.

NCFGBM™ (Sl, S Sn) _

Theorem 5.2. Letu,v > 0 and S; = {[T;, T;'], [I; . I'], [F;, EY] 5 (Toi, D, Foi) } be a col-

)

lection of neutrosophic cubic fuzzy numbers (NCFN). Then the aggregated value is calculated
using the operator NCFGBMY"

(g |
—1'® ((uS ® vS;) D 1>)
A )

f[ ( . 1\u+u
T | IR et I
R "

{ ) i 1)\ u+v]
1-hi-J] (h-a-1Hea -1 )
\ | | ) |

(1 - — — n(nll)\ h ( n(n 1) “+U-l
- 11 (0 -y 1= I (1= @y 7
R A AR ) |
(1 - — — n(nll)\ uiv ( rL('rL 1)\ uiv-l
-1 (- E Y Ao T (= e
(e |

1

<1 - (1 - ﬁ (1= =Tn)"1 - T,\j)v)"("ll)\ :

{1—12[(1—(1@“(%)”)@\ ,(1—]2[(1—(FM)“(FAJ~)”)"<;”\| >}
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Proof. . Using the operational laws on NCF'N described in section (3), we have

wS ={[1= (1 =77)" 1= (=1, ()" (1) [(F7)", (F1)"]:

(1= (1=T)", (In)", (Fi)")}

o= (- () (o) [0 ) ) () (7))

(1= (1=T5)", (In)", (F>;)")}

u§i@vd; = {[1 - (=T = 17" 1= U= T = T7)° L [ @)

1 J J

ED ) (M) 5= (1= ) (1= o), ()" ()" (2" (F)") }

Next, we have the following equation which has been derived by Xu and Yager [28].

n 1
® (uSi@vS;)""
1
i#j

n 1 n 1
— _ n(n—1) n(n— )-l
(-a-mya-r))™ 7 I (- a-Thra -1l
Lz’,j=1, ij=1, J
i i)

(10)
L‘.H (1= @)™ I (= @)
[ ki bt |
<H (1= (=T =TT 1= T (0 (1) (1) ™7
& ol
) 0
-1 (1—<Fﬁ><F§j>)n<m>> s
Z’i];'l, )

Using NCF operational laws, Eq.(10) yields neutrosophic cubic fuzzy geometric bonferroni
mean operator NCFGBM®"?(S1,Ss,---,5,) given by Eq.(9). In addition, it satisfies the

D. Ajay, Said Broumi, J. Aldring ; An MCDM Method under Neutrosophic Cubic Fuzzy Sets
with Geometric Bonferroni Mean Operator




Neutrosophic Sets and Systems, Vol. 32, 2020 194 D

following conditions

Jun

[ { ) \|uiv
- T -a-mya-opy) o b
[ \ i%&;-l( ) )

\ ij=1
i#]

which completes the proof of the theorem.

0< (1 - ﬁ (1- (F,\i)u(F/\j)v)"("l”) <1

We discuss some of the important properties of the NCFGBM™":

(1) Idempotency: Suppose the colletive data of neutrosophic cubic fuzzy numbers
Si = {[ﬂ_vT;_] ) [IZ_>I7,+] ) [F’Z'_>F‘i+] ) <T/\i7[)\i>F/\i>} (Z =1,2,3,- n) are equal, for
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any u,v > 0, the aggregate operator be

NCFGBM"" (81,85, ...,5,) = NCFGBM®""(S, S, ..., S)

1 ( - M:U\
- ® uS @ vS
\'"i2 (5229 >/

(11)
1 (n ~ nnll\

- ®<(u+v)5)( )
T )

1 ((u+v) 5) ZEZZB =S

- U+ v
(2) Commuatativity: Let S;(i = 1,2,3,---n) be a collection of neutrosophic cubic num-

bers. For any u,v > 0,

NCFGBM™" (51,52,...,S> NCFGBMW(' 52,...,§n) (12)

Let (él, §2, .. ,Sn> be any permuation of (5’1,32, .. S*

N , CQ 2
H .
=
@
=}

NCFGBM™? (5’1,52,.-.,571) N {é) ((uSiGBUS "D \

u+v g .S
\w:%
i#£]

/
1 & (o))
— \igK(uSZ@vS o 1>}
— NCFGBM™® (51,52,...,5 )

(3) Monotonicity: Let S; (i = 1,2,3,---n) and S; (j = 1,2,3,---n) be two collections
of neutrosophic cubic numbers. For any u,v > 0, if [T, ,T;],C [T;,Tf] [I7,I] D

AR

[I I+] [-F;_7Fi+] 2 [Fj_aFjJr];T/\i S T)\j7I)\i Z I/\jaF)\i 2 F)\] (VLJ = 1,2,3,...71),

jti
Then
NCFGBM™" (s) < NCFGBM™® (S*j) (13)
(4) Boundedness: Let S, = {[’Ti_,ilf] [IZ ,Iﬂ [Fi_,FZﬂ ;(TM,IM,FM)} (i =

1,2,3,---n) be a collection of neutrosophic cubic fuzzy numbers, and let

S; = {inf ([T;,T;L]) ,sup([] Iﬂ) ,sup([F[,Ff]) smin (Ty;) , max (Iy;) , max (FM)},

S:r = {sup([Ti_,Tiﬂ) yinf ([I I+]) Jinf ([Fl-_,Fzﬂ) smax (Th;) ,min (Iy;) , min (FM)}

P07

For any u,v > 0,

S7 < NCFGBM™" (SZ) (i=1,23,...n) <8 (14)
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Thus the boundedness is easily obtained.

If parameters u and v are modified in NCFGBM™", then a special case can be obtained as

follows:

If v — 0, then by equation (9), we have

— (@1 ((ugi@v§j>n<5w>) -1 g(m);))

(M) e Tl aemt) |

=1 =1

NCFGBM™" (Sq, Sy, oo gn) _

3=

n u

CTLeaot) T w?) |

i=1 =1

S =

=1 =1

-1~ (Fi_)“)i>u -0 (E*)“)3L> ;

3=
Sl=

<1— 1—H<1—<1—TM>“>) C-JTa- @y ) 1—H<1—<FM)“>31)”>

=1 =1 =1

which we call the generalized neutrosophic cubic fuzzy geometric mean (NCFBGM™").

5.1. Weighted Neutrosophic Cubic Fuzzy Bonferroni Geometric Mean

Generally weighted aggregating operator plays a significant role in decision-making pro-
cesses to aggregate information. Therefore we propose a weighted aggregate operator based

on neutrosophic cubic fuzzy bonferroni geometric mean (WNCFGBM").

Definition 5.3. Let S; = {[T,,T."], [I;,I'], [F, F;] s (T, I, Fi) } be a collection of
neutrosophic cubic numbers (NCN), and w = (W1, Wa, ..., W,,)T the wieght vector of S; =
51,8, ..., S,, where w; indicates the importance degree of S; such that w; > 0 and Yo wp =

1(i=1,2,3,...,n). For any u,v > 0,

uiv (Qn{) ((u(Si)““ @U(S‘j)wﬂ)"("l”>) (15)
g;jL

is called the weighted neutrosophic cubic fuzzy geometric bonferroni mean operator.

WNCFGBM! (Sl, S, ... sn) _

Theorem 5.4. Let u,v > 0 and S; (1 =1,2,3,...,n) be a collection of neutrosophic cubic
fuzzy numbers (NCFN), whose weight vector is w; = (W1, Wa, ..., Wy)T, which satisfies that
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w; >0, and >0 jw; =1 (i=1,2,3,...,n). Then the aggregated value using the operator is

WNCFGBM"" (31,8, ...,8,) =

1 ~ ~ =D
( - . . n(nl 1) \
Ut Q) (ulS)™ @ v(S;)™s

f{ ( i 1 \i
=4 -t T (- =@y - @y)ym)e) ™
Tl )

( L . n(n 1)\ u+v-l
- - - ( - ( i+)WZ)u( ( - 'LU] U
1 \1 igl.;lL (1 1—(T. T; / J

I =L (1-a-a-ra-a-n >wf>”)"<"1‘”\

)

(1 - JJa-a-a-n))a-Qa- IAj)wJ')v)n(nln\

\ )
( " 1 \ )
1= [T A== 0= B = (1= Fy)™)") 7D > '
\ ) |
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Proof. The proof is identical with the proof of theorem (5.2) and therefore is omitted.

6. An application of weighted neutrosophic cubic fuzzy geometric bonferroni mean

operator to MCDM problems

In this section, we propose an algorithm for MCDM method based on neutrosophic cubic
fuzzy geometric Bonferroni mean operators and illustrate it with a numerical example.
Algorithm. Let A; = {%1,%,...,3} and C; = {i1,72, ..., 7m} be collections of n al-
ternatives and m attributes respectively. According to the appropriate weight of attributes
(@;)T = {@1,@2,...@n} is determined, which satisfies the condition that @; > 0 and Y &; = 1.
Then the following steps are used in process of MCDM method.
Step 1. Construct neutrosophic cubic fuzzy decision matrix D = [Nyj]nsxm.-
Step 2. The decision matrix is aggregated using NCFGBM™“" or WNCFGBM," to
m attributes.
Step 3. Utilize the score formula (Eq.1) to calculate the values of s(A;)

Step 4. The n alternatives are ranked according to their score values

6.1. Numerical Example and Investigation

An illustrative example on the selection problem of investment alternatives is adapted
(Ref. [25126]) to validate the proposed MCDM method with NCF data. A company wants a
sum of money to be invested in an industry. Then the committee suggests the following four
feasible alternatives: (a) 47 is a textile company; (b) 42 is an automobile company; (¢) 73 is a
computer company; (d) 74 is a software company. Suppose that three attributes namely, (1) 7;
is the risk; (2) 7 is the growth; (3) 73 is the environmental impact; are taken into the evalua-
tion requirements of the alternatives. The weight vectors of the three attributes 7;(j = 1,2, 3)
are (0;)7 = (0.32,0.38,0.3) respectively. Then the experts or decision makers are asked to
evaluate each alternative on attributes by the form of NCFNs. Thus, the assessment data can
be represented by neutrosophic cubic decision matrix D = [Sjj]mxn-

step 1. Neutrosophic cubic fuzzy decision matrix D = [S;;]ax3

{ 0.5,0.6],  [0.1,0.3], 0.5,0.6], [0.1,0.3], 0.2,04], [0.7,0.8], ]
0.2,0.4]; (0.6,0.2,0.3) 0.2,0.4]; (0.6,0.2,0.3) 0.8,0.9]; (0.3,0.8,0.9)
0.6,0.7],  [0.1,0.2],

]
]
0.6,0.8),  [0.1,0.2],
OZO$;<010LO%>
]
|
]
]

[

[

[

[ 0.8,0.9]; (0.3,0.6,0.9
[0.4,0.6

[

[

[

]
]
| ]

|
D= I;
| ]
| ]
]
]

0.3,04],  [0.6,0.7],
{ 0.7,0.8]; (0.3,0.7,0.8) J
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0.3,0.4],  [0.6,0.7], )

. [0.2,0.3] 0.5,0.6 0.3,0.5,  [0.7,0.8],
0.1,0.3; (0.6,0.2,0.2)/ [0.3,0.4 0.6,0.7]; (0.4,0.8,0.7)
0.6,0.7),  [0.1,0.2],

[ ] [

[ ] [

[ ] ) [
[0.2,0.3]; 06 0.1,0.2 [

[ ], 02 03 [

[ I; 060304> [
0.7,0.8], mLum,> [ ] ) [
[ ] [

0.1,0.2]; (0.8,0.1,0.2) 0.1,0.3]; (0.7,0.1,0.2




Neutrosophic Sets and Systems, Vol. 32, 2020 199 D

step 2. The decision matrix is aggregated by WNCFGBM,,"(Si1, Si2,Si3)(i = 1,2,...n)
operators (Using Eq.16) to the three (7,7 = 1,2, 3) attributes.

If we take the parameter values u = v = 1, then using A4; = WNC’FGBM&,M), we get

the following values

A; = {[0.7345,0.8126] , [0.0881, 0.1861] , [0.1453,0.2523] ; (0.7951,0.1453,0.2093) } ,
Ay = {[0.7951,0.8635] , [0.0790, 0.1307] , [0.1453,0.2093] ; (0.8124,0.0790,0.1642) } ,
Ay = {]0.7378,0.8287] , [0.1307,0.1861] , [0.1195, 0.1876] ; (0.8126, 0.1674,0.1703) } ,
A, = {]0.8124,0.8635] , [0.0790,0.1307] , [0.0881, 0.1674] ; (0.8491, 0.0881,0.1453)} .

step 3. Utilizing Eq.(1), the score values s(4;) are found

s(A1) = 0.8130, s(As) = 0.8527, 5(A3) = 0.8244, s(A4) = 0.8702.
step 4. Since the values s(Ay) > s(A) > s(A3) > s(A;), the rank of alternatives are in
the order of 4 > 2 > 43 > 1.

From the results, we could see that the ranking order and the best choice of alternatives

are the same as the results in [25,26].

If the parameters u = v = 2 , then using A; = WNC'FGBM&,M), we get the following
aggregate values
Ay = {[0.7306,0.8111] , [0.0950, 0.1940] , [0.1542, 0.2619] ; (0.7916, 0.1542, 0.2204
Ay = {[0.7916,0.8563] , [0.0847,0.1376] , [0.1542, 0.2204] ; (0.8055, 0.0847,0.1757
As = {[0.7371,0.8283] , [0.1376,0.1940] , [0.1354, 0.1945] ; (0.8111, 0.1797, 0.1841
Ay = {[0.8055,0.8563] , [0.0847,0.1376] , [0.0950, 0.1797] ; (0.8395, 0.0950, 0.1542

}s
b
}s
}

9

)
)
)
; )

)

Then we calculate the score of the alternatives s(A;) = 0.8059, s(Ay) = 0.8451, s(A3) =
0.8165, s(A4) = 0.8621.

Since s(A4) > s(Az) > s(A3) > s(A1), the order of the rank is 54 > 32 > 43 > 1.

As the values of parameters u and v change according to the subjective preference of the
decision maker, we can find that the ranking order of the alternatives are the same, which
indicates that the proposed method can obtain the most optimistic results than the existing
MCDM methods based on GBM [29]. For a detailed comparision, we represent the scores of

each alternatives in Fig.1 by changing the values of parameters u,v between 0 and 10.
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(A) Scores of alternative 41 (B) Scores of alternative 42

(c) Scores of alternative 3 (D) Scores of alternative 74

FIGURE 1. Scores of alternative 7; obtained by W NCFGBM,_,"

7. Conclusions

In this paper, we have applied geometric Bonferroni mean to neutrosophic cubic fuzzy
sets. A new aggregating operator NCFGBM™? has been established and its properties are
discussed. The MCDM method is developed based on the weighted operator W NCFGBM,"
and is verified with a numerical example where four alternatives are ranked under three criteria.
The graphical representation of the results depicted above shows that the ranking of the
alternatives remains unaffected when the parameters are changed due to subjective preferences.
This proves that the method is objective and moreover the result obtained, when compared
with the results of existing techniques, shows that the proposed method is more effective
in dealing with neutrosophic fuzzy information. In future, NCFGBM™" operator could be

applied to various other MCDM methods.
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Abstract: In this paper, we introduce the notion of single valued neutrosophic mapping defined by single valued
neutrosophic relation which is considered as a generalization of fuzzy mapping defined by fuzzy relation and several
properties related to this notion are studied. Moreover, we generalize the notion of fuzzy topology on fuzzy sets
introduced by Kandil et al. to the setting of single valued neutrosophic sets. As applications, we establish the property
of continuity in single valued neutrosophic topological space and investigate relationships among various types of
single valued neutrosophic continuous mapping.

Keywords: Single valued neutrosophic set; Binary relation; Mapping; Topology; Continuous mapping.

1 Introduction

It is a well-known fact by now that mappings in crisp set theory are among the oldest acquaintances of modern
mathematics and, play an important role in many mathematical branches (both pure and applied), as well as
in topology and its analysis approaches. The uses of mappings appear also in formal logic [!3], category
theory [35], graph theory [1 1], group theory [6] and in computer science [31]. In general, it was and still more
common.

In fuzzy setting, the concept of fuzzy mapping has received far attention. It has appeared in many papers,
for instance, S. Heilpern [12] introduced this concept and proved a fixed point theorem for fuzzy contraction
mappings. In [17], S. Lou and L. Cheng proved that fuzzy controllers can be regarded as a fuzzy mapping
from the set of linguistic variables describing the observed object to that of linguistic variables describing the
controlled objects. Thereafter, Lim et al. [ 18] investigated the equivalence relations and mappings for fuzzy
sets and relationship between them. Ismail and Massa’deh [9] defined L-fuzzy mappings and studied their
operations, also they developed many properties of classical mappings into L-fuzzy case. For the study of
fuzzy continuous mappings in fuzzy topological space, an extended approaches are proposed, R.N. Bhaumik
and M.N Mukherjee [5] investigated some properties of fuzzy completely continuous mapping. Mukherjee and
B. Ghosh [27] pay attention to the introduction and studying of the concepts of certain classes of mappings
between fuzzy topological spaces. Each of these mappings presents a stronger form of the fuzzy continuous
mappings. In this regard, we find that other authors also contributed a lot to this field, like M. K. Single and A.
R. Single [36], B. Ahmed [!] and M. K. Mishra et al. [26].
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In [3], Attanassov introduced the concept of intuitionistic fuzzy set which is an extension of fuzzy set, char-
acterized by a membership (truth-membership) function and a non-membership (falsity-membership) function
for the elements of a universe X. Moreover, there is a restriction that the sum of both values is less and equal
to one. Recently, F. Smarandache [32] generalized the Atanassov’s intuitionistic fuzzy sets and other types of
sets to the notion of neutrosophic sets. He introduced this concept to deal with imprecise and indeterminate
data. Neutrosophic sets are characterized by truth membership function (7), indeterminacy membership func-
tion (/) and falsity membership function (£'). Many researchers have studied and applied in different fields the
neutrosophic sets and its various extensions such as decision making problems (e.g. [39, 41]), image process-
ing (e.g. [8, 44]), educational problem (e.g. [25]), conflict resolution (e.g. [28]), social problems (e.g. [29, 24]),
medical diagnosis (e.g. [22, 40, 42]), supply chain management (e.g. [20]), construction projects (e.g. [21])
and to address the conditions of uncertainty and inconsistency (e.g. [23]) and others. In particular, to exercise
neutrosophic sets in real life applications suitably, Wang et al. [37] introduced the concept of single valued
neutrosophic set as a subclass of a neutrosophic set, and investigated some of its properties. Very recently,
Kim et al. [15] studied a single valued neutrosophic (relation/ transitive closure/ equivalence relation class/
partition). The studies, whether theoretical or applied on single valued neutrosophic set have been progressing
rapidly. For instance, [2, 7, 14] and more others.

Motivated by recent developments relating to this framework, in this paper, we introduce the notion of
single valued neutrosophic mapping defined by single valued neutrosophic relation as a generalization of fuzzy
mappings introduced by Ismail and Massa’deh [9] and many properties related to this notion are studied. Also,
we generalize the notion of fuzzy topology on fuzzy sets introduced by A. Kandil et al. [16] to the setting of
single valued neutrosophic sets to establish the continuity property of single valued neutrosophic mapping. To
that end, we investigate relation among various types of single valued neutrosophic continuous mappings.

The contents of the paper are organized as follows. In Section 2, we recall the necessary basic concepts and
properties of single valued neutrosophic sets, single valued neutrosophic relations and some related notions that
will be needed throughout this paper. In Section 3, the notion of single valued neutrosophic mapping defined
by single valued neutrosophic relation is introduced and some properties related to this notion are studied.
In Section 4, we establish as an application the single valued neutrosophic continuous mapping in single
valued neutrosophic topological space and relationships between various types of single valued neutrosophic
continuous mapping are explained. Finally, we present some conclusions and discuss future research in Section
5.

2 Preliminaries

This section contains the basic definitions and properties of single valued neutrosophic sets and some related
notions that will be needed throughout this paper.

2.1 Single valued neutrosophic sets

The notion of fuzzy sets was first introduced by Zadeh [43].

Definition 2.1. [43] Let X be a nonempty set. A fuzzy set A = {(x, ua(z)) | x € X} is characterized by a
membership function p14 : X — [0, 1], where p4(z) is interpreted as the degree of membership of the element
x in the fuzzy subset A for any x € X.
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In 1983, Atanassov [3] proposed a generalization of Zadeh membership degree and introduced the notion
of the intuitionistic fuzzy set.

Definition 2.2. [3] Let X be a nonempty set. An intuitionistic fuzzy set (IFS, for short) A on X is an object
of the form A = {(z, pa(x),va(z)) | * € X} characterized by a membership function 114 : X — [0,1] and a
non-membership function v4 : X — [0, 1] which satisfy the condition:

0 < pa(z)+va(z) <1, forany z € X.

In 1998, Smarandache [32] defined the concept of a neutrosophic set as a generalization of Atanassov’s
intuitionistic fuzzy set. Also, he introduced neutrosophic logic, neutrosophic set and its applications in [33, 34].
In particular, Wang et al. [37] introduced the notion of a single valued neutrosophic set.

Definition 2.3. [33] Let X be a nonempty set. A neutrosophic set (NS, for short) A on X is an object of the
form A = {(z,pa(x),04(z),va(x)) | x € X} characterized by a membership function 4 : X —]70,17]
and an indeterminacy function o4 : X —]70,17[ and a non-membership function v4 : X —]~0, 17| which
satisfy the condition:

0 < pa(z) +oalx) + valx) < 3T, forany x € X.

Certainly, intuitionistic fuzzy sets are neutrosophic sets by setting o4(z) = 1 — pa(z) — va(z).
Next, we show the notion of single valued neutrosophic set as an instance of neutrosophic set which can be
used in real scientific and engineering applications.

Definition 2.4. [37] Let X be a nonempty set. A single valued neutrosophic set (SVNS, for short) A on X is
an object of the form A = {(x, pa(x),04(x),va(x)) | * € X} characterized by a truth-membership function
ta : X — [0,1], an indeterminacy-membership function o4 : X — [0, 1] and a falsity-membership function
vg: X — [O, 1]

The class of single valued neutrosophic sets on X is denoted by SV N (X).

For any two SVNSs A and B on a set X, several operations are defined (see, e.g., [37, 38]). Here we will
present only those which are related to the present paper.

(i) ANB = {(z,pa(x) A pp(x),0a(x) No

(iv) AUB = {(z, pa(x) V pp(x),04(2) V op(2),va(z) Avp(z)) | 2 € X},
W) A= {{z,1-va(2),1 - 0oa(x),1 = pa(@)) |z € X},

vi) [A] = {{z, pa(x), 04(2),1 — pa(z)) | x € X},

(vii) (A) = {{z,1 =va(z), 0a(z),va(2)) | 2 € X}.

7)

In the sequel, we need the following definition of level sets (which is also often called («, /3, y)-cuts) of a
single valued neutrosophic set.
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Definition 2.5. [2] Let A be a single valued neutrosophic set on a set X. The («, 3,7)-cut of A is a crisp
subset
Aapr={r € X | palz) > aand o4(x) > fand v4(z) < 7},

where «, 8,7 €]0, 1].

Definition 2.6. [2] Let A be a single valued neutrosophic set on a set X. The support of A is the crisp subset
on X given by
Supp(A) ={z € X | pa(z) # 0and o4(x) # 0 and va(x) # 0}.

2.2 Single valued neutrosophic relations

Kim et al. [!15] introduced the concept of single valued neutrosophic relation as a natural generalization of
fuzzy and intuitionistic fuzzy relation.

Definition 2.7. [15] A single valued neutrosophic binary relation (A single valued neutrosophic relation, for
short) from a universe X to a universe Y is a single valued neutrosophic subset in X x Y, i.e., is an expression
R given by

R = {<(l‘, y)v pr(z, y)v UR(Q:? y): VR(ma y)> | (SE, y) € X x Y} )
where g : X XY — [0,1], andog : X XY — [0,1], and vs : X x Y — [0, 1].
For any (z,y) € X X Y. The value pug(x,y) is called the degree of a membership of (z,y) in R, or(z,y) is

called the degree of indeterminacy of (z,y) in R and vg(z,y) is called the degree of non-membership of (z, y)
in R.

Example 2.8. Let X = {a,b, ¢, d, e}. Then the single valued neutrosophic relation R defined on X by

R= {((x,y),uR(x,y),oR(x,y),VR(x,y)> | T,y € X}7

where pr, or and vy are given by the following tables:

pr(.) | a b c d e
a 035| O 0 |0350.30
b 0 (040 O |035|045
c 020 0 [0.65| O |0.70
d 0 0 0 1 0
e 0251035 O 0 |0.60

or(.,.) | a b c d e
a 05 1] 05 042 0.2 0
b 0.60 | 0.12 | 0.40 | 0.80 | 0.10
c 0 1 10.02]|0.75]0.15
d 033 1 |08 0 |0.10
e 0.20 | 0.55 1 10551030
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()] a b c d e
a 0 1 1040 0.25]0.25
b 0.30 | 0.35 [ 0.20 | 0.35 | 0.10
c
d
e

080 | 1 0 [0.85]0.15
1 1 1 0 1
070 | 055 1 |0.90 ] 0.30

Next, the following definitions is needed to recall.

Definition 2.9. [30] Let R and P be two single valued neutrosophic relations from a universe X to a universe
Y.

(i) The transpose (inverse) R’ of R is the single valued neutrosophic relation from the universe Y to the
universe X defined by

R = {{(z,y), pre(2,9), ore (2, y), vre(2,9)) | (2,9) € X x Y},
where

f (2, y) = pr(y, )
and

{ UR;I(I:? y) = or(y,x)

t VRt(-Tay) = VR(y,.T) )
for any (z,y) € X x Y.

(if) R is said to be contained in P or we say that P contains R, denoted by R C P, if forall (z,y) € X XY
it holds that ug(x,y) < pp(z,y), or(z,y) < op(z,y) and vr(z,y) > vp(x,y).

(iii) The intersection (resp. the union) of two single valued neutrosophic relations R and P from a universe
X to auniverse Y is a single valued neutrosophic relation defined as

RNP = {{(z,y),min(ur(z,y), up(z,y)), min(or(z,y),op(z,y)), max(ve(z,y), ve(z,9))) | (z,9)
e X xY}

and
RUP = {{(z,y), max(pr(z, y), max(or(z,y),op(z, y)), min(ve(z,y),ve(z,y))) | (z,y) € X xY}.
Definition 2.10. [30, 38] Let R be a single valued neutrosophic relation from a universe X into itself.
(i) Reflexivity: pr(x,z) = or(z,z) = 1 and vg(z,x) = 0, for any = € X.

(i) Symmetry: for any x,y € X then
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(iii) Antisymmetry: for any x,y € X, x # y then

pr(T,y) # 1r(y, )
or(z,y) # or(y, ) ,
vr(z,y) # vr(Y, 7)

(iv) Transitivity: Ro R C Rie., R> C R.

3 Single valued neutrosophic mappings defined by single valued neu-
trosophic relations
In this section, we generalize the notion of fuzzy mapping defined by fuzzy relation introduced by Ismail and

Massa’deh [9] to the setting of single valued neutrosophic sets. Also, the main properties related to single
valued neutrosophic mapping are studied.

Definition 3.1. Let A be a single valued neutrosophic set on X and B be a single valued neutrosophic set on
Y,let f : Supp A — Supp B be an ordinary mapping and R be a single valued neutrosophic relation on
X x Y. Then fg is called a single valued neutrosophic mapping if for all (x,y) € Supp A x Supp B the
following condition is satisfied:

pir(2,y) = { mi”WA(ﬂf)oa TLBO({ iiil)w@gy = f(z)

and

min(oa(z),op(f(x)), if y= f(z
(T, Y) :{ ol >0, éti(zel)wise ,y @

and

e - {1

Example 3.2. Let X = {«, 5,7}, Y ={a,b,c}, A€ SVNS(X) and B € SVNS(Y) given by
A= {{a,0.5,0.2,0.8), (8,0.1,0.7,0.3), (7,0,0.9, 1)}

B = {{a,0,1,0.3),(b,0.1,0.5,0.2), (¢,0.7,0.2,0.4) }.
We will construct the single valued neutrosophic mapping fr by :
(i) an ordinary mapping f : {«, 5} — {b, ¢} such that f(«) = band f(5) = ¢,
(i1) a single valued neutrosophic relation R defined by :
pur(a, f(a)) = pr(a,b) = pa(e) A pp(b) = 0.1
ur(B, f(B)) = pr(B;¢) = pa(B) A ps(c) = 0.1

pr(osa) = pg(a, ) = pr(B,a) = pr(B,b) = pr(y,a) = pr(v,0) = pr(y,¢) =0
In similar way, it holds that
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or(a, f(a)) = or(a,b) = oa(a) ANog(b) = 0.2

or(B, f(B)) = or(B,c) = 0a(B) Nop(c) = 0.2

or(a,a) = op(a,c) = or(B,a) = or(B,0) = or(y,a) = or(7,0) = or(y,c) =0
and

vr(a, f(a)) = vr(a,b) = va(a) V vp(b) = 0.8

vr(B, f(B)) = vr(B, ) = va(B) V va(c) = 0.4

vr(a,a) = vg(a,c) = vg,(B,a) = vgr,(B,b) = or(v,a) = or(y,b) = or(7,c) = 1.
Hence, pr(z,y) = {{(a, f()),0.1,0.2,0.8), (3, f(8)),0.1,0.2,0.4), {(, @), 0,0, 1),
((@,¢),0,0,1),{(8,a),0,0,1),{(8,0),0,0,1), (7, a), 0,0, 1> ((7,6),0,0,1),{(7,¢),0,0,1) }.

Thus, fr is a single valued neutrosophic mapping.

Example3.3. Let X = Q,Y =R, A€ SVNS(X) and B € SVNS(Y) given by:
pa(x) =03, oa(x) =0.25and v4(x) = 0.5, for any z € Q.
up(r) =op(r) =vp(r) = 0.5, forany z € R.

We will construct the single valued neutrosophic mapping fr by :

2

(i) an ordinary mapping f : Q — R such that f(z) =z

(11) a single valued neutrosophic relation R defined by :

pr(@, f(x)) = pr(z,2%) = pa(z) A pp(a?) = 0.3
or(z, f(x)) = or(z,2?) = oa(x) A up(z?) = 0.25
vr(z, f(z)) = vr(z,2?) = va(z) Vvg(z?) = 0.5

Thus, fr is a single valued neutrosophic mapping.

Remark 3.4. From the above definition, we can construct the single valued neutrosophic mapping by this
method

(i) We determine the Supp A and Supp B.
(i) We determine the ordinary mapping from Supp A to Supp B.

(iii)) We determine the single valued neutrosophic relation by its membership function, indeterminacy func-
tion and non-membership function.

(iv) Finally, we conclude the construction of the single valued neutrosophic mapping.

Definition 3.5. Let fr, gs be two single valued neutrosophic mappings, then fr and gg are equal if and only
if f =g and R = S i'e" (NR(xaf(x)) = /Ls($,g(x)), O'R(xaf(x)) = Us(l’,g(l’)), and VR($7f(x)) =
VS(xv g(l’)))

Definition 3.6. Let A be a single valued neutrosophic set on X, let f : Supp A — Supp A be an ordinary
mapping such that f(x) = x and R be a single valued neutrosophic relation on X x X. Then f is called a
single valued neutrosophic identity mapping if for all =,y € Supp A the following conditions are satisfied:
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_ IL[/A<:C> ) Zf =Yy
Hr(T,y) = { 0, Otherwise,
and (=)
Jooalz),ifr=y
or(T,Y) = { 0, Otherwise,
and

= { 2=

1, Otherwise,

Definition 3.7. Let A, B and C' are a single valued neutrosophic sets on X, Y and Z respectively, let f :
Supp A — Supp B and g : Supp B — Supp C are an ordinary mappings and R, S are a single valued
neutrosophic relations on X XY and Y x Z respectively. Then (go f)r is called the composition of single valued
neutrosophic mappings fr and gr such that g o f : Supp A — Supp C and the single valued neutrosophic
relation 7" is defined by

( uT(:g, z) = supy(min(ur(2,y), 1s(y, 2)))

{ O'T(LU,Z) = Supy<min(0R<x7y)7US<yu Z)))
and

\ vr(z, 2) = infy(maz(ve(z,y),vs(y. 2))) ,
for any (z, z) € Supp A x Supp C.

Example 3.8. Let X =N, Y =Rand Z =R,andlet A € SVNS(X),Be SVNS(Y)and C € SVNS(Z),
defined as follows :

pa(n) =oa(n) = 1+n and v4(n) = 575, forany n € N.

B (025, ifze|-1,1] (05, ifze[-1,1]
pp(r) = op(r) = { 0, Otherwise, and vp(x) = { 1, Otherwise,
pc(zr) = oc(x) = M and vo(x) = ‘Sm(””)‘ , for any z € R.

We define a single Valued neutrosophic mapplngs frR:A— Bandgs: B— Cby:
(i) an ordinary mappings f : Supp A — Supp B, defined for any n € Supp A by :

f(n) = 1, if nis an even number,
—1,if nis an odd number

and g : Supp B — Supp C defined by g(z) = 2z, for any z € [—1, 1].

(i1) a single valued neutrosophic relations R and S defined by :
pr(n, f(n)) = or(n, f(n)) = Mpa(n), ns(f(n))} = M5, 0.25},
vr(n, f(n)) = V{va(n), va(f(n))} = V{355, 0.5} and

us (e, g(2)) = o5(, 9(2) = AMuna), polg(e))} = {
|szn
and vs (2, 9(2)) = V{va(2), ve(ga))} = { V{0,

N0.25, 12@DYy e (21, 1],
0, otherwise,
‘} v € [-1,1],
, otherwise.
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Then, the composition gs o fr = (g o f)r is defined by :
(i) an ordinary mapping f : Supp A — Supp C, defined for any n € Supp A by :

| 2, if nis an even number,
(g f)n) = { -2, if nis an odd number ,

(i1) a single valued neutrosophic relation 7" defined by :

N5, 0.25, |C°S3(2)|} , if nis an even number
/\{HLn, 0.25, M} if nis an odd number

[cos@) ]y

(i, (g0 () = o2(n, (g0 () = {

1
— A{——,0.25, ’COS()
I+n

1
= AN{—,0.25
{1—|—n’ b

)l » ;
, T} , 1f nis an even number

ﬂ} if nis an odd number

Ism( )I}

ve(n, (g0 f)(n) = {V{Zf%’ |

\/{ 2:2n )

n
= V{—— 0.25
{24—2717 ’

= V{ 0.25}.

2+2n’

Remark 3.9. The single valued neutrosophic identity mapping /dg is neutral for the composition of single

valued neutrosophic mappings.

In the sequel, we need to introduce the notion of the direct image and the inverse image of a single valued

neutrosophic set by a single valued neutrosophic mapping.

Definition 3.10. Let f : A — B be a single valued neutrosophic mapping from a single valued neutrosophic
set A to another single valued neutrosophic set B and C' C A. The direct image of C by fg is defined by

Jr(C) =y tsr©)¥): Tsrc) W), Vine) () | y € Y}, where

S sy, ify e f(supp(C))
Hire)(y) = { 0 Otherwise

and

S osy), ify <€ f(supp(C))
() (Y) = { 0 Otherwise

and

v (y) = ve(y) , if y € f(supp(C))
fr(OW 1, Otherwise.

Similarly, if ¢’ C B. The inverse image of C’ by f is defined by

f}gl(cl) = {<$aMflgl(cq(x)agfgl(c’)(x), Vflgl(C/)(x» |z € X},

A. Latreche, O. Barkat, S. Milles, F. Ismail. Single valued neutrosophic mappings defined by single valued
neutrosophic relations with applications



212 Neutrosophic Sets and Systems, Vol. 32, 2020

where ‘
() = pa(x), if v € f~(supp(C'))
Fzten 0, Otherwise,
and '
y = { 7A@ if 7€ f supp(CY)
fro (@) 0, Otherwise,
and

Vs () = va(z), if v € f~(supp(C”))
fr(C) 1, Otherwise.

Example 3.11. Let X = [0, +oo[, Y =Rand A € SV NS(X) defined for any 2 € X by :

B ~f cos(x), if x€]0,F] ~_J09,ifxze|0,F]
palr) = oa(w) = 0, Otherwise, valr) = 1, Otherwise.
Also, let B € SVNS(Y') given by :

_ _J oy, ifyelo] _J 02, ifye(01]
ne(y) = oY) = 0, Otherwise, vp(y) = 1, Otherwise.

We define the single valued neutrosophic mapping fr : A — B by:
(i) an ordinary mapping f : Supp A — Supp B, defined for any = € [0, 7] by

(ii) a single valued neutrosophic relation R defined by ug(z, f(z)) = ogr(z, f(x)) =
cos(x) A sz and vg(z, f(z)) = va(z) Vvp(f(z)) = 0.9

Now, if we take C' an SVNS on X, where C' C A given by :

B f —z+1,ifzel0,] (099, ifyel0,i]
Ho(z) = oc(x) = { 0, Otherwise, vo() = 1, Otherwise,
Then, the direct image of C' by fy is defined by :

(y) = { 18W) . if v € flsupp(C)) _Jy.ifyelog]

Hir(@\Y 0, Otherwise, 0, Otherwise,

o o) = | 78W) i y € flsupp(C)) _ Sy, ifyelo
fr(@\Y 0, Otherwise, 0, Otherwise,

and . . .

v on(y) = vp(y) . if y € f(supp(C)) _ [ 02, ifyel0,g]
fr@Y 0, Otherwise, 1, Otherwise.

Moreover, it is easy to show that fz(C) C B.
Next, if we take C” an SVNS on Y, where C’ C B given by :
_ _ [ sin(y), ifyel0,3] _ [ 04, ifye0,]]
Her(y) = ocr(y) = { 0, Otherwise, ver(y) = 1, Otherwise,
Then, the inverse image of C’ by f is defined by :

() = pa(z), if € f~(supp(C)) _ [ cos(z), if z €0, 3]
Hrzten 0, Otherwise, 0, Otherwise,
L oa) e e P () [ eosta) i v € 0,4

fr (@) 0, Otherwise, 0, Otherwise,
| va(), if x € f(supp(C")) _J09,ifxze0,3]
and sz?l(c’)@) a { 1, Otherwise, n 1, Otherwise.

Moreover, it is easy to show that f5'(C") C A.
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Now, we introduce the product of single valued neutrosophic sets and single valued neutrosophic projection
mappings.

Definition 3.12. Let A be a single valued neutrosophic set on X and B be a single valued neutrosophic set on
Y. The product of A and B, denoted by A x B is a single valued neutrosophic set on X x Y defined by :

pxxy (2, y) = min{pa(z), pp(y)}, oxxy (2, y) = min{oa(z), op(y)}; vxxyv(z,y) = maz{va(z), vp(y)}-
Also, we introduce the first single valued neutrosophic projection mapping (P;)g : A x B — A by:

(i) an ordinary mapping P : Supp(Ax B) — Supp(A) such that P, (z,y) = x for any (z,y) € Supp(AXx
B),

(1) asingle valued neutrosophic relation R defined by :

pr((z,y), Pu(z,y)) = min{paxs(@,y), pa(Pi(z,y))}}
=min{pa(z), pp(y), pa(z)}}
=min{pa(z), pe(y)}

and

O'R(((L‘,y),Pl(l',y)) :min{aAXB(xay) Y
=min{oa(z), op(y), oa(z)}}
= min{oa(z), op(y)}

and

UR((xv y)a Pl(xv y)) = max{VAXB(x7y)v VA(Pl(x>y))}}
= max{va(z), ve(y), va(z)}}
= maz{va(z), ve(y)}

The second single valued neutrosophic projection mapping is defined analogously.

4 Continuity property in single valued neutrosophic topological space

The aim of the present section, is to introduce and study the notion of single valued neutrosophic continuous
mapping in single valued neutrosophic topological spaces. The basic properties, and relationships with some
types of continuity are also obtained.

4.1 Single valued neutrosophic topology

In this subsection, we generalize the notion of fuzzy topology on fuzzy sets introduced by Kandil et al. [16] to
the setting of single valued neutrosophic sets to establish the continuity property of single valued neutrosophic

mapping.

Definition 4.1. Let A be a single valued neutrosophic set on the set X and O4 = {U isan SVNS on X :
U C A}. We define a single valued neutrosophic topology on single valued neutrosophic set A by the family
T C O 4 which satisfies the following conditions :

() A, 0. €T;

(11) if Ul, U2 € T, then U1 N U2 S T,

A. Latreche, O. Barkat, S. Milles, F. Ismail. Single valued neutrosophic mappings defined by single valued
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(i) if U; € T foralli € I, thenU;U; € T
T is called a single valued neutrosophic topology of A and the pair (A, T) is a single valued neutrosophic

topological space (SVN-TOP, for short). Every element of 7" is called a single valued neutrosophic open set
(SVNOS, for short).

Example 4.2. Let X = P(R?) and o €]0, 1], A be a single valued neutrosophic set on X given by :

1,if0=10 1,if0=10 0,if0=0
pa(d) =< a, 0<10] < oo, oalf) =< 5, 0<10] < oo, val@)=¢ 1—a, 0<10| < o,
0, Otherwise, 0, Otherwise, 0.5, Otherwise.

Then, the family 7" = {4, 0., U } where:

B S, 10| < oo, B T, 10| < o0, B 1, 10] < oo,
Ho(0) = { 0, Otherwise, ov(0) = { 0, Otherwise, v (0) = 0.8, Otherwise,

is a single valued neutrosophic topology on A.

Inspired by the notion of interior (resp. closure) on intuitionistic fuzzy topological space on a set intro-
duced by Atanassov [4], we generalize these notions in single valued neutrosophic topology on a single valued
neutrosophic set.

Definition 4.3. Let (A, T") be a single valued neutrosophic topological space, for every single valued neutro-
sophic subset GG of X we define the interior and closure of G by:

: _ ) -
int(G) {(:1:,7;16%? uU(x),Tea)g: UU(ZL’),Z”LGZ)? vy(z)) |z € U C G} and

_ . ; -
c(G) {(x,rmnez)? ,uK(x),ZlEZ)?(”L “K(”'“)’Z””e%? vi(z)) |z € Aand G C K}

Example 4.4. Let X = {a,b,c} and A, B,C, D € SVNS(X) such that

A={<a,0.5,0.7,0.1 >, <b,0.7,0.9,02 > < ¢0.6,080 >}

B ={<4a,05,0.6,0.2>,<b,0.5,0.6,0.4 > < ¢,0.4,0.5,0.4 >}

C={<a,04,0.50.5>,<50.6,0.7,0.3 >, <¢0.2,0.3,0.3 >}

D ={<a,0.5,0.6,0.2 >,< b,0.6,0.7,0.3 >, < ¢,0.4,0.5,0.3 >}

E ={<a,04,0.5,0.5 >,<5,0.5,0.6,0.4 >,< ¢,0.2,0.3,0.4 >}

Then the family 7' = {A, 0., B,C, D, E'} is an SVN-TOP of A.

Now, we suppose that G € SVNS(X) given by G = {< a,0.41,0.5,0.6),< 0,0.3,0.2,0.6 >, <
c,0.2,0.3,0.7 >}. Then, int(G) = 0. and cl(G) = EN1.=E.

Definition 4.5. Let (A, T') be a single valued neutrosophic topological space and U € SV NS(A,T). Then U
is called :

1. asingle valued neutrosophic semiopen set (SVNSOS) if U C cl(int(U));
2. asingle valued neutrosophic a-open set (SVNaOS) if U C int(cl(int(U)));
3. asingle valued neutrosophic preopen set (SVNPOS) if U C int(cl(U));

4. a single valued neutrosophic regular open set (SVNROS) if U = int(cl(U)).
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4.2 Single valued neutrosophic continuous mappings

In this subsection, we will study some interesting properties of single valued neutrosophic continuous map-
pings in single valued neutrosophic topological space and relations between various types of single valued
neutrosophic continuous mapping. First, we introduce the notion of single valued neutrosophic continuous

mapping.

Definition 4.6. Let (A, T) (B, L) be two single valued neutrosophic topological spaces. The mapping fz :
(A,T) — (B, L) is a single valued neutrosophic continuous if and only if the inverse of each L-open single
valued neutrosophic set is 7-open single valued neutrosophic set.

Example 4.7. Let (A, T) and (B, T") be two single valued neutrosophic topological spaces, where
pa(x) =0.8,04(z) = 0.88 and vy (z) = 0.1, for any = € R, and
[ 05, ify>0 (088, ify>0 [ 01, ify>0
ns(y) = { 0.8, Otherwise, o5y) = { 0, Otherwise, vp(y) = 0.3, Otherwise,
We suppose that 7" = {A, 0., U, }, where
_[08,ifzel0,V2 (088, if 2 €0,v2 01, ifzel0,V2
Hon (7) = { 0, Otherwise, v, (¥) = 0, Otherwise, v () =
Also, we suppose that 7" = { B, 0., U] }, where
(05, ifyel0,2] (08, ifye[0,2] C[o02,ifye[0,2]
Hoy(y) = { 0, Otherwise, LA 0, Otherwise, v (y) = 0.4, Otherwise.

Then, the single valued neutrosophic mapping fz : A — B define by :

(i) an ordinary mapping f : Ry, — R, such that f(z) = 2%, forany x € R,

(i1) a single valued neutrosophic relation R defined by :

pur(z, f(x)) = 0.5 or(zx, f(x)) = 0.88 and vg(z, f(x)) = 0.1.

is a single valued neutrosophic continuous mapping. Indeed, it is easy to show that fj 1( B) = A and
fr*(0~) = 0. and we have,

oy = L@ if e T supp(U))
Hyztws) 0, Otherwise,

_ { 0.8, if x€[0,v2]

0, Otherwise,
= MU1(J:)7

oot (T) = oalz), if v € f~ (supp(U7))
fr(U1) 0, Otherwise,

_ { 0.88, if x € [0,v/2]

0, Otherwise,

O-Ul(l.)a
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and

1, Otherwise,

B { va(z), if x € [0,v/2]

1, Otherwise,

_ { 0.1,if z €[0,v?2]

1, Otherwise,

vy, ().

I/f—l(U’)(x) - { vale), i e € fﬁl(SuPp(U{))

Hence, f5'(U;) = U, € T. Thus, fg is a single valued neutrosophic continuous mapping.

Remark 4.8. Let (A, T') be a single valued neutrosophic topological space. Then the single valued neutro-
sophic identity mapping Idg : (A, T) — (A, T) is a single valued neutrosophic continuous mapping.

Next, we provide the relationships between various types of single valued neutrosophic continuous map-
ping. First, we generalize the notions of precontinuous mapping, a-continuous mapping introduced by Giiray
et al. [10] to the setting of single valued neutrosophic sets.

Definition 4.9. Let fr : (A,T) — (B, T") be a single valued neutrosophic mapping. Then f is called :

1. a single valued neutrosophic precontinuous mapping if f, 1(U") is a SVNPOS on A for every SVNOS
U’ on B;

2. asingle valued neutrosophic a-continuous mapping if f5*(U’) is a SVNaOS on A for every SVNOS U’
on B.

The following proposition shows the relationship between single valued neutrosophic continuous mapping
and single valued neutrosophic c-continuous mapping.

Proposition 4.10. Let fr : (A, T) — (B,T") be a single valued neutrosophic mapping. If fr is a single
valued neutrosophic continuous mapping, then fr is a single valued neutrosophic a-continuous mapping.

Proof. Let U’ be a SVNOS in B and we need to show that f;'(U’) is an SVNaOS in A. The fact that f is a
single valued neutrosophic continuous mapping implies that f5 1(U") is a SVNOS in A. From Definition 3.10,

it follows that . .
g (2) = pa(z) , if x € f~ (supp(U")) o () = oa(z), if x € f~ (supp(U"))
Hagtwn 0, Otherwise, fr (U1 0, Otherwise,

[ va@), if € [ (supp(U"))
and vy ) (2) = { 1, Otherwise.
We conclude that, fjgl(U ') is a SVNaOS in A. Hence, [ is a single valued neutrosophic c-continuous
mapping. O

Remark 4.11. The converse of the above implication is not necessarily holds. Indeed, let us consider the single
valued neutrosophic mapping fx given in Example 4.7 and 7" be a SVN-topology given by 7' = {0, A, U},
where: pa(x) =1, o4(z) =0.99, v4(xz) = 0.001 and
[ 1,ifze]0,1] 099, if ze]0,1] _ [ 0.001, if x€0,1]
Hoy (r) = { 0, Otherwise, v, (7) = { 0, Otherwise, v () 1, Otherwise.
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Hence, int(f;'(U})) = Uy, cl(Uy) = 1. and int(1.) = A. Thus, fz'(U;) C int(cl(int(fz'(U}))).
We conclude that f'(U]) is an SVNaS but not SVNOS and fp is a single valued neutrosophic a-continuous
mapping but not a single valued neutrosophic continuous mapping.

The following proposition shows the relationship between single valued neutrosophic a-continuous map-
ping and single valued neutrosophic pre-continuous mapping.

Proposition 4.12. Let fr : (A, T) — (B,T') be a single valued neutrosophic mapping. If fr is a single
valued neutrosophic a-continuous mapping, then fg is a single valued neutrosophic pre-continuous mapping.

Proof. Let U’ be an SVNOS in B and we need to show that f;'(U’) is a SVNPOS in A. The fact that
fr is a single valued neutrosophic a-continuous mapping implies that f'(U’) is a SVNaOS in A. From
Definition 3.10, it follows that
_ (), if x e fH(supp(U")) _ [ oal), if z € fH (supp(U"))
’ufﬁl(U/)(x) N { 0, Otherwise, O wn(T) = { 0, Otherwise,

_ Jvalx), if v € f~ (supp(U"))
and vy ) (2) = { 1, Otherwise.
We conclude that, f, 1(U") is an SVNPOS in A. Hence, f is a single valued neutrosophic pre-continuous
mapping. ]

Remark 4.13. The converse of the above implication is not necessarily holds. Indeed, let (A,7") and (B, T")
be two single valued neutrosophic topological spaces, where pa(x) = 1, o4(x) = 1 and v4(z) = 0.005, for
any x € R, and
[ 07,ify>0 B 09,ify>0 B 001,ify>0
Hs(y) = 0, Otherwise, o5y) = { 0.8, Otherwise, ve(y) = 0.03, Otherwise,
We suppose that 7' = {A, 0., U; }, where
poy () =00y, (x) =1and vy, (x) = 1.
Also, we suppose that 77 = { B, 0., U]}, where
(07, ifyel0,4] (05, ifyel0,4] (012, ifyel0.4]
Hoi(y) = { 0, Otherwise, oY) = 0, Otherwise, vui(y) = 0.32, Otherwise.

Then, the single valued neutrosophic mapping fr : A — B define by :
(i) an ordinary mapping f : R, — R, such that f(z) = /2, forany x € R,

(ii) a single valued neutrosophic relation R defined by :
ur(z, f(x)) = 0.7 og(z, f(z)) = 0.9 and vg(z, f(x)) = 0.01.

() = | @) if e € [ supp(U)
Pzt 0, Otherwise,

B 1,if x€]0,16]
o 0, Otherwise,

o1 (z) = oalx), if x € f~ (supp(U7))
fr (U7) 0, Otherwise,

[ 1,ifx€0,16]
o 0, Otherwise,
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V() = va(x), if x € f~ (supp(U7))
fr-(U7) 1, Otherwise,

B va(z), if x €]0,16]
N 1, Otherwise,

(001, ifz€0,16]
- 1, Otherwise,

Hence, cl(fz'(U})) = 0~ = 1. and int(1.) = A. Thus, f5'(U;) C int(cl(fz"(U]))). We conclude
that f5'(U;) is an SVNPOS and fr, is a single valued neutrosophic pre-continuous but not a single valued
neutrosophic continuous.

5

Conclusion

In this work, we have generalized the notion of fuzzy mapping defined by fuzzy relation introduced by Ismail
and Massa’deh to the setting of single valued neutrosophic sets. Also, the main properties related to the single
valued neutrosophic mapping have been studied. Next, as an application we have established the single valued
neutrosophic continuous mapping in the single valued neutrosophic topological spaces. Future work will be
directed to study the notion of the single valued neutrosophic mapping for other types of topologies based on
the single valued neutrosophic sets.
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Abstract. Unipolar is less fundamental than bipolar cognition based on truth, and composure is a restraint
for truth-based worlds. Bipolarity is the most powerful phenomenon that survives when truth disappeared in
a black hole due to Hawking radiation or particular / anti-particular emission. The purpose of this research
study is to define few four operations, including residue product, rejection, maximal product and symmetric
difference of bipolar single-valued neutrosophic graph (BSVNG) and to explore some of their related properties
with examples. Bipolar single-valued neutrosophic graph (BSVNG) is the generalization of the single-valued
neutrosophic graph (SVNGQG), intuitionistic fuzzy graph, bipolar intuitionistic fuzzy graph, bipolar fuzzy graph
and fuzzy graph. BSVNG plays a significant role in the study of neural networks, daily energy issues, energy
systems, and coding. Moreover, we will determine related properties like the degree of a vertex in a BSVNG or
total degree of a vertex in a BSVNG. We provide examples of the vertex degree in BSVNG and the total vertex

degree in BSVNG. In order to make this useful, we develop an algorithm for our useful method in steps.

Keywords: keyword 1; symmetric difference, residue product, maximal product, rejection of BSVNG, Appli-

cation, algorithm.

1. Introduction

In 1965, Zadeh [36] put forward the idea of the one-degree fuzzy set concept that deter-
mined the true membership function. Since Zadeh’s pioneering work, the fuzzy set theory has
been used in various disciplines such as management sciences, engineering, mathematics, social
sciences, statistics, signal processing, artificial intelligence, automata theory, medical and life

sciences. In the 20th century, Smarandache [31] includes the concept where uncertainty occurs
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in the form of Neutrosophic set and extend the intuitionistic fuzzy set. There is also a non-
membership degree that Atanassove [1] defines in an intuitionistic fuzzy set with two degrees
in a set. Abdel-Basset et al. [2-6] studied many concepts on neutrosophic sets. Broumi et
al. [[2,9-13,28,09] investigated the extension of the fuzzy graph in the form of the single-valued
neutrosophic graphs, shortest path problem using bellman algorithm under neutrosophic en-
vironment, shortest path problem in fuzzy, intuitionistic fuzzy and neutrosophic environment,
single valued neutrosophic coloring, and operations of single valued neutrosophic coloring.

A bipolar fuzzy theory has more scope when we compare to simply a fuzzy theory as com-
patibility and flexibility. Overall its model is better than the fuzzy model. Borzooei and
Rashmanlou [B,25-27] studied very well on vague graphs and bipolar fuzzy graph. Rashman-
lou studied about interval-valued fuzzy graph [22-24]. The neutrosophic set has much scope
in neutrosophy and the neutrosophy theory is widely used in graph theory. In this extension,
Wang et el. [35] described subclass of a Neutrosophic set known as a single-valued neutrosophic
set. In the fields of bio and physics, SVNG has numerous applications. In these days, its pur-
pose evaluates incomplete and uncertainty information. BSVNG has numerous applications in
the fields of geometry and operational research. It has been a useful scope in various fields of
computer science.Later, Deli et al. [[4] described the idea of the bipolar neutrosophic set as the
extension of the Neutrosophic set. He also described the concept of the bipolar fuzzy graph
with some related properties. One problem of an Fuzzy graph, Intuitionistic fuzzy graph,
bipolar fuzzy graph and intuitionistic bipolar fuzzy graph found when uncertainty occurs in
the relationship between two vertices. Need for the neutrosophic graph is necessary because
these are not suitable properly. Many researchers [32,83] was famous due to their research
work application approach to real-world problems.

The idea of the fuzzy graph is presented by Rosenfeld [30] and [34]. Malik and Hassan [I6] both
described the classification of the BSVNG together. Later Malik and Naz [21] presented the
operations on the SVNG. Gomathi and Keerthika [I5] studied neutrosophic labeling graph.
Kousik Das et al. [I7] defined generalized neutrosophic competition graphs. Mordeson and
Peng [I¥] given some operations on Fuzzy Graphs. Gani et al. [I9,20] defined order, size, and
irregular fuzzy graphs. The various application of graph theory in the fields of information
technology, operational research, image segmentation, social science, capturing the image, al-
gebra. It is also applicable to bioscience, chemistry, and computer science. The fuzzy is very
useful to deduce the unsolved problems in various fields like networking, clustering with a great
role in the algorithm. The use of fuzzy graph by which a great extent in a few years and has
a scope from 19th century [I9,20]. Neutrosophy is the type of philosophy which studies the
nature and scope of neutralities. We will discuss some new properties on a BSVNG. Bipolar

fuzzy set has many applications in image processing. It gives more advantages in real problems
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FiGure 1. BSVNG

to make it in an easier form. BSVNG is the extension of an Fuzzy graph, Intuitionistic fuzzy
graph, interval-valued intuitionistic fuzzy graph and SVNG. Bipolar fuzzy graphs are very use-
ful in the fields of signal processing, computer science, and database theory. The operations
we will establish are the symmetric difference and residue product in this paper. Peng [IR]
defined Some operations which are the join of two graphs, cartesian product of two graphs
and the union of two graphs. Also, we discuss examples of these operations. We will find the
degree and total degree of BSVNG. In the end, we will make an application on BSVNG with

algorithm.

2. Operations on BSVNGs

In this section, we define four operations, including residue product, rejection, maximal
product and symmetric difference of bipolar single-valued neutrosophic graph (BSVNG) and

to explore some of their related properties with examples.

Definition 2.1. [I3] A bipolar single valued neutrosophic graph is such a pair G = (X,Y)
which is of crisp graph G=(V,E) is defined as(i) apr : V — [0,1], Bayr = V = [0,1], yar : V —
[0,1], 0a7 : V = [-1,0], nar : V — [=1,0], Opr : V — [—1,0]. (ii)

ay(mn) < min{ay (m),ay(n)}, By(mn) > max{By(m), Bar(n)}

v (mn) > max{y (m), yar(n)}, on(mn) > max{dy(m),dm(n)}

n(mn) < min{nag(m), mar(n)}, Oy (mn) < minf6a(m), 6ar(n)}.

and 0< ay(mn)+pBy(mn) + yv(mn) < 3 and —3 < dy(mn)+ny(mn) + Oy (mn) < 0

Example 2.2. In Figure 1, we see a graph with eight vertices {a,b,c,d,e,f,g,h} and eight edges
{ab, bc, cd ,ef, fg, gh ,bf, cg} that is a bipolar single valued neutrosophic graph. It is easy to

see that all conditions of Definition 2.1 is true for this example.
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Definition 2.3. The height of a bipolar single valued neutrosophic set (BSVNs) (in universe

discourse Y)

Q = (aQ(), Ba(¥): 79,50 (1), 1 (1), 0 (y)) is defined by:

h(Q) = (h1(Q), h2(Q), h3(Q), ha(Q), h5(Q), he(Q))
= (Supyeyaq(y), Infyey Bo(y), Infyey Bo(y), Supyeydq(y), Infyeyng(y), Infyey0q(y))

Example 2.4. Take Q = {(a,0.5,0.4,0.5,—0.2, —0.4, —0.5), (b,0.5,0.6,0.4, —0.4, —0.3, —0.6),
(¢,0.4,0.6,0.4,—0.4,—0.5,—0.3)} be BSVNs then height is defined as h(Q) = (0.5,0.4,0.4,
0.4,0.3,0.3).

Definition 2.5. let G; = (M7, N1) and Gy = (Ma, N2) are two bipolar single valued neutro-
sophic fuzzy graphs defined on G; = (V1, F) and Gy = (Va, E2) respectively. The symmetric
difference of G; and Gy is represented by Gi @ Go = (M @ M, N1 @ N2). Symmetric difference

of G; and Gg is defined as the following conditions:

(i)

(anr, ® aas,)((m1,ma)) = min{ang, (m1), ans (m2)}, (Ban, ® Bar,)((m1,m2))
= max{ S, (m1), B, (m2)}
(yan, ® Yz ) ((ma, m2)) = max{yar, (m1), Yar(M2)}, (Gar, @ Sas,) ((ma, m2))
= max{&ps, (m1), Sar, (M2)}
(a1 @ sy ) ((ma, ma2)) = min{nar, (ma), mar, (M2) }s - (Oar, © O, ) ((ma, ma2))

)
= min{0ys, (m1), Op,(m2)}

Y(m1,ma) € (V1 x V)
(ii)

(an, ® an,)((m,m2)(m,n2)) = min{a, (m), an,(man2)}t, (Bn, @ B, ) ((m, m2)(m, n2))
= max{B, (m), By, (man2)}

(v @ v, ) ((m, m2)(m, n2)) = max{yar, (m), Y, (man2)}, (On, @ n ) ((m, m2)(m, n2))
= max{0as, (m), On, (mans)}

(7, ® N, ) ((m, ma)(m, n2)) = min{nar, (m), nn, (man2)}, (On, @ On,)((m, ma)(m, n2))
= min{0yr, (M), On, (Mman2)}

VvV m e Vi and mong € Ey
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(iii)

(an, @ an,)((m1,m)(n1,m)) = min{a, (min1), ar, (M)}, By, @ B,)((m1,m)(n1,m))
= max{Sn, (min1), Bu, (m) }

(Yv: @ Yvz) ((ma, m) (i, m)) = max{yn, (mam), Y, (M)}, (6, @ O, ) (M1, m) (1, m))
= max{dn, (min1), o, (m)}

(v, @ 0w, ) ((ma, m)(na, m)) = min{na, (mama), m (M)}, (On, @ On,) (M1, m)(na, m))

= min{On, (min1), 0, (m)}

V z € Vo and ming € By
(1V)

(aNl S5 aNz)((ml’ m2)(n17 n2)) = min{onl (ml)v ap (nl)’ ANy (anQ)}
for all mini € E1 and mong € Es
or

= min{aas, (Mm2), an, (n2), an, (miny) } for all miny € Ey and mang € Es

(ﬁ]\h D /BNQ)((m17 mQ)(nla n2)) = max{ﬁMl (ml)v 5M1 (nl)a /BNQ (m2n2)}
forall miny € 1 and mang € Eo
or

= max{ Sy, (m2), Br, (n2), B, (Mming)} forall miny € Ey and maong € Eo

(’7N1 S nyQ)((m17 mQ)(nla n2)) = max{7M1 (ml)v Y My (n1)7 FN2 (m2n2)}
forall miny € F1 and mang € Fo
or

= max{yar, (m2), Yas (n2), YN, (min1)} forall miny € Ey and mang & Es

(On; @ On,) (M1, ma)(n1,n2)) = max{da, (M), dar, (n1), O, (Mana) }
forall miny € Ey and mang € Fy
or

= max{ds, (m2), 0, (n2), 0N, (min1)} forall miny € Ey and mang & Es
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FIGURE 2. G
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FIGURE 3. Gy

(NN, @ M, ) (M, m2)(n1, n2)) = min{nag (m1), nag (n1), Nn, (Mane) }
forall miny € Fy and mang € Eo

or

= min{nz, (m2), s, (n2), NN, (min1)} forall miny € Ey and mang ¢ Eo

(On, @ O, ) ((ma, ma)(n1, n2)) = min{Oar, (ma), Oy (n1), Fiv, (mang) ¥

forall miny & E1 and mang € Fo

or

= min{0r, (m2), Orr, (n2), 0N, (miny)} forall miny € Ey and mang & Eo
Example 2.6. Let Gy = (M1, N1) and G = (Ma, N2) be two BSVNGs on V; = {a, b} and Vo =

{¢, d} respectively which shown in Figure 2 and Figure 3. Also symmetric difference shown in

Figure 4.

Proposition 2.7. Let G; = (M, N1) and G2 = (My, N2) be two BSVNGs of graph G; =
(Vi, Eq) and Go = (Va, E2), respectively. Then the symmetric difference G ®Gy of G; = (V1, E1)
and Go = (Va, E») is again a BSVNG.

Proof. Let Gy = (M7, Ny) and Gy = (My, Na) be two BSVNGs of graph G; = (V1, Fp) and
Gy = (Va, E5), respectively. Then the symmetric difference Gy @ Go of G; = (V4, E1) and
Go = (Va, E3) can be proved. Let (mq1,ms)(ni,n2) € E1 X Es
(i) Ifm=n=m
(an; ® an,)((m, m2)(m,ng)) = min{aa, (m), an, (man2) }
< min{apy, (m), min{ays, (Mma2), anr, (n2) }}
= min{min{{ans, (m), ar, (me)}, min{{ar, (m), ans, (n2)}}

= min{(an, & anm,)(m, ma), (am, ® anm,)(m,n2)}
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FIGURE 4. G1 & Go

(BN; ® B, ) ((m,m2)(m, n2)) = max{ B, (m), B, (mana2)}
> max{ S, (m), max{Bar, (m2), Bary (n2) }}
= max{max{{Bn, (m), B, (m2)}, max{{Bu, (m), Brr, (n2) }}
= max{(Bm, ® Bu,)(m, ma2), (Bar, ® Basy)(m, m2)}

(Y1 ® YN,)((m, ma2)(m, ng)) = max{yar, (m), Y, (man2) }
> max{rYMl (m)v maX{’YMQ (mQ)a YMy (nQ)}}
= max{max{{’w\/h (m)7 YM> (mQ)}> maX{{’W\/h (m)7 YM> (nQ)}}

= max{(ya, ® Var)(m, ma), (Yar, ® Yas,) (M, n2)}

(6N1 D 5N2)((m7 m2)(ma ’I’Lg)) = max{5M1 (m)v 5N2 (anQ)}
> max{6M1 (m)v maX{5M2 (mQ)v 6M2 (nQ)}}
= maX{maX{{6M1 (m)7 5M2 (m2)}7 min{{5M1 (m)7 5M2 (nQ)}}

= max{ (6, B Onr,)(m,m2), (Oas, ® Oas) (M, n2)}
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(M, & 1, ) ((m, ma) (m, n2)) = min{nar, (m), Ny, (mana)}
< min{an (m)v min{n]\/b (m2)7 Mo (nQ)}}
= min{min{{an (m)a MM (mQ)}v min{{an (TTL), NM, (112)}}

= min{(an @ 77M2)(ma m2)7 (77M1 D 77M2)(’ma n2>}

(‘91\71 ©® HNQ)((m’ m2)(m7 n2)) = min{eMl (m)’ 0N2 (m2n2)}
< min{el\/h (m)v min{9M2 (m2)7 HMQ (712)}}
= min{min{{0s, (m), Oar, (m2) }, min{{Oar, (m), Onr, (n2) }}

= min{(0r, ® Orr,)(m, m2), (Orr, © Oar,)(m, n2)}

(ii) if mo = N2 =M
(an, ® an,)((m1,m)(n1, m)) = min{ay, (min1), o, (m)}
< min{min{ay, (min1), ans,(m)}
= min{min{{aMl (ml)’ QM, (m)}’ min{{aMl (nl)v M, (m)}}

= min{(aar, @ ang,)(my,m), (aarn, @ ang,)(ny,m)}

(5N1 D /BNQ)((m17 m) (nlv m)) = max{ﬂNl (mlnl)v BM2 (m)}
> max{max{fSn, (min1), Ba,(m)}
= max{max{{ﬁf\/h (m1)7 5M2 (m)}> maX{{Bl\/h (nl)v BMQ (m)}}

= max{ (B, ® Bar,)(m1,m), (Bar, ® Bu,)(n1,m)}

(’7N1 @ VNQ)((mlv m)(nla m)) = maX{/le (m1n1)7 VM, (m)}
> max{max{yn, (min1), Yaz (m)}
= maX{maX{{’YMl (m1)7 VM, (m)}7 maX{{’YMl (nl)a YM, (m)}}

= max{(yar, ® Va,)(m1,m), (van @ Yo )(n1,m)}
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(6, @ 6n, ) ((m1, m)(na, m)) = max{dn, (min1), énr, (m)}
> max{max{dy, (mini), o, (m)}
= maX{maX{{5M1 (m1)7 5M2 (m)}a maX{{6M1 (nl)a 5M2 (m)}}

= max{(dpr, ® ds,)(ma,m), (Oas, @ Sas,)(na,m)}

(77N1 ® 77N2)((m17 m) (nh m)) = min{an (mlnl)v Mo (m)}
< min{min{ny, (mini),na,(m)}
= min{min{{nar, (m1), nar, (M) }, min{{nar, (n1), mar, (m) } }

= min{(an %) "7M2)(mla m)v (77M1 ® an)(nla m)}

(91\71 ® GNQ)((m]-’ m) (nlv m)) = min{0N1 (mlnl)a 9M2 (m)}
< min{min{0y, (min1),Or, (m)}
= min{min{{0s, (m1), Orr, (m) }, min{{Oar, (n1), Orr, (M)} }

= min{(0rr, ® Oar,)(m1,m), (Orr, ® Oar,)(n1,m)}

(iii) Tt min1 & E1 and mans € B
(an, @ any)((m1,ma)(n1,n2)) = min{an, (ma), anr, (n1), an, (mans2)}
< min{ans, (m1), g, (n1), min{aag, (ma)ans, (n2)
= min{min{ans, (m1), o, (m2) }, {aar, (ma), cns, (n2)}

= min{(anr, © ang,)(m1, ma), (e, @ ang,)(ni,n2)}

(BN @ B, ) ((m, ma)(n1,m2)) = max{Bar, (m1), B, (n1), Bn, (man2)}
> max{far, (m1), Bar, (n1), max{Bas, (m2) B, (n2) }}
= max{max{Bu, (m1), Bus, (m2)}, {Bar, (M1), Bar (n2) }
= max{(Bar, @ B, ) (M1, m2), (Bar, © Bary)(n1,m2)}

(YN, ® YNy ) (M1, m2) (01, m2)) = max{yar, (m1), Yar, (n1), Y, (Man2) }
> max{ vy (1), Yan (n1), max{yazs, (m2)ya, (n2)
= max{max{')’ﬂﬁ (m1)7 VMo (m2)}’ {’YM1 (ml)’ YM> (nQ)}

= max{(var, ® Var,) (M1, m2), (Yan, S Yar) (01, n2)}
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(6N, ® 0N, ) ((ma, ma)(n1,m2)) = max{dn (M), 6ar, (n1), O, (Mmanz) }
> max{5M1 (ml)’ 5]\41 (nl)’ max{5M2 (m2)(5M2 (77,2)}}
= max{max{das, (m1),0nr, (ma2)}, {0nr, (m1),dar, (n2) }

= max{(dnr, ® Ons,)(m1,m2), (Onr, © dnry)(n1,m2)}

(N, © 1Ny ) ((ma, ma2)(na, ne)) = min{nar, (ma), N (1), 1N, (Mang) }
< min{nan (m1), M (n1), min{naz, (m2)nar, (n2)
= min{min{an (ml)v TIMo (mQ)}v {771\/[1 (ml)’ Uy (n2)}

= min{(an S 77M2)(m17 m2)7 (nM1 D 17M2)(7”L1, 7’1,2)}

(0N1 @ HNQ)((m17 m2)(n1a nQ)) = min{el\/ﬁ (m1)7 9M1 (n1)> 91\72 (m2n2)}
< min{faz, (m1), Oar, (n1), min{Oas, (m2)0as, (n2) }}
= min{min{Oys, (m1), Orr, (m2)}, {Onrr, (M1), Oar, (n2) }

= min{(aMl ® 9M2)(m1a m2)v (9M1 ©® gMz)(nlv n2)}
(iV) If ming € E1 and mang € Eo

(an, ® an,)((m1,mse)(n1,n2)) = min{ang, (me), an, (n2), an, (ming)}
< min{aMQ (m2)7 QM (n2)7 min{Ole (ml)a]\/h (nl)}}
= min{min{ays, (m2), anr, (m1)}, {anr, (ma), anr (n1)}

= min{(an, ® ang)(mi, ma), (ann @ ang) (1, n2)}

(BN, @ BN, ) (1, m2)(n1, n2)) = max{Bar, (ma), Bas (n2), By, (Mmana)}
> max{ B, (m2), Bu, (n2), max{Bar, (m1) B, (n1) }}
= maX{maX{/BMz (m2)v /BMl (ml)}v {BMQ (m2)’ ﬂMl (nl)}

= max{(8ar, ® Bar,) (M1, m2), (Bar, & Bary)(n1,n2)}

(YN, ® YNy ) (M1, ma2) (01, n2)) = max{yas, (m2), Yar, (n2), Y, (Mmana)}
> max{ v, (M2), Yas, (n2), max{yar (m1)yan (n1) }H
= max{max{')’ﬂb (m2)7 YMy (ml)}’ {’YMQ (mQ)’ M, (nl)}

= max{(var, ® Var,) (M1, m2), (Yan, S Yar) (01, m2)}

M. Aslam Malik, Hossein Rashmanlou, Muhammad Shoaib, R. A. Borzooei and Morteza Taheri,
A Study on Bipolar Single-Valued Neutrosophic Graphs With Novel Application



Neutrosophic Sets and Systems, Vol. 32, 2020 231

(6N, ® 0N, ) ((ma, ma)(n1,m2)) = max{da, (M2), dar, (n2), O, (Mm1na)}
> max{dp (m2), 0ar, (n2), max{dns (m1)dan (n1)}}
= max{max{daz, (m2), onr, (m1)}, {0ar,(m2), dnr, (n1)}

= max{(dnr, ® Ons,)(m1,m2), (Onr, © dnry)(n1,m2)}

(nny ® 0, ) ((ma, me) (1, me2)) = min{nas, (m2), N, (n2), M, (Mana) b
< min{ﬁMz (m2)7 M, (’I’Lg), min{an (ml)an (nl)}}
= min{min{naz, (m2), nar, (m1) }, {nar, (m2), nar, (n1) }

= min{(nar, @ mar,) (M1, m2), (Nar, © Mar)(n1,n2)}

(0N, © On,)((ma, m2)(n1,n2)) = min{Oar, (ma2), Oar, (n2), O, (Mana)}
< min{HMQ (m2)7 9M2 (n2)> min{eMl (m1)9M1 (nl)}}
= min{min{0ys, (m2), Orr, (m1)}, {0nr, (m2), 0nr, (n1)}

= min{ (O, ® Orr,) (M1, m2), (Oar, ® Oar,)(n1,12)}

. Hence G; @ G2 is a BSVNG.

Definition 2.8. Let G; = (M;, N7) and Gy = (M, Ys) be two BSVNGs. V(mq,mq) € Vi x Vs

(da)er @6, (M1, m2) = > (an, & an,)((m1, m2)(n1, n2))

(m1,m2)(n1,’n2)€E1 X Fa.

= Z min{onl (ml), QN, (mgng)}
mi=ni,manz€k>

+ Z min{ay, (miny, an,(me)}

mini1€FE],ma=n2

+ > min{ang (m1), anr (m), an, (mana)
mini¢Eiand mang€FEy

+ Z min{ay, (min), an, (ma), an, (n2)}
mini1€E1and mana@FEo
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(dg)ei@e, (M1, m2) = > (BN, @ B, ) ((m, ma)(n1,n2))

(m1,m2)(n1,n2)€E1 xEo.

- Z max{ Sy, (m1), Bn, (Mmang)

mi=ni,manz€ ks

+ Z max{fn, (min1, B, (me)}

mini1€E1,ma=nz

4 Z max{ S, (m1), B, (n1), B, (Mmang)}
mini1€E1and maono€Eo
+ Z max{fn, (min1), Bar, (M2), Bar, (n2)}

mini€FEiand mgnggEg

(d’Y)(h@Gz (mlva) = Z (’VN1 69/8N2)((m17m2)(n17n2))

(m17m2)(n1,n2)6E1 X Fo.

- Z max{var, (m1), Yn, (manz)}

mi1=ni,manz€L

+ Z max{yn, (min, ym,(m2)}

mini €L, ma=ny

+ > max{ v, (Mm1), Yar, (1), YN, (Man2) }
miniy €E1and maong € FEo
+ > max{yn, (min1), v, (m2), ym, (n2) }

mini€E1and mangE€FE2

(ds)ei@c, (M1, m2) = > (On, @ O, ) (M1, m2)(n1, m2))

(m1,m2)(n1,n2)€E1 X E>.

— Z max{dar, (m1),dn, (mana)}

mi1=ni,manz€ ks

+ Z max{dy, (mini, dar, (m2)}

mini1€E1,ma=nz

+ > max{dnrs (M1), 0, (1), 6, (M2n2) }
mini¢Eiand mang€FEy
+ Z max{5N1 (mlnl),5M2 (mQ),(SMQ(nQ)}

mini1€FE1and mana&Fo
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(dn)eecs (M1, m2) = > (g © N, ) ((ma, m2)(na, n2))

(m1,m2)(n1,n2)€E1 X E>.

= Z min{nas (m1), nn, (mana) }

mi1=ni,mang€ks

+ Z min{nx, (min1, N, (M) }

min1€E1,ma=ny

+ Z min{nas (m1), nar, (n1), N, (Mmanz2)}

mini¢Eiand mang€Fy

+ > min{nn, (min1), M, (m2), nar, (n2) }

mini€EEiand mangoZFEo

(do)er@es (M1, m2) = > (On, D N, ) (M1, m2)(n1, n2))

(m1,m2)(n1,n2)EE1 X Es.

= Z min{0ys, (m1),On,(mang)}

m1=ni,manzEFs

+ Z min{0y, (min1, Op, (me2)}

mini €E1,ma=ny

+ > min{0ar, (m1), Oar, (n1), On, (man2)}
mini€Eiand mang€Fy
+ > min{fx, (miny), Oar, (ma2), Oar, (n2)}

mini€FEiand mangoZEs

Theorem 2.9. Let G; = (Ml,Nl) and Gy = (MQ,YQ) be two BSVNGs. If ann 2> OJNQ,B]\/[1 <
BNy My < YN, and apg, > any, B, < BNy M, < YNy - Also if day < 0Ny, vy > MNgs Oy >
On, and dpr, < 0Ny, MM, = NNy, 001, = On,. Then for every V(mq,mg) € Vi x Vo

(d)ey @6, (M1, m2) =q(d)g, (M1) +5(d)e, (Mm2) where s=| V1 | -(d)g, (m1) and q=| V2 | -(d)g, (m2)
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Proof.
(da)eyee, (M1, m2) = > (o, ® any)((ma,ma)(n1,m2))
(m1,m2)(n1,n2)€E1 X Eo.
= Y. minfan, (m1), an, (manz)}
mi1=ni,maongs €Ky
+ Z min{ay, (miny), ay, (me)}
min1 €L, mo=n2
+ > min{aag, (m1), anr (n1), an, (manz2)}
mini¢Eiand mang€FEy
+ > min{an, (mini), an, (ms2), e (n2) }
mini1€E1and mana&Fo
= Z an, (mang) + Z an, (mini)
maong€Fo mini €k
+ Z an, (mang)} + Z an, (miny)
mini1¢€E1and mang€ FEo mini €E1and maong&FE>
= q(da)a, (m1) + s(da)e, (m2)
(do)e,@e, (M1, m2) = > (O, @ On,)((ma, m2)(n1, n2))

(m1,m2)(n1,n2)EE X Es.

= Z min{0xys, (m1), O, (manga)}

mi1=ni,manzEFs

+ Z min{0x, (min1), Oar, (m2)}

mini €K1, ,ma=ny

+ > min{0as, (ma1), O, (1), O, (manz) }
mini€Eiand mangEFEy
+ > min{fx, (miny), Orr, (ma2), Oar, (n2)}

mini€FEiand mongEFEs

= Z 9N2(m2n2)+ Z GNl(m1n1)

mono€Fo mini€FEq

+ Z On, (manz)} + Z On, (many)

mini€Eiand mangEFEy mini€EEiand mangoZEs

= q(dp)c, (m1) + s(dp)e, (m2)

In a similar way others four will proved obviously.
We conclude that (d)g, a6, (M1, m2) =q(d)g, (m1) + s(d)g,(m2) where s=| Vi | -(d)g, (m1) and
q=| V2 [ -(d)a,(m2) - o
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Definition 2.10. Let G = (M7, N1) and G = (Ma, Y2) be two BSVNGs. V(mq,ms) € Vi xV;

(tdoe)m@cz (ml,m2) = Z (aNl @aNz)((mth)(nl’nQ)) + (aMl @QMQ(mth)

(m1,m2)(n1,n2)EE1 X Es.

= Z min{ay, (m1), an, (mans)}

mi=ni,man2€Fy

+ Z min{ay, (mini, anp,(msa)}

miniEE,ma=n2

+ > min{ans, (m1), any (n1), v, (manz)
mini€Eiand mang€Fy

+ Z min{any, (miny), an, (m2), aar, (n2) b

min1€FE1and mana&Fo

+ min{ans, (m1), an, (me)}

(tdg)e,@e, (M1, m2) = Z (B @ Bz ) ((ma,m2)(n1,12)) + (B, @ By (M, m2)

(m1,mz2)(n1,n2)EE1 X F>.

— Z max{ S, (m1), B, (Mmana)}

mi1=n1,man2EE>

+ Z max{ Sy, (mini, B, (me2) }

min1€E1,ma=ng

4 Z max{ B, (m1), Bar, (n1), B, (Mmang)}
mini€Eiand maons€E>
+ Z max{ S, (mini1), Bar, (Mm2), Bas, (n2)}

mini€FEiand mangEFEs

-+ max{ Sy, (m1), Bar,(m2)}

(td’Y)Gl@GZ (ml, m2) = Z ('7N1 S 7N2)((m17 m2>(n1’ n2)) + (’yMl S M (ml’ m2)

(m1,m2)(n1,n2)EE X Ea.

— Z max{yas (m1), YN, (man2)}

mi1=ni,man2€Es

+ Z max{yn, (mini, vy, (mea)}

mini1 €L ,me=ny

+ Z max{ya, (m1), yarn (n1), YN, (Man2)}

mini1¢€E1and mang€FEo

+ Z max{yn, (min1), Yan (Mm2), Ym, (n2) }

mini€E1and mana&Fo
+ max{yar, (m1), yar, (m2) }
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(td5)es0, (M1, m2) = 2 (8, @ 6 )((ma, ma) (ma,m2) + (G, @ Oay (ma, ma)

(m1,m2)(n1,n2)EE1 X Ea.

— Z max{dpr, (m1),dn, (manga)}

mi=ni,mons€E>

+ Z max{dn, (mini, da,(ma)}

mini €L, mo=ns

+ > max{dns, (M1), o, (1), 6, (M2n2) }
mini€E1and maongs€FEo
+ > max{dn, (m1n1), dar, (m2), dar (n2) }

mini€FEr1and mansg QEQ

+ min{dpz, (m1), dpr, (M2)}

(tdy )y (mr,ma) = > (v, & v (mr, mo) (ma,m2) + (s, sy (i, mo)

(m1,m2)(n1,n2)€E1 X Ea.

= Z Hlil’l{’l?Ml (ml)anNQ (anQ)}

mi1=ni,mons€Fy

+ Z min{ny, (min, N, (msa)}

mini €EE1,mo=ny

+ Z min{nar, (m1), nar, (1), N, (Mang) }

miny QEland mono € Fo

+ Z min{m\rl (m1n1), MM, (m2)7 MM, (n2)}

mini€E1and monagEs

+ max{nas, (m1),nar, (m2)}

(tds)oc, (m1, ma) = D (0w @ 0m)((mu ma)(na,m2) + (O © Oasy (o)

(m1,m2)(n1,n2)EE1 X Ea.

= Z min{0ys, (m1), On, (mang)}

mi=ni,mon2€Ey

+ Z min{6y, (mini, O, (m2)}

min1€E1,ma=ns

+ > min{0ns, (m1), Oar, (n1), On, (man2) }
mini€Eiand mangEFy
+ Z min{9N1 (m1n1)70M2 (ma2), Onr (n2)}

mini1€Eiand manaEEo

+ max{0ns, (m1),0nr,(m2)}

Theorem 2.11. Let G; = (M1, N1) and Gy = (M2, Ys) be two BSVNGs. If

(i)
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apn, > an, and apg, > an, then V(myi,mo) € Vi x Vi

(tda)CqEBGz (mla m2) = q(tda)Gl (ml) + S(tda)GQ (m2)
- (q - 1)TG1 (ml) - Hl3"3’({TG1 (ml)a Tt, (ml)}

and

(51\41 < 5N2 and (5]\/[2 < 5N1 then V(ml,mg) e V1 xVWV

(tds)e e, (Mm1), m2) = q(tds)e, (m1) + s(tds)e, (m2)
- (q - 1)TG1 (ml) - min{TGl <m1)7 TGI (ml)}

(ii) Bum, < Bw, and B, < B, then V(my,mo) € Vi x Vo

(tdp)eiae, (M1, m2) = q(tdg)e, (m1) + s(tds)e, (M2)

— (¢ = DM, (m1) — min{lg, (m1), Ie, (m1}

and

Ny = 1N, and nag, > 1Ny then V(my, me) € Vi x V3

(tdW)G1€9G2 (mla m2) = Q(tdn)(h (ml) + S(tdn)Gz (m2)
— (¢ — D1, (m1) — max{Ig, (m1), I, (m1) }

(iii) var, < N, and var, > YN, then V(mi,ma) € Vi x Vo

(tdy)e @6, (M1, m2) = q(tdy)e, (ma) + s(tdy)e, (m2)
- (C] - 1)FG1 (ml) - min{FGl (m1)7 FG1 (ml)}

and

Orr, > On, and Oy, < Oy, then V(m1,m2) e Vi xV

(tdg)e,@es (M1, m2) = q(tdg)e, (1) + s(tdg)e, (m2)
- (q - 1)FG1 (ml) - maX{FGl (ml)’ FGI (ml)}

V(mi,ma) € Vi x Vo ,s=| V1 | -(d)g,(m1) and q=| V2 | -(d)a,(m2) .
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Proof. ¥Y(my,ma) € V1 x Vs

(tda)cy e, (M1, m2) = Z (an, ® an,)((m1,ma)(n1,n2)) + (an, ® an,)(m, ms)
(m1,m2)(n1,n2)€E1 X Fs.

= Z min{a]\/h (m1)7aN2 (m2n2)}
mi1=ni,man2€k>

+ Z min{ay, (min1), an, (me)}

mini1€EFE1,ma=n2

+ > min{aag, (m1), any (n1), an, (mang)}
mini€E1and mangs€Eo

+ > min{an, (min1), an, (mz), ang (n2)}
mini€Eiand mana&ZFEo

+ max{ans (m1), an,(me)}

= Z an, (mang) + Z an,; (miny)

mana €2 mini1€k

+ Z Qan, (m2n2)} + Z N, (mlnl)

mini€E1and mano€Es min €Erand mana ¢ E;
+ max{an, (m1), ang, (m2) }

= Y an(mong)+ > an,(ming) + > an, (mang)}

mang € FE2 mini€EL mini€E1and mang€E>

+ Z an, (miny) + ayy (m1) + anr, (me) — max{apg, (m1), an, (ma)}
mini€EE1and maongE€E>

= q(tda)e, (m1) + s(tda)e, (m2)

- (q - 1)TG1 (ml) - ma’X{TGI (ml)a T, (ml)}

(tds)e,@c, (M1, m2) = > (Ony ® 0N, ) (M1, m2)(n1,m2)) + (dar, @ dary) (M1, ma)

(ml,mg)(nl,ng)EEl X Fo.

= Z max{dns, (m1), On, (mans)}

mi1=ni,mang€Fy

+ Z max{dn,; (min1), o, (m2)}

mini €E1,ma=ny

+ Z max{5M1 (m1)75M1 (n1)76N2 (anQ)}
mini€E1and mang€E>
+ > max{dy, (mini), dar, (m2), dar, (n2)}

mini€EE1and manao&FEo

+ min{ons, (m1), 0ar, (m2)}

= Y Onplmang)+ Y O (mama)

maong€Fo miny€FE,
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4 Z In, (mang)} + Z oy (mana)

mini1¢Ei1and mang€ FEo mini €E1and maong&Fo

+ min{oar, (m1), dar, (m2)}

= Z 5N2(m2n2)+ Z 6N1(m1n1)—|— Z 5N2(m2n2)}

mang2 € FEo mini€EL mini1¢€Eiand mana€Eg

+ Z 61\71 (mlnl) + 5M1 (ml) + 5M2 (m2) - min{(SMl (ml)v 5M2 (mQ)}

mini1€E1and manaEFEo

= q(tds)e, (m1) + s(tds)e, (m2)
— (¢ — D)Tg, (m1) — min{Tg, (m1), Tg, (m1)}

In a similar way others four will proved obviously.
where s=| V; | -(d)g,(m1) and q=| V2 | -(d)g,(m2) O

Example 2.12. In Example 8 we have to find the degree and total degree of vertices of
G1 @ G2 by using Figure 2, Figure 3, and Figure 4.

(da)Gl@Gz (a> C) = q(da)G1 (a) + S(da)Gz (C)
where s=| V; | -(d)¢, (a) and q=| Va2 | -(d)g,(e)

s=IVi |~ (@) =2-1=1, g=| V2| ~(d)g,(e) =2 -1 =1
(do)ere (@, €) = q(da)e, (a) + 5(da)a, () = 1(0.4) + 1(0.5) = 0.4+ 0.5 = 0.9
(dg)eyes (a, ¢) = q(ds)e, (a) + s(dg)e, () = 1(0.2) + 1(0.4) = 0.2+ 0.4 = 0.6
(dy)erea (0, €) = 0.7, (ds)eraey(a,c) = —1.1
(dy)er o (a:€) = —0.5, (dp)eye (a,c) = —0.7

So (d)G1@G2 (a, 6) = (09, 06, —11, —0.5, —07)

By applying this technique we can find degree of all vertices in a similar way. Now we will

find total degree of vertices. For this select vertex (a,e)

(tda)ei@cs (a, ¢) = q(tda)e, (a) + s(tda)s, (c)
— (s = Dag,(c) — (¢ — 1)ag, (a) — max{ag, (a), ag, (c) }
— 1(0.7 4 0.4) + 1(0.6 4+ 0.5) — (1 — 1)(0.6) — (1 — 1)(0.7)
~ max{0.6,0.7} = 1(1.1) + 1.1 — 0.7 = 1.5
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(tds)e e, (@, ¢) = q(tds)s, (a) + s(tds)g, (c)
— (s = 1)de,(c) — (g — 1), (a) — min{dg, (a), é¢, (c)}
— 1(=0.6— 0.2) 4 1(=0.5 — 0.3) — (1 — 1)(=0.5) — (1 — 1)(—0.6)
~ min{—0.5, 0.6} = (—0.8 — 0.8+ 0.6 = —1.0

(tdg)g@e. (a,¢) = 1.0, (tdy)e,ec,(a,c) = 1.3
(tdﬁ)Gl@Gz (CL, C) =—-11, (th)Gl@Gz (CL, C) =-1.7

(td)g a6, (a,c) = (1.5,1.0,1.3,-1.0, —1.1, —1.7)
By applying this technique we can find total degree of all vertices in a similar way.

Definition 2.13. let G; = (Mj, N1) and G = (Ma, N2) are two bipolar single valued neutro-
sophic fuzzy graphs defined on G; = (V1, Ey) and Go = (V3, E3) respectively. The Residue
product of G; and Gy is represented by G; @ Gy = (M; e My, N1 e N3). Residue product of

G1 and Gy is defined as the following conditions: (i)
(anr @ an,)((m1, ma)) = max{an, (m1), ans (m2)}, (Bar, ® Bar)((ma,ms2))
= min{far, (m1), B, (m2) }

(Var, @ Y, ) (M, m2)) = min{yar, (m1), Ya (M2)}, (Oar @ S, ) ((M1, m2))

= min{dpr, (Mm1),0nr, (M2)}

(nM1 d 77M2)((m1v m2)) = max{an (ml)v 1Mo (m2)}’ (9M1 b 9M2)((m17 m2))
= max{0r, (m1), O, (m2)}

V(ml,mg) S (Vl X Vg)
(i)
(an, ® an,)((m1,m2)(n1,n2)) = an, (min1), (Bn, ® Br,)((m1, m2)(n1,n2)) = BN, (Mmin1)
(Y, @ vv,) ((ma, m2) (na, n2)) = YN, (mana), (On, @ On,)((ma, m2)(n1,n2)) = SN, (Mang)

(NN, @ n,) (M1, m2)(n1,m2)) = Ny (mana), (On, @ On,)((m1, m2)(n1,n2)) = On, (Man1)

VYmini € E1, mo 7& na.
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a(0.3,0.4,02,-0.2, -0.3, -0.4) b(0.4,0.3,0.2,-0.3,-0.4, -0.5)
= (0.3,0.4,0.3,—0.1,—0.5, —0.6)
= (W e, g, U L =, —Lhn) —_
i 3
=f 1
[=] -_»_}
| S
= I
= =
| S
kD |
< -
v o
=3 -
o S
=3 of
(0.4,0.4,0.5,-0.1,-0.4, -0.5) =5
c(0.6,0.3,0.4,-0.6, —0.3,-0.4) d(0.4,0.3,0.2,-0.2,-03,-0.4)
FIGURE 5. Gy
2(0.4,0.3,0.3, —0.5, —0.3, —0.8) (0.4,0.5,0.4, -0.4, —0.4, —0.4) f(0.8,0.4,0.3, —0.9, —0.2, —0.3)
FIGURE 6. G
(0.4,0.3,0.2, —0.5,-0.3, —0.3) (0.8,0.3,0.2,-0.9, —0.2, —0.3)
{a.e) (. £
p
(0.8,0.4,0.2, -0.9, —0.2, —0.3) (0.4,0.3,0.2, —0.5. -0.3, —0.3)
(a, £) ‘ o8 faqa e

(0.3,0.4,0.3, —0.1, —0.5, —0.6)
(0.8,0.4,0.3, 0.1, —0.5, —0.6)
(0.4,0.4,0.5, 0.1, —0.4, —0.5)
(0.4, 0.4, 0.5, =0.1, —0.4, —0.5)

Q
®.2) “ o

(e, £)

(0.4,0.3,0.2, —0.5, —0.3, —0.3) (0.8,0.3,0.3, 0.9, —0.2, —0.3)

®. ) (ere)
(0.8,0.3,0.2, —0.9, —0.2, —0.3) (0.6,0.3,0.3, —0.6, —0.3, —0.3)

FIGURE 7. G; ¢ Gy

Example 2.14. Let Gi = (M;,N;) and Go = (Ms, N2) be two BSVNGs on V; =
{a,b,c,d} and Vo = {e, f} respectively which shown in Figure 5 and Figure 6. Also Residue

product is shown in Figure 7.

Proposition 2.15. Let G; = (M, N1) and Gy = (Ma, N2) be two BSVNGs of graph G =
(Vi, Eq) and Go = (Va, E3), respectively. Then the Residue product G; e Gy of Gy = (V1, Eq)
and Go = (Va, E») is a BSVNG.
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Proof. Let Gy = (M, N1) and Go = (Ms, N2) be two BSVNGs of graph G; = (V3, Eq) and
Go = (Vi, E9), respectively. Let (mqy,ma)(ni,n2) € By X Ey If ming € E7 and mgy # ng then
(an, ® an,)((m1,ma)(n1,n2)) = an, (ming)
< min{aps, (mq), ang, (n1)}
< max{min{ans, (m1), aan (n1) }, min{aas, (m2), anr, (n2) }
= min{max{ans, (m1), anr, (n1) }, max{ans, (ma), ans, (n2) }}

= min{ (o, ® g, )(ma, ma), (o, @ ang, ) (na,n2) }

(BN, @ B, ) (M1, m2)(n1,m2)) = B, (mani)
> max{B, (m1), Bur, (n1) }
> min{max{Ba, (m1), Bar, (n1) }, max{Bas, (m2), B, (n2)}}
= max{min{Ss, (m1), Bar, (n1) }, min{Bag, (ma), Bas, (n2) }}

= maX{(ﬁMl b ﬁMz)(mlv m2)7 (5M1 i /8M2)(n17 nQ)}

(v @ Y, ) (M1, m2) (1, n2)) = Y, (mana)
> max{yas, (m1), yar, (n1)}
> min{max{yar, (m1), a1, (n1) }, max{yas, (ma2), yar (n2) }}
= max{min{yas, (m1), v, (n1) }, min{yaz, (m2), yar, (n2) } }

= max{(7M1 L4 'YMQ)(mla mQ)v ('7M1 b ’YMQ)(n17 nQ)}

(0N, ® On, ) ((ma,m2)(n1,m2)) = O, (M)
= max{drr, (m1), on, (1)}
= min{max{dns, (m1), oar, (n1)}, max{0ns, (m2), Sas, (n2) }}
= max{min{ds, (m1), dar, (n1) }, min{daz, (ma2), dns, (n2) }}

= max{(drs, ® dns,)(m1,m2), (dar, ® dns,)(n1,m2)}

(7, ® 1, ) (M1, m2)(n1,m2)) = N, (Mana)
< min{nar, (m1), nar, (n1)}
< max{min{nar, (m1), nar, (n1) }, min{naz, (m2), naz, (n2) b}
= min{max{nas, (m1), nas, (n1)}, max{naz, (m2), nas, (n2) } }

= min{ (1, ® Nas,) (M1, m2), (Mar, @ Mas,) (01, M2) }
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(0N, ® On, ) (M1, m2)(n1,n2)) = On, (m1ny)
< min{far, (m1), Onr, (n1) }
< max{min{0as, (m1), Orr, (n1) }, min{Oaz, (m2), O, (n2) }}
= min{max{0x, (m1), Orr, (n1)}, max{bas, (m2), O, (n2) }}

= min{(Orr, ® Oas,)(m1,m2), (Oar, ® Ons, ) (n1,n2)}

Definition 2.16. Let Gi = (M;,N;) and Gy = (M2, N2) be two BSVNGs.For any

vertex(mi, ma) € Vi x Va

(da)G1oG2<m17m2) = Z (aN1 QaN2>((m17m2)(n1’n2>)
(m1,mz2)(n1,n2)EE1x Ea.

- Z an, (miny) = (da)g, (M1)

min1€E1,ma#ns

(dﬂ)GﬂGz (mb m2) = Z (6]\71 d 6N2)((m17 m2)(n17 722))

(m1,m2)(n1,n2)EE1 X Es.

= > B, (mana) = (dg)e, (1)

mini €L, maF#no

(dy)a1e6, (M1, m2) = > (YN, ® Y, ) (M, ma)(na, n2))

(m17m2)(n1,n2)EE1 X Fo.

= > N, (main1) = (dy)e, (m1)

min1 €L, ma#ns

(ds)eye6, (M1, M2) = Z (6N, @ O, ) ((ma, m2)(n1, n2))

(ml,mg)(nl,nz)GEl X Eso.

= Z In, (miny) = (ds)g, (m1)

mini€E,ma#ng

(dy)cyec, (M1, m2) = > (nn, ® v, ) (M, m2)(n1, n2))

(m1,m2)(n1,n2)EE1 X E>.

=2 ma(mim) = (dy)oy ()

mini1€E,ma#no

(do)c1ec5 (M1, m2) = > (On, ® On, ) ((m1, m2)(n1,m2))

(m1,m2)(n1,n2)EE1x Ea.
= > Om(mm) = (dg)e, ()
mini €E1,ma#ng
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Definition 2.17.

Let Gy = (M;p,N1) and Gy = (Ms, N3) be two BSVNGs. For any

vertex(mi,ma) € Vi x Vj

(tda)(h oGo (m17 m?)

(tdﬂ)Gl'(b (m17 m2)

(td’Y)Gsz (m17 m2)

(td5)G10G2 (m17 m2)

- Z (an, ® an,)((m1,ma)(n1,n2)) + (au, ® anr,)(mi, ms))
(m1,m2)(n1,m2)EFE X Es.

= Y an(miny) +minfau, (ma), an, (ma)}
min1€E1,ma#ns

= > an, (min1) + anr, (M1) + an, (me) — max{an, (m1), o, (m2) }

min1 €L, ma#ns

= (tda)e, (m1) + anr, (m2) — max{anr, (m1), anr, (m2)}

= > (Bny @ BN,) (M, ma)(n1,n2)) + (B, ® B, (ma, m2))

(ml,mg)(n1,n2)€E1 X Eso.

- > By (many) + max{Bar, (m1), B, (ma2)}

mini€E,ma#ng
= Yo Bw(mam) + Bar (ma) + Bar, (m2) — min{Bar, (M), Bar, (ma2)}

min1 €L, ma#ns

= (tdg)e, (m1) + B, (m2) — min{ Bar, (m1), Bar, (m2)}

= > (YN, @ Y ((ma, m2)(n1, n2)) + (Var, ® Y (ma, m2))

(m1,m2)(n1,n2)EE X Fa.

- 3 Y, (many) 4+ max{yaz, (m1), vz, (m2) }

min1 €L, ma#n2

= > YN (mana) + v, (ma) + yagy (m2) — min{yar, (ma), Yaz, (m2) }

min1€E1,maF#ns

= (tdy)e, (m1) + v (m2) — min{yag (m1), var, (m2) }

= > (6N, @ 0N, ) (M1, m2)(n1,n2)) + (Oar, @ dary ) (M, m2))

(m1,m2)(n1,n2)EEL X Es.

= Z 5]\[1 (mlnl) + maX{5M1 (ml), 5M2 (mQ)}

min1 €L, ma#nsg

= > ny (mana) + 0ar, (M) + Oar (m2) — min{daz, (ma), s, (m2)

min1 €L, ma#ns

= (tds)e, (m1) + Oar, (M2) — min{dar, (m1), dar, (Ma2) }
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(tdy)ayec, (M1, M2) = > (M, @ 1wy ) ((ma, m2)(n1, n2)) + (Mar, ® Nar (M, m2))

(m1,m2)(n1,n2)€E1 X E>.

= Z N, (mlnl) + min{an (m1),77M2 (mQ)}

mini1EE,ma#ns

= > 1Ny (mana) + nar (ma) + 1ag, (me) — max{Iy, (m1),nar, (m2) }

min1€EE1,ma#ns

= (tdp)e, (m1) + s, (m2) — max{nag (m1), nar, (m2) }

(tdg)eyec, (M1, m2) = > (On, @ On, ) (M1, ma)(n1,n2)) + (O, @ Orr, (M1, m2))

(m1,m2)(n1,n2)EE1 X Es.

= Z 0]\[1 (mlnl) + min{eMl (ml)aeMz (m2)}

min1 €EE1,ma#ns

= > O, (mana) + Oar, (ma) + Oar, (M2) — max{Oar, (m1), Ons, (m2) }

mini€E1,ma#ng

= (tdp)e, (m1) + On, (m2) — max{Onr, (m1), Onr, (M2) }

Example 2.18. In Example ZT4 we have to find the degree and total degree of vertices of
G1 ® G2 by using Figure 5, Figure 6, and Figure 7.

(dg)arecs(a, ) = (dg)e, (a) = 0.5+ 0.4 = 0.9
(dy)erecs(a, ) = (dy)e, (a) = —0.4 — 0.5 = —0.9
(da)oreas (@, f) = 0.5, (dy)erees(a, f) = 0.9
(ds)erecs(a, f) = —0.2, (dp)ayees(a, f) = —1.0

(d)g,ee,(a, f) = (0.5,0.9,0.9, —0.2, —0.9, —1.0)

By applying same method we can find degree of all vertices. Now we are to find total degree

of vertices. For this select vertices (a,f)
(tds)ayec, (a, f) = (tdg)a, (a) + Bar, (f) — min{Bus, (a), Bur, ()}
= (0.5+ 0.4+ 0.4) + 0.8 — min(0.3,0.8)

=13+08-03=1.8

(tdp)oiees (a, ) = (tdy)e, (@) + masy (f) — max{nar, (@), mas, (f)}
= (=0.4— 0.3 —0.5) 4 (—0.2) — max(—0.3, —0.2)

=-12-02+02=-12

(td’Y)G1°G2 (a7 f) = 1'1a (td(s)GNGz ((1, f) =-04
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(tdQ)G1°G2 (a, f) =—14, (tda)G1°G2 (a, f) =038

So (td)e,ec,(a, f) = (0.8,1.8,1.1 — 0.4, —1.2, —1.4)
by applying similar method we can find total degree of all others vertices in a similar way.
Definition 2.19. let G; = (M1, N1) and G = (Ma, N3) are bipolar single valued neutrosophic
fuzzy graphs defined on G = (V1, E1) and Gy = (V1, E2) respectively. The maximal product
of G1 and Go is represented by Gy *Go = (Mj * Ma, N1 & N3). The Maximal product of G; and G
is defined as the following conditions (i)
(aMl * O‘Mz)((ml’ mQ)) = maX{aMl (ml)a My (m2)}a (BMI * ﬁMz)((mlv mQ))

= min{ By, (Mm1), Bar, (M2)}

(Yo, * VMQ)((mlamQ)) = min{’yMl (m1), Y, (m2)}7 (Onry * 5M2)((m17m2))

= min{dps, (m1),0nr,(m2)}

(mary * g ) (M, m2)) = max{nar, (ma), M, (m2) }, (O, * Oary) ((m1, me2))
= max {0z, (m1), Ors, (m2)}
V (mi,ma) € (Vi x V)
(ii)
(aar, * gy ) ((m, m2)(m, n2)) = max{ar, (m), an, (man2)}t, (B, * Bar,) ((m; m2)(m, n2))

= min{ﬂMl (m), BNQ (m2n2)}

(vat, * ) (M, m2) (m, m)) = min{yag,,, (m), Yo, (mana)}, (Oay * Oz ((m,ymz) (m, )

= min{das, (m), dn, (mana)}

(may gy ) (M, mg) (M, m2)) = max{nar, (m), v, (man2)}, (Oar, * O, ((m, me) (m, n2))
= max {0y, (m), O, (man2)}
Vm € Viand mong € FEo
(i)
(g, * aas, ) ((ma, m)(n1, m)) = max{an, (min1), aan, (M)}, (Bay * Bary) ((ma, m)(n1,m))

= min{Sn, (min1), Bar, (m)}

(a0, * 13, ((ma,m)(na,m)) = min{a, (mins), yazy(m)}. (5as, * 6a1,) (., m) (g, m)

= min{dn, (min1), dp,(m)}
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a(0.4,0.3,0.4, —0.5, —0.4, —0.3) (0.3,0.6,0.5, —0.3, 0.5, —0.4) 5(0.8,0.5,0.4, —0.4, —0.4, —0.3)

FIGURE 8. &1

FIGURE 9. Gy

(77M1 * an)((mbm)(nlvm)) = maX{UNl (mlnl)aan (TTL)}, (eMl * HMQ)((mlvm)(nl’m))

= max{0On, (min1),0r,(m)}

Vm € Voand min, € E;

Example 2.20. Let G = (M;,N;) and Go = (M, N2) be two BSVNGs on Vi =
{a,b} and Vo = {c,d, e} respectively which shown in Figure 8 and Figure 9. Also maximal

product is shown in Figure 10.

Proposition 2.21. Let G; = (M, N1) and Gy = (Ma, N2) be two BSVNGs of graph G; =
(V1, Eq) and Go = (Va, E9), respectively. Then then maximal product Gy * Go of G; = (V1, Eq)
and Go = (Va, E») is a BSVNG.

Proof. Let Gy = (M, N7) and Gy = (My, N3) be two BSVNGs of graph G; = (V1, E1) and
Go = (Va, E3), respectively. Then the Maximal product Gy % Gy of G = (V1, E;) and Gg =
(Va, E) can be proved. Let (my,m2)(ny1,ne) € Eq X Es
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FIGURE 10. Gj * Gy

(i) Ifmlznlzm

(an, * an, )((m,ma)(m,n2)) = max{an, (m), an, (mana)}
< max{onl (m)v min{aMz (m2)v M, (HZ)}}
= min{max{{ans, (m), arr, (m2)}, max{{an, (m), arr, (n2)}}

= min{(anr, * anr,)(m, ma), (aar * an,)(m,n2)}

(B, * B, ) ((my ma)(m, n2)) = min{Bar, (m), B, (man2) }
> min{ By, (m), max{ S, (m2), Bar, (n2) }}
= max{min{{Br, (M), Br, (m2) }, min{{Bar, (m), Bar, (n2)}}

= max{(Bu, * Bar,) (M, m2), (Bary * Bary)(m,n2)}

(’7N1 * ’7N2)((m’ mQ)(mv n2)) = min{7M1 (m)7 TN, (m2n2)}

Vv

min{yaz, (m), max{yaz, (m2), yar, (n2) }}
= ma‘x{min{{’VMl (m)7 VM, (m2)}7 min{{’yl\/h (m)7 YM; (nQ)}}

= max{(Ya, * Vs ) (M, m2), (Vary * Ya,) (0, m2) }
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(O, * Oy ) ((m, ma)(m, n2)) = min{dns, (m), 6n, (mana)}
> min{5M1 (m)’ max{6M2 (m2)7 5M2 (77’2)}}
= max{min{{5M1 (m)7 5M2 (mQ)}v min{{5M1 (m)a 5M2 (112)}}

= max{(dnr, * Onr, ) (M, ma2), (Onr, * Onsy) (M, m2)}

(77]\71 * 77N2)((m7 m2)(ma nQ)) = maX{UMl (m)7 1IN, (anQ)}
< max{nar (m), min{naz, (m2), nar, (n2) }}
= min{max{{nM1 (m), M, (m2)}7 max{{an (m)v TIM> (n2)}}

= min{(an * nMg)(m7 m2)7 (an * 77M2)(m> n2)}

(9N1 * eNz)((m7 m2>(m7 n2)) = maX{9M1 (m)v 9N2 (m2n2)}
< maX{HMl (m)7 min{9M2 (mQ)v 9M2 (nQ)}}
= min{max{{0s, (m), 01, (m2) }, max{{brs, (m), Onr, (n2)} }

= min{(0ar, * Onr,)(m, ma), (Oar, * Onr,) (M, no)}

(ii)) If mg =ng =m

(an, * any)((m1, m)(n1, m)) = max{an, (min1), an,(m)}
< max{min{an, (mini), ap,(m)}
= min{max{{ole (ml)v QMo (m)}7 maX{{aMl (nl)’ My (m)}}

= min{(apr * ang)(m1,m), (any * ang)(ni, m)}

(BNI * BNQ)((m17 m)(nl’ m)) = min{ﬁNl (mlnl)a BM2 (m)}
> min{max{Sy, (min1), B, (m)}
= maX{min{{/Bl\h (m1)7 B (m)}7 min{{/BMl (n1)7 B (m)}}

= maX{(BMl * BMg)(ml’ m)a (/BMI * /BMQ)(nL m)}
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(YN; * YR ) ((ma, m) (n1,m)) = min{yn, (mina), ya, (m)}
> min{max{yn, (min1), s (m)}
= maX{min{{’Wﬁ (ml)a M, (m)}a min{{/yMl (nl)v Mo (m)}}

= max{ (7, * Yar) (M1, m), (Y, * Yar,)(n1,m)}

(5]\71 * 6N2)((m1’ m) (nla m)) = Hlin{61\71 (mlnl)’ 6M2 (m)}
> min{max{dn, (mini), s (m)}
= max{min{{dn, (m1), dar, (m) }, min{{drr, (n1), das, (m) }

= max{(das, * Onr,) (M1, m), (Onr, * Ongy)(n1,m)}

(77]\71 * 77N2)((m17 m)(nla m)) = maX{UNl (m1n1)7 NMz (m)}
< max{min{ny, (min1), na, (m)}
= min{max{{nn, (m1), 1, (m) }, max{{nas, (n1), mas, (m)} }

= min{(an * an)(mla m), (nM1 * 77M2)(n17 m)}

(On, * On, ) ((m1, m)(n1,m)) = max{On, (min1),0n,(m)}
< max{min{fy, (min1), 0, (m)}
= min{max{{0N1 (ml)v 9M2 (m)}’ maX{{9M1 (n1)7 HMQ (m)}}

= min{(0rr, * Orr,)(ma, m), (Onr, * Onr, ) (n1, m) }

Definition 2.22. Let G; = (M7, N1) and Gy = (Ma, N2) be two BSVNGs. V(m1,ma) € Vi x Vs

(dOé)Gl*G2(m17m2) = Z (OéN1 *aN2>((m17m2)(n1’n2>)
(m1,m2)(ni,n2)€EE1 X Es.

= Z max{on1 (ml),aNQ(m2n2)}
mi=n1,mons€E>

+ Z max{an, (mini), an,(ma)}

mini€E1,ma=ny
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(dg)eyxes (M1, ma) = > (BN, * BNz ) ((ma, m2) (n1, n2))

(m1,m2)(n1,n2)EE1 X Es.

— Z min{Bar, (m1), B, (mana) }

mi1=n1,man2EE>

+ Z min{ By, (min1), Bar, (m2) }

min1€E],ma=ng

(dy)erxce (M1, m2) = > (YN, * YN, ) ((ma, ma) (g, n2))

(m1,m2)(n1,n2)EEL X Es.

- Z min{yaz, (m1), YN, (manz)}

mi=ni,mons€E>

+ Z min{yn, (min1), van (m2)}

mini1 €L, ma=ns

(ds)ey 6, (M1, m2) = Z (6, * 0N, ) (M, m2)(n1, n2))

(m1,m2)(n1,n2)€E1x Ea.

= Z min{dpz, (m1), dn, (mang)}

mi=ni,maonaE€Es

+ Z min{dy, (min1),0n,(m2)}

mini €L, ma=ny

(dn)G1*G2 (mla m2) = Z ("7N1 * nNz)((ml’ mQ)(nla n2))

(ml,mg)(nl,nz)eEl x E3.

= Z maX{an (ml)’ 1IN,y (m2n2)}

mi1=n1,man2€Es

4 Z max{ny, (mini), na,(me)}

min1 €L, ma=ns

(do)erxey (M1, m2) = > (On, * Ony ) ((ma, ma) (n1, n2))

(m1,m2)(n1,n2)EE X Ea.

- Z max{0ns, (m1), On, (man2)}

mi1=ni,manzEE>

+ Z max{fn, (min1), O, (m2)}

min1€F,ma=ns

Theorem 2.23. Let G; = (M, N1) and Gg = (Ms, N2) are two BSVNGs. If ay, > an,, B,
BNos My <IN, and ang, = any, By < BNy Yv, < YNy Also IE day < Oy, vy 2 g, Oy
On, and dpr, < 0Ny, MM, = NNy, 01, = On, Then for every V(my, ma) € Vi x Va

(da)ey 6, (M1, m2) =(d)a, (m2)an, (m1) + (d)e, (ma)an, (me)
(dg) )=(d)a, (m2)Bar, (m1) + (d)a, (m1) Bar, (2)
(dy)erxes (M1, m2)=(d) gy (Mm2)vas, (M1) + (d)y (M) v, (M2)
(ds)ey 6, (M1, m2) =(d)c, (m2)dar (M1) + (d)cy (Ma)dar, (mo2)
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(dn)eyxe, (M1, m2)=(d)e, (M2)nas, (1) + (d) Gy (M) 0, (M)
(dp)gy 56, (M1, m2)=(d)a, (m2)0rr, (m1) + (d) G, (m1)0nr, (M2)

Proof.

(da)kaGz (m17m2) = Z (OéNl * aNz)((mI; m2)(n1’n2))
(m1,m2)(n1,n2)€E1 X E>.

= Z max{any, (m1), an, (mansg)}
mi1=ni,mans cEs

+ Z max{an, (min1), anm,(ms)}

mini1€L1,ma=n2
= Z an,(mang) + Z an, (miny)

mang€F2,m1=n1 min1 €L, me=ny

= (d)a, (m2)ann (M) + (d)g, (ma)an, (ms)

(ds)ey 6, (M1, m2) = > (6N * 0Ny ) (M, m2) (1, n2))

(m1,m2)(n1,n2)EEL X Es.

— Z min{dpz, (m1), In, (mana)}

mi=n1,man2€E>

+ Z min{dy, (min1),dn,(me2)}

mini€EFE1,ma=nso

= Z I, (mang) + Z dn, (maing)

mang€FE2,m1=ny min1€E1,ma=ny

= (d)G,(m2)dnr, (m1) + (d)G, (M), (m2)

In a similar way others four will proved obviously.

Definition 2.24. Let G; = (M, N1) and Gy = (Ma, N2) be two BSVNGs. V(m1,ma) € Vi x Vs

(tda)g 56, (M1, m2) = Z (an, * an,)((m1,me)(n1,n2)) + (ang * anr, (M1, mz)
(m1,m2)(n1,n2)€E1 X E>.

— Z max{anr, (m1), an, (mana)}
mi=ni,mons€E>

+ Z max{an, (mini), an,(ma)}

min1€EE1,ma=ny

+ max{ayg (m1), ar, (me)}
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(tdﬁ)G1*G2 (ml, m2) = Z (BNl * ﬁN2)((m17 mQ)(nh nQ)) + (5M1 * BMQ (ml’ m2)

(m1,m2)(n1,n2)EE1 X Ea.

_ 3 min{Bas, (m1), Bn, (mang)}

mi=ni,mons€E>

+ Z min{ Sy, (min1), Ba, (m2)}

mini1 €L, ma=ns

+ min{Bas, (m1), Bas, (m2) }

(td"/>G1*G2(m1,m2) = Z (’7N1 *PYNQ)((mlva)(nlanQ)) + <7M1 *YMa (ml’m2)

(m1,m2)(n1,n2)€E1 X Es.

= Z min{yas, (m1), yn, (man2)}

mi=ni,mons€E>

+ Z min{yn, (min1, Yam, (m2)}

mini1 €L, me=ns

+ maX{’YMl (m1)7 VM, (mZ)}

(tds)eyxc, (M1, m2) = Z (6ny * 6n, ) ((ma, m2)(n1,m2)) + (Oar, * Gary (M, m2)

(m1,m2)(n1,m2)€E1 X Ey.

= Z min{dps, (m1), dn, (mang)}

mi1=n1,manzEE>
+ Z min{ox, (min1), oar, (m2)}

mini1 €L, mo=ns

+ min{onr, (m1), 0ar, (m2)}

(tdn)G1*G2 (ml, m2) = Z (nN1 * 77N2)((m1, m?)(nlv 77'2)) + (an * 1Mo (ml’ m2)

(ml,ﬂ”LQ)(nl,n2)€El X Ea.

= Z max{ns (m1), nn, (mana) }

mi=ni,maongs €Ky
+ Z max{nn, (min1), N, (ma2)}

mini1 €L, ma=na

+ max{m\/h (777,1), MM, (mQ)}

(th)Gl*Gz (ml, m2) = Z (9N1 * eNz)((mly mQ)(nla nQ)) + (HMl * 0M2 (ml’ m2)

(m1,m2)(n1,n2)EE1 X Ea.

— Z max{0as, (m1),0n,(man2)}

mi=ni,mons€E>

+ Z max {0y, (mini, Oy, (m2)}

mini1 €L, mo=ns
+ max{Oas, (m1), Or, (m2)}
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Theorem 2.25. Let G = (M7, N1) and Gy = (Ma, Na2) be two BSVNGs. If ay, > an,, B, <
BNas My < YN, and ang, = any, By < BNy YM, < YNy Also IE dar < vy, vy = Ny, Oy >
On, and O, < 0Ny, MMy > NNy, 001, > On, Then for every V(mi,ma) € Vi x Vo
(da)ey+e, (M1, m2) =(d)G,(ma2)ans (m1) + (d)a, (m1) o, (ma)
(d)e1x6, (M1, m2)=(d)e, (Mm2) Bar, (m1) + (d) Gy (M) B, (M)
(dy)arx6o (M1, m2)=(d) G, (m2)yar, (ma) + (d) G, (ma) v, (me2)
(ds)ey+e, (M1, ma) =(d)G,(m2)onr, (m1) + (d)a, (m1)d, (m2)
(dn)ey sy (M1, ma)=(d)a, (ma)nar, (M1) + (d) G, (ma)nar, (m2)
(dg)ey+c, (M1, m2)=(d)c, (m2)0n, (m1) + (d)c, (M1)0h, (M2)
Proof.
(tda)e,xcy (M1, m2) = > (an, * any,)((m1, ma)(n1,n2)) + (anr * a)(mr, ms)
(m1,m2)(n1,n2)EE1 X Ea.
= Z max{an, (m1), an, (mana)}
mi=n1,manz€Es
+ Z max{an, (mini), an, (ma)}
mini €EE1,mo=ns2
+ max{ag (m1), ar, (me)}
= Z an, (mang) + Z an, (mini)
mana€Ea,mi=n1 mini €E1,ma=ns
+ max{an (m1), an,(mea)}
= (d)g,(m2)an, (m1) + (d)a, (m1)an, (m2) + maz{an, (m1), an, (me) b
(tds)gy e, (M1, ma) = Z (Ony * Ony) (M1, m2)(n1,n2)) + (dar, * Oar,) (M1, m2)

(m1,m2)(n1,n2)EE1 X E>.

= Z min{daz, (m1), N, (mana)}

m1=ni,manz €L

+ Z min{dy, (min1),dn,(me2)}

mini €E1,me=ny

+ min{dns, (m1), dar, (m2)}
— Z SN, (mang) + Z On, (mina)

monz€F2,mi=n1 mini1€E1,ma=nz

+ min{onr, (m1), dar, (ma2) }

= (d)G,(m2)dn, (m1) + (d)G, (M), (m2) + min{dar, (m1), dar, (Ma2) b

In a similar way others four will proved obviously.
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Example 2.26. In Example we have to find the degree and total degree of vertices of
Gy * Gg by using Figure 8, Figure 9, and Figure 10. Select the vertex (e,a).
(da)ayxe,(a, ¢) = (d)a,(c)ann (a) + (d)a, (a)anr (¢)
=2(0.4) 4+ 1(0.5) =0.8+0.5=1.3

(tds)e,+e,(a, €) = (d)G,(c)dnr, (a) + (d)ay (a)dns, ()
=2(—05)+1(—04) = -1.0—04=—14

s (dg)cl*GQ(a,C) = 1.0 y (d,y)(;l*GQ(@,a) =1.1 s (tdﬁ)Gl*Gz (a, C) =—-1.3 y (tdQ)G1*G2 (a, C) = —1.2.
By applying the same method we can find the degree of all vertices.now we are find the total
degree of vertices in maximal product. For this select the same vertex (e,a).
(tda)e1xa,(a; ¢) = (d) e, (c)anr (a) + (d)a, (a)anr (¢) + max{ans, (a), arnp(c) }
=2(0.4) + 1(0.5) + max(0.4,0.5) =0.84+0.5+0.5 =18

(th)G1*G2 (a’a C) = (d)G2 (C)HMI (a) + (d)Gl (G)GMQ (C) + min{eMl (a)7 9M2 (C)}
= 2(—0.3) + 1(—0.6) + min(—0.3, —0.6) = —0.6 — 0.6 — 0.6 = —1.8

(tdg)g xes (@, c) = 1.3 ,(tdy)e, e, (a, ¢) = 1.4, (tds)g «e, (@, ¢) = —1.8 ,(tdy)e 4. (a, c) = —1.8. By

applying same method or technique we can find all other vertices total degree.

Definition 2.27. Let G; = (M3, N1) and Gy = (M3, Na) are two bipolar single valued neutro-
sophic fuzzy graphs defined on G = (V1, E1) and Go = (Va, E2) respectively. The rejection of
G and Gg is represented by Gi|Ge = (M7|Ma, Ni|N3). Rejection of Giand Gg is defined as the
following conditions:

()

(anr lans, ) ((m1,m2)) = min{any, (m1), an, (m2)}, (Ban |Ba,) (M1, m2)) = max{Bar, (m1), Bar, (Ma2)
(Var [van, ) (M1, m2)) = max{yan (ma), Yar, (M2) b, (Gar,[0as,) (M, m2)) = max{das (M), dar, (m2) }

(a1, [nagy ) ((ma, ma)) = min{nag (M), mar, (m2)}, (Oar,10a,) (M1, m2)) = min{Oy, (ma), O, (m2) }

A (ml,mg) S (V1 X Vg)
(i)

(an, lan, ) ((m,m2)(m,n2)) = min{an, (M), anr, (m2), an, (n2)}s (Bng BN, ) ((m, m2)(m, n2))

= max{ S, (m), Bar, (ma2), Bar, (n2)}
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(7N1 "YNQ)((W% mQ)(m7 77,2)) = max{7M1 (m)a YM, (mQ)a YM, (77,2)}, (5N1 |6N2)((m7 m2)(m7 nQ))

= max{dp;, (m), onr, (M2), dnr, (n2)}

(77N1 |77N2)((ma m2)(m> 77,2)) = min{an (m)v MM, (m2)7 MM, (nQ)}’ (0N1 |‘9N2)((m’ mg)(m, nQ))
= min{0rs, (m), Orr, (Mm2), Orr, (n2) }

V' m € Vo and mang € Ebo.
(iii)
(an, lan,)((m,m2)(m,n2)) = min{an, (M), anr, (m2), ann (n2)}s (Bny BN, ) ((m, m2)(m, n2))

= max{ S, (m), B, (m2), Bar, (n2)}

(,YNI "YNz)((m’ m2)(m7 n2)) = max{7M1 (m)a VMo (m2)7 VMo (77’2)}7 (5N1 |6N2)((m7 m2)(m7 n2))

= max{dy, (m), dar, (Mm2), dnr, (n2) }

(an |77N2)((ma mZ)(m7 712)) = min{an (m)’ MM (mQ)’ NM; (nQ)}a (0N1 |9N2)((ma mZ)(m7 nQ))

= min{Ops, (m), Ors,(m2), Onr, (n2) }

YV z € Vo and ming € F1.

(iV) (an lan, ) ((ma, m2)(n1, n2)) = min{ans, (m1), cng (n1), aar, (M), an, (n2) }
(BN BN, ) (M1, ma)(n1,n2)) =
max{ S (m1), Bar (1), Bar, (M2), ans (n2) }, (Y, [0, ) (M, m2) (na, n2)) =
max{yar, (m1), Yar (1), Yas, (M2), an, (n2) },
(08 |08, ) (M1, m2)(n1, m2)) = max{dar, (M1), dar, (1), Oas, (M2), Oy (2) }
(v, [0, ) (M, m2) (n1, n2)) = min{nag, (1), mar (R1), Mg, (M2), O, (n2) )

i

(01\71 |9N2)((m13 m2)(n1a 712)) = min{ng (m1)7 9M1 (nl)’ 9M2 (m2)7 51\42 (nQ)}

Y mini € Ey and mons & Es.

Example 2.28. Let Gi = (M;,N;) and G = (Ma,N2) be two BSVNGs on V; =
{a,b,c,d} and V5 = {e, f}, respectively which shown in Figure 11 and Figure 12. Also rejection

shown in Figure 13.

Proposition 2.29. Let G; = (M, N1) and Gy = (Ma, N2) be two BSVNGs of graph G =
(Vi,Eq1) and Gy = (Va, Ey), respectively. Then the rejection G1|Ge of Gy = (Vi, E1) and
G2 = (V2,E2) is a BSVNG.
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a(0.3,0.4,0.2, —0.3, —0.2, —0.4) d(0.5,0.2,0.3,-0.3, -0.2,-0.6)
i)

] =
T T
S =+
! T
p =
' T
= o
= S
=] Lt

s =]
S <
= (0.4,0.2,0.4,-0.1,-0.4, —0.5) =)

b(0.5,0.2,0.3, -0.4,-0.3, -0.2) £(0.4,0.2,0.3,-0.2, -0.3, -0.2)

FIGURE 11. G;

e(0.4,0.3,0.2, —0.3, —0.2, —0.3) (0.3,0.4,0.5, —0.1, —0.2, —0.5) f(0.3,0.2,0.4, —0.2, —0.3, —0.4)

FIGURE 12. Gy

FIGURE 13. Gp | Go

Proof. Suppose that G; = (M1, N1) and G = (M3, N3) be two BSVNGs of graph G = (V4, E1)
and Gy = (Va, E3) respectively. Then for (mi,mz)(n1,n2) € Eq X Es.
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(i) If mi = ni,mang Q E2
(BNI |BN2)((m17 m2)(n1a nQ)) = max{ﬂMl (ml)v ﬁMz (m2)v 5M2 (nQ)}
= maX{maX{/BMl (ml)v /3M2 (mQ)}> maX{BM1 (n1)> /BMQ (nQ)}}

= max{ (B |Bas, ) (m1, ma), (Bar, | Basy ) (1, n2) }

(1N 1, ) ((ma, ma) (na, n2)) = min{nar, (m1), nar, (m2), nar, (n2) }
= min{min{nas, (Mm1), nar, (m2) }, min{nas, (n1), nar, (n2) }}

= min{(an |77M2)(m1a m2)7 (77M1 |77M2)(n1a nQ)}

In a similar way others four will proved obviously.

(ii) If mo = N2, Mini € E1

(any [an, ) ((m1, m2)(n1,n2)) = min{ans (M), aar (n1), anp (M) }
= min{min{aMl (ml)’ M, (mQ)}v min{aMl (nl)a QM, (nQ)}}

= min{(aar, |aar, ) (m1, ma), (o laa ) (n1,n2) }

(N, |08z ) (M1, m2)(n1, m2)) = max{dar, (m1), 6, (n1), Oy (M) }
= max{max{da, (m1), dar, (m2) }, max{dar, (n1), onr, (n2)}}
= max{(dar, |0asz) (M1, m2), (Gar, |01z ) (01, m2)
In a similar way others four will proved obviously.
(iii) If many & Erand mans & E
(Y [vve ) ((mn, ma) (1, m2)) = max{yas, (ma), var (na), Y, (Ma2), Y, (n2) }
= max{max{yar, (m1), ya, (m2) }, max{yar, (n1), Yar, (n2) }}

= maX{(’YM1 h/Mg)(mla m2), (vary "YMz)(nh nQ)}

(On 10N, ) (M1, m2)(n1,m2)) = min{Oar, (m1), Oar, (1), Onr, (Mm2), Oar, (n2) }
= min{min{fs, (m1), Oas, (m2) }, min{bas, (n1), Oar, (n2) }
= min{(@Ml |0M2)(m17 m2)7 (0M1 |9M2)(n1’ nZ)}

In a similar way others four will proved obviously.

Hence all properties are satisfied truly, so in all cases N1|Ny is a BSVNG on M;|M;. Therefore
we can say G1|G2 = (MﬂMg,NﬂNg) is a BSVNG. 0
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Definition 2.30. Let G = (M, N1) and G = (Ma, Y2) be two BSVNGs. V(mq,msz) € Vi xV;

(da), (6, (M1, m2) = > (any |an, ) ((m1, ma)(n1,n2))

(m1,m2)(n1,n2)EE1 X Es.

= Z min{ay, (m1), e, (Mm2), an, (n2)}

mi=ni,manaZE>

+ Z min{any, (m1), o, (n1), an, (m2)}

ma=nz,min1¢E;

+ > min{ang, (m1), anr (n1), an, (m2), o, (n2) }
mini1¢Eiand mana@FEo

(dg)e, j6; (M1, m2) = > (BN B, ) ((m1, m2) (1, n2))

(m1,m2)(n1,n2)EE1 X Es.

= Z max{ B, (m1), Bas, (m2), B, (n2) }

mi=ni,manzg Lo

4 Z max{ B, (m1), B, (n1), Bar, (M2) }

mo=nz,min1¢E;

+ > max{Sar, (m1), Bar, (n1), Bary (m2), Bar, (n2)}

mini1¢€E1and mana&FEo

(dy)ey o, (M1, m2) = > (v [y ) ((ma, me) (1, )

(m1,m2)(n1,n2)EE X Es.

= Z max{yas, (m1), Y (m2), Yan (n2) }

mi=ni,manzgEo

+ Z max{yar, (m1), var, (n1), yar, (m2) }

me=nz,min1¢E

+ > max{yar, (1), Yar, (11), Vs (M2), Yar (12) }

mini€E1and maona&FEo

(ds)e, |op (M1, m2) = > (6n, [0, ) (M, m2)(n1, n2))

(m1,m2)(n1,n2)EE X Es.

— Z max{dnr, (m1),dnr, (m2), dar, (n2)}

mi=ni,manzgEo

+ Z max{dns, (m1),0nr, (1), Oar, (Ma2) }

ma=nz,min1¢E

4 Z max{das, (m1), dar, (n1), dar, (M2), 0ar, (n2)}

mini€E1and maona&FEo
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(dn)ay e, (M1, m2) = > (v, v, ) (M1, m2) (1, n2))

(m1,m2)(n1,n2)EE1 X Es.

- > min{nazs (M), naz, (M2), M (n2) }

mi=ni,man2€E>

+ Z min{naz, (m1), nar, (1), Nas, (M2)

ma=na,min1¢E1

+ > min{naz, (m1), mar, (n1), 1z, (M2), Mas, (n2) }

mini1¢€FE1and manaZFEs

(do)e, |6, (M1, m2) = > (Ony10N) (M1, m2) (n1, n2))

(m1,m2)(n1,n2)EE X Es.

= Z min{@ys, (m1), Ors, (m2), Oar, (n2) }

mi=ni,manaZE>

+ Z min{0ys, (m1),0ar, (n1), Orr, (M2)}

ma=nz,min1¢E

+ Z min{HMl (ml),HMl (n1)70M2(m2)70M2(n2)}

mini€FEiand monsZE>

Definition 2.31. Let G = (My, N1) and Gy = (Ma, Y3) be two BSVNGs. V(my,mg) € Vi x Vs

(tda)e, |, (M1, m2) = Z (an, lan,)((m1,ma)(n1,n2)) + (ar o) (my, ma)
(m1,m2)(n1,n2)EE1 X Es.

= Z min{apy, (m1), an, (me), an, (n2)}

mi=ni,man2¢Fo

+ Z min{on1 (m1),OéM1 (nl)a (€373 (m2)}

mo=nz,mini1 gL

+ > min{ans, (m1), anr, (n1), o (M), o (n2)
mini€E1and maong&E>

(tdg)ay |, (M1, m2) = > (B BN, ) ((ma, m2) (na,m2)) + (B, |Bar ) (ma, ma)

(m1,m2)(n1,n2)EE X Es.

= Z max{ B, (m1), Bar, (Mm2), B, (n2) }

mi=ni,managEo

+ Z max{ B, (m1), Bur, (n1), B (M2) }

mo=ng,mini¢E1

+ > max{Snr, (m1), Bar, (1), Bary (Ma2), Bar, (n2) }

mini€E1and maonga&FEo
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(tdy)ay|c, (M1, m2) = > (v, [y ) (M, me) (n1, n2)) + (van [, ) (M, o)

(ml,mg)(n1,n2)€E1 X Fa.

— 3 max{yar, (m1), Yar, (Ma), yar (n2) }

mi1=n1,man2&€E>

4 Z max{ya, (m1), yan (n1), Yar, (ma2) }

mo=ng,mini1 ¢E

+ Z max{yar, (m1), var (1), Y (M2), yar, (n2) }

miniZE1and mana@Es

(td5)cl|c2(m1,m2) = Z (5N1|5N2)((m1?m2)(n1’n2)) + (5M1|5M2)(m1’m2)

(m1,m2)(n1,n2)EE1 X Ea.

= Z max{dns, (m1), 0nr, (M2), dnr, (n2) }

mi1=ni,manz €E2

+ Z max{dar, (m1),0ar, (n1), Oar, (M2) }

mo=ng,min1¢F

+ Z max{dnr, (m1),0nr, (n1), Oar, (M2), Inr, (n2) }

mini€Ei1and managEs

(tdy)es 6y (M1, m2) = > (N, Inn, ) ((ma, ma) (na, n2)) + (M s, ) (M, m2)

(m1,m2)(n1,n2)EE1 X Ea.

= Z min{naz, (m1), nar, (ma), nar, (n2)}

m1=n1,mana¢E>

+ Z min{nas, (m1), nar (n1), Nar, (Mm2) }

ma=ng,min1¢E

+ > min{nar, (m1), mar, (1), nar, (m2), nary (n2) }

mini€Eiand mana&ZFEo

(tdo)e, o, (1, M) = 3 (0N, 10N, ) (M1, m2)(n1,m2)) + (Oar, [Oar,) (M1, m2)

(m1,m2)(n1,n2)EE1 X Fs.

= Z min{9M1 (ml),9M2 <MQ),9M2(TL2)}

mi=ni,man2¢Eo>

+ Z min{0ys, (m1), 0, (n1), Orr, (M2)}

mo=ng,mini1¢E1

+ Z min{ﬁMl (ml),HMl (n1)79M2 (mg),0M2(n2)}

mini1€E1and mona@Eo

Example 2.32. Let Gy = (M1, N1) and G = (Ms, N2) be two BSVNGs as in Example 2723.
Their rejection is also shown in Figure 13. We will find the vertex degree in rejection. Consider
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the vertex (d,a) here:

(dy)e, fe, (e; a) = max{yas (€), Yar, (), Yar, (d) } + max{yas, (a), Yar, (), Yar, (¢) }
— max{0.2,0.2,0.3} + max{0.2,0.2,0.3}
=03+0.3
=0.6

(de)G1|G2 (€> a) = min{9M2 (6)7 9M1 (CL), 9M1 (d)} + min{eMz (a)7 9M1 (a)> 9M1 (C)}
= min{—0.3, —0.4, —0.6} + min{—0.3, —0.4, —0.2}
=-0.6-04

=-1.0

(da)G1|G2(e, a) = 0.6, (dﬁ)cl\cg(ea a)=0.8

(dé)G1|G2 (eaa) = —0.5, (dn)G1|G2 (eva) =-0.5

In a similar way, we can find degree of all vertices of a graph in rejection. Now we will find

out the total vertex degree of graph in rejection. Consider the same vertex (d,a) here:

(tdy)ay|e, (€, @) = max{yas, (€), Vs, (@), Yar, (d) } + max{yas, (@), yar, (@), yar (€) } + min{yaz, (€), var (a) }
— max{0.2,0.2,0.3} + max{0.2,0.2,0.3} + min{0.2,0.2}
=03+03+0.2
=0.8

(tdy)e,|c, (€, a) = min{Oas, (€), Orr, (a), Onr, ()} + min{Oas, (@), Oar, (), Oar, (¢) + min{Oas, (€), Orr, (a) }}
— min{—0.3, —0.4, 0.6} + min{—0.3, ~0.4, —0.2} + min{—0.3, —0.4}
=-06-04-04
=-14

(tdOé)quGz (6, CL) = 097 (tdﬂ)(}l'GQ (67 a) =1.1

(td‘;)G1|G2 (e;a) = =08, (tdﬁ)cl\Gz(eaa) =—-0.7

In a similar way we can find total vertex degree in rejection.
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3. Application of bipolar single valued neutrosophic graph (BSVNG)
3.1. Educational Designation participation

Let {Bilal, Asif, Shoaib, Ijaz } be the set of four applicants for designations {Head of
department(HOD),Director of Department(DOD),Assistant director of department(ADOD)}.
For this purpose p=4 (say) be number of applicants and d=3 be number of designations. Con-
sider bipolar single valued-neutrosophic diagraph which is shown in figure ?? representing the
competition between applicants for designation in organization. «(y) is the positive degree
of membership for every applicants denote the percentage of ability toward the purpose of
organization , S(y) and ~(y) are indeterminacy and false in percentage. J(y) is the is the
negative degree of membership for every applicants denote the percentage of non ability to-
ward the purpose of organization, n(y) and 6(y) are represents the indeterminacy and false
in percentage. «(y) of every directed edge between both designations and applicants denote
the eligibility or positive response from designation in organization , 5(y) and ~y(y) are inde-
terminacy and false in this percentage. 6(y) of every directed edge between both designations
and applicants denote the non-eligibility or negative response from designation in organization

, n(y) and O(y) are indeterminacy and false in this percentage. Edge membership degree of

TABLE 1
veyY N(y)
Bilal {(AD0D,0.5,0.3,0.4,—0.4,—0.5,—0.8),(HOD,0.6,0.4,0.2,—0.4,—0.6,—0.5) }

Asif | {(AD0D,0.8,0.6,0.5,—0.1,—0.4,—0.5),(HOD,0.5,0.6,0.6,—0.3,—0.4,—0.7),(DOD,0.4,0.6,0.4,—0.2,—0.3,—0.5) }
Shoaib {(DOD,0.5,0.4,0.5,—0.5,—0.4,—0.4)})

Ijaz {(HOD,0.7,0.5,0.6,—0.3,—0.5,—0.4),(DOD,0.7,0.4,0.5,—0.4,—0.3,—0.2)})

graph is also determined by the following
N(Bilal)N N(Asif) = {(ADOD,0.5,0.6,0.5,—0.1,—0.5,—0.8), (HOD, 0.5, 0.6, 0.6,
—0.3,-0.6,-0.7)}
N(Bilal) N N(Shoaib) = ¢
N(Bilal)" N(Ijaz) = {(HOD,0.6,0.5,0.6,—0.3,—0.6,—0.5)}
( N N(Shoaib) = {(DOD,0.4,0.6,0.5,—-0.2,—0.4,—0.5)}
( N N(Ijaz) = {(HOD,0.5,0.6,0.6,—0.3,—-0.5,—0.7), (DOD,0.4,0.6,0.5, —0.2,
—0.3,-0.5)}
N(Shoaib) " N(Ijaz) = {(DOD,0.5,0.4,0.5,—0.4,—0.4,—0.4)}
There is no edge between Shoaib and Bilal because there is no common designation.
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FiGurE 14. Bipolar single valued neutrosophic digraph

(Bilal, Asif) = (0.4,0.7,0.8, 0.2, —0.7, —0.8)(0.5, 0.6,0.5,0.3,0.6,0.7)
— (0.20,0.42, 0.40, —0.06, —0.42, —0.56)
(Bilal, Shoaib) = ¢
(Bilal, Ijaz) = (0.4,0.6,0.8, —0.1, —0.7, —0.8)(0.6,0.5,0.6,0.3,0.6,0.5)
0.24,0.30,0.48, —0.03, —0.42, —0.40)
(Asif, Shoaib) = (0.3,0.7,0.8, —0.2, —0.8, —0.8)(0.4,0.6,0.5,0.2, 0.4, 0.5)

0.12,0.42,0.40, —0.04, —0.32, —0.40)

0.25,0.42, 0.40, —0.03, —0.18, —0.40)

(Shoaib, Ijaz)

=
=
= (
= (
(Asif, Ijaz) = (0.5,0.7,0.8, —0.1,~0.6, —0.8)(0.5,0.6,0.5,0.3,0.3,0.5)
= (
=(0.3,0.6,0.8, —0.1, 0.8, —0.5)(0.5,0.4,0.5,0.4, 0.4, 0.4)
= (

0.15,0.24,0.40, —0.04, —0.32, —0.20)

Bipolar single-valued neurotrophic graph for competition of all participant is shown in fig-
ure [@. Competition between two individually applicants and when applicant competing for
designation is also given in graph [3.
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FiGure 15. Bipolar single valued neutrosophic competition graph

2040.24 0.2040.24 0.42 +0. 40 +0.48 —0.06 — 0.0
R(Bilal,HOD):(O 0; , -QH) 70 ;03070 0—; , 0062 0.03

—0.42 — 0.42 —0.56 — 0.40
, 5 : 5 ) = (0.22,0.36, 0.44, —0.045, —0.42, —0.48)

Similarly we will find others R(applicant,Designation).

S(Bilal, HOD) = 1+ 0.22 — 0.045 — (0.36 + 0.44 — 0.42 — 0.48) = 1.275

S(Asif, HOD) = 1+ 0.225 — 0.045 — (0.42 + 0.40 — 0.30 — 0.48) = 1.14

S(Ijaz, HOD) = 1+ 0.245 — 0.03 — (0.36 -+ 0.44 — 0.225 — 0.29) = 0.93
S(Bilal, ADOD) =1+ 0.20 — 0.06 — (0.42 + 0.40 — 0.42 — 0.56) = 1.30

S(Asif, ADOD) =1+ 0.20 — 0.06 — (0.42 + 0.40 — 0.42 — 0.56) = 1.30
S(Asif, DOD) =1+ 0.185 — 0.035 — (0.42 + 0.40 — 0.25 — 0.40) = 0.98

S(Shoaib, DOD) = 1+ 0.135 — 0.04 — (0.33 + 0.40 — 0.32 — 0.30) = 0.985
S(Ijaz, DOD) =1+ 0.20 — 0.035 — (0.33 + 0.40 — 0.25 — 0.30) = 0.985

Black solid lines show comparison between two applicants and dot line means applicant com-
pete for designation. From above table, applicants compete other if it has a more strength.
For example, in HOD designation Bilal has more strength from all. Its eligibility is strong
than other. In ADOD designation Asif and Bilal are in equal position. In DOD designation
Shoaib and Ijaz compete the others but equally compete to each other. [H]In this algorithm
these are the steps

Step 1: Start. Step 2: Input a(y), 5(y) and v(y) membership values for set p applicants.
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TABLE 2
(Applicant,designation) | in competition R (applicant,Designation) S(applicant,Designation)
(Bilal, HOD) Asif, Tjaz (0.22,0.36,0.44,-0.045,-0.42,-0.48) 1.275
(Asif, HOD) BilalTjaz  (0.225,0.42,0.40,-0.045,-0.30,-0.48) 1.14
(Tjaz,HOD) Bilal, Asif  (0.245,0.36,0.44,-0.03,-0.225,-0.29) 0.93
(Bilal, ADOD) Asif (0.20,0.42,0.40,-0.06,-0.42,-0.56) 1.30
(Asif, ADOD) Bilal (0.20,0.42,0.40,-0.06,-0.42,-0.56) 1.30
(Asif,DOD) Shoaib,ljaz (0.185,0.42,0.40,-0.035,-0.25,-0.40) 0.98
(Shoaib,DOD) Asif ljaz (0.135,0.33,0.40,-0.04,-0.32,-0.30) 0.985
(Tjaz,DOD) Asif,Shoaib  (0.20,0.33,0.40,-0.035,-0.25,-0.30) 0.985

Step3: For any two vertices z; and zj taking o(x;x;), B(x;x;) and vy(x;x;) are positive but
O(xixy), n(zixs) and O(zixj) are negative. Then
(@i, al@izj), B(wizy), v(wizj), 0(ziz;), m(wizy), O(zix;))

Step4: To obtain bipolar single valued neutrosohic out-neighbourhoods N (x;) Repeat step 3

for all vertices x; and z;.

Step5: Find out N(z;) N N(z;). Step6: Calculate height h(N(x;) NN (x;)). Step7: Draw
all edge where N(z;) N N(z;) is non empty. Step8: Give a membership value to every edge
x;xj by using the following conditions
a(zir; = (min{x; Na;}) [N (2 N N(xj)], Blrix; = (max{x; Na;})[N(x; NN (x;)]

Y(wizy = (max{z; N a;})[N(z: O N(x;)], 0(ziz; = (max{z; N x;})[N(z; NN ()]

n(@ix; = (minfa; N x; N (2 O N(z;)], 0(ziz; = (minfw; N }) [N (2 0N ()]

Step9: If x, 21, 22, 23, ..., p are applicants for designations d, then strength of applicants com-
petition is R(x,d)=(a(z,d), f(z,d),y(z,d),d(x,d),n(z,d),0(x,d)) of every applicants x and

designation d is given by the following
R(x d):(a(wz1)+---a(ﬂc2p) Blzz1)+...B(zzp) v(z21)+..v(2zp) d(zz1)+...0(z2p) nlzz)+..m(22p) 9($Z1)+---9(mp))
’ P ’ P ’ P ’ p ’ P ’ P

Step10:Find out S(z,d) = 1+a(z,d)+0(z,d)— (B(x,d)+~(x,d)+n(z,d)+6(z,d)). Stepll:
End

4. Conclusion

There are more advantages of a bipolar fuzzy set than fuzzy set in real life phenomenon. A
BSVNG has many applications in the field of economics, medical science as well as in scientific
engineering. The flexibility and compatibility of BSVNG are higher than SVNG. We presented
the new properties on a bipolar single-valued neutrosophic graph known as Residue product,
maximal product, Symmetric difference and Rejection of a graph. These all graph products
are suggestive of some aspects of network design. They can be applicable for the configuration
processing of space structures. The repeated application of these operations in constructing
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a network generates graphs that display fractal properties. We also discussed the idea with
examples to find the degree and total degree of vertices of some graphs. We have established
some related theorems of these graphs. We have also proved the theorems which are related to
these properties. In the future, our goal is to extend this work on the (1) complex neutrosophic

graphs and some (2) bipolar complex neutrosophic graph.
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Abstract. In this paper, a neutrosophic optimization model has been first constructed
for the neutrosophic geometric programming subject to (max-product) neutrosophic relation
constraints. For finding the maximum solution, two new operations (i.e. &, ) between a;; and
b; have been defined, which have a key role in the structure of the maximum solution. Also,
two new theorems and some propositions are introduced that discussed the cases of the
incompatibility in the relational equations Aox = b, with some properties of the operation 0.

Numerical examples have been solved to illustrate new concepts.

Keyword: Neutrosophic Geometric Programming (NGP); (max-product) Operator;
Neutrosophic Relation Constraints; Maximum Solution; Incompatible Problem; Pre-Maximum

Solution; Relational Neutrosophic Geometric Programming (RNGP).

1. Introduction

The first scientist who put forward the fuzzy relational equations was Elie Sanchez, a
famous fuzzy biology mathematician in 1976 [2], while the theoretical concept of the
neutrosophic logic has been put by the popular polymath Florentin Smarandache at 1995 [11].
B. Y. Cao constructed the mathematical models of fuzzy relation geometric programming
(FRGP) at 2005 [1], his works include the structuring of the maximum and minimum solution
of the (FRGP) depending upon the original model for the maximum solution and the minimum
solution for the fuzzy relation equations that was put by Elie Sanchez. At 2015, Huda E. Khalid
introduced an original structure of the maximum solution for the fuzzy neutrosophic relation
geometric programming (FNRGP) [6], Also at 2016, she put a novel algorithm for finding the
minimum solution for the same (FNRGP) problems [7]. As of 2016 so far Huda E. Khalid et al
[3-10] introducing a big qualitative shift in the concept of neutrosophic geometric
programming (NGP) by establishing new concepts for the notion of (over, off, under) in the
same (NGP), as well as she introduced and for the first time, a new type of the neutrosophic
geometric programming using (over, off, under) neutrosophic less than or equal which
contained a new version of the convex condition, furthermore, new decomposition theorems
of neutrosophic sets were presented, and new representations for the neutrosophic sets using
(o, B, )-cuts, with strong (o, B, y)-cuts had been defined.

In this article, section 2 contains the preliminaries which are necessary for the sake of
this paper, while in section 3, a max- product neutrosophic relation geometric programming

model has been proposed with an innovative investigation of the maximum solution for this
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model and two new theorems with some propositions, section 4 presents numerical examples

to illustrate the proposed method. The final section was dedicated to the conclusion.
2. Basic Concepts

Without loss of generality, the elements of b must be rearranged in decreasing or increasing

order and the elements of the matrix A are correspondingly rearranged.

2.1 Definition [7]

In this definition, the author proposed the following axioms:
a- decreasing partial order
1-The greatest element in [0,1) Ul is equal to I, max(l,x) =1 vV x€[0,1)

2- The fuzzy values in a decreasing order will be rearranged as follows: 1 > x; > x, > x5 >

e >x, =0
3- One is the greatest element in [0,1] U, max(l,1) =1
b- Increasing partial order
1- the smallest element in (0,1] UlisI, min(l,x) =1 vV x € (0,1]

2- The fuzzy values in increasing order will be rearranged as follows: 0 < x; <X, < X3 <

< xp <1
3- Zero is the smallest element in [0,1] U I, min(,0) =0

2.2 Definition [7]

If there exists a solution to Aox = b it's called compatible. Suppose X(4, b) = {(xy, X3, ..., x,)T €
[0,1]"ul, I"=1,n>0 |on =b,x; €[0,1] U I} is a solution set of Aox = b we define x! <

x* & xf <xf (1<j<n),Vx'x?*€X(Ab). Where " <" is a partial order relation on X(A, b).

2.3 Corollary [1]

If X(A,b) # 8. ThenX € X(4,b).

Similar to fuzzy relation equations, the above corollary works on neutrosophic relation

equations.
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2.4 Basic Notes [3, 10]

1. A component I to the zero power is undefined value, (i.e. I ° is undefined), since. I ° =
PED =ty 7t = ;, which is an impossible case (avoid to divide by I).

2. The value of I to the negative power is undefined (i.e. I™™, n > 0 is undefined).
3. The Innovative Structure of the Maximum Solution.

We call

min f(x) = (c;. x7*) V (co. x22) v ..V (. x2T)
s.t. Aox = b 1)
x; €[01]Ul, 1<j<n

A (V,.) (max- product) neutrosophic geometric programming, where 4 = (a;;), 1 <
i<m,1<j<mn, is (mxn) dimensional neutrosophic matrix, x = (xy,%;, ..,%,)" an n-
dimensional variable vector, b = (by, by, ..., by;,)T (b; € [0,1] U I) an m- dimensional constant
vector, ¢ = (¢1,¢,...,¢,)" (¢; 2 0) an n- dimensional constant vector, y; is an arbitrary real

number, and the composition operator 0" is (V,.) , i.e. Vi-;(a;;.x;) = b;.

Note that the program (1) is undefined and has no minimal solution in the case of y; < 0 with
some x;'s taking indeterminacy value. Therefore, if y; < 0 with indeterminacy value in some
x;'s, then the greatest solution X; is an optimal solution for problem (1), the author introduced

theorem 3.4 to treat this issue.

3.1 The Shape of the Maximum Solution £.

Since 1976, the biological mathematician Elie Sanchez put the formula of the maximum
solution in both composite fuzzy relation equations of type (V, A) operator and (V,.) operator
[2], these definitions won’t be adequate with neutrosophic relation equations especially
neutrosophic geometric programming type, therefore and for the importance of relational
neutrosophic geometric programming (RNGP) in real-world problems, the author established
a new structure for the maximum solution of (RNGP) with the (V, A)operator in ref. [6], while

this article was dedicated to set up the maximum solution of (RNGP) with the (V,.) operator.

Every mathematician who works with neutrosophic theory know that the generality

which characterizes the neutrosophic theory are determined in many ways of which,
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max(l/,x) = min(l,x) =1 Vx € (0,1)

This property gives some vague and difficulty for determining the maximum solution of the

relation equations Aox = b, the author still searches about the answer of the following question.
How will be the shape of the greatest solution £ ?

Actually, any single solution (the same solution that suggested by Elie Sanchez 1976) would
not be accepted and won’t be appropriate for the program (1), unless there are two integrated

pre-maximum solutions gathered to get the final shape of %, as follow:

1. The first integrated pre-maximum solution named £,; which supports the fuzzy part
of the problem, this solution has an adjoint matrix named A4, this adjoint matrix is
derived from the matrix A.

2. The second integrated pre-maximum solution named £,, which supports the
neutrosophic part of the problem, this solution has an adjoint matrix named A4,,, which
is derived from the matrix 4 too.

The following definition describes the mathematical formula of £,; and %,.

3.2 Definition

%' if ajj >b;, a;j €[0,1], b; €[0,1]
ij
aij M b =41, if a;j<b;, a;€[01], b; €[0,1] 2
1, lf al-j € [0,1], bi = nI,n (S (0,1]
:—.I_, lf al-j >n, Clije [0,1],bi=nl,n€(0,1]
ij
ob 1, if ajj<n, a;; €[01],b; =nl,n € (0,1]
PP Z A not comp.  if a;j=ml,me (0,1],b; € [0,1]UI ®)
1 if a;j, bij € [0,1]
Where  is an operator defined at [0,1], while the operator 0 is defined at [0,1] U I.
Let & = AZ(a;; @ b), (1<j<n), 4)
be the components of the pre-maximum solution X,1, (i.e. X,y = (X1, X2, ..., X))
Let % = AZ,(a;;0b), (1<j<n), ®)
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be the components of the pre maximum solution x,,;, (i.e. X,; = (X1, X3, ..., Xp))-
Now the following question will be raised,
Which one X,,; or X,,, should be the exact maximum solution?

Neither X,,; nor %, will be the exact solution! the exact solution is the integration between

them. Before solving AoX = b, we first define the matrices 4,1, 4,,.

Let A,; be a matrix has the same dimension and the same rows elements of A except for those
rows of the indexes i = i, corresponding to those indexes of b; = nl, those special rows of

A,; will be zeros.

Let A,, be a matrix has the same dimension and the same rows elements of A except for those
rows of the indexes i = i, corresponding to those indexes of b;, € [0,1], those special rows of

A,, will be zeros.

Consequently,

Aox = b = (A,10%,1) + (A,,0%,5) (6)
The formula (6) is the greatest solution in X (4, b).

The maximum value of the objective function f(%) = f(%,1) V f(Z,2)-

3.3 Theorem

If a;; = mI, m € (0,1], b; € [0,1] U I then Aox = b, is not compatible.

Proof

Let a;; = ml,b; € [0,1] U I, the essential question in this case is

What is the value of x; € [0,1] U I satisfying

Vicjsn(@ij.x;) = by ? )

It is well known that the equation (7) can be written as an upper-bound constraint and a lower-

bound constraint, that is,
Vicjen(aij. x;) < b; 8)

Visjsn(@ij-x;) = by 9)
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First,
The inequality (8) can be written in n constraints:

. b; .
a;j.x < b; , ie. ija—U A1<j<n.

b; . el L3
Hence x; <A (a—‘), where the notation ” A" denotes the minimum operator.
t

So, we have x; € [0, A (;—l)] U I, but a;; = ml, this is a contradict for the fact that the variables
ij
of the system Aox = b are being in the interval [0,1] U I.

Second,

The inequality (9) can be written in n constraints:
, b; .
(aij.xj) =b;, e x Za—ij A<j<n.

b; . a2 .
Hence, x; =v (—‘), where the notation “’ V’* denotes the maximum operator.

ij

Thus, we have x; € [V (%),1] U1, but a;; = ml, in this proof we faced the division on the
i

indeterminate component (I) which is prohibited behavior. Consequently the variable x; will

either belong to the interval [0,A (b;/I)] U I or belong to the interval[V (b;/I),1] U I, this implies

that the system of the relation equation Aox = b will be not compatible.

Therefore, the system of the relative equations Aox = b is incompatible at a;; = mI,m € (0,1].

So, the restriction of Aox = b for being compatible is that all elements of the matrix A (i. e. a;;)

are belonging to the interval [0,1]. O
3.4 Theorem
If y; <0 (1 <j < n), then the greatest solution to the problem (1) is an optimal solution.

Proof

Yj

) o
x,‘ = 'ij?/j ' < 0 for each x; € [0,1] U I, this

a(
Sincey; < 0 (1 <j <n),withx; € [0,1] U [, then ;

dx]

means that x]-yl is monotone decreasing function of x;. It is clear that CjX; ’ is also a monotone

decreasing function about  x;. Therefore, Vx € X(4,b), when x <ZX, then c]-.x]]./j =

Cj. 3?;/" (1 £j £ n), such that f(x) = f(X), so X is an optimal solution to the problem (1).
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It remains to study the case that if y; < 0 with the component %; in %,,, equal to I, we know that

I" is undefined for n < 0, in this case, the component x; = I that has a power y; < 0 will be

replaced by that corresponding x; in the X,,;. -
3.5 Proposition
Leta€ (0,1),b=ml&c=nl,nme (0,1], if m=n,thena®b =a0Bec.
Proof
1) Leta>m = a>n,
Butwehavem=n=b>c= 522 = a®b=a0lec.
2) Leta<m=a0®b=1sincem=2n=a0c<1
Hence, a®c<a0®b.
3.6 Corollary
Leta€ (0,1),b=ml, c=nl,mmne (0,1],if m=nthena® (bVc) =2a0O¢
Proof
Since m =2n = b = ¢ = bVc = b, from proposition 2.5, we have
a®b>a0c¢ (replacing bVc instead of b) = a 0 (bVc) = a0c.
3.7 Proposition
Leta € (0,1),b = mI,m € (0,1], then a.(a © b) = a/\b.
Proof
1) Leta>m= %I = Z = a 0 b [multiply both sides by a] =
b=a.(a®b) (10)
2) Let a<m=>a0b=1[multiply both sides by a] =
a=a.(a®b) (11)

From (10) & (11) we have a.(a © b) = a/\b.
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3.8 Proposition

b a>am
1 a<am’

Leta € (0,1),b = ml,m € (0,1], then a.(a © b) = {
Proof

1) Let a > am, from definition (3.2) we have a ® (a.m) = a';nl =ml =b.

2) Leta < am, again from definition (3.2) we have a © (a.b) = 1.

b a>am

Hence, a0® (a.b) = {1 0 < am

4 Numerical examples

In the upcoming examples, the (max- product) neutrosophic geometric problem is considered.

4.1 Example

1 1
Let min f(x) = (0.3.x) vV (1.8 .x3) v (I . x%)
s.t. Aox=>»b
xi €[01JUI (1<j<n)

11 .6 1 2
Where b=(1,§I,EI)T, A=(.5 2 .1>

Using the formula (2), we can find the components of £,,; as follows

3
X = /\(au X b;) =(aj; @ by) A(az; ™ by) A(azy X b3)

i=1

1
= (0.6 x 1)/\(0.5»4 §I)/\(O.3N 02)=1A1A1=1

3
X, = /\(aiz X b;) =(a;; @ by) A(az; ™ by) A(azy X b3)

=1

1
= (1 1)/\(0.2m §1)A(0.5m 02D =1A1A1=1
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3
X3 = /\(ai3 ™ b;) =(asz ™ by) A(azz X by) A(azz X bs)

i=1

1
= (0.2 1)/\(0.1»4 §1)/\(0.1»4 02)=1A1A1=1

- 2171 = (fll 22"553)7‘ = (1:151)7'

Using the formula (3), we can find the components of %,,, as follows

3
%= [\(@10 b) = (@110 b)) A (@210 b,) A (23,0 by)

i=1

—(06@1)/\(05@11)/\(03@021)—1/\1/31/\0'21—21
B ] e 205 703 3

3
X, = /\(ai2® b;) = (a;20 by) A (a0 by) A (az,0 bs)

i=1

1 2 2
:(1@1)/\(0.2@51)/\(0.590.21):1/\1/\§1=§1

3
%= [\ (@30b) = (@130 b)) A (@230 by) A (@330 by)

i=1

1
=(0.2@)1)A<0.1@§I)/\(0.1®0.21)=1/\1/\1=1

0 0 0

6 1 .2\ 11 /0 o o\ |3]
Aoa?=(Avloa?,,1)+(szoa?,,2)=(0 0 0)01 +(.5 .2 .1)02
o o o/ L1l \3 5 .1/ |5f
1

1

1

=13|=b
1
=1

Since AoX = b, then there is a solution in X (4, b) and X is the greatest solution

to Aox = b. The value of f (%) is calculated as follow,
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f@R)=fRv) V f(Zr2)
F(®) =(0.3.(1)?) v (1.81 . (1)?) v (1 . (1)%)) v ((0.3. (21)2) v <1.81 . (§1)5> v
(1. (1)5)) = ((0.3) v (1.81) v (1)) V{(0.1331) v (1.331) v (1)) = 1.8]

Do not forget that the indeterminate component / to the power n wheren > 0

isequalto] (i.e. I =1 forn > 0).

4.2 Example

01 1 04 1
LetA=(1 09 0 |,b=103I)
0.5 021 0.7 0.6

It easy to see that some components of the matrix A are of the form
a;j =ml,m € (0,1], while b; € [0,1] U ], in this case, and by theorem (3.2), the

system of the relation equation Aox = b is incompatible.

4.3 Example

1

2 1
Let min f(x) = (0.21.x,*) vV (1.3.x3) v (I .x3) v (0.35.x3 %)
s.t. Aox=b
x; € [0,1]JUI (1<j<n)

2 .3 .4 .6

_ T 1.3 .2 .9 .8

Where b =(0.3,0.71,0.5,0.21)" , A= 1 0 11
0 .5 1 0744

Using the formula (2), the components of %,,; are
4

2, = /\(ai1 % b;) = 0.5
i=1
4

X, = /\(aiz X b)) =1

i=1
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4

3

X3 = /\(ai3 X b;) :Z
i=1
4

1
Xy = /\(ai4 X b;) :E

i=1

3 T
<. fvl = (£1,£2,£3,5C\4)T = (05,1,1,05)

Using the formula (3), the components of %,,, are

4

X = /\(au@ b)) =1

i=1

4
2
X, = /\(aizg b;) =§1
i=1

4
.7?3 = /\(ai3®bi) = 0.2]
i=1

4
5('\4 = /\(ai4 G)bl) = 08751
i=1

2 T
L Byy = (B, Ry, R, 2)T = (gz, 1,021, 0.8751)
.2 .3 .4 .6 0O 0 o0 O
. {0 O 0 O 1.3 .2 .9 .8
In this example, 4,; = 1 0 1 1 , Ayp = o 0 0 0l
0 O 0 0 0O .5 1 0
Aox = (Avlofvl) + (szofvz)
2 .3 .4 .6 Ois 0 O 0 0 %I
{0 0 0 O .3 .2 .9 .8
‘10.11"Z+000000121
0O 0 0 O 0.5 0 .5 1 0 0.875]
r 0.3
_10.711 _
=los|=P
L0.21
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Since AoX = b, then there is a solution in X (4, b) and X is the greatest solution

to Aox = b. The value of f(X) is calculated as follow,

f@R)=fEv) Vf(Rv2)
F(2) = ((0.21 . (%)‘3) v (1.3. (1)5) v (1 . (%)5> V (0.35.(0.5)72)) v

((0.21 . (1)‘3) v (1.3. (0.41)§) v (1 . (0.21)3) v (0.35.(0.5)72)) = {(0.571 ) v
(1.3) v (0.871) Vv (0.51 )} v {(0.21) v (0.961) V (0.451) v (0.51)) = 1.3

5 Conclusion

It is important to know that the fuzzy geometric programming problems (FGPP) have
wide applications in the business management, communication system, civil engineering,
mechanical engineering, structural design and optimization, chemical engineering, optimal
control, decision making, and electrical engineering, unfortunately, the fuzzy logic lacks to
cover the indeterminate solution of any real-world problems, this pushed the author to
construct a new branch of the neutrosophic geometric programming (NGP) problems subject
to neutrosophic relation equations (NRE) and made a series of articles in an attempt to cover
the theoretical sides of (NGP) problems. This paper contains a new (NGP) model subject to
(NRE) with setting up a definition for the maximum solution of this program as well as some
new theorems dealt with the consistency of the problem and some propositions of the new
operation ©. The future prospects are to make a deep study for the above-mentioned
applications from the point of view of relational neutrosophic geometric programming (RNGP)

problems.
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Abstract: A neutrosophic set is a part of neutrosophy that studies the origin, nature and scope of neu-
tralities as well as their interactions with different ideational spectra. In this present paper first we have
introduced the concept of a neutrosophic soft set having incomplete data with suitable examples. Then
we have tried to explain the consistent and inconsistent association between the parameters. We have
introduced few new definitions, namely- consistent association number between the parameters, con-
sistent association degree, inconsistent association number between the parameters and inconsistent as-
sociation degree to measure these associations. Lastly we have presented a data filling algorithm. An il-
lustrative example is employed to show the feasibility and validity of our algorithm in practical situa-
tion.

Keywords: Soft set, neutrosophic set, neutrosophic soft set, data filling.

1. Introduction

In 1999, Molodstov [01] initiated the concept of soft set theory as a new mathematical tool for mod-
elling uncertainty, vague concepts and not clearly defined objects. Although various traditional tools,
including but not limited to rough set theory [02], fuzzy set theory [03], intuitionistic fuzzy set theory
[04] etc. have been used by many researchers to extract useful information hidden in the uncertain da-
ta, but there are immanent complications connected with each of these theories. Additionally, all these
approaches lack in parameterizations of the tools and hence they couldn’t be applied effectively in real
life problems, especially in areas like environmental, economic and social problems. Soft set theory is
standing uniquely in the sense that it is free from the above mentioned impediments and obliges ap-
proximate illustration of an object from the beginning, which makes this theory a natural mathemati-
cal formalism for approximate reasoning.

The Theory of soft set has excellent potential for application in various directions some of which are
reported by Molodtsov in his pioneer work. Later on Maji et al. [05] introduced some new annotations
on soft sets such as subset, complement, union and intersection of soft sets and discussed in detail its
applications in decision making problems. Ali et al. [06] defined some new operations on soft sets and
shown that De Morgan's laws holds in soft set theory with respect to these newly defined operations.
Atkas and Cagman [07] compared soft sets with fuzzy sets and rough sets to show that every fuzzy set
and every rough set may be considered as a soft set. Jun [08] connected soft sets to the theory of
BCK/BCl-algebra and introduced the concept of soft BCK/BCI-algebras. Feng et al. [09] characterized
soft semi rings and a few related notions to establish a relation between soft sets and semi rings. In
2001, Maiji et al. [10] defined the concept of fuzzy soft set by combining of fuzzy sets and soft sets . Roy
and Maji [11] proposed a fuzzy soft set based decision making method. Xiao et al. [12] presented a
combined forecasting method based on fuzzy soft set. Feng et al. [13] discussed the validity of the
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Roy-Maji method and presented an adjustable decision-making method based on fuzzy soft set. Yang
et al. [14] initiated the idea of interval valued fuzzy soft set (IVFS-set) and analyzed a decision mak-
ing method using the IVFS-sets. The notion of intuitionistic fuzzy set (IFS) was initiated by Atanassov
as a significant generalization of fuzzy set. Intuitionistic fuzzy sets are very useful in situations when
description of a problem by a linguistic variable, given in terms of a membership function only, seems
too complicated. Recently intuitionistic fuzzy sets have been applied to many fields such as logic pro-
gramming, medical diagnosis, decision making problems etc. Smarandache [15] introduced the con-
cept of neutrosophic set which is a mathematical tool for handling problems involving imprecise, in-
determinacy and inconsistent data. Thao and Smaran [16] proposed the concept of divergence meas-
ure on neutrosophic sets with an application to medical problem. Song et al. [17] applied neutrosophic
sets to ideals in BCK/BCI algebras. Some recent applications of neutrosophic sets can be found in [18],
[19], [20], [21], [22], [23] and [24]. Maji [25] introduced the concept of neutrosophic soft set and estab-
lished some operations on these sets. Mukherjee et al [26] introduced the concept of interval valued
neutrosophic soft sets and studied their basic properties. In 2013, Broumi and Smarandache [27, 28]
combined the intuitionistic neutrosophic and soft set which lead to a new mathematical model called
“intuitionistic neutrosophic soft set”. They studied the notions of intuitionistic neutrosophic soft set
union, intuitionistic neutrosophic soft set intersection, complement of intuitionistic neutrosophic soft
set and several other properties of intuitionistic neutrosophic soft set along with examples and proofs
of certain results. Also, in [29] S. Broumi presented the concept of “generalized neutrosophic soft set”
by combining the generalized neutrosophic sets and soft set models, studied some properties on it,
and presented an application of generalized neutrosophic soft set in decision making problem. Recent-
ly, Deli [30] introduced the concept of interval valued neutrosophic soft set as a combination of inter-
val neutrosophic set and soft set. In 2014, S. Broumi et al. [31] initiated the concept of relations on in-
terval valued neutrosophic soft sets.

The soft sets mentioned above are based on complete information. However, incomplete infor-
mation widely exists in various real life problems. Soft sets under incomplete information become in-
complete soft sets. H. Qin et al [32] studied the data filling approach of incomplete soft sets. Y. Zou et
al [33] investigated data analysis approaches of soft sets under incomplete information. In this paper
first we have introduced the concept of a neutrosophic soft set with incomplete data supported by ex-
amples. Then we have introduced few new definitions to measure the consistent and inconsistent as-
sociation between the parameters. Lastly we have presented a data filling algorithm supported by an
illustrative example to show the feasibility and validity of our algorithm.

2. Preliminaries:
2.1 Definition: [03] Let U be a non empty set. Then a fuzzy set T on U is a set having the form
T:{(X, ur(x)):x eU} where the function p_:U —[0, 1] is called the membership function and

n, (X) represents the degree of membership of each element x € U.
2.2 Definition: [04] Let U be a non empty set. Then an intuitionistic fuzzy set (IFS for short) T is an
object having the form T= {<X, ur(x), ’YT(X)>Z X € U} where the functions
p,:U—[0,1] and y:U—>[0,1] are called membership function and non-membership function
respectively.

L, (X) and W{T(X) represent the degree of membership and the degree of non-membership

respectively of each element xe U and 0<p_(x)+7,(x)<1 for each x € U.We denote the class of

all intuitionistic fuzzy sets on U by IFSU.

A. Saha, S. Broumi and F. Smarandache; Neutrosophic soft sets applied on incomplete data



Neutrosophic Sets and Systems, Vol. 32, 2020 284

2.3 Definition: [01] Let U be a universe set and E be a set of parameters. Let P(U) denotes the
power set of U and AcE. Then the pair (F, A) is called a soft set over U, where F is a mapping
givenby F: A — P(U).

In other words, the soft set is not a kind of set, but a parameterized family of subsets of U. For

ecA, F (e) < U may be considered as the set of e-approximate elements of the soft set (F, A) .

2.4 Definition: [10] Let U be a universe set, E be a set of parameters and A c E. Then the pair
(F, A) is called a fuzzy soft set over U, where F is a mapping given by F: A — FS".

2.5 Definition: [34] Let U be a universe set, E be a set of parameters and A < E. Then the pair
(F, A) is called an intuitionistic fuzzy soft set over U, where F is a mapping given by F: A — IFSY.
ForeeA, F (e) is an intuitionistic fuzzy subset of U and is called the intuitionistic fuzzy value
set of the parameter ‘e’.
Let us denote p F(e) (x) by the membership degree that object “x” holds parameter ‘e’ and y (o) (X)
by the membership degree that object ‘x’ doesn’t hold parameter ‘e’ , where ecA and xe U. Then
F (e) can be written as an intuitionistic fuzzy set such that F(e)={(x, T (x), Ve (x)): X e U} .

2.6 Definition: [15] A neutrosophic set 4 on the universe of discourse U is defined as
A={{x,pt,(x),7,(x).8,(x)):xeU}, where 1,,7,,6,:U—] 0,1'[ are functions such that the
condition: Vx e U, 0< u, (x)+y,(x)+35,(x)<3" is satisfied.

Here u, (x) NG (x) ,0, (x) represent the truth-membership, indeterminacy-membership and

falsity-membership respectively of the element x e U .
Smarandache [15] applied neutrosophic sets in many directions after giving examples of
neutrosophic sets. Then he introduced the neutrosophic set operations namely-complement, union,

intersection, difference, Cartesian product etc.

2.7 Definition: [21] Let U be an initial universe, £ be a set of parameters and A — E. Let NP (U )
denotes the set of all neutrosophic sets of U . Then the pair ( f ,A) is termed to be the neutrosophic

soft set over U, where f isa mapping givenby f : 4 - NP (U ) .

2.8 Example: Let us consider a neutrosophic soft set ( f, A) which describes the “attractiveness of the
house”. Suppose U= {uj,u,,us,uy,us,ug } be the set of six houses under consideration and
E = {e (beautiful), e, (expensive), e; (cheap), e, (good location), e (wooden) }be the set of parameters. Then

a neutrosophic soft set ( 1, A) over U can be given by:

U g e e ey €5

U (0.8,0.5,0.2) (0.3,0.4,0.6) (0.1,0.6,0.4) (0.7,0.3,0.6) (0.3,0.4,0.6)
U, (0.4,0.1,0.7) (0.8,0.2,0.4) (0.4,0.1,0.7) (0.2,04,0.4) (0.1,0.1,0.3)
U (0.2,0.6,0.4) (0.5,0.5,0.5) (0.8,0.1,0.7) (0.5,0.3,0.5) (0.5,0.5,0.5)
Uy (0.3,0.4,0.4) (0.1,0.3,0.3) (0.3,0.4,0.4) (0.6,0.6,0.6) (0.1,0.1,0.5)

A. Saha, S. Broumi and F. Smarandache; Neutrosophic soft sets applied on incomplete data




Neutrosophic Sets and Systems, Vol. 32, 2020

285

Us

(0.1,0.1,0.7)

(0.2,0.6,0.7)

(0.4,0.2,0.1)

(0.8,0.6,0.1)

(0.6,0.7,0.7)

Ug

(0.5,0.3,0.9)

(0.3,0.6,0.6)

(0.1,0.5,0.5)

(0.3,0.6,0.5)

(0.4,0.4,0.4)

3. Neutrosophic soft sets with incomplete (missing) data:
Suppose that (f,E) is a neutrosophic soft set over U, such that $ x;1 Uand e i I E so that none

of m f(e_,-)(xi)’ g f(ej)(xi) and df( ej)(xi) is known. In this case, in the tabular representation of the

neutrosophic soft set (f,E), we write (mf( ej)(xl- ), g1( ej)(xl-),d ( ej)(xl. )): *. Here we say that the data
for f(e;) is missing and the neutrosophic soft set (f,£) over U has incomplete data.

3.1 Example: Suppose Tech Mahindra is recruiting some new Graduate Trainee for the session 2019-

2020 and suppose that eight candidates have applied for the job. Assume that U = {u;,u,,u3,......,ug }

be the set of candidates

E = {e(communication skill), e, (domain knowledge), e; (experienced), e, (young),
es (highest academic degree), ¢ (professional attitute) } be the set of parameters. Then a neutrosophic soft

set over U having missing data can be given by Table-1.

Table-1

8] e e e ey s €

u (0.8,0.50.2) | (0.3,04,0.6) |(0.1,06,04) | (0.7,03,0.6) | (0.3,04,0.6) | (0.20.50.5)
U, |(04,0.1,07) |(0.80204) | (0401,07) | (020404 |* (0.6,0.6,0.4)
u3 | (0.2,0.6,04) | (050505 |* (0.5,0.5,0.5) | (0.5,0.5,0.5) | (0.3,0.4,0.6)
uy | (0.3,04,04) |(0.1,030.3) |(0.304,04) |(0.60.6,0.6) |(0.10.10.5) | (0.304,0.4)
us | (0.1,0.1,0.7) |* (0.4,02,0.1) | (0.8,0.6,0.1) | (0.6,0.7,0.7) | (0.3,0.4,0.3)
ug | (0.50.3,09) |(0.3,0.6,0.6) | (0.1,050.5) |(0.30.6,0.6) |(040404) | (0.3,0.6,0.6)
u; |(0.2,04,0.6) |(040405) | (0.50506) |* (0.7,0.5,0.8) | (0.4,0.4,0.5)
ug |(0.2,03,0.1) | (0.60.6,0.1) | (0.8,03,08) | (040304 |(0.50.60.3) |(0.90.3,0.3)

In case of soft set theory, there always exist some obvious or hidden associations between
parameters. Let us focus on this to find the associations between the parameters of a neutrosophic soft

set.

In example 2.8, one can easily find that if a house is expensive, the house is not cheap and vice
versa. Thus there is an inconsistent association between the parameters ‘expensive’ and ‘cheap’.
Generally, if a house is beautiful or situated in a good location, the house is expensive. Thus there is a
consistent association between the parameters ‘beautiful’ and ‘expensive’ or the parameters ‘good

location” and ‘expensive’.

In example 3.1, we find that if a candidate is experienced or have highest academic degree, he/she
is not young. Thus there is an inconsistent association between parameters ‘experienced” and ‘young’

or between ‘highest academic degree” and ‘young’.

The above two examples reveal the interior relations of parameters. In a neutrosophic soft set,

these associations between parameters will be very useful for filling incomplete data. If it is found that
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the parameters ¢; and e j are associated and the data for f'(e;) is missing, then we can fill the
missing data according to the corresponding data in f (e j) . To measure these associations, let us
define the notion of association degree and some relevant concepts.

For the rest of the paper we shall assume that U be the universe set and E be the set of parameters.

Let U, jj denotes the set of objects that have specified values in the form of an ordered triplet (a, b, c)

where g, b, c€[0, 1] on both parameters ¢; and e I such that

Vi~ %’Ci 000y 0200y () ) = 02 (0 (O *§

In other words Uj; is the collection of those objects that have known data both on ¢; and e iz

3.2 Definition: Let ¢;,e j I E. Then the consistent association number between the parameters ¢; and

€; is denoted by CANj; and is defined as:

_hiu. _ _ _ :
CANy; = %xl Uy .mf(ei)(x) mf(ej)(x),gf(ei)(x) gf(ej)(x)’df(e,-)(x) df(ej)(x%‘ where ||
denotes the cardinality of a set.

3.3 Definition: Let ¢;,e ' I E. Then the consistent association degree between the parameters ¢ and
CAN;;
v,

e; is denoted by CAD;; and is defined as: CADy; = /. where |.| denotes the cardinality of a set.

il
It can be easily verified that the value of CADl-j lies in [0, 1]. Actually CADl-j measures the extent to

which the value of parameter €; keeps consistent with that of parameter e j over U i Next we define

inconsistent association number and inconsistent association degree as follows:

3.4 Definition: Let ¢;.e; [ E. Then the inconsistent association number between the parameters ¢;

and e I is denoted by 1CAN;; and is defined as

ICANy; = ixi Uy :mf.(ei)()c)1 mf(ej)(x) or gf(ei)(X)‘ gf( )(x) or a'f(ei)(x)1 df(ej)(x)lt7

€j

where |.| denotes the cardinality of a set.

3.5 Definition: Let ¢;,e ji E . Then the inconsistent association degree between the parameters ¢;

ICAN;;
and e jis denoted by 1CADy; and is defined as: 1CADy; = |U Y where |.| denotes the cardinality of

il

a set.

It can be easily verified that the value of ICADZ-J- lies in [0, 1]. Actually ICADZ-]- measures the extent

to which the parameters ¢; and e I is inconsistent.

3.6 Definition: Let ei,eji E'. Then the association degree between the parameters ¢; and ¢; is

denoted by ADy; and is defined by AD;; = max {CADij,ICADij }
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If CADZ~J~> ICADZ-]- , then ADij = CADZ-]- , which means that most of the objects over Uij have

consistent values on parameters ¢; and e iz If CADlj < ]CADl-j , then ADij = ICADU-, which means that

most of the objects over Uij have inconsistent values on parameters ¢; and e IR

CAD;; = ICADy; then it means that there is the lowest association degree between the parameters ¢;

Again if

and ej.

3.7 Theorem: For parameters ¢; and € ADl-j * 0.5 foralli,j.

Proof: Follows from the fact that CADZ-]- + ICADij =1.

3.8 Definition: If ¢; [ E, then the maximal association degree of parameter ¢; is denoted by MAD;

and is defined by MAD; = max AD;;.
J

4. DATA Filling Algorithm for a neutrosophic soft set:

Step-1: Input the neutrosophic soft set (f,E) which has incomplete data.

Step-2: Find all parameters ¢; for which data is missing.

Step-3: Compute ADij for j=1,2,3....,m (where ‘m’ is the number of parameters in E).
Step-4: Compute MAD; .

Step-5: Find out all parameters ¢; which have the maximal association degree MAD; with the

J
parameter é¢;.

Step-6: In case of consistent association between the parameter ¢, and e i s (=1,2,3,....)

(m @) (x).g ) (x).d e (x)) = E:mjax m ) (%), rnjax g, ) (x). mflx d ) (x)% . In case of inconsistent

association between the parameter e and e I ’s (=1,2,3,....)

(70 08 ) () () - a1 max )1+ mad, ()

Step-7: If all the missing data are filled then stop else go to step-2.

> An Illustrative example: Consider the neutrosophic soft set given in example 3.1.
U g e) e ey es €
u (0.8,0.5,0.2) |(0.3,0.40.6) | (0.1,0.6,0.4) | (0.7,0.3,0.6) | (0.3,0.4,0.6) | (0.2,0.50.5)
u, |(0.4,0.1,0.7) |(0.80204) |(04,0.107) |(0204,04) |* (0.6,0.6,0.4)
uy | (0.20.6,04) |(050505) |* (0.5,0.5,0.5) | (0.5,0.5,0.5) | (0.3,0.4,0.6)
uy |(0.3,04,04) |(0.1,0303) |(0304,04) | (0.6,0.6,06) |(0.1,0.1,0.5) | (0.30.4,0.4)
us | (0.1,0.1,07) |* (0.4,0.2,0.1) | (0.8,0.6,0.1) | (0.6,0.7,0.7) | (0.3,0.4,0.3)
ug | (0.503,09) |(0.30.6,0.6) |(0.1,050.5) | (0.3,0.6,06) | (0.40.4,04) | (0.30.60.6)
u; |(0.204,0.6) |(04,0405) |(050506) |* (0.7,0.5,0.8) | (0.4,0.4,0.5)
ug |(0.2,03,0.1) | (0.60.6,0.1) |(0.80.3,08) |(0.40.3,04) | (0.50.6,03) | (0.90.30.3)
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Step-2: Clearly there are missing data in f'(e;), f(e3), f (e4). f (€5)- We shall fill these missing data.

Step-3:
(a) For the parameter e, .
\ Uyy = sty us, iy ug, g, ug 1. Uns = (i, g g, ug §.Uny = {uy, Uy, Uz, 1y, g, Ug §,
U25= {ul,u3,u4,u6,u7,u8},U26= {1y, uy U5, 1y, UG U7, Ug }.
Now CAN21 = |{ }|: 0 and so CAD21 =0. Again [CANzl = |{ul,u2,U3,u4,u6,u7,u8}|: 7 and so

ICAN.
21— 7_ | Hence ADy{ = max {CAD21,1CAD21}: max{0,1} = 1.

CAN23 = |{ }|: 0 and so CAD23 =0 . Agam ICAN23 = |{ul,u2,u4,u6,U7,u8}|: 6 and so
ICAN23 B

ICAD,5 = W_ g: 1. Hence AD,3 = max {CAD,3,ICAD,3 }= max{0,1} = 1.
23

CAN24:|{H3,M6}|:2 and so CAD24:§:033 . Again ICAN24:|{u],u2,U4,u8}|:4 and so

ICAN,, 4 B _ B
ICAD,, = ol 6 0.66. Hence ADy, = max {CAD,4,ICAD,, }= max{0.33,0.66} = 0.66.
2
CANys = [z, }]= 2 and so CADy5= £=033 . Again [CAN)s= |[fugouig,u7,u3}{= 4 and so
ICAN24 4 B B B
ICADys = WZ . 0.66. Hence ADys = max {CAD,s,ICAD, 5 }= max{0.33,0.66} = 0.66.
1
CAN26 = |{u4}|: 1 and SO CAD26 = ;: 0.14 . Again ]CAN26: |{ul,u2,u3,u6,U7,u8}|: 6 and SO
ICANy 6 - - -
ICADy ¢ = W: ;: 0.85. Hence 4D, = max {CAD26,1CAD26}7 max{0.14,0.85} = 0.85.

Thus MAD, = mje}xADz ; = max {4D5,4Dy3,4D,,, ADy5, ADy g }= max{1,1,0.66,0.66,0.85} = 1..
(b) For the parameter e;.
\ Uz = {uup,ug g, ug 1 Usy = {ug,ug,ug,ug,ug,ug §,Us g = {uy,uy,uy,us,u6,1g §,
U35 = {ul,u4,uS,u6,U7,u8 },U36 = {ul,uz,u4,u5,u6,u7,u8 }
2
Now CAN3; = |{uy.u3}|= 2 and so CADy; = £=033. Again ICAN3 = |, 146,17,1 }| = 4 and so

ICAN3,
Uil

4
ICADy | = =" 0.66 . Hence ADy = max {CAD3,ICADz; }= max{0.33,0.66} = 0.66.

CAN32:|{}|:0 and so CAD;, =0 . Again ICAN32:|{ul,u2,u4,u6,u7,u8}|:6 and so

ICAN.
ICADy, = |U—T2: S_ | Hence ADy, = max {CADy, , ICAD, }= max{0,1} = 1.
32

CAN34=|{}|=O and so CADyy;=0 . Again ICAN34=|{ul,u2,u4,u5,u6,u8}|=6 and so

ICAN
ICADy, = |U—T4= 2= 0.66. Hence 4Dy, = max {CAD;4, ICADs, }= max {0,066} = 0.66.
34
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CAN35 = |{ }|: 0 and so CAD35 =0 . Again [CAN35 = |{u1,U4,u5,u6,u7,u8}|: 6 and so

ICAN35 6
ICADy5 = W: —=1.Hence 4D35= max {CAD;5,ICAD35 } = max{0,1} = 1.
35
1 .
CAN36 = |{u4}|: 1 and SO CAD36 = ;: 0.14 . Agam ICAN36: |{ul,u2,u5,u6,u7,u8}|: 6 and SO
ICAN;¢ 6 - - ~
ICADy = W: -= 0.85. Hence 4Dy = max {CADy,ICAD; 4 } = max{0.14,0.85} = 0.85.

Thus MAD; = max ADy ; = max {4D3,4D35, AD3 4, ADy5, AD3 ¢ }= max{0.66,1,0.66,1,0.85} = 1.

(c) For the parameter ¢, .
\ Uy = Qg g,z ug,us,ug,ug 1 U gy = {ug,uyuy,ug, g ug .Uy = {ug,uy,ug,us, g, ug
U45: {ul,u3,U4,uS,u6,u8},U46: {ul,uZ,u3,U4,U5,u6,u8}.

Now CAN4q = |{ }|= 0 and so CADy;=0. Again ICAN,, = |{ul,u2,u3,u4,u5,u6,u8}|: 7 and so

]CAN41 7 _ _ _
ICADy, = AR 1. Hence AD,; = max {CAD,,ICAD,; }= max{0,1}= 1.
2 :
CANyy = |fu3.u6 = 2 and so CADy, = £=033 . Again [CANy) = |19, u4,u3 )= 4 and so
ICANy4 4 B _ B
ICADy, = Ol 6 0.66. Hence ADy, = max {CADy,,ICADy, }= max{0.33,0.66} = 0.66.

CAN43=|{}|=0 and so CADy3=0 . Again chN43=|{u1,u2,u4,u5,u6,u8}|=6 and so

ICANy;3 6 - - -
ICAD 3 = Wz —=1.Hence ADy3 = max {CAD,3,ICAD 3 }= max{0,1}= 1.
1
CANys=[f}=1 and so CADy5=<=0.16 . Again ICANys=|{,uy,uis.Usus}j= 5 and so
[CAN45 5 _ _ _
ICAD,5 = w6 0.83. Hence 4D,5 = max {CAD,5,ICAD;5 }= max{0.16,0.83} = 0.83.
1
CAN46 = |{u6}|: 1 and so CAD46 = 7: 0.14 . Agam ICAN46: |{u1,u2,u3,u4,U5,u8}|: 6 and so

ICAN ¢

ICAD,, = ——
46 |U46|

6
h 0.85. Hence 4D, = max {CAD46,ICAD46}: max{0.14,0.85} = 0.85.

(d) For the parameter ¢;.
\ Usy = {wsus,ugsus g ug,ug 1.Usy = {ug,uz,ug g ug,ug 1 Usy = {ugug,us,ug,u7,ug },
U54: LUy, Uz, Uy Us, U, Ug },U56: AU U3, Uy Us, U, U7, Ug |
Now CANs;=|{ }}= 0 and so CADg =0 . Again ICANg = |{ul,u3,u4,u5,u6,u7,u8}|= 7 and so

ICAN.
51 7_ | Hence ADg) = max {CADg |, ICADg; } = max{0,1} = 1.

ICADc, =
51 |U51|
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2 .
CANsy = |{u,u3}]= 2 and so CADs, = £=033 . Again [CANs) = | fug,u1g,u7,u3}{= 4 and so
ICANsy 4 - ~ -
ICADs, = W: . 0.66 . Hence 4Ds, = max {CADs,,ICADs, }= max{0.33,0.66} = 0.66.

CAN53=|{}|=0 and so CADs3=0 . Again ICAN53=|{u1,u4,u5,u6,u7,u8}|=6 and so

ICAN.
ICADg3 = |U—|53= §= 1. Hence ADs3 = max {CADy3,ICADs3 }= max{0,1} = 1.
53
1 :
CANsy = [f3}{=1 and so CADg,= £= 016 . Again [CANs, = |y 104, us,ug,u3 = 5 and so
ICAN.
ICADs, = |U—T4: 2: 0.83. Hence 4Dy, = max {CADs,,ICADs, }= max{0.16,0.83} = 0.83.
54

CANsg=|{ =0 and so CADsc=0 . Again ICANsc = |fu,uz,1q,1s,1q,17,u5 {= 7 and  so
ICANs 7
_ 56 _ 7 _ _ _ _
]CAD56 = W— 7— 1. Hence AD56 = max {CAD56,[CAD56}— max{O,l}— 1.

Thus MADs = mjaxADS ;= max {ADSI,AD52,AD53,AD54,AD56}= max{1,0.66,1,0.83,1} = 1.

The association degree table for the neutrosophic soft set (f, E) is given below:

e e e ey es €
€ 1 _ 1 066 |066 |0.85
e 0.66 1 _ 066 |1 0.85
ey 1 066 |1 _ 083 |0.85
es 1 066 |1 083 | _ 1

Step-4: From step-3, we have, MADy = 1,MAD; = 1,MAD, = 1,MAD5 = 1.

Step-5: The parameters € and e; have the maximal association degree 4D,; and AD,s
respectively with the parameter e, .

The parameters €, and es have the maximal association degree 4D;, and AD;4 respectively with
the parameter 5.

The parameters €| and ey have the maximal association degree 4Dy, and AD,5 respectively with
the parameter €.

The parameters €],€3 and ¢4 have the maximal association degree ADs;, ADs3 and ADs respectively
with the parameter €5 .

Step-6: There is a consistent association between the parameters ) and €., € and e, € and e,
& and €s; while there is an inconsistent association between the parameters €y and €, € and

e .So we have,
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(7 05 )-8 e @1 05))

= (s (1 ) ), () 048 ey 1)), mx (e ). ()
= (max(0.1,0.4), max (0.1,0.2), max (0.7,0.1))= (0.4,0.2,0.7),

(mf(e3) ()2 f(e3) (,).d 1(e3) (C8 ))

= (1 0 )1 g )0 002 (), 005 ) 0. o )
= (max(0.5,0.5), max (0.5,0.5), max (0.5,0.5))= (0.5,0.5,0.5),

(71 @0 ey @)y (1)

= (1- rnax(mﬂel)(u7 ),mj.(e3)(u7 )) 1- rnax(gf(el)(u7 ),gf(e3)(u7 ))1 max(df(el)(u7 ),df.(e3)(u7 )))
= (max (0.2,0.5), max (0.4,0.5), max (0.6,0.6))= (0.5,0.5,0.6),

(mf(es) (uy).g f(es) (u,).d 'f(es) (uy ))

= (1 0 1 ) 10 )2 ), (g ). )
= (max (0.4,0.4), max (0.1,0.1), max (0.7,0.7))= (0.4,0.1,0.7).

Thus we have the following table which gives the tabular representation of the filled neutrosophic soft

set:

8] g e e ey s €

u (0.8,0.5,0.2) | (0.3,04,0.6) |(0.1,0604) | (0.7,03,0.6) | (0.3,04,0.6) | (0.20.50.5)
u, |(04,0.1,07) |(080.204) |(040.1,07) |(0.204,04) | (0.40.1,0.7) | (0.60.60.4)
uy | (0.20.6,04) |(050.505) |(0.5,0.5,05) | (0505,05) |(0.5050.5) | (0.30.40.6)
uy | (0.3,04,04) |(0.1,030.3) |(0.304,04) |(0.60.6,0.6) |(0.10.10.5) | (0.304,0.4)
us |(0.1,0.1,0.7) | (0.40.2,0.7) | (0.40.20.1) | (0.80.60.1) | (0.60.70.7) | (0.3,0.4,0.3)
ug | (0.50.3,09) |(0.3,0.6,06) | (0.1,050.5) | (0.30.6,0.6) |(040404) | (0.3,0.6,0.6)
u; |(0.204,0.6) |(04,0405) |(05,0.506) |(0.505,06) |(0.7050.8) | (0.4,0.4,0.5)
ug |(0.2,03,0.1) | (0.60.6,01) | (0.8,03,08) | (040304 |(0.50.6,0.3) |(0.90.3,0.3)

Conclusion: Incomplete information or missing data in a neutrosophic soft set restricts the usage of
the neutrosophic soft set. To make the neutrosophic soft set (with missing / incomplete data) more
useful, in this paper, we have proposed a data filling approach, where missing data is filled in terms of
the association degree between the parameters. We have validated the proposed algorithm by an ex-
ample and drawn the conclusion that relation between parameters can be applied to fill the missing
data.
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Abstract: Multi-criteria decision making (MCDM) is concerned about organizing and taking care of
choice and planning issues including multi-criteria. When attributes are more than one, and further
bifurcated, neutrosophic softset environment cannot be used to tackle such type of issues. Therefore,
there was a dire need to define a new approach to solve such type of problems, So, for this purpose
a new environment namely, Neutrosophic Hypersoft set (NHSS) is defined. This paper includes
basics operator’s like union, intersection, complement, subset, null set, equal set etc., of Neutrosophic
Hypersoft set (NHSS). The validity and the implementation are presented along with suitable
examples. For more precision and accuracy, in future, proposed operations will play a vital role is

decision-makings like personal selection, management problems and many others.

Keywords: MCDM, Uncertainty, Soft set, Neutrosophic soft set, Hyper soft set.

1. Introduction

The idea of fuzzy sets was presented by Lotfi A. Zadeh in 1965 [1]. From that point the fuzzy
sets and fuzzy logic have been connected in numerous genuine issues in questionable and uncertain
conditions. The conventional fuzzy sets are based on the membership value or the level of
membership value. A few times it might be hard to allot the membership values for fuzzy sets.
Therefore, the idea of interval valued fuzzy sets was proposed [2] to catch the uncertainty for
membership values. In some genuine issues like real life problems, master framework, conviction
framework, data combination, etc., we should consider membership just as the non- membership
values for appropriate depiction of an object in questionable and uncertain condition. Neither the
fuzzy sets nor the interval valued fuzzy sets is convenient for such a circumstance. Intuitionistic fuzzy
sets proposed by Atanassov [3] is convenient for such a circumstance. The intuitionistic fuzzy sets
can just deal with the inadequate data considering both the membership and non-membership
values. It doesn't deal with the vague and conflicting data which exists in conviction framework.
Smarandache [4] presented the idea of Neutrosophic set which is a scientific apparatus for taking
care of issues including uncertain, indeterminacy and conflicting information. Neutrosophic set
indicate truth membership value (T), indeterminacy membership value (I) and falsity membership
value (F). This idea is significant in numerous application regions since indeterminacy is evaluated
exceptionally and the truth membership values, indeterminacy membership values and falsity
membership values are independent.

The idea of soft sets was first defined by Molodtsov [5] as a totally new numerical device for

taking care of issues with uncertain conditions. He defines a soft set as a parameterized family of
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subsets of universal set. Soft sets are useful in various regions including artificial insight, game
hypothesis and basic decision-making problems [6] and it serves to define various functions for
various parameters and utilize values against defined parameters. These functions help us to oversee
various issues and choices throughout everyday life.

In the previous couple of years, the essentials of soft set theory have been considered by different
researchers. Maji et al. [7] gives a hypothetical study of soft sets which covers subset and super set of
a soft set, equality of soft sets and operations on soft sets, for Example, union, intersection, AND and
OR-Operations between different sets. Ali at el. [8] presented new operations in soft set theory which
includes restricted union, intersection and difference. Cagman and Enginoglu [9, 10] present soft
matrix theory which substantiated itself a very significant measurement in taking care of issues while
making various choices. Singh and Onyeozili [11] come up with the research that operations on soft
set is equivalent to the corresponding soft matrices. From Molodsov [9, 6, 5, 12] up to present,
numerous handy applications identified with soft set theory have been presented and connected in
numerous fields of sciences and data innovation.

Maji [13] come up with Neutrosophic soft set portrayed by truth, indeterminacy, and falsity
membership values which are autonomous in nature. Neutrosophic soft set can deal with inadequate,
uncertain, and inconsistence data, while intuitionistic fuzzy soft set and fuzzy soft set can just deal
with partial data.

Smarandache [14] presented a new technique to deal with uncertainty. He generalized the soft
to hyper soft set by converting the function into multi-decision function. Smarandache, [15, 16, 17, 18,
19, 20] also discuss the various extension of neutrosophic sets in TOPSIS and MCDM. Saqlain et.al.
[21] proposed a new algorithm along with a new decision-making environment. Many other novel
approaches are also used by many researches [22-39] in decision makings.

1.1 Contribution

Since uncertainty is human sense which for the most part surrounds a man while taking any
significant choice. Let’s say if we get a chance to pick one best competitor out of numerous applicants,
we originally set a few characteristics and choices that what we need in our chose up-and-comer.
based on these objectives we choose the best one. To make our decision easy we use different
techniques. The purpose of this paper is to overcome the uncertainty problem in more precise way
by combing Neutrosophic set with Hypersoft set. This combination will produce a new mathematical
tool “Neutrosophic Hypersoft Set” and will play a vital role in future decision-making research.
2.Preliminaries
Definition 2.1: Soft Set
Let & be the universal set and € be the set of attributes with respect to &. Let P(§) be the power set of
Eand A € € . A pair (F, A) is called a soft set over £ and its mapping is given as

F:A > P($)
It is also defined as:
F A ={Fle) eP()ec€,F(e)= Qife+A}
Definition 2.2: Neutrosophic Soft Set
Let £ be the universal set and € be the set of attributes with respect to &. Let P(E) be the set of
Neutrosophic values of £ and A € € . A pair (F, 4) is called a Neutrosophic soft set over £ and its
mapping is given as

F:A - P(S)
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Definition 2.3: Hyper Soft Set:
Let & be the universal setand P(%) be the power set of &. Consider [*,1%,[*...I" for n > 1, be n well-
defined attributes, whose corresponding attributive values are respectively the set L', L? L* ...L" with
L'nL) =9, for i #j and i,je{1,2,3...n} , then the pair (F,L! x L? X L*...L") is said to be Hypersoft
set over & where

FiL'XI2 X3 .. I" > P(§)

3. Calculations

Definition 3.1: Neutrosophic Hypersoft Set (NHSS)
Let & be the universal setand P(%) be the power set of £ Consider [*,1%,1*...I" for n > 1, be n well-
defined attributes, whose corresponding attributive values are respectively the set L', L? L* ...L" with
L'nL/ =9, for i #j and i,je{1,2,3...n} and their relation L' x L? x L ...L" = §, then the pair (F,$)
is said to be Neutrosophic Hypersoft set (NHSS) over & where

F:I'xL2x 3. L[" > P(§) and

FUM X2 x 131" ={<x,T(E®)), I(F($)),F(E($)) >, x € £} where T is the membership value of
truthiness, I is the membership value of indeterminacy and F is the membership value of falsity such
that T,1,F:¢ - [0,1] also 0 < T(E($)) + I(E($)) + F(F($)) < 3.
Example 3.1:
Let & be the set of decision makers to decide best mobile phone given as

£ = {m!,m? m3 m* m°}
also consider the set of attributes as
s! = Mobile type,s? = RAM, s® = Sim Card, s* = Resolution, s> = Camera, s® = Battery Power

And their respective attributes are given as
S = Mobile type = {Iphone, Samsung, Oppo, lenovo}
§?2=RAM = {8 GB,4 GB,6 GB,2 GB }
§3 = Sim Card = {Single, Dual}
§* = Resolution = {1440 X 3040 pixels, 1080 x 780 pixels, 2600 X 4010 pixels}
S5 = Camera = {12 MP, 10MP, 15MP}
S% = Battery Power = {4100 mAh, 1000 mAh, 2050 mAh}
Let the functionbe F:S! x S2 x S3 x S* x S°%x 5% > P(§)
Below are the tables of their Neutrosophic values

Table 1: Decision maker Neutrosophic values for mobile type

S1(Mobile type) m! m? m3 m* m°
Iphone (0.3,0.6,0.7) (0.7,0.6,04) (04,05,0.7) (0.6,05,0.3) (0.50.30.8)
Samsung (0.7,05,0.6) (03,02,0.1) (0.3,0.6,0.2) (08,0.1,0.2) (0.504,0.5)
Oppo 05,02,01) (09,05,03) (09,04,01) (09,03,01) (0.6,0.1,0.2)
Lenovo (05,03,02) (05,02,01) (08,0502 (0.6,04,03) (0.7,04,0.2)

Table 2: Decision maker Neutrosophic values for RAM
S2(RAM) m! m? m? m* m®
8 GB (0.3,0.4,0.7) (0.4,0.5,0.7) (0.5,0.6,0.8) (0.5,0.3,0.8) (0.3,0.6,0.7)
4 GB (0.4,0.2,0.5) (0.3,0.6,0.2) (0.4,0.7,0.3) (0.5,0.4, 0.5) (0.7, 0.5, 0.6)
6 GB (0.7,0.2,0.3) (0.9,04,0.1) (0.8,0.3,0.2) (0.6,0.1,0.2) (0.5,0.2,0.1)
2GB (0.8,0.2,0.1) (0.8,0.5,0.2) (0.904,0.1) (0.7,0.4,0.2) (0.5,0.3,0.2)
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Table 3: Decision maker Neutrosophic values for sim card

§3(Sim Card) m! m? m3 m* m5
Single (0.6,04,03)  (0.6,05,03) (0.5,04,03) (07,0803  (0.9,0.2 0.1)
Dual (0.8,02,01) (04,0807 (07,0302  (0.3,06,04) (0.8 04 0.2)

Table 4: Decision maker Neutrosophic values for resolution
S*(Resolution) m! m? m3 m* m®
1440 x 3040 (0.7,0.8,0.3) (0.7,0.5,0.3) (0.6, 0.4, 0.3) (0.5,0.6,0.9) (0.4,0.5,0.3)
1080 x 780 (0.3,0.6,0.4) (0.7,0.3,0.2) (0.8,0.3,0.1) (0.6,0.4,0.7) (0.3,0.5,0.8)
2600 x 4010 (0.5,0.2,0.1) (0.6,0.3,0.4) (0.5,0.7,0.2) (0.9,0.3,0.1) (0.7,0.4,0.3)

Table 5: Decision maker Neutrosophic values for camera

S5(Camera) m! m? m3 m* m>
12 MP (0.6,04,03) (0.7,08,03)  (0.6,04,03) (04,0503 (0.9, 02 0.1)
10 MP (0.8,0.3,0.1) (0.3,0.6,0.4) (0.8,0.2,0.1) (0.3,0.5,0.8) (0.8,0.4,0.2)
15 MP (0.5,0.7,0.2) (0.5,0.2,0.1) (0.8,0.5,0.2) (0.7,0.4, 0.3) (0.7,0.4, 0.2)

Table 6: Decision maker Neutrosophic values for battery power

S®(Battery Power) m?! m? m3 m* m®

4100 mAh (0.7,0.8,03) (0.7,0.6,04) (0.4,05,07) (0.9,02,01) (0.5, 0.3,0.8)
1000 mAh (03,0.6,04) (0.3,02,01) (0.3,0.6,02) (0.8, 04,02) (0.5 04,0.5)
2050 mAh (05,02,01) (09,05,03) (0.9,04,01) (0.7,04,02) (0.6,0.1,0.2)

Neutrosophic Hypersoft set is define as,
Fr(S1xS2xS3x85*xS5x85%) - P(§)
Let’s assume F($) = F(samsung, 6 GB, Dual) = {m!,m*}
Then Neutrosophic Hypersoft set of above assumed relation is
F($) = F(samsung, 6 GB,Dual ) = {
< m?, (samsung{0.7,0.5,0.6},6 GB{0.7,0.2,0.3}, Dual{0.8,0.2,0.1}) >
< m*(samsung{0.8,0.1,0.2}, 6 GB{0.6, 0.1, 0.2}, Dual{0.3,0.6,0.4}) >}

Its tabular form is given as

Table 7: Tabular Representation of Neutrosophic Hypersoft Set

F($) = F(samsung, 6 GB, Dual ) m! m*
Samsung (0.7,0.5, 0.6) (0.8,0.1,0.2)
6 GB (07,02, 0.3) (0.6,0.1,0.2)
Dual (0.8,02,0.1) (03, 0.6, 0.4)

Definition 3.2: Neutrosophic Hypersoft Subset
Let F($) and F($?) be two Neutrosophic Hypersoft set over &. Consider [*,1%,1* ...I" for n > 1, be
n well-defined attributes, whose corresponding attributive values are respectively the set
L1213 .. " with I'n L) =@, for i #j and i,je{1,2,3..n} and their relation L' x [? X L3 ...[" = $
then F($') is the Neutrosophic Hypersoft subset of F($?) if

T(E($") < T(F($D)

I(F($Y) < 1(F($7)
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FESY) = F(F($D)

Numerical Example of Subset
Consider the two NHSS £($') and NHSS F($?) over the same universe §= {m!,m? m3, m* m®}.
The NHSS F($) = F(samsung, 6 GB,Dual ) = {m',m*} is the subset of NHSS F($?) =
F(Samsung,6GB) = {m'} if TE@H)) <TEFG?), IFEH)) <IFG?), FEGH) =FF®G?Y) . Its
tabular form is given below

Table 8: Tabular Representation of NHSS F($1)

F($!) = F(samsung, 6 GB, Dual ) m! m*
Samsung (0.7,0.5,0.6) (0.8,0.1,0.2)
6 GB (0.7,0.2,0.3) (0.6,0.1,0.2)
Dual (0.8,02,0.1) (0.3, 0.6, 0.4)

Table 9: Tabular Representation of NHSS £($2)

F($?) = F(samsung, 6 GB) m!
Samsung (0.9, 0.6, 0.3)
6 GB (0.8,0.4,0.1)

This can also be written as
F($Y) c F($?) = F(samsung, 6 GB, Dual ) c F(samsung, 6 GB)
_ {< m?, (samsung{0.7,0.5,0.6},6 GB{0.7,0.2, 0.3}, Dual{0.8,0.2,0.1}) >,}
< m*(samsung{0.8,0.1,0.2}, 6 GB{0.6, 0.1, 0.2}, Dual{0.3,0.6,0.4}) >
c {<m!, (samsung{0.9,0.6,0.3}, 6 GB{0.8,0.4,0.1})>}

Here we can see that membership value of Samsung for m'! in both sets is (0.7,0.5,0.6) and
(0.9,0.6,0.3) which satisfy the Definition of Neutrosophic Hypersoft subset as 0.7 < 0.9,0.5 < 0.6,
and 0.6 > 0.3. This shows that (0.7,0.5,0.6) < (0.9,0.6,0.3) and same was the case with the rest of
the attributes of NHSS F($') and NHSS £($2).

Definition 3.3: Neutrosophic Equal Hypersoft Set
Let £($') and F($%) be two Neutrosophic Hypersoft set over &. Consider %, 1%, 13 ...1" for n > 1, be
n well-defined attributes, whose corresponding attributive values are respectively the set
LY 12,13 .. L0 with I'nL) =@, for i #j and i,je{1,2,3..n} and their relation L' X 2 X L3 ..["* = $
then F($') is the Neutrosophic equal Hypersoft subset of F($?) if
T(E($YH) = T(F($?))
I(F($H) = 1(F($D))
F(E($Y)) = F(F($D)
Numerical Example of Equal Neutrosophic Hypersoft Set
Consider the two NHSS F($!) and NHSS F($%) over the same universe &= {m!,m? m3,m* m°}.
The NHSS ¥F($') = F(samsung, 6 GB,Dual ) = {m',m*} is the equal to NHSS ¥($*) =
F(samsung,6 GB) = {(m'} if TEG)) =TEF$?) , IFGY) =IFGS?) , FEGSY) =
F(E($2)). Its tabular form is given below

Table 10: Tabular Representation of NHSS F($%)
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FG) " i

= F(samsung, 6 GB, Dual )
Samsung (0.7,0.5, 0.6) (0.8,0.1,0.2)
6 GB (0.7,0.2,0.3) (0.6,0.1,0.2)
Dual (0.8,0.2,0.1) (0.3, 0.6, 0.4)

Table 11: Tabular Representation of NHSS F($2)

F($?) = F(samsung, 6 GB) m!
Samsung (0.7,0.5, 0.6)
6 GB (07,02, 0.3)

This can also be written as
(F($Y) = F($?)) = (F(samsung, 6 GB, Dual ) = F(samsung, 6 GB))

= (({< m?, (samsung{0.7,0.5,0.6},6 GB{0.7,0.2, 0.3}, Dual{0.8,0.2,0.1}) >,

< m*(samsung{0.8,0.1,0.2}, 6 GB{0.6,0.1, 0.2}, Dual{0.3,0.6,0.4}) >}

= {< m?!, (samsung{0.7,0.5,0.6},6 GB{0.7,0.2,0.3}) >}))
Here we can see that membership value of Samsung for m! in both sets is (0.7,0.5,0.6) and
(0.7,0.5,0.6) which satisfy the Definition of Neutrosophic Equal Hypersoft setas 0.7 = 0.7,0.5 = 0.5
and 0.6 = 0.6. This shows that (0.7,0.5,0.6) = (0.7,0.5,0.6) and same was the case with the rest of
the attributes of NHSS E($') and NHSS E($?).
Definition 3.4: Null Neutrosophic Hypersoft Set
Let F($*) be the Neutrosophic Hypersoft set over &. Consider 1,12, 13 ..1" for n > 1, be n well-
defined attributes, whose corresponding attributive values are respectively the set L', L? L3 ...L" with
L'nL/ =@, for i #j and i,je{1,2,3...n} and their relation L' x [? X L3 ...L" = $ then F($') is Null
Neutrosophic Hypersoft set if

T(F$YH)) =0
I(F$H) =0
F(F$H) =0

Numerical Example of Null Neutrosophic Hypersoft Set
Consider the NHSS F($!) over the universe &= {m!,m?m3 m* m5 . The NHSS F($') =
F(samsung, 6 GB,Dual ) = {m', m*} is said to be null NHSS if its Neutrosophic values are 0. Its
tabular form is given below

Table 12: Tabular Representation of NHSS F($!)

F($*

=(F()samsung, 6 GB,Dual) m' m*
Samsung (0,0,0) (0,0,0)
6 GB (0,0,0) (0,0,0)
Dual (0,0,0) (0,0,0)

This can also be written as
F($Y) = F(samsung, 6 GB, Dual )
= {< m!, (samsung{0, 0, 0}, 6 GB{0, 0, 0}, Dual{0,0,0}) >,
< m*(samsung{0,0,0}, 6 GB{0, 0, 0}, Dual{0,0,0}) >}
Definition 3.5: Compliment of Neutrosophic Hypersoft Set
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Let F($*) be the Neutrosophic Hypersoft set over &. Consider [},1%,13..1" for n > 1, be n well-
defined attributes, whose corresponding attributive values are respectively the set L', L? L* ...L" with
L'nL) =9, for i #j and i,je{1,2,3...n} and their relation L' x L2 X L3 ...L™ = $ then F°($!) is the
Compliment of Neutrosophic Hypersoft set of F($') if
FC($D): (= L X— L2 X— [3 ... — L") > P(¢)

Such that

TC(ES$Y) = F(FE$Y)

IC(E($Y) = I(F($1)

FE(E($) = TFEEH)

Numerical Example of Compliment of NHSS

Consider the NHSS F($') over the universe &= {m!,m? m? m* m°}. The compliment of NHSS
F($') = F(samsung, 6 GB,Dual ) = {m*,m*}  is given as TC(F@)) =FEFEGY) , I‘F@EY) =
I(F($Y)), FE(F($Y)) = T(F($")).Its tabular form is given below

Table 13: Tabular Representation of NHSS F($!)

FC($Y) = F(Not samsung, Not 6 GB, Not Dual ) m! m*
Not Samsung (0.6,0.5,0.7) (0.2,0.1, 0.8)
Not 6 GB (0.3,0.2, 0.7) (0.2, 0.1, 0.6)
Not Dual (0.1,0.2, 0.8) (0.4, 0.6, 0.3)

This can also be written as
F¢($1) = F(not samsung, not 6 GB,not Dual )
= {< m?!, (not samsung{0.6,0.5,0.7}, not 6 GB{0.3,0.2,0.7}, not Dual{0.1,0.2,0.8}) >,
< m*(not samsung{0.2,0.1,0.8}, not 6 GB{0.2,0.1, 0.6}, not Dual{0.4, 0.6,0.3}) >}
Here we can see that membership value of Samsung for m' in F($') is (0.7,0.5,0.6) and its
compliment is (0.6,0.5,0.7) which satisfy the Definition of compliment of Neutrosophic Hypersoft
set. This shows that (0.6,0.5,0.7) is the compliment of (0.7, 0.5, 0.6) and same was the case with the
rest of the attributes of NHSS F($').
Definition 3.6: Union of Two Neutrosophic Hypersoft Set
Let £($') and F($%) be two Neutrosophic Hypersoft set over &. Consider %, 1%, 13 ...1" for n > 1, be
n well-defined attributes, whose corresponding attributive values are respectively the set
LY 12,13 .. L* with I'nL) =@, for i #j and i,je{1,2,3..n} and their relation L' X 2 X L3 ..["* = $
then F($) U F($?) is given as

T(E($Y) if x € §!
T(FEH UF($?)) = T(F($?)) if x € §2
max (T(F($1), T(F$?)))  if xe$ing?
( 1(FSY) if x € §!
(FEHUFE)) ={ [(FGD) if x € $2
o)
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F(E($Y) if x € §!
FEGHUEE$Y) = F(F($9) if x € $2
min (F(F($1), F(E(52))) ifxesing?

Numerical Example of Union
Consider the two NHSS £($') and NHSS F($?) over the same universe §= {m!,m? m3,m* m®}.
Tabular representation of NHSS F($') = F(samsung, 6 GB,Dual ) = {m',m*} and NHSS F($?) =
F(samsung, 6 GB) = {m'} is given below,

Table 14: Tabular Representation of NHSS £($1)

F($!) = F(samsung, 6 GB, Dual ) m! m*
Samsung (0.7,0.5,0.6) (0.8,0.1,0.2)
6 GB (0.7,0.2,0.3) (0.6,0.1,0.2)
Dual (0.8,02,0.1) (0.3, 0.6, 0.4)

Table 15: Tabular Representation of NHSS F($2)

F($?) = F(samsung, 6 GB) m!
Samsung (0.9,0.5,0.3)
6 GB (0.8,0.4,0.1)

Then the union of above NHSS is given as

Table 16: Union of NHSS F($!) and NHSS F£($2%)

F($H) U E($?) m! m*
Samsung (0.9,0.5,0.3) (0.8,0.1,0.2)
6 GB (0.8,0.3,0.1) (0.6,0.1,0.2)
Dual (0.8, 0.1, 0.0) (0.3,0.6, 0.4)

This can also be written as
F($Y) U F($?) = F(samsung, 6 GB, Dual ) U ¥(samsung, 6 GB)

= {< m?!, (samsung{0.9,0.5,0.3}, 6 GB{0.8,0.3,0.1}, Dual{0.8,0.1,0.0}) >,

< m*(samsung{0.8,0.1,0.2}, 6 GB{0.6,0.1, 0.2}, Dual{0.3,0.6,0.4}) >}
Definition 3.7: Intersection of Two Neutrosophic Hypersoft Set
Let F($) and F($?) be two Neutrosophic Hypersoft set over &. Consider [*,1%,1*...I" for n > 1, be
n well-defined attributes, whose corresponding attributive values are respectively the set
LMI2, L3 .. LM with I'n L) =@, for i #j and i,je{1,2,3...n} and their relation L' x [? X L3 ...[" = $
then F($) N F($?) is given as

T(£($")) if x € $*
T(EGH NEESDH)) = T(E($%)) if x € §2
min (T(F($1)),T(¥($2))> if x€$'n¢?
I(E($Y) if x€e$t
IFE) ) =1  FED) if x € $2
l(!(?(fs )):z(p(:s ) Fresing?
F(F($Y) if x €$t
FEEHNEE)) =]  F(FG$Y) ifx e
max (F(F($")), F(F(5%))) if x €81 n§?

Numerical Example of Intersection
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Consider the two NHSS £($') and NHSS F($?) over the same universe §= {m!,m? m3, m* m°}.
Tabular representation of NHSS F($') = F(samsung, 6 GB,Dual ) = {m',m*} and NHSS F($?) =

F(samsung, 6 GB) = {m'} is given below

Table 17: Tabular Representation of NHSS F($!)

F($H ml m*

= F(samsung, 6 GB,Dual)
Samsung (0.7,0.5, 0.6) (0.8,0.1,0.2)
6 GB (0.7,0.2,0.3) (0.6,0.1,0.2)
Dual (0.8,0.2,0.1) (0.3,0.6,0.4)

Table 18: Tabular Representation of NHSS £($2)

F($%) = F(samsung, 6 GB) m!
Samsung (0.9,0.5,0.3)
6 GB (0.8,0.4,0.1)

Then the intersection of above NHSS is given as
Table 19: Intersection of NHSS F($!) and NHSS F($2)

F($H) N F($?) m!
Samsung (0.7,0.5, 0.6)
6 GB (0.7,0.3,0.3)
Dual (0.0,0.1,0.1)

This can also be written as

F($Y) n F($?) = F(samsung, 6 GB, Dual ) N ¥(samsung, 6 GB)

= {< m?, (samsung{0.7,0.5,0.6}, 6 GB{0.7,0.3, 0.3}, Dual{0.0,0.1,0.1}) >}

Definition 3.8: AND Operation on Two Neutrosophic Hypersoft Set
Let £($') and F($%) be two Neutrosophic Hypersoft set over &. Consider %, 1%, 13 ...1" for n > 1, be
n well-defined attributes, whose corresponding attributive values are respectively the set
LY 12,13 .. L0 with I'nL) =@, for i #j and i,je{1,2,3..n} and their relation L' X > X L3 ..["* = $
then F($) AF($%) = F($! x $?) is given as

T($' % $2) = min (T(E($), T(F($2)))

(1(F M), 1(F($%))
2

F($' % $2) = max (F(E(SY), F(F($2)))

1($* x $2) =

Numerical Example of AND-Operation
Consider the two NHSS F($!) and NHSS F($%) over the same universe &= {m!,m? m3,m* m°}.
Tabular representation of NHSS F(§') = F(samsung, 6 GB,Dual ) = {m',m*} and NHSS F($?) =
F(samsung, 6 GB,) = {m'} is given below

Table 20: Tabular representation of NHSS F($')

F($*

=(F(?9amsung, 6 GB,Dual ) m' m*
Samsung (0.7,0.5, 0.6) (0.8,0.1,0.2)
6 GB (0.7,0.2,0.3) (0.6, 0.1, 0.2)
Dual (0.8,0.2,0.1) (0.3, 0.6, 0.4)
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Table 21: Tabular representation of NHSS ¥($2)

F($%) = F(samsung, 6 GB) m!
Samsung (0.9,0.5,0.3)
6 GB (0.8,04,0.1)

Then the AND Operation of above NHSS is given as

Table 22: AND of NHSS £($') and NHSS F($?)

FEH AF($D m! m*
Samsung X Samsung (0.7,0.5,0.6) (0.0,0.1,0.2)
Samsung X 6 GB (0.7, 0.45,0.6) (0.0,0.1,0.2)
6 GB X Samsung (0.7, 0.35,0.3) (0.0,0.1,0.2)
6 GB x 6 GB (0.7,0.3,0.3) (0.0,0,1,0.2)
Dual X Samsung (0.8,0.35,0.3) (0.0,0.6,0.4)
Dual x 6 GB (0.8,0.3,0.1) (0.0,0.6,0.4)

Definition 3.9: OR Operation on Two Neutrosophic Hypersoft Set

Let F($") and F($?) be two Neutrosophic Hypersoft set over &. Consider [*,1%,1*...I" for n > 1, be
n well-defined attributes, whose corresponding attributive values are respectively the set
LYI2, 13 .. " with I'nL) =@, for i #j and i,je{1,2,3..n} and their relation L' X 2 X L3 ..[" = $
then F($) v F($%) = F($! x $?) is given as

T($! x $2) = max (T(F($1)),T(F($2)))

(1FGH). 1(F$2))
2

F($" % $2) = min (F(F($Y), F(F($2)) )

I($T x $2) =

Numerical Example of OR-Operation
Consider the two NHSS F($!) and NHSS F($%) over the same universe &= {m!,m? m3,m* m°}.
Tabular representation of NHSS F($') = F(samsung, 6 GB,Dual) = {m',m*} and NHSS F($?) =

F(samsung, 6 GB,) = {m'} is given below

Table 23: Tabular representation of NHSS F($1)

FGD ! m
= F(samsung, 6 GB,Dual)
Samsung (0.7,0.5, 0.6) (0.8,0.1,0.2)
6 GB (0.7,0.2, 0.3) (0.6,0.1,0.2)
Dual (0.8,0.2, 0.1) (0.3,0.6, 0.4)
F($%) = F(samsung, 6 GB) m!
Samsung (0.9,0.5,0.3)
6 GB (0.8,0.4, 0.1)

Table 24: Tabular representation of NHSS F($%)
Then the OR Operation of above NHSS is given as

Muhammad Saqlain and Sana Moin, Aggregate Operators of Neutrosophic Hypersoft Set



Neutrosophic Sets and Systems, Vol. 32, 2020 304

Table 25: OR of NHSS F($') and NHSS F($2)

FEH VEEDH m! m*
Samsung X Samsung (0.9,0.5,0.3) (0.8,0.1,0.0)
Samsung X 6 GB (0.8,0.45,0.1) (0.8,0.1,0.0)
6 GB x Samsung (0.9, 0.35,0.3) (0.6,0.1,0.0)
6 GB x 6 GB (0.8,0.3,0.1) (0.6,0,1,0.0)
Dual X Samsung (0.9,0.35,0.1) (0.3,0.6,0.0)
Dual x 6 GB (0.8,0.3,0.1) (0.3,0.6,0.0)

4, Result Discussion

Decision-making is a complex issue due to vague, imprecise and indeterminate environment
specially, when attributes are more than one, and further bifurcated. Neutrosophic softset
environment cannot be used to tackle such type of issues. Therefore, there was a dire need to define
a new approach to solve such type of problems, So, for this purpose neutrosophic hypersoft set

environment is defined along with necessary operations and elaborated with examples.

5. Conclusions

In this paper, operations of Neutrosophic Hypersoft set like union, intersection, compliment, AND
OR operations are presented. The validity and implementation of the proposed operations and
definitions are verified by presenting suitable example. Neutrosophic hypersoft set NHSS will be a
new tool in decision-making problems for suitable selection. In future, many decision-makings like
personal selection, office management, industrial equipment and many other problems can be solved
with the proposed operations [23]. Properties of Union and Intersection operations, cardinality and

functions on NHSS are to be defined in future.
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Abstract: With the invention of new technologies, the competition elevates in market. Therefore, it
creates more difficulties for consumer to select the right smart phone. In this paper, a new approach
is proposed to select smart phone, in which environment of decision-making is MCDM. Firstly, an
algorithm is proposed in which problem is formulated in the form of neutrosophic soft set and then
solved with generalized fuzzy TOPSIS (GFT). Secondly, rankings are compared with [10]. Finally, it
is concluded that proposed approach is applicable in decision-making where uncertainty and
imprecise information-based environment is confronted. In future, this evolutionary algorithm can
be used along with other methodologies to solve MCDM problems.

Keywords: Accuracy Function, MCDM, TOPSIS, Mobile Phone, Soft set, Neutrosophic Numbers
NNs, Neutrosophic Soft set, Linguistic Variable.

1. Introduction

Mobile / cell phones are widely used for making call, SMS, MMS, email or to access internet. The first
portable cell phone was manifest by Martin in 1973 [8], using a handset weighing 4.4 IBS. In the
advance world, smart-phone have currently overtaken the usage of earlier telecommunication
system. There may be an outstanding doubt and complications concerning the reputation of cellular
technologies by decision makers, provider, trader, and clients alike. To help this selection process
amongst different available options for technology evaluation, multi-standards decision-making
approach appears to be suitable. Due to brutal market competition by inventions of different models
with innovative designs and characteristics have made the buying decision making more complex
[10]. It is typically tough for a decision-maker to assign a particular performance rating to another for
the attributes into consideration. The advantage of employing a fuzzy approach is to assign the
relative importance of attributes victimization fuzzy ranges rather than a particular number for textile
the $64000 world during a fuzzy atmosphere. MCDM approach [9] with cluster deciding is employed
to judge smartphones as another per client preferences [6]. TOPSIS methodology is especially
appropriate for finding the cluster call —-making drawback beneath fuzzy atmosphere. TOPSIS
methodology [22] is predicated on the idea that the chosen various ought to have the shortest distance
from the positive ideal solution. In decision making problems TOPSIS method have been studied by
many researchers: Adeel et al. [3-5, 7,11, 13, 18, 21, 24]. This technique of MCDM is used by Saglain
et. al. [16] to predict CWC 2019. Maji [12] introduced the idea of Neutrosophic soft set. Riaz and
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Naeem [14, 15] presented some essential ideas of soft sets together with soft sigma algebra.
Neutrosophic set could be a terribly powerful tool to agitate incomplete and indeterminate data
planned by F. Smarandache [20] and has attracted the eye of the many students [1], which might offer
the credibleness of the given linguistic analysis worth and linguistic set can offer qualitative analysis
values. At the primary, soft set theory was planned by a Russian scientist [2] that was used as a
standard mathematical mean to come back across the difficulty of hesitant and uncertainty [19]. He
additionally argues that however, the same theory of sentimental set is free from the parameterization
inadequacy syndrome of fuzzy set theory [23], rough set theory, and applied mathematics.
Nowadays, researchers are focusing to present new theories to deal with uncertainty, imprecision
and vagueness [25-35], along with suitable examples to elaborate their theories. Neutrosophic soft
sets along with TOPSIS technique is widely used in decision making problems, every day many
researchers are working in this era [36-45] to discuss the validity of Neutrosophy in decision
problems.

1.1 Novelties

It is a very complicated decision to select the utmost suitable phone. In this condition Neutrosophic
soft-set-environment is considered and simplified with Generalized TOPSIS. An algorithm is
proposed to tackle uncertain, vague and imprecise environment in selection problems.

1.2 Contribution

Cell phone selection is a challenging problem in current generation. To solve this complexity, a few
methods regarding the usage of fuzzy ideas has been proposed. For the few kinds of uncertainty
within the selection method fuzzy linguistic method is used. The objective of the study is to
investigate the uncertainty in selection criteria of cell phone with respect to the consumer’s choice
under Neutrosophic softset environment by applying Generalized fuzzy TOPSIS.

2.Preliminaries
Definition 2.1: Neutrosophic Set [2]
Let U be a universe of discourse then the neutrosophic set A is an object having the form
A={<x: Ty (x),[,(x),Fy (x),> x €U}

where the functions T, I, F : U— [0,1] define respectively the degree of membership, the degree of
indeterminacy, and the degree of non-membership of the element x € X to the set A with the
condition. <T, (x) + I, (x) +F, (x) <3.
Definition 2.2: Soft Set [2]
Let U be a universe of discourse, P(U)the power set of U, and A set of parameters. Then, the pair (F,
U), where

F: A— P(U)
is called a softset over U.
Definition 2.3: Neutrosophic Soft Set [12]
Let U be an initial universal set and E be a set of parameters. Assume, A c E. Let P(U)denotes the
set of all neutrosophic sets over U, where F is a mapping given by

F: A— P(0)
Definition 2.4: Accuracy Function [17]
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Accuracy function is used to convert neutrosophic number NFN into fuzzy number

[Ty +Ixc+Fx] }

(Deneutrosophication using Ar). A(F) = {x = 5

Ap represents the De-Neutrosophication of neutrosophic number into Fuzzy Number.

3. Calculations

In this section an algorithm is proposed to solve MCDM problem under neutrosophic environment.
3.1 Algorithm

Cell phone selection is a challenging problem in current generation. To solve this complexity, a few
methods regarding the usage of neutrosophic fuzzy TOPSIS ideas have been proposed. For the few
kinds of uncertainty within the selection method fuzzy linguistic method is used. The objective of the
study is to investigate the uncertainty in selection criteria of cell phone.

To solve this problem following algorithm is applied as in sequence.

Step 1:  defining a problem

Step 2:  Consideration of problem as MCDM (alternatives and attributes)

Step 3:  Assigning linguistic variables to alternatives and criteria’s / attributes

Step 4:  Substitution of NNs to linguistic variables

Step 5:  Conversion of NNs to fuzzy numbers by using accuracy function [?] defined as,

[Ty +Ix+Fx] }

AF) = {x = =2

Where T, ,1,,F, e NNs assigned by decision makers to each criteria individually
Step 6:  Apply TOPSIS technique
Step7: Arrange by ascending order and rank accordingly.

Step 8: Discussion

Defining
Assigning
X
Linguistic
Formulation as MCDM |
J
ﬂx
A
Computation Assion
Apply Algorithm ssigning
of Relative CLR A
Neutrosophic

el

Ranking of [ Conversion of NNs to Fuzzy No’s ]

Figure 1: Algorithm used in mobile selection, under neutrosophic softset environment
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3.2: Case Study
To discuss the;
e Validity
o Applicability

of the proposed algorithm, mobile selection is considered as a MCDM problem.

3.2.1 Problem Formulation

The mobile phone has been identified for choosing criterion and after that the criterion is depending
upon the public choice. The result gets from criterion, some mobile phone has been selected according
to their criterion. With invention of new technologies, the competition is raised upon in market it
makes more difficult for consumer to select the right phone. In fast growing market, we think that
the result got from fuzzy idea has been improved, so we applied Neutrosophic set to get more

accuracy in result. The aim of the study is to explore the accuracy in the selection of criteria of mobile

phone.
3.2.2 Parameters
Selection is a complex issue, to resolve this problem criteria and alternative plays an important role.

Following criteria and alternatives are considered in this problem formulation.

Criteria’s
Gy ¢ o o Cs Cs ¢
Ram Rom Processor Camera Dissiliz)Lay Model Price
Mobiles as Alternatives
M, M, M3 M, Ms Me
SAMSUNG NOKIA HTC HUAWEI Q-MOBILE RIVO

3.2.3 Assumptions
The decision makers {D,,D,, D3, D,} will assign linguistic values from Table .1 according to his own

interest, knowledge and experience, to the above-mentioned criteria and alternatives and shown in
Table.2.

Table 1: Linguistic variables, codes and neutrosophic numbers obtained by expert opinion

Sr # No Linguistic variable Code Neutrosophic Number
1 Very Low VL (0.1, 0.3,0.7)
2 Low L (0.3,0.5,0.6)
3 Satisfactory S (0.5,0.5,0.5)
4 High H (0.7,0.3,0.4)
5 Very High VH (1.0,0.1,0.2)

3.3 Application of Proposed Algorithm
Step 1: Problem consideration 3.2.

Step 2: Formulation and assumptions 3.2.1 and 3.2.2.
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Step 3: Assigning linguistic variables to each alternatives and criteria’s / attributes.

Table 2: Each decision maker, will assign linguistic values to each attribute, from Table .1

Strategies Dy D, Ds Dy

My VL 3 d 3

M, L H VH H
5 M, S vy VL vy
0 M, H s VL VL
© M, 7y L L L
M VL L $ $

M, L S H H
M, S H vy VH

% M, H vy VL S
i M, Vi S L H
© M, VL B S W
M, L vy H $

My $ VL VH H
& M, H L $ VH
% M, 7y S o .
2 M, S ¥ vy L
I M; H VH L S
© ~ ~ —
M, VH S H VL

M, VL H VH L

< M, L VH VL H
s M, s H v
5 M, H VH VL L
3 Ms VH VL L H
Mg VL $ L $

M, L | | H
N M, $ vy L vH
z Ms H $ VH VL
é M, VH H L VH
A M 3 vy H v
xE” M, VH VL L H

Step 4: Substitution of Neutrosophic Numbers (NNs) to each linguistic variable.
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Table3: Assign neutrosophic number to each linguistic value from table 1.
1 G G Ca Cs Co G
M, (0.1,0.3,0.7) (1,0.1,0.2) (0.7,03,04) (0.7,03,04) (0.505,0.5) (0.1,0.3,0.7) (0.7,0.3,0.4)
M, (0.3,050.6) (0.50.5,0.5) (0.1,0.3,0.7) (1,0.1,0.2) (0.7,03,04) (0.3,0.5,0.6) (0.1,0.3,0.7)
M; (0.5,0.5,0.5) (0.1,0.3,0.7) (0.3,0.5,0.6) (1,0.1,0.2) (0.7,03,04) (0.5,05,0.5) (1,0.1,0.2)
M, (0.7,03,04) (1,0.1,0.2) (0.5,0.5,0.5)  (0.3,05,0.6) (1,0.1,0.2) (0.7,03,04) (0.1,0.3,0.7)
M; (1,0.1,0.2) (0.3,05,0.6) (0.7,03,04) (0.5,05,0.5) (0.1,0.3,0.7) (1,0.1,0.2) (0.5,0.5,0.5)
Mg (0.5,0.5,0.5)  (0.1,0.3,0.7) (1,0.1,0.2) (0.7,03,04) (0.1,0.3,0.7) (0.5,0.5,0.5) (0.7,0.3,0.4)
Step 5: Conversion of fuzzy neutrosophic numbers NNs of step 4, into fuzzy numbers by using
accuracy function.
Ty+I+F.
Table: 4 After applied accuracy function the obtain result converted into fuzzy value
G G G Ca G Co G
M, 0.367 0.433 0.467 0.467 0.5 0.367 0.467
M, 0.467 0.5 0.367 0.433 0.467 0.467 0.367
M; 0.5 0.367 0.467 0.433 0.467 0.5 0.433
M, 0.467 0.433 0.5 0.467 0.433 0.467 0.367
M; 0.433 0.467 0.467 0.5 0.367 0.433 0.5
Mg 0.5 0.367 0.433 0.467 0.367 0.5 0.467
Step 6: Now we apply algorithm of TOPSIS to obtain relative closeness.
Table 5: Normalized decision matrices
Cl CZ Cg C4 CS CG C7
M; 0.327 0.410 0.422 0.413 0.468 0.327 0.437
M, 0.416 0.474 0.332 0.383 0.437 0.416 0.343
M; 0.446 0.348 0.422 0.383 0.437 0.446 0.405
M, 0.416 0.410 0.452 0.413 0.405 0.416 0.343
M; 0.386 0.443 0.422 0.442 0.343 0.386 0.468
Me 0.446 0.348 0.391 0.413 0.343 0.446 0437
Step 6.1: Calculation of weighted normalized matrix
Table6: Weighted normalized decision matrices
weight 0.2 0.3 0.17 0.02 0.25 0.05 0.01
Gy G G Ca G Co G
M, 0.0654 0.123 0.07174 0.00826 0.117 0.01635 0.00437
M, 0.0832 0.1422 0.05644 0.00766 0.10925 0.0208 0.00343
M; 0.0892 0.1044 0.07174 0.00766 0.10925 0.0223 0.00405
M, 0.0832 0.123 0.07684 0.00826 0.1015 0.0208 0.00343
Ms 0.0772 0.1329 0.07174 0.00884 0.08575 0.0193 0.00468
Mg 0.0892 0.1044 0.06647 0.00826 0.08575 0.0223 0.00437

Step 6.2: Calculation of the ideal best and ideal worst value,
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+

Y/ —Indicates the ideal (best)

\
7 =Indicates the ideal (worst)

Table 7: Ideal worst and Ideal best values

G G G Cy Cs Cs (o

M, 0.0654 0.123 0.07174 0.00826 0.117 0.01635 0.00437

M, 0.0832 0.1422 0.05644 0.00766 0.10925 0.0208 0.00343

Ms 0.0892 0.1044 0.07174 0.00766 0.10925 0.0223 0.00405

M, 0.0832 0.123 0.07684 0.00826 0.1015 0.0208 0.00343

Ms 0.0772 0.1329 0.07174 0.00884 0.08575 0.0193 0.00468

Mg 0.0892 0.1044 0.06647 0.00826 0.08575 0.0223 0.00437

v; 0.0892 0.1422 0.07684 0.0084 0.117 0.0223 0.00343
V., 0.0654 0.1044 0.05644 0.00766 0.08575 0.01635 0.00437

Step 6.3: Calculation of rank.

__ 5

;=

+ —
Sij+sij

Table 8: Calculation of rank by relative closeness

s S, S5 +Sz p Rank
M, 0.0316 0.0400 0.0716 0.5587 3
M, 0.0245 0.0843 0.1088 0. 3402 6
M, 0.0400 0.0374 0.0774 0.4832 4
M, 0.0249 0.0374 0.0623 0.6003 2
Ms 0.0671 0.0346 0.1017 0.7748 1
Mg 0.0500 0.0271 0.0771 0.3515 5

Step 7: Calculation of rank and discussion.

4. Result Discussion

Firstly, the generalized neutrosophic TOPSIS approach is used to simplify mobile selection MCDM
problem. In this calculation, the ranking of each mobile with respect to each criterion is represented
below in Table 8 and Figure 2. To test the validity and the implementation of the technique proposed
by Saqglain et. al. [17], in neutrosophic soft set environment and multi-criteria decision making, mobile
selection problem is considered. Result shows that generalized neutrosophic TOPSIS along with
proposed algorithm can be used to find best alternative.

Secondly, results are compared with [10], in which fuzzy multi-criteria group decision making
approach was used by considering same alternative and attributes. Graphical and tabular
comparison is presented in Table 8 and Figure 2, which shows that under Generalized TOPSIS and
Fuzzy TOPSIS M; and Ms are best alternative whereas, M, and M; is the worst selection
respectively.

If we compare the results of Generalized fuzzy TOPSIS and Fuzzy TOPSIS My, M, Ms has same raking
whereas, M,, M5, M.
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Result Comparison of Generalized
Fuzzy TOPSIS and Fuzzy TOPSIS

5
4
3
2
| i
. .
M1 M2 M3 M4 M5 M6

B G.F. TOPSIS mF.TOPSIS

Figure 2: Ranking comparison of alternatives

Table 9: Ranking comparison of alternatives using G.F. TOPSIS and F. TOPSIS

Generalized Fuzzy Fuzzy TOPSIS
Strategy TOPSIS-Result Ranking
Ranking
M, 3 3
M, 6 5
M, 2 2
M 1 1

5. Conclusions

In MCDM problems, TOPSIS is widely used to find the best alternative, whereas, due to the vague
and imprecise information in fuzzy environment, ranking of alternatives may not be accurate. Thus,
neutrosophic soft set environment plays a vital role in selection problem. In this article, firstly, an
algorithm is proposed based on accuracy function under neutrosophic soft set environment and to
check the validity of the proposed technique in this environment, mobile selection problem is
considered. Secondly, results are compared with same problem under FMCGDM [10] environment.
However, the article may open a new avenue of research in competitive Neutrosophic decision-
making arena. Thus, this proposed technique can be used in decision-makings such as supplier

selection, personal selection in academia and many other areas of management system.
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Abstract: In this paper, we present a single-valued Neutrosophic Hypersoft set, multi-valued
Neutrosophic Hypersoft set and tangent similarity measure for single-valued neutrosophic hypersoft
sets and its properties. Then we use this technique in an application namely selection of cricket
players for different types of matches (ODI, T20, and test) based on Neutrosophic Hypersoft set in
decision making of single-valued neutrosophic hypersoft sets. This technique will help us to decide
the best option for the players.
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1. Introduction

As the analysis of classical sets, fuzzy set [1] and intuitionistic fuzzy set [2], the neutrosophic set was
introduced by Smarandache [3, 4] to capture the insufficient, indicate, uncertain and conflicting
information. The neutrosophic set has three free parts, which are truth, indeterminacy and falsity
membership degree; subsequently, it is applied in a wide range, for example, basic decision-making
problems [5-20].

By accomplishing that the neutrosophic sets are difficult to be applied in some genuine issues
on account of truth, indeterminacy and falsity membership degree, Wang, Smarandache, Zhang, and
Sunderraman [21] presented the idea of a single-valued neutrosophic set. The single-valued
neutrosophic set can freely express truth-membership degree, indeterminacy-membership degree,
and falsity-membership degree and manages inadequate, uncertain and conflicting data. All the
aspects of the elements depicted by the single-valued neutrosophic set are entirely appropriate for
human intuition because of the flaw of information that human gets or sees from the surrounding.
The single-valued neutrosophic set has been growing quickly because of its wide scope of
hypothetical distinction and application zones, as discussed in [22-30].

The idea of similarity is significant in examining approximately every logical field. Literature

audit indicates that numerous strategies have been proposed for estimating the degree of similarity
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between fuzzy sets has been examined by Chen [32], Chen, et al., [33], Hyung et al. [34], Pappis and
Karacapilidis [35] and Wang [36]. It is also a powerful instrument in building multi-criteria decision-
making techniques in numerous regions, for example, therapeutic diagnosis, design
acknowledgment, grouping investigation, decision making, etc. But these strategies are not fit for
managing the similarity measures including indeterminacy. In the literature, few investigations have
studied to similarity measures for neutrosophic sets and single-valued neutrosophic sets [37-46].

Ye [47] present the distance-based similarity measure of single-valued neutrosophic sets
and applied it to the group decision-making problems with single-valued neutrosophic data. Broumi
and Smarandache [48] invent another similarity measure known as cosine similarity measure of
interval-valued neutrosophic sets. Ye [49] further considered and found that there exist a few flaws
in existing cosine similarity measure characterized in vector space [50] in certain circumstances. He
[49] referenced that they may deliver an unreasonable outcome in some real cases. To conquer these
problems, Ye [49] proposed improved cosine similarity measure dependent on cosine function,
including single-valued neutrosophic cosine similarity measures and interval neutrosophic cosine
similarity measures.

Working on the similarity measures Pramanik and Mondal [51] also present a cotangent
similarity measure of rough neutrosophic sets and their application to the medical field. Pramanik
and Mondal [52] also give tangent similarity measures between intuitionistic fuzzy sets and some of
its properties and applications.

Smarandache [53] presented a new technique to deal with uncertainty. He generalized the
soft set to hypersoft set by converting the function into a multi-decision function. In the same way,
we convert hypersoft set to neutrosophic Hypersoft set to overcome the uncertainty problems. [54]
introduced the TOPSIS by using accuracy function in his work and an application of MCDM is
proposed. Application of fuzzy numbers in mobile selection in metros like Lahore is proposed by
[55]. In medical the application of fuzzy numbers is proposed by Naveed et.al [56]. TOPSIS technique
of MCDM can also be used for the prediction of games, and it's applied in FIFA 2018 by [57].
prediction of games is a very complex topic and this game is also predicted by [58]. Many researches
presented theories along with application in neutrosophic environment [59-66].

1.1 Novelties
In this paper, we have continued the idea of intuitionistic tangent similarity measure to neutrosophic
class. We have characterized another similarity measure known as Tangent similarity measure for

neutrosophic Hypersoft set and its properties with the application.

2.Preliminaries
Definition 2.1: Neutrosophic Soft Set
Let U be the universal set and the set for respective attributes is given by E. Let P(U) be the set of
Neutrosophic values of U and A € E. A pair (F, ) is called a Neutrosophic soft set over U and its
mapping is given as

F: A - P
Definition 2.2: Hyper Soft Set
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Let U be the universal set and P(J) be the power set of U. Consider p!,p?,p*...p" for n > 1, be n
well-defined attributes, whose corresponding attributive values are respectively the set
P, P?,pP3..P" with PPnP/ =@, for i #j and i,je{1,2,3...n}, then the pair (F, P* x P? x P3 ..P™)
is said to be Hypersoft set over U where

F: P x P2 x P3 ...P™ - P(0)
Definition 2.3: Neutrosophic Hypersoft Set
Let U be the universal set and P(0) be the power set of U. Consider p',p?,p?..p" for n > 1, be n
well-defined attributes, whose corresponding attributive values are respectively the set
P, P?,P3 .. P* with PPnP/ =@, for i#j and i,je{1,2,3..n} and their relation P! X P? X
P3...P"™ = R, then the pair (F,R) is said to be Neutrosophic Hypersoft set (NHSS) over U where

F: P! x P2 x P3...P" - P(0) and

F(Ptx P2 x P?..P") = {< x, T(F®R)),I(F(R)), F(F(R)) >,x € U} where T is the membership value
of truthiness, I is the membership value of indeterminacy and F is the membership value of falsity
such that T,1,F: U - [0,1] also 0 < T(F(R)) + I(F(R)) + F(F(R)) < 3.

3. Calculations

Definition 3.1: Single valued Neutrosophic Hypersoft Set

Let U be the universal set and P(0) be the power set of U. Consider p,p?,p3..p" for n > 1, be n
well-defined attributes, whose corresponding attributive values are respectively the set
PL,P%,pP3..P" with PPnP/ =@, for i #j and i,je{1,23..n} and their relation P! X P? x
P3? ..P" = &, then the pair (F,R) is said to be Single valued Neutrosophic Hypersoft set (SVNHSS)
over U where

F: Pt x P2 x P? ..P" > P(U) and this mapping to P(0) is single-valued.

F(Ptx P2 x P? .. P") = {<x,T(F®R)),I(F(R)),F(F(R)) >,x € U} where T is the membership value
of truthiness, I is the membership value of indeterminacy and F is the membership value of falsity
such that T,1,F:U - [0,1] also 0 < T(E(R)) + I(F(R)) + F(F(R)) < 3.

Example 3.1:
Let & be the set of doctors under consideration given as
E — {dl, d2’ d3, d4’ dS}

also consider the set of attributes as

I = Qualification, |? = Experience, |3 = Gender,|* = Skills
And their respective attributes are given as
L' = Qualification
= {MBBS, MS diploma, Diploma of national board(DNB), Diploma in clinical research(DCR)}
L? = Experience = {5yr, 8yr, 10yr, 15yr}
L3 = Gender = {Male, Female}
L* = Skills = {Compassionate, Problem solving, Communicative, leadership}
Let the function be F:L' X L? X L3 x L* - P(§)

Below are the tables of their Neutrosophic values from different decision makers

Muhammad Saqlain and Sana Moin, Single and Multi-valued Neutrosophic Hypersoft set and Tangent Similarity Measure
of Single valued Neutrosophic Hypersoft Sets



Neutrosophic Sets and Systems, Vol. 32, 2020 320

Table 1: Decision maker Neutrosophic values for Qualification

L'(Qualification) dt d? d? d* d®
MBBS (0.4,05,0.8) (0.7,0.6,04) (04,05,0.7) (050.3,0.7) (0.5 0.3, 0.8)
MS diploma (0.5,0.3,0.6) (0.3,02,0.1) (0.3,0.6,0.2) (0.7,03,0.6) (0.5 04,0.5)
DNB (0.8,0.2,04) (09,05,03) (09,04,01) (0.6,03,0.2) (0.6,0.1,0.2)
DCR (0.9,03,01) (05,02,01) (08,05,02) (0.8,02,01) (0.7,04,0.2)

Table 2: Decision maker Neutrosophic values for Experience

L?(Experience) dt d? a3 d* d°
5yr. (0.3,0.4,0.7) (0.6,0.5,0.3) (0.5,0.6,0.8) (0.6, 0.4, 0.8) (0.3, 0.6,0.7)
8 yr. (0.4, 0.2, 0.5) (0.8,0.1,0.2) (0.4,0.7,0.3) (0.4,0.8,0.7) (0.7, 0.5, 0.6)
10 yr. (0.7,0.2,0.3) 0.9,0.3,0.1) (0.8,0.3,0.2) (0.5,0.4,0.3) (0.5,0.2,0.1)
15 yr. (0.8,0.2,0.1) (0.6,0.4,0.3) (0904,0.1) (0.6, 0.2,0.3) (0.5,0.3,0.2)

Table 3: Decision maker Neutrosophic values for Gender

L3(Gender) d? d? d3 d* d®
Male (0.5, 0.6, 0.9) (0.7,0.8,0.3) (0.6, 0.4, 0.3) (0.8,0.5,0.4) 0.9,0.2,0.1)
Female (0.6, 0.4, 0.7) (0.3,0.6,0.4) (0.8,0.2,0.1) (0.4, 0.5,0.6) (0.8,0.4,0.2)

Table 4: Decision maker Neutrosophic values for Skills
L*(Skills) d* d? d? d* d°

Compassionate  (0.6,04,0.5) (0.7,05,03) (0.6,04,03) (0.6,0.2,0.1) (04, 0.5 0.3)

Problem solving (0.8,0.2,04) (0.7,0.3,0.2) (0.8,0.3,0.1) (0.3,0.4,05) (0.3,0.50.8)

Communicative  (0.5,0.3,0.4) (0.6,0.3,04) (05,0.7,0.2) (0.8,0.4,0.1) (0.7,0.4,0.3)

Leadership (04,0.9,0.6) (0.8,04,0.2) (0.2,0.6,0.5) (0.7,05,0.2) (0.6,04,0.7)
Single valued neutrosophic hypersoft set is define as F: (L' x L* X L3 X L*) - P(§)

Let’s assume F(£) = F(DNB, 10 yr, male, compassionate) = {d'}
Then the single-valued neutrosophic hypersoft set of above-assumed relation is
F(£) = F(DNB, 10 yr,male, compassionate) = {
« d!, (DNB{0.8,0.2,0.4},10 yr{0.7,0.2, 0.3}, male{0.5, 0.6, 0.9}, compassionate{0.6, 0.4, 0.5}) >}

Its tabular form is given as

Table 5: Tabular Representation of Single Valued Neutrosophic Hypersoft Set

F(£) = F(DNB, 10 yr,male, compassionate) d!
DNB (0.8,0.2,0.4)
10 yr. (0.7,0.2,0.3)
Male (0.5, 0.6, 0.9)
Compassionate (0.6,0.4, 0.5)
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Definition 3.2: Multi-valued Neutrosophic Hypersoft Set

Let U be the universal set and P(U) be the power set of U. Consider p!,p?,p?...p" for n > 1, be n
well-defined attributes, whose corresponding attributive values are respectively the set
P, P2,P3..P" with PPnP/ =@, for i#j and i,je{1,2,3..n} and their relation P! X P? x
P3 .. P" =, then the pair (F,R) is said to be Single valued Neutrosophic Hypersoft set (SVNHSS)
over U where

F: P! x P2 x P ..P" - P(U) and this mapping to P(U) is multi-valued.

F(Ptx P2 x P? ..P") = {< x, T(F®R)),I(F(R)), F(F(R)) >,x € U} where T is the membership value
of truthiness, I is the membership value of indeterminacy and F is the membership value of falsity
such that T,I,F:U - [0,1] also 0 < T(F(B)) + I(F(R)) + F(F(R)) < 3.

Example 3.2:
Let £ be the set of doctors under consideration given as § = {d*,d? d3,d* d°}
also consider the set of attributes as

I = Qualification, |? = Experience, |3 = Gender,|* = Skills
And their respective attributes are given as
L' = Qualification
= {MBBS, MS diploma, Diploma of national board(DNB), Diploma in clinical research(DCR)}
L? = Experience = {5yr, 8yr, 10yr, 15yr}
L3 = Gender = {Male, Female}
L* = Skills = {Compassionate, Problem solving, Communicative, leadership}
Let the functionbe F:L' X L? X L3 X L* - P(§)
Below are the tables of their Neutrosophic values from different decision makers

Table 6: Decision maker Neutrosophic values for Qualification

L'(Qualification) dt d? d? d* d®
MBBS (0.4,0.5,0.8) (0.7,0.6, 0.4) (0.4,0.5,0.7) (0.5,0.3,0.7) (0.5,0.3,0.8)
MS diploma (0.5,0.3,0.6) (0.3,0.2,0.1) (0.3,0.6,0.2) (0.7,0.3,0.6) (0.5,04, 0.5)
DNB (0.8,0.2,0.4) (0.9,0.5,0.3) (0.9,04,0.1) (0.6,0.3,0.2) (0.6,0.1,0.2)
DCR (0.9,0.3,0.1) (0.5,0.2,0.1) (0.8,0.5,0.2) (0.8,0.2,0.1) (0.7,0.4, 0.2)
Table 7: Decision maker Neutrosophic values for Experience
L?(Experience) d? d? d3 d* d°
5yr. (0.3,0.4,0.7) (0.6,0.5,0.3) (0.5,0.6,0.8) (0.6, 0.4, 0.8) (0.3,0.6,0.7)
8 yr. (0.4,0.2,0.5) (0.8,0.1,0.2) (0.4,0.7,0.3) (0.4,0.8,0.7) (0.7, 0.5, 0.6)
10 yr. (0.7,0.2,0.3) (0.9,0.3,0.1) (0.8,0.3,0.2) (0.5,0.4,0.3) (0.5,0.2,0.1)
15 yr. (0.8,0.2,0.1) (0.6,0.4, 0.3) (0.904,0.1) (0.6,0.2,0.3) (0.5,0.3,0.2)
Table 8: Decision maker Neutrosophic values for Gender

L3(Gender) d? d? d3 d* d®
Male (0.5, 0.6, 0.9) (0.7,0.8,0.3) (0.6,0.4, 0.3) (0.8,0.5,0.4) (0.9,0.2,0.1)
Female (0.6,0.4,0.7) (0.3,0.6,0.4) (0.8,0.2,0.1) (0.4, 0.5, 0.6) (0.8,0.4,0.2)
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Table 9: Decision maker Neutrosophic values for Skills

L*(Skills) d? d? d3 d* d®
Compassionate (0.6,04,0.5) (0.7,0.5,0.3) (0.6,0.4, 0.3) (0.6,0.2,0.1) (0.4,0.5,0.3)
Problem solving (0.8,0.2,0.4) (0.7,0.3,0.2) (0.8,0.3,0.1) (0.3,04, 0.5) (0.3,0.5,0.8)
Communicative (0.5,0.3,0.4) (0.6,0.3,0.4) (0.5,0.7,0.2) (0.8,04,0.1) (0.7,04, 0.3)
Leadership (0.4,0.9,0.6) (0.8,0.4,0.2) (0.2,0.6,0.5) (0.7,0.5,0.2) (0.6,0.4,0.7)

Multi-valued neutrosophic hyper soft set is define as
F:r(l! x 12X I3 x LY - P(§)
Let’s assume F(£) = F(DNB, 10 yr, male, compassionate) = {d*, d*}
Then multi-valued neutrosophic hyper soft set of above assumed relation is
F(£) = F(DNB, 10 yr,male, compassionate) = {
« d!, (DNB{0.8,0.2,0.4},10 yr{0.7,0.2, 0.3}, male{0.5, 0.6, 0.9}, compassionate{0.6, 0.4, 0.5}) >,
&« d*(DNB{0.6,0.3,0.2}, 10 yr{0.5, 0.4, 0.3}, male{0.8, 0.5, 0.4}, compassionate{0.6,0.2,0.1}) >}

Its tabular form is given as

Table 10: Tabular Representation of Multi-valued Neutrosophic Hypersoft Set

F(£)

d! d*
= F(DNB, 10 yr, male, compassionate)
DNB (0.8,0.2,0.4) (0.6,0.3,0.2)
10 yr. (0.7,0.2,0.3) (0.5,0.4,0.3)
Male (0.5, 0.6, 0.9) (0.8,0.5,0.4)
Compassionate (0.6, 0.4, 0.5) (0.6,0.2,0.1)

3.3: Tangent similarity measures for single valued neutrosophic hypersoft set
Let R=<xTR(ER)), IR(ER)), FRE®)) > and §=<xT5(E®)),IS(E®)),FS(E®)) > be two
single valued neutrosophic hypersoft set(SVNHSS) for F(f3). Tangent similarity measure for these

sets to measure the similarity between them is presented as

Tsynnss(R ) =< x.:;Z?zl [1 —tan (n(lTﬁ(HB)i)_TS(F(B)i)|+|Iﬁ(g(g)i1)2_lg(g(g)i)|+|Fﬁ(¥(g)i)_Fg(F(B)i)D)] > , x€
F(3)
3.3.1: Proposition
Tangent similarity measure between two single valued Neutrosophic hypersoft set TSVNHSS(I'(, S)
satisfies the following properties.

1. 0<Tyuuss(RS)<1

2 TSVNHSS(R, S) =1lif andonlyif R=§

3. TSVNHSS(R' S) = TSVNHSS(S: R)

4. If O is a SVNHSS and RcSc 0 then Teuuss(R 0) < Toywuss(R,S) and Teyyuss(R 0) <

Tsynnss(S, 0).

It is easy to see that the define similarity measure satisfies the above properties easily so the proofs

are left for the reader.
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3.4: Decision making using single-valued neutrosophic hypersoft set based on the tangent
similarity measure

Let L', L% L? ... L" be the distinct set of participants, M*,M? M3 .. M™ by the set of norms for
participants and N*,N?,N3.. N" be the set of options for each participant. By using a decision-
making technique, the decision-makers add ranking of options concerning each participant. This
ranking gives the effectiveness of participants L against the norms of participants M then theses
values associated with the options for multiple attribute decision making. Algorithm of this
procedure are given below

3.4.1: Algorithm

Step 1: Determine the association between participants and the norms.

The association between participants and the norms is given by the below decision matrix in terms

of single-valued Neutrosophic hyper soft sets.

Table 21: Association between participants and the norms in term of SVNHSS

M1 M? M"
Ll (Tllv [11!F11> (T121112v F12) (Tln! Iln! Fln)
LZ (T211121vF21) (T22v[22:F22> (TZn'IZn'FZn)
Lm (Tmlrlml'Frru) (TmZ»ImZIFmZ) (Tmnﬁlmn'an>

Step 2: Determine the association between norms and options.
The association between the norms and the options is given by the below decision matrix in terms of

single-valued Neutrosophic hypersoft sets.

Table 22: Association between the norms and the options in term of SVNHSS

N1 N? Nk
M1 (T1111111F11> (T1211121F12) (T1k:11k:F1k>
MZ (T2111211F21) (T221[22:F22> (TZk!IZk!FZR)
M" (Tnlr Inl: Fnl) (Tnz: Ian FnZ) <Tnk' Ink' Fnk)

Step 3: Determine the association between participants and options.
The association between participants and the options is determined with the help of tangent

similarity measures for single-valued neutrosophic hypersoft numbers.
Step 4: Decision of best option
The best option is decided by arranging the results in the descending orders and choosing the highest

value as the highest value represents the best option for the participants.
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MADM Problem
(Multi Attribute Decision Making)

Sat of participants Set of norms Set of options
Relation betwesn participants Eelation betwesn the norms
and the norms and optons
Eelation betwesn parficipants
and the cptions with the help

of tanzent similaritv measures

Decision of best option

Fesult

Figure 1: Algorithm design for the proposed technique

4. Example

We have seen a large number of the matches that a team loses because of improper selection of
players. we can't choose which player is perfect for which sort of matches like the test, ODI and T20
due to the presence of the huge amount of uncertainties and a large volume of information about the
players. With such a piece of vast information, we are unable to focus on every aspect because we
may have the cases in which we have the same truth membership, indeterminate membership, and
falsity membership values.
To overcome this issue, let us consider an illustrative example by using proposed method for the
selection of the players in any type of match which is significant for cricket board as cricket board is
the administering body for cricket in the state and the selection of cricket crew is likewise a key duty
of cricket board. For this purpose, let us consider two sets, i, and 1. p be the set of players and n be
the set of type of matches played by players i.e.

u= {Pl, PZ, P3, P4, PS, P6,P7,P8,P9, PlO, P11,P12,P13} and

n = { Test match, ODI match, T20 match}.
C be the set of attributes corresponding to u and n.

¢! = Players Strike Rate,{? = Players Average, (> = Players Economy, {* = Players attitude,

{® = Players Fitness test
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And respective attributes for the above-mentioned attributes are given as
¢! = Players Strike Rate(PSR) = {below 40,40 — 60,60 — 80,80 — 100,100 — 150, 150 above}
62 = Players Average(PAv) = {below 30,30 — 50,50 — 70,70 above}
¢3 = Players Economy(PE) = {below 3,3 — 7,7 — 13, above 13}
¢* = Players attitude(PA) = {coperative, rude, emotional, moody}
6> = Players Fitness test(PFT) = {passed, not passed}
Then Neutrosophic Hypersoft set is given as
F: (6" x 6* x ¢ X ¢* x 6%) > P(w)
And F: (¢! x ¢? x ¢* x 6" x 6°) > P(m)
Let’s assume F(a) = F(100 — 150,30 — 50, above 13, cooperative, passed) = {P, P3, P®, P8, P%}
and
F(B) = £(100 — 150,30 — 50, above 13, cooperative, passed) = {Test match, ODI match, T20 match}
Now using the proposed tangent similarity measures for single-valued neutrosophic hypersoft sets,
we will decide which player is best for which type of match. For this purpose first we will provide
ranking between {100 — 150,30 — 50, above 13, cooperative,passed} and {P!, P3 P¢ P% P°} in
terms of the single-valued neutrosophic hypersoft sets. In the 2rd step we will provide ranking
between {100 — 150,30 — 50, above 13, cooperative, passed} and
{Test match, ODI match, T20 match} . In the 3 step, we will find a correlation between
{P1,P3, P% P8 P°} and{Test match, ODI match, T20 match} using Tgyyyss- In the last step, we will
decide by arranging the results in the descending order and selecting the highest value.
Step 1: Determine the association between {P1,P3 P®P% P and {100-150,30—
50,above 13, coperative, passed}.
The association between {100 — 150,30 — 50, above 13, cooperative, passed} and
{P,P3,P% P8 P°} is given by the below decision matrix in terms of single-valued Neutrosophic

hypersoft sets.

Table 13: Association between {P!, P3,P®, P8 P°} and {100 — 150,30 — 50, above 13, coperative, passed} in
term of SVNHSS

100 — 150(PSR) 30 —50(PAv) Above 13(PE) Cooperative (PA) Passed (PFT)

pt (0.7,0.3,0,2) (0.4,0.5,0.7) (0.5,03,0.8)  (0.7,0.6,0.4) (0.5,0.3,0.7)
p3 (0.5,0.4,0.7) (0.3,0.6,0.2) (0.5,04,05)  (0.3,0.2,0.1) (0.7,0.3, 0.6)
pe (0.8,0.2,0.1) (0.9,0.4,0.1) 0.6,0.1,02)  (0.9,0.5,0.3) (0.6,0.3,0.2)
ps (0.9,0.1,0.3) (0.8,0.5,0.2) (0.7,04,02)  (0.5,0.2,0.1) (0.8,0.2,0.1)
P° (0.6,0.3,0.3) (0.5,0.4,0.3) (0.8,0.3,0.2) (0.9,0.2,0.1) (0.4,0.5,0.7)

Step 2: Determine the association between {Test match, ODI match, T20 match} and {100 —
150,30 — 50, above 13, coperative,passed}.

The association between {100 — 150,30 — 50, above 13, cooperative, passed} and
{Test match, ODI match, T20 match} is given by the below decision matrix in terms of single-valued

Neutrosophic hypersoft sets.
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Table 14: Association between {100 — 150,30 — 50, above 13, coperative, passed} and

{Test match, ODI match,T20 match} in term of SVNHSS

Test match ODI match T20 match
100 — 150(PSR) (0.7,0.5,0.3) (0.6,0.4, 0.3) (0.4,0.5,0.3)
30 — 50(PAv) (0.7,0.3,0.2) (0.8,0.3,0.1) (0.3,0.5,0.8)
Above 13(PE) (0.6,0.3,0.4) (0.5,0.7,0.2) (0.7,04,0.3)
Cooperative (PA)  (0.5,0.4, 0.5) (0.9,0.2,0.1) (0.5,0.2,0.1)
Passed (PFT) (0.6,0.4, 0.7) (0.3,0.6,0.4) (0.8,0.2,0.1)

Step 3:
{P1, P3,P%, P8 P°).

Determine the association between {Testmatch, ODI match, T20 match} and

The association between {P!,P3,P% P8 P°} and{Test match, ODI match, T20 match} is determined

with the help of tangent similarity measures for single-valued neutrosophic hypersoft numbers.

Table 14: Association between {P1, P3,PS, P8 P°} and {Test match, 0DI match, T20 match} using tangent

similarity measure for SVNHSS

Test match ODI match T20 match
pt 0.8728 0.7752 0.8137
P3 0.8513 0.8143 0.8627
P 0.8786 0.8519 0.7798
P 0.8463 0.8402 0.8875
p° 0.8729 0.8997 0.8289

Step 4: Decision of best option

The best option is decided by choosing the highest value as the highest value represents the best
match type for the players. The table shows that player P! should be selected for a test match, player
P3? should be selected for the T20 match, player P® should be selected for a test match, player P®
should be selected for T20 match and player P° should be selected for ODI match.

5. Conclusions

Decision-making is a complex issue due to vague, imprecise and indeterminate environment
specially, when attributes are more than one, and further bifurcated. Neutrosophic softset
environment cannot be used to tackle such type of issues. Therefore, there was a dire need to define
a new approach to solve such type of problems.

In this paper, we have proposed a single-valued Neutrosophic hypersoft set and multi-valued
neutrosophic hypersoft set, then using a single-valued Neutrosophic hypersoft set we present a
tangent similarity measure and some of its properties. We have also presented an application namely
selection of cricket team players for any type of match based on multi-attribute decision making using

tangent similarity measure. The concept of this paper is to make our decision more precise.
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Abstract: Neutrosophic sets are a generalization of the crisp set, fuzzy set, and intuitionistic fuzzy
set for representing the uncertainty, inconsistency, and incomplete knowledge about the real world
problems. This paper aims to characterize the solution of complex programming (CP) problem with
imprecise data instead of its prices information. The neutrosophic complex programming (NCP)
problem is considered by incorporating single valued trapezoidal neutrosophic numbers in all the
parameters of objective function and constraints. The score function corresponding to the
neutrosophic number is used to transform the problem into the corresponding crisp CP. Here,
Lexicographic order is applied for the comparison between any two complex numbers. The
comparison is developed between the real and imaginary parts separately. Through this manner,
the CP problem is divided into two real sub-problems. In the last, a numerical example is solved for
the illustration that shows the applicability of the proposed approach. The advantage of this
approach is more flexible and makes a real-world situation more realistic.

Keywords: Complex programming; Neutrosophic numbers; Score function; Lexicographic order;
Lingo software; Kuhn- Tucker conditions; Neutrosophic optimal solution

1. Introduction

In many earlier works in complex programming, the researchers considered the real part only
of the complex objective function as the objective function. The constraints of the problem are
considered as a cone in complex space C". Since the concept of complex fuzzy numbers was first
introduced [17], many researchers studied the problems of the concept of fuzzy complex numbers.
This branch subject will be widely applied in fuzzy system theory, especially in fuzzy mathematical
programming, and in complex programming too.

Complex programming problem was studied first by Levinson who studied the linear
programming (LP) in complex space [39]. The duality theorem has extended to the quadratic complex
programming by an adaption of the technique, which introduced by Dorn [27, 22]. The linear
fractional programming in complex space has proposed [45]. Linear and nonlinear complex

programming problems were treated by numerous authors [24, 33- 37, 41]. In applications, many
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practical problems related to complex variables, for instance, electrical engineering, filter theory,
statistical signal processing, etc., were studied.

Some more general minimax fractional programming problem with complex variables was
proposed with the establishment of the necessary and sufficient optimality conditions [36, 37]. A
certain kind of linear programming with fuzzy complex numbers in the objective function coefficients
also considered as complex fuzzy numbers [52]. The hyper complex neutrosophic similarity measure
was proposed by numerous authors [29]. Also, they discussed its application in multicriteria decision
making problem. There was proposed an interval neutrosophic multiple attribute decision-making
method with credibility information [50]. Later, the multiple attribute group decision making based
on interval neutrosophic uncertain linguistic variables was studied [51].

An extended TOPSIS for multi-attribute decision making problems with neutrosophic cubic
information was proposed [42]. A single valued neutrosophic hesitant fuzzy computational
algorithm was developed for multiple objective nonlinear optimization problem [9]. A computational
algorithm was developed for the neutrosophic optimization model with an application to determine
the optimal shale gas water management under uncertainty [10]. The interval complex neutrosophic
set was studied by the formulation and applications in decision-making [11]. A group decision-
making method was proposed under hesitant interval neutrosophic uncertain linguistic environment
[40]. The neutrosophic complex topological spaces was studied, and introduced the concept of
neutrosophic complex ay connectedness in neutrosophic complex topological spaces [30].

A computational algorithm based on the single-valued neutrosophic hesitant fuzzy was developed
for multiple objective nonlinear optimization problems [9]. A neutrosophic optimization model was
formulated and presented a computational algorithm for optimal shale gas water management under
uncertainty [10]. A multiple objective programming approach was proposed to solve integer valued
neutrosophic shortest path problems [32]. Some linguistic approaches were developed to study the
interval complex neutrosophic sets in decision making applications [39].

Neutrosophic sets were studied to search some applications in the area of transportations and
logistics. A multi-objective transportation model was studied under neutrosophic environment [43].
The multi-criteria decision making based on generalized prioritized aggregation operators was
presented under simplified neutrosophic uncertain linguistic environment [46]. Some dynamic
interval valued neutrosophic set were proposed by modeling decision making in dynamic
environments [48]. A hybrid plithogenic decision-making approach was proposed with quality
function deployment for selecting supply chain sustainability metrics [1]. Some applications of
neutrosophic theory were studied to solve transition difficulties of IT-based enterprises [2].

Based on plithogenic sets, a novel model for the evaluation of hospital medical care systems was
presented [3]. Some decision making applications of soft computing and IoT were proposed for a
novel intelligent medical decision support model [4]. A novel neutrosophic approach was applied to
evaluate the green supply chain management practices [5]. Numerous researchers studied the under
type-2 neutrosophic numbers. An application of under type-2 neutrosophic number was presented
for developing supplier selection with group decision making by using TOPSIS [6]. An application
of hybrid neutrosophic multiple criteria group decision making approach for project selection was
presented [7]. The Resource levelling problem was studied in construction projects under

neutrosophic environment [8].

Hamiden Abd El- Wahed Khalifa, Pavan Kumar and Florentin Smarandache, On Optimizing Neutrosophic Complex
Programming Using Lexicographic Order


http://fs.unm.edu/NSS/NeutrosophiComplex.pdf
http://fs.unm.edu/NSS/NeutrosophiComplex.pdf
javascript:void(0)
javascript:void(0)

Neutrosophic Sets and Systems, Vol. 32, 2020 332

The N-valued interval neutrosophic sets with their applications in the field of medical diagnosis was
presented [16]. Based on the pentagonal neutrosophic numbers, the de-neutrosophication technique
was proposed with some applications in determining the minimal spanning tree [18]. The pentagonal
fuzzy numbers were studied with their different representations, properties, ranking, defuzzification.
The concept of pentagonal fuzzy neutrosophic numbers was proposed with some applications in
game and transportation models [19- 20]. Various forms of linear as well as non-linear form of
trapezoidal neutrosophic numbers, de-neutrosophication techniques were studied. Their application
were also presented in time cost optimization technique and sequencing problems [21]. The
parametric divergence measure of neutrosophic sets was studied with its application in decision-
making situations [25]. A technique for reducing dimensionality of data in decision-making utilizing
neutrosophic soft matrices was proposed [26].

In this paper, we aim to characterize the solution of complex programming (NCP) neutrosophic
numbers. The score function corresponding to the neutrosophic number is used to convert the
problem into the corresponding crisp CP, and hence lexicographic order used for comparing between
any two complex numbers. The comparison developed between the real and imaginary parts
separately. Through this manner, the CP problem is divided into two real sub-problems.

The outlay of the paper is organized as follows: In section 2; some preliminaries are presented. In
section 3, a NCP problem is formulated. Section 4 characterizes a solution to the NCP problem to
obtain neutrosophic optimal solution. In section 5 two numerical examples are given for

illustration. Finally some concluding remarks are reported in section6.

2. Preliminaries

In order to discuss our problem conveniently, basic concepts and results related to fuzzy
numbers, trapezoidal fuzzy numbers, intuitionistic trapezoidal fuzzy numbers, neutrosophic set, and
complex mathematical programming are recalled.

Definition 1. (Trapezoidal fuzzy numbers, Kaur and Kumar [31]). A fuzzy number
A= (r,s,t,u) is a trapezoidal fuzzy numbers where I,S,t,u € R and its membership
function is defined as:
(==, r<x<s,
S—r
_ 1, s<x<t,
IJ-/T\(X) — yu—=x

—,t<x<uy,
u—t

0, otherwise,

Definition 2 (Intuitionistic fuzzy set, Atanassov, [12]). A fuzzy set A is said to be an intuitionistic

~IN ~IN
fuzzy set A of a non empty set X if A = {(X, M, pEIN) X E X}, where Ly, and pn are

membership and nonmembership functions such that N, PRIN: X—[0,1] and 0 < pziv +

paiNn < 1, forall X € X.
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~IN
Definition 3 (Intuitionistic fuzzy number, Atanassov, [13]). An intuitionistic fuzzy set A of R is

called an Intuitionistic fuzzy number if the following conditions hold:
1. There exists ¢ € R:pzin(c) = 1, and pzin(c) = 0.
2. pxmn: R - [0,1] is continuous function such that
0 < pzgin+pgn <1 forall X €X

3. The membership and non-membership functions of EIN are:
0, - x<rT
h(x), r<x<s
pgiN(x) = 1, X=Ss
| 1), s<x<t
t 0, t<x< oo,
(0 —oo< x<a
| f(x), as<x<s
pgin(x) = 1, X=S
g(x), s<x<b
0, b<x< o,

Where f,g, h,1: R - [0,1], h and g are strictly increasing functions, 1 and f are strictly
decreasing functions with the conditions0 < f(x) + f(x) < 1,and0 < I(x) + g(x) < 1.

Definition 4 (Trapezoidal intuitionistic fuzzy number, Jiangiang and Zhong, [28]).

~IN
A trapezoidal intuitionistic fuzzy number is denoted byB = (T, s,t, 1), (a,s,t,b), where a < r <

s <t < u < b with membership and nonmembership functions are defined as:

X-r

—_—, r<x<s,
S—r
" ) 1, s<x<t,
RINT = -
B H' t<x<u,
0, otherwise,

s—
—X, asx<s,
sS—a

0 ) 0, s<x<t

RINT = —
? =, t<x<b,

1, otherwise,

Definition 5 (Neutrosophic set, Smarandache, [44]). A neutrosophic set B of non-empty set X is
defined as:
B = {1 n(),] NG, Von(x)): X € X, Tn(x), ] v (), Von(x) € ]0-, 17}, where
) E ) E ) B . ) ]_3 ) ]_3 ) E - 7
IEN(X)‘]EN(X)’ and VEN (x) are truth membership function, an indeterminacy- membership

function, and a falsity- membership function and there is no restriction on the sum of
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NG, ] ), and V(%) , so 07 S TG +] @)+ Vin(x) < 3", and 0,17 is a

nonstandard unit interval.

Definition 6 (Single-valued neutrosophic set, Wang et al., [49]). A Single-valued neutrosophic set

B VNof anon empty set X is defined as: ESVN = {(X, IBN (%), ]BN (%), VBN x)):x€ X}, where

IEN(X)’]EN(X)’ and VEN(X) € [0,1] foreach x € X and 0 < Ign(x) + Jpn (%) + VEN(X) <3.

Definition 7 (Single-valued neutrosophic number, Thamariselvi and Santhi, [47]). Let Ty, g, W; €
[0,1] and 1,s,t,u € R such thatr < s < t < u. Then a single valued trapezoidal neutrosophic

~N
number, b = ((1,s,t, 0): T Pp W ) is a special neutrosophic set onIR, whose truth-membership,
indeterminacy-membership, and falsity- membership functions are

-r

(TBN(E), r<x<s
l s

TR s<x<t
N _ b =&=
up (x) = o
|TBN(—), t<x<u
u—-t
0, otherwise,
S=X+@xN(X—T)
—b - r<x<s
S—r
N _ PgN, s<x<t
Pb () =1 X—t+pgn(uU-x)
—, t=<x<u
u-—-t
\ 1, otherwise,
S—X+weN(X-T)
— b r<x<s
S—r
N WEN, s<x<t
Op (X) ~ \x-tros (u—x)
bN
——, t<x<u
u-t
1, otherwise.

Where T, (O] and W denote the maximum truth, minimum-indeterminacy, and minimum falsity

membership degrees, respectively. A single-valued trapezoidal neutrosophic number
~N
b =((,s,tu): TBN,(pBN,(DBN ) may express in ill- defined quantity about b, which is

approximately equal to [S, t].

~N ~N r 1] ! !
Definition 8. Letb = <(r‘s’t’u)'TBN‘(pBN’wBN ), and d = ((r,s,t,u). taN,(paN,ooaN) be

~N
two single-valued trapezoidal neutrosophic numbers and v # 0. The arithematic operationson b ,

~N
and d are

. bBN@®dY=((r+r,s+s,t+t,u+u); Tsn ATaN, @pn V @gn, 0N V OgN )

2. bBNedV=(r—u,s—t,t—s,u —r); TpN ATaN, PpN V QaN, WgN V 3N ),
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EN @ gN { ((rr', ss’, tt', uu’); TeN A TGN, QN V @gN, wpN V wgn ), u, u’ >0
3. ® T ((rd, sty st ru’); TN ATy, @pN V @gn, N V wgn ), u <0, u' >0
((uu',ss’, tt', 1r"); TN A TGN, QN V @gN, wpN V ogn ), u < 0, u’ <0,
SN N ((r/u', s/t t/s",u/r'); Tpn ATgn, PN V @y, wpN V o), u, u’ > 0,
4. bR Od" = ((u/u',t/t',s/s',1/1"); Tegn ATgn, PN V @gn, wpN V ooge ), u < 0, u' > 0,
(Qu/r',t/s',s/t',r/u’); Tgn ATgn, PN V @gn, wpN V ooge ), u < 0, u' <0,
n (kr,ks, kt, k); T @y O k>0,

(ku, kt, ks,kr); T 0,0 k<O,

Definition 9 (Score function of single-valued trapezoidal neutrosophic number, Thamaraiselvi and

Santhi [47]). A two single-valued trapezoidal neutrosophic numbers b, and d can be compared

based on the score function as

Score function SC(BN) = (%j[”””‘l]x[“w +(1-pg (x)+(1—cBN (x)]

Definition 10. (Thamaraiselvi and Santhi, [47]). The order relations between b"and d™ based on

SC (BN ) are defined as:

1. If SC(BN)<SC(€1N)then BN < adv

2. If sc(BN):sc(aN)then b ~d", and

3. If SC(BN)>SC(&N)then BN = avN

3. Problem definition and solution concepts

Consider the following single -valued trapezoidal neutrosophic (NCP) problem
(NCP) min FY(x)= " (x)+iw"(x)

Subject to (1)

where

n n n n

VN(X):ZEJN X;, \X/N(x):zajN X, P (x) XjTﬁer Xj,q~rN (x)= ijéIjN X; are

=1 =1 j=1 j=1

~ ~ - ~ ~ .~ ~ AT
SN X N ~N xNjN N TN NI [N N N N
convex functions onXN,Cj ,dj s Ay € lr =(ll oly yeensl ) ,hr =(/’l ,h2 ,...,hn )

are single-valued trapezoidal neutrosophic numbers.
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Definition 11. Lexicographic order of two complex numbers Z; = a+ib, and Z,=¢C +id is

definedas Z,<Z,<>a<Cand b<d.

Definition 12. A neutrosophic feasible point X’ is called single-valued trapezoidal neutrosophic

optimal solution to NCP problem if:
A (X) <" (X),and wh (Xo ) <wh (X) foreach xe X".

According to the score function in Definition 9, the NCP problem is converted into the following crisp

CP problem as

Subject to (2)

4. Characterization of neutrosophic optimal solution for NCP problem

To characterize the neutrosophic optimal solution of NCP problem, let us divide the CP problem

into the following two subprobems

(P,) Min (V)

v

Subject to (3)

() Min fv)
Subject to (4)

xeX:{xeR" :fr(x)=pr (x)+iqr (x)Slr +ih.,r :l,2,...,m}.
Definition13. x° € X issaid to be an optimal solution for CP problem if and only if v (X) <v (X)

and W(XQ)SW(X)for each x e X.

Let us denote SV and SW be the set of solution for PV and P wrespectively, i.e.,

®)
S ={x* eX: V(X*)SV(X); for allxeX}. (6)

w

Hamiden Abd El- Wahed Khalifa, Pavan Kumar and Florentin Smarandache, On Optimizing Neutrosophic Complex
Programming Using Lexicographic Order



Neutrosophic Sets and Systems, Vol. 32, 2020 337

Lemma 1. For SV M SW # ®, the solution of the CP problem is embedded into SV ﬁSW.
Proof. Assume that X be a solution of CP problem this leads to V(xA ) < V(X);Vx eX i e,
X ESV).Similarly, W()CA)SW(X);VX eX (.e, X e SW)Then, X € S, NS,
Lemma 2. If SV and SW are open, SV mSW = @, and V, W are strictly convex functions on X then
X € SV is a solution of a conjugate function F(X) = V(X) -iw (X)
Proof. Since X ESV, then V(XO)SV(X);VX eX . Also,

V(XO)SV(X*);VX*GSV cX (7)

But X e Swwhich means that W(X*) < V(Xc);V X eSS, cX and —iw (x*) >—iw (X)
i.e.,
—iw (XO)S—iw(x*) ®)
From (7) and (8), we get
V(Xo)—iw (XO)SV(X*)—Z'W (x*);Vx* eS, . le,
X € SV is a solution of a conjugate function F(X) = V(X) —-iw (X) . Now we will prove that there
isno ¥ €Xand X € SV such that:
l_:(f)=v()€)—iw()f)Sl_:(Xo)=V(x°)—iw(xo). 9)
There are two cases:

Case 1: Assume that xe X ¥ #5,, x 5 and v(¥)=iw(¥)<v(x")=iw(x")ie,
w(x°)£w()€ ). From the strictly convexity of the function W(X) and S, is open, then
w(rf + (1—t)x°)<rw ()E)+(1—1:)w(x°), 0< 7 <1, this leads to

w(td + (1-1)x ) <ow (£)+(1-1)w(¥)i.e,

For certain Tsuch that TX + (1 - ’E) X €8S, ,we have
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w(rx” +(1-1) x°)<w (X) .Which contradicts to X €S, ie, there is no
X eX, x ¢S, ¥ €S, such that:

F(#)=v(¥)—iw(¥)<F(x")=v(x")-iw(x).
Case 2: Assume that X €X ,X €S ,X ¢S, and v()f)—iw(f)<v(x°)—i w(x°)i.e.,
v (£)<v(x"), and w (x")<w (F).Since the function v(x) s strictly convex and S, is open,

then

V(‘E X + (l—r))f)<rv (X°)+(l—t)v(f),0£r£1This leads to
V(‘E X + (l—r)x’)<rv (x°)+(1—t)v()€), l.e., for certain 7, We have
TXO+(1—T))5 GSV,suchthat Txv+(1—”l')xA ESV ,we have

V(’E X +(l —T))f ) < V(Xo) . Contradicts that X € S, .

Thus, there is no X €X such that:
V()f)—iw()f)<v(xo)—iw(xo)

5. Numerical examples

Examplel. (Illustration of Lemmal)

Consider the following complex problem
min (cosx +1 sinx)
Subject to (10)
xeX={xeR:0<x<r|
Problem (10) is divided into the following two problems as:
(PV) min cosx

Subject to (€h))

Subject to (12)
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The optimal solution of problem (11) is X=7 € Sv , 1. e, SV = {ﬂ'} Also, the
optimal solution of problem (12) is x=0,7, i. e, SW = {0,72' } Thus, the optimal solution of

problem (10)is X=7 €S NS, .

Example2. (Illustration of Lemma2)

Consider the following NCP problem:
Min FN (x)= (51NX1 +¢,Vx, ) +i(c~1le1 —aszz)

Subject to (13)

Where,

Using the score function of the single- valued trapezoidal neutrosophic number introduced in

definition9, problem (13) becomes:
Min F(x)=(3x,+x,)+i(5x,—11x,)
Subject to (14)
X; +X; +i(x, —x, ) <5+i.
According to the Lexicographic order, the problem is divided into the following two subproblems as:
(Pv) Min V(X):Sx1 +X,

Subject to (15)
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2 2
X, +X2 SS, X, =X, Sl,and

(P ) Min W(X)=5X1—11X2

w
Subject to (16)
x> +x2<5x,—x, <1
1 2 =& TRy =1,

By applying the Kuhn- Tucker conditions [14, 22], the optimal solutions of problems (15), (16) and

problem (9) are illustrated in the following tables.

Table 1. The set of solution of (P,)

Sy Optimum value

{(_2’_1)} - N PV = -7
P,” =(—34,-23,-17,—-10;0.3,0.6,.06)

Table 2. The set of solution of (P,,)

S Optimum value

{(—2,1)} P, = —-21

B," = (—60,—44,—34,—24;0.6,0.3,0.4)

Therefore, S, NS, = @ and the solution of problem S, is not a solution of the conjugate function

v(x) —iw(x) , because of v(x), and w(x) are not strictly convex functions.

6. Concluding Remarks

In this paper, the solution of complex programming (NCP) with single valued trapezoidal
neutrosophic numbers in all the parameters of objective function and constraints has characterized.
Based on the score function definition, the NCP has converted into the corresponding crisp CP
problem and hence Lexicographic order has used for comparing between any two complex numbers.
The comparison has developed between the real and imaginary parts separately. Through this
manner, the CP problem has divided into two real sub-problems. The main contribution of this
approach is more flexible and makes a situation realistic to real world application. The obtained
results are more significant to enhance the applicability of single-valued trapezoidal neutrosophic
number in various new fields of decision-making situations. The future research scope is to apply the
proposed approach to more complex and new applications. Another possibility is to work on the

interval type of complex neutrosophic sets for the applications in forecasting filed.
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Abstract. Usually, companies confront the difficulty to make the best decision about the way to invest
their recourses in different project alternatives. The company acquires competitive advantages when
their software development projects are well evaluated and correctly selected. Selecting projects in the
Information Technology field presents challenges in many senses; e.g., the difficulty that entails as-
sessing intangible benefits, projects are interdependent and companies impose self-constraints. In addi-
tion, the framework to make the decision is generally uncertain with many unknown factors. This pa-
per aims to propose a model that integrates methods, techniques and tools such as the Balanced Score-
card Model, neutrosophic Analytic Hierarchy Process and zero-one linear programming. The proposed
model is designed to select the best portfolio of Information Technology projects, it overcomes the ob-
stacles mentioned above and can be coherently incorporated in the strategic plan process of any com-
pany. In addition, it eases the course of experts’ decision making, because it is based on Neutrosophy
and hence incorporates the indeterminacy term.

Keywords: Information Technology Project, Balanced Scorecard Model, Neutrosophic Analytic Hierarchy
Process, zero-one linear programming.

1. Introduction

According to the guide to the project management body of knowledge (PMBOK) [1], “project
management is the application of knowledge, skills, tools and techniques to projects activities to meet
project requirements”. The guide to the PMBOK also makes reference to the multiple project man-
agement. Some authors acknowledge that sometimes exist missing or vaguely defined processes in
any commercial corporations; some of them are the coordination in a multi-project environment and
the strategic processes [2].

Later on, Project Management Institute published in detail additional standards for the Programs
and Portfolio management [1, 3, 4]. A Program is defined as a related group of projects, which are co-
ordinately managed to obtain benefits and controls, under the constraint that these benefits and con-
trols would not be available, in the case they were managed individually.

On the other hand, a Project Portfolio is a group of projects performed during a certain time span
and which share common resources. Some kinds of relationships that can exist among the projects are
complementariness, incompatibility and synergies, which are derived from the division of costs and
benefits obtained from the performance of more than one project simultaneously [5]. See schematized
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of an example in Fig. 1.

The foundations of project portfolio management have been developing since the seventies. Its
roots can be found in the theory of Harry Markowitz, which deserved the Nobel Prize in Economic
Sciences. He shared this award with Merton H. Miller and William F. Sharpe, for their work in the
field of financial economics theory. Its basic contribution is the "portfolio choice theory". He proposed
a model for the choice of a portfolio of securities in conditions of uncertainty in which it reduced it to a
two-dimensional dilemma: the expected income and the variance.

Nevertheless, some authors point out that significant differences exist between the theory of pro-
ject portfolio management and Markowitz’s theory [6, 7].

Four of the six responsibilities in project portfolios management, which were emphasized by Ken-
dall and Rollins, are the following, [8]:

e To determine a suitable combination of projects such that the company’s goal could be
achieved.

¢ To attain an adequate balance in the portfolio, where the combination of projects has an
adequate balance between risks and rewards, research and development and so on.

e To assess the possible existence of new opportunities for the present portfolio, taking into
account the company’s capacity for execution.

¢ To provide information and recommendations for decision makers at every level.

I
I |

|

-

Figure 1: Scheme of a possible Portfolio-Program-Project relationship

\\

The project portfolio management is inherently strategic, it is more related to efficacy (to perform
the adequate project) than the efficiency (to execute the project correctly). It should avail a framework
of work for assessing decisions about to invest, maintain and remove [9].

According to the reports of A. T. Kearney, which is an American global management consulting
firm that focuses on strategic and operational CEO-agenda issues, the plan in investment projects have
barely changed in enterprises since the 1920s, see [10]. The forthcoming necessities of the company are
not forecasted, instead, decision makers assign the budget that they consider sufficient to carry out
each project individually, no doubt this is a drawback, see [11, 12]. The second drawback is when de-
cision makers do not identify potential synergies that could exist among the projects and therefore,
unexpected increases in project costs could arise.

Kaplan and Norton introduced a framework of work to measure the effectiveness of a company;
they called it Balanced Scorecard (BSC). This model integrates four perspectives, namely, financial,
customer, business process and learning and growth [13]. Additionally, this is a way to display the
strategies inside the company. Particularly, BSC is useful to select measures that guarantee the balance
in project portfolios of Information Technologies [6].

The relationship existing between strategy and Project Management is a subject that has consider-
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ably evolved during the years pass. One example is project portfolio management, consisting of a
close relationship that connects strategy with Project Management by selecting and prioritizing those
projects which satisfy strategic objectives. Both selection and prioritization are based on criteria that
could perfectly coincide with indicators proper of the Balanced Scorecard model designed for this
company [5, 8].

The economic importance of Information Technology projects is evident. Frequently, Information
Technology projects represent a significant portion of the set of projects inside a company [2]. In the
present-day, the hardware is considered as a commodity, whereas software provides the major part of
a computational system [14].

Information Technology (IT) management is a subject that has quickly grown since the very near
past. Pells in [15] presented the factors which have repercussions on the growth of the IT projects
management, they are the following:

e The massive investment in IT all over the world.

e The natural orientation of the project management toward the IT industry.
¢ The fast change of technologies.

e Failures in IT projects.

e The arrival of the Information Era.

e IT embraces every industry, company and project.

When these factors are taken into consideration as a whole, they conduce to other important trends
and developments in the fields of project management, project portfolio management and complex
project management.

In this present research, the authors used a balanced scorecard model as a tool to determine the
coherence of the project with company’s strategy, particularly considering their perspectives. Moreo-
ver, the criteria to determine the project feasibility have been included. The proposed model is based
on the balanced scorecard model, neutrosophic analytic hierarchy process and zero-one linear pro-
gramming.

The analytic hierarchy process (AHP) was created by Aczél et al. [16]. It is a well-known mul-
ticriteria decision-making technique founded on mathematics and cognitive psychology. This tech-
nique has been widely applied to make decisions in complex situations.

Buckley in [17, 18] designed a fuzzy hierarchical analysis, where the crisp decision ratio of the clas-
sical AHP is substituted by a fuzzy ratio represented by a trapezoidal membership function. This ap-
proach introduces uncertainty and imprecision from the fuzzy viewpoint.

Abdel-Basset et al. in [19] designed a neutrosophic AHP-SWOT model, based on neutrosophic sets,
where a neutrosophic set is a part of neutrosophy that studies the origin, nature and scope of neutrali-
ties, as well as their interactions with different ideational spectra [20]. The neutrosophy included for
the first time the notion of indeterminacy in the fuzzy set theory, which is also part of real-world sit-
uations. Neutrosophic AHP permits that experts could express their criteria more realistically, by in-
dicating the truthfulness, falseness and indeterminacy of the 