14 research outputs found

    Incident detection using data from social media

    Get PDF
    This is an accepted manuscript of an article published by IEEE in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) on 15/03/2018, available online: https://ieeexplore.ieee.org/document/8317967/citations#citations The accepted version of the publication may differ from the final published version.© 2017 IEEE. Due to the rapid growth of population in the last 20 years, an increased number of instances of heavy recurrent traffic congestion has been observed in cities around the world. This rise in traffic has led to greater numbers of traffic incidents and subsequent growth of non-recurrent congestion. Existing incident detection techniques are limited to the use of sensors in the transportation network. In this paper, we analyze the potential of Twitter for supporting real-time incident detection in the United Kingdom (UK). We present a methodology for retrieving, processing, and classifying public tweets by combining Natural Language Processing (NLP) techniques with a Support Vector Machine algorithm (SVM) for text classification. Our approach can detect traffic related tweets with an accuracy of 88.27%.Published versio

    Leveraging Personal Navigation Assistant Systems Using Automated Social Media Traffic Reporting

    Full text link
    Modern urbanization is demanding smarter technologies to improve a variety of applications in intelligent transportation systems to relieve the increasing amount of vehicular traffic congestion and incidents. Existing incident detection techniques are limited to the use of sensors in the transportation network and hang on human-inputs. Despite of its data abundance, social media is not well-exploited in such context. In this paper, we develop an automated traffic alert system based on Natural Language Processing (NLP) that filters this flood of information and extract important traffic-related bullets. To this end, we employ the fine-tuning Bidirectional Encoder Representations from Transformers (BERT) language embedding model to filter the related traffic information from social media. Then, we apply a question-answering model to extract necessary information characterizing the report event such as its exact location, occurrence time, and nature of the events. We demonstrate the adopted NLP approaches outperform other existing approach and, after effectively training them, we focus on real-world situation and show how the developed approach can, in real-time, extract traffic-related information and automatically convert them into alerts for navigation assistance applications such as navigation apps.Comment: This paper is accepted for publication in IEEE Technology Engineering Management Society International Conference (TEMSCON'20), Metro Detroit, Michigan (USA

    PROBE VEHICLE LANE IDENTIFICATION AT SIGNALIZED INTERSECTION USING SUPPORT VECTOR MACHINE METHOD

    Get PDF
    Transportation problems in Indonesia, especially in urban areas, can be solved by applying Intelligent Transportation Systems (ITS), one of which is by using a Global Positioning System (GPS) based probe vehicle system. This system is growing because smartphones can be used as instruments for investigators' vehicles. This system provides information on the location and speed of all investigator vehicles every second, making it possible to estimate the real time traffic condition on a road segment passed by the probe vehicle. The implementation of this system in the city of Manado can help improve traffic conditions because so many motorists carry smartphones while driving. However, the problem is that the GPS on this smartphone has a low accuracy of 3 to 15 meters, so this GPS data cannot be used to solve transportation problems at the micro level such as at intersections. The purpose of this study was to obtain a method for identifying probe vehicle lanes through GPS data from smartphones. The steps in achieving the research goal are 1) building a microscopic transportation model using software to obtain data 2) building a data processing algorithm for vehicle lane identification using traffic flow theory and machine learning methods which in this case is Support Vector Machine, and 3) perform model validation. The results showed that the individual queue shock wave from each probe vehicle could be used to identify the lane of the probe vehicle. This study also confirms that the Support Vector Machine method can be used to predict the lane position of the probe vehicle

    Freeway Traffic Incident Detection from Cameras: A Semi-Supervised Learning Approach

    Get PDF
    Early detection of incidents is a key step to reduce incident related congestion. State Department of Transportation (DoTs) usually install a large number of Close Circuit Television (CCTV) cameras in freeways for traffic surveillance. In this study, we used semi-supervised techniques to detect traffic incident trajectories from the cameras. Vehicle trajectories are identified from the cameras using state-of-the-art deep learning based You Look Only Once (YOLOv3) classifier and Simple Online Realtime Tracking (SORT) is used for vehicle tracking. Our proposed approach for trajectory classification is based on semi-supervised parameter estimation using maximum-likelihood (ML) estimation. The ML based Contrastive Pessimistic Likelihood Estimation (CPLE) attempts to identify incident trajectories from the normal trajectories. We compared the performance of CPLE algorithm to traditional semi-supervised techniques Self Learning and Label Spreading, and also to the classification based on the corresponding supervised algorithm. Results show that approximately 14% improvement in trajectory classification can be achieved using the proposed approach

    Floating Car Data Technology

    Get PDF
    The limiting conditions of traffic in cities, together with the complex and dynamic traffic flows, require an efficient and systematic management and information provision for the traffic participants, with the goal to achieve better utilisation of traffic resources and preserve sustainable mobility. In that context, it is important to identify the traffic flow location features, which requires data and information. This paper presents the application of mobile vehicles for the collection of real time traffic flow data. Such data have become an important source of traffic data, since they can be collected in a simple and cost-efficient way, enabling higher coverage than the conventional approaches, despite the reliability issues. The term referring to that type of data collection, commonly used in scientific and professional literature is FCD (Floating Car Data) and “Probe vehicle”. The efficiency presentation of applying this extensive data source for retrieving necessary parameters and information related to the achievement of sustainable mobility is the final objective of this paper. A description of modern technologies that serve as a basis for probe vehicle data collection has been provided: a geographical information system (GIS), global navigation satellite system (GNSS) and related wireless communication. Within the key technologies review, the development possibilities of data collection by mobile sensors have also been presented

    Detection of traffic congestion and incidents from GPS trace analysis

    Get PDF
    This paper presents an expert system for detecting traffic congestion and incidents from real-time GPS data collected from GPS trackers or drivers’ smartphones. First, GPS traces are pre-processed and placed in the road map. Then, the system assigns to each road segment of the map a traffic state based on the speeds of the vehicles. Finally, it sends to the users traffic alerts based on a spatiotemporal analysis of the classified segments. Each traffic alert contains the affected area, a traffic state (e.g., incident, slowed traffic, blocked traffic), and the estimated velocity of vehicles in the area. The proposed system is intended to be a valuable support tool in traffic management for municipalities and citizens. The information produced by the system can be successfully employed to adopt actions for improving the city mobility, e.g., regulate vehicular traffic, or can be exploited by the users, who may spontaneously decide to modify their path in order to avoid the traffic jam. The elaboration performed by the expert system is independent of the context (urban o non-urban) and may be directly employed in several city road networks with almost no change of the system parameters, and without the need for a learning process or historical data. The experimental analysis was performed using a combination of simulated GPS data and real GPS data from the city of Pisa. The results on incidents show a detection rate of 91.6%, and an average detection time lower than 7 min. Regarding congestion, we show how the system is able to recognize different levels of congestion depending on different road use

    Development and evaluation of arterial incident detection models using fusion of simulated probe vehicle and loop detector data

    No full text
    This paper describes the development of neural network models for automatic incident detection on arterial roads, using simulated data derived from inductive loop detectors and probe vehicles. The work reported in this paper extends previous research by comparing the performance of various data fusion neural network architectures and assessing model performance for various probe vehicle penetration rates and loop detector configurations. Data from 108 incidents was collected from loop detectors and probe vehicles using a calibrated and validated traffic simulation model. The best performance was obtained for detector configurations found on most existing road networks, with a detection rate of 86%, false alarm rate of 0.36% and probe vehicle penetration rate of 20%. Fusion of speed data further improved performance, resulting in an incident detection rate of 90% and a false alarm rate of 0.5%. The results reported in this paper demonstrate the feasibility of developing advanced data fusion neural network architectures for detection of incidents on urban arterials using data from existing loop detector configurations and probe vehicles. 2010 Elsevier B.V. All rights reserved

    Freeway traffic incident detection using large scale traffic data and cameras

    Get PDF
    Automatic incident detection (AID) is crucial for reducing non-recurrent congestion caused by traffic incidents. In this paper, a data-driven AID framework is proposed that can leverage large-scale historical traffic data along with the inherent topology of the traffic networks to obtain robust traffic patterns. Such traffic patterns can be compared with the real-time traffic data to detect traffic incidents in the road network. Our AID framework consists of two basic steps for traffic pattern estimation. First, we estimate a robust univariate speed threshold using historical traffic information from individual sensors. This step can be parallelized using MapReduce framework thereby making it feasible to implement the framework over large networks. Our study shows that such robust thresholds can improve incident detection performance significantly compared to traditional threshold determination. Second, we leverage the knowledge of the topology of the road network to construct threshold heatmaps and perform image denoising to obtain spatio-temporally denoised thresholds. We used two image denoising techniques, bilateral filtering and total variation for this purpose. Our study shows that overall AID performance can be improved significantly using bilateral filter denoising compared to the noisy thresholds or thresholds obtained using total variation denoising. The second research objective involved detecting traffic congestion from camera images. Two modern deep learning techniques, the traditional deep convolutional neural network (DCNN) and you only look once (YOLO) models, were used to detect traffic congestion from camera images. A shallow model, support vector machine (SVM) was also used for comparison and to determine the improvements that might be obtained using costly GPU techniques. The YOLO model achieved the highest accuracy of 91.2%, followed by the DCNN model with an accuracy of 90.2%; 85% of images were correctly classified by the SVM model. Congestion regions located far away from the camera, single-lane blockages, and glare issues were found to affect the accuracy of the models. Sensitivity analysis showed that all of the algorithms were found to perform well in daytime conditions, but nighttime conditions were found to affect the accuracy of the vision system. However, for all conditions, the areas under the curve (AUCs) were found to be greater than 0.9 for the deep models. This result shows that the models performed well in challenging conditions as well. The third and final part of this study aimed at detecting traffic incidents from CCTV videos. We approached the incident detection problem using trajectory-based approach for non-congested conditions and pixel-based approach for congested conditions. Typically, incident detection from cameras has been approached using either supervised or unsupervised algorithms. A major hindrance in the application of supervised techniques for incident detection is the lack of a sufficient number of incident videos and the labor-intensive, costly annotation tasks involved in the preparation of a labeled dataset. In this study, we approached the incident detection problem using semi-supervised techniques. Maximum likelihood estimation-based contrastive pessimistic likelihood estimation (CPLE) was used for trajectory classification and identification of incident trajectories. Vehicle detection was performed using state-of-the-art deep learning-based YOLOv3, and simple online real-time tracking (SORT) was used for tracking. Results showed that CPLE-based trajectory classification outperformed the traditional semi-supervised techniques (self learning and label spreading) and its supervised counterpart by a significant margin. For pixel-based incident detection, we used a novel Histogram of Optical Flow Magnitude (HOFM) feature descriptor to detect incident vehicles using SVM classifier based on all vehicles detected by YOLOv3 object detector. We show in this study that this approach can handle both congested and non-congested conditions. However, trajectory-based approach works considerably faster (45 fps compared to 1.4 fps) and also achieves better accuracy compared to pixel-based approach for non-congested conditions. Therefore, for optimal resource usage, trajectory-based approach can be used for non-congested traffic conditions while for congested conditions, pixel-based approach can be used

    A framework for smart traffic management using heterogeneous data sources

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Traffic congestion constitutes a social, economic and environmental issue to modern cities as it can negatively impact travel times, fuel consumption and carbon emissions. Traffic forecasting and incident detection systems are fundamental areas of Intelligent Transportation Systems (ITS) that have been widely researched in the last decade. These systems provide real time information about traffic congestion and other unexpected incidents that can support traffic management agencies to activate strategies and notify users accordingly. However, existing techniques suffer from high false alarm rate and incorrect traffic measurements. In recent years, there has been an increasing interest in integrating different types of data sources to achieve higher precision in traffic forecasting and incident detection techniques. In fact, a considerable amount of literature has grown around the influence of integrating data from heterogeneous data sources into existing traffic management systems. This thesis presents a Smart Traffic Management framework for future cities. The proposed framework fusions different data sources and technologies to improve traffic prediction and incident detection systems. It is composed of two components: social media and simulator component. The social media component consists of a text classification algorithm to identify traffic related tweets. These traffic messages are then geolocated using Natural Language Processing (NLP) techniques. Finally, with the purpose of further analysing user emotions within the tweet, stress and relaxation strength detection is performed. The proposed text classification algorithm outperformed similar studies in the literature and demonstrated to be more accurate than other machine learning algorithms in the same dataset. Results from the stress and relaxation analysis detected a significant amount of stress in 40% of the tweets, while the other portion did not show any emotions associated with them. This information can potentially be used for policy making in transportation, to understand the users��� perception of the transportation network. The simulator component proposes an optimisation procedure for determining missing roundabouts and urban roads flow distribution using constrained optimisation. Existing imputation methodologies have been developed on straight section of highways and their applicability for more complex networks have not been validated. This task presented a solution for the unavailability of roadway sensors in specific parts of the network and was able to successfully predict the missing values with very low percentage error. The proposed imputation methodology can serve as an aid for existing traffic forecasting and incident detection methodologies, as well as for the development of more realistic simulation networks
    corecore