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Abstract 

This paper presents an expert system for detecting traffic congestion and incidents from real-time GPS data collected from 

GPS trackers or drivers’ smartphones. First, GPS traces are pre-processed and placed in the road map. Then, the system 

assigns to each road segment of the map a traffic state based on the speeds of the vehicles. Finally, it sends to the users traffic 

alerts based on a spatiotemporal analysis of the classified segments. Each traffic alert contains the affected area, a traffic state 

(e.g., incident, slowed traffic, blocked traffic), and the estimated velocity of vehicles in the area. The proposed system is 

intended to be a valuable support tool in traffic management for municipalities and citizens. The information produced by the 

system can be successfully employed to adopt actions for improving the city mobility, e.g., regulate vehicular traffic, or can 

be exploited by the users, who may spontaneously decide to modify their path in order to avoid the traffic jam. The 

elaboration performed by the expert system is independent of the context (urban o non-urban) and may be directly employed 

in several city road networks with almost no change of the system parameters, and without the need for a learning process or 

historical data. The experimental analysis was performed using a combination of simulated GPS data and real GPS data from 

the city of Pisa. The results on incidents show a detection rate of 91.6%, and an average detection time lower than 7 minutes. 

Regarding congestion, we show how the system is able to recognize different levels of congestion depending on different 

road use. 

 

Keywords: Expert systems, GPS, incident detection, traffic congestion detection, urban mobility simulation. 
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1. Introduction 

Intelligent Transportation Systems (ITSs) are nowadays attracting growing attention due to the increasing number of 

vehicles (mainly private cars) causing frequent traffic congestions, bottlenecks and incidents. An ITS is an infrastructure 

which, by integrating ICTs (Information and Communication Technologies) with transport networks, vehicles and users, 

allows improving safety and management of transport networks. ITSs provide, e.g., real-time information about weather, 

traffic congestion and regulation, and/or plan efficient (e.g., shortest, fast driving, less polluting) routes (Anastasi et al., 2013) 

(Boriboonsomsin et al., 2012) (Perea & Dias, 2011) (Sakaki et al., 2013). A challenging issue in ITSs is to distinguish an 

incident from a traffic congestion situation. An incident is defined in (Kamran & Haas, 2007) (Srinivasan et al., 2004) as “an 

unexpected event that temporarily disrupts the traffic flow on a segment of a roadway”. An Incident Detection System (IDS) 

represents a part of the ITSs, which has received significant attention in the last years. IDSs are designed to detect, by means 

of several technologies, incidents, or unexpected situations causing traffic congestions and bottlenecks in order to plan 

appropriate alternatives (Basnayake, 2004) (Kamran & Haas, 2007). An accurate and early detection of incidents becomes of 

the utmost importance in traffic management (Srinivasan et al., 2004).  

Mainly, two types of ITS have been proposed. The first type is the most frequently used and exploits data collected from 

fixed sensors placed in the road, such as closed-circuit cameras, video recognition cameras, infrared sensors, inductive loop 

sensors, RFID sensors (Calderoni et al., 2014) (Cheng et al., 2012) (Wen, 2010). The second type is based on sensor 

technology within the vehicle (e.g., Global Positioning System (GPS), acceleration sensors, crash sensors, airbag activation 

detection) (Kamran & Haas, 2007) and allows obtaining a greater amount of information than the first type (Bacon et al., 

2011). Indeed, fixed sensors placed in the road collect data related to the total volume of traffic on a certain road, while 

mobile sensors collect data belonging to the trajectory of the single car (Work & Bayen, 2008), which leaves a trace, i.e., a 

sequence of positions recorded in exact time instants. A GPS trace is a sequence of GPS points, each of which contains 

location information coordinates (latitude and longitude), recording timestamp, and instantaneous velocity. Nowadays, thanks 

to the growing number of GPS trackers installed in vehicles and to the widespread use of mobile devices (e.g., smartphones, 

tablets) equipped with GPS receivers, we are able to collect directly and easily traces from vehicles. The use of GPS trackers 

and mobile devices as sensor probes has several advantages. First, we can exploit the existing communication infrastructure 

and the rapid spread of mobile devices with integrated GPS sensor. Second, the use of mobile devices as sensor probes is 

independent of the device and the communication service provider (Work & Bayen, 2008). Third, we can overcome the main 

drawbacks of traditional monitoring systems (e.g., fixed sensors), namely, limited coverage of the road network, and high 

installation and maintenance costs (Yoon et al., 2007). 

In this paper we present an ITS able to detect in real-time traffic congestions and incidents from the analysis of GPS traces 

belonging to moving vehicles. The proposed system exploits data mining (on spatiotemporal data) and expert system 

technologies in order to detect the intensity of traffic congestion on segments of the road network, where an event (i.e., an 

incident) is causing traffic difficulties. The proposed system is intended to be a valuable support tool in traffic management 

for municipalities and citizens. Traces collected from vehicles moving in the city are analyzed in real-time by means of an 

expert system, without the need for a learning process or historical data. The elaboration performed by the expert system is 
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independent of the context (urban o non-urban) and may be directly employed in several city road networks with almost no 

change of the system parameters. The information produced by the system can be successfully employed to adopt actions for 

improving the city mobility. In fact, the possibility of monitoring real-time events in the city road network may allow 

municipalities and police to, e.g., regulate vehicular traffic in order to divert vehicles from the incident location, act on traffic 

lights and speed limits, alert emergency services, adjust the demand and capacity of the road network, and dynamically 

provide route information. Further, the information provided by the system may be useful also for the user, who once 

registered to the system, receives alert notifications about traffic congestions or incidents and may spontaneously decide to 

modify her/his path in order to avoid the traffic jam. For all the above reasons, the system may arise in the context of ITSs as 

a simple (low-cost and low-complexity) yet effective model. 

In the following, we highlight the possible challenges in building and using the proposed system, along with possible ways 

to face them:  

i) the first challenge regards the difficulty of obtaining GPS data from users moving in the city due to privacy 

issues. However, recently the use of GPS trackers and GPS-equipped mobile devices (e.g., smartphones, tablets) 

has dramatically grown, and, in a near future, GPS data should be more easily available, taking appropriate 

actions aimed at respecting the users’ privacy. In particular, GPS trackers in vehicles include also black-boxes 

installed by insurance companies. In U.S., about 96% of new cars are black-box equipped and, since September 1, 

2014, every new vehicle must have one black-box installed (Globaltruth, 2016). In Italy, about 3 millions of 

black-boxes were installed in vehicles in 2014 (Ania, 2014), and this value is growing so much that the use of 

black-boxes could become mandatory by 2017. Thus, collecting GPS data from black-boxes will not be a problem 

in a near future. In addition, since the proposed ITS is supposed to be available to registered users (e.g., by means 

of a smartphone app), GPS traces can also be collected directly from users, in exchange for receiving traffic alerts. 

In fact, on registration, the user accepts the privacy policy associated with the service, according to which the 

user’s GPS position is used only anonymously for the aim of the service; 

ii) the second challenge is the capability to effectively distinguish an incident from a traffic congestion event. 

Indeed, if the incident resolves in a very short time, the system may not be able to correctly detect the incident 

event, since the incident itself can be considered not actually relevant for the impact on the city mobility. The 

system, in this case, will detect and indicate instead a traffic congestion event. This is an effective way to face this 

challenge. Indeed, the users will be notified in any case that a traffic bottleneck is occurring, allowing them, e.g., 

to modify their planned route to avoid it. Anyway, our system, by checking specific incident-related conditions 

(as described in Section 4) is able to detect 91.6% of the incidents simulated with different time durations, and 

takes into account the urban scenario, more challenging than the non-urban scenario (Dia & Thomas, 2011); 

iii) the third challenge regards the scalability of the system: the bigger the size of the monitored city road network, 

the higher the number of road segments to take into account in the elaboration. To cope with this challenge, the 

system, designed and developed from the ground, has been implemented as a service of a wider service-oriented 

platform in the context of the SMARTY project (Smarty Project, 2015). The platform is built on a Service 

Oriented Architecture (SOA), which allows exploiting two important peculiarities, i.e., scalability of the service 

(e.g., by using a dedicated data elaboration server for each geographic area), and easy integration with other ITS 
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services (e.g., smart parking, weather information, bike sharing). Further, the scalability and availability of our 

system are guaranteed by using a cloud computing architecture and different instances of the service for any 

specific geographic area. The subdivision in geographic areas is mainly based on the size of the area, and on the 

number of road segments in the area. Further it is dynamically adjusted based on the level of vehicles’ activity in 

the area. In this way, the service is able to guarantee the fulfilment of minimum Quality of Service (QoS) 

requirements, e.g., response time, availability, capacity. The instances of the services, by synchronizing and 

communicating with each other, produce as output the traffic notifications, sent to the users. The users need only 

to register to the service for receiving notifications. 

To simulate traffic conditions as close as possible to reality, the GPS traces employed in the experiments were generated 

exploiting the traffic simulator SUMO (Simulation of Urban Mobility) (Krajzewicz et al., 2002), based on a set of real-world 

GPS traces collected from smartphones (or other tracking devices) belonging to people moving by car.  

The remainder of this paper is organized as follows. Sections 2 and 3 discuss, respectively, related work and road network 

representations. Section 4 presents the proposed system for incident and traffic congestion detection from GPS trace analysis. 

Section 5 describes the generation of the GPS trace dataset employed in the experiments. In Section 6 the experimental 

results are discussed. Lastly, Section 7 draws some concluding remark and future work. 

2. Related Work 

In the literature several types of algorithms for detecting incidents and traffic conditions in ITS systems exist, e.g., 

prediction algorithms, statistical methods, model-based identification algorithms, traffic flow models, computational 

intelligence techniques, and rule-based expert systems (Kamran & Haas, 2007) (Srinivasan et al., 2004). Moreover, some 

approaches use only real-time collected data, while other approaches also need a historical database to build the model. In the 

following we provide a brief description of the most relevant works existing in the literature, which propose methods for 

incident detection and traffic monitoring based on GPS traces. 

In (Liu et al, 2013a), Liu et al. present a mobility-based clustering algorithm that uses some vehicles as sensor probes for 

establishing the level of crowdedness of vehicles in nearby areas (spots) of the city. In (Li et al., 2007), Li et al. propose a 

density-based algorithm (FlowScan) to study the traffic flow on the road network and identify densely congested routes, 

through a clustering of the road segments having similar traffic density. In (Bacon et al., 2011)., Bacon et al. exploit real-time 

traffic data coming from fixed and mobile sensors (buses are used as mobile sensor probes) to evaluate, using statistical 

techniques, the level of traffic congestion in the city, and to provide citizens with traffic information. In (Kamran & Haas, 

2007), Kamran at al. use real-time GPS data obtained from vehicles to detect incidents. They divide roads into segments 

whose size is set based on the type of road and on weather conditions. The segments presenting an abnormal traffic condition, 

i.e., average traveling speed significantly lower than normal speed, are identified and further split into smaller segments with 

the aim of isolating the potential incident area. If necessary, vehicles in the segment are analyzed individually in order to 

identify abnormal behavior. The authors in (Schafer et al., 2002) detect blocked or congested road segments by using 

information from GPS-equipped vehicles, and by considering a road congested if the average speed of the vehicles is below 

10 km/h. The IDS proposed by Basnayake (Basnayake, 2004) collects real-time GPS data from probe vehicles moving on a 

road network subdivided into segments (with each segment being the part of road between two road intersections) in order to 
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detect incidents by analyzing travel time of segments and acceleration noise of vehicles through statistical techniques. In 

(Yoon et al., 2007), Yoon et al. detect traffic conditions from GPS data, by employing speed and temporal features referred 

to the segments identified on the road network; they can characterize unique traffic patterns on each road and identify traffic 

states on a segment-by-segment basis. In (Coifman, 2003), a traffic monitoring system for detecting incidents on highways by 

means of dual-loop road sensors and GPS-equipped vehicles is presented. In (Srinivasan et al., 2004), a neural network-based 

model is trained on GPS data collected from inductive loop sensors in a 5.8 km city-bound area. In (Ghosh & Smith, 2014) 

the authors adapt freeway incident detection algorithms to the urban scenario. They simulate incidents during rush hours, and 

use traffic volume and traffic occupancy, as inputs to a support vector machine model. 

GPS traces can be employed also to model or predict traffic conditions. In (Castro et al., 2012), the authors use the 

historical data of one month collected from GPS sensors onboard 5000 taxis to construct a model of traffic density in order to 

model and predict traffic conditions, and estimate the effects of emissions on air quality. The city is decomposed into disjoint 

areas (segments) and the traffic density is computed for each segment. In (Sirvio & Hollmén, 2008), the authors employ 

Markov chains and artificial neural networks for the prediction of road traffic conditions using data related to weather 

conditions and road characteristics. In (Yuan et al., 2011), the authors construct a Markov model to estimate future traffic 

conditions and travel times of the user’s path, using both historical and real-time GPS data collected from taxi vehicles, along 

with weather and driver behavior information. In (Liu et al., 2013b) (Liu et al., 2015), the authors propose a Gaussian 

Process Dynamic Congestion Model to capture the dynamics and the uncertainty of traffic conditions, with the aim of 

simplifying the adaptive routing of a fleet of cooperative vehicles. They exploit GPS traces collected along one year from 

taxis. 

With respect to the current research aimed at detecting traffic congestion and incidents, the characteristics of our system can 

be summarized as follows. We propose a system able to detect traffic congestion and incidents in real-time. The system 

basically: 1) places the GPS traces in the road map, 2) assigns to each road segment of the map a traffic state based on the 

speed of the vehicles travelling the segment and on the values of a few thresholds, and 3) sends traffic alerts based on a 

spatiotemporal analysis of the classified segments. We can identify the following strengths of our system:  

i) unlike the majority of works in the same field, it does not exploit statistical or clustering techniques. Thus it needs 

neither historical data (e.g., GPS traces, weather information, typical traffic condition), nor a learning time-

consuming process. In fact, it exploits real-time GPS traces data consisting of position, velocity, and time, without 

the need for any other vehicular data such as acceleration noise and travel times; 

ii) unlike other ITSs, it is not based on the use of sensor probe vehicles (e.g., taxis, buses) or fixed sensors (e.g., 

inductive loop sensors, video recognition cameras) deployed in the road network. In fact, the GPS traces can be 

directly collected from smartphones or GPS trackers, resulting in a very low-cost framework in terms of 

installation and maintenance costs, and elaboration of data; 

iii) regarding the representation of the city road network, it employs a digital map in which the length of each road 

segment is not fixed (as in similar papers in the literature), but adapted to the particular conformation of the road, 

on the basis of the segment’s speed limit; 

iv) it is developed as an event-driven infrastructure, built on an SOA architecture, and it allows directly providing 

citizens with accurate and reliable information on traffic conditions. Using this architecture, it is able to directly 
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notify traffic events to the drivers registered to the system, by means of a traffic alert service, without the need for 

them to access official news websites or radio traffic news channels. In addition, the SOA architecture allows 

building scalable services (e.g., by using a dedicated data elaboration server for each geographic area), and 

integrating new services (e.g., with other ITS services). In addition, the proposed system could be a valuable tool 

for traffic and city administrations to regulate traffic and vehicular mobility. Moreover, it could be used together 

with traffic sensors (e.g., loop detectors, cameras, infrared cameras) and ITS monitoring systems for the detection 

of traffic difficulties. In this way, our system provides a low-cost wide coverage of the road network, especially in 

those areas (e.g., urban and suburban) where traditional traffic sensors are missing, or less travelled by probe 

vehicles. 

Conversely, possible weaknesses are: 

i) the inaccuracy (or the loss) of the GPS signal may lead to wrong positioning of vehicles in the case of very close 

roads (e.g., an error of about 10 meters may dislocate the vehicle on the wrong road segment or even on the wrong 

road). However, if the inaccuracy regards only one trace, the system is not seriously impacted, as we take into 

account the total volume of moving vehicles, not the single vehicle. On the other hand, this is a problem affecting 

all the ITSs that employ GPS traces for detecting incidents; 

ii) a considerable delay in detecting an incident in case of a low number of vehicles, which transmit their GPS 

coordinates, in the segment. Indeed, with the aim of reducing the influence of personal drivers’ behaviors (for 

instance, a driver stopping the vehicle for looking at the view) on the decision about the traffic state of a segment, 

we associate a level of traffic congestion with a segment only if the number of vehicles in the segment is higher 

than a pre-fixed threshold. Obviously, if the number of vehicles moving in the segment is very low, a long time 

will be needed to detect the incident: the incident, however, will be detected by the system in any case as soon as a 

sufficient number of vehicles accumulate in the road segment. Systems, which employ other types of data sources 

in addition to GPS traces, could reduce this problem, but at a higher cost. We have to consider, however, that, as 

the number of involved vehicles is low, the impact will not be dramatic for the urban mobility; 

iii) the choice of the thresholds used to determine the segment states can affect the performance of the system. In our 

simulations, however, we have experimented with different traffic conditions and the chosen thresholds have 

always proved to be effective. On the other hand, in general, the majority of the systems proposed in the literature 

for incident detection need to adequately tune some parameter, e.g., during the learning process, or the model 

calibration. 

3. Road Network Representation 

One of the most interesting problems when using GPS traces is the positioning of the vehicles on the map. The positioning 

can be carried out in the continuous space if the vehicle has a precise absolute position corresponding to its GPS coordinates, 

or in the discrete space if the vehicle belongs to a spot (e.g., areas, cell-grid areas, segments) identified on the map. The 

continuous space positioning has two drawbacks: i) it is not suited for the aggregate analysis (of areas or road of a city), 

typical of traffic monitoring systems, and ii) it may cause faults due to GPS accuracy errors. 

In the discrete space positioning, the city is split into disjoint areas and a membership function of GPS traces is defined for 
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each area. The most used approach for the decomposition of a city according to the discrete space positioning (Castro et al., 

2013) exploits the use of digital maps. A digital map is a graph (V, E) composed of a set of vertices V, defined as GPS 

positions, and a set of edges E, each one defined in terms of length, bearing and endpoint vertices. With this structure, a road 

is described as the conjunction of consecutive edges (also called segments) identified in correspondence with intersections, or 

changes in bearing of the road. The main disadvantages of this approach are the difficulty in finding a digital map and the 

lack of some information in the map, such as the number of lanes of the roads, the orientation of the edges and the width of 

the roads. For these reasons, several approaches have proposed to directly exploit GPS traces for the manual or automatic 

construction of digital maps (Biagioni et al., 2012) (Fathi & Krumm, 2010), or for the enrichment of existing digital maps 

with useful information (Alvares et al., 2007) (Chen & Krumm, 2010) (Schroedl et al., 2004). 

In this paper we refer to the discrete space positioning, as it represents the best compromise between accuracy and 

simplicity. Moreover, by making this choice we are able to exploit existing digital maps, such as the ones provided by Open 

Street Map (OSM) (Open Street Map, 2016), the well-known open-source framework for digital maps. Furthermore, the 

partition of roads into segments allows distinguishing different segments of road in the same area. In fact, each road segment 

has its typical traffic flow and thus should be considered individually. One approach for the identification of segments on the 

roads, frequently used in the literature and in existing digital maps, is to consider as endpoint vertices not only intersections 

and changes in bearing, but also traffic lights, pedestrian crossings, and other relevant points. In this way, urban areas are 

described by many segments of small size, while suburban areas are described by a small number of big segments (Yoon et 

al., 2007). In the analysis of the extracted data collected from GPS sensors, it is important to consider both the spatial and the 

temporal components of information. For example, detecting a low average speed of vehicles on a segment of road does not 

necessarily indicate traffic congestion on the road, e.g., in the case of an urban road, the low speed may be due to the 

presence of traffic lights and pedestrian crossings (Yoon et al., 2007). On the contrary, in the case of a highway road, the low 

average speed may indicate traffic congestion. 

As said above, we exploited the digital map provided by OSM which combines data recorded by GPS devices, satellite 

images, and other manually entered information to create a rich-information digital map (Castro et al., 2013). OSM (Open 

Street Map, 2016) is an open source, free-license project aimed at collecting geographic data to create freely available maps 

of the world with free content. The map of an area (region, province, city, etc.) is implemented as an oriented graph 

characterized by two main elements: nodes and ways. Nodes represent important positions on the map identified by GPS 

coordinates (latitude and longitude), corresponding to Points Of Interest (POIs), intersections, points of change of direction 

on the same road (curves), etc. Thus, between two nodes a linear segment is defined. Each node is associated with an id and 

with a list of tags that describes the characteristics of the node. The number of nodes of a road depends on the type of road, 

and on the number of relevant points on the road (typically urban roads are described by a higher number of nodes with 

respect to highways). Ways are ordered sets of nodes constituting open or closed polygons, representing possible paths from 

the start node to the end node. The nodes of a way are listed consecutively and this allows identifying stretches of 

consecutive roads. 
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4. The Proposed System 

The proposed system for detecting traffic congestion and incidents is based on an expert system and is characterized by a 

service-oriented and event-driven architecture, composed of three main modules (Fig. 1).  

 

 

Fig. 1. System architecture for traffic congestion detection and incident detection from GPS trace analysis. 

 

The “Pre-Processing” module is devoted to match each GPS trace point (expressed in terms of latitude and longitude) 

with the corresponding OSM map segment. This operation is not straightforward, as it presents two problems. First, it may 

require a routing algorithm to perform the completion of incomplete routes in case of jumps/gaps or missing GPS points 

(Hofmann-Wellenhof et al., 2012). Indeed, connectivity problems (e.g., a tunnel crossing) and accuracy errors caused by an 

anomalous driving behavior or resulting from the sampling may cause a physical jump between two known positions, i.e. 

segments of the map. The use of routing algorithms is needed to rebuild the vehicle route and remove the jumps. Second, an 

algorithm is needed to define the travel directions of the vehicles in each segment. In fact, a point of a GPS trace indicates 

only the position of the vehicle on a certain road, but not its travel direction. However, in the case of a unidirectional road, 

the travel direction is provided by the OSM map itself, but in case of a bidirectional road at least two consecutive GPS points 

of the same trace are required to identify the travel direction of the vehicle. 

The second module “Segment Traffic Classification” aims to analyze the GPS traces belonging to the segments built on 

city streets, and to assign a traffic state to each segment on the basis of considerations made on the traveling velocity of the 

vehicles, the number of vehicles in the segment, and the traffic code speed limit on that segment. Obviously the mere traffic 

state classification of the segments is not sufficient to understand the real traffic condition on the whole road, which depends 

on spatial and temporal information. Thus, in the third module “Traffic Alert Notification”, the traffic states previously found 

on the segments are analyzed in order to decide whether to send traffic alert messages related to a given area based on a 

further spatial and temporal analysis. 

More precisely, after the pre-processing phase, each segment of the map is observed for a time interval T sampled every f 
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seconds. At each sampling time in T, the traces of the vehicles, which have travelled the segment, are collected, processed, 

and saved. The procedure is then repeated on each segment of the map in the following time interval, and so on. We denote 

with Tt the t-th time interval analyzed. As in other papers (Hofmann-Wellenhof et al., 2012) (Yoon et al., 2007), we set f = 30 

seconds. This value represents a good trade-off between precision and complexity. Further, when the GPS traces are collected 

by using a smartphone, we cannot adopt too short sampling times because these would consume too fast the battery. The 

value of T is set to 2 minutes. We verified that this value allows us to have a reliable estimate of the average speed in the 

segment when the number of vehicles is low. On the other hand, when the traffic is high, this value permits to manage the 

corresponding complexity. 

In the following, we explain in greater detail the steps performed in each module. First, we introduce some key concepts. A 

segment of the map is denoted with sj, where j = 1, ..., S, is the index of the segment, and S is the total number of segments in 

the map. A segment sj is characterized by the maximum speed ��
��� allowed on the portion of road corresponding to the 

segment and the distance dj between the extremes of the segment. A vehicle is uniquely identified with a vehicle identifier. In 

a generic segment sj, a vehicle is denoted as mj,i,t, where i = 1, ..., Mj,t, is the index of the vehicle within the segment sj, and 

Mj,t is the number of vehicles travelling sj in Tt. 

A GPS trace belonging to a vehicle is described by: i) the unique identifier of the vehicle, and ii) a set of GPS positions 

(latitude, longitude) of the vehicle along with the corresponding timestamps and the corresponding speeds 
, , ,

ist

j i t hv , where 

h = 1, .., Qj,i,t is the index of the trace left from vehicle mj,i,t, and Qj,i,t is the number of traces left by vehicle mj,i,t during the 

observed time interval Tt. Each vehicle in the segment can leave one or more traces depending on the speed of the vehicle and 

the level of traffic congestion of the segment (e.g., in the case of blocked traffic, a vehicle travelling the segment will be 

detected multiple times). 

The analysis of the GPS traces is performed by using an OSM map appropriately modified. As mentioned above, segments 

in OSM are identified by changes of curvature of the road, pedestrian crossings, intersections, traffic lights, etc. However, in 

some cases the segments identified by pairs of nodes in OSM may be too long for the purposes of the proposed system; thus, 

the digital map should be modified by splitting longer segments. This additional segmentation allows locating more precisely 

a traffic event that happens on the road. Segments are split into sub-segments if the following condition holds: 

 

 
��

�	


∝∙

∙ � < ��,          (1) 

 

where α = 3.6 is the conversion factor from km/h to m/s, f is the sampling period, c is a parameter and dj is the distance 

between the extremes of the segment. The choice of the value of c affects, on the one side, the precision and, on the other 

side, the complexity of the system. Indeed, the rules used in the expert system for determining the traffic state are based on 

the knowledge of the direction of each vehicle. The direction of a vehicle is determined by comparing two subsequent 

vehicle’s GPS positions. The direction is easily determined if the two subsequent positions lie on adjacent segments of the 

map. On the contrary, determining the direction of the vehicle may be quite complex when the two subsequent positions lie 

on not adjacent segments. In this case, a routing algorithm has to be executed for computing the direction. Low values of c 

increase the precision by generating small segments. However, small segments may cause several jumps in the route, 
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especially when a low sampling frequency is used, and thus may require a more frequent execution of the routing algorithm. 

Similarly, high values of c reduce the need for the routing algorithm, but result in an insufficient accuracy, due to longer 

segments.  

By considering the Italian speed limits on highways, non-urban and urban roads, which are 130 km/h, 90 km/h and 50 

km/h, respectively, we decided to set c = 6. With this value of c, we have that the maximum segment length is 180, 125 and 

69.44 meters for, respectively, highways, non-urban and urban roads. These values represent actually a good compromise 

between precision and computational cost. On the other hand, other works in the literature employ fixed road segments with 

lengths from 200 to 500 meters (e.g., (Kamran & Haas, 2007)) by focusing on highways. In our work, however, the length of 

each segment is not fixed, but it adapts to the particular conformation of the road, since it depends on the speed limit on that 

segment. 

If the condition in Eq. (1) is met, the segment is split into two sub-segments identified by a new node centered between the 

two original nodes. The condition in Eq. (1) is then checked on the two new sub-segments, and so on. At the end of this step, 

we obtained an optimized digital map with segments having an average size of about 50 m, as we focused primarily on urban 

roads.  

4.1 Pre-Processing 

The “Pre-Processing” module processes each GPS trace with the aim of obtaining: i) the segments corresponding to the 

GPS positions that form the trace, ii) the travel directions of the vehicles in each segment (i.e., forward and backward), and 

iii) the segments needed to reconstruct the vehicle route in case of jumps or missing GPS points.  

The mapping of GPS traces on the segments of the map consists of defining a membership function of GPS traces to 

segments or nodes of the map. A GPS trace is mapped, first, to the closest node of the map and then to the closest segment 

(whose exact position is identified in terms of the GPS coordinates of its midpoint) among those segments, which arise from 

the node. The mapping is performed by exploiting the GraphHopper API for Java (GraphHopper Route Planner, 2016). For 

each GPS point of a trace, after detecting the corresponding segment in the map, the travel direction of the vehicle in the 

segment is identified according to the following procedure: 

 

1. if the GPS point is the first one coming from a given vehicle, and: 

1.1. if the point belongs to a unidirectional segment, the travel direction is directly provided by the road network 

map (see Fig. 2 (a)); 

1.2. if the point belongs to a bidirectional segment, we are not able to determine the travel direction. Thus, the 

vehicle is temporarily placed in both the lists corresponding to the travel directions forward and backward for 

that segment. The lists will be correctly updated afterwards by removing the vehicle from the incorrect travel 

direction list (see Fig. 2 (b)); 

 

2. if the GPS point comes from a vehicle already moving in the map, we can determine the travel direction in the 

corresponding segment (current segment), since we know the previous position of the vehicle, corresponding to the 

previous segment in the trace. More precisely,  

2.1. if the current segment is unidirectional, the travel direction is directly provided by the road network map (see 
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Fig. 2 (a)); 

2.2. if the current segment is bidirectional and the previous segment is unidirectional, the travel direction can be 

inferred from the road network map; 

2.3. if the current segment is bidirectional and the previous segment is bidirectional, it is necessary to check its 

adjacency with the previous segment of the trace: 

2.3.1. if current and previous segments are adjacent, the travel direction can be determined by exploiting a 

feature of the OSM graph: If the adjacency regards the base node (i.e., the first extreme node) of the 

current segment, the travel direction is forward, otherwise it is backward (see Fig. 3); 

2.3.2. if current and previous segments are not adjacent, a gap exists and an appropriate routing algorithm 

is needed to rebuild the missing path between the previous and the current segments. The routing 

algorithm implemented is a modified version of the one provided by the GraphHopper API 

(GraphHopper Route Planner, 2016), and it generates the best approximate path between two non-

adjacent segments, by giving priority to main streets in the map, and by choosing the shortest path 

according to the classical Dijkstra’s algorithm (Dijkstra, 1959) for route planning (Delling et al., 

2009). Once that a possible path has been built, the operations described in item 2.3.1 are repeated 

first on the previous segment, and then backwards on the other segments of the approximate path 

(see Fig. 4). 

 

Any time the travel direction of the current segment in a trace is correctly determined, the travel direction of the previous 

segment of the trace, if remained undetermined, can be updated by removing the vehicle from the incorrect travel direction 

list. 

 

       (a)    (b) 

Fig. 2. Determining the travel direction on a segment for a new vehicle in the map: (a) unidirectional segment, (b) bidirectional segment. 

 

    (a)    (b) 

Fig. 3. Determining the travel direction on a bidirectional segment for a vehicle already moving in the map, when current and previous segments are 

adjacent: (a) forward travel direction, (b) backward travel direction. 
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(a)    (b) 

Fig. 4. Determining the travel direction on a bidirectional segment for a vehicle already moving in the map, when current and previous segments are not 

adjacent, by means of a routing algorithm. (a) before routing algorithm, (b) after routing algorithm. 

 

4.2 Segment Traffic Classification 

The aim of this module consists in analyzing the GPS traces collected in the current time interval Tt and in assigning to 

each segment sj of the map a traffic state TSt in the set {absent, flowing, slowed, very slowed, and blocked}, and a 

representative actual speed ��,�
�
����  on the basis of the number and the speeds of the vehicles passing in the segment in Tt. 

The choice of the possible traffic states has been performed according to the classification employed in well-known traffic 

information systems, such as Google Traffic (Google Maps, 2016), and “Autostrade per l’Italia” (Autostrade per l’Italia, 

2016), the main traffic news network in Italy. The two systems employ four traffic states (whose meaning matches with our 

states flowing, slowed, very slowed, and blocked), to which we added the additional state absent. The state absent means that 

there is no traffic event, and also indicates a total absence of vehicles. This state is used by our system during incident 

detection.  

More in detail, Google Traffic (Google Maps, 2016) takes into account four traffic states: i) normal speed of traffic (green 

color), ii) slower traffic conditions (yellow color), iii) congestion (red color), and iv) blocked or stop-and-go traffic (dark red 

color). This classification matches with our classification, as follows: Google green color corresponds to our flowing state, 

Google yellow color corresponds to our slowed state, Google red color corresponds to our very slowed state, and Google dark 

red color corresponds to our blocked state. Similarly, the web site “Autostrade per l’Italia” (Autostrade per l’Italia, 2016) 

provides an almost similar classification of four traffic states: i) no relevant traffic event (green color), ii) slowdowns (yellow 

color), iii) criticalities (red color), and iv) blocked traffic (black color). Also in this case, the traffic states i), ii), iii), and iv) 

correspond to our flowing, slowed, very slowed, and blocked traffic states, respectively. 

The rules of the expert system are adapted to the number of vehicles that have crossed the considered segment in Tt in order 

to avoid false alarms and manage potential outliers. The following two sections explain the rules of the Segment Traffic 

Classification module, first in the case of an insufficient number of vehicles passing in the segment in Tt, and then in the case 

of a sufficient number of vehicles. We have to consider separately the case of an insufficient number of vehicles because we 

cannot be sure that the information extracted by analyzing these vehicles is dependent on the behaviors of the drivers or on 

the traffic conditions. More precisely, if the number Mj,t of vehicles crossing the segment in Tt is below a certain threshold, 
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i.e., Mj,t < Mmin, special considerations have to be made in order to avoid an incorrect analysis.  

We wish to point out that the system does not need a GPS trace from each vehicle moving in the road network in a given 

time interval. Obviously, the higher the number of traces, the more reliable the classification. However, a minimum number 

of vehicles is necessary for guaranteeing to distinguish a real traffic event from an anomalous driving behavior of an isolated 

driver. We are confident that this minimum number is easily reachable today thanks to the growing number of GPS-equipped 

vehicles (e.g., mounting insurance companies’ black-boxes, GPS navigation devices, and overall GPS-equipped 

smartphones). Obviously, an incident or traffic event cannot be detected if there is not a sufficient number of vehicles 

involved, since it would not produce traffic congestion.  

1) Insufficient Number of Vehicles in Segment sj 

If Mj,t < Mmin, the system can assign only two traffic states to the segment sj, namely absent and flowing, as follows: 

 

1. if there are no traces, i.e., Mj,t = 0, the traffic state TSt is set to absent; 

2. if 0 < Mj,t < Mmin, the traffic state TSt is set to flowing. 

 

We consider just two traffic states because the number of vehicles is too low to reliably detect a traffic condition. Actually, 

the traffic might be blocked, slowed or very slowed, but we cannot reliably infer these states because of the low number of 

vehicles. On the other hand, a possible event causing traffic congestion will be detected whenever a sufficient amount of 

vehicles will accumulate in the segment. 

2) Sufficient Number of Vehicles in Segment sj 

If Mj,t ≥ Mmin, the system is able to assign the traffic states flowing, slowed, very slowed, and blocked. First, the average 

speed of each vehicle mj,i,t in the considered segment sj is calculated as:  

 

 �̅�,�,� = ∑
��,	,�,�

	��

��,	,�

��,	,�

���
,         (2) 

 

Next, the speeds �̅�,�,� of the vehicles are ordered, and the median value ���,�,� of these speeds is computed. By using the 

median value, we reduce the effect of outliers.  

Then, the module assigns the representative speed ��,�
�
���� = ���,�,� to the segment, and, by evaluating ���,�,�, sets the traffic 

state TSt as follows: 

 

1. if ���,�,� ≥ !� ∙ ��
���, with P1 a percentage of the maximum speed ��

��� allowed on the segment sj, then the traffic 

state is set to flowing; 

2. if !" ∙ ��
��� ≤ ���,�,� ≤ !� ∙ ��

���, with P2 < P1 a percentage of the maximum speed ��
��� allowed on the segment sj, a 

further analysis is required because the traffic condition is not clearly defined. Thus, the behavior of the majority 

of vehicles is taken into account. The traffic state of the segment is set to: 

2.1. flowing, if the majority of vehicles have an average velocity �̅�,�,� ≥ !� ∙ ��
���; 
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2.2. slowed, otherwise; 

3. if �$�%
& ≤ ���,�,� ≤ !" ∙ ��
���, the traveling velocity in the segment is quite low, thus the traffic state is set to very 

slowed; 

4. if ���,�,� ≤ �$�%
&  , the traffic is still, thus the traffic state is set to blocked. 

 

In the experiments, we set Mmin = 4, P1 = 50% and P2 = 40%. The value Mmin = 4 has been chosen for reducing the 

influence of personal drivers’ behaviors on the decision about the traffic state of the segment. Indeed, a driver could decide to 

stop the vehicle for drinking a coffee. If only this vehicle is travelling the segment in the time interval T, the traffic state 

could be erroneously set to blocked. In our experiments, we verified that Mmin = 4 is a choice that guarantees, on the one side, 

to limit the effect of personal drivers’ behaviors and, on the other side, to determine a state even if the traffic is not intense.  

The values of P1 and P2 arise from considerations related to the classification of traffic events in traffic news channels (e.g. 

Google Maps, 2016). In fact, it is well known that there is no generally agreed definition of good or bad traffic states (Yoon 

et al., 2007). We set the values of parameters P1 and P2, on the one hand, by trying to follow the typical classification of 

traffic states provided by traffic news channels and, on the other hand, by trying to reduce the time needed to correctly detect 

the traffic states. In addition, the values represent only a choice aimed at producing a possible traffic state classification as 

done in other papers (de Fabritiis et al., 2008). Further, we set vblock = 3 km/h by adapting the suggestions in (Schafer et al., 

2002) to the small urban network of Pisa. 

At the end of the elaboration made in this module, for the considered time interval, the system has associated with each 

segment of the map a representative speed and a traffic state (namely, absent, flowing, slowed, very slowed, blocked). The 

segments having traffic state slowed, very slowed, and blocked will be taken into account by the Alert Notification module 

with the aim of checking the presence of a traffic congestion or an incident. 

Fig. 5 summarizes how the Segment Traffic Classification module works by using a flow chart.  

4.3 Traffic Alert Notification  

The Traffic Alert Notification module elaborates only segments having traffic state slowed, very slowed, and blocked, and 

appropriately generates a series of traffic alerts on the basis of: i) a temporal analysis of the information associated with the 

segments in a certain number N of time intervals previous the current one, and ii) a spatial analysis of the traffic condition in 

segments adjacent to the considered one. 

The choice of N affects, on the one side, the reliability of the alert and, on the other side, the responsiveness of the system. 

Indeed, if, for instance, N = 0, we decide to launch an alert by considering only the current traffic state of the segment, but 

this state could be affected by drivers’ behavior rather than by actual traffic difficulties. It might occur that a driver blocks the 

road segment for a while waiting for a parking slot: in this case, considering just the current time interval would cause a 

wrong alert. On the other hand, the larger the N value, the higher the delay for launching the alert. In the experiments, we 

realized that N = 2 allows achieving a good trade-off between reliability and responsiveness.  

A traffic alert contains the following information: i) the spatial extension of the event, i.e., the segment or the list of 

segments associated with the traffic event, ii) the traffic event (traffic congestion magnitude or incident) which depends on 

the classification of the segments previously made, iii) the average travelling speed associated with the segments involved in 
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the traffic event. An alert report contains the list of traffic alerts related to the current time interval. More precisely, since the 

alert notification module uses the information related to N+1 time intervals (the N previous intervals and the current one), the 

first alert report will be sent at least after N+1 time intervals, while the following ones will be sent at the end of each time 

interval, i.e., every 2 minutes. 

The traffic events of the “traffic alert” are:  

• alert for slowed traffic,  

• alert for slowed or very slowed traffic,  

• alert for very slowed traffic,  

• alert for blocked traffic, 

• and alert for incident, if the specific circumstances of an incident are recognized. 

 

 

Fig. 5. The flowchart of the Segment Traffic Classification module. 
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The spatial extension of the event is initially expressed as a set of road segment ids, and is then converted to the city street 

name by using the OSM tool Nominatim (Nominatim, 2016) for reverse geocoding.  

The processing carried out in this module consists of two steps: first we analyze the segments having traffic state blocked, 

and then we analyze the segments having traffic state slowed or very slowed.  

 

1) Segments with traffic state blocked 

By exploiting spatial and temporal considerations, the system is able to determine situations of blocked traffic, or identify 

possible incidents, if specific conditions are met. 

Typically, when an “incident” occurs, the traffic congestion caused by the incident lasts for a quite long time and the 

vehicles stuck in the queue are almost the same in subsequent time intervals. Two types of block may be identified: the 

incident can block the whole roadway, or it can block only part of the roadway, allowing the transit of vehicles in its free 

portion. In the former case, we will typically observe the “queue with head” (shown in Fig. 6), i.e., an almost total absence of 

GPS traces ahead of the incident, and a queue of vehicles behind the incident, which tends to grow. In the latter case, it is 

extremely hard to detect an incident (Basnayake, 2004) and distinguish it from a blocked traffic condition. Thus, in this 

paper, we will consider only incidents blocking the whole roadway.  

Based on the above considerations we perform the following analysis. For each segment sj having traffic state blocked in 

the current time interval, a spatiotemporal analysis is performed, taking into account segments adjacent to sj, and the traffic 

condition in N previous time intervals. 

First, with the aim of defining the spatial extension of the event, we iteratively check the state of all the segments adjacent 

to sj (both in the forward and backward directions), and that of the segments adjacent to these, until we find a segment with 

traffic state different from very slowed or blocked. 

 

1. if the event is restricted to a single segment sj, i.e., the segments adjacent to sj have all traffic state slowed, absent, or 

flowing, we perform a temporal analysis of the state of sj in N previous time intervals, with the aim of checking if the 

event is relevant or not: 

1.1. if sj had traffic state blocked or very slowed in all the N previous time intervals, the event is considered to be 

relevant. Thus, we need to distinguish between a possible incident and a blocked traffic condition. More in 

detail, we check whether the vehicles stuck in the queue are the same, or have changed, in consecutive time 

intervals, as follows: 

1.1.1. if a percentage P3 of vehicles present in the segment in N previous time intervals are the same, we 

are dealing with an event that blocks the traffic in the entire roadway for a quite long period of 

time. Thus, an alert for incident in sj is sent; 

1.1.2. otherwise, an alert for blocked traffic on segment sj is sent; 

1.2. otherwise, the event is considered to be not relevant, and no alert is sent; 

 

2. if the event involves a set of segments around sj, i.e., the segments adjacent to sj have traffic state blocked or very 

slowed, and, 
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2.1. if the condition of the “queue with head” is met, i.e., i) a segment (or a series of segments) immediately 

behind sj have traffic state very slowed or blocked, and ii) a segment ahead of sj has traffic state absent, we 

check the condition for an incident, that is, if the vehicles stuck in the queue are the same, or have changed, 

in consecutive time intervals, as explained earlier (see conditions 1.1.1 and 1.1.2). Thus, the system may 

send an alert for incident or an alert for blocked traffic, for the set of segments around sj; 

2.2. if the condition of the “queue with head” is not met, we set the magnitude of the event on the basis of the 

number and type of segments involved, as follows: 

2.2.1. if the majority of segments involved have traffic state blocked, we check the condition for an 

incident, as explained earlier (see conditions 1.1.1 and 1.1.2). Hence, the system sends an alert for 

incident or an alert for blocked traffic for the set of segments around sj; 

2.2.2. if the majority of segments involved have traffic state very slowed, the system sends an alert for 

very slowed traffic for the set of segments around sj. 

 

At the end of processing, the alert notification module generates an alert report describing the alerts found in the performed 

analysis.  

Theoretically, the value of P3 should be 100% since, in case of traffic block, the same vehicles will remain in the same 

positions for a while. Actually, it could occur that one or more vehicles decide to make a U-turn or to opt for another route, 

taking a cross street. Thus, taking these situations into account, we did not set the value of P3 to 100%: since the number of 

the vehicles, which decide to exit from the queue, is typically low and further the value of P3 has to be chosen high in order to 

avoid false alarms, we set P3 to 90%. In our simulations, we verified that this value allows achieving remarkable incident 

detection rates with a low number of false alarms. 

 

 

Fig. 6. The situation corresponding to a “queue with head”, which may have been caused by an incident. 

 

 

2) Segments with traffic state: slowed, very slowed 

For each segment sj marked in the current time interval with the traffic states: slowed, or very slowed, a spatial and 

temporal analysis is performed as follows: 
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1. if all the segments adjacent to sj in the current time interval have traffic state absent or flowing, the traffic event is 

restricted to sj. To confirm it and decide the alert magnitude, the situation is analyzed in sj in the N previous time 

intervals: 

1.1. if sj had traffic state slowed, very slowed, or blocked in all the N time intervals, then an alert for slowed 

traffic in sj or an alert for very slowed traffic in sj is sent, based on the more recent information (the traffic state in sj 

in the current time interval); 

1.2. otherwise, no alert is sent; 

 

2. if at least one of the segments adjacent to sj has traffic state slowed, very slowed, or blocked, the traffic event affects 

multiple segments: 

2.1. for each segment adjacent to sj having a traffic state slowed, very slowed, or blocked, the state of its 

adjacent segments is taken into account in order to define the spatial extension of the event, until we find a 

segment with different traffic state. Thus a traffic alert related to the set of segments adjacent to sj is sent, 

with a magnitude based on the number and type of segments involved: 

2.1.1. if the majority of the segments have traffic state slowed, then an alert for slowed traffic is sent; 

2.1.2. if the majority of the segments have traffic state very slowed, then an alert for very slowed traffic is 

sent; 

2.1.3. if the segments have traffic state slowed and very slowed in equal number, then an alert for slowed 

or very slowed traffic is sent. 

Fig. 7 summarizes how the Traffic Alert Notification module works by using a flow chart. 
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Fig. 7. The flowchart of the Traffic Alert Notification module. 

 

5. Simulation of GPS Traces 

Due to the difficulties (e.g., privacy or permission issues) to collect or obtain a reasonable number of real-world GPS 

traces, traffic simulators (Brinkhoff, 2002) (Krajzewicz et al., 2002) (Krajzewicz et al., 2012) are frequently used for 

validating systems of detection of traffic congestion and incidents. In this work the GPS traces used for the development of 

the traffic detection system were simulated using the well-known software SUMO (Krajzewicz et al., 2002) (Krajzewicz et 

al., 2012). 

SUMO allows creating multi-vehicular simulations of traffic flow by implementing the microscopic model of vehicular 

mobility developed by Stefan Krauß (Krauß et al., 1997) (Krauß, 1998), also known as car-following model, in which the 

dynamics of each vehicle is governed by the dynamics of the preceding vehicle (Krauß, 1998). The simulation is time-

discrete, i.e., the time is marked by steps of 1 second, and space-continuous, i.e., each vehicle is modeled by a GPS position, 

and its instantaneous velocity. At each step of the simulation, the velocity of each vehicle is adapted according to that of the 
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preceding vehicle, so as to avoid collisions with the preceding vehicle, and by respecting the speed limit of the road, and the 

safety distance. SUMO requires: i) an underlying digital map representing the road network on which the traffic simulation 

will take place, and ii) the traffic demand, i.e., the flows of vehicles that will travel on the road network. The traffic demand 

is modeled in terms of vehicles, routes and flows. Vehicles are described in terms of physical characteristics (acceleration, 

maximum speed, dimensions, etc.), and type (taxi, bus, private cars, motorbikes, etc.). Routes taken by vehicles contain the 

sequence of edges crossed (from departure edge to arrival edge), and are generated on the basis of the rules of the digital map 

(e.g., allowed path, speed limits, traffic lights, one ways). Flows are sets of vehicles joining the simulation at a given time, 

with a given penetration rate, and following a certain route. The penetration rate of vehicles is determined by the value of the 

parameter period of the flow in SUMO. This parameter determines the level of congestion of the route. It indicates how often 

(in number of seconds) a new vehicle (belonging to the flow) is added to the simulation. Low values of the parameter indicate 

a high flow rate (heavy traffic), while high values indicate a low flow rate (very light or flowing traffic). We have employed 

values of this parameter ranging from 5 to 120. 

SUMO does not allow to directly simulating the traffic dynamics after an incident event. However, it allows simulating 

incidents by exploiting the bus stop feature. In fact, an incident can be represented by a vehicle that stops at a given location 

for a quite long time. More in detail, to simulate an incident, we define a bus stop, and a route covered by a special vehicle. 

The bus stop specifies the location and the duration of the incident. The special vehicle simulates the incident by stopping at 

the bus stop for the incident duration. All the vehicles following the special vehicle will stop behind it in queue until the end 

of the incident.  

The dataset that we have simulated consists of the GPS traces of about 50,000 vehicles traveling in the city of Pisa, Italy, 

in two different scenarios, namely working day and holiday. The area monitored corresponds to about 70 km2. To reproduce 

the appropriate traffic dynamics, as close as possible to the real traffic condition in the city, we have exploited the typical 

traffic conditions of Pisa in typical working day and holiday, extracted from Google Traffic (Google Maps, 2016), and the 

real-world data collected from smartphone and other devices of voluntary drivers within a specific data collection campaign. 

We wish to point out that the simulation of data was necessary, as real-world data collected by voluntary drivers are typically 

insufficient. The real GPS data were used as reference to build the simulated data. More in detail, we built the simulated GPS 

routes by combining the real GPS data collected from voluntary drivers with the information about traffic conditions 

provided by Google Traffic (Google Maps, 2016) and Here Map (Here Map, 2016) services. In particular, Here Map was 

used to check the correspondence between typical traffic data and real-time traffic data. Thus, we adjusted real routes in order 

to meet the corresponding typical traffic conditions of the time interval they belong to. We also added new routes, e.g., with 

same starting and/or ending points of real routes, but following a different path (typically congested in the considered time 

interval). The aim is to reproduce as best as possible the typical vehicle mobility and traffic at different time intervals in the 

city of Pisa, Italy. Thus, we took into account 20 different real routes of vehicles crossing the city at different times, as it 

typically happens in the two scenarios, and we obtained about 200 routes per scenario. The routes taken into account contain 

mainly urban roads, but they contain also a few freeway roads. Regarding incident events, we have simulated several 

incidents in the two scenarios at different times and places. The GPS traces were sampled every 30 seconds from 6 a.m. to 11 

p.m. On average, about 1000 vehicles were involved in the simulations. To perform the experiments, we selected the most 

relevant (e.g., the most frequently travelled or the most popular) routes and time intervals for the volunteer drivers involved 
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in collecting data in a typical working day and a typical holiday. In particular, we took into account rush hours and routes 

involving main roads, by leaving out side roads, where the occurrence of a traffic event is extremely rare. The places for 

simulating incidents and traffic congestions were chosen based on the following considerations. Regarding traffic 

congestions, we selected roads where often a traffic event occurs (e.g., during rush hours), according to the services Google 

Traffic (Google Maps, 2016) and Here Map (Here Map, 2016), which provide information about traffic conditions. 

Regarding incidents’ locations, we employed information on incidents provided by the local administration (Comune di Pisa, 

2016) and by local police reports for selecting places where incidents had occurred in the past. Thus, the simulation of traffic 

congestion and incidents reproduce as faithfully as possible the traffic condition in Pisa, Italy. 

6. Experiments 

We have performed two types of experiments for evaluating the capability of the system of detecting, respectively, 

incidents and traffic congestion. In the following, we present the results regarding incident and traffic events separately in 

order to i) better understand the capability of the system in recognizing incidents and ii) make the results themselves 

comparable with those from other incident detection systems. However, the experiments on incidents were performed by 

adding incidents to the typical workday and holiday scenarios, which already contain traffic events. Thus, the performance 

results are actually obtained by considering both incidents and traffic congestions.  

6.1 Incident Detection 

We simulated 24 incidents in different times and places, for the two different scenarios. The incidents have durations of 15, 

20 and 30 minutes. In fact, an incident blocking the whole roadway typically takes more than 15 minutes to be resolved. 

Anyhow, the average incident duration is estimated in 37, and 45 minutes, in Taiwan freeways, and U.S. cities, respectively 

(Viriyasitavat, 2015). 

The computation time needed by the system to produce an Alert Report is in the range 2-15 seconds, depending on the 

considered time interval in the day. Indeed, in specific time intervals a very large number of vehicles are circulating in the 

city, and the state of several segments is classified as slowed, very slowed, and blocked, thus increasing the computational 

time of the system. 

We evaluate the performance of the proposed system in terms of the following statistical measures:  

i) Detection Rate (DR): the ratio between the number of correctly detected incidents and the number of simulated 

incidents (it corresponds to the recall of the system); 

ii) Miss Rate (MR): the ratio between the number of not detected incidents and the number of simulated incidents, 

iii) Precision: the ratio between the number of correctly detected incidents, and the sum of detected incidents and false 

alarms;  

iv) F1-score: the weighted harmonic mean of precision and recall;  

v) Number of false alarms (NFA): the number of erroneously detected incidents; 

vi) Mean Time to Detect (MTD): the mean time interval between the time of the incident and the time of its detection. 

In both the scenarios, we were able to detect 22 incidents over 24. The two missed incidents may be due to the presence of 

several access points along the road interested by the incident. From the access points new vehicles enter the road and join 
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the queue. We have verified, however, that in the case of the missed incidents, the system indicates that a congestion event is 

occurring on the road, by sending an alert for blocked traffic, instead of an alert for incident. Regarding false alarms, the 

system erroneously detected 3 incidents in both the scenarios. The overall simulation results are reported in Table 1, while 

Tables 2 and 3 report the information about each simulated incident for the holiday, and the workday scenarios, respectively. 

Higher values of the Time to Detect (TD) are due to light traffic conditions during the incident. This means that if the 

vehicles involved are many, the incident will be detected in a very short time. Otherwise, if the vehicles involved are few, the 

incident will be detected in any case, but in a longer time, depending on the number of vehicles travelling on the route of the 

incident location (on the basis of the value of the parameter period of the flow in SUMO). Thus, DR does not depend on the 

number of vehicles involved in the simulation: if the condition Mj,t ≥ Mmin on the minimum number of vehicles required to 

detect a possible blocked traffic state on a segment si is verified, the incident will be detected. The only threshold that may 

affect DR is the percentage value P3 of the same vehicles stuck in queue in N previous time intervals. However, by setting the 

value P3 = 90%, we are able to achieve a DR of 91.6%. 

In the following, we report the results shown in some papers in the literature where incident detection systems were 

proposed. We highlight that these results are obtained on different datasets and in different scenarios. Thus, the aim of 

presenting these results is only to show how the performance of our system is comparable with the ones reported in similar 

works in the literature. In (Basnayake, 2004), the authors employ acceleration noise, travel times, and probe vehicles and use 

simulated GPS traces of traffic volumes in early morning of a typical working day to simulate 30-minutes incidents. In the 

experiment more similar to ours, they obtain a DR of 100%, a False Alarm Rate (FAR) of 18%, and an MTD of 70 seconds. 

In (Kamran & Haas, 2007), the authors, identify and isolate anomalous street segments, based on the speed of vehicles, and 

study the behavior of vehicles in the anomalous segments, by means of a spatial and temporal analysis. They achieve a DR of 

78.7%, an FAR of 1.18%, and an MTD of 2 seconds, employing 10 segments on a route of about 10 miles, and 10-20 

vehicles per segment. In (Srinivasan et al., 2004), a neural network-based model was trained on GPS data collected in a 5.8 

km city-bound area from inductive loop sensors, obtaining a DR of 92%, an FAR of 0.69%, an MR of 8.27% and an MTD of 

106 seconds on the test set. In (Ghosh & Smith, 2014), the best performing model for the urban scenario, i.e., a support 

vector machine, achieves a DR of 87.31% and an MTD of 98.61s. 

Regarding the MTD performance, we achieved worse results than the above mentioned approaches. On the other hand, TDs 

strongly depend on the current traffic condition and on the average distance between the incident location and the starting 

point of the vehicles’ routes. Regarding the number of false alarms generated, we would like to point out that only 3 false 

alarms were generated by the system per scenario, despite heavy simulations were performed. 

Although the achieved results are similar to those of several works in the literature, our scenario is more complex than the 

scenarios employed in the cited papers. In fact, our system uses GPS data coming from a wider area (about 70 km2), involves 

a larger number of road segments and vehicles, and uses less information (no need for, e.g., vehicle sensor probes, fixed 

sensors, historical data, weather data). In addition, we would like to highlight that incident detection in urban road networks 

is a more challenging task than incident detection on freeways (Dia & Thomas, 2011), as urban and freeway road networks 

have different traffic flows due, e.g., to different speed limits and access points. 
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Table 1. Experimental results of incident detection. 
 

Scenario DR (%) MR (%) Prec. (%) F1-score (%) NFA MTD (min.) 

Workday 91.6 8.3 88 89.7 3 6.9 

Holiday 91.6 8.3 88 89.7 3 6.63 

 

 

 

 

 

 

Table 2. Incident detection on holiday. 
 

# 
Incident information Incident detection 

Place and Time Duration Detection TD 

1 Lungarno Galilei, 7:30 a.m. 30 min. yes 2 min. 

2 Via V. Veneto, 7:30 a.m. 15 min. yes 14 min. 

3 Via Contessa Matilde, 7:30 a.m. 30 min. yes 8 min. 

4 Lungarno Galilei, 8:30 a.m. 15 min. yes 4 min. 

5 Via V. Veneto, 8:30 a.m. 15 min. no - 

6 Via Contessa Matilde, 8:30 a.m. 30 min. yes 16 min. 

7 Lungarno Gambacorti, 9:30 a.m. 15 min. yes 4 min. 

8 Via Fiorentina, 9:30 a.m. 30 min. yes 6 min. 

9 Via dell’Aeroporto, 9:30 a.m. 30 min. yes 0 min. 

10 Via C. Battisti, 9:30 a.m. 20 min. yes 6 min. 

11 FI-PI-LI Highway, 9:30 a.m. 20 min. yes 2 min. 

12 Via C. Matteucci, 9:30 a.m. 20 min. yes 4 min. 

13 Via Bonanno, 12:30 a.m. 30 min. no - 

14 Via Aurelia, 12:30 a.m. 30 min. yes 8 min. 

15 Via dell’Aeroporto, 12:30 a.m. 30 min. yes 2 min. 

16 Via Cisanello, 12:30 a.m. 30 min. yes 6 min. 

17 FI-PI-LI Highway, 12:30 a.m. 20 min. yes 10 min. 

18 Via Statale Abetone, 12:30 a.m. 30 min. yes 16 min. 

19 Via Aurelia, 4:30 p.m. 30 min. yes 8 min. 

20 Via delle Cascine, 4:30 p.m. 20 min. yes 10 min. 

21 Via dell’Aeroporto, 4:30 p.m. 30 min. yes 8 min. 

22 Via P. Nenni, 6:00 p.m. 30 min. yes 0 min. 

23 Via S. G. Bosco, 6:00 p.m. 20 min. yes 4 min. 

24 Via G. Moruzzi, 6:00 p.m. 30 min. yes 8 min. 
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Table 3. Incident detection on workday. 
 

# 
Incident information Incident detection 

Place and Time Duration Detection TD 

1 Lungarno Galilei, 7:30 a.m. 30 min. yes 2 min. 

2 Via V. Veneto, 7:30 a.m. 15 min. yes 10 min. 

3 Via Contessa Matilde, 7:30 a.m. 30 min. yes 12 min. 

4 Lungarno Galilei, 8:30 a.m. 15 min. yes 2 min. 

5 Via V. Veneto, 8:30 a.m. 15 min. yes 10 min. 

6 Via Contessa Matilde, 8:30 a.m. 30 min. yes 14 min. 

7 Lungarno Gambacorti, 9:30 a.m. 15 min. yes 6 min. 

8 Via Fiorentina, 9:30 a.m. 20 min. no - 

9 Viale Bonaini, 9:30 a.m. 30 min. yes 4 min. 

10 Via C. Battisti, 9:30 a.m. 20 min. yes 6 min. 

11 FI-PI-LI Highway, 9:30 a.m. 20 min. yes 2 min. 

12 Via C. Matteucci, 9:30 a.m. 20 min. yes 12 min. 

13 Via C. Battisti, 12:30 a.m. 30 min. yes 6 min. 

14 FI-PI-LI Highway, 12:30 a.m. 30 min. yes 14 min. 

15 Lungarno Sonnino, 12:30 a.m. 30 min. yes 2 min. 

16 Via Bonanno, 12:30 a.m. 30 min. no - 

17 FI-PI-LI Highway, 12:30 a.m. 20 min. yes 10 min. 

18 Via dell’Aeroporto, 12:30 a.m. 30 min. yes 4 min. 

19 Via Aurelia, 4:30 p.m. 30 min. yes 12 min 

20 Via delle Cascine, 4:30 p.m. 20 min. yes 10 min. 

21 Via dell’Aeroporto, 4:30 p.m. 30 min. yes 0 min. 

22 Via P. Nenni, 6:00 p.m. 30 min. yes 4 min. 

23 Via S. G. Bosco, 6:00 p.m. 20 min. yes 4 min. 

24 Via G. Moruzzi, 6:00 p.m. 30 min. yes 6 min. 

 
 

6.2 Traffic Congestion Detection 

We simulated several traffic conditions at 6 different times and places usually congested, by testing, for each traffic event, 

different levels of traffic magnitude, i.e., severity of the event in terms of congestion produced, in order to show how the 

response of the system changes depending on the magnitude of the traffic event. The magnitude of each traffic event was 

varied based on the period parameter associated with each flow. Each simulation involves 2 flows and has a duration of 30 

minutes. For the sake of simplicity, we chose the same value of the period for the two flows. To verify the actual traffic 

condition in the different simulations and to compare it with the Alert Notification module response, we took into account the 

travel times of a probe vehicle for each flow. The probe vehicle joins the simulation a few minutes after its beginning, with 

the aim of revealing the effective simulated traffic condition. 

Table 4 shows the simulation of 6 traffic events with different traffic magnitudes. As the traffic magnitude increases (shown 

by the increasing travel time of probe vehicles), the Alert Notification module is able to correctly detect all the simulated 

traffic events both on the common portion of the routes, and also on the exclusive portion of the route.  

In this case we do not compute exact performance measure, as objective criteria to define the actual traffic condition are 
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missing (Yoon et al., 2007). Thus, the system only detects the presence of traffic congestion, by sending more serious alerts 

with increasing road use. 

 

Concluding, our experimental results show that our approach can be very effective in detecting traffic congestions and 

incidents by using only GPS traces belonging to moving vehicles. Thus, the developed system can be integrated into classical 

ITSs, allowing them to manage also those roads where monitoring supports are not available. Although today the percentage 

of moving vehicles, which transmit their GPS coordinates, is quite low with respect to the total, it is rapidly increasing. We 

expect in the near future that this percentage becomes so relevant to allow a reliable and effective use of our approach, 

possibly improving the performance by tuning the parameters in different operating contexts. 

7. Conclusions and Future Work 

In this work we have presented a system for detecting traffic congestion and incidents from real-time GPS traces. The 

system, implemented on a Service Oriented Architecture, assigns to each road segment of the city map a traffic state based on 

the speeds of vehicles, and sends to the users traffic alerts, indicating the affected area, a traffic state, e.g., incident, slowed 

traffic, blocked traffic, and the estimated velocity of vehicles in the area. The system only exploits a real-time spatiotemporal 

analysis of the GPS traces and needs no learning phase. We presented and discussed some experiments performed using the 

GPS traces generated exploiting the SUMO traffic simulator on the basis of a combination of simulated GPS data and real 

GPS data collected in the city of Pisa. We achieved an incident detection rate of 91.6% and an average detection time shorter 

than 7 minutes. Regarding traffic congestion detection, we showed how the proposed system is able to recognize different 

levels of congestion depending on road use. 

As future work, we would like to extend our system along the following directions: 

i) the system could be integrated with a dynamic routing service in order to suggest to the user an alternative path to 

follow for avoiding the incident/traffic congestion location;  

ii) the confidence of the system could be increased by predicting typical traffic state. This can be achieved by 

collecting the GPS traces and generating models of the traffic state, possibly taking into account other information 

sources (e.g., weather, events scheduled in the city that may affect the normal mobility). More in detail, for 

instance, by considering a main road of the city, we could predict the occurrence of traffic with higher magnitude, 

e.g., during rush hours, in case of a bad weather forecasting report, or concurrently with an event (e.g., football 

match, a concert, a flash-mob, a political demonstration) happening along the main road. We can therefore 

compare the traffic state predicted by the model with the state inferred by the approach described in this paper. 

The comparison will allow us to validate the outputs of our system, when these outputs coincide with the outputs 

of the model, and to identify more easily unexpected traffic events (such as incidents) by detecting differences 

between the output of the model and the output of the system; 

iii) the system could be integrated with a service we have recently developed, which exploits the tweets to detect 

traffic congestions (D’Andrea et al., 2015). Once the system detects a traffic event by analyzing the GPS traces, 

we could focus the search for relevant tweets on the specific geographical area where the event occurred with the 

aim of confirming the event and possible extracting automatically information on its causes; 
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iv) the system could be integrated into a dashboard of services allowing to: 1) detect traffic and incidents, 2) predict 

traffic state, 3) suggest alternative routes both by car and using other transport modality, 4) employ social 

networks to detect traffic-related events, 5) show weather information. 
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Table 4. Traffic state detection. 

 
Traffic 

condition 

simulated 

Flows’ 

period value 

Probe vehicle’s travel 

time on first route  

Probe vehicle’s 

travel time on 

second route  

Traffic detection on the 

common portion of the 

routes 

Traffic detection on the 

exclusive portion of the 

single routes 

1. Traffic simulated in Via Gronchi at 7:30 a.m. 

heavy 2 1227 s 1367 s 
Yes – slowed, v. slowed, 

blocked 

Yes – slowed, v. slowed, 

blocked 

heavy 5 1144 s 1090 s Yes – v. slowed, blocked 
Yes – very slowed, 

blocked 

light 10 876 s 806 s Yes – very slowed No 

very light 20 853 s 809 s Yes – slowed, v. slowed No  

very light 30 852 s 797 s Yes – v. slowed No  

very light 60 857 s 790 s Yes – v. slowed No  

2. Traffic simulated in Via Cisanello at 8:00 a.m. 

heavy 2 1782 s 183 s Yes – blocked Yes – v. slowed, blocked 

heavy 5 1695 s 183 s Yes – blocked Yes – v. slowed, blocked 

light 10 432 s 235 s Yes – v. slowed, blocked Yes – v. slowed 

very light 20 361 s 178 s yes – v. slowed No  

very light 30 368 s 179 s No  No  

very light 60 371 s 185 s No  No  

3. Traffic simulated in Lungarno Pacinotti at 7:30 a.m. 

heavy 2 905 s 395 s Yes – v. slowed, blocked Yes – v. slowed, blocked 

heavy 5 
908 s 349 s Yes – v. slowed, blocked Yes – slowed, v. slowed, 

blocked 

light 10 517 s 218 s Yes – v. slowed, blocked No  

very light 20 308 s 192 s No  No  

very light 30 304 s 189 s No  No  

very light 60 294 s 150 s No  No  

4. Traffic simulated in Via del Brennero at 8:00 a.m. 

heavy 2 1130 s 1852 s Yes – v. slowed, blocked Yes – v. slowed, blocked 

heavy 5 1160 s 601 s Yes – v. slowed, blocked No  

light 10 978 s 354 s No  No  

very light 20 876 s 369 s No  No  

very light 30 875 s 360 s No  No  

very light 60 874 s 363 s No  No  

5. Traffic simulated in Via C. Matilde at 4:30 p.m. 

heavy 2 1482s 1884 s Yes – blocked Yes – v. slowed, blocked 

heavy 5 1579 s 1595 s Yes – blocked Yes – v. slowed, blocked 

light 10 1584 s 1595 s Yes – blocked Yes – v. slowed, blocked 

very light 20 973 s 1398 s Yes – blocked Yes – blocked 

very light 30 809 s 948 s No  No  

very light 60 802 s 945 s No  No  

6. Traffic simulated in Via Aurelia at 6:00 p.m. 

heavy 2 
868 s 1353 s  Yes – v. slowed Yes – slowed, v. slowed, 

blocked 

heavy 5 
950 s 1195 s Yes – slowed Yes – slowed, v. slowed, 

blocked 

light 10 824 s 1078 s No Yes – v. slowed, blocked 

very light 20 810 s 960 s No No 

very light 30 790 s 851 s No  No  

very light 60 785 s 858 s No  No  
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