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Abstract—Applying the current technological possibilities has 

led to a wide range of traffic monitoring systems. These 

heterogeneous data sources individually provide a view on the 

current traffic state, each source having its own properties and 

(dis)advantages. However, these different sources can be 

aggregated to create a single traffic state estimation. This paper 

presents a data fusion algorithm that combines data on the data 

sample level. The proposed system fuses floating car data with 

stationary detector data and was implemented on live traffic. 

Results show the fusion algorithm allows to eliminate individual 

source bias and alleviates source-specific limitations. 
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fusion; traffic state estimation 

I. INTRODUCTION 

With the advances in communication technology and 
location-aware devices, more and more cars connect to or use 
Intelligent Transportation Systems (ITS) to get real-time traffic 
information and optimize their journey. These real-time ITS and 
their underlying traffic models vary depending on the available 
inputs, specific use-case and intended features. However, all 
these models need accurate and real-time traffic state 
information to assess the current traffic conditions. In this work, 
we focus on large scale traffic state estimation using both real-
time floating car data and stationary detector data. 

Floating car data (FCD) denotes data generated by moving 
vehicles called probes. These vehicles collect data with on-board 
positioning devices that record their position (often at a fixed 
interval). This data is then transmitted to a data collection server 
that processes the data for all probes (see [1, 2] for details on 
sample processing). From there on, it can be used for a wide 
range of applications. One of the earliest consisted of calculating 
average travel times on routes throughout the day [3-5]. Note 
that this does not necessarily require real time sample 
transmission/processing as it can be done using historic data. 
However, the main strength of FCD lies in its real time 
applications. Real time sample aggregation and processing can 
be used for live traffic state detection [2] and estimation [6].  

Stationary detector data (SDD) consists of data captured on 
fixed points in the road network by cameras, embedded 
inductive loops or other measuring equipment. This offers high 
resolution monitoring of the specific location (often with 
samples generated every 10-60 seconds). A full view on the 
traffic state along the trajectory can be made by combining the 
SDD from several points with macroscopic flow theory. Kalman 
filtering models the traffic as flows of cars and estimates the 
traffic state space for each time period [7]. Further extensions to 
the model have been made to account for irregular sample 
generation by using multiple modes of filter operation [8].  

While both sources separately can create a full traffic view, 
their combination allows a more detailed and accurate 
estimation of the traffic state. This is called data fusion and aims 
to fully capture the information in the individual sources. While 
SDD provides a detailed view on the traffic state on the 
monitored locations, installing and maintaining these sensors on 
the entire road network would require high investments. FCD is 
more easily used for this type of traffic monitoring as it 
distributed design inherently monitors large geographical areas 
instead of fixed locations. However, FCD accuracy depends on 
the number of monitored probe vehicles, often limited to a small 
fraction of the total traffic. 

Data fusion itself has be done with a wide range of 
techniques, e.g. neural networks [9-12] or Kalman modelling 
[13], fusing additional data sources e.g. automatic license plate 
recognition [14]. More example techniques and an overview of 
applications can be found in [15,16]. In this paper, we focus on 
an adaptive smoothing technique proposed in [17,18], also 
known as the extended and generalized Treiber-Helbing filter 
(EGTF). This filter uses kinematic wave theory applied to road 
traffic to merge individual samples to a full traffic state 
estimation.  

II. BASIC DATA FUSION ALGORITHM 

For this EGTF technique, the road network is modelled as a 
dynamic system in which traffic flows along the roads, with cars 
driving from position A at time tA to position B at time tB. In free-
flow traffic, the traffic conditions move along with the traffic, 
meaning that the traffic condition at position A at time tA will be 
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very similar to the traffic conditions at position B at time tB. This 
implies that the traffic state at position B at a certain time tx 
(possibly in the near future) can be predicted by using a traffic 
state from position A at an earlier time ty.  

In congested traffic, however, the traffic conditions move in 
the opposite direction of the traffic. While the traffic at the head 
of a traffic jam starts to move again, the back of the traffic jam 
is still stationary, with even more cars queuing on. This results 
in the head of the jam moving backwards and causes stop-and-
go waves. More importantly, the prediction of the traffic state at 
position A should take into account the traffic state at position B 
(further along the highway in the normal driving direction). 

These two mechanisms are modelled as separate waves in 
the Treiber-Helbing filter, moving at different speeds and in 
different directions. A schematic representation of the system is 
shown in Fig. 1. To estimate the traffic state for the position 
denoted by the diamond, the loop samples (denoted by triangles) 
on positions further along the route are taken into account by the 
backward propagating wave (denoted by the ellipsoid going 
from the top left to the bottom right). Analogously, the loop 
samples contributing to the forward wave are found in the 
forward ellipsoid (bottom left to top right). Following the above 
reasoning, the data samples within both ellipses are considered 
most relevant to the traffic state and will therefore be weighted 
more in the estimation of the traffic state at position P.  

 
Figure 1: Schematic representation of the traffic wave in the EGTF 

 
To calculate the traffic state, the available samples are 

processed in a weighted sum. The estimated speed s(x,t) at 
position x and time t for one wave is then calculated as a 
weighted sum of the speed of all samples in the region of interest 
around the (x,t) point. This weighted sum is given by 

 

 s(x,t) = ∑i  (wi(x,t) · si)  /  ∑i wi(x,t) (1) 

 
with wi(x,t) the weight of a sample at position xi, taken at 

time ti, contributing to the state at position x at time t. The 
individual weights wi(x,t) are calculated as follows 

 

 wi(x,t) = exp( -|x-xi|/σ - |t-ti-((x-xi)/v)|/τ ) (2) 

 

with σ and τ denoting the width and time window, 
respectively, of the region of influence around the (x,t) point 
under estimation. This weight function favors samples 
according to the ellipsoids shown in Fig. 1. The σ and τ are tuned 
to the availability of samples, which depends on the average 
distance between installed detectors and their sampling interval. 
The v in the formula denotes the propagation speed of the wave 
and differs between the forward free-flow wave (vFF) and the 
backward wave (vCONG). This results in 2 speed estimates sFF(x,t) 
and sCONG(x,t). 

To obtain a single speed estimate v(x,t) from the 2 estimates, 
they are combined using the following equations 

 

 v(x,t) = z(x,t) · sCONG(x,t)+(1-z(x,t)) · sFF(x,t) (3) 

 z(x,t) = 1/2 ·  (1+tanh((Vc-min(sCONG (x,t),sFF(x,t)))/dV) (4) 

 

with Vc the speed at which free-flow traffic transitions to 

congested traffic and dV the sensitivity around this threshold.  
In Eq. 4, the two speed values (from the different 

propagating waves) are combined to estimate whether the traffic 
is in congestion (z > 1/2) or in free-flow (z < 1/2). If scong(x,t) or 
sFF(x,t) are below the transition threshold, the congested 
estimate becomes more dominant in the calculation of the final 
speed estimate v(x,t). 

III. DATA SOURCE NORMALISATION 

The above calculation merges individual samples to a full 
traffic state estimate. However, when fusing different data 
sources like FCD and SDD, the individual samples from both 
sources have different fundamental properties, as they are 
generated using different measuring techniques. In the EGTF, 
this difference is taken into account by first calculating speed 
estimates for each source and then combining them using an 
extra weight factor denoting the estimated confidence/accuracy 
of the speed estimate. However, the fusion process can be done 
on the sample level, thereby needing only a single THF. The 
only requirement is that the individual samples from the 
different sources are taken into account equally to avoid bias 
towards an individual source. In the case of FCD and SDD, a 
correction is needed as both generate samples with different 
properties and frequency. 

SDD typically consists of samples taken with a fixed 
frequency (e.g. 1 sample per minute). However, this fixed 
interval can vary from detector to detector. This would result in 
some detectors producing more samples in the same time 
interval and therefore being favored in the sample aggregation. 
Analogously, this frequency also needs to be tuned to the FCD 
generation which uses full trips (or trips in progress) to generate 
data samples, possibly multiple samples if the trip passes 
multiple road segments. This can be solved for each source 
individually by tuning the frequency of the sample generation 
and their importance in the sample weighting.  By equalizing the 
number of samples and their contribution to the calculated 
estimates, the estimation avoids favoring a specific source.  

time 
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position on route loop loop loop 

backward wave 
forward wave 
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Depending on the source (and individual detector), the 
specific normalization also needs to take into account the 
specific source measuring properties. SDD consists of data 
measured at fixed positions in the network. In contrast, FCD 
originates from tracking vehicles. The reported values in SDD 
are therefore inherently temporal averages while the FCD 
reports spatial averages (see [19] for a more detailed description 
of the difference). To merge the reported values, they need to be 
converted to the same averaging (spatial/temporal depending on 
the desired estimation) before being summed.  

A final normalization is needed to account for the coverage 
provided in the data sources. While SDD provides aggregated 
data for all vehicles, FCD only covers a small fraction of the 
total traffic on the road. This results in different absolute 
numbers of samples, varying according with traffic intensity as 
well as the FCD probe vehicle penetration rate. This can be 
solved by taking the penetration rate into account in the 
weighting. 

IV. EXPERIMENTAL APPLICATION: A58 USE CASE 

To validate the above method, the system was implemented for 

the 20 km of A58 highway from Tilburg to Eindhoven shown 

in Fig. 2. While the entire area of study in the ‘Spookfiles’ 

project (www.spookfiles.nl) entailed the neighboring A2 and 

A67, only results for the A58 are given here.  
The A58 is monitored by 33 dual induction loops spaced 

evenly over the highway, resulting in available SDD roughly 
every 500 m. The live data from these loops was collected every 
minute and processed real-time to obtain the results below. The 
FCD was supplied by Be-Mobile, obtained from monitoring an 
estimated 3% of all traffic on the highway, higher than the 1.5% 
reported in [2]. Note that as the data is collected real-time, there 
needs to be accounted for delay, caused by the sample averaging 
of the measurement equipment, communication overhead and 
processing time. 

Fig. 3 shows the output of the SDD plotted at their respective 
positions along the route. This data was combined with the 
aggregated FCD (depicted in Fig. 4) and processed using the 
THF described above. The results are plotted in Fig. 5. At 
6:00 AM, the traffic on the route is smooth. The first congestion 
starts to form around 6:50 AM near the Moergestel exit. This 
congestion propagates backwards (as a stop-and-go wave) to the 
start of the route (where 2 highways merge to form the A58) and 
reinforces the jam that was forming there. Around 7:00 AM, a 
congestion wave also start at the end of the route. This wave also 
propagates backwards and reaches the Oirschot intersection 
around 7:30 AM. This causes the traffic there to become 
disturbed for the rest of the morning rush hour. On top of the 
first wave, 2 more congestion waves propagate backward to 
Moergestel.  

Comparing the SDD source to the fusion result, the fusion 
algorithm more clearly captures the traffic state when the 
distance between individual detectors becomes larger (e.g. 
between the start of the route and the Tilburg entry) or when 
traffic is turbulent (e.g. between the Moergestel exit and the 
preceding rest stop). Compared to the FCD source, the fusion 

algorithm provides a smoother traffic state with a clearer 
distinction between individual waves (e.g. between Tilburg and 
Moergestel). 

The SDD provides accurate speed observations but is limited 
in spatial resolution compared to the FCD. The FCD in turn 
fluctuates very rapidly (as shown by the sharp color differences 
in Fig. 4). The data fusion processing combines both data 
sources in a smooth traffic state. Note again that the prediction 
for a specific time and position is made using only older samples 
as data is collected and processed real-time. 

CONCLUSION AND FUTURE WORK 

With more and more heterogeneous traffic monitoring, the 
traffic state estimation has to incorporate these individual 
sources in a consistent framework. By normalizing the 
individual data samples to take into account the measuring 
properties, they can be combined in a single data fusion 
algorithm to estimate traffic state. This approach was applied to 
fuse stationary detector data with floating car data, both gathered 
and processed real-time. Results show that this corrects 
individual data source bias, resulting in a cleaner traffic state 
estimation. 

While our study was limited to the well-monitored A58 
highway, most road infrastructure is not equipped with traffic 
sensors, thereby limiting the availability of SDD. However, the 
data fusion algorithm does not require a single source to provide 
a full traffic view. As samples from different sources can be 
merged, the algorithm can be applied to roads with fewer 
sensors. More interestingly, it may also be used to avoid having 
to install an extensive network of detectors, thereby lowering 
infrastructure cost.  
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Figure 2: A58 highway. The highway spans 20 km and contains 33 loop detectors, indicated in black 

 

 
Figure 3: SDD on the A58 on 9th February 2015 between 6 and 10 AM (local time) 
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Figure 4: Aggregated FCD (same period as above) 

 
Figure 5: Fused traffic state (same period as above) 


