10,630 research outputs found

    Intensification of Ester Production in a Continuous Reactor

    Get PDF
    Numerous continuous intensified reactors are now accessible on the market that offer enhanced thermal performances in a continuous reactor. Such reactors are then particularly suited to fast and highly exothermic reactions. In this paper, the ability to also manage a slow and equilibrated system, the methyl acetate esterification reaction, on condition of intensification in terms of design and operating conditions is presented. To achieve this purpose, a new kinetics model has been developed and validated from experiments carried out in a lab scale batch reactor. Implemented in a simulation framework, this model leads to an intensified design of the reactor and the associated operating conditions. All this intensification methodology has been supported and validated by experimental studies

    Digital twin development for improved operation of batch process systems

    Get PDF

    Distillation

    Get PDF
    The purpose of this book is to offer readers important topics on the modeling, simulation, and optimization of distillation processes. The book is divided into four main sections: the first section is introduction to the topic, the second presents work related to distillation process modeling, the third deals with the modeling of phase equilibrium, one of the most important steps of distillation process modeling, and the the fourth looks at the reactive distillation process, a process that has been applied successfully to a number of applications and has been revealed as a promising strategy for a number of recent challenges

    Case Based Reasoning for Chemical Engineering Design

    Get PDF
    With current industrial environment (competition, lower profit margin, reduced time to market, decreased product life cycle, environmental constraints, sustainable development, reactivity, innovation…), we must decrease the time for design of new products or processes. While the design activity is marked out by several steps, this article proposed a decision support tool for the preliminary design step. This tool is based on the Case Based Reasoning (CBR) method. This method has demonstrated its effectiveness in other domains (medical, architecture…) and more recently in chemical engineering. This method, coming from Artificial Intelligence, is based on the reusing of earlier experiences to solve new problems. The goal of this article is to show the utility of such method for unit operation (for example) pre-design but also to propose several evolutions for CBR through a domain as complex as the chemical engineering is (because of its interactions, non linearity, intensification problems…). During the pre-design step, some parameters like operating conditions are not precisely known but we have an interval of possible values, worse we only have a partial description of the problem.. To take into account this imprecision in the problem description, the CBR method is coupled with the fuzzy sets theory. After a mere presentation of the CBR method, a practical implementation is described with the choice and the pre-design of packing for separation columns

    Preliminary Design of Reactive Distillation Columns

    Get PDF
    A procedure that combines feasibility analysis, synthesis and design of reactive distillation columns is introduced. The main interest of this methodology lies on a progressive introduction of the process complexity. From minimal information concerning the physicochemical properties of the system, three steps lead to the design of the unit and the specification of its operating conditions. Most of the methodology exploits and enriches approaches found in the literature. Each step is described and our contribution is underlined. Its application is currently limited to equilibrium reactive systems where degree of freedom is equal to 2 or less than 2. This methodology which provides a reliable initialization point for the optimization of the process has been applied with success to different synthesis. The production of methyl-tert-butyl-ether (MTBE) and methyl acetate are presented as examples

    Model Predictive Control of Nonlinear Processes

    Get PDF

    Dynamics analysis and integrated design of real-time control systems

    Get PDF
    Real-time control systems are widely deployed in many applications. Theory and practice for the design and deployment of real-time control systems have evolved significantly. From the design perspective, control strategy development has been the focus of the research in the control community. In order to develop good control strategies, process modelling and analysis have been investigated for decades, and stability analysis and model-based control have been heavily studied in the literature. From the implementation perspective, real-time control systems require timeliness and predictable timing behaviour in addition to logical correctness, and a real-time control system may behave very differently with different software implementations of the control strategies on a digital controller, which typically has limited computing resources. Most current research activities on software implementations concentrate on various scheduling methodologies to ensure the schedulability of multiple control tasks in constrained environments. Recently, more and more real-time control systems are implemented over data networks, leading to increasing interest worldwide in the design and implementation of networked control systems (NCS). Major research activities in NCS include control-oriented and scheduling-oriented investigations. In spite of significant progress in the research and development of real-time control systems, major difficulties exist in the state of the art. A key issue is the lack of integrated design for control development and its software implementation. For control design, the model-based control technique, the current focus of control research, does not work when a good process model is not available or is too complicated for control design. For control implementation on digital controllers running multiple tasks, the system schedulability is essential but is not enough; the ultimate objective of satisfactory quality-of-control (QoC) performance has not been addressed directly. For networked control, the majority of the control-oriented investigations are based on two unrealistic assumptions about the network induced delay. The scheduling-oriented research focuses on schedulability and does not directly link to the overall QoC of the system. General solutions with direct QoC consideration from the network perspective to the challenging problems of network delay and packet dropout in NCS have not been found in the literature. This thesis addresses the design and implementation of real-time control systems with regard to dynamics analysis and integrated design. Three related areas have been investigated, namely control development for controllers, control implementation and scheduling on controllers, and real-time control in networked environments. Seven research problems are identified from these areas for investigation in this thesis, and accordingly seven major contributions have been claimed. Timing behaviour, quality of control, and integrated design for real-time control systems are highlighted throughout this thesis. In control design, a model-free control technique, pattern predictive control, is developed for complex reactive distillation processes. Alleviating the requirement of accurate process models, the developed control technique integrates pattern recognition, fuzzy logic, non-linear transformation, and predictive control into a unified framework to solve complex problems. Characterising the QoC indirectly with control latency and jitter, scheduling strategies for multiple control tasks are proposed to minimise the latency and/or jitter. Also, a hierarchical, QoC driven, and event-triggering feedback scheduling architecture is developed with plug-ins of either the earliest-deadline-first or fixed priority scheduling. Linking to the QoC directly, the architecture minimises the use of computing resources without sacrifice of the system QoC. It considers the control requirements, but does not rely on the control design. For real-time NCS, the dynamics of the network delay are analysed first, and the nonuniform distribution and multi-fractal nature of the delay are revealed. These results do not support two fundamental assumptions used in existing NCS literature. Then, considering the control requirements, solutions are provided to the challenging NCS problems from the network perspective. To compensate for the network delay, a real-time queuing protocol is developed to smooth out the time-varying delay and thus to achieve more predictable behaviour of packet transmissions. For control packet dropout, simple yet effective compensators are proposed. Finally, combining the queuing protocol, the packet loss compensation, the configuration of the worst-case communication delay, and the control design, an integrated design framework is developed for real-time NCS. With this framework, the network delay is limited to within a single control period, leading to simplified system analysis and improved QoC

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering
    • …
    corecore