31 research outputs found

    Advancements in Sensor Technologies and Control Strategies for Lower-Limb Rehabilitation Exoskeletons: A Comprehensive Review

    Get PDF
    Lower-limb rehabilitation exoskeletons offer a transformative approach to enhancing recovery in patients with movement disorders affecting the lower extremities. This comprehensive systematic review delves into the literature on sensor technologies and the control strategies integrated into these exoskeletons, evaluating their capacity to address user needs and scrutinizing their structural designs regarding sensor distribution as well as control algorithms. The review examines various sensing modalities, including electromyography (EMG), force, displacement, and other innovative sensor types, employed in these devices to facilitate accurate and responsive motion control. Furthermore, the review explores the strengths and limitations of a diverse array of lower-limb rehabilitation-exoskeleton designs, highlighting areas of improvement and potential avenues for further development. In addition, the review investigates the latest control algorithms and analysis methods that have been utilized in conjunction with these sensor systems to optimize exoskeleton performance and ensure safe and effective user interactions. By building a deeper understanding of the diverse sensor technologies and monitoring systems, this review aims to contribute to the ongoing advancement of lower-limb rehabilitation exoskeletons, ultimately improving the quality of life for patients with mobility impairments

    Application of wearable sensors in actuation and control of powered ankle exoskeletons: a Comprehensive Review

    Get PDF
    Powered ankle exoskeletons (PAEs) are robotic devices developed for gait assistance, rehabilitation, and augmentation. To fulfil their purposes, PAEs vastly rely heavily on their sensor systems. Human–machine interface sensors collect the biomechanical signals from the human user to inform the higher level of the control hierarchy about the user’s locomotion intention and requirement, whereas machine–machine interface sensors monitor the output of the actuation unit to ensure precise tracking of the high-level control commands via the low-level control scheme. The current article aims to provide a comprehensive review of how wearable sensor technology has contributed to the actuation and control of the PAEs developed over the past two decades. The control schemes and actuation principles employed in the reviewed PAEs, as well as their interaction with the integrated sensor systems, are investigated in this review. Further, the role of wearable sensors in overcoming the main challenges in developing fully autonomous portable PAEs is discussed. Finally, a brief discussion on how the recent technology advancements in wearable sensors, including environment—machine interface sensors, could promote the future generation of fully autonomous portable PAEs is provided

    A Review Study for Robotic Exoskeletons Rehabilitation Devices

    Get PDF
    Nowadays, robotic exoskeletons demonstrated great abilities to replace traditional rehabilitation processes for activating neural abilities performed by physiotherapists. The main aim of this review study is to determine a state-of-the-art robotic exoskeleton that can be used for the rehabilitation of the lower limb of people who have mobile disabilities as a result of stroke and musculoskeletal conditions. The study presented the anatomy of the lower limb and the biomechanics of human gait to explain the mechanism of the limb, which helps in constructing a robotic exoskeleton. A state-of-the-art review of more than 100 articles related to robotic exoskeletons and their constructions, functionality, and rehabilitation capabilities are accurately implemented. Moreover, the study included a review of upper limb rehabilitation that has been studied locally and successfully applied to patients who exhibited significant improvements. Results of recent studies herald an abundant future for robotic exoskeletons used in the rehabilitation of the lower extremity. Significant improvement in the mechanism and design, as well as the quality, were observed. Also, impressive results were obtained from the performance when used by patients. This study concludes that working and improving the robotic devices continuously in accordance with the cases are necessary to be treated with the best results and the lowest cost

    The-state-of-the-art of soft robotics to assist mobility: a review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions

    Get PDF
    Background: Soft, wearable, powered exoskeletons are novel devices that may assist rehabilitation, allowing users to walk further or carry out activities of daily living. However, soft robotic exoskeletons, and the more commonly used rigid exoskeletons, are not widely adopted clinically. The available evidence highlights a disconnect between the needs of exoskeleton users and the engineers designing devices. This review aimed to explore the literature on physiotherapist and patient perspectives of the longer-standing, and therefore greater evidenced, rigid exoskeleton limitations. It then offered potential solutions to these limitations, including soft robotics, from an engineering standpoint. Methods: A state-of-the-art review was carried out which included both qualitative and quantitative research papers regarding patient and/or physiotherapist perspectives of rigid exoskeletons. Papers were themed and themes formed the review’s framework. Results: Six main themes regarding the limitations of soft exoskeletons were important to physiotherapists and patients: safety; a one-size-fits approach; ease of device use; weight and placement of device; cost of device; and, specific to patients only, appearance of the device. Potential soft-robotics solutions to address these limitations were offered, including compliant actuators, sensors, suit attachments fitting to user’s body, and the use of control algorithms. Conclusions: It is evident that current exoskeletons are not meeting the needs of their users. Solutions to the limitations offered may inform device development. However, the solutions are not infallible and thus further research and development is required

    Controle por Modos Deslizantes de um Atuador Eletro-hidráulico com Compensação por Processo Gaussiano / Sliding Mode Control of an Electric-Hydraulic Actuator with Gaussian Process Compensation

    Get PDF
    O desenvolvimento de sistemas de controle precisos para atuadores eletro-hidráulicos depende de uma adequada compensação dos efeitos dinâmicos desconhecidos. Neste trabalho, um controlador por Modos Deslizantes é combinado com um compensador por Processo Gaussiano para proporcionar um adequado rastreamento de trajetória. Processo Gaussiano é uma conhecida estratégia de aprendizagem de máquinas que pode ser utilizada no reconhecimento de funções. As propriedades de convergência do sistema em malha fechada são analisadas pela Teoria de Estabilidade de Lyapunov. Resultados numéricos confirmam uma forte melhora no desempenho do controlador ao ser inserido o compensador proposto

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit

    Physical Diagnosis and Rehabilitation Technologies

    Get PDF
    The book focuses on the diagnosis, evaluation, and assistance of gait disorders; all the papers have been contributed by research groups related to assistive robotics, instrumentations, and augmentative devices

    A proactive controller for human-driven robots based on force/motion observer mechanisms

    Get PDF
    This article investigates human-driven robots via physical interaction, which is enhanced by integrating the human partner's motion intention. A human motor control model is employed to estimate the human partner's motion intention. A system observer is developed to estimate the human's control input in this model, so that force sensing is not required. A robot controller is developed to incorporate the estimated human's motion intention, which makes the robot proactively follow the human partner's movements. Simulations and experiments on a physical robot are carried out to demonstrate the properties of our proposed controller

    Principles of Small-Scale Hydraulic Systems for Human Assistive Machines

    Get PDF
    University of Minnesota Ph.D. dissertation. March 2017. Major: Mechanical Engineering. Advisor: William Durfee. 1 computer file (PDF); xiii, 288 pages.The high power and force density of hydraulic actuators, along with the ability to distribute system weight through the separation of the power supply and actuators makes hydraulic technology ideal for use in human assistive machines. However, hydraulic systems often operate inefficiently due to throttling losses in the control valves and have increased viscous losses in small-scale applications as bore size is decreased. The objective of this research is to address the limitations of small-scale hydraulics using validated modeling techniques to optimize performance and minimize system weight. This research compares and contrasts the use of different hydraulic technology as well as develops detailed models of small-scale hydraulic components. These models are used to construct a software tool that optimizes the design of a hydraulic system using specified input requirements of actuation, conduit lengths, operating pressure, and runtime. A system-level energetics analysis provides estimates of efficiencies and weights, while a heat transfer analysis estimates the working fluid and component surface temperatures. In addition, the dynamic performance of different small-scale pump and valve controlled hydraulic systems are simulated to compare the cycle efficiencies, rise times, and flow rate capabilities as a function of duty cycles. The use of an accumulator, unloading valves, variable displacement pumps, and proportional pressure control are explored to improve the efficiency of the system during intermittent operation. In addition a small-scale, digital, high frequency switching valve is designed and simulated to reduce the throttling losses of a traditional proportional control valve. This body of knowledge is used to design, prototype, and performance test two hydraulic powered ankle-foot orthoses. The first orthosis is an untethered system that provides active gait assistance. Hydraulics allows the system to be separated into two parts as the actuator is secured to the ankle, and the portable electrohydraulic power supply is positioned on the lower back. The second orthosis emulates the dynamics of a passive ankle-foot orthosis providing torque assistance to bring the ankle to a neutral position. This device is specifically designed to reduce the time and resources in the clinical prescription of passive ankle-foot orthoses while providing more quantitative metrics
    corecore