155 research outputs found

    Investigations into the design of a wheelchair-mounted rehabilitation robotic manipulator

    Get PDF
    This research describes the steps towards the development of a low-cost wheelchair-mounted manipulator for use by the physically disabled and elderly. A detailed review of world rehabilitation robotics research has been conducted, covering fifty-six projects. This identified the main areas of research, their scope and results. From this review, a critical investigation of past and present wheelchair-mounted robotic arm projects was undertaken. This led to the formulation of the key design parameters in a final design specification. The results of a questionnaire survey of fifty electric wheelchair users is presented, which has for the first time established the needs and abilities of this disability group. An analysis of muscle type actuators, which mimic human muscle, is presented and their application to robotics, orthotics and prosthetics is given. A new type of rotary pneumatic muscle actuator, the flexator, is introduced and through extensive testing its performance characteristics elucidated. A review of direct-drive rotary pneumatic, hydraulic and electrical actuators has highlighted their relative performance characteristics and has rated their efficiency in terms of their peak torque to motor mass ratio, Tp/MM. From this, the flexator actuator has been shown to have a higher Tp/MM ratio than most conventional actuators. A novel kinematic arrangement is presented which combines the best features of the SCARA and vertically articulated industrial robot geometries, to form the 'Scariculated' arm design. The most appropriate actuator for each joint of this hybrid manipulator was selected, based on the criteria of high Tp/MM ratio, low cost, safety and compatibility. The final design incorporates conventional pneumatic linear double-acting cylinders, a vane type rotary actuator, two dual flexator actuators, and stepping motors for the fme control of the wrist/end effector. An ACSL simulation program has been developed which uses mass flow rate equations, based on one-dimensional compressible flow theory and suppressed critical pressure ratios, to simulate the dual flexator actuator. Theoretical and empirical data is compared and shows a high degree of correlation between results. Finally, the design and development work on two prototypes is discussed. The latest prototype consists of a five-axis manipulator whose pneumatic joints are driven by pulse width modulated solenoid valves. An 8051 microprocessor with proportional error feedback modilles the mark to space ratio of the PWM signal in proportion to the angular error of the joints. This enables control over individual joint speeds, reprogrammable memory locations and position monitoring of each joint. The integration of rehabilitation robotic manipulators into the daily lives of the physically disabled and elderly will significantly influence the role of personal rehabilitation in the next century

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Advanced Automation for Space Missions

    Get PDF
    The feasibility of using machine intelligence, including automation and robotics, in future space missions was studied

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Aeronautical engineering: A continuing bibliography with indexes (supplement 253)

    Get PDF
    This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in May, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 2

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) and cosponsored by NASA/JSC and U.S. Air Force Materiel Command. SOAR included NASA and USAF programmatic overviews, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations

    3D printed concrete bridges : Opportunities, Challenges, and Conditions

    Get PDF
    Master's thesis in Civil and structural engineering (BYG508
    corecore