43 research outputs found

    A microgripper for single cell manipulation

    Get PDF
    This thesis presents the development of an electrothermally actuated microgripper for the manipulation of cells and other biological particles. The microgripper has been fabricated using a combination of surface and bulk micromachining techniques in a three mask process. All of the fabrication details have been chosen to enable a tri-layer, polymer (SU8) - metal (Au) - polymer (SU8), membrane to be released from the substrate stress free and without the need for sacrificial layers. An actuator design, which completely eliminates the parasitic resistance of the cold arm, is presented. When compared to standard U-shaped actuators, it improves the thermal efficiency threefold. This enables larger displacements at lower voltages and temperatures. The microgripper is demonstrated in three different configurations: normally open mode, normally closed mode, and normally open/closed mode. It has-been modelled using two coupled analytical models - electrothermal and thermomechanical - which have been custom developed for this application. Unlike previously reported models, the electrothermal model presented here includes the heat exchange between hot and cold arms of the actuators that are separated by a small air gap. A detailed electrothermomechanical characterisation of selected devices has permitted the validation of the models (also performed using finite element analysis) and the assessment of device performance. The device testing includes electrical, deflection, and temperature measurements using infrared (IR) thermography, its use in polymeric actuators reported here for the first time. Successful manipulation experiments have been conducted in both air and liquid environments. Manipulation of live cells (mice oocytes) in a standard biomanipulation station has validated the microgripper as a complementary and unique tool for the single cell experiments that are to be conducted by future generations of biologists in the areas of human reproduction and stem cell research

    The Roles of Piezoelectric Ultrasonic Motors in Industry 4.0 Era: Opportunities & Challenges

    Get PDF
    Piezoelectric Ultrasonic motors (USM) are based on the principle of converse piezoelectric effect i.e., vibrations occur when an electrical field is applied to piezoelectric materials. USMs have been studied several decades for their advantages over traditional electromagnetic motors. Despite having many advantages, they have several challenges too. Recently many researchers have started focusing on Industry 4.0 or Fourth Industrial revolution phase of the industry which mostly emphasis on digitization & interconnection of the entities throughout the life cycle of the product in an industrial network to get the best possible output. Industry 4.0 utilizes various advanced tools for carrying out the nexus between the entities & bringing up them on digital platform. The studies of the role of USMs in Industry 4.0 scenario has never been done till now & this article fills that gap by analyzing the piezoelectric ultrasonic motors in depth & breadth in the background of Industry 4.0. This article delivers the novel working principle, illustrates examples for effective utilization of USMs, so that it can buttress the growth of Industry 4.0 Era & on the other hand it also analyses the key Industry 4.0 enabling technologies to improve the performance of the USMs

    Dynamic Micromechanical Fabry-Perot Cavity Sensors Fabricated by Multiphoton Absorption Onto Optical Fiber Tips

    Get PDF
    This research leveraged two-photon polymerization microfabrication to integrate dynamic mechanical components with Fabry-Perot resonators onto the ends of low-loss optical fibers to prototype 3 micro-optic devices. The first device featured a multi-positional mirror that enabled thin-film deposition onto cavities of any length with mirrors of significant curvature, for refractive index sensing. The second device combined an FP cavity with a spring body featuring easily scalable stiffness for pressure sensing. The third device presented a high-speed rotating micro-anemometer for measuring a wide range of gas flows. All devices represent a significant reduction in size and weight over commercially available devices

    DEVELOPMENT OF A NOVEL Z-AXIS PRECISION POSITIONING STAGE WITH MILLIMETER TRAVEL RANGE BASED ON A LINEAR PIEZOELECTRIC MOTOR

    Get PDF
    Piezoelectric-based positioners are incorporated into stereotaxic devices for microsurgery, scanning tunneling microscopes for the manipulation of atomic and molecular-scale structures, nanomanipulator systems for cell microinjection and machine tools for semiconductor-based manufacturing. Although several precision positioning systems have been developed for planar motion, most are not suitable to provide long travel range with large load capacity in vertical axis because of their weights, size, design and embedded actuators. This thesis develops a novel positioner which is being developed specifically for vertical axis motion based on a piezoworm arrangement in flexure frames. An improved estimation of the stiffness for Normally Clamped (NC) clamp is presented. Analytical calculations and finite element analysis are used to optimize the design of the lifting platform as well as the piezoworm actuator to provide maximum thrust force while maintaining a compact size. To make a stage frame more compact, the actuator is integrated into the stage body. The complementary clamps and the amplified piezoelectric actuators based extenders are designed such that no power is needed to maintain a fixed vertical position, holding the payload against the force of gravity. The design is extended to a piezoworm stage prototype and validated through several tests. Experiments on the prototype stage show that it is capable of a speed of 5.4 mm/s, a force capacity of 8 N and can travel over 16 mm

    Affordable flexible hybrid manipulator for miniaturised product assembly

    Get PDF
    Miniaturised assembly systems are capable of assembling parts of a few millimetres in size with an accuracy of a few micrometres. Reducing the size and the cost of such a system while increasing its flexibility and accuracy is a challenging issue. The introduction of hybrid manipulation, also called coarse/fine manipulation, within an assembly system is the solution investigated in this thesis. A micro-motion stage (MMS) is designed to be used as the fine positioning mechanism of the hybrid assembly system. MMSs often integrate compliant micro-motion stages (CMMSs) to achieve higher performances than the conventional MMSs. CMMSs are mechanisms that transmit an output force and displacement through the deformation of their structure. Although widely studied, the design and modelling techniques of these mechanisms still need to be improved and simplified. Firstly, the linear modelling of CMMSs is evaluated and two polymer prototypes are fabricated and characterised. It is found that polymer based designs have a low fabrication cost but not suitable for construction of a micro-assembly system. A simplified nonlinear model is then derived and integrated within an analytical model, allowing for the full characterisation of the CMMS in terms of stiffness and range of motion. An aluminium CMMS is fabricated based on the optimisation results from the analytical model and is integrated within an MMS. The MMS is controlled using dual-range positioning to achieve a low-cost positioning accuracy better than 2µm within a workspace of 4.4×4.4mm2. Finally, a hybrid manipulator is designed to assemble mobile-phone cameras and sensors automatically. A conventional robot manipulator is used to pick and place the parts in coarse mode while the aluminium CMMS based MMS is used for fine alignment of the parts. A high-resolution vision system is used to locate the parts on the substrate and to measure the relative position of the manipulator above MMS using a calibration grid with square patterns. The overall placement accuracy of the assembly system is ±24µm at 3σ and can reach 2µm, for a total cost of less than £50k, thus demonstrating the suitability of hybrid manipulation for desktop-size miniaturised assembly systems. The precision of the existing system could be significantly improved by making the manipulator stiffer (i.e. preloaded bearings…) and adjustable to compensate for misalignment. Further improvement could also be made on the calibration of the vision system. The system could be either scaled up or down using the same architecture while adapting the controllers to the scale.Engineering and Physical Sciences Research Council (EPSRC

    Dynamic modeling and characterization of magnetic hybrid films of polyvinyl butyral/iron oxide nanoparticles (PVB/Fe₂O₃) devoted to microactuators.

    Get PDF
    This thesis was accomplished in a dual-degree modality between the consolidated group of Synthesis and Characterization of Materials ꟷFacultad de Ingeniería Mecánica y Eléctrica (FIME), Universidad Autónoma de Nuevo León (UANL), México, and the research group of Methodologies for Automatic Control and for Design of Mechatronic Systems (MACS), department of Automatic Control and Micro-Mechatronic Systems ꟷ FEMTO-ST institute, Université Bourgogne Franche-Comté (UBFC), France

    Design and experimental validation of a piezoelectric actuator tracking control based on fuzzy logic and neural compensation

    Get PDF
    This work proposes two control feedback-feedforward algorithms, based on fuzzy logic in combination with neural networks, aimed at reducing the tracking error and improving the actuation signal of piezoelectric actuators. These are frequently used devices in a wide range of applications due to their high precision in micro- and nanopositioning combined with their mechanical stiffness. Nevertheless, the hysteresis is one the main phenomenon that degrades the performance of these actuators in tracking operations. The proposed control schemes were tested experimentally in a commercial piezoelectric actuator. They were implemented with a dSPACE 1104 device, which was used for signal generation and acquisition purposes. The performance of the proposed control schemes was compared to conventional structures based on proportional-integral-derivative and fuzzy logic in feedback configuration. Experimental results show the advantages of the proposed controllers, since they are capable of reducing the error to significant magnitude orders.The authors wish to express their gratitude to the Basque Government, through the project EKOHEGAZ (ELKARTEK KK-2021/00092), to the Diputación Foral de Álava (DFA), through the project CONAVANTER, and to the UPV/EHU, through the project GIU20/063, for supporting this work

    In-Mold Assembly of Multi-Functional Structures

    Get PDF
    Combining the recent advances in injection moldable polymer composites with the multi-material molding techniques enable fabrication of multi-functional structures to serve multiple functions (e.g., carry load, support motion, dissipate heat, store energy). Current in-mold assembly methods, however, cannot be simply scaled to create structures with miniature features, as the process conditions and the assembly failure modes change with the feature size. This dissertation identifies and addresses the issues associated with the in-mold assembly of multi-functional structures with miniature components. First, the functional capability of embedding actuators is developed. As a part of this effort, computational modeling methods are developed to assess the functionality of the structure with respect to the material properties, process parameters and the heat source. Using these models, the effective material thermal conductivity required to dissipate the heat generated by the embedded small scale actuator is identified. Also, the influence of the fiber orientation on the heat dissipation performance is characterized. Finally, models for integrated product and process design are presented to ensure the miniature actuator survivability during embedding process. The second functional capability developed as a part of this dissertation is the in-mold assembly of multi-material structures capable of motion and load transfer, such as mechanisms with compliant hinges. The necessary hinge and link design features are identified. The shapes and orientations of these features are analyzed with respect to their functionality, mutual dependencies, and the process cost. The parametric model of the interface design is developed. This model is used to minimize both the final assembly weight and the mold complexity as the process cost measure. Also, to minimize the manufacturing waste and the risk of assembly failure due to unbalanced mold filling, the design optimization of runner systems used in multi-cavity molds for in-mold assembly is developed. The complete optimization model is characterized and formulated. The best method to solve the runner optimization problem is identified. To demonstrate the applicability of the tools developed in this dissertation towards the miniaturization of robotic devices, a case study of a novel miniature air vehicle drive mechanism is presented
    corecore