92 research outputs found

    pHealth 2021. Proc. of the 18th Internat. Conf. on Wearable Micro and Nano Technologies for Personalised Health, 8-10 November 2021, Genoa, Italy

    Get PDF
    Smart mobile systems – microsystems, smart textiles, smart implants, sensor-controlled medical devices – together with related body, local and wide-area networks up to cloud services, have become important enablers for telemedicine and the next generation of healthcare services. The multilateral benefits of pHealth technologies offer enormous potential for all stakeholder communities, not only in terms of improvements in medical quality and industrial competitiveness, but also for the management of healthcare costs and, last but not least, the improvement of patient experience. This book presents the proceedings of pHealth 2021, the 18th in a series of conferences on wearable micro and nano technologies for personalized health with personal health management systems, hosted by the University of Genoa, Italy, and held as an online event from 8 – 10 November 2021. The conference focused on digital health ecosystems in the transformation of healthcare towards personalized, participative, preventive, predictive precision medicine (5P medicine). The book contains 46 peer-reviewed papers (1 keynote, 5 invited papers, 33 full papers, and 7 poster papers). Subjects covered include the deployment of mobile technologies, micro-nano-bio smart systems, bio-data management and analytics, autonomous and intelligent systems, the Health Internet of Things (HIoT), as well as potential risks for security and privacy, and the motivation and empowerment of patients in care processes. Providing an overview of current advances in personalized health and health management, the book will be of interest to all those working in the field of healthcare today

    Towards a Learning Health System: a SOA based platform for data re-use in chronic infectious diseases

    Get PDF
    Abstract Information and Communication Technology (ICT) tools can efficiently support clinical research by providing means to collect automatically huge amount of data useful for the management of clinical trials conduction. Clinical trials are indispensable tools for Evidence-Based Medicine and represent the most prevalent clinical research activity. Clinical trials cover only a restricted part of the population that respond to particular and strictly controlled requirements, offering a partial view of the overall patients\u2019 status. For instance, it is not feasible to consider patients with comorbidities employing only one kind of clinical trial. Instead, a system that have a comprehensive access to all the clinical data of a patient would have a global view of all the variables involved, reflecting real-world patients\u2019 experience. The Learning Health System is a system with a broader vision, in which data from various sources are assembled, analyzed by various means and then interpreted. The Institute of Medicine (IOM) provides this definition: \u201cIn a Learning Health System, progress in science, informatics, and care culture align to generate new knowledge as an ongoing, natural by-product of the care experience, and seamlessly refine and deliver best practices for continuous improvement in health and health care\u201d. The final goal of my project is the realization of a platform inspired by the idea of Learning Health System, which will be able to re-use data of different nature coming from widespread health facilities, providing systematic means to learn from clinicians\u2019 experience to improve both the efficiency and the quality of healthcare delivery. The first approach is the development of a SOA-based architecture to enable data collection from sparse facilities into a single repository, to allow medical institutions to share information without an increase in costs and without the direct involvement of users. Through this architecture, every single institution would potentially be able to participate and contribute to the realization of a Learning Health System, that can be seen as a closed cycle constituted by a sequential process of transforming patient-care data into knowledge and then applying this knowledge to clinical practice. Knowledge, that can be inferred by re-using the collected data to perform multi-site, practice-based clinical trials, could be concretely applied to clinical practice through Clinical Decision Support Systems (CDSS), which are instruments that aim to help physicians in making more informed decisions. With 4 this objective, the platform developed not only supports clinical trials execution, but also enables data sharing with external research databases to participate in wider clinical trials also at a national level without effort. The results of these studies, integrated with existing guidelines, can be seen as the knowledge base of a decision support system. Once designed and developed, the adoption of this system for chronical infective diseases management at a regional level helped in unifying data all over the Ligurian territory and actively monitor the situation of specific diseases (like HIV, HCV and HBV) for which the concept of retention in care assumes great importance. The use of dedicated standards is essential to grant the necessary level of interoperability among the structures involved and to allow future extensions to other fields. A sample scenario was created to support antiretroviral drugs prescription in the Ligurian HIV Network setting. It was thoroughly tested by physicians and its positive impact on clinical care was measured in terms of improvements in patients\u2019 quality of life, prescription appropriateness and therapy adherence. The benefits expected from the employment of the system developed were verified. Student\u2019s T test was used to establish if significant differences were registered between data collected before and after the introduction of the system developed. The results were really acceptable with the minimum p value in the order of 10 125 and the maximum in the order of 10 123. It is reasonable to assess that the improvements registered in the three analysis considered are ascribable to this system introduction and not to other factors, because no significant differences were found in the period before its release. Speed is a focal point in a system that provides decision support and it is highly recognized the importance of velocity optimization. Therefore, timings were monitored to evaluate the responsiveness of the system developed. Extremely acceptable results were obtained, with the waiting times of the order of 10 121 seconds. The importance of the network developed has been widely recognized by the medical staff involved, as it is also assessed by a questionnaire they compiled to evaluate their level of satisfaction

    From Data to Decision: An Implementation Model for the Use of Evidence-based Medicine, Data Analytics, and Education in Transfusion Medicine Practice

    Get PDF
    Healthcare in the United States is underperforming despite record increases in spending. The causes are as myriad and complex as the suggested solutions. It is increasingly important to carefully assess the appropriateness and cost-effectiveness of treatments especially the most resource-consuming clinical interventions. Healthcare reimbursement models are evolving from fee-for-service to outcome-based payment. The Patient Protection and Affordable Care Act has added new incentives to address some of the cost, quality, and access issues related to healthcare, making the use of healthcare data and evidence-based decision-making essential strategies. However, despite the great promise of these strategies, the transition to data-driven, evidence-based medical practice is complex and faces many challenges. This study aims to bridge the gaps that exist between data, knowledge, and practice in a healthcare setting through the use of a comprehensive framework to address the administrative, cultural, clinical, and technical issues that make the implementation and sustainability of an evidence-based program and utilization of healthcare data so challenging. The study focuses on promoting evidence-based medical practice by leveraging a performance management system, targeted education, and data analytics to improve outcomes and control costs. The framework was implemented and validated in transfusion medicine practice. Transfusion is one of the top ten coded hospital procedures in the United States. Unfortunately, the costs of transfusion are underestimated and the benefits to patients are overestimated. The particular aim of this study was to reduce practice inconsistencies in red blood cell transfusion among hospitalists in a large urban hospital using evidence-based guidelines, a performance management system, recurrent reporting of practice-specific information, focused education, and data analytics in a continuous feedback mechanism to drive appropriate decision-making prior to the decision to transfuse and prior to issuing the blood component. The research in this dissertation provides the foundation for implementation of an integrated framework that proved to be effective in encouraging evidence-based best practices among hospitalists to improve quality and lower costs of care. What follows is a discussion of the essential components of the framework, the results that were achieved and observations relative to next steps a learning healthcare organization would consider

    Ontology-Based Clinical Information Extraction Using SNOMED CT

    Get PDF
    Extracting and encoding clinical information captured in unstructured clinical documents with standard medical terminologies is vital to enable secondary use of clinical data from practice. SNOMED CT is the most comprehensive medical ontology with broad types of concepts and detailed relationships and it has been widely used for many clinical applications. However, few studies have investigated the use of SNOMED CT in clinical information extraction. In this dissertation research, we developed a fine-grained information model based on the SNOMED CT and built novel information extraction systems to recognize clinical entities and identify their relations, as well as to encode them to SNOMED CT concepts. Our evaluation shows that such ontology-based information extraction systems using SNOMED CT could achieve state-of-the-art performance, indicating its potential in clinical natural language processing

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe

    Preface

    Get PDF

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    Cybersecurity Using Risk Management Strategies of U.S. Government Health Organizations

    Get PDF
    Seismic data loss attributed to cybersecurity attacks has been an epidemic-level threat currently plaguing the U.S. healthcare system. Addressing cyber attacks is important to information technology (IT) security managers to minimize organizational risks and effectively safeguard data from associated security breaches. Grounded in the protection motivation theory, the purpose of this qualitative multiple case study was to explore risk-based strategies used by IT security managers to safeguard data effectively. Data were derived from interviews of eight IT security managers of four U.S. government health institutions and a review of relevant organizational documentation. The research data were coded and organized to support thematic development and analysis. The findings yielded four primary themes: effective cyber-risk management strategies: structured, systematic, and timely cyber risk management; continuous and consistent assessment of the risk environment; system and controls development, implementation, and monitoring; and strategy coordination through centralized interagency and interdepartmental risk management. The key recommendation based on the study findings is for IT security managers to employ cybersecurity strategies that integrate robust cybersecurity controls and systematic processes based on comprehensive risk management. The implications for positive social change include the potential to positively stimulate patient trust and confidence in healthcare systems and strengthen healthcare professionals\u27 commitments to ensure patient privacy
    • …
    corecore