185 research outputs found

    Students learning science: Representation construction in a digital environment

    Full text link
    This thesis showed the viable digital delivery for a representation-focused approach for teaching science. This study has led to guidelines for a generative digital design and sequencing of representational tasks and resources. It has also illustrated students’ collaborative reasoning processes during a problem-solving task, reflective of an authentic scientific inquiry

    Water Data Science: Data Driven Techniques, Training, and Tools for Improved Management of High Frequency Water Resources Data

    Get PDF
    Electronic sensors can measure water and climate conditions at high frequency and generate large quantities of observed data. This work addresses data management challenges associated with the volume and complexity of high frequency water data. We developed techniques for automatically reviewing data, created materials for training water data managers, and explored existing and emerging technologies for sensor data management. Data collected by sensors often include errors due to sensor failure or environmental conditions that need to be removed, labeled, or corrected before the data can be used for analysis. Manual review and correction of these data can be tedious and time consuming. To help automate these tasks, we developed a computer program that automatically checks the data for mistakes and attempts to fix them. This tool has the potential to save time and effort and is available to scientists and practitioners who use sensors to monitor water. Scientists may lack skillsets for working with sensor data because traditional engineering or science courses do not address how work with complex data with modern technology. We surveyed and interviewed instructors who teach courses related to “hydroinformatics” or “water data science” to understand challenges in incorporating data science techniques and tools into water resources teaching. Based on their feedback, we created educational materials that demonstrate how the articulated challenges can be effectively addressed to provide high-quality instruction. These materials are available online for students and teachers. In addition to skills for working with sensor data, scientists and engineers need tools for storing, managing, and sharing these data. Hydrologic information systems (HIS) help manage the data collected using sensors. HIS make sure that data can be effectively used by providing the computer infrastructure to get data from sensors in the field to secure data storage and then into the hands of scientists and others who use them. This work describes the evolution of software and standards that comprise HIS. We present the main components of HIS, describe currently available systems and gaps in technology or functionality, and then discuss opportunities for improved infrastructure that would make sensor data easier to collect, manage, and use. In short, we are trying to make sure that sensor data are good and useful; we’re helping instructors teach prospective data collectors and users about water and data; and we are making sure that the systems that enable collection, storage, management, and use of the data work smoothly

    Mobile Contextual Data for Hands-On Learning

    Get PDF

    nQuire: technological support for personal inquiry learning

    Get PDF
    This paper describes the development of nQuire, a software application to guide personal inquiry learning. nQuire provides teacher support for authoring, orchestrating and monitoring inquiries as well as student support for carrying out, configuring and reviewing inquiries. nQuire allows inquiries to be scripted and configured in various ways, so that personally relevant, rather than off-the-shelf inquiries, can be created and used by teachers and students. nQuire incorporates an approach to specifying learning flow that provides flexible access to current inquiry activities without precluding access to other activities for review and orientation. Dependencies between activities are automatically handled, ensuring decisions made by the student or teacher are propagated through the inquiry. nQuire can be used to support inquiry activities across individual, group and class levels at different parts of the inquiry and offers a flexible, web-based approach that can incorporate different devices (smart phone, netbook, PC) and does not rely on constant connectivity

    A “laboratory of knowledge-making” for personal inquiry learning

    Get PDF
    We describe nQuire, a constraint-based learning toolkit to support a continuity of inquiry based learning between classroom and non-formal settings. The paper proposes design requirements for personal inquiry learning environments that support learning of personally meaningful science topics with development of metacognitive understanding and self-regulation of the scientific process through situated practice. It introduces a generic implementable model of the inquiry process, and describes an instantiation in the nQuire learning environment. An example of the use of the toolkit for a Healthy Eating inquiry with 28 Year 9 students concludes with results of the trial, design issues and recommendations

    Teacher and student reflections on ICT-rich science inquiry

    Get PDF
    Background: Inquiry learning in science provides authentic and relevant contexts in which students can create knowledge to solve problems, make decisions and find solutions to issues in today’s world. The use of electronic networks can facilitate this interaction, dialogue and sharing, and adds a new dimension to classroom pedagogy. Purpose: This is a report of teacher and student reflections on some of the tensions, reconciliations and feelings they experienced as they worked together to engage in inquiry learning. The study sought to find out how networked ICT use might offer new and different ways for students to engage with, explore and communicate science ideas within inquiry. Sample: This project developed case studies with 6 science teachers of year 9 and 10 students, with an average age of 13 and 14 years in three New Zealand high schools. Teacher participants in the project had varying levels of understanding and experience with inquiry learning in science. Teacher knowledge and experience with ICT were equally diverse. Design and Methods: Teachers and researchers developed initially in a joint workshop a shared understanding of inquiry, and how this could be enacted. During implementation, the researchers observed the inquiry projects in the classrooms and then, together with the teachers, reviewed and analysed the data that had been collected. Results: At the beginning of the project, some of the teachers and students were tentative: inquiry based teaching supported by ICT meant initially that the teachers were hesitant in letting go some of the control they felt they had over students learning, and the students felt insecure in adopting some responsibility for their own learning. Over time a sense of trust and ease developed and this ‘control of learning’ balance moved from what was traditionally accepted, but not without modifications and reservations. Conclusions: There is no clear pathway to follow in moving towards ICT-supported science inquiry in secondary schools. The experience of the teacher, the funds of knowledge the students bring to the classroom, the level of technological availability in the school and the ability of the students are all variables which determine the nature of the experience

    Honors @ Georgia Southern

    Get PDF
    A New Home for the Program Undergraduate Research Meet the new Assistant Director Dr. Francis Desiderio Honors in Action Alumni Noteshttps://digitalcommons.georgiasouthern.edu/honorsgsu/1002/thumbnail.jp
    • 

    corecore