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ABSTRACT 

Water Data Science: Data Driven Techniques, Training, and Tools for Improved 

Management of High Frequency Water Resources Data 

by 

Amber Spackman Jones, Doctor of Philosophy 

Utah State University, 2024 

 

Major Professor: Dr. Jeffery S. Horsburgh 
Department: Civil and Environmental Engineering 
 

Sensors deployed to aquatic and terrestrial environments measure environmental 

phenomena at high frequency. As sensors have become more affordable, the body of 

sensor-based data has grown, offering detailed information to better understand and 

predict natural processes, detect environmental changes, assess impacts, track natural 

disasters, determine compliance with standards, and reduce health risks. However, 

growing volumes of environmental sensor data come with data management and analysis 

challenges that require scientists to consider additional tools and skillsets that fall within 

the realm of data science. Incorporating data science methodologies into traditional 

hydrologic science can improve manipulation, visualization, and analysis workflows for 

datasets of increased size and complexity. Major needs include ensuring data quality and 

incorporation of large datasets into scientific investigations and hydrologic data 

workflows. All of these can be difficult for domain scientists who lack data science 

expertise. This work addresses challenges associated with the increased volume and 

complexity of high frequency water data by: 1) advancing techniques for automating data 
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review, 2) assessing gaps and presenting solutions for water data science instruction 

aimed at building the technical expertise of water data managers, and 3) reviewing, 

prototyping, and recommending options for sensor data management.  

High-quality data and robust derived products are necessary for using high 

frequency datasets in advanced analyses. Quality control post processing for sensor data 

is typically performed manually, which is a tedious and time consuming, but necessary, 

step for researchers and practitioners operating sensor networks. A Python code package, 

pyhydroqc, was developed to help automate this process. pyhydroqc uses data science 

approaches to automatically detect and correct anomalies in aquatic sensor time series, 

providing tools for reviewing large volumes of environmental sensor data prior to use and 

advancing workflows that require little manual human intervention. The pyhydroqc 

package is available for implementation and reuse by scientists and practitioners engaged 

in aquatic monitoring.  

A major reason that domain scientists lack relevant data science skillsets is that 

traditional water resources engineering and science courses generally do not address how 

to collect, manage, and use increasingly large and complex datasets with modern 

technology. Newer courses in hydroinformatics or water data science have emerged to 

teach tools and approaches for working with large data. To assess and address challenges 

in effectively teaching data science techniques and tools in the context of the hydrology 

and water resources engineering domain, instructors of related courses were surveyed and 

interviewed. Based on survey and interview responses, a set of online educational 

modules were developed and made available as a shared educational resource for students 

and teachers to demonstrate how many of the articulated challenges in providing this type 
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of instruction can be addressed. These modules focus on accessing, managing, and 

analyzing high frequency sensor data and could be incorporated into existing courses or 

could be the foundation of a dedicated course aimed at advancing the data science 

skillsets of students pursuing degrees in hydrology or water resources engineering. 

In addition to the necessary skills for working with high resolution sensor data, 

scientists and engineers need robust cyberinfrastructure for storing, managing, and 

sharing hydrologic observations data. Hydrologic information systems (HIS) meet this 

need and enable the automatic flow of high frequency observational data from observing 

infrastructure deployed in the hydrologic environment to centralized data storage 

infrastructure and then to data consumers via multiple access and dissemination tools. As 

a means of connecting domain scientists and engineers with data science skillsets and 

related cyberinfrastructure for data management, all of which are required for effective 

collection and use of high resolution sensor data, this dissertation provides a review of 

HIS technologies and systems, details the progression of software applications and 

standards that comprise HIS, and extracts and presents the essential architectural 

components of HIS. Functional details of these components are presented along with 

persistent challenges that are being addressed by modern HIS.  

The results of this dissertation include improved practices, software and 

cyberinfrastructure tools for using high frequency sensor data, and educational resources 

aimed at elevating students’ data science skillset. Goals include ensuring that data are 

high quality, improving instruction for prospective data collectors and users, and 

effective data management to better enable understanding of hydrologic processes.  

(237 pages) 
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PUBLIC ABSTRACT 

Water Data Science: Data Driven Techniques, Training, and Tools for Improved 

Management of High Frequency Water Resources Data 

 

Amber Spackman Jones 

 

Electronic sensors can measure water and climate conditions at high frequency 

and generate large quantities of observed data. This work addresses data management 

challenges associated with the volume and complexity of high frequency water data. We 

developed techniques for automatically reviewing data, created materials for training 

water data managers, and explored existing and emerging technologies for sensor data 

management. 

Data collected by sensors often include errors due to sensor failure or 

environmental conditions that need to be removed, labeled, or corrected before the data 

can be used for analysis. Manual review and correction of these data can be tedious and 

time consuming. To help automate these tasks, we developed a computer program that 

automatically checks the data for mistakes and attempts to fix them. This tool has the 

potential to save time and effort and is available to scientists and practitioners who use 

sensors to monitor water.  

Scientists may lack skillsets for working with sensor data because traditional 

engineering or science courses do not address how work with complex data with modern 

technology. We surveyed and interviewed instructors who teach courses related to 

“hydroinformatics” or “water data science” to understand challenges in incorporating 
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data science techniques and tools into water resources teaching. Based on their feedback, 

we created educational materials that demonstrate how the articulated challenges can be 

effectively addressed to provide high-quality instruction.  These materials are available 

online for students and teachers. 

In addition to skills for working with sensor data, scientists and engineers need 

tools for storing, managing, and sharing these data. Hydrologic information systems 

(HIS) help manage the data collected using sensors. HIS make sure that data can be 

effectively used by providing the computer infrastructure to get data from sensors in the 

field to secure data storage and then into the hands of scientists and others who use them. 

This work describes the evolution of software and standards that comprise HIS. We 

present the main components of HIS, describe currently available systems and gaps in 

technology or functionality, and then discuss opportunities for improved infrastructure 

that would make sensor data easier to collect, manage, and use. 

In short, we are trying to make sure that sensor data are good and useful; we’re 

helping instructors teach prospective data collectors and users about water and data; and 

we are making sure that the systems that enable collection, storage, management, and use 

of the data work smoothly.  
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CHAPTER 1 

INTRODUCTION 

The availability of hydrologic and water-related data has rapidly grown as new 

datasets have been generated and existing datasets have been shared and published. As 

sensors and related technology have decreased in price, the number of high temporal 

frequency water-related observations has increased (Pellerin et al., 2016; Rode et al., 

2016). The resolution of data creates opportunities to increase understanding of 

hydrologic processes, but the associated volume presents challenges for managing the 

data and extracting useful information (Campbell et al., 2013; Gries et al., 2014; Jones et 

al., 2017; Gibert et al., 2018). Water scientists and engineers often need to perform data 

manipulation, visualization, and analysis tasks that may be difficult to apply to larger and 

more complex datasets. Traditional engineering or science curricula may not have 

prepared them with the data science tools they need to tackle these types of data 

workflows (Merwade and Ruddell, 2012; Burian et al., 2013; Gibert et al., 2018; Habib et 

al., 2019). Thus, two major needs are evident: 1) improved tools and techniques to ensure 

the quality of high frequency data, establish methods for creating derived data products, 

and make those data available for further analyses; and 2) data intensive scientific 

methods and expertise around their use to enable incorporation and analysis of large 

datasets into scientific and management investigations to gain better understanding of 

hydrologic processes.  

This dissertation provides enhanced tools in the form of reproducible algorithms, 

code packages and notebooks, and online resources that address the needs articulated 

above and that will be of use to researchers, educators, practitioners, and water managers 
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who monitor water systems with in situ sensors, manage the data, perform subsequent 

analyses, and who instruct on these topics. To guide the research, the following 

objectives were identified. Each of the objectives is addressed within one of the chapters 

of this dissertation. 

Objective 1: Advance tools for automatically detecting and correcting 

anomalies in environmental sensor data using data science and machine learning 

approaches.  

Although increases in data size and availability invite advanced analyses, to 

effectively gain insights into hydrologic systems and water resources, data must be robust 

with regard to quality (Campbell et al., 2013; Gibert et al., 2018). As datasets grow in 

size and complexity and as the number of data collection sites expands, data management 

overhead also increases. Time series of observations from environmental sensors 

generally need to be examined for validity by technicians or scientists who are familiar 

with the sensors, the monitoring sites, and the phenomena of interest (Campbell et al., 

2013; Horsburgh et al., 2015; Jones et al., 2018). Performing review and corrections to 

account for errors and ensure high data quality is a significant resource cost for obtaining 

high temporal resolution data (Jones et al., 2017). Rules and algorithms exist for 

identifying some types of anomalous values in sensor data streams (Dereszynski and 

Dietterich, 2007; Hill et al., 2009; Taylor and Loescher, 2013); however, detecting subtle 

anomalies, classifying anomalies, and applying corrections typically require technician 

expertise (Fiebrich et al., 2010; White et al., 2010). Data science and machine learning 

approaches may be effective tools for streamlining this process and improving data 

robustness for subsequent analyses. 
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With the increase in data availability, computational resources, and programming 

software with associated code libraries and tools, data science opportunities have 

expanded in most domains. Data science applies analytical methods and computational 

power with subject understanding to transform data to decisional knowledge (Gibert et 

al., 2018) and, according to a widely accepted formulation, requires a combination of 

coding, math and statistics, and scientific expertise (Conway, 2013). Machine learning is 

often equated with data science; indeed, it comprises the overlap between math and 

statistics and computing (Conway, 2013). Machine learning algorithms are frameworks 

that use computational methods to “learn” a model based on datasets without using a 

complex set of rules or predetermined equations as might be done with traditional 

statistical or domain focused model development (Géron, 2017). Compared to more 

conventional techniques, machine learning uses patterns in actual data to build models 

rather than fitting data to a defined model. One strength of machine learning is its ability 

to handle interactions and nonlinearity in relationships between inputs and targeted 

outputs without the constraints of human preconceptions (Shen, 2018a).  

Machine learning approaches show promise toward advancing automation of 

quality control of sensor data streams (Leigh et al., 2018; Talagala et al., 2019), and 

approaches for sensor time series anomaly detection and correction from other fields may 

have relevance to environmental sensor observations. In an effort toward streamlining the 

process for quality control post processing of aquatic sensor data, we explored several 

data science and machine learning approaches with an aim for detecting and correcting 

anomalies in aquatic sensor data. This work combines concepts of rules-based anomaly 

detection (Sheldon et al., 2008; Horsburgh et al., 2015) with machine learning anomaly 
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detection (e.g., Leigh et al., 2018) and expands on previous efforts by testing algorithms 

on long periods of actual high frequency observations that were reviewed, labeled, and 

corrected by technicians and by releasing a software package with functions that could be 

applied to other datasets. 

Objective 2: Advance materials and instructional approaches for teaching 

hydroinformatics and water data science. 

A major reason that domain scientists and engineers struggle to effectively use 

high resolution data from environmental sensors is that they lack the data science skillsets 

needed for collection, management, quality control, and analysis of the large volume of 

data sensors produce. Traditional water resources engineering and science curricula 

predate both the growth in water data made possible by the proliferation of in situ sensors 

as well as the increased prevalence of data science approaches. However, students need 

preparation and training in techniques and tools to effectively work with complex 

datasets and in the appropriate application of data science methods to real-world, open-

ended problems (Merwade and Ruddell, 2012; Burian et al., 2013; Gibert et al., 2018; 

Maggioni et al., 2020; Ngambeki et al., 2012). Instructors are challenged to incorporate 

technical tools in their courses and to find water-related datasets and examples for 

applying data science techniques that are accessible for students (Habib et al., 2019; Lane 

et al., 2021). Courses in hydroinformatics, or the application of technical tools to water 

related data (Burian et al., 2013; Chen and Han, 2016; Vojinovic and Abbott, 2017; 

Makropoulos, 2019), and in water data science, which packages data science topics with 

water related applications (Gibert et al., 2018; McGovern and Allen, 2021), can better 

equip students for solving emerging data-intensive problems. Educational content shared 
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in online community platforms can support instructors and students with lessons and 

examples to enable data-driven learning (Habib et al., 2019; Maggioni et al., 2020; Lane 

et al., 2021). Furthermore, the shift to online formats in the wake of the COVID-19 

pandemic increased interest in alternative approaches to teaching and learning technical 

content (Beason-Abmayr et al., 2021; Rapanta et al., 2021).  

To address challenges in providing effective instruction in hydroinformatics and 

water data science areas, we surveyed instructors of existing courses, documented 

challenges and successes, and developed and shared online educational modules that 

demonstrate how many outstanding challenges can be addressed. While information on 

implementing statistical and data science techniques in common coding environments is 

generally available, examples of application to specific problems in the water resources 

domain are specialized and emergent (Shen, 2018a), and providing accessible data 

science case studies is of high value to instructors and students. 

Objective 3: Synthesize the current state of practice and existing standards 

and approaches for sharing, delivering, and integrating hydrologic time series 

observations. 

The large quantities of data generated by environmental sensors necessitate 

cyberinfrastructure to manage data collection, storage, and publication (Horsburgh et al., 

2008; Benson et al., 2010; Dow et al., 2015; Horsburgh et al., 2019). Hydrologic 

Information Systems (HIS) are comprehensive hardware and software for managing data 

derived from sensors (Mason et al., 2014; Jones et al., 2015). HIS are essential for 

effectively managing data, reducing the time between data collection and analysis, and 

linking data collection to scientific research and water resource management (Muste et 
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al., 2015; McGuire et al., 2016; Samourkasidis et al., 2019). HIS are crucial for 

disseminating water data to diverse user groups including government agencies, research 

organizations, and citizen scientists. Community-developed tools and standards have 

made HIS more accessible to scientists and practitioners that are monitoring with sensors 

(Horsburgh et al., 2011; Ames et al., 2012; Jones et al., 2015). However, even though 

HIS have evolved for better data interoperability (Goodall et al., 2008), challenges 

remain related to standardized data models for encoding the data, vocabularies for 

describing the data, and exchange protocols for transmitting data; and new challenges 

have emerged as technology has advanced and as the needs and priorities of monitoring 

networks have changed.  

In an effort to advance HIS, we reviewed existing systems and technologies and 

extracted key components that we presented as the foundation for a generalized HIS 

architecture. We then identified challenges and opportunities for improved functionality 

and described how existing or emerging HIS are addressing these challenges and 

opportunities to offer guidance for researchers and practitioners collecting and using high 

frequency sensor data. Understanding established principles of HIS is essential to 

building a next generation HIS with modern technology. This is a key objective of 

HydroServer, a current effort at Utah State University (USU) to support a national 

network of cooperative monitoring sites that complement national agency monitoring 

efforts and contribute to a national water model. The review, generalized architecture, 

and identification of challenges and advancement opportunities are directly informing 

development of HydroServer as a next generation HIS. 

This dissertation leverages data science methods with high temporal frequency 
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environmental observations to develop and implement tools and methods for ensuring 

high quality data for scientific analysis and education. The specific research questions 

addressed focus on automatically post processing hydrologic sensor data, effective 

approaches for instruction on water data science, and options for systems for managing 

time series of sensor observations. The outline of this dissertation is as follows:  

Chapter 2 addresses Objective 1: Advance tools for automatically detecting and 

correcting anomalies in environmental sensor data using data science and machine 

learning approaches by developing and presenting a set of tools and techniques for 

automating post processing of aquatic sensor data. The algorithms are encapsulated as 

functions within a Python package that is open source and available for use by scientists 

and practitioners who manage data observed with environmental sensors. The algorithms 

were developed and tested on high frequency water quality data collected in the Logan 

River Observatory in northern Utah, USA. 

Chapter 3 addresses Objective 2: Advance materials and instructional approaches 

for teaching hydroinformatics and water data science through a presentation of educator 

perspectives on the subject, options and requirements for online platforms for sharing 

educational materials, and examples of shared educational modules that address many of 

the challenges identified through our surveys with educators. More specifically, the 

chapter reports the results of a survey of instructors who teach hydroinformatics, water 

data science, or related courses. It articulates the challenges and successes experienced by 

instructors in providing effective instruction for building students’ technical skillsets and 

readiness to work in data-intensive engineering and science environments. This chapter 

also describes the development and sharing of online instruction modules that 
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demonstrate how many of the challenges expressed by instructors can be overcome. 

These outcomes demonstrate a path forward for bringing more rigorous and 

comprehensive hydroinformatics and water data science instruction to domain scientists 

and engineers through educational materials shared online. 

Chapter 4 addresses Objective 3: Synthesize the current state of practice and 

existing standards and approaches for sharing, delivering, and integrating hydrologic 

time series observations by reviewing the functionality of existing commercial, open-

source, and government HIS to illustrate common patterns and techniques, which are 

represented by a generalized, high-level HIS architecture. It also identifies and describes 

challenges that have persisted through HIS development and operation along with new 

challenges that have emerged as technology has advanced. This chapter describes how 

new development efforts, including the HydroServer software platform at USU, are 

addressing these challenges and as a specific outcome serves as a foundation and 

blueprint from which modernized HIS can be advanced.  
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CHAPTER 2 

TOWARD AUTOMATING POST PROCESSING OF AQUATIC SENSOR DATA1 

Abstract 

Sensors measuring environmental phenomena at high frequency commonly report 

anomalies related to fouling, sensor drift and calibration, and datalogging and 

transmission issues. Suitability of data for analyses and decision making often depends 

on manual review and adjustment of data. Machine learning techniques have potential to 

automate identification and correction of anomalies, streamlining the quality control 

process. We explored approaches for automating anomaly detection and correction of 

aquatic sensor data for implementation in a Python package (pyhydroqc). We applied 

both classical and deep learning time series regression models that estimate values, 

identify anomalies based on dynamic thresholds, and offer correction estimates. 

Techniques were developed and performance assessed using data reviewed, corrected, 

and labeled by technicians in an aquatic monitoring use case. Auto-Regressive Integrated 

Moving Average (ARIMA) consistently performed best, and aggregating results from 

multiple models improved detection. pyhydroqc includes custom functions and a 

workflow for anomaly detection and correction. 

2.1 Introduction 

Observation of environmental phenomena using in situ sensors is increasingly 

common as sensors and related peripherals become more affordable and as 

cyberinfrastructure and expertise to support their operation have grown (Hart and 

	
1 Jones, A.S., Jones, T.L., Horsburgh, J.S., 2022. Toward Automating Post Processing of Aquatic Sensor Data. 
Environmental Modelling and Software 151, 105364. https://doi.org/10.1016/j.envsoft.2022.105364 
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Martinez, 2006; Pellerin et al., 2016; Rode et al., 2016). Sensors are subject to 

environmental factors that affect measurements and their suitability for subsequent 

analyses. Data from environmental sensors include anomalous points and biases that are 

artifacts of instrument noise or drift, power failures, transmission errors, or unusual 

ambient conditions (Horsburgh et al., 2015; Wagner et al., 2006). Protocols for ensuring 

quality of environmental sensor data (quality assurance) and mechanisms for performing 

data post processing (quality control) are challenges and key components of sensor 

network cyberinfrastructure (Campbell et al., 2013; Gries et al., 2014; Jones et al., 2015). 

As the quantity of sensor data increases, there is a commensurate need for practices that 

ensure resultant data are of high quality for subsequent analyses and exploration 

(Campbell et al., 2013; Gibert et al., 2016). 

In current practice, quality control post processing of sensor data is expensive and 

tedious. Tools exist to assist practitioners and technicians in reviewing data and 

performing corrections (Gries et al., 2014; Horsburgh et al., 2015; Sheldon, 2008); 

however, quality control remains a time consuming and manual process consisting of an 

interactive sequence of steps. Performing corrections generally requires expert 

knowledge about the sensor and the phenomena being observed as well as conditions at 

the monitoring location (Fiebrich et al., 2010; White et al., 2010). Furthermore, the 

quality control process involves subjectivity as individual technicians may make different 

correction decisions (Jones et al., 2018). As a result, it is difficult to transfer the 

institutional knowledge required to post-process data, and even for trained and 

experienced technicians, quality control remains a daunting task as datasets grow in size 

and complexity for environmental observatories with ongoing data collection. For one 
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network, a substantial delay of approximately six months between data collection and 

availability of reviewed and processed datasets allowed for thorough review and 

correction (Jones et al., 2017). For cases where observations are used for real time 

decisions related to public health and water treatment, the impacts of anomalous data are 

costly. 

As sensor datasets continue to grow, it is not tenable for scientists and technicians 

to manually perform quality control tasks (Gibert et al., 2018), neither is it advisable to 

use or publish data without performing corrections to mitigate for errors. As a result, 

there is a recognized need for automating and improving quality control post processing 

for high frequency in situ sensor data. In this vein, automated, data driven techniques to 

detect anomalies in streaming sensor data are documented in the realm of research (Hill 

and Minsker, 2010; Leigh et al., 2018; Russo et al., 2020; Talagala et al., 2019); however, 

they are unfamiliar to practitioners, generally lack robust and accessible software 

implementations, and are not typically reproducible. Furthermore, while basic checks and 

more complex algorithms may identify and flag potentially erroneous values (e.g., 

Dereszynski and Dietterich, 2007; Hill et al., 2009; Taylor and Loescher, 2013), these 

procedures are generally not capable of applying corrective actions. Thus, the specific 

questions we pursued with this research are: 1) how can data-driven methods be applied 

to automatically detect and correct anomalies in aquatic sensor data, and 2) how can these 

methods be packaged into an overall workflow and reusable software for general 

application?  

Regression models are one class of data-driven techniques that can be used as 

anomaly detectors for time series data by making a prediction based on previous data 
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(either univariate or multivariate) and comparing the residual of the modeled and 

observed values to a threshold. Because regression models produce an estimate, they are 

well-suited for detection and correction of anomalous data. Although it is a substantial 

step in quality control post-processing, automated anomaly correction has not been 

widely examined. A handful of studies replaced raw data with modeled forecasts to 

exclude anomalies from model input but did not generate a corrected version of the 

dataset (Hill and Minsker, 2010; Leigh et al., 2018). In this work, we implemented and 

compared several regression models for anomaly detection and explored new approaches 

for anomaly correction. 

Although effectively implemented for specific case studies, none of the 

techniques described in the cited studies have been packaged as accessible software for 

broad application and dissemination. Without reusable code, the specifics of the 

algorithms as implemented with environmental data cannot be examined, further tested, 

or applied to other datasets. Rather than a model calibrated to a specific variable/site 

combination, practitioners need tools that can be applied to a broad suite of variables 

and/or monitoring locations documented in a reusable and reproducible way. Thus, we 

sought to package the tools we developed as open-source software that could easily be 

deployed in a commonly available analytical environment. 

In this paper, we present a Python package (pyhydroqc) that implements a set of 

methods for data- driven anomaly detection and correction for high temporal frequency 

aquatic sensor data. Our approach includes machine learning algorithms for detection, 

labeling, and correction of anomalous points. Multiple years of aquatic monitoring data 

from the Logan River Observatory (LRO) that have been reviewed and corrected by 
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trained technicians were used as a case study for developing and testing automated 

detection and correction methods. The algorithms are encapsulated in a Python package 

that is publicly available and open-source (see Software and Data Availability section). 

Example scripts are also shared as Jupyter Notebooks that can be run with case study data 

to demonstrate the functionality and performance of the tools we developed. As there are 

many potential approaches to anomaly detection, additional techniques can be 

incorporated by adding new functions to the package that can be incorporated to the 

workflow. Thus, the specific contributions of this work include: 1) advancing the 

algorithms and methods for automated quality control of aquatic sensor data, and 2) 

developing and demonstrating software tools that can make the process more 

approachable for data technicians and scientists. 

Section 2.2 outlines the methods we implemented for detecting anomalies and 

performing corrections in the context of the structure and design of the pyhydroqc Python 

package, including a description of the case study that drove the implementation. In 

Section 2.3, we report the performance of the techniques on case study data and offer 

recommendations for next steps, followed by conclusions in Section 2.4. Appendix A 

contains related background including an overview of relevant literature and additional 

motivation for the work reported. 

2.2 Methods 

2.2.1 pyhydroqc Software Design and Implementation 

This work implements methods for anomaly detection and correction for 

environmental time series data within a Python-based software package. A subset of data-

driven regression models are situated within an overall workflow that includes practical 
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steps to facilitate anomaly detection and correction. The following sections describe the 

approaches for anomaly detection and correction, including details of how the software 

supports the workflow.  

While many classes of algorithms could be used for detecting anomalies in 

aquatic sensor data, we selected time series regression models that were relatively 

straightforward to implement and that we anticipate will meet the needs and 

considerations of many applications. Specifically, we investigated auto-regressive 

integrated moving average (ARIMA), several types of long short-term memory (LSTM), 

and Facebook Prophet. ARIMA has been successfully implemented to detect anomalies 

in environmental data (Hill and Minsker, 2010; Leigh et al., 2018; Papacharalampous et 

al., 2019). LSTM is a class of Artificial Neural Networks (ANNs), and though 

applications to environmental data anomalies are limited, studies from other fields have 

detected anomalies with LSTM models (Hundman et al., 2018; Lindemann et al., 2019; 

Malhotra et al., 2016; Yin et al., 2020). Prophet was investigated but not included in the 

Python package. Because Prophet is geared toward social media and business 

applications (Taylor and Letham, 2018), we found that its applicability to environmental 

data is limited. It failed to capture seasonal shifts in the timing of daily cycles, and model 

features did not represent environmental phenomena. This paper focuses on a subset of 

models, but the modular design of the Python package allows for the implementation of 

additional techniques. 

The software design and development were driven by the following steps as a 

workflow for anomaly detection and correction (Figure 2.1), and each is described in 

more detail in the sections that follow. 
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1. Import raw sensor data into a memory-resident data structure. 

2. Perform rules-based anomaly detection and correction as a first pass at quality 

control, including addressing sensor calibration. 

3. Build one or more models for predicting observed values: 

a. Determine model hyperparameters. 

b. Transform and scale data if necessary. 

c. Build and fit models. 

d. Execute the model to determine model predictions and residuals. 

4. Post-process model results: 

a. Determine dynamic thresholds based on model residuals and user-defined 

parameters. 

b. Detect anomalies where the absolute value of the model residual exceeds 

the defined threshold. 

c. Widen and index anomalous events.  

5. Compare technician labeled and detected anomalous events (rules-based and 

model- based detections, inclusive) to assign confusion matrix categories and 

report metrics. (This step is only applicable if labeled data are available.) 

6. Combine detections identified by multiple models for an aggregate anomaly 

detection (if rules-based detection has been performed, those detections are 

included). 

7. Perform model-based correction for points identified as anomalous. 

In addition to performing the workflow steps, requirements that drove our design 

included: 1) open- source software development to facilitate deployment and use by 
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others; 2) cross-platform compatibility for use on Windows, MacOS, and Linux 

platforms; 3) modular and extensible architecture that enables each workflow step to be 

executed independently along with integration of new/additional functionality; and 4) 

simple deployment. A Python package was selected as the platform for software 

implementation. The Python language meets the open-source and cross- platform 

requirements, and existing tools and libraries in Python support steps in the workflow, 

including loading and manipulating large datasets and developing data-driven models. In 

a Python package, functions that comprise each step in the workflow can be called by 

scripts in a modular manner. Each of the steps can be performed independently, 

facilitating flexibility in use. A Python package also supports extensibility as new 

functions can be added without impacting existing functionality. Finally, Python 

packages can be published to the Python Package Index (PyPI, https://pypi.org/) making 

deployment straightforward and ensuring that algorithms can be applied in any Python 

coding environment.  

The anomaly detection and correction workflow steps are encapsulated by 

functions in the pyhydroqc Python package described in the following sections. High 

level workflow wrapper functions (‘ARIMA_detect’, ‘LSTM_univar_detect’, and 

‘LSTM_multivar_detect’) call more granular functions specific to each data and model 

type to perform steps 2-7 (Figure 2.1) and generate objects of the ‘ModelWorkflow’ 

class. For clarity, each function is named and described in this paper; however, most 

users will use the overarching workflow function calls. Example Python scripts and 

Jupyter Notebooks (see Software Availability section) illustrate how the workflow 

functions are implemented for the data use case described in this paper. A full list of 
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functions with inputs and outputs is found in Appendix B and with the package 

documentation. 

2.2.1.1 Data Format and Import 

pyhydroqc operates on pandas data frames, which are high performance, two-

dimensional, tabular data structures for representing data in memory (pandas 

Development Team, 2008). Data frames can be created and saved or output as comma 

separated values (CSV) files. For pyhydroqc to perform anomaly detection and 

correction, input data need to be formatted as a data frame for each variable of interest 

indexed by date/time with a column of raw data. If technician labels or corrections are 

available, they are included as additional columns in the data frame. Technician labels are 

only needed for determining anomaly detection metrics.  

It is common to report environmental sensor data as one table or file with a single 

date/time column and multiple columns of measurements – one for each sensor output. 

For flat files with this structure, the pyhydroqc ‘get_data’ function wraps the ‘read_csv’ 

function from the pandas library to import data into Python and parse into separate 

pandas data frames for each variable as required by the anomaly detection and correction 

functions. 

2.2.1.2 Rules Based Detection and Correction 

Rules-based detection is an important precursor to detection using models (Leigh 

et al., 2018; Taylor and Loescher, 2013), and the results of this step contribute to the 

overall set of detected anomalies. Whether a result of sensor failure or another cause, 

some anomalies are “low hanging fruit” that can be detected by rules-based preprocessing 

that performs a first pass of the data. Preprocessing the data is motivated, in part, by the 
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need to train models on a dataset absent of extreme outliers or artifacts that models 

cannot capture. By first applying rules-based anomaly detection and correction, a first 

degree of correction is made for subsequent input into data driven models. We created 

Python functions with basic rules to detect and correct out of range and persistent data. 

Furthermore, some aquatic sensors commonly exhibit drift, which requires sensor 

calibration and subsequent data correction. Because calibration shift and the preceding 

drift are subtle and difficult for any type of model to detect, we developed a rules-based 

routine that attempts to identify and these events. Basic correction methods for these 

anomaly types were also implemented as Python functions.  

2.2.1.2.1 Range and Persistence Checks 

The function ‘range_check’ adds a column to the data frame and populates it with 

an anomalous label if the observation is outside of user defined thresholds or a valid label 

if it is within the thresholds. Ranges should be determined specific to each sensor based 

on physics and the environment in which the sensor is deployed and can be refined based 

on site specific patterns. Data persistence refers to instances where the same value is 

repeated by a sensor, which is unlikely in natural systems, although sensors may report 

repeated values due to limitations in resolution. For the ‘persistence’ function, the user 

defines a minimum duration of repeated values for data to be considered anomalous. If 

repeated values exceed that duration, the points are classified as anomalous by populating 

the column from the ‘range_check’ function. Beyond these basic checks, additional rules 

of increasing complexity could be added to the pyhydroqc package and the anomaly 

detection workflow. Examples include ranges that vary seasonally, rate of change checks, 

and differencing checks.  
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Once anomalous points are identified by the Python functions that implement 

these rules, labels are carried through to the model-based detection steps. Labeled points 

are omitted from model training, either by logical exclusion, or, for models requiring an 

unbroken time series for training, by interpolating between valid points. Linear 

interpolation is performed (using the ‘interpolate’ function) over the entire time series as 

a preliminary correction step so that model input is more valid. If the complete workflow 

is followed, values initially corrected using linear interpolation are replaced by the 

model-based correction described in Section 2.2.1.9. 

2.2.1.2.2 Calibration and Drift Correction 

Environmental sensors commonly drift, and many aquatic sensors (specific 

conductance, pH, dissolved oxygen) require regular calibration to known standards to 

minimize drift. Drift causes a gradual increasing or decreasing trend separate from daily 

and seasonal patterns, and a calibration event manifests as a localized shift that corrects 

subsequent data up or down. These trends and shifts can be subtle and difficult to identify 

without a detailed record of calibration dates. In preliminary work, the model-based 

detectors described in subsequent sections were unable to consistently identify these data 

patterns. Detected shifts due to calibration events were undiscernible from other localized 

anomalies. Thus, it is important to address calibration events early in the quality control 

process because it is preferable that model-based detectors be trained on data that are free 

from drift. 

For calibration and drift correction, we implemented functions to mimic a typical 

manual workflow. Performing post-processing correction for drift and calibration 

involves review of data, comparison of field records to data shifts to identify points 
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corresponding to calibrations, and application of a drift correction that uses start and end 

points and the gap of the calibration shift to retroactively correct data between two 

calibrations. In our experience, calibration events are typically reviewed and corrected 

one at a time.  

While recognizing the difficulty of definitively identifying calibration events in an 

automated way, we designed functions for detection (functions ‘calib_edge_detect’, 

‘calib_detect’, ‘calib_overlap’) and correction (functions ‘find_gap’, ‘lin_drift_cor’) of 

data affected by drift and calibration. The algorithms take advantage of characteristics of 

calibration events, specifically that events only occur during certain hours of the day, 

they may involve a shift in observed data, and that when returned to the water, sensors 

may report the same values for several time steps until the sensor stabilizes. Two separate 

approaches identify calibration events: 1) where there is a discernable shift in the data, or 

2) persistence occurs over a limited window of points. Both are restricted to hours and 

days when technicians would be in the field. 

Given dates of calibration, a gap value needs to be specified for correcting past 

data. A function ‘find_gap’ identifies the greatest shift for a given window of time to 

determine a gap value and the precise point that should be shifted. The function accounts 

for outlier spikes that are commonly associated with calibrations. A function for linear 

drift correction, ‘lin_drift_cor’, corrects for drift and calibration events given start and 

end dates for the period to be corrected and a gap value of the calibration shift. A list of 

calibration start and end times and gap values can be input to the linear drift correction 

function to correct multiple instances of drift and calibration. While the calibration event 

detectors may not adequately identify events, requiring technician review or input, this 
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process is a step toward automation as it evaluates gap values according to a set of rules 

rather than arbitrary determination by technicians (as illustrated in Jones et al. (2018)) 

and allows for bulk correction of calibration events.  

2.2.1.3 Model-Based Detection Using ARIMA 

ARIMA is a time series forecasting model where inputs correspond to past time 

steps of the variable of interest, and the output is a predicted value for that variable at the 

next time step. ARIMA uses three parameters to define a linear model (Equation 1): 
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where yt is the model output or the prediction for time step t, p is the number of 

previous points in the series to be used in the model, q is the number of moving average 

terms to include, φi are the fitted coefficients for auto-regression, θi are fitted model 

coefficients for the moving average, and εt is the moving average error term. Not shown 

in the equation is the term d, which is the order of differencing applied to the data y 

before this equation is evaluated. The parameters (p, d, q) can be determined manually or 

automatically. Manual parameter determination involves time series decomposition and 

the review of auto-correlation plots, which is tedious for numerous data series. Automatic 

determination of the parameters is effective but can be computationally demanding. 

pyhydroqc includes a function ‘pdq’ for automated determination using the pmdarima 

package (Smith, 2017). Given (p, d, q), model training involves determining the values of 

the coefficients for the terms in the linear equation (φi and θi) based on actual data. 

In pyhydroqc, the function ‘build_arima_model’ constructs and trains an ARIMA 

model given input time series data and input parameters (p, d, q). It relies on the sarimax 

function from the statsmodel package (Seabold and Perktold, 2010) to fit an ARIMA 
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model (based on Equation 1), make model predictions for each time step, and compare 

predictions to observations. Input data should be free from gaps, so the anomaly detection 

workflow uses output of the rules-based detection with linear interpolation of any 

identified anomalies as input for ARIMA modeling. Scaling and transforming data are 

not necessary, so data are kept in the original units.  

2.2.1.4 Model-Based Detection Using LSTM  

LSTM is a type of neural network model architecture specifically designed for 

time-dependent and sequenced data. LSTM models consist of recurrent “cells” or units, 

each corresponding to one time step. A cell uses “gates” to control the flow of 

information in and out of the cell and how much of the past data that the cell 

“remembers” for computing output. To train an LSTM model, the weights of the 

connections within and between the gates are iteratively refined based on training data. 

There are many variations of LSTM architecture (Greff et al., 2017), and layers of 

LSTM can be stacked. For our implementation, we compared several LSTM model types 

that are appropriate to time series data modeling for anomaly detection: vanilla and 

bidirectional, univariate and multivariate. In contrast with other neural network 

architectures, for which many layers are advised for fitting data, more shallow LSTM 

have been used because of the internal complexity of LSTM cells (Géron, 2017; Greff et 

al., 2017; Hundman et al., 2018). Other model types could be constructed, model layers 

and complexity could be added, and the input parameters could be tuned to each time 

series. Parameters can be defined by users and can be adjusted to investigate sensitivity, 

and we describe our approach for parameter selection in Section 2.3.1.4. The objective of 

this work was not to achieve the best time series model, but rather to detect anomalies, so 
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fine-tuning models was not required or pursued. Instead, comparisons were made 

between a few basic LSTM variations with the same parameter settings.  

As mentioned, pyhydroqc workflow functions call multiple lower-level functions. 

For LSTM models, each type is implemented within the workflow function by an 

associated model wrapper function (‘LSTM_univar’, ‘LSTM_multivar’, 

‘LSTM_univar_bidir’, ‘LSTM_multivar_bidir’), which calls functions specific to that 

model type for preprocessing, model building, model training, and model evaluation 

(shown in Figure 2.1 and described in the Jupyter Notebook example script). The model 

wrappers return objects of the class ‘LSTMModelContainer,’ containing model 

predictions and residuals for each time step, similar to the output of ‘build_arima_model.’ 

2.2.1.4.1 Vanilla and Bidirectional LSTM  

pyhydroqc implements the “vanilla” type of LSTM model (Greff et al., 2017), 

which consists of a single layer LSTM in a sequence-to-one manner, i.e. the model 

returns a single output based on a sequence of inputs. Given a user-specified number of 

past time steps, the model output is a single value for the next point in time. 

“Bidirectional” LSTM models use observations both before and after the point of interest 

to provide information for model prediction, which is appropriate if immediate, real-time 

anomaly detection is not a requirement. By encoding a vanilla LSTM model with a 

bidirectional wrapper, input data are traversed both forward and backward in sequence, 

and model output is the value to have occurred in the middle of the sequence. In 

pyhydroqc, parallel functions structure input data to contain a user specified number of 

time steps prior to the point of interest for vanilla LSTM and prior to and following the 

point of interest for bidirectional LSTM (functions further described in Section 2.2.1.5.3). 
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2.2.1.4.2 Univariate and Multivariate LSTM  

Either univariate or multivariate input data may be used for vanilla and 

bidirectional LSTM through the LSTM workflow functions and model wrapper 

functions. The workflow functions (‘LSTM_detect_univar’ and 

‘LSTM_detect_multivar’) prepare data and report results for univariate or multivariate 

data and call the associated model wrapper functions (‘LSTM_univar’ and 

‘LSTM_univar_bidir’ for univariate, ‘LSTM_multivar_bidir’ and LSTM_multivar’ for 

multivariate). For multivariate data, the models use data for all observed variables as 

input and output estimates of the same variables for the point of interest. Model errors are 

examined for each variable, and independent thresholds are set for anomaly detection. 

2.2.1.4.3 LSTM Preprocessing, Model Building, and Training  

The functions for preprocessing, model building, and model training are compiled 

as sequenced steps in the LSTM model wrapper functions (Figure 2.1). Preprocessing for 

LSTM models involves scaling, reshaping, and ensuring that training data are valid, 

which is facilitated by using the output of the rules based detection. Data must be scaled 

so that extreme values do not have an outsized impact on the model, and pyhydroqc 

includes a function for scaling (‘create_scaler’) based on the standardscaler function from 

the scikitlearn package, which subtracts the mean and divides by the standard deviation to 

scale the data (Pedregosa et al., 2011). Reshaping data creates a sequence of immediately 

previous points (i.e., model input) for each data value (i.e., model output). pyhydroqc 

functions (‘create_sequenced_dataset’ and ‘create_bidir_sequenced_dataset’) reshape 

data based on a user defined number of past time steps.  

To build a model structure, the pyhydroqc functions ‘create_vanilla_model’ and 
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‘create_bidir_model’ use the Sequential model from the Keras package (Keras 

Development Team, n.d.) with model layers (LSTM, Dense, and Bidirectional) and the 

suite of user-specified hyperparameters accepted by the Sequential model. To train the 

model, the functions ‘create_training_dataset’ and ‘create_bidir_training_dataset’ select a 

subset of data based on a user defined number of random points, ensuring that none were 

identified as anomalous by the rules-based detection. These points are reshaped and used 

for training the LSTM model. The function ‘train_model’ uses the Keras early stopping 

feature so that model training ceases when the error of the test and validation sets 

(randomly selected by the algorithm) are approximately equal. 

2.2.1.5 Post Processing: Dynamic Threshold Determination and Anomaly Detection 

A key component of model-based anomaly detection using regression approaches 

is determination of the threshold that regulates whether a point is marked as anomalous or 

valid. Aquatic data vary seasonally, daily, and with environmental events, changes that 

may not be adequately captured by a model. A dynamic threshold has the potential to 

improve detection accuracy by applying a narrower range (i.e., higher sensitivity) when 

the model predictions are more precise and a wider range when model predictions are 

more variable. In particular, by using a dynamic threshold, we hoped to identify localized 

outliers that are within the absolute expected range of values but are relatively distinct for 

a narrower time window and which were undetectable with a constant threshold.  

pyhydroqc implements a dynamic threshold following the format of confidence 

intervals and prediction intervals used in other studies (Hundman et al., 2018; Leigh et 

al., 2018). For each data point, a threshold is determined based on a moving window of 

points (Equation 2): 
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where T is the threshold, μ is the mean of the user defined moving window model 

residuals, σ is the standard deviation of the moving window model residuals, α is a user 

defined value to adjust the width of the threshold, 𝑧!/# is the α/2 quantile of a normal 

distribution, and min is a user defined parameter for the minimum threshold value. Note 

that min may be set to zero (having no effect) or to a non-zero value to prevent too many 

false positives - i.e., detections that are not anomalies. This can occur when model 

residuals are low over an extended period and the dynamic threshold is smaller than the 

resolution or uncertainty inherent in the sensor.  

Given a time series of model residuals, the ‘set_dynamic_threshold’ function in 

pyhydroqc determines upper and lower thresholds for each point in a series using 

Equation 2 with a user defined moving window – the number of points used to calculate 

µ and σ. The ‘detect_anomalies’ function then compares the dynamic threshold values to 

the residuals for each time step to determine whether a point is anomalous. Assuming 

rules based detection was performed, the anomalies detected in that step are propagated 

through the workflow and are included in the detections output by this step. 

Because anomalies are sparse relative to the total number of data points, the 

datasets are considered imbalanced (Chandola et al., 2009). Counts of true negatives are 

overwhelming, resulting in high accuracy, which may make it difficult to compare 

between models (Tan et al., 2019). As a result, anomaly detection focuses on true 

positives, false positives, and false negatives. Anomaly detection requires a balance 

between increasing true positives while reducing both false negatives and false positives, 

objectives that may be mutually exclusive and depend on model sensitivity. Our preferred 
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approach is to err on the side of sensitivity in the detector to minimize false negatives 

(along with maximizing true positives) even at the expense of increased false positives. 

Automating post processing reduces the overall number of data points to be reviewed so 

that, even with some false positives, review of detected anomalies by a technician will 

still be faster than a manual review of the entire dataset. The F2 score supports this aim 

by more heavily weighting false negatives while the F1 score equally weights true 

negatives and false negatives (Cook et al., 2020). 

2.2.1.6 Post Processing: Anomaly Events and Widening 

In comparing anomalies identified by the model-based detectors to anomalies 

labeled by technicians, we observed mismatches related to resolution and lags in model 

approximations related to model smoothing. When an anomaly is identified, either the 

technician or the algorithm must determine how many points to label. To address this in a 

systematic way, pyhydroqc generalizes anomalies into numbered “events” consisting of 

groups of anomalous points. By widening the detection window to include points before 

and after anomalies detected by the algorithm as well as points labeled by the technician, 

overlap between the two is more likely. In pyhydroqc, the ‘anomaly_events’ function 

groups contiguous anomalous points as events by adding a column to the data frame with 

incrementing numbers as an index for each anomalous event. To perform widening for 

each anomalous event, the function assigns the event’s index to points before and after 

the event (the number of points is user defined), effectively adding those points to the 

event.  

2.2.1.7 Performance Metrics 

For data with technician labels, the function ‘compare_events’ determines valid 
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and invalid detections by comparing events detected by the algorithm to those labeled by 

the technician. Each point is classified as true positive, true negative, false positive, or 

false negative. When there is any overlap between detected events and labeled events 

(i.e., any portion of a labeled event is detected), all points are classed as true positives to 

indicate that the labeled event was detected. For accuracy, the points assigned as 

anomalous on the edges of events by widening are removed from the event as part of this 

step.  

A confusion matrix compares model classifications to actual data to evaluate 

overall performance by reporting total true positives, true negatives, false positives, and 

false negatives (Leigh et al., 2018; Tan et al., 2019). Additional metrics that are 

commonly reported include positive predictive value (precision), negative predictive 

value, accuracy, recall, and F scores (Li et al., 2017). In pyhydroqc, the function ‘metrics’ 

determines the performance metric outputs in Table 2.1. As aggregates of precision and 

recall, F scores combine true positives, false positives, and false negatives into a single 

assessment score to assess models (Cook et al., 2020). The F1 score gives equal weight to 

false positives and false negatives while the F2 score gives greater weight to false 

negatives. F scores range from 0 to 1, with 1 being the upper bound. 

2.2.1.8 Aggregate Detections 

In this paper, we tested and compared the performance of ARIMA and several 

LSTM models for anomaly detection. In applying multiple models, rather than select the 

single best performing model, a robust approach is to aggregate results so that a point 

identified by any of the models as anomalous is considered a detection. To address this, 

pyhydroqc includes a function ‘aggregate_results’ for combining anomalies detected by 
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the different model types into a single column of detected anomalies. Because rules-

based detections are propagated through the workflow and are present in the detections 

associated with each model, the aggregation automatically includes the rules-based 

detections. 

2.2.1.9 Model-Based Correction 

A primary goal of this work was to suggest corrections for anomalous points, 

which is enabled by using time series regression methods for anomaly detection. While 

the model predictions used to determine anomalies could be simply substituted as 

corrections, the prevalence of consecutive anomalous points means that anomalous points 

would be used to determine corrections. To prevent this, correction models were 

implemented at a more granular scale. A function ‘generate_corrections’ was developed 

that implements piecewise ARIMA models using the following steps:  

1. Given a data frame of observations with anomalies detected, assign consecutive 

points with either valid or anomalous labels to alternating groups. The function 

‘group_bools’ adds a column populated with 0 for valid points and assigns each 

anomalous event a unique integer. 

2. Ensure that sets of valid data points are large enough to generate forecast 

predictions. Where valid data points are in between anomalous points and the 

duration is too small to use as model input, the function ‘ARIMA_group’ merges 

them with previous and subsequent anomalous points into one anomalous group 

by resetting the group’s incrementing index.  

3. For each anomalous group, beginning with the group of shortest duration and 

progressing in order of increasing duration, develop 2 ARIMA models: one based 
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on the preceding valid points and one based on subsequent valid points (using a 

specified maximum number of points for model development). Use the piecewise 

models to make forecasts and backcasts and blend them using the function ‘xfade’ 

to get a single correction estimate for each point in the anomalous group.  

4. In the data frame, populate a new column with the correction estimates for points 

in anomalous groups and with the observations for the points in valid groups. 

To blend the forecast and backcast, the values are weighted according to the 

proximity to each end point of the anomalous event, as shown in Equation 3, which is 

encoded in the function ‘xfade’:  
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where yk is the correction estimate for each time step k in the anomalous group, N 

is the total number of data points in the anomalous group to be corrected (k = 0 … N-1), 

and Ak and Bk are the ARIMA forecasted and backcasted values, respectively. Examples 

in Section 2.3.4 illustrate this concept. Because the ARIMA correction is based on points 

immediately proximate, instead of using the hyperparameters and model generated for the 

dataset as a whole, each forecast and backcast is an individual ARIMA model with 

hyperparameters and model fit based on the window of valid data. Using more granular 

models allows models to be tuned to that local time window and helps prevent errors that 

might arise from not having enough valid data points to estimate a point (e.g., if p = 9 for 

the time series as a whole, at least 9 valid data points are required). To avoid overfitting 

and to conserve computational resources, the ‘generate_corrections’ function includes a 

user defined limit on the duration of data used to develop and train piecewise models to 

generate the forecasts and backcasts.  
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Instead of applying corrections sequentially, the correction function first corrects 

the events of shortest length and then corrects events of increasing duration. In this 

manner, corrected estimates are available as model inputs when needed for correcting 

longer events. This helps ensure that the period of valid data before or after an anomalous 

event is sufficient to capture patterns.  

2.2.2 Experimental Use Case: Logan River Observatory Data 

The primary objective of this work was to advance automation of quality control 

post processing specifically for environmental sensor data. As an extensive test case, we 

used data collected within the LRO where high frequency monitoring is conducted at 

several climate and aquatic sites within the Logan River watershed, located in northern 

Utah, USA (http://lro.usu.edu, Neilson et al., 2021). Monitoring sites were established 

and infrastructure was originally deployed using protocols described by Jones et al. 

(2017). The LRO is similar to many research sites throughout the world where in situ 

monitoring of aquatic, climatic, and terrestrial variables is performed in support of 

research activities. Utah State University manages the monitoring network including site 

maintenance and data dissemination (available at http://lrodata.usu.edu/). 

The upper Logan River watershed consists of mountainous forest and rangeland 

with limited development while the lower watershed is agricultural and urban with 

multiple agricultural diversions. Hydrology is generally driven by snowmelt, and the 

upper watershed is characterized by karst topography. Aquatic monitoring sites are 

located in both the upper mountain/canyon and lower urban/agricultural sections and 

include sensors for water level, water temperature, pH, dissolved oxygen, specific 

conductance, and turbidity (Figure 2.2). 
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2.3 Results and Discussion 

2.3.1 Preprocessing and Settings  

The following subsections present the parameters, configuration, and settings 

used by each anomaly detection and correction procedure. Anomalies detected by the 

combination of rules (range and persistence) and models with thresholds (ARIMA and 

LSTM) are reported together in Section 2.3.3. 

2.3.1.1 Rules Based Detection and Correction: Range and Persistence Checks 

For the LRO data, range thresholds were determined specific to each sensor based 

on manufacturer reported ranges and were further refined according to past observations 

at each site (Table 2.2). The maximum allowable persistence durations were also based 

on review of raw observations and varied with sensor. Initially, persistence durations 

were set lower (~5-10 time steps); however, those durations resulted in many false 

positives as sensors regularly reported repeated values for more than 10 time steps. We 

observed that repeated values are often caused by limitations in sensor resolution, so 

persistence durations were increased (Table 2.2). Anomalies detected by these functions 

retained labels through subsequent steps, so the metrics resulting from rules-based 

detection are reported with the overall anomaly detection results in Section 2.3.3. 

Anomalies detected by the range and persistence checks were initially corrected 

by linear interpolation, which is identical to the LRO protocol used by technicians to 

manually correct over short periods. However, in the pyhydroqc anomaly detection and 

correction workflow, the linear interpolation correction is an intermediate step to 

facilitate more accurate model development. These points retain an anomalous label 

through subsequent steps of the workflow and are eventually corrected using the model 
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correction algorithm. Consequently, the final correction is performed by the model 

overwriting the interpolated points in the final, corrected dataset. 

2.3.1.2 Rules-Based Detection and Correction: Calibration and Drift Correction 

Results from the calibration detection algorithms were compared to calibration 

events identified and corrected by technicians for all sensors at one site (Main Street). 

The persistence functions (calib_detect and calib_overlap) identified about 25% of the 

calibration events with a high false positive rate (5X). The persistence we observed 

following a calibration may be specific to the sensors used in the LRO (YSI 

multiparameter sondes) and not broadly applicable. The edge detection function 

(calib_edge_detect) identified about 40% of calibrations for pH but was less successful 

(<10%) for specific conductance and dissolved oxygen. Additional effort could be 

applied to improve calibration event detection and to refine the parameters of the edge 

detection function (threshold and width). In theory, the model algorithms should identify 

these local shifts as anomalies; however, although the observed values may deviate from 

the modeled, the residuals were often within the dynamic thresholds (as defined in Table 

2.2) and so were not detected as anomalies. Adjusting threshold settings may identify 

more calibration events but cause oversensitivity. Furthermore, the corrective action 

required for calibration events is different from that of other anomaly types, so the 

detection step should be separate. 

Although calibration events were not automatically detected with high accuracy, 

the function for finding gap values was effective at determining valid gap values and end 

times for calibration shifts. In a review of the results of the ‘find_gap’ function, out of 

100 distinct calibrations (the total for all variables at Main Street), revision was made for 
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only 6 instances. With calibration dates and gap values as inputs, the function for linear 

drift correction was executed for all calibrated sensors (specific conductance, pH, 

dissolved oxygen) for the Main Street site. Many of the automatically determined gap 

values approximated the values used by the technician for correction, in which case the 

linear drift correction was comparable to the technician correction. Some automatically 

determined values were judged as preferable to the technician selected gap value (e.g., 

Figure 2.3). 

In our experience, selecting a viable gap value and performing drift correction can 

be the most time consuming aspect of manual quality control. So, although the algorithms 

we designed were not successful in identifying a majority of calibration events, 

technicians typically record the dates of calibration, and automatically determining the 

gap value and performing drift correction in batch is a significant improvement. 

Furthermore, using an algorithm for this step increases consistency – the range of gap 

values selected by multiple technicians was the primary source of quality control 

subjectivity identified by Jones et al. (2018).  

Based on our testing using the LRO data, our recommended workflow for 

addressing drift and calibration events is to: 1) identify a list of calibration dates 

(generally from field notes, although the pyhydroqc functions may be useful); 2) 

determine gap values and associated times using the ‘find_gap’ function; 3) review those 

shifts and make any adjustments; and 4) use the dates and gap values as inputs to the 

linear drift correction function. Code for performing these steps including generating 

plots of gap values for review are demonstrated in example notebooks. 
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2.3.1.3 Model Based Detection and Correction: Threshold Determination 

The dynamic threshold used to evaluate differences between simulated and 

observed values directly impacts which observations are detected as anomalous or valid. 

For the LRO data, we used trial and error to settle on window sizes, alpha values, and 

minimum range values for determining thresholds (Table 2.2). The same threshold 

settings were used for all model types. We found that moving windows longer than a 

single day resulted in too much smoothing to the threshold and introduced artifacts due to 

daily patterns in model residuals. In general, window sizes of 5-10 hours (corresponding 

to 20-40 time steps) were selected to balance between over-smoothing of longer windows 

and highly dynamic thresholds of shorter windows. An added benefit of smaller window 

sizes is that fewer computational resources are required to determine thresholds. 

Relatively small alpha values were selected (0.001-0.00001) to create a sufficiently high 

threshold range. With larger alpha values, the narrow threshold range was overly 

sensitive, resulting in too many false positives. Minimum values were similar for all 

sensors across sites, with a few exceptions. As illustrated in Figure 2.4, the pattern of 

spread in thresholds tracks with the variability in model residuals, and residuals that 

exceed the threshold are detected anomalies. 

2.3.1.4 Model-Based Detection and Correction: Model Parameters and Settings 

To create ARIMA models, (p, d, q) were determined for each LRO data series 

over the full duration of data (Table 2.2). To build, compile, and train LSTM models, 

consistent parameters and settings were used for all of the LRO data series and the 

several varieties of LSTM models (Table 2.3). Default settings and commonly used 

parameters (Géron, 2017; Keras Development Team, n.d.) were selected with minimal 
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tuning to achieve the goal of satisfactory rather than perfect models. Models were trained 

with 20,000 randomly selected data points from each data series, corresponding to 

approximately 10% of the points within each data series. Anomalous events in both 

technician-labeled data and model-detected data were widened by a single point 

(widening factor = 1). This setting was used for all data series and all model types. 

2.3.2 Anomaly Detection Example 

Examples help demonstrate the performance of the workflow for both successful 

and unsuccessful anomaly detection (Figure 2.5; additional examples in Appendix C). On 

2018-11-11, the ARIMA model detected an event that was not labeled by the technician 

(false positive). Although this is a false positive, the model with a dynamic threshold 

behaved as designed in detecting a localized outlier. The events on 2018-11-12 and 2018-

11-13 consist of points both detected by the algorithm and labeled by the technician (true 

positive). Not all points labeled by the technician were detected as anomalies by the 

model; however, performing widening and considering the overlapping sets of points as 

anomalous events resulted in true positives for all of these points. The event on 2018-11-

14 was not detected by the algorithm but was labeled by the technician (false negative). 

There is nothing in the original data to indicate that something was amiss, so it is unclear 

why the points were labeled as anomalous by the technician. The technician has expert 

knowledge or is following protocol that the algorithm is unable to discern. In assessing 

algorithm performance, we defer to technician labels as a benchmark. However, the 

quality control process is subjective (Jones et al., 2018) and data are not perfectly labeled, 

making reliance on technician labels as a gold standard problematic (Russo et al., 2020). 

In the LRO data, we identified numerous cases where it was unclear why some data 
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points were labeled and others were not (see Appendix C), which may be due to multiple 

technicians and evolving protocols, among other reasons. 

2.3.3 Combined Anomaly Detection Results 

The F2 scores for all time series (Table 2.4) combine true positives, false 

positives, and false negatives to indicate overall performance for each model type, rules-

based detection, and an aggregate of all models. Higher scores indicate better model 

performance (F2 = 1 would be a perfect score). Figure 2.6 is a visual illustration of the 

confusion matrix where each panel corresponds to a time series and each bar to a model 

type. The bottom portion of each bar (light blue) represents true positives, the middle 

portion (orange) represents false negatives, and the sum of those is equivalent to all 

technician labeled points. The top portion of each bar (purple) represents false positives. 

The dashed lines distinguish the proportion of anomalies identified by rules based 

detection. True positives below the lower dashed line (black) were detected by rules 

while those above it were only detected by models. Likewise, false positives below the 

upper dashed line (gray) were detected by rules, and false positives above it were 

detected by only models. Anomalies detected by rules (those below each line) may have 

also been detected by models, so there may be overlap. The results illustrate some general 

trends regarding the performance of both rules based and model based detection. 

2.3.3.1 Detections Due to Rules and Threshold Settings 

For several time series, the rules-based algorithm accounts for the majority of 

anomaly (true positive) detections (e.g., temperature at several sites, dissolved oxygen at 

Franklin Basin). In these cases, the model detection did not provide many additional 

detections. In other cases (e.g., temperature at Tony Grove, all pH time series, most 
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specific conductance and dissolved oxygen time series), the true positives are split 

between rules-based and model-based, indicating that the models capture anomalous 

events that the rules-based detection misses. This demonstrates the value of using both 

approaches in tandem. 

In some cases, the success of the model(s) in detecting anomalies (true positives) 

is offset by a large number of false positives. Particularly high counts of false positives 

indicate oversensitivity, due to either persistence durations that are too short or to 

thresholds that are too tight, both of which may result in too many detections. In 

particular, dissolved oxygen at Franklin Basin and Mendon and specific conductance at 

Blacksmith Fork exhibit high rates of false positives. Given that most are under the rules-

based line, the false positives are attributable to oversensitivity in rules (range check or 

persistence duration) rather than inadequate threshold settings. The similar rates of false 

positives between models for many time series indicates that using the same threshold 

settings for all model types is acceptable. 

Cases with a large portion of false negatives (undetected anomalies) across 

models indicate that the models were not sensitive enough (e.g., temperature at Main 

Street and Blacksmith Fork). Better detection might occur with tighter thresholds or 

adjusted rules-based settings. Practitioners need to consider the tradeoffs with model 

sensitivity in determining threshold settings. Under the assumption that anomalies 

identified by the algorithm would be further reviewed by a technician, the thresholds can 

be set to capture more potential anomalies, erring on the side of false positives. However, 

sensitivity must be balanced to avoid excessive false positives from narrow thresholds. 
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2.3.3.2 Model Comparison 

The detections between all models were generally comparable (e.g., temperature 

at most sites, pH at most sites, dissolved oxygen at several sites), although, for a few time 

series, there were distinct variations in results between models (e.g., specific conductance 

at Franklin Basin and Tony Grove, dissolved oxygen at Tony Grove). ARIMA models 

gave the best average F2 score (Table 2.4) – they generally outperformed LSTM models 

for the cases with differences in model performance and were often slightly better than 

the LSTM models for the time series with comparable results. ARIMA was generally 

more sensitive – detecting more true positives than the LSTM models at the expense of 

detecting more false positives. Results from the LSTM models varied without a 

discernable pattern. In one case, the univariate bidirectional model excelled (temperature 

at Main Street), while in other cases the multivariate vanilla was preferred (specific 

conductance at Tony Grove, dissolved oxygen at the Water Lab).  

Differences in anomaly detection between the model types could be due to several 

factors. ARIMA and LSTM models have inherently different structures with distinct 

processes for hyperparameter tuning and model training. ARIMA models use a limited 

number of hyperparameters (three), which were tuned by automated optimization, while 

LSTM models include several hyperparameters for which minimal tuning was performed. 

It is possible that LSTM models could be improved with additional tuning; however, the 

process may not be worth the effort given that the objective of modeling was to detect 

anomalies rather than generate a perfect model. As one example, we observed LSTM 

models consistently biased toward the overall time series mean, which was reduced when 

developed with input sequences containing fewer previous data points (5 versus 10).  
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Another possible explanation for the poorer performance of LSTM models is a 

result of the training process. LSTM models were trained on a randomized subset of 

available data. Due to the stochastic nature of training data selection and initialization of 

weights, a new model is developed each time the algorithm is run (although pyhydroqc 

can save models for future use). If a distinct set of training data was used or learning 

converges to a local minimum, it may cause the seemingly arbitrary failure of some 

LSTM models on certain time series. To test this, LSTM models were regenerated. The 

resulting metrics were similar to those reported in Table 2.4. This indicates that the size 

of the training sets is sufficient so that the strength of the model does not depend on the 

specific, randomized subset of data used for training. Independently developing and 

training multiple models on the same time series is a straightforward check for training 

data robustness. 

Although we tested across a range of sites that span elevation, land use, and 

hydrologic regime within the LRO, these locations do not represent the full spectrum of 

sites across the world. Investigating the suitability of the algorithm to additional physical 

settings is an important next step. More directly examining the performance of each 

model type related to physical characteristics of locations may help inform transferability 

of the techniques. 

2.3.3.3 Model Aggregation 

The comparability of most of the results suggests that using any one of the models 

may be acceptable; however, rather than select a single model, aggregating detections by 

the multiple models may improve results. F2 scores of aggregated anomaly detection 

(Table 2.4) indicate overall good performance for most time series (F2>0.8), also 
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illustrated by confusion matrix plots (Figure 2.7). For some time series, the aggregation 

does not add high value, presumably because the same points were detected by multiple 

models. However, for a few time series in particular, aggregating detections of multiple 

models had a synergistic effect such that the aggregate F2 score is higher than that of any 

single model (e.g., temperature at Main Street, dissolved oxygen at Tony Grove). Lower 

F2 scores (<0.8) that persist after aggregating model detections are a result of either high 

rates of false positives (dissolved oxygen at Franklin Basin) or false negatives 

(temperature at Blacksmith Fork), both of which could be addressed by tuning rules and 

threshold settings as described rather than perfecting models. 

The results affirm that time series regression methods with dynamic thresholds 

and widening are an effective tool for automating anomaly detection and correction, and 

implementing these techniques can streamline the quality control process. Without the 

models, a technician would need to review 200,000+ data points for each of the time 

series used in this case study. By using the pyhydroqc anomaly detection workflow, the 

number of data points for review (referring to combined rules and model detections) is 

reduced by at least an order of magnitude (e.g., ~20,000 for pH at Franklin Basin), even 

for cases with high rates of false positives (e.g., ~4,000 for dissolved oxygen at Franklin 

Basin). 

2.3.4 Model-Based Correction Examples 

The model-based anomaly correction implemented in pyhydroqc generally 

resulted in smooth data profiles without outstanding nonlinearities (Figure 2.8). The 

method offers a viable path for correcting many anomalous events, although results 

varied depending on the duration, the variable, the season, and the reliability of anomaly 
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detection. For shorter durations (e.g., approximately 2 hours, Figure 2.8a), the model 

corrected data are similar to the technician correction (i.e., linear interpolation). For 

longer periods, the blended forecasts and backcasts can estimate patterns (diurnal cycles, 

Figure 2.8b and 2.8c) that would not be practical for a technician to approximate. In these 

cases, technicians did not attempt corrections but set data to a no data value (-9999). In 

other cases, the model did not capture data patterns, particularly for extended periods (see 

Appendix C for examples). Some models overgeneralized and missed patterns while 

others focused on a single dominant feature. Overall, the correction algorithm better 

captured diurnal patterns in temperature and pH data while regular patterns in specific 

conductance and dissolved oxygen were less consistently approximated. 

2.3.5 Combined Correction Results 

Quantifying the overall performance of the correction algorithm for each time 

series is impractical because no gold standard exists for comparison. Algorithm-corrected 

data cannot be quantitatively compared to technician corrected data because the 

technician corrected data are subjective, contain correction and labeling errors, and 

include many periods where the values were set to a designated “no data value” (e.g., -

9999 for the LRO). For correcting LRO data, technicians followed one of the following 

paths: 1) linear interpolation for periods less than 4 hours, or 2) setting values to -9999 

for longer periods where interpolation was deemed unreasonable. Technicians also 

performed linear drift correction between identified calibration events. The model-based 

correction algorithm is not designed to correct for drift, which was performed as part of 

the rules-based steps (Section 2.3.1.2).  

Without a benchmark, correction algorithm performance cannot be definitively 
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measured for each time series, leaving evaluation to be done qualitatively on a case-by-

case basis (Section 2.3.4 and Appendix C). We considered simulating artificially 

introduced anomalies, which are then corrected and compared to valid raw data; however, 

it is unclear what frequency and duration of artificial anomalies would be appropriate and 

how to propagate artificial anomalies through multiple concurrently measured variables 

(i.e., in the case of multivariate models). We determined that analysis to be outside the 

scope of this work. In an attempt to assess the value of the correction algorithm in terms 

of relative accuracy, we considered the total number of points in each series that were 

altered from the raw data by the technician or the algorithm and that were set to values 

outside of a valid range (Table 2.5). Ranges specific to each time series were adopted 

from the range checks in rules-based preprocessing (Table 2.2) to determine whether 

altered points were valid. Technician corrections resulting in invalid values generally 

correspond to data changed to the no data value of -9999. Causes of invalid values 

produced by the correction algorithm may include periods where anomaly detection was 

not adequately inclusive, so the points corrected by the algorithm were overly influenced 

by anomalous points that were not labeled as such (Figure C5). In another scenario, 

anomalous data may be close to the range limits resulting in forecasts, backcasts, and 

corrections outside of the valid range (e.g., the estimations of peaks in Figure 2.8b exceed 

the upper limit for that time series). 

For most cases, the algorithm correction resulted in significantly fewer invalid 

values than the technician correction. For 16 out of 24 time series (most of the 

temperature, specific conductance, and pH series), the number of invalid points produced 

by the algorithm correction was less than 100 (out of 200,000+ total points) while the 
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number of invalid points produced by the technician was significantly higher (ranging 

from 22 to 8541). For five of the time series (primarily dissolved oxygen), the algorithm 

correction resulted in a higher number of invalid values. For some of these series, the 

anomaly detection was also less performant (e.g., dissolved oxygen at Franklin Basin, 

Tony Grove, and Mendon – Figure 2.7). These results highlight the need to review 

anomaly detections and refine settings to improve anomaly detection. Although the 

corrections classed as valid were within an acceptable range for that time series, the 

correction may not have approximated observed data patterns, so review of proposed 

algorithm corrections is necessary.  

The overarching benefit of the correction in pyhydroqc is that the algorithm may 

capture diurnal patterns to suggest values that a technician could not estimate. However, 

anomalous events need review prior to correction, as do correction suggestions. Adjacent 

data may be inadequate to generate correction estimates for the full duration of an 

anomalous event. A more complete workflow could offer correction options for each 

anomalous event for review and selection by a technician. 

2.4 Conclusions 

We developed a new Python package, pyhydroqc, that enables application of rules 

based and time series regression techniques coupled with dynamic thresholds as part of a 

workflow to detect and correct anomalies in aquatic sensor data. Functions to implement 

the models and supporting steps in the workflow are contained in the Python package and 

documented within the GitHub repository. Available functions include rules-based 

anomaly detection, calibration detection and drift correction, model development and 

estimation, threshold determination, anomaly detection and widening, performance 
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metrics reporting, and model-based correction. Although this workflow advances the 

automation of sensor data post processing, a Python package and scripts may not be 

intuitive tools for some technicians. A graphical user interface offering more interactive 

review could be built on top of the underlying functionality contained in pyhydroqc. 

Based on our case study of 24 time series from the LRO, the anomaly detection 

workflow enabled by pyhydroqc was successful with high detection rates. ARIMA 

models were more performant, likely due to differences in model structure and 

development. Rather than using constant thresholds, dynamic thresholds allowed for 

responsiveness to data variability. A correction algorithm used blended forecasts and 

backcasts of local models to make correction estimates that follow data patterns for 

events of up to several days for some observed variables. These approximations surpass a 

technician’s ability to correct anomalous data, but each corrected event needs review. A 

rules-based approach was successful in determining calibration gap values and 

performing linear drift correction with calibration dates as input. Though not completely 

automated, this work helps to streamline the process of quality control related to sensor 

drift and calibration.  

Manual detection and correction performed by technicians is an extended process 

that overlaps with other tasks. To perform quality control for 3-6 month durations of a 

single time series takes multiple days of dedicated effort. In comparison, implementing 

the complete pyhydroqc workflow for anomaly detection and correction for all variables 

at a single site for a single year of data takes a few hours to run in the background on a 

personal computer. A technician will still need to review results; however, we submit that 

the package and workflow offer significant resource savings. 
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Throughout this process, the technician was treated as an ‘oracle’ with technician 

labels dictating algorithm performance. The subjectivity inherent in manual quality 

control and uneven application of labels by technicians highlight the need for improving 

consistency in quality control, which is an important driver of automating post processing 

given that computers are not subjective in their decisions. 

As the volume of environmental sensor data continues to increase, so does the 

need for performing post processing quality control. This work contributes tools and 

approaches that can be used to streamline and automate the quality control process to 

reduce the costs of manual quality control; facilitate a post processing workflow that is 

reproducible, defensible, and consistent; and provide reliable data for analysis and 

decision making. 
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TABLES 

Table 2.1 Performance metrics calculated in pyhydroqc and associated equations. 
Metric Definition Equation 

True Positives (TP) 
Count of data points from valid detection 
events where model detection events overlap 
with labeled anomalous events. 

 

False Positives (FP) 
Count of data points from invalid detections 
where model detection events did not overlap 
with labeled anomalous events. 

 

True Negatives (TN) 
Count of data points which did not belong to 
either labeled events or model detection 
events. 

 

False Negatives (FN) Count of data points from labeled events 
which were not detected by model(s). 

 

Positive Predictive 
Value (PPV) Ratio of true positives to total positives. 

 

Negative Predictive 
Value (NPV) (or 
Specificity) 

Ratio of true negatives to total negatives. 
 

Accuracy Ratio of correctly identified points to all data 
points. 

 

Recall (or Sensitivity) Ratio of True Positives to the total number of 
labeled anomalies. 

 

F1 
Assessment score that combines true 
positives, false positives, and false negatives. 
Perfect score = 1. 

 

F2 

Assessment score that combines true 
positives, false positives, and false negatives. 
Gives greater weight to false negatives than 
does F1. Perfect score = 1. 

 

 
	  

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃  	

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁	

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁	

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	

𝐹1 =
2 ∗ 𝑃𝑃𝑉 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑃𝑉 + 𝑅𝑒𝑐𝑎𝑙𝑙 	

𝐹2 =
5 ∗ 𝑇𝑃

5 ∗ 𝑇𝑃 + 4 ∗ 𝐹𝑁 + 𝐹𝑃	
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Table 2.2 Input parameters for each time series. Persistence duration and window size 
refer to the number of time steps: 20 = 5 hours, 30 = 7.5 hours, 40 = 10 hours, 45 = 11.25 
hours. 

Observed 
Variable Parameter Franklin 

Basin 
Tony 
Grove 

Water 
Lab 

Main 
Street Mendon 

Black 
smith 
Fork 

Temperature 
(degrees C) 

Maximum range 13 20 18 20 28 28 
Minimum range -2 -2 -2 -2 -2 -2 

Persistence duration 30 30 30 30 30 30 
Window size 30 30 30 30 30 30 

alpha 1E-04 1E-05 1E-04 1E-05 1E-04 1E-04 
Threshold minimum 0.25 0.4 0.4 0.4 0.4 0.4 

(p, d, q) (1, 1, 3) (10, 1, 0) (0, 1, 5) (0, 0, 0) (3, 1, 1) (1, 1, 0) 

Specific 
Conductance 

(μS/cm) 

Maximum range 380 500 450 2700 800 900 
Minimum range 120 175 200 150 200 200 

Persistence duration 30 30 30 30 30 30 
Window size 30 40 40 40 40 20 

alpha 1E-04 1E-05 1E-04 1E-06 1E-05 1E-02 
Threshold minimum 4 5 5 5 5 4 

(p, d, q) (10, 1, 3) (6, 1, 2) (7, 1, 0) (1, 1, 5) (9, 1, 4) (0, 0, 5) 

pH 

Maximum range 9.2 9 9.2 9.5 9 9.2 
Minimum range 7.5 8 8 7.5 7.4 7.2 

Persistence duration 45 45 45 45 45 45 
Window size 30 40 40 20 20 30 

alpha 1E-05 1E-05 1E-05 1E-04 1E-04 1E-05 
Threshold minimum 0.02 0.02 0.02 0.03 0.03 0.03 

(p, d, q) (10, 1, 1) (8, 1, 4) (10, 1, 0) (3, 1, 1) (0, 1, 2) (0, 1, 4) 

Dissolved 
Oxygen 
(mg/L) 

Maximum range 13 14 14 15 15 14 
Minimum range 8 7 7 5 3 2 

Persistence duration 45 45 45 45 45 45 
Window size 30 30 30 30 30 30 

alpha 1E-04 1E-04 1E-05 1E-05 1E-03 1E-04 
Threshold minimum 0.15 0.15 0.15 0.25 0.15 0.15 

(p, d, q) (0, 1, 5) (10, 1, 0) (1, 1, 1) (1, 1, 1) (10, 1, 3) (0, 0, 5) 
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Table 2.3 LSTM model parameters and settings selected for the LRO case study. Defaults 
were used for all other settings and parameters not listed here. See Géron (2017) and 
Keras Development Team (n.d.) for additional details. 
Parameter Function Setting Details 

Time steps model.add 5 

The number of past data considered as input for prediction. For the 
LRO data, more time steps (10, 15, 20) biased results toward the 
mean. Reduced time steps (5) gave greater accuracy and improved 
computational time. 

Units/cells model.add 128 

Number of cells or nodes in the model architecture. There is no rule 
for finding the perfect number of cells. We chose a high number 
and used early stopping and dropout to prevent overfitting. For 
processing purposes, it is generally preferred to have network 
dimensions in multiples of 32. 

Dropout model.add 0.2 

A fraction of cells that are randomly ignored during training. Using 
dropout improves the model by reducing overfitting, but the 
number usually matters little. 20% is often used to balance accuracy 
and overfitting. 

Optimizer model.compile adam 

Algorithm for training. Adam (adaptive movement estimation) is 
commonly selected for training LSTM models for being 
computationally efficient, requiring little memory, and handling 
large amounts of data. 

Loss model.compile 
Mean 
absolute 
error 

The quantity to be minimized during training. Mean absolute error 
computes the mean of the difference between observations and 
predictions. 

Epochs model.fit 100 
The number of rounds to train the model. We opted for a high 
number that is truncated by early stopping that ends training when 
the model is sufficiently fit.  

Validation 
split model.fit 0.1 Fraction of training data to be used as validation data on which the 

loss is evaluated at the end of each epoch. 

Callbacks model.fit Early 
stopping Interrupts training when performance on the validation set drops. 

Patience model.fit 6 Number of epochs with no improvement after which training will 
be stopped. 

Shuffle model.fit False  Whether to shuffle training data before each epoch. Set to false 
because the order of training data matters for these data. 
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Table 2.4 F2 score comparisons. Scores are reported for ARIMA and LSTM models for 
each time series as well as rules based detection and the aggregate of all of the models. 
F2 = 1 would be a perfect score. 

Monitoring 
Site ARIMA LSTM 

univar 

LSTM 
univar 
bidir 

LSTM   
multi 

LSTM 
multi  
bidir 

Rules 
Based Aggregate 

Temperature 
Franklin Basin 0.926 0.840 0.842 0.840 0.841 0.764 0.920 

Tony Grove 0.966 0.966 0.966 0.966 0.966 0.066 0.966 
Water Lab 0.970 0.909 0.922 0.895 0.923 0.888 0.975 
Main Street 0.546 0.571 0.650 0.569 0.625 0.548 0.709 

Mendon 0.992 0.992 0.992 0.991 0.992 0.867 0.992 
Blacksmith Fork 0.615 0.605 0.605 0.607 0.607 0.448 0.616 

Specific Conductance 
Franklin Basin 0.985 0.403 0.410 0.977 0.723 0.176 0.986 

Tony Grove 0.978 0.383 0.264 0.884 0.501 0.127 0.978 
Water Lab 0.952 0.809 0.810 0.822 0.919 0.370 0.957 
Main Street 0.935 0.876 0.884 0.872 0.904 0.155 0.928 

Mendon 0.945 0.836 0.836 0.943 0.856 0.424 0.966 
Blacksmith Fork 0.845 0.736 0.776 0.839 0.807 0.134 0.806 

pH 
Franklin Basin 0.967 0.852 0.849 0.945 0.839 0.317 0.968 

Tony Grove 0.946 0.654 0.638 0.658 0.632 0.064 0.945 
Water Lab 0.966 0.954 0.932 0.934 0.929 0.175 0.969 
Main Street 0.983 0.982 0.982 0.983 0.980 0.186 0.984 

Mendon 0.995 0.983 0.848 0.849 0.847 0.396 0.995 
Blacksmith Fork 0.989 0.983 0.982 0.958 0.955 0.125 0.990 

Dissolved Oxygen 
Franklin Basin 0.496 0.467 0.457 0.470 0.459 0.429 0.497 

Tony Grove 0.705 0.404 0.256 0.263 0.256 0.140 0.827 
Water Lab 0.892 0.879 0.880 0.967 0.881 0.064 0.980 
Main Street 0.967 0.943 0.942 0.946 0.944 0.194 0.968 

Mendon 0.873 0.736 0.823 0.750 0.735 0.107 0.879 
Blacksmith Fork 0.912 0.964 0.918 0.919 0.963 0.204 0.965 

Average 0.889 0.780 0.769 0.827 0.795     
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Table 2.5 Technician and algorithm invalid changed data points. Counts represent the 
number of points where raw data were corrected to values outside of the valid range for 
that time series. The total number of data points for each series is ~200,000. 
 Monitoring 
Site 

Temperature Specific Conductance pH Dissolved Oxygen 
Technician Algorithm Technician Algorithm Technician Algorithm Technician Algorithm 

Franklin Basin 584 8 3123 92 11259 837 568 1656 
Tony Grove 44 8 1517 13 482 0 692 1185 
Water Lab 22 0 7527 59 4169 35 906 0 
Main Street 168 0 632 0 6454 121 1171 271 
Mendon 1459 2339 8541 0 8187 0 1678 3149 
Blacksmith Fork 502 0 1202 0 1208 0 385 507 
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FIGURES 

 
Figure 2.1 Workflow for steps and functions in pyhydroqc. Numbers on the left 
correspond to steps in the process listed in Section 2.2.1.  
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Figure 2.2 Logan River Observatory showing locations of aquatic monitoring sites. 
	

	

	 	



 63 

	

Figure 2.3 Example of gap values and linear drift correction for pH at Main Street. A 
calibration shift occurred 2014-07-29. The data at the calibration were shifted by a gap 
value – determined either by the algorithm or by the technician, and data before the 
calibration were adjusted proportionately. 
 
 
 

 
Figure 2.4 Example of model residuals and dynamic thresholds for specific conductance 
at Main Street. 
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Figure 2.5 Examples of anomalies detected using an ARIMA model for specific 
conductance at Tony Grove.  
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Figure 2.6 Detection confusion matrix values for all time series (panels) and models 
(bars). y-axis values represent the count of observations that fall within each category 
shown in the legend. Dashed lines differentiate the proportions of detections from the 
rules based detection and the model based detection.  
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Figure 2.7 Detection confusion matrix values for aggregate results for all time series. 
Symbology is as described for Figure 6. 
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Figure 2.8 Examples of successful correction using piecewise ARIMA models and the 
cross-fade technique. 8a: temperature at Water Lab, 8b: pH at Main Street, 8c: 
temperature at Water Lab. 
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CHAPTER 3 

ADVANCING HYDROINFORMATICS AND WATER DATA SCIENCE 

INSTRUCTION: COMMUNITY PERSPECTIVES AND ONLINE LEARNING 

RESOURCES2 

 

Abstract 

	
Hydroinformatics and water data science topics are increasingly common in 

university graduate settings through dedicated courses and programs as well as 

incorporation into traditional water science courses. The technical tools and techniques 

emphasized by hydroinformatics and water data science involve distinctive instructional 

styles, which may be facilitated by online formats and materials. In the broader 

hydrologic sciences, there has been a simultaneous push for instructors to develop, share, 

and reuse content and instructional modules, particularly as the COVID-19 pandemic 

necessitated a wide scale pivot to online instruction. The experiences of hydroinformatics 

and water data science instructors in the effectiveness of content formats, instructional 

tools and techniques, and key topics can inform educational practice not only for those 

subjects, but for water science generally. This paper reports the results of surveys and 

interviews with hydroinformatics and water data science instructors. We address the 

effectiveness of instructional tools, impacts of the pandemic on education, important 

hydroinformatics topics, and challenges and gaps in hydroinformatics education. Guided 

by lessons learned from the surveys and interviews and a review of existing online 

	
2 Jones, A.S., Horsburgh, J.S., Bastidas-Pacheco, C.J., Flint, C. G., Lane, B.A. Advancing Hydroinformatics and Water 
Data Science Instruction: Community Perspectives and Online Learning Resources. Frontiers in Water. 4. 
https://doi.org/10.3389/frwa.2022.901393 
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learning platforms, we developed four educational modules designed to address shared 

topics of interest and to demonstrate the effectiveness of available tools to help overcome 

identified challenges. The modules are community resources that can be incorporated into 

courses and modified to address specific class and institutional needs or different 

geographic locations. Our experience with module implementation can inform 

development of online educational resources, which will advance and enhance instruction 

for hydroinformatics and broader hydrologic sciences for which students increasingly 

need informatics experience and technical skills. 

3.1 Introduction 

In an increasingly data intensive world, researchers and practitioners in water 

sciences need to apply data-driven analyses to address emerging problems, to explore 

theories and models, and to leverage growing datasets and computational resources. 

Within hydrology and related fields in environmental and geosciences, observational data 

are increasing in scope, frequency, and duration, and computational technologies are 

essential to solving complex problems (Chen and Han, 2016). Without training, students 

are unprepared to work or conduct research centered around large and complex data, 

questions, and tools (Merwade and Ruddell, 2012). To meet this need, hydroinformatics 

and water data science have been growing as specific topics of instruction, both in 

university programs and in community education settings (e.g., Consortium of 

Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Virtual 

University and University of Washington WaterHackWeek) (Burian et al., 2013; Popescu 

et al., 2012; Wagener et al., 2021). In parallel, incorporation of technical tools in 

traditional water science courses is growing, though uptake has been uneven and lags 
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behind what many see as needed (Habib et al., 2019; Lane et al., 2021). Hydroinformatics 

and water data science both combine computational tools and water-related data to 

achieve actionable knowledge. Although the fields are overlapping, there are subtle 

differences, and both terms are used throughout this paper. 

Within the geosciences, there is increased focus on reusability and reproducibility 

of research data, code, and results, as well as educational materials (Ceola et al., 2015). 

Several online spaces have emerged as hubs for storing and sharing lectures, code, 

examples, and scripts developed by instructors in hydrology, water resources, and other 

geosciences (Habib et al., 2019, 2012; Lane et al., 2021). The widespread shift to online 

education resulting from the COVID-19 pandemic illustrated the value of online 

instructional materials and rapidly accelerated development and transition to online 

formats (Beason-Abmayr et al., 2021; Rapanta et al., 2021). Community educational 

resources, online platforms, and increased accessibility of digital tools offer an 

opportunity to more fully incorporate informatics tools and techniques for data-driven 

hydrologic applications into water science education.  

This paper reports on the current state of hydroinformatics and water data science 

education in the United States based on available literature and qualitative interviews and 

surveys with instructors of relevant courses. Another objective of this work was 

development of online educational modules and evaluation of the implementation 

platform to share insights with other instructors. Study participants offered information 

about key topics and technologies, formats and methods of delivery, challenges and gaps, 

and impacts of COVID-19 on instruction. In addition to the results of the survey, we 

performed a functional review of online educational platforms based on participants’ 
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criteria. Their perspectives and our evaluation were used to inform the development of 

online learning modules that address some of the identified challenges and gaps while 

demonstrating existing tools. The modules are community resources that can be 

incorporated into any related course, workshop, or educational program. They are a step 

toward sharing educational resources for reuse not only by instructors that specialize in 

hydroinformatics, but to incorporate informatics skills and topics more broadly in water 

science courses. The lessons learned from platform feature evaluation and module 

implementation are valuable for instructors sharing content and for further platform 

development. 

In Section 3.2, we present a literature review of hydroinformatics and water data 

science education, including best practices for sharing educational content and 

outstanding gaps. Section 3.3 outlines the procedures and literature-informed questions of 

the surveys/interviews and the methodology for development of educational modules. In 

Section 3.4, we present survey results and the key points that drove the design and 

implementation of learning modules. Section 3.4 also covers a review of existing online 

platforms and module implementation successes and challenges. Section 3.5 offers 

conclusions and an outlook for the future of hydroinformatics and water data science 

instruction.  

3.2 Background 

3.2.1 Hydroinformatics and Water Data Science 

In an early conceptualization, hydroinformatics was described as encompassing 

computational tools to transform water related data and information into useful and 

actionable knowledge (VanZuylen et al., 1994). Although hydroinformatics may be 



 72 

technical in nature, water issues are inherently social, and consideration of human factors 

for the presentation and dissemination of results and information is a key component 

(Celicourt et al., 2021; Makropoulos, 2019; Vojinovic and Abbott, 2017). More recently, 

the definition of hydroinformatics is broadening to encapsulate water science, data 

science, and computer science (Burian et al., 2013; Chen and Han, 2016; Makropoulos, 

2019; Vojinovic and Abbott, 2017). The objective of data science is application of 

analytical methods and computational power with domain understanding to transform 

data to decisional knowledge (Gibert et al., 2018; McGovern and Allen, 2021). When 

applied to the water domain, this definition is very close to that of hydroinformatics, and 

for most practical purposes, it is difficult to draw boundaries between hydroinformatics 

and water data science. 

Based on the increasing volume, variety, and availability of data sources and the 

advancement of software and hardware tools, there is opportunity and need for the 

application of data science to water, environmental, and geoscience domains (Burian et 

al., 2013; Gibert et al., 2018). Hydrologic science is shifting from collecting data to 

support existing conceptual models toward analyses based on models derived from 

observational data (Chen and Han, 2016). In this paper, we report on how current 

instructors of hydroinformatics and water data science define their fields and the topics 

and technologies that are growing in importance in these fields. 

3.2.2 Hydroinformatics and Water Data Science Education 

Without training in data intensive approaches with modern technological tools, 

students will be unprepared to solve emerging water problems (Lane et al., 2021; 

Merwade and Ruddell, 2012). Technology integration and data and model-driven 
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curriculum are key components for advancing hydrology education (Ruddell and 

Wagener 2015). Many have recommended educational pedagogies for hydrology that are 

“student-centered” or “problem-based”, which describe applications that deepen learning 

by connecting to real-world contexts (Habib et al., 2019; Maggioni et al., 2020; Ruddell 

and Wagener, 2015; Wagener and McIntyre, 2007). Students need to learn using real-

world datasets, actual tools, and open-ended problems, also referred to as “ill-defined”, 

“authentic”, or “experiential” (Burian et al., 2013; Lane et al., 2021; Maggioni et al., 

2020; Ngambeki et al., 2012).  

Hydroinformatics was initially taught in the mid-1990s to enable engineers to 

apply information technology to complex water problems (Abbott et al., 1994). Specific 

programs have since developed including courses for professionals (Popescu et al., 2012) 

and graduate students (Burian et al., 2013) and complete doctoral programs (Wagener et 

al., 2021). However, hydroinformatics courses remain limited, and to gain informatics 

skills, students often rely on technology incorporated into traditional hydrology courses, 

pursue self-learning (e.g., online courses, tutorials, etc.), or enroll in computer centric 

courses that do not address the focused set of topics with domain-specific applications 

covered by hydroinformatics. 

Training in data science is typically separate from domain sciences; however, data 

science curricula cannot adequately address domain knowledge, so students are expected 

to rely on their own “substantive expertise” (Grus, 2015). Voices in industry and 

academia are calling for well-rounded and  technology-literate water scientists (Chen and 

Han, 2016; McGovern and Allen, 2021), which may be achieved by packaging 

informatics and/or data science topics with real-world water science applications (Gibert 



 74 

et al., 2018; Wagener et al., 2021). In this paper, we use information gathered from 

instructors to understand how courses are being taught, what techniques are successful, 

and what would be useful going forward.  

3.2.3 Sharing Educational Content 

As technology and applications advance, books and even online content may 

become outdated quickly, and hydroinformatics and water data science instructors are 

challenged to keep up (Maggioni et al., 2020; Makropoulos, 2019; Wagener et al., 2007). 

Given shifts toward big data, open data sources, reproducible research, and data-driven 

analysis, many have called for advancement in content for teaching water science and 

methods for delivery of that content (Habib et al., 2019; Seibert et al., 2013). The 

COVID-19 pandemic caused many courses to be moved to virtual platforms, prompting 

evaluations of instructional formats and a call for additional online educational material 

(Maggioni et al., 2020).   

Community platforms and resources can advance water science instruction by 

facilitating data-driven learning and offering common principles and approaches for 

teaching (Makropoulos, 2019; Merwade and Ruddell, 2012; Popescu et al., 2012; 

Wagener et al., 2012). Although water science modules have been shared and published 

online (e.g., Gannon and McGuire, 2022; Habib et al., 2012; Merck et al., 2021; Wagener 

et al., 2012), without integration within a common platform, modules are difficult to 

identify, access, and implement. In 2012, Merwade and Ruddell noted that an appropriate 

system was not yet in place, and there remains no single clearinghouse of educational 

resources in the field. More recently, Lane et al. (2021) and Maggioni et al. (2020) 

developed and published course content via HydroLearn (https://www.hydrolearn.org/). 
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Lane et al. (2021) made the case that online educational materials should be supported by 

active learning, basic templates, adaptation, multiple content types, and pedagogical 

tools, which are emphasized in the HydroLearn platform. To these functional capabilities, 

we add that systems need to offer persistence as we were unable to access many of the 

online resources that were reported in the literature. They were either missing completely, 

lacking crucial metadata, or using outdated software or systems. 

Our review of the literature identified key components, guidelines, and best 

practices for sharing educational content along with gaps and opportunities to improve. In 

this paper, we also consider key components to successful online modules as identified 

by hydroinformatics and water data science instructors, which we used as criteria to 

select an online educational platform. Based on these findings, we describe the 

development and implementation in an online system for four modules focused on 

hydroinformatics and water data science, which are available for instructors to adapt into 

courses and may serve as examples to the community.  

3.3 Methods 

3.3.1 Survey and Interview Methodology 

We developed survey and interview questions that focused on the instructors’ 

courses and their perspectives on the future of the field (Table 3.1). Participant responses 

were analyzed to identify common themes surrounding key research questions: 1) What 

is the current state of instruction in hydroinformatics and water data science, including 

the effectiveness of tools being used for in-person and online instruction?; 2) How has the 

COVID-19 global pandemic affected instruction?; 3) Which topics comprise 

hydroinformatics education and what topics are growing in importance?; 4) What are the 
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major challenges in hydroinformatics instruction?; and 5) How can shared instructional 

resources be beneficial for instructors and students? Although this analysis was primarily 

qualitative, where commonalities emerged, we were able to tally responses and present 

quantitative results. 

Potential participants were initially identified via investigator connections, review 

of relevant literature, and information on institutional and personal websites discovered 

by Internet searches. Target participants were selected based on their experience teaching 

hydroinformatics, water data science, or related subject matter at an institution of higher 

education. We used email to invite contacts to participate, and participants elected to 

respond to questions either via online survey or recorded interview. During each 

interview or survey, participants were asked to identify any additional instructors who 

might be a good fit for the project. 

While the questions for surveys and interviews were the same, both approaches 

were used so that participants could choose their preferred mechanism to respond. We 

acknowledge that the different modes for data collection may have influenced the length 

or character of the responses, but we made this decision to maximize the potential for 

participation. We observed that content specificity did not differ greatly between surveys 

and interviews. The survey was composed using Qualtrics software and administered 

with links personalized for each participant. Interviews were conducted over Zoom, 

recorded, and subsequently transcribed. Each interview lasted approximately 45-60 

minutes. Notes were taken during all interviews in case of issues with audio. A total of 18 

instructors participated in interviews (n=7) or responded via survey (n=11). Herein, we 

refer to interview and survey participants as “participants” and do not differentiate 
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between the mode in which they participated. Procedures were approved by the Utah 

State University Institutional Review Board for Human Subjects Research with 

participation limited to instructors within the United States.  

3.3.2 Review of Educational Platforms and Modules 

From participants and our own review, we identified several existing online 

platforms for sharing educational content. Using the survey and interview responses, we 

extracted characteristics that participants considered important in an online platform for 

depositing materials and used these to assess available options. We identified specific 

instances of educational materials from the hydroinformatics community that are 

available online for each of the considered platforms. 

3.3.3 Module Development 

We evaluated educational platforms based on the criteria identified in interview 

and survey results to determine the repository and format to use for depositing the 

educational modules developed as part of this work. At a minimum, we required that 

modules be implemented in an open access format. Our selection of a particular platform 

does not signify that it should be preferred for all instructors, courses, or learning 

situations, and we anticipate that instructors will adapt content to their preferred interface.  

We used the suggestions from participants to inform the topics for the educational 

modules developed as part of this work. Given the breadth of suggested topics, our team 

could not develop modules to comprehensively cover all areas. This points to the need for 

community resources to take advantage of the varied teaching and research expertise of 

instructors. Rather than serve as a complete and unified set of educational content, the 

modules we developed act as a demonstration and a launching point for sharing content. 
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Our conceptual model of a learning module independent of any specific 

technological implementation consists of the following elements: 1) learning objectives, 

2) narrative, 3) example code, and 4) technical assignment. The learning objectives guide 

the content that is presented through the other elements and may be contained separate 

from or as part of the narrative. The narrative covers the core of the concepts and topics 

and is communicated through various formats – e.g., slides, documents, and/or video. 

Example code may take the form of scripts, formatted markdown or text, or an interactive 

code notebook. Technical assignments consist of authentic, open-ended tasks based on 

real-world data that require students to implement code and write a descriptive summary. 

Authentic tasks are high cognitive-demand activities designed to reflect how knowledge 

is used in real life and to simulate the type of problems that a professional might 

tackle. Authentic tasks have no single answer and thus avoid concerns with publicly 

available solutions and achieve higher level learning objectives. Each assignment 

includes a grading rubric to ensure that expectations and evaluation criteria are clearly 

defined and activities are aligned with learning objectives, outcomes and assessment, 

referred to as constructive alignment (Kandlbinder, 2014).  

3.4 Results and Discussion 

3.4.1 Survey and Interview Results 

Each instructor’s definition of the terms “hydroinformatics” or “water data 

science” was unique, but all centered on common themes of using computers and 

informatics tools to solve water problems, including data collection, storage, sharing, 

interpretation, analysis, synthesis, and modeling. One participant simply defined 

hydroinformatics as “data and water”. The following quote summarizes the motivation 
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for teaching these subjects: 

“We have…talented, quantitatively savvy people…engineers and 
geologists and hydrologists and scientists that live and breathe data 
analysis and are limited by the tools they use. And we also have increasing 
data volume and aging infrastructure, emerging pollutants, drought, 
climate change. There [are] so many challenges our field faces. So, the 
goal is to give people modern tools to deal with modern water data 
challenges.” 

The interviews and surveys generated a rich body of results, which we distilled in 

view of our core research questions. The current state of instruction in hydroinformatics 

and water data science is addressed in Section 3.4.1.1, including platforms, modes of 

delivery, and impacts related to the COVID-19 pandemic. As the pandemic prompted 

shifts to online platforms, Section 3.4.1.2 focuses on the effectiveness of tools for online 

instruction. Section 3.4.1.3 reports on the topics and technologies that comprise 

hydroinformatics education. Challenges and future directions of hydroinformatics 

instruction are covered in Section 3.4.1.4. Section 3.4.1.5 addresses interest, 

considerations, and potential benefits of shared instructional resources. In the following 

results, the number of participants (out of 18 total) that correspond to each response is 

reported parenthetically. 

3.4.1.1 Courses, Platforms, and Modes of Delivery 

The courses taught by participants include hydroinformatics and related courses 

with emphases on data science, research computing, and data and analysis tools (see 

Table 3.2). Most of the courses taught by participants are directed to university graduate 

students (14), though a few are undergraduate Introduction to Data Science classes (2), 

several courses are a mix of undergraduate and graduate students (4), and a few are 

designed for professionals (2). Most of the graduate classes permit some undergraduate 



 80 

enrollment, and several instructors noted that students at their institutions are exposed to 

some hydroinformatics topics in lower-level hydrology or geographic information system 

(GIS) classes. 

Most of the courses are conducted in-person, although some had an online 

component even prior to COVID-19. In total, 12 out of 18 participants teach courses in 

person. Of these, most moved to an online format because of the COVID-19 pandemic. A 

few instructors (4) did not teach during this period due to buyout, sabbatical, or changing 

institutions. Multiple instructors (3) developed courses during the pandemic that would 

normally be held in-person. Of the courses offered fully online (6), one is a course for 

professionals, one was offered through an online community college, one was designed 

for a virtual university, and the remaining 3 are taught through universities.  

Of those participants who moved from in-person to online because of COVID-19, 

most did not significantly change course structure but continued to use a format 

consisting of lectures with slides and coding demonstrations. Some instructors held 

synchronous classes over Zoom while others recorded lectures for asynchronous viewing. 

Generally maintaining course content with some changes to modalities was a commonly 

reported adaptation to the global pandemic (Beason-Abmayr et al., 2021; Smith and 

Praphamontripong, 2021). Additional modifications to address challenges of online 

learning are described in Section 3.4.1.2. Although hydrology and hydroinformatics have 

been identified as well-suited for online instruction (Merwade and Ruddell, 2012; 

Popescu et al., 2012; Wagener et al., 2012), even technologically savvy instructors with 

informatics-focused curriculum were generally returning to in-person formats even 

before the COVID-19 pandemic was over. The return to in-person instruction may be 
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related to institutional expectations and instructors’ preferences rather than 

ineffectiveness of tools and technologies (Rapanta et al., 2021). However, several 

instructors perceived benefits to online aspects and reported adjusting their teaching 

formats accordingly. A handful plan to shift modalities to alternate in-person and online 

classes or to a flipped format where lectures are recorded and viewed asynchronously 

while in-person class periods are work sessions. One participant was pleased with 

outcomes from online instruction and planned to continue with a purely online format. 

This is consistent with literature from other fields reporting that a flipped teaching format 

eased the transition between in-person and online education (Beason-Abmayr et al., 

2021). Furthermore, the forced transition to online instruction can facilitate a deliberate 

integration of online and in-person instruction that is beneficial to active learning 

(Rapanta et al., 2021). 

Instructors reported implementing a wide range and multiple layers of educational 

platforms to support instruction and handle course materials. Out of 18 participants, most 

(16) used a learning management system (e.g., Canvas, Blackboard, Brightspace, Sakai) 

for grading and assignment submission. For messaging with students, some used Canvas 

(or similar), though several instructors reported success in transitioning all course 

communication to Slack (2). For some, the learning management system was used to 

share files, while others stored and shared code and datasets with repositories in GitHub 

(6) and HydroShare (4), and a few reported using email or Google Drive. All these 

platforms were generally reported to be effective for both in person and online 

instruction, and several instructors planned to continue using Slack when returning to in-

person instruction.  
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Most of the participants reported conducting live coding during lectures, whether 

synchronous or asynchronous, online or in-person. Some instructors switch between 

traditional teaching material (e.g., slides, videos) and live coding while others exclusively 

use coding interfaces for instruction. Many instructors (6) reported teaching with code 

notebooks (e.g., Jupyter) that can be launched from a web browser and include text and 

images as scaffolding to explain and support the code. Some instructors reported 

advantages to using GitHub and Jupyter notebooks: 

“Jupyter notebooks enable us and our students to have a conversation 
with a problem and link to resources, like audio, video, images, 
visualizations and implement water resources projects step by step.” 

“Jupyter notebooks work great for teaching either online or in person… 
They are especially nice for students working through in-class exercises. 
We…share screens while the instructor or students work through 
problems.” 

“…copying [the assignment] to my private [GitHub repository] for 
grading and…deleting …the code that the students need to fill out but 
leaving the results…then committing those to the public repo [is]…a great 
tool…because [they] know what the answer should look like. … 
there's…self-training and…self-evaluation…by…working on their code 
until they get it to look like what it should.” 

3.4.1.2 Challenges and Benefits of Online Delivery 

The most reported challenges for online delivery were interpersonal and not 

unique to hydroinformatics or water data science. Instructors were concerned about 

meaningful engagement with students, lack of feedback and participation during lectures, 

and students struggling without the camaraderie and accountability of an in-person 

instructor and classmates. The paucity of in-person interaction and decreased student 

engagement have been reported as common concerns with the abrupt shift to online 

learning (Daniels et al., 2021; Godber and Atkins, 2021). 
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“…a lot of tactile things…are lost in a virtual format, and that can be very 
frustrating for students and instructors and really slow the course down.” 

“You ask a question, and there's no feedback. You don't see anybody's 
faces. You don't hear any response. …you have to force those interactions 
and knowledge checks through some other mechanism.” 

Instructors also reported difficulties with determining the best formats and 

technologies for rapidly pivoting to online instruction and the time-consuming nature of 

creating high quality online content. Reduced interaction and the time required for 

instructors to develop content are established drawbacks to online learning (Habib et al., 

2019; Wagener et al., 2021), especially with the rapid shift that occurred in 2020 (Godber 

and Atkins, 2021; Rapanta et al., 2021). 

A concern expressed by multiple instructors (6) specific to computer-based 

classes was the difficulty of troubleshooting and reviewing code and errors without being 

able to crowd around the screen, consistent with challenges reported by Gannon and 

McGuire (2022). Another issue for several instructors was getting hardware and sensors 

into the hands of students.  

“…during the hands-on lab, I stop by each student and see if they're 
following and if they can finish that specific section of the code. …But in 
Zoom, it's relatively harder to see all the screens and then go back to each 
one…a classroom environment is often very engaging and more hands on 
for students. They can easily talk to the person next to them and get some 
help.” 

“Live coding is challenging because students don't often have multiple 
screens, so typing code while watching the lecture requires some careful 
window manipulation.” 

To address these challenges, instructors adjusted to hold more office hours and 

help sessions and increase communication opportunities, which was also important for 

Smith and Praphamontripong (2021) in transitioning a coding class online.   
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“I polled students [to ask] what’s going on? What are the pain points? 
…they really enjoyed being able to watch stuff on their own time. So 
instead of doing a live lecture, I ended up doing recordings and then 
during the lecture times I [held] office hours. In fact, I started 
doing…office hours at…9pm, 10pm. It was crazy how busy they were.” 

“We do a lot of office hours due to COVID so that we can connect, look at 
their screen…What’s the problem with their code? I increased [office 
hours], but also, I schedule meetings with students if they have a [specific] 
problem…it’s not really that engaging as in person, but still, we try to 
support the missing pieces…through some online meetings.” 

Participants reported that communicating expectations for online classes and 

deliberately facilitating interaction helped ensure student engagement.  

“We make it a point to tell students that being in an online class is no 
different than being face-to-face in terms of being engaged or not. ...This 
helps the students get to know each other and learn how to navigate online 
meetings, which is a great professional skill to develop. We are also more 
intentional in encouraging community in the online class; I have an “ice 
breaker” question related to data science each day, and many students 
submit their answers in the chat window.” 

Despite the challenges of online delivery, instructors deemed several aspects of 

online instruction as beneficial. Zoom was an effective technology for interactive remote 

instruction, and several participants preferred live coding via Zoom rather than in the 

classroom because students could more easily follow along and screenshare their own 

work. For some participants, Zoom breakout rooms facilitated group work. Others 

reported benefits of live coding with screen sharing as well as online breakout rooms 

(Beason-Abmayr et al., 2021; Smith and Praphamontripong, 2021). 

“If anything, the class may have gone more smoothly this way because 
everyone was sitting at a computer all the time so we could more easily 
screen share and debug and demonstrate across the instructor and student 
machines.” 

“There are some elements of being online that work really well for this 
class. …The course is …flipped, so each professor prepares…videos for 
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the students to watch in advance, and they also prepare a set of in-class 
exercises. During class, we split the students into breakout groups of 4-5 
students each, and they work on the exercises. The professors and TA 
circulate through the rooms answering questions. At the end of the class 
period, we reconvene to discuss interesting problems or issues that arose 
while the students worked.” 

Even with a return to in-person instruction, some are retaining approaches that 

were successful during the online period. These adjustments include non-traditional 

modalities for synchronous/asynchronous lecture and work sessions and increasing the 

use of tools and platforms such as Zoom, Slack, and Jupyter notebooks. This reflects the 

recommendations made by Rapanta et al. (2021) to retain effective aspects of online 

learning when blending with in-person modalities so that digital technologies support 

rather than hinder active learning.  

3.4.1.3 Content, Technology, and Topics 

All participants reported creating custom materials for their course and/or 

adapting content from other sources. A majority (13) created most of the instructional 

materials for their course. Only a handful (4) used any textbook: one hydroinformatics 

text, one modeling text, one statistics text, and one converted an existing coding book to 

water resources examples. A reported challenge is the rapidly evolving nature of the field 

in which the technology and applications change faster than published textbooks can 

account for. Several instructors (4) borrowed, exchanged, or modified material from each 

other. 

“I have created all of my own course materials. I do not use a text. Most 
materials were drawn directly from my own research and project 
experience or that of my close colleagues.” 

“We have built up the course material from scratch…we were not aware 
of a…textbook that would teach the students at the level that we wanted 
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and with the types of R programming that we wanted while illustrating 
with the water-related data that we wanted.” 

Regarding technologies emphasized, almost all instructors teach coding in Python 

(10) or R (6). In addition, instructors cover structured query language (SQL) (4), ArcGIS 

(3), Arduino (3), and web technologies (i.e., PHP, JavaScript, HTML, CSS) (3). For 

several cases, the course evolved from using Matlab to R to Python so that students have 

experience in a non-proprietary coding language that they can use in subsequent settings 

regardless of affiliation.  

“I had a student who was just an outstanding computationalist. …got a 
great job…came back and she said…I really loved your class and I wish I 
still had…the ability to do those kinds of analyses, but our company won't 
pay for the MATLAB license…it was just heartbreaking because…think 
about what your company is missing out on by you not being able to do 
that…I [determined I] really…need to move this to Python or something 
that they're going to continue to have access to, regardless of where they 
work in the future.” 

Although hydroinformatics is centered on tools, rather than emphasizing specific 

technologies, participants emphasized teaching students how to learn new informatics 

tools, a finding that echoes the emphasis of Burian et al. (2013). Several instructors noted 

that hydroinformatics technologies continue to advance, which makes it hard to settle on 

a set of tools to use in teaching a course and highlights the need to teach students how to 

recognize which tools to use in different scenarios.  

“Students might never use those specific tools again, but have skills to 
learn new tools.” 

“I do not expect that students leaving my class will be experts in any of 
these skills. However, they should have explored each of them and 
developed a level of proficiency that they know which of them will be the 
most useful in their research and future careers and which may be the 
most important for them to invest further time and effort into becoming 
more proficient.” 
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“I think we have reached a point where there are relatively good 
cyberinfrastructure components out there in the hydroinformatics domain 
and now one of the bigger problems is composability - e.g., how can 
students and researchers learn all of the available tools and then decide 
which tools to put together in composing a research, data analysis, data 
science, modeling, etc. workflow.” 

Other instructors emphasize data and project management skills, which are 

agnostic to specific technologies or tools. 

“My expectations for the informatics skills…are…more about…habits of 
mind and computational practices around…reproducibility 
and…sustainable code…making sure that their code is under version 
control, making sure that they're using things like Jupyter notebooks to 
provide…traceable and reproducible demonstrations of their workflows, 
more so than any kind of specific technique that they're using.” 

An important skill repeated by participants was appropriate troubleshooting, 

including understanding documentation and finding help through forums and other 

resources.  

“We…encourage students to use the internet to help them work through 
problems and troubleshoot coding errors (e.g., Google, StackOverflow).” 

Each instructor and each course have specific emphases. While there is variety in 

what is taught, the overlap of common subjects illustrates key topics and themes that 

currently comprise hydroinformatics instruction (Figure 3.1). Most instructors (13) focus 

on scripting and coding basics (in Python, R, or Matlab) with emphases on data 

formatting, manipulation, and wrangling (12) and data visualization and plotting (11). 

Data science (10), basic statistics (7), and machine learning topics (7) were commonly 

mentioned. About half of participants covered geospatial topics such as mapping (7) and 

spatial analysis (10), which some instructors view as essential while others exclude these 

topics as they are covered by other courses. Several participants (6) include instruction on 
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workflows, reproducibility, and best practices for coding. Other topics mentioned by 

multiple instructors included databases, data models, and SQL; dataloggers and sensors; 

modeling; the data life cycle and metadata; Git; and web services and web mapping tools. 

Because of the open-ended nature of the questions, these numbers should be 

interpreted generally – e.g., more instructors may include content on metadata but did not 

explicitly mention it. Similarly, “modeling” is a broad term with various meanings and 

implementations. Despite these limitations, we can identify a few important takeaways. 

First, hydroinformatics is broadening its focus from modeling with custom tools and 

graphical user interfaces (GUIs) (as described in many of the papers we reviewed) to 

more strongly emphasize data management, visualization, and analysis using open-source 

scripting tools. These capabilities provide a broader path for addressing water-related 

challenges and questions. 

“[The] basics of how to organize, use, and process data has not changed, 
but the technology to do that keeps changing. For example, we no longer 
use interface or GUI… The term workflow was not used earlier but is now 
used frequently. There is more use of internet-based tools and publicly 
available/open-source tools.” 

“Things are becoming more standard; the tools keep getting better. We 
are now able to use mostly open-source mainstream languages and tools 
for our specialized environmental informatics work; 20 years ago we 
needed to build and use clunky, custom-purpose tools. This is much better 
now. It also means, however, that there is less need for ‘hydroinformatics’ 
specific tools and methods.” 

Second, a primary objective for many of the instructors was to ensure that 

students are comfortable working in one scripting language and understanding the basic 

concepts of functions, conditional statements, iteration, logical operation, data 

management, querying, and visualization. Any modeling being taught is within the 

context of open-source scripting environments. We observed that data science, statistics, 
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and machine learning topics are generally being taught in the water data science courses 

while databases, sensors, and spatial analyses are being taught in strictly 

hydroinformatics classes. However, the crossover between these topics is growing, and 

the boundaries between hydroinformatics and water data science are fuzzy.  

Third, several instructors emphasize communicating scientific data and results, 

and others focus on enabling students to translate the skills gained in the course to resume 

entries or digital code portfolio.  

“I'm big on science communication…that was the first time that they had 
ever really had someone be pedantic enough to talk about presentation of 
data, quality of graphs, quality of the writing.” 

“I try to work with them to put it on their resume in a way they can 
explain it. …they're getting some really cool jobs…they wouldn't have 
gotten, as a result…So it basically opens up career trajectories that are 
not just typical civil and environmental consulting.” 

“At the end of the class I'm hoping that they have…a GitHub repository 
that has…Jupyter notebooks that are their problem sets that they feel 
comfortable sharing on their LinkedIn profile or their CV that [is] a small 
e-portfolio of a demonstration of things [they] can do computationally.” 

3.4.1.4 Challenges And Future Directions 

There was little consensus in identified challenges and future directions (Figure 

3.2), which reflects our finding that instructors are developing their own content based on 

their own definition of the field, drawing from their own research and experience. Many 

participants identified machine learning, deep learning, and/or artificial intelligence as 

increasingly relevant, reflecting the growing use of these techniques in water science 

(McGovern and Allen, 2021; Nearing et al., 2020; Shen, 2018). Beyond covering those 

topics broadly, some instructors offered specific ideas, including better understanding 

why some techniques do or do not work for some datasets, addressing correlation in data, 
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and using data-driven modeling with physics-informed machine learning. Sensors and 

hardware-related subjects were identified as important by many participants, including 

managing high frequency data, low power and ubiquitous sensing, and smart sensors with 

controls and feedback for real-time decision making. Participants also mentioned 

electronics, drones, and satellite data. Data management aspects included data quality, 

reproducible analyses, big data, database schemas and SQL, and collaborative version 

control (e.g., GitHub).  

“So there’s always going to be an importance in a baseline proficiency in 
working with tabular and spatial data within water resources data 
science. …as data volumes increase, then you need…database skills, so 
creating schemas, interacting with databases, whether that’s Postgres on 
a cloud or [SQLite] on your local computer. …something [that will] hold 
really big volumes of data, and then interact with it in a structured query 
language.” 

One participant noted that web applications are overtaking desktop applications, 

further evidenced by several participants identifying cloud computing and technologies as 

an area of growing importance. For geospatial topics, emerging applications include open 

technology and platforms (e.g., Google Earth Engine) and open remote sensing products. 

Although visualization is covered in most of the courses, several participants noted that 

creative, interactive visualization tools and dashboards are increasingly important.  

The range of responses regarding topics of growing importance demonstrate that 

these subjects are broad and varied, and that the tools, technologies, and topics continue 

to evolve, compelling instructors and courses to be agile. The challenge of defining and 

teaching a moving target was reiterated by several participants. Despite the long list of 

possible topics to cover in a course, one participant suggested that simplifying to cover 

fewer tools and models is preferable. Given the inflexibility of most engineering and 
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science degree curricula and class structures, it is unlikely, outside of specifically focused 

degree programs, that additional hydroinformatics and water data science classes will 

proliferate in most university settings. However, it is feasible, and arguably preferable, 

that hydroinformatics and data science topics be better incorporated into other existing 

courses. 

“Students have told me previous versions of this course was foundational 
for their PhD/MS and that it was ‘the most useful course I have ever 
taken’. They appreciated…the hidden curriculum (stats/R/programming) 
was brought to the forefront in my classes.”  

“Students get very little, if any, exposure to hydroinformatics with their 
undergraduate degrees. I am in a Civil and Environmental Engineering 
department, and our undergraduate curriculum is so tight that students 
have very few options for tailoring their undergraduate degrees. Thus, 
many…show up in graduate school lacking the preparation for making 
advances in hydroinformatics.” 

A major gap reported by participants is students’ lack of baseline programming 

experience. Most of the courses expect some level of domain knowledge but do not 

require programming skill. However, getting students up to speed consumes precious 

time, and instructors would prefer programming/scripting at earlier levels (i.e., 

undergraduate). Participants reported difficulty in approaching advanced topics when 

students are learning to program for the first time, similar to Lane et al. (2021). Although 

computational skills are critical to water science and hydrology fields (Merwade and 

Ruddell, 2012), students are often expected to figure them out without explicit instruction 

(i.e., the “hidden curriculum”).  

“Mainly I think hydroinformatics concepts could be introduced earlier or 
at all in undergraduate education. These things are so critical to the field 
that I think a solely analog hydrology course is a disservice to students.” 

“If students don’t come prepared with coding competency and conceptual 
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fluency in computer science, they struggle to learn the applications to 
environmental fields.” 

3.4.1.5 Shared Resources 

Participants unanimously indicated moderate to high interest in sharing and 

exchanging teaching materials, and several reported already depositing educational 

content online. However, the materials are spread out in various formats over multiple 

platforms, and we were unable to locate some of the resources reported to be available. 

There is no single centralized platform, and implementations range from files uploaded to 

a personal website to a fully interactive online course. Reported interest and rate of 

uptake is uneven. One participant prepared and posted course content in a public 

repository with no knowledge of reuse while another shared content in an interactive 

website and received feedback from multiple external users. Even so, the level of reuse is 

modest relative to what some participants consider necessary for high impact. 

“You have to make it easy and provide a venue where a significant 
number of students or other faculty will pick up on content.” 

Despite universal interest in sharing materials, some participants expressed 

hesitancy to rely on others’ content, to personalize and adapt it to fit their class, and to 

invest the time to gain the expertise to present others’ materials. 

“I don't know that…I would have grabbed someone else's material 
and…taught…a course. There's a lot of value I found as an instructor in 
having to prepare all the material from scratch myself as a way of making 
sure I actually know what I'm talking about. …it is very nice to have other 
resources [as a] stencil of what a class might look like, and what good 
topics would be…I would probably still have to spend the time to 
develop…a copy of that myself so that I actually knew what I was doing.” 

A barrier to exchanging materials is the difficulty of knowing what modules or 

case studies exist, so an ideal system would facilitate discovery. Other desirable qualities 



 93 

of a platform, as identified by participants, include complete descriptions/metadata, a 

navigable interface, straightforward functionality for adding content, and separate 

teacher/student access. 

“Some website where it is easy to search and find modules. It should be 
easy to navigate and easy to add new contributions. It would be cool if you 
could see how other faculty members have put together modules to create 
their own course.” 

For shared resources, instructors are interested in portable programming 

examples, particularly: 1) Jupyter notebooks consisting of code and supporting theory 

and instructions in markdown, and 2) GitHub repositories that can be cloned and adapted. 

Other suggestions included slide decks, videos, handouts, example assignments, 

HydroShare resources, and ArcGIS online content. Participants wanted modular, self-

contained exercises that can be modified and swapped into classes.  

“Self-contained coding exercises that maybe on the first iteration can 
address a single problem, but then the instructor themselves can develop 
the sequence of problems that are the deeper dives after that. Something 
that can be easily plug and played into an existing curriculum or into an 
existing lecture, and then…would encourage ownership of the content.” 

Similar to topics of increasing importance, topics of interest for shared resources 

varied (e.g., databases, interactive visualization, data-driven hydrologic models, cloud 

computing, etc.). Regardless of topic, domain specific datasets were consistently 

mentioned as a key need for shared resources. 

“The biggest [need] is domain specific data that works for the kind of 
examples that we need to show…datasets that are large, complex, have 
hidden components in them that we're going to find, can be used to make a 
case for or against something…that can serve as good examples. And it's 
a slippery slope because either the dataset is too simple and it's silly. It's 
like 10 data points and we're drawing a line through it. Or 
it's…somebody's PhD dissertation and good luck getting that like into 
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some sort of format where an undergrad can actually use it in the class.”  

“Datasets that are ready to be used for illustration in class. These must 
have associated metadata that describes why the data was collected, what 
the researchers hoped to achieve with it, what each of the variables is, the 
sampling frequency, and what the data can be used to illustrate (i.e., 
clustering, visualization, regression, etc.).” 

Several participants recognized that licenses with clear conditions for reuse and 

citation would help instructors understand limitations and expectations for repurposing 

content. 

“…one of the best ways to learn is to look through other people's well-
documented code, so open-sourcing the code and data used for scientific 
research, and using FAIR data standards to improve documentation and 
usability, is very important.” 

“I think a GitHub with data with notebooks…that has a clear Creative 
Commons license for both the data and the notebook. And so I know I can 
use it, change it without getting a nasty gram…from someone's legal 
department seven years later.”  

Regarding barriers for exchanging resources, the most common response was that 

credit could motivate instructors to publish instructional material. This may take the form 

of counting toward tenure and promotion decisions, citations to document the 

contribution, or monetary payment – e.g., a grant related to platform or repository 

development. 

“Support from universities for "teaching" efforts beyond the…classroom, 
and consideration of these efforts and outcomes (e.g., 
pageviews/downloads) for hiring & tenure decisions.” 

“Money - there's a lot I think we'd all do for a small amount of money. If 
you pay professors for their time, they will engage.” 

Normalizing sharing teaching materials and developing a community around the 

exchange was another commonly repeated suggestion. Reciprocity was mentioned as 

crucial so that the exchange is mutually beneficial rather than a one-way offering.  
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“…if there are ways to, outside of the traditional incentive structure of 
writing research papers, to incentivize…technologically savvy 
researchers, postdocs, faculty to contribute lessons like this, then you'll 
see more participation… it has to be made important and valued by…the 
community somewhere.” 

“[I would] go through the trouble of sharing…my resources if I knew that 
others were sharing theirs and that there could be an exchange from 
which I could benefit. All of my course materials have been online and 
openly available for a long time. Others have asked if they could use them, 
and I have always said yes. I've never had anyone offer to let me use 
modules they have developed, so the ‘exchange’ part of this would be 
important for me.” 

Collaboration via feedback and edits on shared content was suggested, and 

multiple participants mentioned that workshops would be helpful to exchange ideas and 

build rapport. 

“This course material is available to only 25 students per year. And 
seeing that it is used by many more…by different instructors and different 
institutes would be a nice…outcome of all these efforts. We really put a lot 
of effort for these materials to be created and used and refined throughout 
the years. …potentially giving feedback to these material and…seeing 
some updated versions of it by other instructors...a community level 
refinement of the course materials, and creating new versions and better, 
maybe more up to date versions of these slides will be…useful.” 

“It would…motivate me if I knew that my contribution would be widely 
viewed and/or utilized. A workshop that drew educators/contributors 
together to share could be a helpful place to start.” 

3.4.2 Building Educational Modules for the Future 

Using information gathered on online educational platforms and examples of 

hydroinformatics educational content from study participants and our own search, we 

reviewed existing online platforms considering participant-identified attributes and 

selected HydroLearn for module implementation, covered in Section 3.4.2.1. Section 

3.4.2.2 describes the modules developed by this work and how they address identified 

gaps. Module implementation is related in Section 3.4.2.3, including the mapping of 
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module components to HydroLearn concepts and the benefits and challenges of 

implementing modules in online platforms such as HydroLearn. 

3.4.2.1 Online Educational Platforms and Materials 

There was no consensus among instructors on the preferred approach for sharing 

hydroinformatics educational material (Table 3.3). Some of these platforms are growing 

in popularity in the hydrologic science community but have not gained traction with the 

hydroinformatics instructors that we surveyed. The options include systems specifically 

designed for sharing and publishing educational content (HydroLearn, MyGeoHub, 

eddie, ECSTATIC), more generic repositories for data or code (HydroShare, GitHub), 

and customizable interfaces (personal websites, Canvas, or online courses). We reviewed 

these options with respect to characteristics extracted from the literature and our survey 

results (Table 3.4). Desirable characteristics include flexibility for hosting various types 

of materials, compatibility with open data practices, formal pedagogical structure, 

structured metadata, review and curation of content, and separate faculty and student 

access (Lane et al., 2021; Makropoulos, 2019; Merwade and Ruddell, 2012; Popescu et 

al., 2012; Wagener et al., 2012).  

The major tradeoffs between the identified platforms are the level of control for 

creators versus structure to support education-specific content. Whereas personal 

websites and custom online courses allow for a great deal of specialization, regular 

updating, and customizable interfaces, they do not include the searchability, structured 

metadata, curation, and educational support offered by several of the education focused 

platforms. A particularly attractive feature for hydroinformatics and water data science 

instruction is the ability to launch and run code notebooks. Two of the platforms that we 
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examined have Jupyter servers and can launch notebooks: MyGeoHub and HydroShare. 

Potential challenges with these platforms include scalability for use with classes of 

students, inclusion of data files that accompany code, and installing desired software 

packages. Although existing systems currently do not support all desired functionality, 

we anticipate those limitations will be overcome with future development.  

In deciding which platform to use for the educational modules of this work, we 

considered the factors in Table 3.4 with a focus on reuse and collaboration. We deposited 

materials in HydroLearn as it facilitates export and adaptation of courses and includes 

metadata, citation, curation, and pedagogical structure. HydroLearn is a repository for 

instructional material related to hydrology and water resources. Developed on the edX 

learning management system, HydroLearn is designed to support collaboration around 

instructional content, reuse and adaptation of materials, and flexibility for implementation 

in organized courses or by self-paced learners. Although it is relatively new, several cases 

observed enhanced learning of concepts and technical skills by students using 

HydroLearn and its precursors (Habib et al., 2019; Lane et al., 2021; Merck et al., 2021). 

Although it does not natively support launching and running notebooks, Lane et al. 

(2021) demonstrated linking notebooks via HydroShare.  

3.4.2.2 Online Module Development 

Based on the survey results, online educational materials are being used and 

modules have potential to address challenges in hydroinformatics and water data science 

education. However, there is substantial variety in topics and methods of instruction. 

While a unified curriculum and approach to the subject matter may be appealing, it does 

not match the reality of a rapidly changing field with dynamic courses and instructors. 
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Instead, we sought to develop and publish example educational modules that focus on 

addressing gaps identified by participants and to illustrate an approach for additional 

online content creation and sharing.  

The online modules were designed to address key challenges/gaps in 

hydroinformatics and water data science education reported by instructors. These gaps 

relate to: 1) content, 2) platform, and 3) organization. Regarding content, there is a lack 

of data-driven and problem-based learning that uses datasets from the water domain. 

Instructors requested notebooks for online coding examples, and there is a need for 

baseline levels of instruction in coding and scripting. To address the content gap, online 

educational content should include interactive code with water-related data and problems. 

Currently, instructors use various platforms for hosting educational content, and 

participants repeated the need for a system to facilitate upload, discovery, and community 

involvement. The platform gap may be addressed by publishing and publicizing resources 

in a system that meets many of the criteria in Table 3.4. We add that active and ongoing 

support are essential to ensure that the resources are not siloed or lost. Finally, the 

organization gap can be addressed by ensuring that the content is designed and structured 

to be modular and adaptable to different instructors, courses, and modes of delivery.  

For our online modules, we worked to follow these recommendations to address 

the needs of hydroinformatics and water data science education. The modules address 

four topics: (1) Programmatically accessing water data via web services, (2) The sensor 

data life cycle and sensor data quality control, (3) Relational databases and SQL 

querying, and (4) Machine learning for classification (Table 3.5). These topics were 

selected based on survey and interview results indicating the need for reproducible code 
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and the growing importance of high frequency sensor data, data quality control, 

databases, big data, web technologies, and machine learning. In conceptualizing these 

modules, we drew from our own expertise and datasets generated or used as part of our 

research efforts. The datasets are available for reuse, or instructors could apply the 

examples to data from other locations.  

3.4.2.3 Online Module Implementation  

HydroLearn facilitates a “Backward Design” approach wherein desired outcomes 

are first defined, then authentic tasks are crafted to meet outcomes, then instructional 

content is designed to present necessary information (Maggioni et al., 2020). Although in 

our case, development did not proceed in this order, the essential elements in our module 

design methodology correspond to backward design concepts and specific HydroLearn 

components: 1) learning objectives map to desired outcomes, 2) narrative maps to 

instructional content, 3) example code maps to both instructional content and authentic 

tasks (i.e., learning activities in HydroLearn), and 4) technical assignment maps to 

authentic tasks (learning activities). Implementation of each of the components in 

HydroLearn is reported in the following subsections. 

3.4.2.3.1 Structure and Organization 

Each HydroLearn course contains “modules” or “sections”, which is the level to 

which we matched our modules. Although our modules stand alone, we included them 

under a single course umbrella (Hydroinformatics – USU 6110) to fit the HydroLearn 

schema. Modules consist of “subsections” comprised of “units”. The subsections are only 

titles, whereas content is contained as components (e.g., text, discussions, problems, 

HTML code, videos) within units. In HydroLearn, users have control over using either 
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many components within fewer units, which makes interaction with content more vertical 

(i.e., scrolling on a single page), or using many units, which makes interaction with 

content more horizontal (i.e., navigating from unit to unit). While this provides flexibility 

in presenting content, we found that navigation between subsections and the different 

levels of each module was not always clear. 

Figure 3.3 illustrates the organization of a module implemented in HydroLearn. 

While this is an intuitive structure, it imposes hierarchical levels that may be overly strict 

for some users. For example, we found “subsection” to be an unnecessary level for some 

modules and would have preferred to directly use “units” under the module level – or to 

have had control over the hierarchical levels. Granularity and organization are persistent 

questions for many repositories, regardless of content type (Horsburgh et al., 2016), and 

developers of many data repositories determined to leave organization and structure up to 

the user (e.g., FigShare, HydroShare, Zenodo). Although there are benefits to imposed 

structure, there is no single prescriptive pattern, and users may prefer different 

organizational levels. We identified degree of control as the main distinction between 

platforms, and giving users more control over organization and structure may improve 

the appeal and uptake of HydroLearn (and similar platforms). Despite these limitations, 

we were able to fit our module content to the HydroLearn structure. 

3.4.2.3.2 Learning Objectives 

Learning objectives are the desired outcomes of instruction and are ideally action-

oriented, specific, and measurable. As a major part of its pedagogical emphasis (Lane et 

al., 2021), HydroLearn facilitates the creation of learning objectives, which can be 

entered manually or developed using a wizard according to an established structure 
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(Maggioni et al., 2020). Although our learning objectives were defined prior to using 

HydroLearn, the wizard helped improve their specificity and robustness. HydroLearn 

functionality can directly connect module learning objectives to other module 

components (e.g., rubrics). 

3.4.2.3.3 Narrative 

For each module, the narrative was created in slides with text and images, then 

content was transferred to HydroLearn. Because study participants reported commonly 

using slides for lectures, the modules include linked slide deck files. Overall, we were 

successful in translating our content to HydroLearn components. Despite it being 

somewhat tedious to adapt text to HTML and to import and export images from slides to 

HydroLearn, we found it straightforward to edit content, to duplicate and modify 

components, to reorder units, and to publish changes. Building the course from the 

foundation of a HydroLearn template offered helpful organization and instructions. 

3.4.2.3.4 Example Code 

Each module contains 3-6 example scripts, each of which illustrates a task or 

piece of functionality (Table 3.5). There may be redundancy as examples build on each 

other, and instructors may choose to use fewer examples than provided. Code examples 

are shared in Jupyter notebooks as part of HydroShare resources that can be opened and 

run via the CUAHSI JupyterHub Server. We opted to use the CUAHSI JupyterHub 

because: 1) common Python packages are pre-installed, and additional packages can be 

installed by request, both of which are dependencies in our examples, and 2) data files 

can be called by code, which is essential for our modules. If data files are necessary to 

examples, they accompany the code notebooks in the HydroShare resources.  
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HydroShare resources containing notebooks and data can be linked and opened in 

a separate browser window or embedded as iFrames in HydroLearn units (Lane et al., 

2021). We used links that directly launch the CUAHSI JupyterHub (Figure 3.3). From the 

link in HydroLearn, a user is prompted to sign into HydroShare and choose a coding 

environment and then is taken to their server directory where the notebooks are ready to 

be launched. This simplifies deployment of example code as learners do not have to 

install software or match a particular coding environment to view, execute, or manipulate 

code. 

3.4.2.3.5 Technical Assignment 

The technical assignments were conceptualized to meet recommendations in 

educational literature for open-ended, ill-defined, problem-based learning. For each 

assignment, students are expected to synthesize the narrative and code examples and 

apply the data and analysis tools to real-world applications. Each assignment requires 

coding and a written summary report to communicate and defend the results and 

conclusions. Within each module in HydroLearn, the assignment is a unit with 

components that specify the assigned tasks and expected deliverable. Assignments are 

accompanied by a customized rubric that sets expectations for students and facilitates 

objective grading for instructors. We adapted rubrics developed by a team of 

hydroinformatics instructors to each assignment (Burian et al., 2013). In another 

approach to assessment, HydroLearn offers rubric templates that connect the degree of 

student performance related to each learning objective (Lane et al., 2021). 

3.4.2.3.6 Platform Challenges and Opportunities 

Our experience with HydroLearn shows that it contains functionality that 



 103 

addresses each of the needs for online sharing and content organization that we identified 

in surveys and interviews with study participants. We also experienced challenges that 

present opportunities for continued advancement of educational platforms. We 

acknowledge that others who use HydroLearn may have varied experiences, and while it 

is beyond the scope of this effort, there is opportunity to gain further insight by soliciting 

feedback from users of HydroLearn and/or other platforms. In this section, we describe 

our experience using HydroLearn with respect to identified criteria, and each of the 

following paragraphs corresponds to a category in Table 3.4. While these outcomes may 

be specific to HydroLearn, we anticipate that other platforms face similar challenges and 

may require further development to support online educational resources.  

Discoverability refers to locating content using keyword searches from Internet 

browsers and search functionality within a platform. After creating a course on 

HydroLearn, it appeared in the results of basic Internet searches. Within HydroLearn, we 

were able to search for the course and within the course. The platform could enhance 

discoverability by including keywords as part of the metadata for each course or module 

and filtering courses on keywords.   

Metadata are displayed on the course landing page. The course template suggests 

metadata elements, which we used (e.g., target audience, tools needed, suggested 

citation), but elements are optional. HydroLearn could better standardize metadata by 

requiring certain elements and by automatically generating elements where possible. 

Creating metadata requires editing HTML code, and HydroLearn could improve usability 

through webforms or markdown. 

Navigability of HydroLearn courses is dictated by the hierarchical structure 
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described in Section 3.4.2.3.1. Even with a logical organization for content, moving 

between sections and knowing how to proceed through the module sequentially can be 

challenging for beginners. This may be improved by adding text to the icons in the 

navigation bar and by displaying a course outline and navigation in a persistent sidebar. 

In Table 3.4, content refers to the types of files that are supported by the platform. 

We were able to use HydroLearn to share text, images, interactive websites, and to link 

files for download. Videos, equations, code snippets, and other HTML components are 

also supported. Supporting either a JupyterHub for launching notebooks or more directly 

integrating with the CUAHSI JupyterHub would strengthen the platform’s ability to 

support code files. 

Separate access for students and instructors is supported by HydroLearn. Course 

creators can elect to restrict access of certain content to course staff. Other instructors can 

access restricted content by exporting the course or by contacting course creators, though 

that may be unreliable. Although we used open-ended assignments, some require specific 

coding tasks. In these cases, we created scripts or notebooks as a solution key to the 

assignment, and we were able to use this functionality to restrict access without 

separating the solution from course materials. 

Licenses can be specified by creators at the course level. HydroLearn supports 

Creative Commons licenses (e.g., Attribution, Noncommercial, No Derivatives, Share 

Alike), and related icons and messaging are displayed on course subsection pages. 

Licensing could be made clearer if displayed prominently on the course landing page. 

Scalability refers to the ability for multiple users (e.g., classes of students) to use 

the materials or program. We have not yet tested HydroLearn in the context of multiple 
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simultaneous users, but we are not aware of any limitations. It is built on an established 

online learning platform (edX), which offers robustness. There may be scaling issues 

with many users running notebooks on the CUAHSI JupyterHub, for which Lane et al. 

(2021) observed student frustration related to losing server connection and authentication. 

Reusability of educational materials is an intent of HydroLearn, and modules are 

expected to be designed with consideration for uptake by other instructors. While the 

modules described here have not yet been reused, we found it straightforward to export 

and customize a HydroLearn course, and Lane et al. (2021) report that adaptation of a 

HydroLearn course by instructors at other institutions was straightforward. Reusability is 

facilitated by licenses and citations, and the course metadata template includes “Adapted 

From” to acknowledge source material. HydroLearn courses have been used for both 

online and in-person instruction and can be designed to be student-paced or with an 

imposed schedule making them compatible to the mix of modalities reported by study 

participants. 

Citations are a recommended (but optional) metadata element for HydroLearn 

courses. Creators can structure the citation as desired, and it is displayed on the course 

landing page. There is opportunity for the platform to standardize by automatically 

generating a citation for each course or module, as is done for data and code resources in 

HydroShare (Horsburgh et al., 2016). 

Curation of courses is not required in HydroLearn, and instructors may deposit 

and share content without review. However, most of the modules currently available on 

HydroLearn were developed through intensive summer hackathons including substantive 

instruction on pedagogical best practices and feedback from the HydroLearn team 
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(Maggioni et al., 2020; Gallagher et al in prep). As a result, much of the educational 

content shared on HydroLearn meets their criteria for high quality modules. However, 

there is no long-term system in place for module review and curation by the project team. 

As our modules were developed outside of the formal hackathons, we requested the 

feedback of a HydroLearn team member who was able to review and offer helpful 

suggestions. The approach of offering but not requiring curation balances increased 

overhead with fostering high quality content. Also, compensating fellows increases their 

motivation to deposit high quality material, as noted by study participants. 

Educational support refers to assistance with teaching pedagogy and tasks, and is 

provided by HydroLearn through multiple features. HydroLearn emphasizes learning 

objectives throughout course development and includes functionality for various problem 

types to assess student learning (e.g., multiple choice questions, open responses, 

advanced mathematical expressions). Following templates and recommendations, 

capitalizing on features, and taking advantage of review by HydroLearn staff offers an 

approach that will result in a robust pedagogy. Although we did not tap into all these 

capabilities in developing modules, this is major benefit of HydroLearn. 

Collaboration is facilitated in HydroLearn through the inclusion of multiple 

instructors who share editing abilities and co-authorship on a course. HydroLearn also 

has the ability give feedback through comments. It was uncomplicated to add instructors 

to our course and for all authors to edit materials; however, we did not experiment with 

feedback.    
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3.4.3 Outlook for the Future of Hydroinformatics and Water Data Science 

Instruction 

In light of the transition to online courses precipitated by the COVID-19 

pandemic as well as the growing prevalence of material online, instructors may need to 

consider how to best bring value to their course offerings. As expressed by one interview 

participant:  

“…the incentive, the value proposition of the classroom is fundamentally 
altered after COVID. …No matter how good somebody is at explaining 
something, there's always somebody better on the internet. …what really 
is the role of the instructor…and modern classroom? … Obviously in 
person, it's made easier by the fact that [students are] there. But then the 
question is, is it you or is it the fact that they can be around each other? 
…online [content] is growing and dismissing it [is naïve].” 

Several participants indicated that the merit of an organized course for students is 

interaction with an instructor curating content and facilitating learning. Despite the 

possibility of learning from purely online materials, a knowledgeable and engaged 

instructor still has much to offer. This echoes Rapanta et al. (2021) in identifying a 

teacher’s role to organize and curate the learning process and recommending that 

instructors increase technology expertise to adapt to changing educational environments. 

“…engagement, pre and post class discussions, office hours, a tailored 
curriculum to the class. …my class changes every semester based 
on…what I'm perceiving in lecture and what I'm hearing in office hours.” 

“We're in an era where it's not necessarily the content that's most 
valuable to the students, it's me facilitating their use of the content. And 
so, I think that the content should be shared as broadly as possible.” 

Access to educational material that is current, flexible, and reusable can help 

instructors adapt to the rapidly evolving field. The modules presented in this work are a 

first step and an invitation to the community to continue development and sharing of 
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content online. In this way, instructors can address the gaps we identified related to 

content, platform, and organization of community materials. As instructors consult the 

list of topics of growing importance in the field and consider which of their materials and 

datasets may be most useful as community resources, we envision that they will deposit 

modules that include relevant water-related datasets and accessible code examples with 

ideas for problem-based learning. 

This work illustrated that materials deposited in HydroLearn are modular and 

adaptable, and as HydroLearn advances and usage increases, it may address the platform 

gap related to limited community and siloed resources. This vision depends not only on 

sharing content, but also on uptake by other instructors implementing, reviewing, and 

engaging with shared material. As articulated by study participants, reciprocity, credit, 

and feedback will all motivate sharing and reuse of content, which will help advance 

instruction in hydroinformatics and water data science. Further implementation of online 

educational modules may help corroborate our experience in meeting identified criteria 

and may point to additional challenges or gaps. 

3.5 Conclusion 

We interviewed and surveyed instructors that teach hydroinformatics and water 

data science at collegiate and professional levels to assess the current state of practice 

regarding topics, teaching tools, shifts to online instruction related to COVID-19, and the 

potential for shared online resources. Results indicated a mix of online and in-person 

modalities. Although nearly all courses moved online because of COVID-19, there was a 

strong preference for in-person learning, and most were returning to in-person teaching. 

However, instructors are retaining some virtual aspects that facilitated instruction, 
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particularly related to live coding. Student feedback and interaction were lacking in 

purely online modalities, leading to the conclusion that even successful online resources 

and tools require deliberate interpersonal components.  

Instructors generally customized teaching materials to meet the demands of a 

rapidly developing field. Results show variety in topics currently taught and topics of 

growing importance, with consensus around emphasizing reproducible code development 

in open-source languages and competence regarding learning and selecting informatics 

tools. Live coding for online and in-person settings was facilitated by the growing use of 

online code notebooks. A key finding was a common need for technical skill 

development earlier in students’ college experience.  

We found high interest in shared online educational content, although a lack of 

recognition, reciprocity, community, and credit were deterrents to sharing. Although 

participants currently use multiple layers of miscellaneous educational platforms, there 

was an expressed need for common community resources. Participants reported gaps and 

challenges to hydroinformatics instruction related to content (water-related datasets, 

online notebooks, and data-driven problems), platform (community-based, facilitates 

discovery), and organization (modular, adaptable).  

The educational modules we developed attempt to address these challenges, 

center around subjects of growing importance in the field, and were developed and 

deposited in HydroLearn, a platform for water-related educational modules. We found 

that HydroLearn was successful in meeting participants’ criteria for a community content 

platform. HydroLearn has robust functionality for educational tools and pedagogy, and its 

scaffolding supports content sharing (i.e., metadata, citation, discoverability, 
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collaboration, reusability). The major drawbacks were related to an imposed hierarchical 

structure, and improvements could be made regarding minimum metadata requirements. 

These modules are a step toward developing a rich set of online resources and an active 

community of instructors to meet the advancements in hydroinformatics and water data 

science. 

In conclusion, shared online resources hold promise for overcoming challenges in 

hydroinformatics and water data science education. As instructors are already 

accustomed to tailoring content for their courses, adapting online modules with a water 

emphasis is accessible. Current and flexible resources would help instructors keep pace 

with the rapid development of technology and topics in the field and maintain the value 

of their course and teaching for students. 
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TABLES 

Table 3.1 Survey/interview questions 
Survey/Interview Questions 
The term "hydroinformatics" is used throughout. If your course or program uses a different title or term 

(e.g., "water data science"), consider that term instead.  
Course Details 
What is the name of the hydroinformatics-related course/program at your institution? 
Is this course/program taught at a graduate level? 
Are any hydroinformatics topics taught at an undergraduate level? 
How is "hydroinformatics" defined in the context of the course/program offered at your institution? 
What are the objectives for the hydroinformatics related course/courses/or programs offered at your 

institution? 
Course Expectations 
What prerequisite informatics skills are expected of students? 
Do most students exhibit the prerequisite informatics skills at the start of the course? 
What informatics skills (and level of skill) are students expected to attain in this course? 
What benefits have students derived from taking the course? This could be quantitative or anecdotal. 
Formats 
What are the sources of the teaching materials used for the course/program? 
What is the course/program format? (e.g., in-person, online, etc.) Please clarify if this changed due to 

COVID. 
What platforms or instructional tools are being used in course delivery? (e.g., Canvas, HydroLearn, 

MyGeoHub, HydroShare, etc.) Please clarify if this changed due to COVID.  
Did the COVID pandemic impact instruction related to hydroinformatics courses at your institution? If 

so, how? 
What platforms or instructional tools have proven effective for in person versus online instruction (if 

your course has been offered online)? 
If your courses have been offered online (due to covid or other reasons), what were the biggest 

challenges in delivering online instruction? 
Topics and Technologies 
What topics are emphasized in the hydroinformatics courses at your institution? (e.g., machine learning, 

databases and data models, numerical modeling) 
What informatics technologies are emphasized? (e.g., Python, R, MySQL, ArcGIS) 
What (if any) geospatial data and techniques are covered in the hydroinformatics course(s) at your 

institution? 
How have the topics and technologies changed over the time that the course(s) have been taught? 
What topics and technologies are growing in importance in hydroinformatics? 
What are the gaps in existing hydroinformatics instruction/education? 
Shared Resources 
What types of shared community resources for instruction would be useful? (e.g., online modules that 

could be incorporated into courses) 
In developing shared resources, what topics would be helpful in addressing gaps and challenges? 
What formats would be conducive to shared resources? 
What informatics technologies would be useful for shared resources? 
What is your level of interest in sharing and exchanging teaching resources and materials with the 

community? (Very Interested, Interested, Moderately Interested, Slightly Interested, Not Interested) 
What would motivate hydroinformatics instructors to participate in sharing/exchanging teaching 

resources? 
In your view, what resources would a useful shared educational module consist of? 
Wrap Up 
Do you know of any other instructors who would be a good fit for this survey/interview? Please provide 

a name, institution, and email address (if known). 
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Table 3.2 Courses taught by study participants. 
Course Titles Count Audience 
Hydroinformatics 5 Graduate (4), Undergraduate and Graduate (1) 
Informatics for Sustainable Systems 1 Graduate 
Physical Hydrology (with a Hydroinformatics Unit) 1 Undergraduate and Graduate 
Intro to Environmental Data Science 1 Graduate 
Water Resource Data Science Applications 1 Graduate 
Earth Data Science 1 Graduate 
Ecological and Environmental Data and Tools 1 Graduate 
Introduction to Data Science 2 Undergraduate and Professional 
R for Water Resources Data Science 1 Professional 
R for Water Resources Research 1 Undergraduate and Graduate 
Python for Environmental Research 1 Graduate 
Research Computing in Earth and Environmental Sciences 1 Graduate 
Modeling Earth and Environmental Systems 1 Graduate 
Computational Watershed Hydrology 1 Undergraduate and Graduate 
Data Analysis for Water Quality Management 1 Graduate 
Sensing and Data 1 Graduate 
	
	
	
	
Table 3.3 Educational platforms and instances of hydroinformatics or related 
implementations. 
Platform Description Examples 
HydroLearn 
https://www.hydrolearn.org/ 

Specifically designed for instructors to post 
and share educational modules for 
hydrology and water resources 

(Bandaragoda and Wen, 2020) 

MyGeoHub 
https://mygeohub.org/courses 
 

Hosts groups, datasets, tools, and 
educational content for geoscience research 
and education 

(Hamilton, 2021) 

environmental data-driven inquiry and 
exploration (eddie) 
https://serc.carleton.edu/eddie/index.html 

Repository for classroom modules and 
datasets for environmental subjects 

No hydroinformatics or water 
data science modules. Stream 
Discharge Module: (Bader et al., 
2015) 

Excellence in Systems Analysis 
Teaching and Innovative 
Communication (ECSTATIC) 
https://digitalcommons.usu.edu/ecstatic/ 

Repository for water resources systems 
analysis teaching and communication 
materials 

(Gorelick and Characklis, 2019) 

HydroShare 
https://www.hydroshare.org/ 

Repository for sharing water related data, 
models, and code. HydroShare is generally 
focused on data and code, but several 
instructors have also used it for educational 
materials.  

(Garousi‐Nejad and Lane, 2021; 
Ward et al., 2021) 

GitHub 
https://github.com/ 

Repository for software and code with 
version control 

(Flores, 2021) 

Personal or institutional website Users determine structure (Kerkez, 2019) 
Canvas (or similar) Institutional learning management system (Horsburgh, 2019) 
Customized books/websites Users determine structure. Some 

programming languages have packages to 
convert code to an online book or website. 

(Gannon, 2021; Peek and 
Pauloo, 2021) 

	 	



 

Table 3.4 Characteristics of educational platforms related to instructor-defined criteria. 
Platform Discovera-

bility 
Metadata Navigability Content Student/Instruc- 

tor Access 
Licenses Scalability Reusabil-

ity 
Citation Curation Education 

Support 
Collabor-
ation 

HydroLearn Searchable, 
indexed for 
Internet 
search 

User-defined 
metadata 

Hierarchical 
structure. 
Expandable 
navigation menu. 

Text, videos, links 
to files and 
webpages 

Supports separate 
access  

Creative 
commons 
licenses 

Not expected to 
be an issue 

Expected User-defined Available 
but 
optional 

Learning 
objectives, 
discussions, 
many 
problem 
types 

Commenting 
and creating 
derivatives 
supported 

MyGeoHub Searchable, 
keywords, 
indexed for 
Internet 
search 

Basic 
description 

Courses with 
modules 
containing files 

Any file type. 
Natively run 
Jupyter notebooks 

Not explicit 
support, but could 
be achieved with 
groups 

Creative 
commons 
licenses 

Some issues 
reported for 
multiple users 
running 
notebooks 

Unclear Citation 
generated but 
not obvious on 
landing page 

Approval 
required 
for 
uploading 
files 

Quizzes, 
exams, 
homework, 
discussions  

Participants 
may 
comment 

eddie  Searchable, 
filterable, 
indexed for 
Internet 
search 

Detailed 
outline 

Outline with links 
to files 

Any file type Supports separate 
access 

Unclear Unclear Expected Unclear Multistep 
review 
process 

Structured 
around 
teaching 
objective 

Unclear 

ECSTATIC Searchable, 
filterable by 
type 

Abstract and 
keywords 

All content in zip 
file 

Any file type  No Present on 
landing page 

No issues Expected Included Very light 
review 

None None 

HydroShare Searchable, 
filterable, 
indexed for 
Internet 
search 

Abstract and 
keywords 

 Any file type. 
Natively run 
Jupyter notebooks 
with data files. 

Could be achieved 
using different 
privacy levels 

Present on 
landing page 

Could occur if 
there are many 
users on the 
Jupyter Hub 
server 

Expected Included None None Commenting 
and groups 

GitHub Searchable, 
but difficult 

Minimal 
metadata 
required 

Creators can 
structure files as 
desired 

Any file type. 
Code and 
markdown 
rendered. 

Could be achieved 
using different 
privacy levels 

Available but 
not required 

No issues Expected Can be 
generated 

None None Facilitated 
by forking 
another 
repository 

Canvas (or 
similar) 

Only if user 
knows what 
to look for 

Creators can 
include as 
much as 
desired 

Predetermined 
structure with 
some 
customization 

Any file type Separate access 
for creator but not 
for resuse 

Possibly No issues Unclear Possibly None Quizzes, 
exams, 
homework, 
discussions 

Potential for 
collaboration 

Customized 
books or 
websites 

Only if user 
knows what 
to look for 

Creators can 
include as 
much as 
desired 

Creators can 
structure files as 
desired 

Any file type Separate access 
for creator but not 
for reuse 

Possibly No issues Unclear Possibly None None None 



 

Table 3.5 Educational modules developed and deployed as part of this work with 
descriptions of essential components and datasets. Modules are accessed at Jones, A.S. et 
al., (2022). 

Module Programmatic data 
access 

Sensor data quality 
control 

Databases and SQL Machine learning 
classification 

Topics 

• Open web technology 
• High frequency data 
• Visualization 
• Big data 

• High frequency data 
• Data quality 
• Big data 
• Machine learning 

• Databases and SQL 
• High frequency data 
• Big data 

• Machine learning 
• Smart sensors 
• High frequency data 

Narrative 

• The United States 
Geological Survey 
(USGS) National 
Water Information 
System (NWIS) 

• Web services for 
accessing data 

• Data life cycle for in 
situ aquatic sensor 
data  

• Sensors, hardware, 
and infrastructure 

• Sensor data quality 
assurance and quality 
control 

• Data models and 
database 
implementation 

• SQL queries (e.g., 
selecting, joining, and 
aggregating data) 

• Observations Data 
Model (ODM, 
Horsburgh et al., 
2008) 

• Common machine 
learning approaches, 
concepts, and 
algorithms  

• Python package 
scikit-learn Problem 
of labeling residential 
water end use event 
data 

Code 
Examples 

• Use the Python 
dataretrieval package 

• Import and plot data 
via USGS NWIS web 
service endpoints 

• Examine local 
hydrology using flow 
statistics 

• Import and plot a 
time series  

• Use the Python 
pyhydroqc package 

• Perform rules-based 
and model-based 
anomaly detection 

• Use SQL to select 
data, sort results, 
perform joins 
between tables, 
aggregate and group 
data 

• Explore data features 
• Apply basic machine 

learning model  
• Compare multiple 

algorithms 
• Hyperparameter 

tuning and 
optimization 

Assignment 

Retrieve data, 
calculate statistics, and 
generate plots to 
explain the impact and 
severity of drought 
conditions 

Apply package 
algorithms and 
determine 
performance metrics to 
consider using the 
software in an 
observatory quality 
control workflow 

Construct SQL queries 
to compare data to 
state water quality 
criteria and identify 
potential water 
temperature 
impairment 

Apply machine 
learning models to 
develop guidance for 
using smart meters to 
collect residential 
water use data 

Dataset 

Water data collected 
by national agency 
available via web. 
Similar data/methods 
may be available for 
data from other 
agencies. 

Flat files in containing 
high frequency Logan 
River aquatic data 
with raw data and 
technician labels. 
Posted on HydroShare. 

SQLite ODM database 
with high frequency 
water temperature data 
for several sites in the 
Logan River. Posted 
on HydroShare.  

Flat file of labeled 
residential water use 
event data. Posted on 
HydroShare. 



 

FIGURES

 

Figure 3.1 Count of mentions related to subjects taught by participants. 
 
 
 

 
Figure 3.2 Count of mentions related to subjects of growing importance sorted by 
thematic topics. 
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Figure 3.3 Module implementation in HydroLearn. The numbered steps indicate the order 
of workflow and the location of essential module elements: 1) the course landing page 
contains metadata and links to a course outline, 2) learning objectives in the module 
introduction, 3) the narrative consists of text, links, images, tables, and code snippets, 4) 
code examples are interactive notebooks in the CUAHSI JupyterHub linked from 
HydroLearn, and 5) the technical assignment and associated rubric are a separate module 
component. 
	  



 122 

CHAPTER 4 

HYDROLOGIC INFORMATION SYSTEMS: AN INTRODUCTORY OVERVIEW3 

Abstract 

Hydrologic Information Systems (HIS) integrate hardware and software to 

support collection, management, and sharing of hydrologic observations data. Successful 

HIS facilitate hydrologic monitoring, scientific investigation, watershed management, 

and communication of hydrologic conditions. Furthermore, HIS support the day-to-day 

data operations that are essential to organizations that monitor hydrologic systems. As an 

introductory overview of HIS, this paper reviews the history of HIS development and 

identifies and describes key components. Based on past HIS literature, patterns emerged 

for universal and generic HIS functionality and componentry. The main data pools are 

collection/acquisition, operational storage, and sharing/publication/dissemination with 

data flux occurring between pools. Persistent and contemporary challenges for HIS are 

identified, and examples of current and emerging HIS are described in the context of how 

they are addressing these challenges. Opportunities remain for coordinated community 

efforts to address outstanding barriers, advance HIS, and further enable hydrologic 

science.  

4.1 Introduction 

Hydrologic Information Systems (HIS) consist of the integrated hardware and 

software systems used to collect, store, manage, and disseminate water observations data 

and metadata to support monitoring, modeling, and management of water resources 

	
3	Co-authored	by	Amber	Spackman	Jones,	Jeffery	S.	Horsburgh	
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(Bandaragoda et al., 2006; Hooper et al., 2004; Maidment, 2005; Soh et al., 2006). As 

barriers to environmental monitoring have decreased (e.g., cost, communications, power, 

expertise), water observations data are being generated at greater volumes, at finer spatial 

and temporal resolutions, and over longer durations and greater spatial extents (Benson et 

al., 2010; Bieroza et al., 2023; Blaen et al., 2016; Dow et al., 2015; Horsburgh et al., 

2019; Laney et al., 2015; Pellerin et al., 2016; Porter et al., 2012; Turner et al., 2020). 

Supporting the full life cycle of these data requires cyberinfrastructure applications and 

tools deployed as hardware and software (Mason et al., 2014). Successful HIS enable 

scientific investigations and analysis as well as water resource management by providing 

reliable and accessible water data and information (Dow et al., 2015; McGuire et al., 

2016; Muste et al., 2013) and reducing the time and effort between data collection and 

analysis (Samourkasidis et al., 2019). HIS support data dissemination to end users, 

usually with visualization capabilities that aid in data exploration, interpretation, and 

communication. As water data are being collected by diverse groups with distinct needs – 

e.g., national, state, and local agencies; research groups; nonprofit organizations; and 

citizen groups – scientists and technicians engaged in water data collection need HIS to 

support their needs for collecting, managing, and sharing hydrologic data. HIS also serve 

data consumers who rely on monitoring data for assessment and operations. 

In this paper, we present a synthesis and overview of HIS specifically focused on 

cyberinfrastructure to support time series of observational data at fixed monitoring 

stations. We acknowledge that some cyberinfrastructure systems integrate heterogeneous 

data types including ecological data (Rüegg et al., 2014; Rundel et al., 2009), spatial data 

(Henzen et al., 2016; Ruddell et al., 2014; Yang et al., 2010), discrete measurements (Hsu 
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et al., 2017), mobile platforms (Coopersmith et al., 2007; Viqueira et al., 2020), and 

modeling processes and results (Hill et al., 2011; McGuire et al., 2016; Muste et al., 

2013). While systems supporting multiple types of earth-based observations may provide 

useful flexibility (Horsburgh et al., 2016), they often do so at the cost of significant 

complexity. In this overview, we chose to emphasize systems focused specifically on 

observational time series as an important data type with key functionality for many water 

monitoring systems (Soh et al., 2006). The objectives of this paper are to: 1) establish an 

introductory overview of HIS, defining universal, generic HIS functionality and 

componentry based on a review of existing literature, 2) describe implementations of HIS 

in current and emerging systems, and 3) identify gaps and deficiencies as opportunities 

for improving operational HIS. Section 4.2 describes the methods we used in tracing the 

evolution of HIS, and Section 4.3 presents the resulting history and review of HIS. 

Informed by this review, Section 4.4, identifies and explains the essential components 

and functions of HIS. Section 4.5 presents persistent challenges for HIS along with 

approaches that some current and developing HIS are using the address them. Finally, in 

Section 4.6, we offer an outlook for HIS going forward. 

4.2 Methods 

To identify important components and functionality of HIS, we performed a 

review of relevant literature. Initially, a few articles on HIS that were known to the 

authors were considered, and additional relevant articles were identified by reviewing 

reference lists and by tracking the citations of those key articles. Papers were also 

selected via Google Scholar and Scopus using relevant keywords: “hydrologic 

information systems”, “water data management”, and “hydroinformatics”. Papers were 
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considered germane and included in the review if observational time series were 

supported as a key data type. The literature search included conference proceedings but 

did not include presentation abstracts due to the lack of detailed information. However, 

we acknowledge that, given the operational nature of HIS, presentations and talks at 

conferences are emblematic of much HIS-related development work that may not have 

been published more formally because it was not viewed as publishable research. In 

general, when research reported in the scientific literature involves hydrologic data, the 

methods associated with collection, management, quality control, processing, and 

dissemination are often presented only cursorily (Jones et al., 2017; Lundquist et al., 

2015) because the focus is usually on new hydrologic or process understanding rather 

than systems used to collect and manage the data. These factors limit the available 

literature to describe operational HIS in detail.  

We also sought to gather information from currently operational implementations 

of HIS not formally described in the research literature. To identify these systems, we 

contacted representatives of water monitoring networks and included information on 

systems that the authors have worked on (e.g., the United States Geological Survey 

(USGS) National Water Information System (NWIS)). In all cases, we limited the search 

to systems that support fixed location time series, although the reported HIS may support 

multiple data types. HIS have been implemented internationally; however, we found 

more literature describing systems within the United States, and our experience is in the 

U.S., thus the discussion in this paper is mostly U.S.-focused. We acknowledge that the 

coverage of HIS by this paper is not comprehensive; however, the systems described and 

reported here cover major known networks and bracket existing functionality that we 
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believe to be sufficiently representative. 

4.3 Hydrologic Information Systems: History and Review 

Most published literature related to HIS either describes specific components of 

HIS or implementations of HIS for a specific workflow, use case, or data type. As a 

result, it is impractical to directly compare systems described by each paper. Instead, this 

section provides important background and history of HIS, and the following section 

presents key functional components of HIS based on a review and synthesis of the 

literature. Scopus identified 65 documents (articles, conference abstracts, etc.) with the 

keyword “hydrologic information systems” (Figure 4.1) dating back to 2004, which 

marked a major push to apply advances in information technology to the hydrology 

domain (Hooper et al., 2004). 

Prior to 2004, references to “hydrologic information systems” (n=10) were 

closely tied to spatial data management. HIS was a natural derivative of the established 

“geographic information systems” (GIS) (Lee et al., 2004), and the ArcHydro data model 

and related tools were developed to support hydrologic time series and analysis within 

GIS (Maidment, 2002). Limited early references to HIS for time series data include a 

relational database that separated time series data from site metadata and supported 

graphing and statistical tools (Gandolfi and Wethner, 1987) and a description of satellite 

data transmission for the USGS (Shope Jr., 1987). Initially released in the mid-1990s, 

USGS NWIS was an early HIS that integrated data from USGS stream gages, wells, and 

water quality sites and made it uniformly accessible to the public over the Internet 

(Blodgett et al., 2016a). While not well-represented in the literature because it was built 

as an operational system rather than a research effort, NWIS was foundational to HIS 
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development. Making so much data easily available to the public was a major milestone 

in water data management, and NWIS remains the world’s largest enterprise HIS 

(Blodgett et al., 2016a). NWIS illustrated that making data accessible facilitates 

advancement of hydrologic research and understanding, which has been exemplary to the 

development of HIS for other agencies and monitoring efforts around the world (Shukla 

et al., 2019). Based on our review, we conclude that the definition of “hydrologic 

information systems” as stated in the first paragraph of this paper has not changed 

significantly over time, although technological advancements have influenced the 

mechanisms and applications of HIS. 

The majority of the publications from 2004-2009 are related to development of an 

HIS by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. 

(CUAHSI), an effort funded by the U.S. National Science Foundation (Hooper et al., 

2004). CUAHSI set out to design and develop the first comprehensive HIS, which they 

defined as a database coupled with tools for data acquisition and tools for data analysis, 

visualization, and modeling (Maidment, 2008; Hooper et al., 2004). Along with 

university partners, CUAHSI designed and implemented a national scale HIS that 

initially deployed HIS tools for a set of “test bed” water monitoring networks 

(Coopersmith et al., 2007; Horsburgh et al., 2011). Following that initial deployment, 

numerous practitioners and new users were consulted to achieve broader buy-in from the 

hydrologic science community (Bandaragoda et al., 2006). Identified challenges included 

mediating across disparate data formats and organizations, creating consistent metadata, 

supporting data from various geographic areas, and documentation of data quality 

(Hooper et al., 2004; Bandaragoda et al., 2006). To address these challenges, CUAHSI 
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development focused on a community observations data model (ODM) (Horsburgh et al., 

2008, 2005), web services for data transfer (Goodall et al., 2008; Maidment et al., 2006), 

standardized terminology (Horsburgh et al., 2014; Piasecki and Beran, 2009), and tools 

for data access and visualization (Ames et al., 2012; Beran and Piasecki, 2009; 

Maidment, 2008).  

As the CUAHSI HIS matured, hydrologic monitoring networks implemented or 

adapted CUAHSI-developed components along with custom software applications to 

support data workflows, described by several publications from 2010-2015 (e.g., Conner 

et al., 2013; Horsburgh et al., 2011; Jones et al., 2015; Mason et al., 2014; Muste et al., 

2013). Distributed data sources registered their data with CUAHSI’s HIS Central, which 

was a metadata catalog and source for data discovery and access for the federated system 

(Ames et al., 2012). During this period, commercial products for hydrologic data 

management were developed concurrently with the academic and community approaches, 

including offerings from Aquatic Informatics and Kisters. Some commercial products 

offer a comprehensive HIS, while others focus on specific components or functions in an 

HIS (e.g., software from a sensor or datalogger manufacturer to support acquisition of 

data from their commercial devices) (ESIP EnviroSensing Cluster, 2014). In parallel to 

efforts in the hydrology community, collaborative and/or large-scale monitoring networks 

in ecology (e.g., the Long Term Ecological Research (LTER) Network and National 

Ecological Observing Network (NEON)) built operational systems that incorporated 

monitoring of water with sensors and similarly grappled with data management. Because 

sensor data are part of larger ecological datasets and data collection efforts that contain 

diverse classes of data, the metadata and data management requirements resulted in 
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approaches less specifically focused than other HIS development. However, similar to 

other operational cyberinfrastructure development and data management work, there are 

few detailed publications available to describe these activities. 

In more recent years (2016-2023), several HIS described in the literature were 

designed to support increasingly popular low cost sensing platforms using off-the-shelf 

microcontrollers as alternatives to traditional sensing and data logging technology 

(Celicourt et al., 2023; Horsburgh et al., 2019; Mao et al., 2019; Sadler et al., 2016). 

During this period, monitoring networks began using emerging protocols and standards 

for data transfer (Ventura et al., 2019), including technologies associated with the 

Internet of Things (IoT), which refers to devices or sensors connected to the cloud and to 

each other and supporting communication technology (Wong and Kerkez, 2016). Thus, 

advances in available technology have influenced the mechanisms used for sensing, 

logging, communicating, and managing the data after collection, including the 

development of specific standards for low-power, Internet connected sensing devices 

(e.g., the Open Geospatial Consortium’s SensorThings API specification (Open Geopatial 

Consoritum, 2021)). 

We postulate that the rise in published papers during the 2004-2014 period and 

the more recent decline indicates that many research challenges were addressed, that 

software and system developments moved from research to operations, and that there was 

a subsequent decline in HIS-related research literature. Another possible confounding 

factor is that with newer technologies and approaches (e.g., IoT), the terminology used to 

describe systems may have changed sufficiently that newer literature may not be 

recognized as describing “HIS”. Indeed, while the need for operational HIS has not 
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changed, the technology landscape has changed. Many of the systems described in this 

review were developed using technologies and/or standards that are becoming outdated, 

and none of them has emerged as a de facto standard that is widely used and maintained 

by broad communities of scientists collecting and managing time series of hydrologic 

observations. These drivers warrant a new push for research and development focused on 

modernizing HIS. Along with synthesizing key components of HIS (Section 4.4), this 

paper describes how some monitoring systems are currently implementing HIS and 

identifies opportunities for the next steps for HIS development and modernization 

(Section 4.5). 

4.4 Generalized HIS 

Based on reviewed studies of past HIS efforts, commonalities emerged in the 

functional components of HIS (Braud et al., 2022; Jones et al., 2015; Samourkasidis et 

al., 2019; Slawecki et al., 2017; Varadharajan et al., 2019; Wong and Kerkez, 2016), 

which we synthesize here as a generalized HIS and data workflow (Figure 4.2). We 

consider components to be either “data pools” in which data reside or “data fluxes” in 

which data are transferred. We identify the following as major data pools in HIS, and 

data flux between pools is mediated by data transformation and transmission steps: 

Collection and Acquisition: data are observed, stored on sensors and/or 

dataloggers, and input to operational storage systems via sensor-to-storage transfer. 

Operational Storage: in this component, which is typically centralized, data are 

stored along with metadata and accessed for operations such as management, curation, 

and processing - steps that may involve data transfer.  

Publication, Sharing, and Exchange: data are accessed by and output to end 
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users who create and store a copy for their use. Storage-to-sharing transfer is enabled by 

web user interfaces or web services for automated retrieval and may be facilitated by data 

registries and catalogs. 

These data pools are parallel to steps in the generic data life cycle (Rüegg et al., 

2014; Ventura et al., 2019) as well as the components of environmental data 

infrastructures identified in a review by Viqueira et al. (2020), which they described as 

data acquisition and integration, data and metadata storage, and data searching and 

browsing. Braud et al. (2022) also describe data transfer from sources to storage and then 

to users as information flux. Other time series HIS emphasize “shepherding” data from 

generation to publication (Mason et al., 2014), and different practitioners that we have 

spoken with refer to supporting hydrologic time series data from “gage to page” or from 

“stream to screen”. Adjacent and parallel to these data pools are steps for data 

management, curation, and processing, important HIS functions (ESIP EnviroSensing 

Cluster, 2014; Horsburgh et al., 2011; Jones et al., 2015; Shukla et al., 2019), which, 

along with the major pools, are described in a subsection below. 

For both data storage (pools) and data transmission (fluxes), software applications 

are generally based on a common information model that describes the data in the domain 

- in this case, time series of hydrologic observations at fixed monitoring locations. The 

information model can be physically implemented in various data models or data 

encodings depending on the functional requirements - i.e., to support storage, exchange, 

or cataloging. The following subsections describe each generalized HIS component 

including how past studies have applied the components, considerations for 

implementing an information model for fixed point time series observations, and ongoing 
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challenges and developments. 

4.4.1 Collection and Acquisition 

Hydrologic time series are observed at fixed locations using a variety of sensing 

technologies. Sensor observations are typically recorded and stored on dataloggers either 

onboard the sensor or on independent platforms. Datalogger platforms range from 

proprietary hardware systems (Horsburgh et al., 2011) to low cost, custom 

microcontrollers (Mao et al., 2019). Data are stored on dataloggers at spatially distributed 

sites and are transmitted to centralized systems at user-defined time intervals using 

automated telemetry (e.g., satellite, spread spectrum radios, cellular modems, etc.) or 

manually (Jones et al., 2017). Once data are transferred to a server, they are loaded into 

operational data stores automatically (Gries et al., 2016; Jones et al., 2015; Wong and 

Kerkez, 2016) or manually (Conner et al., 2013). Other HIS acquire time series data from 

external sources (e.g., public agencies) (McGuire et al., 2016) using web-scraping 

mechanisms such as source-specific templates or configurations that are processed to 

ingest the source data with associated metadata (Samourkasidis et al., 2019). 

In an HIS described by Horsburgh et al. (2011), sensors, dataloggers, and radios 

were used to collect, record, and transmit data from field sites to central servers where 

they were initially stored in comma-separated values (CSV) text files. Data were then 

automatically loaded from those files into relational databases using a Streaming Data 

Loader (SDL) software application. Developed for automating the loading of data into a 

relational database (Observations Data Model: ODM, Section 4.4.2), the SDL was 

automatically executed as a scheduled job on the server after a data manager mapped 

metadata for each data stream (i.e., data column in a CSV datalogger file). As freely 
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available, open source software, the SDL was implemented as the sensor-to-server 

component for multiple environmental monitoring networks (Jones et al., 2017, 2015; 

Muste et al., 2013). Similarly, Gries et al. (2016) used custom R scripts for insertion of 

data from the proprietary LoggerNet software into central data stores. In another 

approach, Ventura et al. (2019) triggered loading of new data into operational data stores 

by adding new data files to a strict file structure with metadata for observed properties at 

each site stored in associated XML configuration files. 

For the USGS NWIS, observations are recorded on various commercial 

dataloggers and transmitted via several different telemetry types. The majority of sites are 

equipped with satellite telemetry systems - either Geostationary Operational 

Environmental Satellite (GOES) government-operated weather satellites that transmit to 

local readout ground stations, or Iridium commercially operated satellites. A small 

percentage (~10 percent) of USGS’ approximately 12,000 telemetered sites use cellular 

or radio telemetry. The USGS NWIS uses a custom decoding application (known within 

USGS as DECAP) that integrates observations from all telemetry sources, applies 

mappings of metadata, and parses the data into the central data store. 

Advancements in off-the-shelf microcontrollers and low cost sensors prompted 

alternative methods for automating data acquisition. One approach used PHP scripts to 

retrieve observations from platforms (Arduino microcontrollers connected to cell phone 

modems) and parse data into a structured query language (SQL) query for insertion to a 

relational database (Sadler et al., 2016). In another implementation, monitoring data from 

remote sites were pushed to a relational database by using web service HTTP POST 

requests through a representational state transfer (REST) web service application 
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programming interface (API) (Horsburgh et al., 2019). Similarly Ventura et al. (2019) 

used a REST API to insert sensor observations from remote sites into a centralized 

relational database. To avoid mapping data columns after data collection, as is done in 

many of these examples, Celicourt et al. (2023) prototyped a system with metadata 

specified prior to sensor deployment via Python modules installed on low cost 

microcontrollers, one of which may act as a field base station to handle data operations 

including aggregating data from other remote sites rather than having every site transmit 

to a central server. 

For the various approaches to acquiring data in distributed systems, an important 

distinction is between pull- and push-based architectures. In pull-based architectures, a 

central system initiates a request to the remote logger or device, and data are returned 

only when requested. Pull-based architectures are predictable, usually use some sort of 

static addressing system for connected monitoring sites, may use proprietary 

communication protocols (e.g., Campbell Scientific’s PakBus networking), may require 

data caching at the measurement site if data are to be recorded between pulls, and work 

well for situations with intermittent or periodic access to telemetry (Gries et al., 2016). 

Many commercially available dataloggers are capable of pull-based architectures, and 

web-scraping approaches also use pull-based architectures. Conversely, in push-based 

architectures, remote data collection nodes initiate data transfer to a centralized data 

store. With many push-based approaches, dataloggers or sensors use standardized and 

open communication protocols like HTTP to push data, but they may also use more 

specific protocols like message queuing telemetry transport (MQTT, OASIS, 2019). 

Push-based systems can have lower power requirements because they do not need to 
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listen for requests from a central system. Many IoT and related applications use push-

based architectures, and they are especially important for systems requiring event-based 

or real time data (e.g., reporting an event when it happens rather than based on a 

predefined data download interval). 

4.4.2 Operational Storage 

An operational data store involves a location, structure, and technology for storing 

and describing data. In many reported cases, a centralized server is the physical location 

of storage, and the structure is an implementation of an information model. An early 

information model for hydrologic time series, ArcHydro Time Series, related time series 

data to geographic features in GIS based on the observed variable and datetime of 

observation (Maidment, 2005, 2002). This combination of time-site-variable to support 

each observation was used as the basis for multiple specific implementations for data 

storage and data encoding but with additional metadata because the attributes in 

ArcHydro were insufficient to describe data for unambiguous interpretation. Similarly, 

the Open Geospatial Consortium later released Observations and Measurements (O&M) 

as a standard to support consistent description and encoding of observed data (Cox, 

2013). The O&M information model has served as the basis for several environmental 

data management cyberinfrastructures with more specific profiles that adapt O&M’s 

generic information model to a more specific domain and use cases (e.g., OGC’s Sensor 

Web Enablement suite (Botts et al., 2013) and WaterML (OGC, 2014)). 

A major objective of data storage and data encoding is addressing syntactic (i.e., 

data and file structure) and semantic (i.e., terminology and vocabularies) heterogeneity in 

hydrologic observations data. The Observations Data Model (ODM) was designed to 
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provide a consistent format for point observation data storage and was implemented in 

relational database management systems (RDBMS) with defined entities, attributes, and 

relationships to represent observations (Horsburgh et al., 2008). In ODM, the concepts of 

sites (locations at which observations are made), variables (phenomena that are 

observed), methods (how the observations are made), sources (who is responsible for 

creating the observations), and quality control levels (the degree of quality control, 

processing, or aggregation observations have been subject to) are the key metadata 

characteristics that define each observation, along with the associated date and time. 

ODM’s concepts parallel those of OGC’s O&M (now referred to as Observations, 

Measurements, and Samples), including feature of interest, observed property, observing 

procedure, and observer. Using a consistent data model between sources and projects 

streamlines data organization, enhances data interoperability, and facilitates development 

of software applications for loading, managing, processing, and sharing data. ODM was 

adopted as a de facto community standard data model across several different initiatives. 

CUAHSI implemented ODM as the data storage format in their federated community 

HIS (Ames et al., 2012), and many HIS used ODM or a modified version of the ODM 

data model in RDBMS with additional tables or fields for network or project-specific 

needs (Mason et al., 2014; Varadharajan et al., 2019; Winslow et al., 2008). 

Although ODM was well-suited to the structure of time series data, some 

implementers found that the performance for large and frequently updating time series 

was deficient for some use cases related to both the structure of the data model and its 

physical implementation within RDBMS. These limitations, along with a need to support 

more diverse and complex data types from other geoscience domains, motivated the 
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development of ODM2, an information and data model for spatially discrete earth 

observations (Horsburgh et al., 2016a). While ODM included concepts similar to those in 

the OGC’s O&M standard (Cox, 2013), ODM2 explicitly profiled O&M for spatially 

discrete earth observations. In ODM2, time series are represented as a specific result 

type. While there was some variability, our review showed that most HIS 

implementations have used OGC’s O&M, ODM, or a derivative of these two information 

models to implement the data model for their operational data store.   

Physical implementations of operational data stores varied across HIS we 

reviewed and included RDBMS Microsoft SQLServer, PostgreSQL, SQLite, and 

MySQL. To support smaller scale efforts or to facilitate open-source, low cost sensing 

platforms, Conner et al. (2013) and Sadler et al. (2016) deployed “HydroServer Lite”, 

which implements ODM in MySQL, a freely available RDBMS. As an operational data 

store for time series data contributed from low cost, off-the-shelf modular sensing 

equipment, Horsburgh et al. (2019) implemented an ODM2 database in PostgreSQL. In 

efforts to improve performance for data retrieval and presentation via web applications, 

the dedicated time series database, InfluxDB, was added to cache time series data with a 

subset of metadata. InfluxDB offers high performance for indexing and retrieving time-

based data, which is an increasingly common use case for HIS. To insert metadata, this 

system employed a web user interface for citizen scientists to register and manage data 

collection sites and create metadata for associated sensors and observed variables. 

Additional approaches to storing data include custom data models (Samourkasidis 

et al., 2019), proprietary systems (Ventura et al., 2019), and document models (Braud et 

al., 2022; McGuire et al., 2016). Well known proprietary HIS (e.g., 52 North, Aquatic 
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Informatics Aquarius, or Kisters Wiski (ESIP EnviroSensing Cluster, 2014)) implement 

data models in a RDBMS (e.g., PostgreSQL) and may take advantage of open, 

community-developed standards. Other systems have used document models (Braud et 

al., 2022), which reference objects as key-value pairs most often in JSON documents 

stored within a database system like MongoDB that supports document data models 

(McGuire et al., 2016). This approach may provide the flexibility needed for integration 

of multiple data types (i.e., time series, geospatial raster and vector) at multiple spatial 

and temporal scales; however, the specificity and granularity particularly suited to time 

series data may be sacrificed. 

For operational storage and metadata management, the USGS NWIS uses a 

combination of in-house designed software applications and a commercial vendor data 

management system. The USGS NWIS data are stored and managed within the Aquarius 

water data management software suite, which includes an underlying PostgreSQL 

relational database that stores a cache of information about monitoring locations, 

parameters (i.e., observed properties or variables), and methods. Custom software 

applications built by USGS are used as authoritative sources for information on 

monitoring sites from which Aquarius extracts the information it requires. Similarly, 

reference lists managed centrally by USGS are used to define parameters and methods. 

USGS’ implementation illustrates that rather than a single operational database, multiple 

databases or layers may be required to meet the needs of operational storage - especially 

when legacy software systems are combined with software from commercial vendors. A 

single central data store or a single proprietary software system may not meet all needs, 

and for NWIS, when the proprietary system was adopted, connecting to existing systems 
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was necessary. 

4.4.3 Publication, Sharing, and Exchange 

Users of HIS include both data publishers and data consumers, and the following 

subsections describe tools for each role. Consumers of hydrologic time series access data 

using software applications that interface with underlying storage systems to enable data 

discovery, exchange, visualization, and analysis (Goodall et al., 2008). Internal users (i.e., 

those within the organization collecting and managing the data) may directly access data 

in the operational store (e.g., SQL queries to a RDBMS) (Shukla et al., 2019). However, 

this method entails security risks when sharing data with many users or with users 

external to the organization collecting the data. Thus, these use cases usually require 

provision of external-facing software applications to meet user needs while minimizing 

security concerns. HIS may deploy a number of different tools for providing access to 

hydrologic data, including web services that enable programmatic access to and encode 

data for interoperability and transfer, web applications that provide a graphical user 

interface in a web browser, or client software applications that communicate with web 

services and are paired with analysis environments (e.g., a Python client library paired 

with a Python development environment) to support data visualization and analysis. 

4.4.3.1 Data Publisher Tools 

Multiple standards-based web service interfaces and standardized data transfer 

encodings have been developed that may be used for encoding and transferring 

hydrologic time series data over the Internet (i.e., from data publishers to data 

consumers). As part of the CUAHSI HIS effort, WaterOneFlow (WOF) web services 

were developed as a standardized web service interface for data querying and retrieval, 
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and Water Markup Language (WaterML) was developed as a machine-readable 

eXtensible Markup Language (XML) schema for encoding water observation data for 

communication over the Internet (Zaslavsky et al., 2007). A subsequent version of 

WaterML, WaterML 2.0, was developed and adopted as a standard by the OGC as an 

implementation of the O&M information model (OGC, 2014). The WaterML 2.0 

standard is multi-part and includes a specification for encoding time series, a second part 

for ratings, gagings, and sections, a third part for surface hydrology features, and a fourth 

part for encoding groundwater data. Additionally, there is a profile of WaterML 2.0 for 

encoding water quality data. The OGC also developed Sensor Web Enablement (SWE), a 

suite of standards for exchange of data collected by environmental sensor networks (Botts 

et al., 2013). SWE includes multiple standards related to sensor data management, and 

components relevant to HIS include Sensor Observation Service (SOS) and SensorML. 

SOS is a web service interface that allows querying observations that are then encoded 

for response using WaterML 2.0 or O&M. Associated sensor metadata and representation 

of observed features are encoded using SensorML, another OGC standard. 

For the CUAHSI HIS, WOF web services were deployed with a direct mapping to 

ODM databases to extract data and metadata and encode them for transmission using 

WaterML (Maidment, 2008). WOF web services were also deployed for data from 

multiple U.S. government agencies by using the same web service interface and data 

encoding but with proxy web services that first retrieved data from agency websites and 

then reformatted the data using WaterML (e.g., streamflow data from the USGS National 

Water Information System) (Goodall et al., 2008). The common information model 

concepts from ArcHydro and ODM (site, variable, date/value) were used as the basis for 
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defining an observation using WOF/WaterML, and the primary web service methods 

were GetSites and GetVariables as data discovery functions and GetValues, as a data 

access function (Goodall et al., 2008). Although the SOS standard was not strictly 

mapped to a specific information model, opting to use OGC’s O&M as default but 

allowing other data formats, it has been profiled for use with hydrologic data (Andres et 

al., 2014) through encoding using WaterML 2.0 and uses primary web service methods 

similar to those of WOF: GetFeatureofInterest, DescribeSensor, and GetObservation. 

Deploying the same web service interface on top of multiple individual databases 

allows for consistent data access across distributed sources (Blodgett et al., 2016b; 

Slawecki et al., 2017). Through the adoption of a common web service interface for data 

from multiple sources (WOF), the CUAHSI HIS demonstrated how data can be retrieved 

from any provider and how software applications could be applied that were agnostic of 

the data store (Ames et al., 2012). For example, CUAHSI developed a metadata catalog 

called “HIS Central” that was designed to regularly fetch and centrally store metadata 

about available time series data from all registered WOF services so that data discovery 

services could be provided. Multiple client applications, including a desktop client called 

HydroDesktop (Ames et al., 2012) and a web browser client called HydroClient 

(https://data.cuahsi.org), were developed to search the HIS Central catalog and enable 

download of discovered time series data. Search was facilitated by consistent metadata 

provided by each registered WOF service, and download was facilitated by each WOF 

service having a consistent interface and data encoding – regardless of where each 

service was hosted. For multiple data providers, this ensures data are delivered in a 

consistent format and avoids tedious data formatting and transformations for data 
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consumers.  

As part of a federally sponsored Open Water Data Initiative (OWDI) and related 

interoperability experiments, additional examples, opportunities, and best practices for 

aggregating and synthesizing data from multiple sources were identified (Blodgett et al., 

2016a, 2016b; Slawecki et al., 2017). The USGS NWIS implemented web service 

protocols in a RESTful API (“Water Services”), which returns results in WaterML 1.1 or 

2.0 as well as tab-delimited or JSON formats. Although NWIS does not use WOF, this 

illustrates that existing systems may map to and deliver data using standardized 

encodings even if the systems are not easily compatible with exchange protocols. 

Another USGS example is the National Groundwater Monitoring Network 

(https://cida.usgs.gov/ngwmn/), which is a catalog that uses web services to communicate 

with and integrate data from several sources (Blodgett et al., 2016a). Although it is 

focused on discrete data, the Water Quality Portal (https://www.waterqualitydata.us/) is 

an important system to mention as it integrates data from the Environmental Protection 

Agency, the USGS, states, tribes, and other agencies through an exchange protocol 

known as Water Quality Exchange (WQX) (Read et al., 2017). 

Client usage of web services is independent of programming language and 

computing platform, and the WOF web service interface was implemented using several 

software development environments. The CUAHSI HIS project developed WOF using 

the Microsoft .Net development environment (Zaslavsky et al., 2007). Realizing the need 

for an implementation using freely available software, Conner et al. (2013) created an 

implementation using PHP. Another group developed a version based on Python 

(https://github.com/ODM2/WOFpy), which has been implemented by several HIS 
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(Celicourt et al., 2023; Horsburgh et al., 2019), and at least one commercial HIS 

implemented WOF (Newswire, 2011). Similarly, there are multiple implementations of 

the SOS web service interface (e.g., 52 North, Kisters). The CUAHSI HIS was initially 

designed as a federated system with each data providing organization hosting their own 

WOF web service instance. However, many organizations that participated initially and 

others who wanted to use the CUAHSI HIS to share data did not have the resources or 

personnel to run, manage, or sustain a publishing service on their local computer 

infrastructure. Thus, CUAHSI provided additional capability for data publishing 

organizations to upload data to a cloud instance of an ODM database with a connected 

WOF service hosted by CUAHSI and registered with CUAHSI’s HIS Central metadata 

catalog. 

Monitoring networks of varying scales have incorporated web services for data 

publication and sharing following similar approaches (Conner et al., 2013; Horsburgh et 

al., 2011, 2009; Jones et al., 2017, 2015; Muste et al., 2013; Sadler et al., 2016). In each 

case, WOF web services were deployed on operational data stores and registered with the 

CUAHSI HIS Central metadata catalog making data accessible via CUAHSI’s search, 

discovery, and visualization tools. Data were encoded for delivery in WaterML 1.1 

format, and publishers deployed public facing custom websites that interpreted data 

encoded using WaterML (e.g., Horsburgh et al., 2016). HIS that either modified the 

ODM data model to add metadata elements or deployed custom operational data stores 

for additional data types also used WOF and WaterML to make compatible data available 

through the CUAHSI HIS (e.g., Mason et al., 2014). In a similar approach, a web 

application called the ODM2 Data Sharing Portal (Horsburgh et al., 2019) was created 
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for enabling upload of streaming sensor data from low-cost monitoring stations deployed 

by citizen scientists. The ODM2 Data Sharing Portal enables creation of site, observed 

variable, and other metadata; streaming of data from field deployed stations into an 

operational data store via a web service API, and visualization and access to contributed 

data. The ODM2 Data Sharing Portal also included an instance of the WOF web services 

for programmatic data access. 

For HIS that used OGC SWE standards, web services were implemented that 

returned data using the SOS web service interface and encoded data for transfer using 

either the XML encoding of the O&M standard (Samourkasidis et al., 2019; 

Samourkasidis and Athanasiadis, 2017; Ventura et al., 2019); or WaterML 2.0 (Slawecki 

et al., 2017). The underlying operational data stores for these services were either mapped 

to SOS and the respective data encoding using a data model developed by 52 North or 

using the Kisters software and its underlying data model. For a catalog application that 

accessed data sources implementing SOS (analogous to CUAHSI’s HIS Central), 

Slawecki et al. (2017) developed a custom metadata mapping in PostgreSQL with 

accompanying REST API services. Other data publishers developed APIs specific to their 

databases that were accessed by custom web portals or interfaces for dissemination 

(Samourkasidis et al., 2019; Varadharajan et al., 2019). 

For their sensor network, Wong and Kerkez (2016) implemented IoT technologies 

consisting of relatively low cost systems that support REST APIs for web services and 

data transfer (Hart and Martinez, 2015). Because IoT technologies are used across many 

application domains (e.g., environmental sensing, smart homes and buildings, supply 

chain management, etc.), the data communication protocols are generic, and similar to 
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SOS, a mapping must be made between metadata required to describe hydrologic time 

series and generic metadata concepts used by IoT information models. However, in some 

cases IoT information models may not be complete enough to enable a mapping that 

adequately describes hydrologic data. 

4.4.3.2 Data Consumer Tools 

Data access functionality for consumers typically involves some combination of 

software tools that enable data download, programmatic access, and data visualization for 

exploration, interpretation, and communication. Many of the reviewed HIS deployed 

project-based web applications/portals that included, at minimum, a map for displaying 

the locations of monitoring sites and a time series plot viewer for visualizing time series 

of observed variables at selected locations (Demir and Krajewski, 2013; Jones et al., 

2015; Mason et al., 2014; Muste et al., 2013; Slawecki et al., 2017). For example, Water 

Data for the Nation is the umbrella effort for the USGS’s water data consumption tools 

including the National Water Dashboard (https://dashboard.waterdata.usgs.gov/), which 

displays a national map with symbology representing current conditions for each site for 

streamflow, groundwater, water quality, and meteorological data. A page for each 

monitoring location displays adjustable time series plots of monitored parameters along 

with options for data download. 

As hydrologic time series are observed at specific locations, mapping is essential 

for spatial reference and context (Braud et al., 2022; Horsburgh et al., 2016b; Soh et al., 

2006), and national scale data products need spatial relationships to enable interpretation 

(Sullivan et al., 2018). Basic time series plots are fundamental for data exploration and 

preliminary analyses necessary for determining quality, characteristics, and appropriate 
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uses for the data (Muste et al., 2013). More complex and specialized plotting types may 

be implemented, such as box and whisker, histograms (Horsburgh et al., 2016), flood 

frequency and duration curves (Xu et al., 2022), multidimensional plots (Mason et al., 

2014), and visualizations that integrate other data types (Demir and Krajewski, 2013). 

Visualization types are driven by user needs, and website/portal developers may need to 

consider the metadata dimensions by which users will want to query or filter results 

(Horsburgh et al., 2016b; Slawecki et al., 2017; Soh et al., 2006).  

As describe above, the HydroDesktop and HydroClient software programs were 

developed to facilitate data discovery, download, and visualization for data sources that 

published data with WOF web services and registered with CUAHSI’s HIS Central 

metadata catalog. In both HydroClient and HydroDesktop, data discovery was 

accomplished through map-based and keyword-based searches. When a user searched for 

data, the software applications accessed the HIS Central metadata catalog facilitated by 

WOF web services. Discovered time series that met the user’s search criteria could then 

be downloaded via their WOF web service. Time series were written either to CSV files 

for download (HydroClient) or a SQLite database on the user’s local computer 

(HydroDesktop), and both software applications offered visualization with built in 

plotting tools. Similarly, in a pilot catalog of water quality time series data, Slawecki et 

al. (2017) ingested metadata from sources implementing SOS to populate a metadata 

catalog, which was used for search and discovery within a web interface along with 

download of CSV data files.  

To support automated/programmatic data access and querying by data consumers, 

packages in common programming languages were developed that used the available 
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web services to fetch data and return them in performant data formats (e.g., R or Python 

pandas data frames). Examples include HydroR, an R package for accessing data from 

CUAHSI HIS Central (Horsburgh and Reeder, 2014), WaterML R, an R package for 

querying and retrieving data from WOF (Kadlec et al., 2015), and data retrieval packages 

in R, Python, and Julia for accessing USGS NWIS data (Hodson et al., 2023). The 

ULMO package for Python (https://github.com/ulmo-dev/ulmo/) accesses data from 

multiple hydrologic and environmental data sources (e.g., USGS NWIS, the National 

Climate Data Center, CUAHSI WOF, several state agencies). Ventura et al. (2019) 

developed an R package with functions that directly queried their HIS database with a 

Shiny App to perform functions in a web user interface. In an operational context, it is 

important to have tools like these that facilitate programmatic data access/retrieval to 

make software application development easier and to enable the types of data retrieval for 

which a web user interface is superfluous (e.g., supplying realtime observational data to a 

forecast model). 

Another use case for data sharing and publication is long term archival to support 

access to historic data records (ESIP EnviroSensing Cluster, 2014). Web portals and 

operational data stores may be deprecated after a project ends or technology ages 

(Ruddell et al., 2014), so data access may need to be preserved by submitting data to an 

archival repository. In addition to using web services and a project website to share data, 

Jones et al. (2017) published hydrologic time series as CSV files to resources in the 

HydroShare repository using scripts that automatically exported CSV files from the 

operational data store. HydroShare is a community repository for heterogeneous data 

types that can act as an archival HIS (Horsburgh et al., 2016b), a distinction from the 
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operational HIS described in this paper. Using a similar approach, Varadharajan et al. 

(2019) archived hydrologic time series by publishing snapshots with persistent identifiers 

in the ESS-DIVE repository, the Department of Energy’s approved repository. Other long 

term repositories may be used that are either data type agnostic (e.g., FigShare) or are 

more specific (e.g., to a region, a project, or a data type). 

4.4.4 Management, Processing, and Curation 

In parallel to data moving between the collection, storage, and publication pools, 

HIS commonly include operations to manage, process, and curate data. Operations may 

include sensor/equipment management and tracking, monitoring and notification of data 

issues, data review and quality control, and generation of derived products (e.g., 

discharge from stage, aggregated data products or statistics). These operational steps are 

often performed on data that have been loaded to the operational data store but may be 

executed on the data collection platform (datalogger) or after extracting data from the 

operational data store using publicly accessible web services or API (Gries et al., 2016). 

Some of these functions only read data from the storage pools while others necessarily 

modify data or write new or derived data back to the operational data store. Execution of 

these steps may be automated as part of the data management workflow for an HIS or 

may be performed offline and asynchronously, possibly even manually. While most data 

managers have similar management, processing, and curation needs, in the literature and 

systems we reviewed we noted significant heterogeneity in both workflows to meet these 

needs and in how they are executed, often requiring data managers to string together 

multiple software tools to accomplish their workflows. While some agencies and 

monitoring networks may have documented guidelines and practices (e.g., ESIP 
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EnviroSensing Cluster, 2014; Jones et al., 2017; Wagner et al., 2006), operations that fall 

in this category are seldom described with much detail in available literature, and no 

widely used standards exist. 

Technicians that operate sensor networks typically track equipment 

characteristics, deployments, and maintenance. Some groups may track and document 

this in an ad hoc way while others use more formal approaches. In either case, capturing 

the linkages between a sensor (e.g., its specific manufacturer, model, serial number, etc.), 

its maintenance (e.g., deployment, cleaning, calibration), and resulting observations can 

inform data quality (ESIP EnviroSensing Cluster, 2014; Jones et al., 2017), especially 

when sensors malfunction or when cleaning or calibration of sensors introduce data 

artifacts that must later be corrected. Several HIS extended the ODM data model to 

include records of field activities and sensor characteristics (Jones et al., 2015; Mason et 

al., 2014) to facilitate accurate tracking of equipment deployment and maintenance 

activities. The USGS does not currently have an integrated application or guidelines for 

documenting and tracking sensor assignments, and the approach depends on local office 

practices and the equipment type. 

For many operational uses of real time sensor data, data quality is a concern due 

to high volumes of sensor data and the challenges of ambient monitoring (ESIP 

EnviroSensing Cluster, 2014). In some cases, automated or manual tools to support 

quality assurance and quality control (QAQC) are implemented in the HIS data flow 

(Campbell et al., 2013). Automated data quality monitoring systems and algorithms can 

enable responsive diagnostics and repair when sensors or peripheral equipment fail 

(Benson et al., 2010; Wong and Kerkez, 2016). To monitor the latest data values for 
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potential concerns, scripts and algorithms may be implemented on any of the data stores 

that alert technicians (Jones et al., 2015; Shukla et al., 2019), automatically flag data 

(ESIP EnviroSensing Cluster, 2014), or trigger corrective action (Varadharajan et al., 

2019). For example, the USGS operates custom-built software applications that monitor 

data streams, apply basic algorithms to check data status, and send alerts to field staff. 

Furthermore, technicians use agency-specific tools and the public websites to visually 

review data on a near-daily basis. 

Even with manual and/or automated data monitoring, time series data from in situ 

sensors often include anomalies or drift related to ambient conditions (e.g., fouling) or 

sensor drift that need to be corrected. Custom desktop applications were developed for 

performing quality control post processing for data in flat files or ODM databases 

(Horsburgh et al., 2015; Sheldon, 2008). Several studies developed R or Python scripts to 

support data QAQC processing that retrieve data from the operational data store via the 

database API and perform automated and semi-automated data checking and correction 

(Varadharajan et al., 2019; Ventura et al., 2019). For the USGS NWIS data, data 

management, review, and processing are conducted within the Aquarius data 

management software, a web browser-based interface that connects to underlying 

databases. Aquarius’ visualization and editing tools are used by technicians to remove 

anomalies, set qualifiers, apply corrections, and make estimates. Aquarius is also used in 

the process for officially approving data. 

4.5 Challenges and Opportunities 

After reviewing the literature and considering operational HIS systems, we 

identified many challenges that, if solved, could advance HIS capabilities. We narrowed 



 151 

our focus and selected several challenges for which we believe solutions would have the 

highest impact on utility and functionality for HIS. Some of these challenges have 

persisted from earlier work on HIS while others are new and emerging. We focused on 

challenges that are not specific to deployment of monitoring equipment or data collection 

sites because, while these are important considerations that affect the ease with which 

data can be collected (e.g., power, availability of communications, ease of installation, 

etc.), products to address them exist and may be implemented depending on resources 

and priorities. Instead, we selected challenges that are mainly downstream of monitoring 

site and equipment considerations in the data workflow. In the sub-sections below, we 

articulate a challenge and illustrate how it is being addressed by one or more existing 

systems. These challenges are not fully solved by any one system, but this section 

highlights current work being done by various organizations and opportunities for 

advancement. As many of these HIS are new and may not have been significantly 

documented in existing literature, we rely on our own experience and on discussions with 

the people and teams developing and managing these systems. 

Challenge 1: Non-interoperability of sensing and datalogging systems. A 

challenge with data collection and acquisition in HIS includes non-interoperability of 

sensing, datalogging, and data communication systems that are often proprietary. While 

several standard communication protocols exist for dataloggers to read data from sensors 

(e.g., RS232, Modbus, SDI-12, I2C, etc.), making it possible to integrate most sensors 

with dataloggers from a variety of manufacturers that support these standards, the same is 

not true for communication between dataloggers and downstream data management 

systems. Sensor and datalogger manufacturers may offer access to data communication 
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and sharing software, but methods for doing so have not been standardized to date. Many 

datalogger manufacturers use proprietary software systems for these purposes and are not 

incentivized to make a shift to open, standards-based software as they may potentially 

lose a competitive business advantage. As a result, retrieving data from a field-deployed 

datalogger still often requires proprietary software or custom middleware. 

As an example of advances in integration between open and proprietary software, 

the Dendra system (https://github.com/DendraScience) uses a microservices architecture 

to develop targeted functionality for individual vendors. Dendra has developed code for 

integrating with Campbell Scientific’s proprietary LoggerNet software to load data into 

Dendra’s operational data stores. LoggerNet communicates with and retrieves data from 

remote monitoring sites using Campbell Scientific’s proprietary communication and 

networking technologies. Dendra then connects to LoggerNet’s Logger Data Monitoring 

Protocol (LDMP) server to retrieve data records for a datalogger over a TCP socket. 

While this is an example of successful interoperability between two systems, a 

generalizable solution has not emerged to enable interoperability with software provided 

by multiple different vendors. Additionally, it can be difficult to make these connections 

between systems as firewalls may block TCP connections. 

Another way that monitoring systems are addressing this challenge is by using 

microcontrollers as dataloggers, which allow for flexibility with communication 

protocols. These dataloggers will generally operate push-based systems, requiring an 

Internet connection (e.g., via a cellular data). This is the approach used in the Monitor 

My Watershed HIS wherein hundreds of Arduino-based microcontrollers are deployed by 

citizen scientists and the data are acquired via HTTP POST requests initiated by the 
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microcontrollers (Horsburgh et al., 2019). Some commercial dataloggers (e.g., Campbell 

Scientific) are also capable of connecting to and pushing data to any system with an API 

via HTTP POST requests.  

The team developing the HydroServer HIS (https://github.com/hydroserver2) is 

focusing on APIs through which data can be pushed using common protocols. Internet-

connected dataloggers, regardless of manufacturer, can push observations directly into an 

instance of HydroServer through the OGC SensorThings API. While it is increasingly 

common for environmental sensing sites to be Internet-connected, there are still many 

situations where Internet connectivity is impossible. For those sites, HydroServer relies 

on whatever proprietary software is communicating with the datalogger to deliver 

observations to a base station in a CSV file, which can then be loaded automatically 

through the SensorThings API by the HydroServer Streaming Data Loader software. The 

HydroServer team is developing a Python/Django implementation of the SensorThings 

API, and others who have embraced a similar approach are using the FROST Server 

implementation of SensorThings API (https://github.com/FraunhoferIOSB/FROST-

Server).  

Challenge 2: Heterogeneity in data models, metadata, and vocabularies. 

Although some standardized data models have been widely adopted for operational 

storage, a rigid data model does not meet all needs or use cases, and some systems prefer 

custom data representations. While most time series HIS use site and observed property 

to describe observations, there is inconsistency in the implementation of additional 

metadata attributes. Furthermore, even when data collection organizations use the same 

metadata elements, if they do not use standardized vocabularies for the values of those 
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attributes, semantic heterogeneity persists. Earlier efforts at using community moderated 

controlled vocabularies (e.g., ODM and ODM2) have shown a path forward that can 

minimize semantic heterogeneity; however, implementation and adoption of controlled 

vocabularies has been inconsistent.  

Several recent efforts that integrate time series from several data sources into a 

single HIS have tackled this issue by mapping metadata terms and vocabularies from 

separate sources to authoritative lists or standards. Slawecki et al. (2017) mapped data 

providers’ parameter names to EPA’s Substance Registry Service (SRS), an inventory of 

chemicals, organisms, and other substances of interest. Given that this was a pilot project, 

the scalability of mapping observed properties with the EPA SRS is untested. In a 

national-scale catalog of data sources in France (Braud et al., 2022), a custom 

hierarchical vocabulary system was developed based on several standards, linked to a 

number of external thesauri, and implemented so that data sources either adopt the project 

vocabulary or map their terms to the project vocabulary. A similar approach was used by 

the CUAHSI HIS Central metadata catalog to better facilitate data discovery services for 

data sources that did not adopt the ODM controlled vocabularies. For a data integration 

effort to be successful, a common vocabulary or technologies that enable mediation 

across vocabularies must be used, but most are too complex for typical domain scientists 

and practitioners to use and may require modification for usability (Varadharajan et al., 

2019). A system is needed that can support searches with approximate matching and that 

is straightforward to implement and reference. 

Both the HydroServer and Dendra system described above have incorporated 

controlled vocabularies from the ODM information model (ODM CVs for Dendra, and 
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updated ODM2 CVs for HydroServer, http://vocabulary.odm2.org). These curated 

vocabularies are useful aids in describing hydrologic observations, but they do not satisfy 

the needs of custom data models (e.g., those with important metadata for which no ODM 

CV exists). Additionally, in efforts to prioritize flexibility and ease of use, both of those 

systems offer the terms from the controlled vocabularies as recommendations but do not 

rigidly enforce their use.  

Even within a single organization, heterogeneity in how observations are 

described can be an issue. USGS has historically used a system of “parameter codes” that 

mixes the name of the observed property with methodological information and, in some 

cases, measurement units. This leads to multiple parameter codes associated with the 

same observed property, but differing by method or units (e.g., code 00910 – “Calcium, 

water, unfiltered milligrams per liter as calcium carbonate” versus code 00915 – 

“Calcium, water filtered, milligrams per liter”). As a result, there is a gap in relating 

NWIS-specific parameter codes to community supported vocabularies and ontologies 

(Blodgett et al., 2016a). USGS is currently undergoing modifications to the system for 

identifying observed properties to eliminate ambiguity, reduce duplication, and better 

align with the Water Quality Portal and WQX. Because multiple groups are already 

submitting data via WQX, there is some momentum behind the system. When released, 

the revised NWIS parameter lists could serve as a guide for vocabulary systems, although 

additional functionality (e.g., machine readable formats, search capabilities, ability to add 

terms) might need to be implemented for integration into dispersed HIS. 

Challenge 3: Modernizing existing systems. Advances in the availability of 

technology (e.g., cloud systems, IoT, etc.) has increased options for infrastructure, 
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software development, deployment and hosting, data storage mechanisms, and data 

transfer protocols and services. HIS that were implemented in the early efforts by 

CUAHSI and others are now operating using dated technology - e.g., using web services 

based on simple object access protocol (SOAP) and XML data encodings rather than 

more modern representational state transfer (REST) and JavaScript object notation 

(JSON) data encodings. However, while newer standards have emerged (e.g., OGC’s 

SensorThings), no new standard has been fully embraced by the environmental sensing 

community, and community recommendations and best practices vary. Furthermore, 

technical debt associated with legacy systems is a challenge for many HIS 

implementations. Some HIS may be badly in need of upgrades to one piece of their data 

workflow but integration with older products or software, which are dependent on 

outdated or deprecated technologies, infrastructure, or programming languages can 

present significant challenges - especially when HIS implementers are users and not 

software developers themselves. 

OGC’s SensorThings API, associated information model, and commercial cloud 

technologies hold promise here. The HydroServer development team has mapped the 

ODM/ODM2 time series information model to the SensorThings information model and 

has developed an implementation of an operational data store that can be deployed in a 

straightforward way using commercial cloud technologies. This provides a path forward 

for migrating existing, ODM-based HIS to a modernized web service interface and data 

encoding via SensorThings with deployment in the commercial cloud (e.g., Amazon Web 

Services). Discussions with Aquatic Informatics indicate that Aquarius software systems 

will move to commercial cloud deployments for new customers, with relatively few still 
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running Aquarius software on-premise. 

To aid data providers and HIS implementers, CUAHSI has historically focused on 

data publication through web services, the HIS Central metadata catalog, and select cloud 

hosting options. Presently, CUAHSI is actively revamping its publication and cataloging 

services and expanding its capabilities to provide operational support. As part of this 

modernization effort, CUAHSI is working to integrate the Dendra system as an 

operational component with its existing suite of offerings for data providers. 

Additionally, in a collaborative effort, CUAHSI and Dendra are planning to employ 

SensorThings as an API and as an encoding for data publication. 

In an enterprise context, the USGS is not immune to the need for modernization. 

The USGS is currently undergoing a major effort to modernize the software applications 

that comprise NWIS to address technical debt on out-of-date software and infrastructure 

and to improve the data workflow. This modernization effort aims to create software 

applications that communicate with each other via APIs and that use modern technologies 

and programming languages (e.g., deploying applications on the cloud, RESTful APIs 

that return JSON). For example, USGS has been prototyping using SensorThings’ 

RESTful API for data ingest and egress.  

Challenge 4: Multiple different web service interfaces and exchange 

standards. In a survey of water data systems, about half used web services to transfer 

data in machine friendly formats (Dow et al., 2015). As shown in this paper, multiple 

web service interfaces (SOS, WOF, SensorThings) and encodings for data exchange 

(WaterML 1.1., WaterML 2.0, O&M XML, SensorML, SensorThings) have been 

developed and approved as standards, yet there is no consistent guidance on applicability 
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or which standard should be used for which situation and by whom (Dow et al., 2015). In 

one example of addressing this challenge, the catalog of French monitoring networks 

(Braud et al., 2022) identified multiple metadata standards necessary to cover desired 

functionality and created a project-specific data model that combined entities from 

several standards and maps between them. The result is, in effect, yet another standard. In 

contrast, some data producers may not have the expertise to implement standards-based 

publication. Because options for open source and commercial implementations are 

limited, data producers may buy into commercial systems or develop one-off systems 

rather than deal with the complexity of adopting standards.  

SensorThings was designed to support lightweight and flexible IoT web services 

and exchange protocols for sensor data and information. SensorThings includes a 

RESTful API definition and an information model that defines key components of 

observing systems: Things (i.e., monitoring stations/platforms in the context of 

hydrologic time series), Observed Properties (what is observed), Sensors (the physical 

instruments and/or procedures used to create observations), Observations, Datastreams (a 

time series of Observations for an Observed Property at a Thing), and Locations (the 

physical location of a Thing). SensorThings is a more modern web service standard that 

uses REST bindings and JSON encodings rather than SOAP and XML, with REST and 

JSON being highly preferred by programmers. Some groups are transitioning from SOS 

to SensorThings to modernize and simplify data access (e.g., Kotsev et al., 2018), but 

operational use of SensorThings is still growing and there is still no definitive guidance 

on the best web service interface and data encoding standards for future use. 

For HIS that do implement standards, there are multiple software implementations 
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of some standards with inconsistent levels of development and support. These limitations 

can result in adoption of software for which an organization lacks specific development 

or hosting expertise. As a specific example, there are currently several open-source and 

commercial implementations of the OGC SensorThings API (e.g., FROST, SensorUp, 52 

North, HydroServer). Written in Java, the FROST server implementation is likely the 

most complete. HydroServer’s implementation is less mature but is written in Python, a 

more commonly used language. An organization with Python web application expertise is 

forced to choose between the less complete HydroServer implementation for which they 

may be able to fix bugs or add features or the FROST implementation that is more 

complete but for which they have no specific development expertise.  

Challenge 5: Mapping data to exchange standards. Newer exchange standards 

like OGC’s SensorThings are increasingly flexible with constructs that are more loosely 

defined and that can be associated with various data models (e.g., ODM/ODM2’s time 

series information model can be mapped to the SensorThings data model, which was 

derived from the O&M information model). However, because existing data stores and 

data exchange functions and encodings have often been developed independently, 

mapping of data and metadata to the exchange standard is necessary. This mapping 

process can be challenging, and may, in some cases be lossy (i.e., metadata from an 

existing data store may not be fully captured in the exchange encoding) as some 

exchange standards may not be expressive enough to unambiguously describe hydrologic 

time series.  

The HydroServer development group found this to be the case with the 

SensorThings information model. The original HydroServer software stack upon which 
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the CUAHS HIS was based used the ODM/ODM2 time series information model for 

expressing metadata about hydrologic time series data. WOF web services and WaterML 

were designed for the ODM time series information model, so there was effectively a 1:1 

correspondence between the storage implementation of the information model in a 

RDBMS and the exchange implementation of the information model (WaterML). In 

contrast, the SensorThings information model is not hydrology specific and relies on a 

relatively small number of entities with a few attributes – some of which are extendable. 

This extensibility enabled the addition of important ODM/ODM2 time series metadata 

elements to the SensorThings information model as extended attributes. This included 

adding new entities for concepts like units of measure, processing levels, and 

people/organizations because the SensorThings data model lacks these concepts entirely. 

Each “Thing” (e.g., a monitoring site) has a “name” and “description” and a “properties” 

element to which attributes like latitude and longitude might be mapped. While this 

worked reasonably well for the ODM/ODM2 time series metadata, there may be other 

custom HIS data models for which the mapping is not as straightforward.  

It may also be important to consider a distinction between the metadata needed to 

enable discovery of time series data versus the metadata needed to describe the dataset 

for unambiguous interpretation and use. Our preliminary analysis of the SensorThings 

metadata encoding suggests that it can serve both purposes, and different systems may be 

made interoperable by using the SensorThings API and metadata encodings. However, in 

other projects, there is growing momentum around using the Schema.org vocabulary for 

dataset discovery metadata to help make datasets more universally discoverable on the 

Internet using tools like Google’s search engine. Use of Schema.org would require yet 
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another metadata translation. 

Challenge 6: Automating data processing and review. Due to the large 

volumes of data being collected, processes in HIS should be as automated as possible 

(Muste et al., 2013; Ruddell et al., 2014), which has generally been achieved for major 

data fluxes. However, data processing and review can be subjective and often requires 

local knowledge (Jones et al., 2018), which impedes full implementation of automated 

QAQC measures on streaming data and often prevents consistency in application. This is 

a major limitation for HIS systems focused on producing timely and accurate data – e.g., 

HIS that supply data to real time modeling or forecasting systems. 

Automating data processing continues to be an active area of research, which 

presents an opportunity for potential incorporation into HIS. Various rules-based, 

regression-based, and feature-based approaches have been tested for anomaly detection in 

hydrologic time series, with mixed results (Leigh et al., 2018; Santos-Fernandez et al., 

2023; Schmidt and Kerkez, 2023; Schmidt et al., 2023; Talagala et al., 2019). While these 

algorithms and approaches show promise, there is a gap in moving from research to 

operations and scaling to larger monitoring networks. Success is dependent on 

characteristics of the site, observed property, sensor technology, anomaly cause or type, 

and identified anomalies may still require technician review. Furthermore, testing and 

training algorithms also present a challenge as sufficiently and consistently labeled “gold 

standard” datasets may not exist. Some have used data simulations for this purpose 

(Santos-Fernandez et al., 2023). Recent developments include packages (e.g., Python or 

R) that implement both heuristic rules based algorithms relying on user input for initial 

set up (e.g., thresholds) along with data driven algorithms based on past data to determine 
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whether data are valid or anomalous (Jones et al., 2022; Schmidt et al., 2023). Functions 

from these packages could be incorporated into an HIS data workflow to automatically 

identify anomalies, but evaluation by a technician would likely still be necessary in many 

cases. 

There is opportunity to streamline data processing. Local knowledge can be 

encoded as rules with increasing complexity that are then automated to identify 

anomalies. More complex algorithms that are trained on past data can identify potential 

anomalies, and a choice must be made either by a technician or by an algorithm to 

determine whether data are anomalous. While it is unclear whether algorithms could be 

sufficiently trained to consistently make choices on par with trained technicians, if the 

anomaly detection workflow is streamlined, then review by technicians may become 

straightforward. We recommend that HIS components be developed to support flexible 

implementation of various algorithms under the premise that there is no “one size fits all” 

solution. Other potential improvements include recommending algorithms, rules, 

parameters, or settings based on data characteristics; development of software 

applications with a visual graphical user interface for technicians with less programming 

experience; standardized approaches and benchmark datasets for training algorithms and 

reporting performance; and ensuring that processing steps are traceable and reproducible.  

Commercial HIS are also implementing approaches that automatically determine 

rules for data editing and corrections based on the behavior of past data. At the USGS, 

progress toward streamlining processing within Aquarius includes automatically applying 

corrections to data related to fouling or drift based on field readings, and a current effort 

focuses on automating estimates of discharge based on hydrologically related sites rather 
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than technician estimates. The USGS has also explored approaches for automating 

anomaly detection, but concerns remain with high levels of false positives resulting in an 

extra burden on technicians reviewing data. 

4.6 Conclusions and Outlook 

HIS are comprised of hardware and software that support the life cycle of 

hydrologic data from observation in the field to end user dissemination and include 

functionality for data storage, transfer, management, curation, processing, and 

publication. HIS are key to the advancement of hydrologic science – the systems by 

which data are stored and transferred and the ease with which management is performed 

can either facilitate or inhibit subsequent analyses. Innovations and improvements to the 

technology deployed as part of HIS have enabled advances in the understanding of 

hydrologic systems and will continue to do so going forward. Although the core concepts 

and parameters of interest in hydrologic research may not have changed, our ability to 

collect, support, and manage the resulting data accelerates scientific discovery.  

As technology has developed, HIS have evolved to support data of increased 

volume and complexity, a trend we expect must continue. For fixed point time series 

data, the USGS NWIS set a precedent for data to be broadly available in consistent 

formats. Community efforts by CUAHSI and others advanced HIS with regard to 

standards and protocols for data structure, semantics, and data transfer. But, we are now 

at a critical juncture in which additional development is needed to support innovations in 

sensing technologies, expectations for data timeliness, and data driven analyses.  

For fixed point time series data, the key components of HIS support data 

collection and acquisition; operational storage; publication, sharing, and exchange; and 
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the movement of data between these pools. In parallel, data management, processing, and 

curation tasks are important to most HIS. Researchers and practitioners have deployed 

systems that perform these tasks at a range of scales, but challenges persist, some of 

which are being addressed with varying degrees of success by current systems and for 

which larger community efforts could establish effective solutions. 

Interoperability between sensing and datalogging systems and downstream HIS 

components could be advanced through generic communication solutions that are 

agnostic to the hardware manufacturer. This may be achieved by using the same encoding 

for both data ingest and egress (e.g., SensorThings) with a standard protocol (e.g., 

HTTP). Addressing heterogeneity between different HIS requires an authoritative source 

for information models, metadata, and vocabularies with buy in and uptake from a critical 

mass of practitioners. Similarly, momentum around a smaller number of accepted 

standards has potential to reduce duplication of resources and expertise and would ensure 

that modernized or newly developed software applications use interoperable interfaces 

and data encodings. Such an approach would enable more 'plug and play' type 

functionality, promoting integration and interoperability between components. 

Comprehensive guidance is essential to navigate the options of multiple web service and 

exchange standards, and community discussions can help determine whether a consensus 

can be reached for a singular or at least a smaller number of standards. Time and testing 

may be required for a smaller number of highly endorsed standards to emerge. 

Community-endorsed mappings are also vital in overcoming the challenge of aligning 

information models for hydrologic time series data with those of broader, more generic 

exchange standards (e.g., mapping ODM/ODM2’s time series information model to that 
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of SensorThings. Finally, improving the automation of data processing and review can be 

achieved by transitioning algorithms from research to operational use with a common set 

of software libraries and accepted best practices for integrating these approaches into 

technicians’ workflows. 

Research groups, citizen science efforts, and small municipalities may not have 

the resources, expertise, or bandwidth to effectively deploy HIS and sustain them on their 

own over the long term. Even for larger agencies like the USGS, efforts to maintain and 

modernize the software applications that keep data flowing require ongoing support. Data 

producers and providers would benefit from access to a more complete suite of both 

commercial and openly available HIS software applications that use community-endorsed 

standards to facilitate compatibility and interoperability. Public release of agency 

produced HIS software applications (e.g., those used in practice by USGS) could help 

meet some existing needs. Implementation guidance, community moderation, and 

consensus is needed to establish current recommended standards and systems for 

vocabularies, data semantics, and exchange protocols. Leading efforts to bring together 

academic, agency, practitioner, and commercial parties to achieve these goals is a 

significant undertaking and requires funding and social capital. CUAHSI and OGC are 

examples of organizations with experience and success in similar endeavors from past 

initiatives, and community efforts in other fields (e.g., LTER and Earth Science 

Information Partners (ESIP)) may serve as examples. Although numerous challenges may 

pose difficulties across various HIS use cases, we conclude that these hurdles, while 

substantial, are not insurmountable. With concerted community efforts, we are poised to 

advance the next generation of HIS and further the progress of hydrologic science. 
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FIGURES 

 
Figure 4.1 Count of publications identified by Scopus with the keyword “hydrologic 
information systems” from 1980 to 2023. 
 
 
 
 

 
Figure 4.2 Diagram of a generalized HIS architecture. Major data pools are represented in 
blue with associated data fluxes in orange and operational steps that run parallel to the 
data flow are in green.  



 176 

CHAPTER 5 

SUMMARY AND CONCLUSIONS 

As barriers for environmental monitoring continue to fall, there has been a 

proliferation in the generation of water observations data. In some cases, sensors and 

monitoring equipment have become more affordable, in other cases, challenges with 

available power or communication have been met by new technology, and in other cases, 

organizations have realized the operational benefits of high resolution monitoring data. 

Regardless of the driver, environmental monitoring data are now being produced in larger 

quantities, at higher spatial and temporal resolutions, and over extended periods and 

wider spatial coverage. We expect this trend in data collection growth to continue in the 

future. Although these factors make sensor data collection increasingly accessible and 

attractive for researchers and practitioners, managing data of increasing volume and 

complexity resulting from sensor observations remains a challenge. Software options, 

operational guidelines, and training are limited for scientists seeking approachable 

cyberinfrastructure to help them collect and manage sensor data. This work sought to 

advance tools and resources for management and use of high frequency data collected 

using in situ environmental sensors. 

Specifically, this dissertation contributes new software tools and a workflow to 

improve assurance of the quality of high-frequency data, offers guidance on utilizing 

data-intensive techniques in water science education, and presents available systems for 

managing high frequency sensor data along with a generalized architecture that serves as 

a foundation for modernizing and advancing those systems. The work described in this 

dissertation incorporates data science methodologies to demonstrate tools and techniques 
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for making data fit for scientific analysis, water management, and educational purposes. 

The outcomes of this dissertation include reusable algorithms, open-source code 

packages, interactive notebook examples, and online educational resources aimed at 

enhancing the handling and utilization of data acquired from in situ sensors. 

Chapter 2 presented a software package, pyhydroqc, for streamlining and 

potentially automating the process for reviewing and correcting time series collected by 

in situ sensors. This work is motivated by the challenge of performing quality control 

post processing on large quantities of sensor-observed data. Anomalous values related to 

adverse ambient conditions, sensor drift, and malfunction of sensors or peripherals result 

in data that must be reviewed and addressed with corrective action. The software package 

we developed incorporates both rules-based and data-driven techniques for reviewing 

data and identifying anomalies. We also explored techniques for correcting anomalies by 

automating the imputation of data values. The software package was designed to reduce 

the burden of manual quality control post processing, which is tedious for technicians and 

costly to monitoring networks. Furthermore, automating data processing has the potential 

to make high quality data available with greater consistency and immediacy. 

Development and testing of the pyhydroqc algorithms was performed on case 

study datasets of high frequency water quality observations collected in the Logan River 

Observatory (LRO). Though there was no gold standard for comparison, we were able to 

assess performance by comparing results from pyhydroqc to technician-corrected and 

labeled datasets, and we generally observed high rates of true positives for anomaly 

detection while minimizing false positives and false negatives. We conclude that rules-

based detection of anomalies in continuous water quality time series is a key component 
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of automated quality control for algorithm development and application, and in many 

cases, it may be adequate on its own compared to using more complex models. Model-

based detection may also be effective in identifying anomalies missed by rigid rules. The 

regression models used by pyhydroqc are valuable in conjunction with a threshold to 

determine how much variability from the observation causes a data point to be labeled as 

“anomalous”. Although there is often a push to find the “best” model, we found 

performance between multiple models to be similar, and simpler models may be 

preferred for computational efficiency. We also implemented a novel approach to correct 

data gaps or anomalous values with blended forecasts and backcasts of predicted data that 

may hold value for approximating diurnal patterns. While not completely removing the 

need for technician involvement, incorporating pyhydroqc functions into a technician’s 

workflow can greatly reduce the number of points for review and present options for 

correction. The functions encapsulated in the pyhydroqc Python package can be called in 

scripts or code notebooks, and we developed and published examples of performing data 

quality control operations for the LRO water quality case study data. 

Chapter 3 addressed the need for training on skills and tools for working with 

large and complex datasets. Water scientists and engineers are quantitatively savvy, but 

their general lack of proficiency with current programming, software, data management, 

and data visualization tools and techniques may limit their ability to analyze and work 

with growing volumes of water data. “Hydroinformatics” and “water data science” are 

topics for which educational resources (e.g., courses, modules, and/or online educational 

materials) can help bridge the gaps. In surveying and interviewing instructors who teach 

formal courses in these topics, we were able to gain a better understanding of the state of 
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hydroinformatics and water data science instruction and determine the key topics being 

taught, general approaches to instruction, and ideas regarding necessary components for 

successfully sharing educational resources via accessible platforms. Using those results, 

we developed and implemented a set of educational modules focused on demonstrating 

how the needs and gaps identified by study participants can be addressed through the 

sharing of instructional materials online. 

Our results showed that shared online educational content can address instructors’ 

needs for up-to-date and flexible resources, especially considering the transition to virtual 

platforms that occurred related to the COVID-19 pandemic. Instructors used a mix of 

online and in-person modalities for their courses and retained desirable aspects of online 

teaching post-pandemic. Many instructors were using custom materials with coding 

demonstrations in Python or R with a strong focus on teaching students new data 

visualization and analysis tools, how to troubleshoot code, and how to find and 

understand documentation. To address the unanimous interest among instructors in 

exchanging instructional materials, we implemented several educational modules 

designed to cover participant-identified topics of interest including programmatic access 

to public agency data, databases and structured query language (SQL), sensor data quality 

control, and machine learning classification. These modules demonstrated how to address 

identified gaps in available educational resources by incorporating online educational 

content, portable programming examples, accessible slide decks, and example 

assignments. Based on the criteria for online sharing and content organization 

recommended by study participants, we implemented the modules on the HydroLearn 

platform, and we evaluated the effectiveness of HydroLearn for meeting community 
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needs for online content exchange. We conclude that with broad community buy in, a 

system like HydroLearn can help instructors keep pace with the rapid evolution of 

technology and topics in the field and maintain the value of their course.  

Chapter 4 focused on synthesizing and evaluating the landscape of options for 

hydrologic information systems (HIS), the software and hardware components for 

managing time series data from fixed in situ sensors. As technology developed over the 

past two decades, options for HIS evolved to handle data from national and local 

agencies, research monitoring networks, and citizen science groups. HIS include 

functionality to support the full data life cycle from collection to sharing with data 

consumers, and, based on our review, we extracted the architecture for a generalized HIS 

(i.e., the common structure exhibited by all of the systems we reviewed) with the 

following key components as data “pools”:  1) data collection and acquisition; 2) 

operational storage; and 3) publication, sharing, and exchange. Data “fluxes” occur as 

data are transferred and transmitted between each pool. Additional data management 

steps (i.e., curation, processing, and derivation of higher-level data products) are 

performed in parallel to the primary data pools. We found that, although past efforts 

advanced HIS by developing software applications, data models, and standards for data 

exchange, much of this work is now out-of-date. Further development is needed to 

support advancements in monitoring technology, the demand for timely data, and 

capabilities for data driven analyses.  

We conclude that modern HIS need to address and work to overcome some 

challenges that have persisted from the early days of HIS and others that are new and 

emerging. These include: 1) non-interoperability of sensing and datalogging systems; 2) 
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heterogeneity in data models, metadata, and vocabularies; 3) modernizing existing 

systems; 4) multiple different web service interfaces and exchange standards; 5) mapping 

data to exchange standards; and 6) automating data processing and review. While not a 

comprehensive list, we identified these challenges as having greatest potential for 

advancing hydrologic data management in support of research and operational data 

collection and use. Although existing HIS development teams are working to address 

these challenges, barriers persist, and many software solutions are specific to a network, a 

project, or an agency. In considering how to make effective progress for HIS, we 

determined that renewed community efforts are needed to provide clear guidance on 

acceptable standards for data exchange and how to use them, to determine how 

communities can support and use shared vocabularies or other technologies to address 

semantic heterogeneity in data, and to develop translations from older, legacy 

information models and systems to modernized standards. 
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CHAPTER 6 

RECOMMENDATIONS 

While the work in this dissertation demonstrates progress in the development and 

application of data driven techniques, training, and tools for working with high frequency 

environmental sensor data, there are several opportunities for addressing remaining 

challenges. First, our work on automating quality control produced a Python package 

with functions that can be accessed in any Python environment, but which may not be 

approachable for users without Python programming experience. To improve 

accessibility for non-programmers, more user-friendly software could be developed (e.g., 

a graphical user interface (GUI) software that implements pyhydroqc functions). This 

may help more scientists and practitioners use the algorithms to improve their data 

review and processing. In addition to the simple rules deployed in the pyhydroqc 

package, we recommend developing additional capabilities that would enable users to 

implement rules of increased complexity such as rate of change and thresholds for 

anomaly detection that can vary over time.  

Within the area of sensor data quality control, research efforts continue to explore 

techniques for streamlining anomaly detection, with several recent studies demonstrating 

algorithms and tools that are applicable in different contexts and for a variety of data. 

Quality control of continuous sensor data does not have a “one size fits all” tool or 

algorithm that is applicable for all cases. Instead, a flexible framework (e.g., a set of 

software tools) that that can incorporate a broad spectrum of existing methods/algorithms 

to aid in data processing would be valuable. This would allow technicians to choose an 

algorithm/technique from an existing library to perform quality control processing of 
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their data. To enable this, different algorithms could be structured to accept the same 

formats of input data for training and model application and to return labeled or corrected 

data in consistent formats. By using libraries of commonly-structured algorithms, 

multiple and new algorithms could be incorporated into commercial software systems 

(e.g., Aquarius, Kisters) and parallel open source software tools (e.g., Dendra, 

HydroServer) making data review and post processing more consistent between systems. 

Furthermore, there may be opportunities for inserting algorithms and automated steps 

into different points in the data management workflow. In short, algorithms in consistent 

wrappers could be incorporated into a variety of software tools, GUIs, or stages in user 

workflows. 

Furthermore, there is opportunity in applying the algorithms in pyhydroqc to a 

greater body of training data as the case study datasets do not represent the full spectrum 

of hydrologic and water quality behavior. More directly examining the performance of 

model types related to physical characteristics of the data or the hydrologic or 

environmental system within which they were collected could help inform transferability 

of the techniques. Because some algorithms might be better suited to certain site or data 

characteristics, additional application and testing could make it easier to create 

recommendations on which algorithm to use for which situations. In the vein of 

developing a common library of algorithms for environmental sensor data anomaly 

detection, benchmark datasets with confirmed labels could also be produced to act as 

gold standards for training and testing algorithms to avoid concerns with technician 

subjectivity. Such benchmark datasets have driven innovation in algorithm development 

and have been instrumental in computational fields such as computer vision, image 
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classification, and other applications of machine learning.  

Despite advances in automating quality control post processing with the 

pyhydroqc package or other similar software tools, technician review may still be 

required, and performance tradeoffs between false positives and false negatives must be 

evaluated to determine how well these tools will integrate with existing software, 

systems, and workflows used by scientists, data managers, and practitioners. Different 

monitoring networks may require different approaches based on the size of the network 

(i.e., the number of sites/sensors producing data), the number of technicians available to 

perform QAQC, existing or agency-mandated QAQC protocols, and requirements for 

data latency and turnaround. Operators of monitoring systems also need to consider 

whether data should be processed agnostic of other sites or variables, which may limit the 

algorithms/approaches that can be used. 

Our work on hydroinformatics and water data science instruction illustrated that 

despite high interest from instructors in sharing educational resources online, barriers 

persist resulting in a lack of broadly available educational resources. As an online 

repository for water-related educational materials, HydroLearn is a natural fit for this 

purpose, and based on our evaluation, there are opportunities for using HydroLearn in 

this role and for the hydrology community to coalesce around HydroLearn as a 

community platform for sharing these types of materials. However, our experience in 

using HydroLearn resulted in recommendations for improvements to make deposit of 

educational materials more straightforward and valuable for instructors. Specific 

suggestions include enhancing discoverability of resources with additional search facets 

such as keywords, standardizing and facilitating metadata entry with webforms or 
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markdown, improving course/module navigability, and reducing enforced hierarchical 

organization that may not fit some materials. A major potential improvement for 

HydroLearn is support for more direct linkages to example code. We were able to launch 

code notebooks by creating resources in HydroShare, depositing code notebooks as part 

of those resources, and manually linking the HydroShare resources from HydroLearn to 

then open in the HydroShare JupyterHub server. By deploying a JupyterHub environment 

or a backend connection to the HydroShare JupyterHub, HydroLearn could reduce 

overhead for incorporating code into instructional materials. Launching a code notebook 

directly from an educational module in HydroLearn is functionality that would be a major 

benefit for integrating technical content in hydrologic learning and that would make 

HydroLearn attractive for hydroinformatics and water data science instructors.  

We recommend that instructors share their own educational resources as well as 

make use of existing shared materials by adapting, reusing, and providing feedback. As 

articulated by study participants, problem sets that show application of data science and 

machine learning approaches using real water data and real hydrology/water 

resources/water management scenarios are especially needed. This type of experiential 

learning is important for students, but difficult for instructors to develop at scale, thus the 

ability to incorporate examples from other instructors would be highly valuable in 

developing course content. The structure of the educational modules we developed and 

shared as part of this work serves as a template for instructors (e.g., our examples include 

learning objectives, structured content narrative, integration of example code, and a 

technical assignment). Considering the evolving technological landscape, 

hydroinformatics and water data science are fields in continuous development. Access to 
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and collaboration on educational materials can help instructors adapt more quickly and 

effectively to ensure that their course offerings remain valuable, relevant, and up to date. 

Institutions of higher education should also consider ways to encourage community 

sourcing of course content and to incentivize instructors who make efforts to share their 

educational materials. 

Our work reviewing and synthesizing HIS illustrates opportunities to advance 

existing HIS to better support collection, management, sharing, and use of fixed-point 

time series observations. This is a common and important data type in hydrology and 

water resources engineering for which there remains a shortage of effective and available 

software systems and tools. Overarching issues related to interoperability and 

heterogeneity (in tools, formats, semantics, etc.) could be addressed through authoritative 

guidance produced by community leaders who work to achieve broad buy in from 

community members. Objectives of a community effort might include guidance on 

appropriate use of web service interfaces and data encoding standards for exchange over 

the Internet, consensus mappings to align existing information models to 

generic/modernized standards (e.g., mapping the older ODM information model to the 

newer SensorThings information model), and the development of or recommendations 

for a more comprehensive system for curating and promoting the use of shared 

vocabularies and/or other technologies to minimize remaining semantic heterogeneity in 

observational data. We suggest that collaboration among representatives of academic 

monitoring networks, practitioners from national or other agencies that collect data, 

vendors of commercial HIS software, and governing bodies and consortiums will be 

required to comprehensively address these remaining challenges. 
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When the Consortium of Universities for the Advancement of Hydrologic 

Science, Inc. (CUAHSI) HIS was initially established, these groups collaborated and 

produced some of the first attempts at a standardized data model, a moderated vocabulary 

system, and data mapping and encoding for web services. Furthermore, the CUAHSI-led 

efforts also resulted in open-source software applications that enabled data providers to 

establish more robust HIS than they could have developed on their own. Over time, the 

software products that are part of the CUAHSI HIS are becoming deprecated and are 

losing relevancy. Without necessary updates, it has become increasingly difficult to 

operate the software on more modern computer systems. While the suite of available 

software has not kept up, the pace of data collection has only increased, leaving a major 

gap between our ability to produce data and our ability to manage and use data. 

Commercially available software has met some, but not all of this need. Software (both 

commercial and open-source), data systems, and practitioners must continue to adapt. 

Because many organizations that collect hydrologic time series data lack staff with 

software development expertise and cannot afford existing commercial software, there 

remains a growing need for open-source software applications that use standards to 

enable integration with each other, with existing systems, and with commercial products. 

A next generation community effort is needed to modernize HIS and to produce systems 

that can adapt to the growing volume of monitoring data and the needs of scientists, 

agencies, and practitioners who collect, share, and use the data. Through united and 

coordinated work, a next iteration of HIS can enable advancements in hydrologic science. 
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Appendix A. Anomaly Detection Background 

Manual post processing by a technician remains the most commonly implemented 

approach for correcting anomalies in environmental sensor data. Software tools have 

been developed to assist technicians in performing quality control, wherein anomalies are 

identified visually or using filters or rules that are implemented based on user-input 

(Horsburgh et al., 2015; Sheldon, 2008). While initially straightforward to implement, 

manual post processing is resource-intensive, requires significant expertise, and may be 

implemented unevenly within and between sensor networks. Additionally, manual 

approaches may not be reproducible making it difficult to track the provenance of data 

from raw measurements to quality controlled products. Data driven anomaly detection 

has the potential to address the deficiencies of manual post processing by streamlining 

and standardizing the workflow. 

Numerous data driven approaches have been documented for anomaly detection 

(Chandola et al., 2009; Cook et al., 2020; Tan et al., 2019). Basic approaches use rules to 

test data plausibility - e.g., range and variability checks (Taylor and Loescher, 2013), and 

even studies with complex workflows initially implement rules based approaches (e.g., 

Leigh et al., 2018). Statistical approaches rely on the distribution of data to identify 

points outside of the expectation (Cook et al., 2020). Regression approaches estimate a 

value and compare it to the observation (Chandola et al., 2009). Feature based approaches 

apply numerous variables (or features) within one or more machine learning methods to 

determine if the data point should be grouped with valid or anomalous points (Talagala et 

al., 2019). In approaching data driven methods for anomaly detection, important 

considerations include: 
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• Data extent: What duration of data are available? Some methods require data 

partitioned into separate groups for training and testing models. 

• Data labels: Do sufficient data exist in which anomalies have been identified by an 

expert? The availability of labeled data impacts which types of models can be used. 

Supervised model types require labeled data for training while unsupervised model 

types do not. For all model types, labeled data enable assessment of performance. 

• Data quality: Do sufficient data exist in which anomalies have been corrected? Some 

methods require ‘clean’ data that are free from anomalies for training models. 

• Variables: What variables are to be considered? Is a single variable/sensor observed 

or are multiple variables measured? Do sensors at nearby sites provide additional 

information? 

• Anomaly types: What types of anomalies are of particular concern? Can rules based 

detection effectively detect some of these cases? 

• Online/offline detection: Does detection need to occur in real time online, or is a 

retrospective, offline approach acceptable? 

In the following sections, we provide a brief description of several approaches 

and methods for detecting and correcting anomalies in environmental sensor data. We 

also illustrate gaps in the current state of practice for anomaly detection and correction in 

the quality control process. 

A.1 Data Redundancy Approaches 

Various types of data redundancy, including sensors, people, and models, are used 

to detect anomalies in environmental sensor data. The gold standard (World 

Meteorological Organization, 2008, Mourad and Bertrand-Krajewski, 2002) compares 
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data from multiple sensors, requiring at least three sensors to determine which 

observation is erroneous. Increased cost, maintenance, power, and data storage 

requirements challenge observational networks to implement redundant sensors. 

Furthermore, multiple sensors may all exhibit the vagaries of environmental events, 

sensor malfunctions, and infrastructure failures, complicating assessment and correction 

of data quality. To improve the consistency of quality control, Jones et al. (2018) suggest 

another form of data redundancy in which multiple technicians collaborate to review and 

correct data. Finally, data redundancy may be achieved by modeling expected values for 

comparison with sensor measurements. A physically based model could be used; 

however, model availability and uncertainty are barriers (Moatar et al., 2001). Given the 

relative simplicity of implementation, ability to scale to large volumes of data, few input 

requirements, and potential for fast performance, statistical and data driven techniques 

may be more appropriate. Thus, we examined several classes of data driven techniques to 

model expected sensor behavior as data redundancy approaches. 

A.2 Univariate or Multivariate Approaches 

Some predictive time series models are based on data from a single sensor 

independent of the condition of other co-located sensors or data. Advantages of these 

univariate methods are that processing can be performed on multiple sensors 

independently and simultaneously, and gaps or errors in data from one sensor will not 

impact data from other sensors (Hill and Minsker, 2010). However, anomalies in one 

sensor stream may correspond to anomalies in a related sensor, so approaches that utilize 

the information from multiple sensors provide multiple lines of evidence toward anomaly 

detection (Li et al., 2017). Furthermore, when performing quality control post processing, 
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technicians regularly consult the record of other variables simultaneously recorded at the 

same site to check for ‘internal consistency’ (Campbell et al., 2013) and to inform 

corrective actions. There is no clear best approach, and even the same authors 

simultaneously promote a univariate detector (Hill and Minsker, 2010) and a multivariate 

approach (Hill et al., 2009). Either method may yield acceptable results, although Leigh 

et al. (2018) report poor performance for multivariate time series regression compared to 

univariate. The data in question will drive whether a univariate method is required or if 

additional power could be achieved with multiple variables. In our work, we considered 

both univariate and multivariate approaches and compared the benefits and drawbacks 

related to the data we examined. 

A.3 Spatial Dependency 

‘External consistency’ refers to comparison with data from other locations 

(Campbell et al., 2013), and some data driven approaches are based on relationships 

between sites. In particular, spatial dependencies between weather sensors have been 

used to identify anomalies (Galarus et al., 2012). In another application, data driven 

models used weighted data from neighboring stream monitoring sites to infill daily mean 

flow records (Giustarini et al., 2016). One study included data at an upstream site offset 

by estimated travel time to detect anomalies in aquatic data (Conde, 2011). Spatial 

methods assume high correlation for a particular variable at sites having similar 

characteristics, which may not be clearly established for the data of interest. In this work, 

we focused models on data at a single site of interest so that detection and correction 

could be applied to sites independently. 
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A.4 Regression Approaches 

Regression models are a class of data driven anomaly detectors for time series 

that predict the next anticipated value based on previous data (either univariate or 

multivariate). To detect anomalies with regression, the modeled value is compared to the 

observed, and a range of acceptability is determined for the residuals such that points 

outside of that range are classed as anomalous (and vice versa). Constant acceptability 

thresholds may be based on a user defined range or determined as a prediction interval 

based on the model results (Leigh et al., 2018). Thresholds may also be dynamic, varying 

based on the range of the model residuals (Hundman et al., 2018). For example, in one 

study (Dereszynski and Dietterich, 2007), the threshold range for an observation varied 

based on the modeled state of the sensor (i.e., a narrower range when the sensor was 

classed as “Good” versus “Bad”). 

Auto-regressive integrated moving average (ARIMA) is a regression technique 

that uses a combination of past data to forecast the next point. ARIMA has been 

successfully implemented to predict environmental data and subsequently detect 

anomalies (Hill and Minsker, 2010; Leigh et al., 2018; Papacharalampous et al., 2019). 

Another regression technique based on a previous sequence of data is Long Short-Term 

Memory (LSTM), a class of Artificial Neural Networks (ANNs). Though applications to 

environmental data anomalies to date are limited, LSTM models have been used to 

reconstruct time series to detect anomalies in other fields (Hundman et al., 2018; 

Lindemann et al., 2019; Malhotra et al., 2016; Yin et al., 2020), and other ANN model 

types have been used for environmental anomaly detection (Hill and Minsker, 2010; 

Russo et al., 2020). Other algorithms that show promise for time series regression include 
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Prophet, a time series forecasting method developed by Facebook with focus on business 

applications (Taylor and Letham, 2018), and Hierarchical Temporal Memory (HTM) 

(Ahmad et al., 2017). Another method that has been implemented for anomaly detection 

in environmental sensor data is Dynamic Bayesian Networks, which predict values in a 

time series based on assigned model states corresponding to temporal windows. Studies 

developed models based on a few previous points (Hill et al., 2009), thousands of 

previous points (Hill and Minsker, 2006), and multiple past years of data to give an 

output based on the day of year and hour of day (Dereszynski and Dietterich, 2007). 

These models assume that temporal states can be definitively assigned as well as 

consistently applied, and we did not attempt them due to complexity and obscurity of 

implementation.  

Because regression models produce an estimate, they are well-suited for both 

detection and correction of anomalous data. The time series regression models we 

investigated were ARIMA, LSTM, and Facebook Prophet. While ARIMA has been 

commonly attempted for anomaly detection in time series data, other techniques are 

emergent in this field (e.g., LSTM), and there are few examples comparing multiple 

regression techniques for aquatic sensor data.  

A.5 Feature Based Approaches 

Feature based methods comprise another class of anomaly detectors commonly 

used for discrete data (Tan et al., 2019), which some authors have applied to 

environmental time series (Leigh et al., 2018; Russo et al., 2020; Talagala et al., 2019). 

Unlike regression methods, feature based methods do not make a prediction of the 

observation. Anomalies are detected either based on a supervised model trained to data 
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labels (anomalous or valid) (Russo et al., 2020), or an unsupervised model that 

determines the likelihood of the point being anomalous based on distance to neighboring 

points. These methods rely on multiple variables as model input (features), which, in the 

case of aquatic sensor time series, may correspond to variables measured concurrently by 

adjacent sensors, past values of the variable of interest, or transformations of the 

relationships between these variables. Particularly for data with temporal correlation, it is 

not obvious which features should be selected, and complex feature engineering may be 

required (Christ et al., 2018). Another challenge is selecting an appropriate data 

transformation, a preprocessing step (e.g., taking the first derivative of the data) to 

highlight outlying points (Leigh et al., 2018; Talagala et al., 2019). 

Almost any feature based machine learning method may be applied to anomaly 

detection problems, and approaches described in the literature include principal 

components analysis, support vector machines (Tran et al., 2019), HDOutliers (Leigh et 

al., 2018), k-nearest neighbor (Russo et al., 2020; Talagala et al., 2019), clustering (Hill 

and Minsker, 2010), random forest (Russo et al., 2020), xgboost, and isolated forest 

(Smolyakov et al., 2019). The success of feature based techniques in detecting anomalies 

from environmental sensor data is mixed (Hill and Minsker, 2010; Leigh et al., 2018; 

Russo et al., 2020). As they do not make predictions, feature based approaches are not 

well-suited to performing corrections. Given that our objectives were to both detect and 

correct anomalies, we did not pursue feature based approaches in the work reported here. 

A.6 Anomaly Types 

In most of the studies cited here, the emphasis is on anomalies that are outliers 

where the value of the variable is outside of expected ranges or rates of change. Detection 
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of gradual bias that may occur due to drift in the sensor or ongoing fouling has not been 

successfully reported. The models implemented by Dereszynski and Dietterich (2007) 

identify some biases resulting from abrupt shifts in conditions; however, the authors 

acknowledge that complex anomalies are outside of the performance of their detector. 

Conde (2011) was unable to identify labeled anomalies with relatively small variation 

from the measured baseline. Leigh et al. (2018) intentionally prioritized outliers in 

development of anomaly detection techniques for aquatic sensors. Given that existing 

methods have not addressed anomalies caused by drift and fouling, there is significant 

room for improvement in methods for detecting these types of anomalies. We examined 

both outliers and more subtle anomaly types in our methods and software 

implementation.  

A.7 Reproducibility 

Although effectively implemented for specific case studies in the research realm, 

none of the techniques described in the cited studies have been packaged as easily 

accessible software for broad application and dissemination. Without reusable code, the 

specifics of the algorithms as implemented with environmental data cannot be examined, 

further tested, or applied to other datasets. Recent work in outlier detection was 

encapsulated in an R package (Talagala et al., 2019); however, a lack of documentation 

made it difficult to know how to install the package and apply the methods to our 

datasets. Provenance of data from raw field observations to quality controlled data 

products is vitally important yet rarely described in sufficient detail that the process used 

to arrive at final data products could be repeated (Horsburgh et al., 2015). Applying more 

automated techniques can help, and reusable software tools can overcome barriers related 
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to understanding and implementing complex algorithms for practical application. Rather 

than a model calibrated to a specific variable/site combination, practitioners need tools 

that can be applied to a broad suite of variables and/or monitoring locations documented 

in a reusable and reproducible way. Thus, we sought to package the tools we developed 

as open source software that could easily be deployed in a commonly available analytical 

environment. 

A.8 Anomaly Correction 

Various techniques and past studies developed functionality for detecting 

anomalies, but few applied corrective actions, which is an important and time consuming 

step in quality control post processing. A handful of studies used modeled ARIMA 

forecasts to directly replace anomalies that were detected by the same ARIMA model, 

termed ‘anomaly detection and mitigation’ (ADAM) (Hill and Minsker, 2010; Leigh et 

al., 2018). However, the objective of ADAM was to improve detection by ensuring that 

model input data did not include detected anomalies, not to generate a corrected version 

of the dataset. Furthermore, the success of ADAM was mixed and resulted in high rates 

of false positives (Leigh et al., 2018). Given the general lack of available methods for 

automated correction, we explored new approaches for inclusion in the software package 

we developed. 
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Appendix B. List of pyhydroqc Files and Functions 

This appendix provides a listing of each of the Python files in the pyhydroqc 

package and describes the functionality that each provides. More detailed documentation 

is found in the GitHub repository and package documentation (see the Software 

Availability Section). 

parameters.py: This file contains assignments of parameters for all steps of the 

anomaly detection workflow. Parameters are defined specific to each site and observed 

variable that are referenced in the detect script. LSTM parameters are consistent across 

sites and variables. ARIMA hyper parameters are specific to each site/variable 

combination, other parameters are used for rules based anomaly detection, determining 

dynamic thresholds, and for widening anomalous events. 

anomaly_utilities.py: Contains functions for performing anomaly detection and 

correction: 

• get_data: Retrieves and formats data. Retrieval is based on site, observed variable, 

and year. To pass through subsequent steps, the required format is a Pandas data 

frame with columns corresponding to datetime (as the index), raw data, corrected 

data, and data labels (anomalies identified by technicians). 

• anomaly_events: Widens anomalies and indexes events or groups of anomalous data. 

• assign_cm: A helper function for resizing anomaly events to the original size for 

determining metrics. 

• compare_events: Compares anomaly events detected by an algorithm to events 

labeled by a technician. 

• metrics: Determines performance metrics of the detections relative to labeled data. 
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• event_metrics: Determines performance metrics based on number of events rather 

than the number of data points. 

• print_metrics: Prints the metrics to the console. 

• group_bools: Indexes contiguous groups of anomalous and valid data to facilitate 

correction. 

• xfade: Uses a cross-fade to blend forecasted and backcasted data over anomaly 

events for generating data correction. 

• set_dynamic_threshold: Creates a threshold that varies dynamically based on the 

model residuals. 

• set_cons_threshold: Creates a threshold of constant value. 

• detect_anomalies: Uses model residuals and threshold values to classify anomalous 

data. 

• aggregate_results: Combines the detections from multiple models to give a single 

output of anomaly detections. 

• plt_threshold: Plots thresholds and model residuals. 

• plt_results: Plots raw data, model predictions, detected and labeled anomalies. 

• modeling_utilities.py 

• Contains functions for building and training models: 

• pdq: Automatically determines the (p, d, q) hyperparameters of a time series for 

ARIMA modeling. 

• build_arima_model, LSTM_univar, LSTM_multivar, LSTM_univar_bidir, 

LSTM_multivar_bidir: wrappers that call other functions in the file to scale and 

reshape data (for LSTM models only), create and train a model, and output model 
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predictions and residuals. 

• create_scaler: Creates a scaler object for scaling and unscaling data. 

• create_training_dataset, create_bidir_training_dataset: Creates a training dataset 

based on a random selection of points from the dataset. Reshapes data to include the 

desired time_steps for input to the LSTM model - the number of past data points to 

examine or past and future points (bidirectional). Ensures that data already identified 

as anomalous (i.e., by rules based detection) are not used. 

• create_sequenced_dataset, create_bidir_sequenced_dataset: Reshapes all inputs 

into sequences that include time_steps for input to the LSTM model - using either 

only past data points or past and future data points (bidirectional). Used for testing or 

for applying the model to a full dataset. 

• create_vanilla_model, create_bidir_model: Helper functions used to create single 

layer LSTM models. 

• train_model: Fits the model to training data. Uses a validation subset to monitor for 

improvements to ensure that training is not too long. 

rules_detect.py: Contains functions for rules based anomaly detection and 

preprocessing. Depends on anomaly_utilities.py. Functions include: 

• range_check: Scans for data points outside of user defined limits and marks the 

points as anomalous. 

• persistence: Scans for repeated values in the data and marks them as anomalous if 

the duration exceeds a user defined length. 

• group_size: Determines the maximum length of anomalous groups identified by the 

previous steps. 
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• interpolate: Corrects data points with linear interpolation, a typical approach for 

short anomalous events. 

• add_labels: Enables the addition of anomaly labels (referring to anomalies 

previously identified by an expert) in the case that labels may have been missed for 

corrected data that are NaN or have been set to a no data value (e.g., -9999). 

calibration.py: Contains functions for identifying and correcting calibration 

events. Functions include: 

• calib_edge_detect: Identifies possible calibration event candidates by using edge 

filtering. 

• calib_persist_detect: Identifies possible calibration event candidates based on 

persistence of a user defined length. 

• calib_overlap: Identifies possible calibration event candidates by finding concurrent 

events of multiple sensors from the calib_persist_detect function. 

• find_gap: Determines a gap value for a calibration event based on the largest data 

difference within a time window around a datetime. 

• lin_drift_cor: Performs linear drift correction to address sensor drift given 

calibration dates and a gap value. 

model_workflow.py: Contains functionality to build and train ARIMA and 

LSTM models, apply the models to make predictions, set thresholds, detect anomalies, 

widen anomalous events, and determine metrics. Depends on anomaly_utilities.py, 

modeling_utilities.py, and rules_detect.py. Wrapper function names are: ARIMA_detect, 

LSTM_detect_univar, and LSTM_detect_multivar. LSTM model workflows include 

options for vanilla or bidirectional. Within each wrapper function, the full detection 
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workflow is followed. Options allow for output of plots, summaries, and metrics. 

ARIMA_correct.py: Contains functionality to perform corrections and plot 

results using ARIMA models. Depends on anomaly_utilities.py. 

• ARIMA_group: Ensures that the valid data surrounding anomalous data points and 

groups of data points are sufficient forecasting/backcasting. 

• ARIMA_forecast: Creates predictions of data where anomalies occur. 

• generate_corrections: The primary function for determining corrections. Passes 

through data with anomalies and determines corrections using piecewise ARIMA 

models. Corrections are determined by averaging together (cross fade) both a forecast 

and a backcast. 
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Appendix C. Anomaly Detection and Correction Examples 

This appendix includes additional examples of anomaly detection and correction 

performed by the pyhydroqc workflow on LRO case study data.  

Figure C1 illustrates anomaly detection false positives and true positives. Peaks 

and troughs in the data were considered anomalies by the model (ARIMA), but only two 

of them (2017-12-18 and 2017-12-26) were labeled by the technician. It is unclear why 

certain peaks were labeled by the technician while others were not. Although this 

example includes several false positives, the algorithm behaved as expected.  

In some cases, the apparent success of the model results may be an artifact of both 

the generalization of detections in the ‘compare_events’ function and the liberal 

application of labels by technicians. Some time series contain extensive periods of data 

labeled as anomalous that correspond to concerns with sensor validity or site conditions 

(e.g., Figure C2). When comparing events to determine confusion matrix categories, any 

overlap in model detections results in all points of the anomalous period being identified 

as true positives. This is an example where large events may bias the metrics toward true 

positives if any point in the event is detected or toward false negatives if the event goes 

undetected (less likely). This particular event contributes to the 13,000+ true positives for 

this time series (pH at Main Street).  

We were interested in whether the models could detect calibration events. For one 

time series (pH at Main Street), one model type (LSTM multivariate bidirectional) 

detected approximately 20% of labeled calibration events. We found that the master list 

of calibrations recorded in the field notes differs from what technicians labeled in the 

data. Some calibrations recorded in the field notes were not labeled by technicians in the 
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data, and other events labeled by technicians appeared to be calibrations but were not part 

of the master list derived from the field notes. These discrepancies point to deficiencies in 

the labeled data. The model predictions are erratic and do not track the observations at 

most calibration events (Figure C3a), even if the threshold was not sensitive enough to 

result in detections. In some cases, calibration events were detected as anomalous by the 

model (Figure C3b), but there was no mechanism to distinguish from other anomalies. 

These examples illustrate the challenge of using the model based approach for detecting 

and correcting calibration events. 

A direct comparison of results from each model type illustrates model behaviors 

and associated detections. For specific conductance at Tony Grove, where there was 

variability in performance between model types (see Section 2.3.4), the ARIMA and 

LSTM multivariate vanilla models detected points at the edges of long duration labeled 

events, improving their performance metrics relative to the other model types. Figure C4 

further illustrates differences between model estimates and resulting detections. For the 

first date range, the estimates of both multivariate models deviate from the original data 

because they use other variables as input. In the absence of this information, only one 

univariate model detects an anomaly. In the second date range, models responded to the 

localized event in distinct ways, and none resulted in a detection. In the third date range, 

estimates from the multivariate models exhibit spikes around the detections illustrating 

that information is coming from other variables. It is likely that some of these labeled 

anomalies correspond to calibration events for which other variables exhibited greater 

shifts than did specific conductance. 

Although the correction algorithm was capable of capturing diurnal oscillations, 
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in some cases, data patterns did not translate and propagate through the corrections (e.g., 

Figure C5). Because each correction is based on individual, independent models trained 

for data immediately prior to and following an anomalous event, the number of data 

points considered can vary. Even though the adjacent data used for input is limited by the 

maximum duration parameter, some models may still overgeneralize (i.e., a straight line). 

Other models may use so little data that a pattern is missed, while still others are focused 

on a single dominant feature (i.e., an oscillation or a curve). Furthermore, a pattern may 

be damped over an extended time period. Explicitly incorporating seasonality into 

development of the ARIMA models may result in more consistent output of oscillations. 

However, developing seasonal ARIMA models is computationally demanding, and the 

correction algorithm already requires significant computational resources.  

The correction algorithm is directly dependent on identified anomalies. In Figure 

C5c, an anomalous event (2018-06-19 – 2018-06-20) was detected by the model, but 

even with widening, the initial abrupt decrease was not labeled anomalous, so it was 

considered valid data, and it directly influenced the forecast. For the correction algorithm 

to be effective, anomalies should be reviewed and may need adjustment (e.g., further 

widening).  
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Figure C1. Examples of anomalies detected using an ARIMA model for specific 
conductance at Main Street. 
 
 
 

 
Figure C2. Examples of anomalies detected using an LSTM multivariate bidirectional 
model for pH at Main Street for of an extended period of data labeled as a sensor 
malfunction.  
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Figure C3. Examples of anomalies detected using an LSTM multivariate bidirectional 
model on a pH sensor at Main Street with calibration events. 
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Figure C4. Examples comparing model estimates and detected anomalies for all model 
types for specific conductance at Tony Grove 
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Figure C5: Examples of problematic algorithm correction. a and b: dissolved oxygen at 
Tony Grove, c: specific conductance at Mendon. 
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Crowl, R. R. Dupont, J. R. Ehleringer, J. Endter-Wada, C. Flint, J. Grant, S. Hinners, J. S. 
Horsburgh, D. Jackson-Smith, A. S. Jones, C. Licon, S. E. Null, A. Odame, D. E. Pataki, D. 
Rosenberg, M. Runberg, P. Stoker, and C. Strong (2015), iSAW: Integrating structure, actors, 
and water to study socio-hydro-ecological systems, Earth’s Future, 3, 
doi:10.1002/2014EF000295. 

12. Jones, A. S., J. S. Horsburgh, N. O. Mesner, R. J. Ryel, and D. K. Stevens (2012), Influence 
of Sampling Frequency on Estimation of Annual Total Phosphorus and Total Suspended 
Solids Loads. Journal of the American Water Resources Association, 1-18, 
doi:10.1111/j.1752-1688.2012.00684.x. 

13. Jones, A.S., D. K. Stevens, J. S. Horsburgh, and N. O. Mesner (2011), Surrogate measures for 
providing high frequency estimates of total suspended solids and total phosphorus 
concentrations, Journal of the American Water Resources Association, 47(2), 239-253, 
doi:10.1111/j.1752-1688.2010.00505.x. 

14. Horsburgh, J. S., A. S. Jones, D. K. Stevens, D. G. Tarboton, and N. O. Mesner (2010), A 
sensor network for high frequency estimation of water quality constituent fluxes using 
surrogates, Environmental Modelling & Software, 25, 1031-1044, 
doi:10.1016/j.envsoft.2009.10.012. 

Selected Datasets, Online Resources, and Code Repositories 

1. Jones, A.S., J.S. Horsburgh, C.J. Bastidas Pacheco. (2022). Hydroinformatics and Water Data 
Science. HydroLearn. https://edx.hydrolearn.org/courses/course-
v1:USU+CEE6110+2022/about 

2. Jones, A.S., J. S. Horsburgh, C. J. Bastidas Pacheco (2022). Hydroinformatics Instruction 
Modules Example Code, HydroShare, 
http://www.hydroshare.org/resource/761d75df3eee4037b4ff656a02256d67 (collection 
consisting of 4 resources) 

3. Jones, A. S., J. S. Horsburgh, C. G. Flint (2022). Hydroinformatics and Water Data Science 
Instructor Interviews and Surveys, HydroShare, 
https://doi.org/10.4211/hs.15b1a61f47724a6e8deb100789353df2 
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4. Jones, A.S., T.L. Jones, J.S. Horsburgh (2022). pyhydroqc v0.0.4 
Zenodo, 10.5281/zenodo.6336536. More available: https://ambersjones.github.io/pyhydroqc/ 
and https://pypi.org/project/pyhydroqc/ 

5. Jones, A. S. (2022). pyhydroqc Sensor Data QC: Single Site Example, HydroShare, 
https://doi.org/10.4211/hs.92f393cbd06b47c398bdd2bbb86887ac 

6. Jones, A. S., J. S. Horsburgh, T. Jones (2021). Techniques for Increased Automation of 
Aquatic Sensor Data Post Processing in Python: Video Presentation, HydroShare, 
http://www.hydroshare.org/resource/bc5c616426214b60b068352ae028d963 

7. iUTAH Data Manager, iUTAH GAMUT Working Group (2021). iUTAH GAMUT 
Environmental Observatory Collected Datasets, HydroShare, (collection consisting of 73 
resources). http://www.hydroshare.org/resource/02b155615b794671bfc4c48870b3ce6f 

8. Logan River Observatory (2021). Logan River Observatory Datasets, HydroShare, (collection 
consisting of 51 resources). 
http://www.hydroshare.org/resource/def147fa06de4c67810586d45337b413 

9. Jones, A. S., S. M. Alger, H. Salehabadi, A. Repko (2019). Elasticity in the Colorado River 
Basin Using the Budyko Method, HydroShare, 
http://www.hydroshare.org/resource/692cd36ffac24978b13b7352f62532ff 

10. Jones, A. S., S. M. Alger, H. Salehabadi (2019). Postponing Equalization to Retain 
Accumulated Sediment in the Grand Canyon Ecosystem, HydroShare, 
http://www.hydroshare.org/resource/8860d75de30747e2a06e06f2d9783a8e 

11. Jones, A.S., W. Rhoads, J. S. Horsburgh (2019). Water Quality Data - RAPID Maria Project, 
HydroShare, http://www.hydroshare.org/resource/ddccfc3133034c43b04ebedac2822a23 

12. Tennant, H., A. S. Jones (2019). Development and Implementation of Database and Analyses 
for High Frequency Data, HydroShare, 
http://www.hydroshare.org/resource/bf57045c30054383a6df9bb8cab381d3 

13. Jones, A.S., D. Eiriksson, J. S. Horsburgh (2018). Quality Control Experiment, HydroShare, 
https://doi.org/10.4211/hs.31f30d14c88748d986842d278d125a5c 

Theses 

1. Jones, Amber Spackman (2008), Estimating Total Phosphorus and Total Suspended Solids 
Loads from High Frequency Data, M.S. Thesis, Utah State University, Logan UT. (Available 
at: http://digitalcommons.usu.edu/etd/205) 

Conference Proceedings Papers 

1. Cox, S., Smith, T., Jones, T.L., Droge, G., Jones, A.S. (2020) Power-Optimal Slew 
Maneuvers in Support of Small Satellite Earth Imaging Missions. SSC20-P3015. 34th Annual 
Small Satellite Conference, Utah State University, July 2020, Logan Utah. 

2. Horsburgh, J.S., A.S. Jones, M. Ramirez, Caraballo, J. (2016). Time Series Analyst: 
Interactive online visualization of environmental time series data, In Sauvage, S., Sanchez-
Perez, J.M., Rizzoli, A. (Eds.), Proceedings of the 8th International Congress on 
Environmental Modeling and Software, July 11-15, Toulouse France. 

3. Horsburgh, J. S., A. S. Jones, S. Reeder (2014). ODM Tools Python: Open source software 
for managing continuous sensor data, In: Proceedings of the 11th International Conference on 
Hydroinformatics, 17-21 August, New York City, NY. 

4. Horsburgh, J. S., A. S. Jones, S. Reeder (2014). Automating data management and sharing 
within a large-scale, heterogeneous sensor network, In: Ames, D.P., Quinn, N.W.T., Rizzoli, 
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A.E. (Eds.), Proceedings of the 7th International Congress on Environmental Modelling and 
Software, June 15-19, San Diego, California, USA. ISBN: 978-88-9035-744-2. 

Technical Reports and White Papers 

1. Jones, A.S., Brazil, L. (2018). HydroShare Guide for Data Authors and Publishers. 
Consortium of Universities for the Advancement of Hydrologic Science, Inc. 
https://help.hydroshare.org/static/media/uploads/hydroshare_guide_for_data_authors_and_pu
blishers.pdf 

2. Horsburgh, J.S., A.S. Jones (Eds.) (2016). iUTAH Research Data Policy Version 1.7, 
innovative Urban Transitions and Aridregion Hydrosustainability, Logan, UT. 

3. Jones, A.S., Eiriksson, D., Cox, C., Crawford, J. (2014). iUTAH GAMUT Network Quality 
Assurance and Quality Control Plan Version 1.3, innovative Urban Transitions and 
Aridregion Hydrosustainability, Logan, UT. 

4. Neilson, B. T., J. S. Horsburgh, D. K. Stevens, M. R. Matassa, J. N. Brogdon, and A. 
Spackman (2004), Comparison of Complex Watershed Models’ Predictive Capabilities:  
EPRI’s Watershed Analysis Risk Management Framework (WARMF) vs. USEPA’s Better 
Assessment Science Integrating Point and Nonpoint Sources (BASINS/WinHSPF), Utah 
Water Research Laboratory, Utah State University, Logan, UT. 

Conference Presentations, Posters, and Abstracts 

1. Jones, A.S. (2023). NuGo2: A Centralized and Standardized Program for Data Monitoring 
and Alerts., Presented at USGS National Water Data Training Workshop, Phoenix, AZ, 24 
August. 

2. Jones, A.S., Walker, W.J. (2023). Progress Toward Automating Aquatic Time Series Records 
Processing at the USGS. Presented at National Monitoring Conference, Virginia Beach, VA. 
26 April. 

3. Jones, A.S. (2022). Progress Toward Automated QAQC – Research and Applications, 
Presented at Nordic Hydrometry Workshop, 29 September. 

4. Jones, A.S., Horsburgh, J.S., Flint, C.G., Lane, B.A., Bastidas Pacheco, C.J. (2022). Water 
Data Science and Hydroinformatics Instruction: Community Perspectives and Online 
Learning Resources, Presented at Data Science and Open Science Virtual Summit, 29 July. 

5. Jones, A.S., Horsburgh, J.S., Flint, C.G., Lane, B.A., Bastidas Pacheco, C.J. (2022). 
Community Perspectives and Online Learning Resources for Advancing Instruction for 
Hydroinformatics and Water Data Instruction, Abstract 401-03, Presented at the 2022 AGU 
Frontiers in Hydrology Meeting, 23 June. 

6. Jones, A.S., Horsburgh, J.S., Jones, T.L. (2021). pyhydroqc: A Python Package for 
Automating and Streamlining Aquatic Sensor Data Post Processing. Abstract H21B-07, 
Presented at American Geophysical Union Fall Meeting. 14 December. 

7. Jones, A.S., Jones, T.L., Horsburgh, J.S. (2021). Techniques for Increased Automation of 
Aquatic Sensor Data Post Processing in Python, Presented at National Monitoring 
Conference, 21 April 

8. Jones, A.S., Alger, S.M., Salehabadi, H., Repko, A, Lane, B. (2019). Sensitivity to Climate 
Change in the Colorado Basin Using the Budyko Method, Presented at Universities Council 
on Water Research Annual Meeting, Snowbird, UT, 11 June. 

9. Jones A.S., Horsburgh, J.S., Eiriksson, D. (2017). Assessing Subjectivity in Sensor Data Post 
Processing via a Controlled Experiment, Abstract IN41C-0050, Presented at the 2017 AGU 
Fall Meeting, New Orleans, LA, 11-15. December. 

10. Eiriksson, D., Jones A.S., Horsburgh, J.S., Cox, C., Dastrup, D. (2017). Data Quality Control: 
Challenges, Methods, and Solutions from an Eco-Hydrologic Instrumentation Network, 
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Abstract IN41C-0056, Presented at the 2017 AGU Fall Meeting, New Orleans, LA, 11-15. 
December. 

11. Bandaragoda, C., Phuong, J., Mooney, S., Stephens, K., Istanbulluoglu, E., Pieper, K., 
Rhoads, W., Edwards, M., Pruden, A., Bales, J., Clark, E., Brazil, L., Leon, M., Horsburgh, 
J.S., Tarboton, D.G., Jones, A.S., Hutton, E., Tucker, G.E., McCready, L., Peckham, S.D., 
Lenhardt, W.C., Idaszak, R. (2017). Building infrastructure to prevent disasters like 
Hurricane Maria, Abstract NH23E-2888, Presented at the 2017 AGU Fall Meeting, New 
Orleans, LA, 11-15. December. 

12. Aanderud, Z.T., Jones, A.S., Horsburgh, J.S., Eiriksson, D., Dastrup, D., Cox, C., Jones, S., 
Bowling, D.R., Gabel, A.B., Call, A.M., Carlisle, J., Carling, G., Baker, M.A. (2017). 
Capturing rapid changes in water quality with high frequency networks across mountain to 
urban transitions, Abstract PS 39-111, Presented at the 2017 Ecological Society of America, 
Portland, OR, 6-11 August. 

13. Jones, A.S., Horsburgh, J.S., Flint, C.G., Jackson-Smith, D. (2017). Social Water Science 
Data in iUTAH: Dimensions, Data Management, and Visualization. Presented at iUTAH 
Annual Symposium and Summer Meeting, Logan, UT, 13-14 July. 

14. Jones, A.S., Horsburgh, J.S., Flint, C.G., Jackson-Smith, D. (2016). Social Water Science 
Data: Dimensions, Data Management, and Visualization, Abstract H34F-03, Presented at the 
2016 AGU Fall Meeting, San Francisco, CA, 12-16 December. 

15. Horsburgh, J.S., Jones, A.S. (2016). HydroShare for iUTAH: Collaborative Publication, 
Interoperability, and Reuse of Hydrologic Data and Models for a Large, Interdisciplinary 
Wtare Research Project, Abstract H43P-03, Presented at the 2016 AGU Fall Meeting, San 
Francisco, CA, 12-16 December. 

16. Jones, A.S., J.S. Horsburgh (2016). Water quality surrogates: Development of surrogate 
relationships, review of recent advances, and applications, Presented at: National Non-Point 
Source Monitoring Conference, Salt Lake City, UT, 23-25 August. 

17. Horsburgh, J.S., A.S. Jones, M. Ramirez, Caraballo, J. (2016). Time Series Analyst: 
Interactive online visualization of environmental time series data, Presented at: 8th 
International Congress on Environmental Modeling and Software, Toulouse France, 11-15 
July. 

18. Jones, A.S., J.S. Horsburgh, S.L. Reeder, J. Caraballo, D. Smith, Z. Yoshikawa, M. Matos 
(2016). Streaming Sensor Data: Tools for acquisition, management, and visualization, 
Presented at: National Water Quality Monitoring Council 10th National Monitoring 
Conference. Tampa, FL. 5 May. 

19. Suiter, P., A. S. Jones, J. S. Horsburgh, B. Mihalevich (2016). Development of a water 
quality mobile monitoring platform and techniques for managing resulting data, Presented at 
the Utah State University Spring Runoff Conference, Logan, UT, 5 April. 

20. Jones, A.S., Horsburgh, J. S., Matos, M., Caraballo, J. (2015). Equipment management for 
sensor networks: Linking physical infrastructure and actions to observational data, Abstract 
IN11D-1793 Presented at the 2015 AGU Fall Meeting, San Francisco, CA, 14-18 December. 

21. Castronova, A., J. S. Horsburgh, A. S. Jones (2014). A relational model for simulation data to 
promote interdisciplinary collaboration, Abstract H13H-1212 Presented at the 2014 AGU Fall 
Meeting, San Francisco, CA, 15-19 December. 

22. Jones, A. S., J. S. Horsburgh (2014). Implementation of cyberinfrastructure and data 
management workflow for a large-scale sensor network, Abstract IN41A-3645 Presented at 
the 2014 AGU Fall Meeting, San Francisco, CA, 15-19 December. 

23. Jones, A.S., J.S. Horsburgh, S.L. Reeder, J. Meline (2014) ODM Tools Python: Open source 
software for managing environmental sensor data, Presented at: CUAHSI Field Data 
Management Solutions Virtual Workshop, Online, 30 October. 
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24. Horsburgh, J. S., A. S. Jones, S. Reeder (2014). ODM Tools Python: Open source software 
for managing continuous sensor data, Presented at: 11th International Conference on 
Hydroinformatics, New York City, NY, 17-21 August. 

25. Jones, A.S., J. S. Horsburgh, S. Reeder (2014). Cyberinfrastructure for data management and 
sharing within a large-scale, heterogeneous sensor network, Presented at: Global Fair and 
Workshop on Long-Term Observing Systems of Mountain Social-Ecological Systems, Reno 
NV, July. 

26. Horsburgh, J. S., A. S. Jones, S. Reeder (2014). Automating data management and sharing 
within a large-scale, heterogeneous sensor network, Presented at: 7th International Congress 
on Environmental Modelling and Software, June 15-19, San Diego, California, USA.  

27. Horsburgh, J. S., S. Reeder, J. Patton, A. S. Jones (2014). ODM Tools Python: Open source 
software for managing hydrologic and water quality time series data, Presented at: National 
Water Quality Monitoring Council 9th National Monitoring Conference, Cincinnati, OH, 30 
April. 

28. Jones, A.S., J. S. Horsburgh, M. Ramirez, J. Caraballo (2014). Managing monitoring 
equipment: A sensor extension for the CUAHSI Observations Data Model, Presented at: 
National Water Quality Monitoring Council 9th National Monitoring Conference, Cincinnati, 
OH, 29 April. 

29. Jones, A.S., J. S. Horsburgh, S. Reeder (2014). Implementation of a workflow for streaming 
sensor data for a large-scale hydrologic monitoring network, Presented at: Utah State 
University Spring Runoff Conference, Logan, UT, 2 April. 

30. Horsburgh, J. S., S. Reeder, J. Patton, A. S. Jones (2013).  ODM Tools Python:  Data 
management software for hydrologic time series, Presented at:  CUAHSI Conference on 
Hydroinformatics and Modeling, Logan, UT, July. 

31. Jones, A.S., J. S. Horsburgh, J. Caraballo, M. Rarmirez (2013).  Managing sensor 
infrastructure using a sensor extension for the ODM2 data model, Presented at: CUAHSI 
Conference on Hydroinformatics and Modeling, Logan, UT, July. 

32. Horsburgh, J. S., A. S. Jones, S. Reeder, J. Patton, J. Caraballo, M. Ramirez, and N. Mouzon 
(2013). Using CUAHSI HIS to support large scale collaborative research in Utah, CUAHSI 
HIS Cyberseminar, 1 May. 

33. Jones, A.S., J.S. Horsburgh, S.L. Reeder, J. Caraballo (2013). iUTAH cyberinfrastructure to 
support data collection and management for the GAMUT monitoring network, Presented at: 
Utah State University Spring Runoff Conference, Logan, UT, 10 April. 

34. Horsburgh, J. S., A. S. Jones, J. Caraballo (2013). Cyberinfrastructure to support large scale 
collaborative water research, Presented at: Utah State University Spring Runoff Conference, 
Logan, UT, 10 April. 

35. Jones, A. S., J. S. Horsburgh (2012), Adventures in monitoring: Maintaining sensor networks 
and managing the flood of data, presented at the Utah State University Spring Runoff 
Conference, Logan, UT, 3-4 April. 

36. Whiting B., J. S. Horsburgh, A. S. Jones (2012), Improving estimates of suspended sediment 
concentration and flux in the Little Bear River watershed, presented at the Utah State 
University Spring Runoff Conference, Logan, UT, 3-4 April. 

37. Jones, A. S., J. S. Horsburgh, D. K. Stevens, D. G. Tarboton, N. O. Mesner (2011), Sensors, 
networks, and tools: Communicating with sensors and managing the flood of data (Invited), 
presented at the at the Global Lake Ecological Observatory Network Freshwater Advanced 
Aquatic Sensor Workshop, Douglas Lake, MI, 11-13 September.  
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38. Jones, A. S. (2011), Demonstration of CUAHSI tools (Invited), presented at the Global Lake 
Ecological Observatory Network Freshwater Advanced Aquatic Sensor Workshop, Douglas 
Lake, MI, 11-13 September.  

39. Horsburgh, J. S., A. S. Jones, D. K. Stevens, D. G. Tarboton, and N. O. Mesner (2011), 
Sensors, cyberinfrastructure, and water quality monitoring in the Little Bear River: 
Adventures in continuous monitoring, presented at the USGS/CUAHSI Workshop on Optical 
Sensors, Shepherdstown, WV, 8-10 June. 

40. Horsburgh, J. S., A. S. Jones, D. K. Stevens, D. G. Tarboton, and N. O. Mesner (2010), A 
Study of high frequency water quality observations in the Little Bear River Utah, USA, 
Abstract B42C-07 presented at the 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 
December. 

41. Jones, A. S., N. O. Mesner, J. S. Horsburgh, R. J. Ryel, D. K. Stevens (2009), Impact of 
sampling frequency on annual load estimation, presented at the Utah State University Water 
Initiative Spring Runoff Conference. Logan, UT, 2-3 April.  

42. Jones, A. S., N. O. Mesner, J. S. Horsburgh, R. J. Ryel, and D. K. Stevens, (2009), Impact of 
sampling frequency on annual load estimation, Presented at the USDA CSREES National 
Water Conference, St. Louis, MO, 8-12 February. 

43. Horsburgh, J. S., D. K. Stevens, D. G. Tarboton, N. O. Mesner, A. S. Jones (2008), Sensors, 
cyberinfrastructure, and examination of hydrologic and hydrochemical response in the Little 
Bear River Observatory Test Bed, Eos Trans. AGU, 89(53), Fall Meet. Suppl., Abstract 
H43K-04. 

44. Horsburgh, J. S., A. Spackman, D. K. Stevens, D. G. Tarboton, and N. O. Mesner (2008), 
Using GIS in creating an end-to-end system for publishing environmental observations data, 
Presented at the AWRA Spring Specialty Conference on GIS and Water Resources V, San 
Mateo, CA, 17-19 March. 

45. Horsburgh, J. S., A. Spackman, D. K. Stevens, D. G. Tarboton, and N. O. Mesner (2008), An 
end-to-end system for publishing environmental observations data, Presented at the Utah 
State University Water Initiative Spring Runoff Conference, Logan, UT, 31 March-1 April. 

46. Spackman A., D. K. Stevens, J. S. Horsburgh, D. G. Tarboton, N. O. Mesner (2008), 
Surrogate measures for providing high frequency estimates of total suspended solids and 
phosphorus concentrations, Presented at the Utah State University Water Initiative Spring 
Runoff Conference, Logan, UT, 31 March 31-1 April. 

47. Spackman, A., D. K. Stevens, D. G. Tarboton, N. O. Mesner, and J. S. Horsburgh (2007), 
Surrogate measures for providing high frequency estimates of total suspended solids and 
phosphorus concentrations in the Little Bear River, Presented at the Bear River Symposium, 
Utah State University, Logan, UT, 5-7 September. 

48. Spackman, A., R. Winters, G. Sullivan (2006), Phosphorus removal for Logan City 
wastewater treatment facility, presented at the Water Environment Association of Utah Fall 
Meeting, Salt Lake City, UT, November. 

49. Stevens, D. K., J. S. Horsburgh, N. O. Mesner, T. Glover, A. Caplan, and A. Spackman 
(2006), Integrating historical and realtime monitoring data into an internet based watershed 
information system, Presented at the 2006 National Water Quality Monitoring Council 
National Monitoring Conference, San Jose, CA, 7-11 May. 

50. Spackman, A. and B. T. Neilson (2003), Comparison of complex watershed models' 
predictive capabilities: USEPA's BASINS vs. WARMF, presented at the National Council for 
Undergraduate Research Posters on the Hill. Washington D.C., April. 

Teaching, Training, and Workshops 

Instructor, CUASHI Biennial Meeting, Using Python Packages and HydroShare to Advance 
Open Data Science and Analytics for Water. June 13, 2023. 
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Invited Guest Speaker, Utah State University Libraries Open Access Week, Open for Climate 
Justice: Open Learning Resources for Water Data Analysis. October 28, 2022. 

Panelist, Utah State University Libraries Datapolooza Data Management Event. March 30, 2022. 
Invited Guest Lecturer, Utah State University Climate Adaptation Science Studio: Managing and 

Sharing Scientific Data. 2018, 2019, 2020, 2021. 
Teaching Assistant, Geographic Information Systems, Civil and Environmental Engineering, 

Utah State University, 2020. 
Invited Guest Lecturer, Hydrologic Field Methods Course, Civil and Environmental Engineering, 

Utah State University: Sensor Data Quality Control. 2019. 
Invited Guest Speaker, CUAHSI 2020 Cyberseminar: Publishing Data and Research. Jan 30, 

2020. 
Instructor, Water Data Services Workshop, Training presented by the Consortium of Universities 

for the Advancement of Hydrologic Science, Inc. at the Universities Council on Water 
Resources Annual Meeting, Snowbird, UT, June 11, 2019. 

Organizer and Instructor, Sensor Data Quality Control and Post Processing, Training presented by 
iUTAH at the Utah Water Research Laboratory, Logan, UT, May 15, 2015. 

Instructor and Developer, Tutorials for Data Publication for iUTAH. Training presented online by 
iUTAH, Logan, UT. 2015. 

Teaching Fellow, CEE 3640 Water Engineering Undergraduate Course. Civil and Environmental 
Engineering, Utah State University, 2006. 

Trainer, Better Assessment Science Incorporating Point and Nonpoint Sources (BASINS) 
Software Training, week long training course sponsored by USEPA, Presented at Utah State 
University, 2000 – 2002. 
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