101 research outputs found

    An investigation of multi-objective hyper-heuristics for multi-objective optimisation

    Get PDF
    In this thesis, we investigate and develop a number of online learning selection choice function based hyper-heuristic methodologies that attempt to solve multi-objective unconstrained optimisation problems. For the first time, we introduce an online learning selection choice function based hyperheuristic framework for multi-objective optimisation. Our multi-objective hyper-heuristic controls and combines the strengths of three well-known multi-objective evolutionary algorithms (NSGAII, SPEA2, and MOGA), which are utilised as the low level heuristics. A choice function selection heuristic acts as a high level strategy which adaptively ranks the performance of those low-level heuristics according to feedback received during the search process, deciding which one to call at each decision point. Four performance measurements are integrated into a ranking scheme which acts as a feedback learning mechanism to provide knowledge of the problem domain to the high level strategy. To the best of our knowledge, for the first time, this thesis investigates the influence of the move acceptance component of selection hyper-heuristics for multi-objective optimisation. Three multi-objective choice function based hyper-heuristics, combined with different move acceptance strategies including All-Moves as a deterministic move acceptance and the Great Deluge Algorithm (GDA) and Late Acceptance (LA) as a nondeterministic move acceptance function. GDA and LA require a change in the value of a single objective at each step and so a well-known hypervolume metric, referred to as D metric, is proposed for their applicability to the multi-objective optimisation problems. D metric is used as a way of comparing two non-dominated sets with respect to the objective space. The performance of the proposed multi-objective selection choice function based hyper-heuristics is evaluated on the Walking Fish Group (WFG) test suite which is a common benchmark for multi-objective optimisation. Additionally, the proposed approaches are applied to the vehicle crashworthiness design problem, in order to test its effectiveness on a realworld multi-objective problem. The results of both benchmark test problems demonstrate the capability and potential of the multi-objective hyper-heuristic approaches in solving continuous multi-objective optimisation problems. The multi-objective choice function Great Deluge Hyper-Heuristic (HHMO_CF_GDA) turns out to be the best choice for solving these types of problems

    An investigation of multi-objective hyper-heuristics for multi-objective optimisation

    Get PDF
    In this thesis, we investigate and develop a number of online learning selection choice function based hyper-heuristic methodologies that attempt to solve multi-objective unconstrained optimisation problems. For the first time, we introduce an online learning selection choice function based hyperheuristic framework for multi-objective optimisation. Our multi-objective hyper-heuristic controls and combines the strengths of three well-known multi-objective evolutionary algorithms (NSGAII, SPEA2, and MOGA), which are utilised as the low level heuristics. A choice function selection heuristic acts as a high level strategy which adaptively ranks the performance of those low-level heuristics according to feedback received during the search process, deciding which one to call at each decision point. Four performance measurements are integrated into a ranking scheme which acts as a feedback learning mechanism to provide knowledge of the problem domain to the high level strategy. To the best of our knowledge, for the first time, this thesis investigates the influence of the move acceptance component of selection hyper-heuristics for multi-objective optimisation. Three multi-objective choice function based hyper-heuristics, combined with different move acceptance strategies including All-Moves as a deterministic move acceptance and the Great Deluge Algorithm (GDA) and Late Acceptance (LA) as a nondeterministic move acceptance function. GDA and LA require a change in the value of a single objective at each step and so a well-known hypervolume metric, referred to as D metric, is proposed for their applicability to the multi-objective optimisation problems. D metric is used as a way of comparing two non-dominated sets with respect to the objective space. The performance of the proposed multi-objective selection choice function based hyper-heuristics is evaluated on the Walking Fish Group (WFG) test suite which is a common benchmark for multi-objective optimisation. Additionally, the proposed approaches are applied to the vehicle crashworthiness design problem, in order to test its effectiveness on a realworld multi-objective problem. The results of both benchmark test problems demonstrate the capability and potential of the multi-objective hyper-heuristic approaches in solving continuous multi-objective optimisation problems. The multi-objective choice function Great Deluge Hyper-Heuristic (HHMO_CF_GDA) turns out to be the best choice for solving these types of problems

    Particle Swarm Algorithm for Improved Handling of the Mirrored Traveling Tournament Problem

    Get PDF
    In this study, we used a particle swarm optimization (PSO) algorithm to address a variation of the non-deterministic polynomial-time NP-hard traveling tournament problem, which determines the optimal schedule for a double round-robin tournament, for an even number of teams, to minimize the number of trips taken. Our proposed algorithm iteratively explored the search space with a swarm of particles to find near-optimal solutions. We also developed three techniques for updating the particle velocity to move towards optimal points, which randomly select and replace row and column parameters to find candidate positions close to an optimal solution. To further optimize the solution, we calculated the particle cost function, an important consideration within the problem conditions, for team revenues, fans, and media. We compared our computation results with two well-known meta-Heuristics: a genetics algorithm utilizing a swapping method and a Greedy Randomized Adaptive Search Procedure Iterated Local Search algorithm heuristic on a set of 20 teams. Ultimately, the PSO algorithm generated solutions that were comparable, and often superior, to the existing well-known solutions. Our results indicate that our proposed algorithm could aid in reducing the overall budget expenditures of international sports league organizations, which could enable significant monetary savings and increase profit margins

    APPLICATIONS OF ENVIRONMENT-BASED DESIGN (EBD) METHODOLOGY

    Get PDF
    A product’s environments play a significant role in its development. In other words, any alteration in the environment surrounding a product leads to changes in its features. Hence, having a systematic procedure to analyze the product’s environments is a crucial need for industries. Environment-Based Design (EBD) methodology describes the environment of the product (excluding the product itself) and presents a rational approach to analyze it. In order to achieve an efficient product design and development process, EBD utilizes different tools. Recursive Object Model (ROM) diagram, Cause and Effect Analysis, Life Cycle Analysis, Asking Right Question and Answering are EBD’s major tools and technics. In this research, we aim to represent EBD’s capabilities for product evolution analysis, complex products development and human-centered products development. In order to demonstrate EBD’s competences for product evolution analysis, we conduct a case study of braking systems evolution analysis through analyzing the environments around them. Afterward, we perform environment analysis for aerospace design methodology in order to propose a novel design methodology for the aerospace industries. Finally, we propose a course scheduling model based on environment analysis of the academic schedules and we verify our model using Concordia University’s courses

    Investigating evolutionary computation with smart mutation for three types of Economic Load Dispatch optimisation problem

    Get PDF
    The Economic Load Dispatch (ELD) problem is an optimisation task concerned with how electricity generating stations can meet their customers’ demands while minimising under/over-generation, and minimising the operational costs of running the generating units. In the conventional or Static Economic Load Dispatch (SELD), an optimal solution is sought in terms of how much power to produce from each of the individual generating units at the power station, while meeting (predicted) customers’ load demands. With the inclusion of a more realistic dynamic view of demand over time and associated constraints, the Dynamic Economic Load Dispatch (DELD) problem is an extension of the SELD, and aims at determining the optimal power generation schedule on a regular basis, revising the power system configuration (subject to constraints) at intervals during the day as demand patterns change. Both the SELD and DELD have been investigated in the recent literature with modern heuristic optimisation approaches providing excellent results in comparison with classical techniques. However, these problems are defined under the assumption of a regulated electricity market, where utilities tend to share their generating resources so as to minimise the total cost of supplying the demanded load. Currently, the electricity distribution scene is progressing towards a restructured, liberalised and competitive market. In this market the utility companies are privatised, and naturally compete with each other to increase their profits, while they also engage in bidding transactions with their customers. This formulation is referred to as: Bid-Based Dynamic Economic Load Dispatch (BBDELD). This thesis proposes a Smart Evolutionary Algorithm (SEA), which combines a standard evolutionary algorithm with a “smart mutation” approach. The so-called ‘smart’ mutation operator focuses mutation on genes contributing most to costs and penalty violations, while obeying operational constraints. We develop specialised versions of SEA for each of the SELD, DELD and BBDELD problems, and show that this approach is superior to previously published approaches in each case. The thesis also applies the approach to a new case study relevant to Nigerian electricity deregulation. Results on this case study indicate that our SEA is able to deal with larger scale energy optimisation tasks

    A study of evolutionary multiobjective algorithms and their application to knapsack and nurse scheduling problems

    Get PDF
    Evolutionary algorithms (EAs) based on the concept of Pareto dominance seem the most suitable technique for multiobjective optimisation. In multiobjective optimisation, several criteria (usually conflicting) need to be taken into consideration simultaneously to assess a quality of a solution. Instead of finding a single solution, a set of trade-off or compromise solutions that represents a good approximation to the Pareto optimal set is often required. This thesis presents an investigation on evolutionary algorithms within the framework of multiobjective optimisation. This addresses a number of key issues in evolutionary multiobjective optimisation. Also, a new evolutionary multiobjective (EMO) algorithm is proposed. Firstly, this new EMO algorithm is applied to solve the multiple 0/1 knapsack problem (a wellknown benchmark multiobjective combinatorial optimisation problem) producing competitive results when compared to other state-of-the-art MOEAs. Secondly, this thesis also investigates the application of general EMO algorithms to solve real-world nurse scheduling problems. One of the challenges in solving real-world nurse scheduling problems is that these problems are highly constrained and specific-problem heuristics are normally required to handle these constraints. These heuristics have considerable influence on the search which could override the effect that general EMO algorithms could have in the solution process when applied to this type of problems. This thesis outlines a proposal for a general approach to model the nurse scheduling problems without the requirement of problem-specific heuristics so that general EMO algorithms could be applied. This would also help to assess the problems and the performance of general EMO algorithms more fairly

    Enhanced Bees Algorithm with fuzzy logic and Kalman filtering

    Get PDF
    The Bees Algorithm is a new population-based optimisation procedure which employs a combination of global exploratory and local exploitatory search. This thesis introduces an enhanced version of the Bees Algorithm which implements a fuzzy logic system for greedy selection of local search sites. The proposed fuzzy greedy selection system reduces the number of parameters needed to run the Bees Algorithm. The proposed algorithm has been applied to a number of benchmark function optimisation problems to demonstrate its robustness and self-organising ability. The Bees Algorithm in both its basic and enhanced forms has been used to optimise the parameters of a fuzzy logic controller. The purpose of the controller is to stabilise and balance an under-actuated two-link acrobatic robot (ACROBOT) in the upright position. Kalman filtering, as a fast convergence gradient-based optimisation method, is introduced as an alternative to random neighbourhood search to guide worker bees speedily towards the optima of local search sites. The proposed method has been used to tune membership functions for a fuzzy logic system. Finally, the fuzzy greedy selection system is enhanced by using multiple independent criteria to select local search sites. The enhanced fuzzy selection system has again been used with Kalman filtering to speed up the Bees Algorithm. The resulting algorithm has been applied to train a Radial Basis Function (RBF) neural network for wood defect identification. The results obtained show that the changes made to the Bees Algorithm in this research have significantly improved its performance. This is because these enhancements maintain the robust global search attribute of the Bees Algorithm and improve its local search procedure.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems
    • 

    corecore