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Glossary

AHp the standard performance on absence days for person p

AU set of assignment units

AUN
set of assignment units for which the numbering N does not have
value U

Ap number of absence days for person p in the planning period

CNTR number of counters (see Constraint 23)

D number of days in the planning period

Eschedulep
set of events induced by schedulep

M absolute value of the largest element in a numbering

P number of personnel members in the ward

PA serial number of the patterns (Constraint 22)

PIT set of points in time per day

PS number of prototype shifts

Q number of skill categories

QAp set of alternative skill categories for p

QAp,d

set of alternative skill categories of person p at day d, it equals
QAp when the skill category does not change within the planning
period

RIMq,ti,d minimum personnel requirements for qualification q in time interval
ti at day d

RIPq,ti,d preferred personnel requirements for qualification q in time interval
ti at day d
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RMq,s,d minimum personnel requirements for qualification q and shift type
s at day d

RPq,s,d preferred personnel requirements for qualification q and shift type
s at day d

S number of different shift types

T number of assignment units in the planning period

U represents the assignment units for which a numbering is undefined

W number of different work regulations

bank holidaysw maximum number of assignments on bank holidays for work regu-
lation w (Constraint 20)

countersw set of counters which are valid in work regulation w (Constraint
23)

days offp,d denoting whether person p has a day off on day d (value 1 for day
off, otherwise value 0)

extra penalty factor to multiply the penalty weight of personal constraints with

extra shiftp,t denoting whether the personal request for person p at assignment
unit t needs a stronger penalty (value 1) or not (value 0)

max dayw,day maximum number of assignments on the day of the week denoted
by day for work regulation w (Constraint 10)

max hoursw maximum numbers of working hours in a planning period for work
regulation w (Constraint 8)

max shiftw,shift maximum number of assignments for the shift type denoted by
shift (Constraint 11)

maxw maximum number of assignments for work regulation w (Constraint
3)

min hoursw minimum number of hours to work during the planning period for
work regulation w (Constraint 9)

night the set of shift types which start before and end after 00:00

night freew denotes whether the constraint on 2 free days after a night shift
(Constraint 14) is valid (value 1 is valid, otherwise value 0)

night weekendw value denoting whether the constraint on night shifts before free
weekends (Constraint 16) is valid for work regulation w (value 1 is
valid, otherwise value 0)

not togetherp person who should not work when p is at work (Constraint 28)
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patw value of the pattern number which corresponds to work regulation
w, 0 denotes that w has no pattern (Constraint 22)

penaltyp,C2 penalty for shifts which are not performed for the main skill cate-
gory of person p (Constraint 2)

penaltyp,C15 penalty for not assigning complete weekends (Constraint 15) for
person p

penaltyp,C13 penalty for forbidden sequences of consecutive shifts (Constraint
13) for person p

penaltyp,C18 penalty for violating the constraint on the maximum number of
consecutive weekends (Constraint 17) for person p

penaltyp,C23 penalty for violating counters (Constraint 23) for person p

penaltyp,C24 penalty for violating the personal request on days off (Constraint
24) for person p

penaltyp,C20 penalty for violating the maximum number of assignments on bank
holidays (Constraint 20) for person p

penaltyp,C17 penalty for not assigning identical shifts during the weekend (Con-
straint 17) for person p

penaltyp,C3 penalty for maximum number of assignments (Constraint 3) for
person p

penaltyp,C4 penalty for violating the maximum number of consecutive days
(Constraint 4) for person p

penaltyp,C6 penalty for violating the maximum number of consecutive free days
(Constraint 6) for person p

penaltyp,C10 penalty for violating the maximum number of assignments per day
of the week (Constraint 10) for person p

penaltyp,C8 penalty for overtime (Constraint 8) for person p

penaltyp,C12 penalty for violating the maximum number of assignments of a shift
type per week (Constraint 12) for person p

penaltyp,C11 penalty for violating the maximum number of assignments for shift
types (Constraint 11) for person p

penaltyp,C5 penalty for violating the minimum number of consecutive assign-
ments (Constraint 5) for person p

penaltyp,C7 penalty for violating the minimum number of consecutive free days
(Constraint 7) for person p

penaltyp,C9 penalty for undertime (Constraint 9) for person p

penaltyp,C1 penalty for minimum time between two assignments (Constraint 1)
for person p
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penaltyp,C14 penalty for not respecting 2 free days after night shifts (Constraint
14) for person p

penaltyp,C16 penalty for scheduling a night shift before a free weekend (Con-
straint 16) for person p

penaltyp,C28 penalty for assigning someone who should not work together with
person p at the same time as p (Constraint 28)

penaltyp,C22 penalty for violating the patterns (Constraint 22) for person p

penaltyp,C26 penalty for not respecting requested assignments (Constraint 26)
for person p

penaltyp,C25 penalty for assigning duties on requested shifts off (Constraint 25)
for person p

penaltyp,C21 penalty for assigning forbidden successions of shifts and/or free
days (Constraint 21) for person p

penaltyp,C27 penalty for violating the constraint on tutorship (Constraint 27)
for person p

penaltyp,C19 penalty for violating the maximum number of assigned weekends
within periods of 4 weeks (Constraint 19) for person p

pref value added to assignments to show that they are marked

previous hoursp balance for working hours for person p, at the end of the previous
planning period

previous satp denotes whether the last Saturday of the previous planning period
was planned for person p

previous sunp denotes whether the last Sunday of the previous planning period
was planned for person p

previousp schedule of the previous planning period for person p

pshift durations duration of prototype shift s

pshift ends end time of prototype shift s

pshift starts start time of prototype shift s

qp main skill category of person p

qp,d
main skill category of person p at day d, it equals qp if the skill
does not change within the planning period

requirements denotes whether the personnel requirements are formulated as shift
types (value shifts) or as time intervals (value floating)

st shift type corresponding to assignment unit t
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shift pss prototype shift corresponding to shift type s

shiftp,s personalised version of shift type s, for person p

shift afters recommended free time after shift type s ends (Constraint 1)

shift befores recommended free time before shift type s starts (Constraint 1)

shift durations duration of shift type s

shift ends end time of shift type s

shift offp,t denotes the off shifts for person p, the value is 1 if p does not
want an assignment at assignment unit t, otherwise the value is 0
(Constraint 25)

shift starts start time of shift type s

successionw two dimensional structure denoting whether shift types and free
days can be scheduled immediately before or after others (Con-
straint 21) for work regulation w

ts assignment unit corresponding to shift type s

threshold hours threshold value for overtime under which no penalty is generated

thresholdcntr threshold value for counter cntr which relaxes the evaluation of the
constraint on balancing the counter

tutorp person who should work when p is at work (Constraint 27)
wp work regulation for person p

wp,d
work regulation of person p at day d, it equals wp when the work
regulation for p does not change within the planning period

weekendw weekend definition for work regulation w (0: Saturday-Sunday, 1:
Friday till Sunday, 2: Friday till Monday and 3: Saturday till
Monday)

ANROM Advanced Nurse ROstering Model: the model developed in this
research

complete weekendsw value denoting whether the constraint on complete
weekends (Constraint 15) is valid for work regula-
tion w (value 1 is valid, otherwise value 0)

consecutive shiftw,shift set of allowed sequences of consecutive shifts of
type shift for work regulation w (Constraint 13)

counter actualp,cntr value of counter cntr for person p
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counter balancecntr denotes whether the counter has to be balanced
among personnel members or not (value 1 for bal-
ance, value 0 otherwise)

counter durationcntr duration of the evaluation period of counter cntr

counter maxw,cntr maximum value for counter cntr in work regula-
tion w

counter previousp,cntr the balance for counter cntr at the end of the pre-
vious planning period for person p

counter startcntr start date of counter cntr

counter subjectcntr denoting the subject counter cntr counts (Con-
straint 23)

counter timecntr time measure for counter cntr

extra requested shiftp,t denotes whether a required assignment for person
p at assignment unit t has a higher importance
(value 1) or not (value 0)

identical weekendw value denoting whether the constraint on identi-
cal shift types during weekends (Constraint 17) is
valid for work regulation w (value 1 is valid, oth-
erwise value 0)

max cons free daysw maximum number of consecutive free days for
work regulation w (Constraint 6)

max consecutive daysw maximum number of consecutive working days for
work regulation w (Constraint 4)

max consecutive weekendsw maximum number of weekends in which duties are
assigned for work regulation w (Constraint 18)

max shift weekw,shift,week maximum number of assignments of shift type
shift in week week for work regulation w (Con-
straint 12)

max weekends 4 weeksw maximum number of working weekends in 4 weeks
for work regulation w (Constraint 19)

min cons free daysw minimum number of consecutive free days for work
regulation w (Constraint 7)

min consecutive daysw minimum number of consecutive working days for
work regulation w (Constraint 5)

pattern lengthpa length of pattern pa

penaltyp,C23,balance penalty for violating the balance of counters (Con-
straint 23) for person p
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penaltyp,C23,max penalty for violating the maximum value of coun-
ters (Constraint 23) for person p

previous free after nightp number of free days after a night shift at the end
of the previous planning period for person p

previous bankp number of cumulative assignments on bank holi-
days for person p

previous consecutive daysp consecutive scheduled days at the end of the pre-
vious planning period

previous consecutive shiftsp,s sequence of consecutive shifts of type s for person
p at the end of the previous planning period

previous consecutive weekendsp number of consecutive scheduled weekends at the
end of the previous planning period for person p

previous weekends 1p number of working weekends in the last week of
the previous planning period for person p

previous weekends 2p number of working weekends in the last 2 weeks
of the previous planning period for person p

previous weekends 3p number of working weekends in the last 3 weeks
of the previous planning period for person p

requested assignmentp,t denotes whether person p has a personal request
for an assignment (Constraint 26) at assignment
unit t (value 1) or not (value 0)

start patternp week in which the pattern corresponding to person
p’s work regulation starts

sum counter actualcntr the sum of the value of counter cntr for all the peo-
ple belonging to a work regulation which includes
the counter
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Abstract

Constructing timetables of work for personnel in healthcare institutions is
known to be a highly constrained and difficult problem to solve. In this thesis,
we introduce a model for the practical rostering problem in Belgian hospitals.
It is general enough to cope with the large set of constraints and to meet
varying objectives encountered in practice.

We set up a solution framework that consists of a modifiable and explana-
tory evaluation function, many options for handling initialisation parameters
and for formulating various objectives, and meta-heuristics to search solutions.
A set of neighbourhoods was designed for organising an effective exploration
of the search space. We combined different local search heuristics with these
neighbourhoods and managed to find scenarios that produce algorithms for
widely varying problem settings. The hybrid tabu search approach deserves
special attention because it is applied in practice, as part of a software
package based on the model proposed in this thesis. A range of new memetic
approaches for rostering is introduced. They use local search improvement
heuristics within a genetic framework. We identify the best evolutionary
operators of a memetic algorithm for the rostering problem, particularly the
nature of effective recombination, and show that these memetic approaches can
handle initialisation parameters and a range of instances more effectively than
usual tabu search algorithms, at the expense of longer computation times.
Having presented cost function based search heuristics, we finally introduce
a new multi criteria approach which overcomes some practical difficulties for
automated nurse rostering. The developed multi criteria approach, incorpo-
rated in a meta-heuristic, takes into account the fact that some constraints are
easier to satisfy than others while allowing schedulers to control compensation
of constraints.

By automating the nurse rostering problem, the scheduling effort and time
are reduced considerably in comparison with the manual approach that was pre-
viously used. The software based on the model developed in this thesis provides
an unbiased way of generating the schedules for all the personnel members. It
enables simple verification of the constraints, helps redefining unrealistic hard
constraints, and thus leads to an overall higher satisfaction of the personnel.
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Part I

The Nurse Rostering
Problem

21





Chapter 1

Introduction

The pressure of work in healthcare organisations increases persistently and
continues to remain a serious problem in spite of recent significant technological
advances. Personnel rosters in hospitals are more than resources to cover
the patients’ requirements. They affect the organisational structure of the
hospital and they directly influence the private life of the personnel members.
Unpredictable and strongly fluctuating timetables ruin the atmosphere in the
wards and give rise to a high level of absenteeism. To prevent these problems,
hospital planners should be able to create efficient timetables and preferably
a long time in advance. It is therefore important to provide an interactive
system that generates high quality scheduling solutions within a reasonable
computing time. Such schedules should cover the hospital requirements while
avoiding patterns that are harmful for the nurses’ well being. Many unhealthy
and unwanted shift patterns were determined, and many possibilities exist for
nurses to express their desires. A flexible planning system should incorporate
as much knowledge as possible to relieve the personnel manager or head nurse
from the unrewarding task of setting up objective schedules which please all
the individual nurses.

In order to meet strict quality standards in patient care, the objective of
personnel rostering in healthcare is to match the number of skilled people
working at given time intervals to the demand for certain nurse services.
Timetables are constrained by governmental and hospital rules but also by
personal preferences and work regulations. Hospital personnel rostering is a
very complex scheduling domain, in which services are provided continuously,
i.e. 24 hours per day and 7 days per week.

Real-world nurse rostering problems are difficult combinatorial problems
that belong to the domain of scheduling and timetabling. More specifically
they are classified as personnel scheduling problems. Obtaining an optimal
solution is an impracticable task to undertake due to the large number of
alternative schedules. Moreover, optimal solutions in this case may not be
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suitable since a compromise need to be reached. Therefore, approximate
solutions are satisfactory, they can be obtained quickly. Several meta-heuristics
have successfully been applied to similar problems. Related problems are
security and law enforcement personnel scheduling, bus driver scheduling,
crew scheduling, employee scheduling in production environments, etc. In
that category, many of the personnel scheduling problems can be solved with
cyclical schedules, and thus are less complex than hospital rostering. Compared
to most industrial situations (where personnel schedules normally consist of
stable periodic morning-day-night cycles) healthcare institutions require more
flexibility in terms of hours and shift types, they have a larger set of different
skill categories, and more possibilities for defining part time contracts.

Nurse scheduling can be split into sub-problems according to the time
horizon in which decisions are made. On long-term strategic level, hospital
personnel scheduling considers determining the service level to meet patients’
needs, in addition to forecasting large fluctuations. The next phase involves
hiring qualified personnel to fulfil the tasks, already considering possible
understaffed periods by outlining a policy of exchange of personnel among
wards or by hiring ‘float’ nurses. This problem domain is called ‘staffing’.
The research of this thesis concentrates mainly on the short-term problem of
assigning specific tasks to qualified nurses at every moment within a planning
period, referred to as ‘rostering’ or ‘timetabling’. A part of the problem data,
such as the number of personnel in a ward, the required qualifications, the
definition of shift types, etc are determined at the strategic level. Although
these settings are not considered as part of the nurse rostering problem, some
decisions on a longer term can affect the solution strategies. The model
developed in this thesis therefore provides several possibilities for flexible
problem setting. Examples are: shift types can be divided over several nurses,
personnel demands can be expressed in terms of shorter intervals than shift
length, night shifts can be assigned to a special category of night nurses,
possibilities exist for creating part time work, some people can temporarily be
assigned to different wards in order to set off emergencies, personnel members
can express certain preferences on particular times in the planning period, etc.

The problem of finding a high quality solution for the personnel timetabling
problem in a hospital ward has been addressed by many personnel managers
and schedulers over a number of years. In recent years, the emergence of larger
and more constrained problems has presented a real challenge for researchers.
However, finding good quality solutions can lead to a higher level of personnel
satisfaction and a very flexible organisation.

The framework designed in this thesis addresses the very complex nurse
rostering problem that is typical for Belgian hospitals. Although there is
software available dealing with personnel rostering in hospitals, most packages
have serious disadvantages in that they either do not support automated
scheduling or that they are simply developed for solving very specific local
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problems. After an extensive market research effort carried out by GET1 in
1993, none of the existing packages turned out to be satisfactory for general
applicability in hospitals. Especially for the Belgian situation, in which nurses
are highly demanding for quality time and for contracts adapted to their
private life, the available software proves to be unsuited. Unlike hospitals in
the United States, Japan, and some European countries, for which most of the
available software has been developed, the flexibility with respect to part time
work is in Belgium remarkably large. It is obvious that hospital planners need
to encompass these extra opportunities for flexible work time. Furthermore,
the situation in Belgian healthcare institutes includes particular possibilities
for letting nurses express their personal preferences for shifts and days off, for
weekend work, and for certain cyclical patterns to be superposed on variable
schedules. It is therefore clear that a program, specifically including all the
features of Belgian nurse rostering, is required. The results of the market
research corroborate this requirement, Belgian hospital planners indeed desire
an easily modifiable software package to facilitate personnel rostering.
Shortly after the market research, GET set up a collaboration with the software
developer Impakt N.V.2, which resulted in the product called Plane. Impakt
was responsible for the user interface and the database, while all the modelling
and scheduling was done within the framework of this thesis. The chapters
represent each of the different steps in developing the system: the modelling of
the nurse rostering problem (Chapter 2), the coding of the constraints (Chapter
4), the setting up of a solution framework (PART II), and the development of
appropriate search techniques (PART III). The model has been developed as a
flexible and interactive system, which can cope with different kinds of strategic
or staffing inputs. Beta versions were released and as the number of users grew,
we were presented with more complex problems. Extended functionalities, new
planning procedures, extra constraints, etc were developed in order to meet all
the planners’ needs (Chapter 5 and 6). The system is now flexible enough to
be applied in other personnel scheduling domains.

In Fig. 1.1, the relation between the four parts of this thesis is presented
schematically. Apart from the tabu search algorithm, which is implemented
in the commercial software, we have carried out experiments with other meta-
heuristics and with hybrid approaches in an attempt to meet the requirements
better.
A very detailed model for the particular kind of personnel rostering problems
tackled in this research is introduced in Chapter 2. We elaborate on the con-
straints and requirements of healthcare personnel in Belgian institutions and
incorporate also functionalities offered by Plane. In Chapter 3, we review the
available literature on hospital planning. Although similar problems have been
addressed by other researchers, it will become clear that none of the existing
approaches were applicable to the current Belgian situation. Therefore, the

1GET, General Engineering & Technologie, Antwerpse Steenweg 107, B-2390 Oostmalle
2Impakt N.V., Dendermondsesteenweg 42, B-9000 Gent
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Figure 1.1: Schematic overview of the nurse rostering system

models and the algorithms in this thesis had to be developed specifically for
this purpose.
Chapter 4 introduces the evaluation function which is used throughout the al-
gorithms of PART II and III. It enables tackling the large set of constraints in a
flexible, modular way while providing feedback for the users. The specific objec-
tives detected in several hospital wards form the basis for particular heuristics to
solve optional planning procedures discussed in Chapter 5. These pre-planning
and post-planning algorithms keep the real search algorithms separated from
particular problem requirements. In Chapter 6, we introduce a new model for
an unusual way of formulating the personnel requirements. These ‘floating’ re-
quirements enable hospital planners to extend the problem formulation and to
increase the number of alternative solutions. Thanks to a higher degree of free-
dom, the time interval based model makes it possible for hospitals to create all
kinds of part time work and to obtain better quality solutions.
PART III concentrates on different meta-heuristics for solving combinatorial
problems. In Chapter 7, we introduce a set of neighbourhoods for the schedul-
ing problem. Combining the neighbourhoods with steepest descent algorithms
and with a tabu search approach leads to a modifiable variable neighbourhood
search method. All the developed neighbourhoods will be further applied in
the meta-heuristics of Chapter 8-10. The algorithms described in Chapter 8 are
hybridisations of a tabu search algorithm that have been developed especially
for solving nurse rostering problems in practice. The overall results outperform
those obtained by single algorithms. Chapter 9 compares other meta-heuristic
approaches to the same problem. The results are better than the previously
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obtained results, at the expense of the computation time.
In Part IV, we investigate the applicability of a multi criteria approach for solv-
ing the nurse rostering problem. The possibility of assigning weights to certain
criteria or conditions guides the search through a different set of solutions and
produces interesting results of a very good quality.
We compare the results of the developed algorithms, summarise their benefits
and drawbacks and end with a general discussion in Chapter 11.
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Chapter 2

Problem Description

Nurse rostering is a complex scheduling problem that daily affects hospital per-
sonnel all over the world. The need for quality software solutions is high for a
number of reasons. In particular, it is very important to flexibly model real-
world constraints, to attempt to satisfy wishes and preferences of personnel
members, and to evenly balance the workload among people. A high quality
roster can lead to a more contented and thus more effective workforce. Com-
pared to many industrial situations (where personnel schedules normally con-
sist of stable periodic morning-day-night cycles) healthcare institutions often
require more flexibility in terms of hours and shift types. The motivation for
this research has been provided by hospital administrators/schedulers in Belgian
hospitals. Planners who used the early releases of the nurse rostering software
Plane (Section 2.1) based upon the model and solution framework of this thesis,
suggested improvements and extensions. We will refer to the problem descrip-
tion built in this work as ANROM, which stands for Advanced Nurse ROstering
Model. The dimensions of the problem are explained in Section 2.2. We present
the hard and the soft constraints of ANROM and describe them formally in
Section 2.3 and 2.4.

2.1 Plane, nurse rostering system for Belgian
hospitals

Plane is a commercial software system developed in a collaboration between Im-
pakt N.V. and GET for assistance in hospital employee scheduling. The author
contributed to that rostering program by modelling the problem and the eval-
uation function, and by developing a solution framework. Plane arose from the
need for automated rostering assistance in Belgian healthcare organisations. In
such a rostering problem, personnel requirements for every skill category have to
be fulfilled over a fixed period in time, while respecting a number of constraints
that limit the personal assignments.
The initial version of Plane was first implemented in a hospital in 1995 but the
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system is still evolving to cope with the new and more complex real-world prob-
lems that keep appearing. So far, over 40 hospitals in Belgium, of which some
have about 100 wards, have replaced their time consuming manual scheduling
by this system.
Although the problem is user-defined to a large extent, the software has to be
efficient in different settings. Every specific hospital ward should be able to
formulate its problem within the restrictions of the model described in the fol-
lowing sections. The cost function used in the algorithms is modular and can
deal with all the constraints matching the types described in Section 2.4.

2.2 Dimensions

The main goal of our personnel rostering model is to create a schedule by assign-
ing shift types to skilled personnel members, in order to meet the requirements
in a certain planning period. Personnel have work regulations limiting their
assignments. The concepts of the problem will be explained in detail in this
section.

2.2.1 Personnel

Hospitals are organised in wards with fixed activities, usually a settled loca-
tion, and, for the most part, a permanent team of nurses. Although practical
situations often allow people to migrate to another ward whenever a personnel
shortage is unsolvable, the personnel rostering problem in this research normally
concerns a group of personnel belonging to the same ward. Planning the dif-
ferent hospital wards reduces the complexity of the problem considerably. The
algorithms for scheduling single wards should not exclude people from working
temporarily elsewhere (see Section 5.3).
In the personnel rostering model of this research, the number of personnel mem-
bers is user definable. It is not the result of calculations within the planning
algorithm. Staffing considerations and decisions on the capacity in terms of
beds and patients, are beyond the competence of the short-term timetablers in
Belgian hospitals. The number of people P in a ward varies in practice from
about 20 to over 100. In this research, the nurse rostering problem concentrates
on scheduling the personnel members of a single ward, unless explicitly stated
differently.

2.2.2 Skill categories

Personnel members in a ward belong to skill categories. The division into cate-
gories is based upon the particular level of qualification, responsibility, job de-
scription, and experience of the personnel. Typical categories in hospitals are:
head nurse, regular nurse, junior nurse, ambulance driver, caretaker, cleaner,
etc. The groups are called ‘grades’ in some other applications. In our model,
there are Q different skill categories. Each personnel member p (1 ≤ p ≤ P )
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belongs to one skill category qp.
The approach in ANROM allows for a personalised organisation of substitu-
tion among skill categories. Rather than strictly disjunctive skill categories or
hierarchical substitutability (in which higher skilled people can replace less ex-
perienced colleagues), we opted for a solution that is closer to the reality in
hospitals. For example, a particular skill category might be a class of junior
nurses. It might be the case that we could allocate someone in the ward man-
ager’s category to a junior shift on a given day. In practice, very senior staff are
usually reluctant to stand in for junior staff. It is also the case that, in practice,
a regular (not a junior) nurse will temporarily stand in for a head nurse.
The problem of replacing people is solved in ANROM by assigning alternative
skill categories to certain people. People with more experience or who have
taken some exams, can be substitutes for higher skill categories. The nurses
who might replace a head nurse, for example, normally are a couple of senior
nurses who know everything about the working of the ward. We denote by QAp

the list of alternative skill categories for person p. The number of elements in
the list is 0 when the person p has no permission to replace people from other
skill categories than qp and QAp contains Q−1 elements if p can do the work of
any other skill category in the ward. A refinement of qp and QAp is necessary
when a personnel member p does not have the same skill category during the
entire planning period. That is explained in Section 4.2.5.

2.2.3 Work regulations

Cyclical schedules obey very strict patterns. They are applied in many personnel
rostering environments but are very impractical in real healthcare environments.
In our model, hospital personnel have work regulations or contracts with their
employer. Most organisations allow several job descriptions such as part time
work, night nurses’ contracts, weekend workers, etc. These regulations involve
different constraints but they can make the schedules much more flexible. More-
over, very personal arrangements like ‘free Wednesday afternoons’ or ‘refresher
courses’ at regular points in time, etc can easily be formulated. It is not unlikely
to have personalised contracts for the majority of personnel members in Belgian
hospitals.
The different work regulations are denoted by w (1 ≤ w ≤ W ) in this research.
For every personnel member p, the work regulation is denoted by wp. People
can change their contract during the planning period, which, of course, has an
influence on the schedule (see Section 4.2.5).

2.2.4 Shift types

A shift type is a predefined period with a fixed start and end time in which
personnel members can be on or off duty. Many continuously working organ-
isations schedule three typical shift types called morning, late and night shift.
This is the way that manufacturing generally works. However, these working
hours cannot cover the personnel requirements of hospitals in practice. More-
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Start End
M morning shift 06:45 14:45
L late shift 14:30 22:00
N night shift 22:00 07:00

Table 2.1: Example of shift types

over, all the possible kinds of part time work require a variety in start and
end times and in shift length. There are S shift types per ward. Each shift
type s has a start time shift starts, an end time shift ends, and a duration
shift durations. Table 2.1 presents a simplified example of a set of shift types
in a ward. A shift type does not always involve continuous activity between
the start and the end time, and hence shift durations is not necessarily equal
to shift ends − shift starts. Examples of such shift types are those in which
a long break enables personnel to have lunch at home, or guard duties, which
require availability from the personnel during a longer period than the actual
time which is counted as working time.
It is common to allow hospital schedulers to define shift types according to their
needs. ANROM works with prototype shifts, which are defined for the entire
hospital organisation. There are PS prototype shifts, each of which have a start
time pshift starts, end time pshift ends, and a duration pshift durations.
The schedulers in a ward copy these prototypes and modify them locally in or-
der to match their activities. A shift type s corresponds to the prototype shift
shift pss. One of the major advantages of the general definition of prototype
shifts is that personnel members working in different wards can still evaluate
their schedule with the locally applicable constraints (see constraints on shift
types in Section 2.4.3).
Apart from locally redefining prototype shifts in a ward, exceptional shift char-
acteristics can be permitted for particular nurses. Examples are shifted start
and end times, extended breaks, etc which often solve practical private prob-
lems. Personalised shift types are denoted by shiftp,s. In the formal description
of the ANROM model, the notation is not used when all the people in a ward
work the same set of shifts, which is the most common case. The time related
constraints are formulated in terms of the regular shift types (provided the
personalised shift types do not differ too much from them). In the evaluation
procedure, the regular shift types which hold for the entire ward can replace the
personalised shift types.

2.2.5 Planning period

Planning periods for nurse rostering vary from a couple of days to a few months.
The length of the period is expressed as a number of days D, or a number of
assignment units T (explained in Section 2.2.6). Since cyclical rosters are not
common at all, it is important for individual employees to know their schedule
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some time in advance. Long term scheduling, on the other hand, should not be
too detailed because the personnel demand and personal preferences fluctuate
and are not predictable but for the near future. In this model, we always con-
sider planning periods which start on Monday and end on Sunday, no matter
what the duration (number of weeks) is.
Short planning periods enable the search algorithms to find good quality results
much faster than longer planning periods. However, very short planning periods
reduce the possibility of guaranteeing fairness among personnel members. Some
situations require shorter planning periods. Examples are unexpected changes
in the requirements or the constraints. In such cases, the personnel manager
tends to prefer the fewest modifications possible in the people’s schedules.
ANROM provides some planning procedures for organising rescheduling pro-
cesses. Parts of the already existing roster can be ‘frozen’ during the planning.
Both personal schedules and periods in time (for all the members of the ward)
can be kept unchanged while the algorithms search for a better solution in the
remaining part of the problem domain. Freezing parts of a schedule is explained
in more detail in Section 5.3.

2.2.6 Schedule

The roster of the ward, in which the shift assignments to people are stored, is
called the schedule. It has dimensions P and T , where T stands for the number
of assignment units. We will refer to a personal schedule for person p by the
notation schedulep and to a particular assignment at unit t by the notation
schedulep,t.
We define assignment units as entities of minimum allocation in a schedule.
They are mainly introduced to handle the soft constraints on the personnel’s
schedules. For the evaluation model (described in Chapter 4), assignment units
play a particularly important role. In the approach of ANROM, where per-
sonnel requirements and schedules make use of shift types, each shift type on
each day has a corresponding assignment unit. The total number of different
assignment units T for a schedule is therefore equal to S ∗ D. An assignment
unit ts (1 ≤ s ≤ S) corresponds to shift type s. For the clarity of notations, st

is introduced as the shift type that corresponds to the assignment unit t.
We illustrate the meaning of assignment units with a simple example. A frag-
ment of a possible personnel roster is presented in Fig. 2.1. We notice that there
are five people in the ward, and that there are three different shift types. Fig. 2.2
presents the schedule that corresponds to the roster of Fig. 2.1. Each column
in the schedule represents an assignment unit. For every day of the planning
period there are S columns, each of them corresponding to a shift type. The
assignment units are ordered according to the start times of the shift types they
represent. When two shift types have the same start time, the first assignment
unit will match the shift type with the earliest end time. The assignment units
defined for this approach do not represent consecutive or separate periods but
they will very often overlap in time. For the nurse rostering problem considered
in this thesis, the number of assignment units equals the number of shift types
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Mon Tue Wed Thu Fri Sat Sun
P1 M M L L N
P2 N N L L
P3 M M M M M M M
P4 M L N N N
P5 M L L L L

Figure 2.1: Roster example for 5 people (P1,. . . , P5) and 1 week; M, L, and N
being the shift types introduced in Table 2.1

Schedule Example
P1 * * * * *
P2 * * * *
P3 * * * * * * *
P4 * * * * *
P5 * * * * *

Figure 2.2: Schedule corresponding to the roster in Fig. 2.1: ‘*’ denotes that
there is an assignment in the schedule, ‘-’ denotes that the schedule is free, *
will be specified in Section 2.3

times the number of days in the planning period (T = S ∗D, where D denotes
the number of days in the planning period).

2.3 Hard Constraints

Hard constraints are those that must always be satisfied. We can cover most
real-world hospital situations with the hard constraints of the following set.

2.3.1 Maximum one assignment per shift type per day

In ANROM, it is not considered feasible to assign the same shift to a member of
the ward more than once per day. A violation of this constraint would involve
twice the workload for that person. The constraint can be represented by (2.1),
in which pref is a number indicating that assignments have been made in a
post-planning coverage procedure. A value 0 at a schedule position schedulep,t

indicates that there is no assignment for person p at assignment unit t. Any
value different from 0 denotes the skill category for which an assignment is
made. It is only in exceptional cases that a person will have an assignment for
another than his or her main skill category. The values pref + 1 to pref + Q
represent the skill categories 1 to Q but the added number pref indicates how
the assignments were made. The importance of this expansion of the model will
be explained in Section 5.6.
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∀p, (1 ≤ p ≤ P ); ∀t, (1 ≤ t ≤ T ) :

schedulep,t ∈ {0, 1, . . . , Q, pref + 1, . . . , pref + Q} (2.1)

Within a ward, the schedule representation of ANROM thus prevents personnel
members from having more than one assignment per shift and per day, be it
for their main or for an alternative skill category. It is not the case that this
constraint prevents people from being assigned to overlapping shifts, a condition
that will be handled by a soft constraint in Section 2.4.

2.3.2 Required skill

In case the number of people required for a skill category is higher than the
available number, those who have the skill as an alternative grade can assist
(see also Constraint 2 in Section 2.4). It is infeasible to assign tasks to people
who are not qualified to carry them out. This is formally presented in (2.2),
in which the values that can occur in a personal schedule are restricted to the
following set.

∀p, (1 ≤ p ≤ P ); ∀t, (1 ≤ t ≤ T ) :

schedulep,t ∈ {0, qp, qp + pref} ∪QAp ∪QAp + pref (2.2)

with A + a = {x ξ (x− a) ∈ A}

In the initial phase of the scheduling algorithm, violations of soft constraints
are not taken into account. This is simply done by planning all the required
duties at random in the schedule, while ignoring the soft constraints such as
limitations on the number of shifts each member of staff may work. However,
it is not unlikely that situations occur in which this particular hard constraint
cannot be satisfied. A few consistency checks can assist the planner to overcome
this problem (see Section 5.2).
We modelled the problem and developed the algorithms in such a way that the
hard constraints will never be violated during the search procedures, no mat-
ter how bad the evaluation of the current solution is. Once an initial feasible
solution has been found, no new assignments can enter the schedule nor can
assignments be removed from it (except for the SWT heuristic that will be
defined in Section 9.4). In the ANROM model, we opted for not shifting assign-
ments from one assignment unit to another. The number of assignments per
shift type and per skill category on a particular day remains constant.

2.3.3 Personnel requirements

Personnel requirements, also called ‘coverage constraints’, express the number
of personnel of each skill category needed to staff the ward. They are set by
management and are usually expressed in terms of the minimum number of
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personnel required and the preferred number of personnel to meet patients’
needs. The minimum number of personnel strictly covers all the unavoidable
tasks and the preferred number of personnel ameliorates the atmosphere by
reducing the workload of staff members. The requirements can be formulated
either in terms of shift types (which is the traditional approach also used in
literature) or in terms of begin and end times (called floating requirements).
The term requirements denotes shift type requirements when it equals shifts,
and floating requirements when it equals floating.

Shift type requirements

RMq,s,d denotes the minimum required number of nurses of skill category q, for
shift s at day d. RPq,s,d denotes the preferred number of personnel. A simple
example of shift type personnel requirements for three different skill categories
(head nurse, regular nurse, and nurse aid), and for one day, is presented in Table
2.2. In this example, 6 different shift types are defined in the ward. Each row
in the table corresponds to one of the shift types. Per skill category, there are
two columns in the table. They correspond to the minimum and the preferred
requirements.

Requirements Head Nurse Regular Nurse Nurse Aid
Shift s RMh,s,d RPh,s,d RMr,s,d RPr,s,d RMa,s,d RPa,s,d

Short Early 1 2
Early 1 2
Day 1 1 0 1 2 2
Late 1 2
Short Late 1 2
Night 1 2

Table 2.2: Example of personnel requirements on day d formulated with shift
types

To satisfy the personnel requirements for the head nurse, for example, it is
sufficient to have one head nurse available for the day shift. Alternatively, if no
head nurse is free, only those people who are (with respect to their alternative
skill category) authorised to replace the head nurse can be assigned to the
required shift. Creating a feasible schedule is generally fairly easy, provided
the personnel requirements do not exceed the total number of skilled personnel
for any shift and day. When there are not enough skilled people in the ward,
there exists no feasible schedule. In that case, either the personnel requirements
have to be relaxed on certain days, float nurses will temporarily assist, or extra
personnel needs to be hired.
The shift type personnel requirements are formulated as shown in (2.3).
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∀s, (1 ≤ s ≤ S); ∀d, (1 ≤ d ≤ D) :

t = (d− 1) ∗ S + ts

RMq,s,d ≤

|{p ξ 1 ≤ p ≤ P ∧ (schedulep,t = q ∨ schedulep,t = pref + q)}|

≤ RPq,s,d

(2.3)

Floating requirements

It is an entrenched habit (within some hospitals) to think in terms of the num-
ber of personnel from hour to hour. Manual planners tend to not always defin-
ing their personnel needs as a combination of shift types. We broadened the
framework for defining the daily staff complement since the formulation used
by hospital planners often allows for a higher flexibility in constructing the
timetables. Personnel requirements in terms of time intervals are expressed as
RIMq,ti,d for minimum and as RIPq,ti,d for preferred personnel requirements.
interval startti and interval endti, denote the start and end times of the time
interval ti (1 ≤ ti ≤ TI). We introduce a set PIT for all the different points
in time during a day. This is formally presented in (2.4). If we deduce the per-

PIT = {interval start1, interval start2, . . . , interval startTI ,

interval end1, interval end2, . . . , interval endTI , (2.4)
shift start1, shift start2, . . . , shift startS ,

shift end1, shift end2, . . . , shift endS}

sonnel requirements from the shift types it is possible to allocate several kinds
of part-time employment over the shift period. Table 2.3 presents a simplified
example of the personnel requirements for a single day expressed as floating
requirements. The details of this representation are explained in Chapter 6.

Depending on the chosen planning procedure (see Section 5.6), either the mini-
mum requirements or the preferred requirements are the hard constraints. Con-
sequently, a feasible schedule is one in which there are people scheduled for every
required shift or time period. The personnel requirements for the time interval
are satisfied when the following criteria, reported in (2.5), are fulfilled.
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Head Nurse
startti endti RIMh,ti,d RIPh,ti,d

8:00 17:00 1 1

Regular Nurse
startti endti RIMr,ti,d RIPr,ti,d

0:00 7:00 1 1
7:00 13:00 2 3

13:00 21:00 2 2
21:00 24:00 1 1

Nurse Aid
startti endti RIMa,ti,d RIPa,ti,d

8:00 17:00 1 1

Table 2.3: Example of floating personnel requirements on day d, the indices h,
r, and a correspond to the three different skill categories

2.4 Soft Constraints

2.4.1 Introduction

The real-world situation addressed in this research incorporates a high number of
soft constraints on the personal schedules. The soft constraints will preferably
be satisfied, but violations can be accepted to a certain extent. It is highly
exceptional in practice to find a schedule that satisfies all the soft constraints.
The aim of the search algorithms is to minimise the real impact of violations of
these constraints. The users of the system specify all the constraints.
Some of the constraints strengthen other constraints, while others are adverse
factors in the planning of real-world hospital wards. Very often a few constraints
are even contradictory in reality. It is sometimes obvious that certain constraints
can never be satisfied at all. In all of these cases, the user of the planning
software must be informed about the extent to which each type of constraint is
violated.
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∀pit, (1 ≤ pit ≤ PIT ); ∀d, (1 ≤ d ≤ D) :

∑
ti ξ interval startti≤PIT<interval endti

RIMq,ti,d ≤

|{(p, s) ξ 1 ≤ p ≤ P ∧ shift starts ≤ pit < shift ends ∧
(schedulep,(d−1)∗S+ts

= q ∨ schedulep,(d−1)∗S+ts
= pref + q)}|

≤ ∑
ti ξ interval startti≤PIT<interval endti

RIPq,ti,d

(2.5)

2.4.2 Relaxation of constraints

Apart from describing the meaning of every constraint, we also explain some
exceptions for the evaluation in addition to certain corrections which are re-
quired in holiday periods or periods of illness absence. Boundary constraints
at the beginning and end of the planning period have an important impact on
the evaluation. In general, the rule holds that a penalty is generated when a
violation of a constraint could be avoided in the current planning period by
scheduling appropriately. No violation is generated when the constraint, which
is not satisfied, can still be satisfied by scheduling appropriate shifts in the next
planning period.
The evaluation of an absence and a free day can be very different. Absences
are personal constraints such as holidays, illness, etc (Constraint 24 and 25 in
Section 2.4.3). Free days are days in a personal schedule on which nothing is
scheduled. Manual planners evaluate some constraints in a less strict manner
when they are violated by a day off than in the case where the violation is
caused by a free day. Some constraints are relaxed when an absence prevents
scheduling shifts which could satisfy the constraint. Free days cannot allow for
a compensation because free days can become scheduled days by assigning a
shift. The same ideas hold when distinguishing between scheduled shifts and
requested shifts for some particular soft constraint types (Constraint 26), as
explained in Section 2.4.3.

2.4.3 Categories of soft constraints

Hospital constraints

Personnel scheduling is organised per hospital ward in this research project.
A ward is a group of personnel working together in the same location (e.g. a
certain floor in a hospital) or on the basis of their activities (e.g. the ambulance
team). A number of general constraints are recommended by the hospital but
in certain situations, they may need to be ignored. Next to the rules which
hold in the entire hospital, each ward can define their house rules. The general
hospital constraints will be listed in turn and explained in detail.
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Constraint 1 Minimum time between two assignments

There is a legal constraint depicting how many hours personnel should be free
between two assignments. In practice, the time between two assignments de-
pends on the shift types. The formulation of this constraint is represented by
two extra data fields corresponding to the shift types. In ANROM, planners
can decide to augment or diminish the rest time before and after each shift
type. Scheduling a morning shift which starts only 7 hours after a late shift has
ended is obviously worse than scheduling a short afternoon shift within 7 hours
after a short morning shift, for example. Before and after very short duties (like
a morning shift from 8 till 12) a shorter break can be acceptable. The terms
shift befores and shift afters denote the recommended free time before shift
type s starts and after it ends. A penalty will be generated whenever there is
an overlapping in time between a shift type and a forbidden zone from another
shift. Since this constraint is always very important, the penalty is proportional
to the number of overlapping minutes. Table 2.4 presents an example, extracted
from a real-world hospital situation, in which the start and end times of the shift
types, the recommended idle times before and after them are shown. The names
of the shift types are abbreviations of the shift names in the hospital. Fig. 2.3,
which is derived from the data in Table 2.4, illustrates the constraint better.
Each shift type is presented as a bar in the figure. The start and end time of
the shifts are clearly visible and forbidden sequences between shift types can
be derived from the periods before and after the shift, in which no other work
is allowed. The constraint restricts shift types scheduled on a certain day, in
addition to assignments on consecutive days in some particular cases. It makes
no sense to check this constraint for assignments that are two days or more
apart. The time between them will always suffice. The penalty for Constraint
1 is denoted by penaltyp,C1 for person p. The formal representation is given in
(2.6).

∀p, (1 ≤ p ≤ P ), ∀t1, (1 ≤ t1 ≤ T ), ∀t2, (t1 < t2 ≤ T ) :

penaltyp,C1 = 0
s1 = st1 , s2 = st2

d1 = t1/S, d2 = t2/S
x = shift ends1 + shift afters1 − (shift starts2 + 24 ∗ 60 ∗ (d2 − d1))
y = shift ends1 − (shift starts2 + 24 ∗ 60 ∗ (d2 − d1)− shift befores2)

IF (d1 + 2 ≥ d2 ∧ schedulep,t1 6= 0 ∧ schedulep,t2 6= 0)

⇒ penaltyp,C1 +
{

x IF (x > 0)
y IF (y > 0)

(2.6)

Constraint 2 Alternative skill category
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Unoccupied Time (hrs)
Shifts shift starts shift ends shift befores shift afters

SE ‘Short’ Early 6:00 10:00 10 8
EE ‘Early’ Early 6:00 14:00 10 8
SD ‘Short’ Day 8:00 12:00 8 8
E Early 8:00 17:00 8 8
D Day 10:00 18:00 8 8
SL ‘Short’ Late 14:00 18:00 8 8
L Late 14:00 22:00 8 10
LL ‘Late’ Late 17:00 22:00 8 10
N Night 22:00 6:00 10 10

Table 2.4: Start and end times of a realistic shift type set; unoccupied periods
before and after

12:00 18:00 00:00 06:00 12:00 18:00 00:00

− − − − − −] [− − − − − − − − −− SE − − − − − − − −] [− − − −
EE − − − − − − [ −− ]− − − − − − − − EE − − − − − − [ −− ]− −
− − − − − − − −] [− − − − − − −− SD − − − − − − −−]

E − − − − − − −[− ]− − − − − −− E − − − − − − −
D − − − − − − −−][− − − − − − −− D − − − − − −

−− SL − − − − − − −−] [− − − − − − −− SL − − − − − −
−− L − − − − − − − − [ −− ]− − − − − − L −−
− − − − − LL − − − − − − − − −−] [− − − − − − −− LL −−
− − − − − − − − − − N − − − − − − −[ −− ]− − − − − −− N

12:00 18:00 00:00 06:00 12:00 18:00 00:00

Figure 2.3: Minimum time between two shift types

It is a hard constraint that all the work has to be done by skilled personnel.
If a certain duty requires a head nurse, then preferably a head nurse will do
the job unless there is none available. The only possibility to still obtain a
feasible solution in that case is to find a person from another skill category
who is authorised to replace people from the required skill category (see Section
2.2.2). Assigning people from alternative skill categories is sometimes necessary
to cater for staff shortages, but it is not desirable and will be penalised in the
evaluation function. A penalty is generated each time a shift is performed for a
duty other than ones that are covered by the prime skill category: penaltyp,C2.
This is presented in (2.7).

∀p, (1 ≤ p ≤ P ) :

penaltyp,C2 = |{t ξ 1 ≤ t ≤ T ∧ schedulep,t ∈ QAp ∪QAp + pref}|(2.7)
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Constraints defined by the work regulation

Every personnel member has a contract with the hospital. It is called the
work regulation or work agreement (see Section 2.2.3). There are different work
regulations for full time and half time personnel members, night nurses, etc.
Many hospitals in Belgium allow for the definition of a personal work agreement
per nurse. This enables them to formulate personal constraints such as every
Wednesday afternoon free, work a weekend every two weeks, no stand by duty,
etc. When defining the work regulation, either of the following constraints can
be defined or made idle.

Constraint 3 Maximum number of assignments

This constraint determines the number of shifts a person with the work regula-
tion w can -at most- work during the planning period: maxw. In order to reflect
the real-world situation, adaptations to this number are made in cases of illness,
holiday, . . . When a personal schedule contains an ‘absence’, the type of leave
or absence is given. Depending on the reason for the absence, it will be taken
into account for the evaluation of the assignments and hours. We denote by Ap

the number of absence days within the planning period. Consider a planning
period of 4 weeks (28 days) and a full time work agreement with maximum 20
assignments during the planning period. Suppose a full time personnel member
is on sickness leave during 10 days. The constraint is adapted to this situa-
tion by changing the value of the maximum number of assignments from 20 to
d20 ∗ (28− 10)/28e. The cost function value for the constraint, penaltyp,C3 for
person p, is calculated per planning period. There is no transfer of excesses to
the next planning period. This is represented by (2.8).

∀p, (1 ≤ p ≤ P ) :

penaltyp,C3 = x IF (x > 0)
w = wp

x = |{t ξ 1 ≤ t ≤ T ∧ schedulep,t 6= 0}| − D−Ap

D ∗maxw
(2.8)

Constraint 4 Maximum number of consecutive days

This constraint limits the maximum number of consecutive working
days by max consecutive daysw. The evaluation involves checking the
days which are scheduled at the end of the previous planning period
(previous consecutive daysp). In practice, the schedule of the previous plan-
ning period is known and the consecutive days at the end of it can be calculated.
For the description of the soft constraints in this section, we assume that the
required data is given. Suppose, for example, that the maximum number of
consecutive days is 7. If 6 consecutive days are scheduled at the end of the
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previous planning period, the first day of the current planning period can be
scheduled without violating the constraint. Scheduling both the first and the
second day will generate a penalty. When the last 8 consecutive days at the
end of the previous planning period have assignments, no penalty will be gen-
erated in the current period when there is nothing scheduled on the first day.
Constraint violations made in the past are not penalised in the current planning
period. This is formally presented in (2.9).

∀p, (1 ≤ p ≤ P ) :

w = wp

consecutive days = previous consecutive daysp

penaltyp,C4 = 0

∀d, (1 ≤ d ≤ D) :





x = |{t ξ 1 ≤ t ≤ S ∧ schedulep,(d−1)∗S+t 6= 0}|

consecutive days + 1 IF (x ≥ 1)
y = consecutive days−max consecutive daysw

penaltyp,C4 + y, IF (y > 0)
consecutive days = 0



 IF (x = 0)

(2.9)

Constraint 5 Minimum number of consecutive days

A working day between two free days is seldom wanted. We denote
min consecutive daysw as the minimum number of consecutive working days
for the work regulation w. Also for this constraint, the previous planning period
for person p is taken into account by previous consecutive daysp. A penalty
will be generated if the constraint could be satisfied by scheduling a duty on the
first day(s) of the current planning period. Consequently, it is not considered a
violation when the constraint is not satisfied at the end of the planning period.
If, for example, at least 3 consecutive days are required, no penalty will be gen-
erated if only the last two days of the current planning period are scheduled.
The constraint on the minimum number of consecutive days is relaxed when a
stretch of working days and requested days off meets the requirement. Consider
the case where at least three consecutive days are required. Suppose a person
works two consecutive days and ends with a requested day off immediately af-
terwards. This schedule will not generate a penalty because the requested day
off is, unlike free days, considered part of the work stretch. A day off d, for
person p is denoted by 1 in days offp,d (see also Constraint 24) other days are
denoted by 0. This is illustrated by (2.10).

Constraint 6 Maximum number of consecutive free days
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∀p, (1 ≤ p ≤ P ) :

w = wp

consecutive days = previous consecutive daysp

consecutive days off = previous consecutive days offp

penaltyp,C5 = 0

∀d, (1 ≤ d ≤ D) :





x = |{t ξ 1 ≤ t ≤ S ∧ schedulep,(d−1)∗S+t 6= 0}|
consecutive days + 1, IF (x ≥ 1)
cons days off + 1, IF (x = 0 ∧ days offp,d = 1)

y = min consecutive daysw − consecutive days
−cons days off

penaltyp,C5 + y, IF (y > 0)
consecutive days = 0
cons days off = 0





IF (x = 0 ∧ days offp,d = 0)

(2.10)

The value max cons free daysw denotes the maximum number of consecutive
free days for work regulation w. The number of consecutive free days at the end
of the previous planning period is denoted by previous consecutive free daysp

for person p. The constraint is presented by (2.11).

Constraint 7 Minimum number of consecutive free days

The minimum number of consecutive free days for work regulation w is denoted
by min cons free daysw. More formal detail is given in (2.12). Constraint 6
and 7 are analogous to the previous two constraints, they limit the consecutive
free days instead of the consecutive working days. The same rules hold at the
beginning and the end of the planning period. With respect to absences and
free days, the most relaxed attitude holds. Absence days are not added to
the number of consecutive free days (even if they occur in the sequence) when
the maximum number is evaluated. Absence days are added to the number
of consecutive free days for the minimum constraint. There is no violation for
the minimum number of consecutive free days, when absence days are isolated
(flanked by working days).

Constraint 8 Maximum number of hours worked

The limit on the maximum number of hours during a planning period is given
by max hoursw for the corresponding work regulation. Unlike most other con-
straints, the working time is cumulative and this also affects the evaluation
of Constraint 9. By adding the real amount of overtime or undertime to the
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∀p, (1 ≤ p ≤ P ) :

w = wp

cons free days = previous consecutive free daysp

penaltyp,C6 = 0

∀d, (1 ≤ d ≤ D) :





x = |{t ξ 1 ≤ t ≤ S ∧ schedulep,(d−1)∗S+t 6= 0}|
consecutive free days + 1 IF (x = 0)
y = cons free days−max cons free daysw

penaltyp,C6 + y, IF (y > 0)
cons free days = 0



 IF (x ≥ 1)

(2.11)

scheduled time in the next planning period, the system prevents the team from
having unfair schedules. The balance of the working hours for personnel mem-
ber p, which is transferred to the next planning period, (previous hoursp) is
added to the hours carried out in the current planning period. Suppose the
starting balance for a person is negative in the current planning period. There
is a possibility for compensating undertime without generating a penalty for
overtime.
Overtime is very common in hospitals, so an option is available for not penalis-
ing overtime unless a certain threshold threshold hours is exceeded. The value
is the same for all the personnel in the ward. When violations are less than this
given number of hours, the penalty is ignored.
Every work regulation has a standard performancew, which gives the nor-
mal number of hours worked on a standard day. We call AHp =
standard performancew ∗ Ap the number of hours on absence days. In nearly
the same way as explained with respect to Constraint 3, a weighted new value
for the maximum number of hours is calculated. This is demonstrated in (2.13).

Constraint 9 Minimum number of hours worked

The minimum number of hours a person should work during the planning period
is min hoursw. Evaluating the constraint is carried out in the same way as
Constraint 8. The balance of hours worked at the end of the previous planning
period is added to the hours of the current period. Absence days or illness can
be compensated in the evaluation of the constraint. The constraint is illustrated
in (2.14). The evaluation of the constraint can be relaxed by setting a threshold
value for generating penalties. When violations are less than a given number of
hours, it is possible to ignore these violations of the constraint. Since the real
amount of overtime or undertime will be added to the scheduled time in the next
planning period, the system prevents the team from having unfair schedules. A
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∀p, (1 ≤ p ≤ P ) :

w = wp

cons free days = previous consecutive free daysp

cons days off = previous cons days offp

penaltyp,C7 = 0

∀d, (1 ≤ d ≤ D) :





x = |{t ξ 1 ≤ t ≤ S ∧ schedulep,(d−1)∗S+t 6= 0}|
consecutive days + 1, IF (x ≥ 1)
cons days off + 1, IF (x = 0 ∧ days offp,d = 1)

y = min cons free daysw − (cons free days + cons days off)
penaltyp,C7 + y, IF (y > 0)
cons free days = 0
cons days off = 0





IF (x = 0 ∧ days offp,d = 0)

(2.12)

∀p, (1 ≤ p ≤ P ):

w = wp

penaltyp,C8 = 0
x = max hoursw −AHp

y = previous hoursp +
∑T

t=1 shift durationst ∗ (1− δschedulep,t,0)
penaltyp,C8 = y − x IF (y − x > threshold hours)

(2.13)

correction is calculated when a person is absent due to illness or a holiday. In
exactly the same way as explained with respect to Constraint 3, a weighted new
value for the maximum and minimum number of hours is calculated.

Constraint 10 Maximum number of assignments per day of the week

This constraint limits the number of assignments on certain days of the week by
max dayw,day, in which w denotes the work regulation and day is the day of the
week (Monday till Sunday). It is, for example, possible to provide at least one
free Monday during the planning period or to restrict the number of working
weekends with this constraint. There is no transfer between planning periods.
The constraint is formally presented in (2.15).

Constraint 11 Maximum number of assignments for each shift type

This constraint provides the possibility of forbidding and/or restricting the as-
signment of certain shift types shift for the work agreement by max shiftw,shift.
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∀p, (1 ≤ p ≤ P ):

w = wp

penaltyp,C9 = 0
x = min hoursw −AHp

y = previous hoursp+∑T
t=1 shift durationst

∗ (1− δschedulep,t,0)
penaltyp,C9 = x− y IF (x− y > threshold hours)

(2.14)

∀p, (1 ≤ p ≤ P ) :

w = wp

penaltyp,C10 = 0

∀day, (1 ≤ day ≤ 7) :





xday = max dayw,day

yday = |{(week, t) ξ 1 ≤ week ≤ D/7 ∧ 1 ≤ t ≤ S
∧schedulep,(week−1)∗7∗S+(day−1)∗S+t 6= 0}|

penaltyp,C10 + yday − xday IF (yday > xday)

(2.15)

The planner can, when for example defining a work agreement for night nurses,
set to 0 the number of allowed shift types for every shift that differs from the
night shift. Other work agreements, like cleaner for example, will never work
a night shift. Very often, the maximum number for each shift type is set to a
rather low number in order to enable shift type variation in the schedules. The
constraint is demonstrated formally in (2.16).

Constraint 12 Maximum number of a shift type per week

For every week week in the planning period, the user can limit the num-
ber of assignments in a personal schedule for every shift type shift by
max shift weekw,shift,week. This constraint can, for example, prevent the as-
signment of seven night duties in one week. Since the system allows different
constraint values for different weeks, it can also allow for the definition of shift
type cycles like one ‘early week followed by a late week’. It can be formally
illustrated as in (2.17).

Constraint 13 Number of consecutive shift types

For each shift type shift, a series of allowed sequences can be de-
fined. In consecutive shiftw,shift[i], i can take values from 1 to 10 and
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∀p, (1 ≤ p ≤ P ) :

w = wp

penaltyp,C11 = 0

∀shift, (1 ≤ shift ≤ S) :





xshift = max shiftw,shift
yshift = |{d ξ 1 ≤ d ≤ D ∧ schedulep,(d−1)∗S+tshift

6= 0}|

penaltyp,C11 + yshift − xshift IF (yshift > xshift)

(2.16)

∀p, (1 ≤ p ≤ P ) :

w = wp

penaltyp,C12 = 0

∀week, (1 ≤ week ≤ D/7), ∀shift, (1 ≤ shift ≤ S) :





xshift,week = max shiftw,shift,week

yshift,week = |{d ξ 1 ≤ d ≤ 7∧
schedulep,(week−1)∗7∗S+(d−1)∗S+t

shift
6= 0}|

penaltyp,C12 + yshift,week − xshift,week, IF (yshift,week > xshift,week)

(2.17)

if consecutive shiftw,shift[i] = 1 the sequence i is allowed. The model,
for example, supplies the possibility of defining 2, 4, and 6 as allowed
sequences when consecutive shiftw,shift[2] = consecutive shiftw,shift[4] =
consecutive shiftw,shift[6] = 1, and for all the other sequences the value is 0.
Sequences of consecutive shifts at the end of the previous planning period can
influence this constraint. They are denoted by previous consecutive shiftsp,s.
The occurrence of an absence or illness day relaxes this constraint. When the
result of adding the absence day(s) to a sequence satisfies the constraint, no
penalty will be charged. Also, when the addition of absence days is not nec-
essary to satisfy the constraint, the absences are ignored. It resembles the
evaluation of Constraint 4, 5, 6, and 7 and is formally presented in (2.18).

Constraint 14 Assign 2 free days after night shifts

Night shifts are all the shift types which begin before and end after 00:00. The
set night contains the serial numbers of the corresponding shift types. When
this constraint is valid (night freew = 1), a night shift must be followed by
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∀p, (1 ≤ p ≤ P ) :

w = wp

penaltyp,C5 = 0

∀shift, (1 ≤ shift ≤ S) :





cons days = previous consecutive shiftsp,shift
cons days off = previous consecutive days offp

x = |{d ξ 1 ≤ d ≤ D ∧ schedulep,(d−1)∗S+tshift
6= 0}|

cons days + 1 IF (x 6= 0)
cons days off + 1 IF (x = 0 ∧ days offp,d = 1)

y = consecutive shiftw,shift[cons days]
zi = consecutive shiftw,shift[cons days + i]

and 0 ≤ i ≤ cons days off
penaltyp,C13 + 1, IF (y = 0 ∧∑

i zi = 0)
consecutive days = 0
cons days off = 0





IF (x = 0 ∧ days offp,d = 0)

(2.18)

another night shift or by two consecutive free days. An absence day counts for
a free day. The constraint depends on daily sequences and the values will thus
be transferred at the border of different planning periods. The number of free
days after a night shift at the end of the previous planning period is given by
previous free after nightp. The constraint is presented in (2.19).

Constraint 15 Assign complete weekends

Setting this constraint does not allow a shift on Saturday without one on the
next Sunday or vice versa. It is denoted by complete weekendsw for the entire
work regulation. There is a possibility for redefining weekends, by either consid-
ering Friday and/or Monday as part of the weekend. The weekend definition is
given by weekendw, for which value 0 means a Saturday-Sunday weekend; 1 de-
notes a Friday-till-Sunday weekend; 2 stands for a Friday-till-Monday weekend,
and 3 is a Saturday-till-Monday weekend. The complete weekend constraint will
impose a shift to be planned on all the other weekend days as soon as there is
an assignment on Saturday or Sunday. However, a scheduled shift on Friday or
Monday does not require assignments on Saturday and Sunday. Again, absence
days will be considered as free days or as working days whenever they relax the
constraint most.
The schedule of the previous planning period can play a role in the evaluation of
the constraint if the switch between planning periods happens in a weekend. In
ANROM, it will only occur when the value of weekendw equals 2 or 3. We de-
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∀p, (1 ≤ p ≤ P ) :

w = wp

penaltyp,C14 = 0
cons days = previous free after nightp

IF (night freew = 1)

∀d, (1 ≤ d ≤ D) :





n = |{t ξ 1 ≤ t ≤ S ∧ schedulep,(d−1)∗S+t 6= 0
∧st ∈ night}|

m = |{t ξ 1 ≤ t ≤ S ∧ schedulep,(d−1)∗S+t 6= 0
∧st 6∈ night}|

IF (last shift ∈ night)



cons days + 1 IF (n = 0 ∧m = 0)
cons days = 0 IF (n 6= 0)
penaltyp,C14 + (2− cons days)

IF (n + m 6= 0 ∧ 2− cons days > 0)

ELSE IF (n 6= 0 ∨m 6= 0){
last shift = st

cons days = 0

(2.19)

note the weekend days which are transferred from the previous planning period
by previous satp and previous sunp. These values are equal to 1 if there is at
least one assignment on the corresponding day; it is 0 if the day is empty.The
full constraint can be seen in (2.20).

Constraint 16 No night shift before a free weekend

Shifts which end after midnight cannot be scheduled before a free weekend
when this constraint is valid, i.e. when night weekendw equals 1. For ordinary
Saturday-Sunday weekends, this constraint requires that night shifts are not
scheduled on Fridays when the entire weekend is free. Other definitions of
weekends (e.g. Friday-Saturday-Sunday) restrict the schedule similarly. The
constraint is illustrated in (2.21).

Constraint 17 Assign identical shift types during the weekend

If this constraint (denoted by identical weekendw = 1) is active, it creates
a penalty when the shift types during the weekend days are not the same.
No matter what the weekend definition is, whether it includes Friday and/or
Monday, this constraint only looks at the shifts which are assigned on Saturday
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∀p, (1 ≤ p ≤ P ) :

w = wp

penaltyp,C15 = 0
weekend days = previous weekend days

IF (complete weekendsw 6= 0) : ∀wk, (1 ≤ wk ≤ D/7) :





absence fri = absence sat = absence sun = absence mon = 0
fri = sat = sun = mon = 0
fri = 1 IF |{t ξ 1 ≤ t ≤ S ∧ schedulep,((wk−1)∗7+4)∗S+t 6= 0}| 6= 0
sat = 1 IF |{t ξ 1 ≤ t ≤ S ∧ schedulep,((wk−1)∗7+5)∗S+t 6= 0}| 6= 0
sun = 1 IF |{t ξ 1 ≤ t ≤ S ∧ schedulep,((wk−1)∗7+6)∗S+t 6= 0}| 6= 0
mon = 1 IF |{t ξ 1 ≤ t ≤ S ∧ schedulep,(wk∗7∗S+t 6= 0}| 6= 0



fri = 1
sat = previous satp
sun = previous sunp

IF (wk = 1)

mon = 1 IF (wk = D/7)
absence fri = days offp,(wk−1)∗7+4 IF (fri = 0)
absence sat = days offp,(wk−1)∗7+5 IF (sat = 0)
absence sun = days offp,(wk−1)∗7+6 IF (sun = 0)
absence mon = days offp,wk∗7 IF (mon = 0)
absence = absence sat + absence sun

IF (weekendw = 0) :
penaltyp,C15 + 1, IF (sat 6= sun ∧ absence = 0)

IF (weekendw = 1) :
penaltyp,C15 + 1, IF ((sat 6= sun ∧ absence = 0)

∨ ((fri = 0 ∧ absence fri 6= 0) ∧ sat + sun = 2))

IF (weekendw = 2) :
penaltyp,C15 + 1,

IF ((sat 6= sun ∧ absence = 0) ∨ (((fri = 0 ∧ absence fri 6= 0)
∨ (mon = 0 ∧ absence mon 6= 0)) ∧ sat + sun = 2))

IF (weekendw = 3) :
penaltyp,C15 + 1, IF ((sat 6= sun ∧ absence = 0)

∨ ((mon = 0 ∧ absence mon 6= 0) ∧ sat + sun = 2))

(2.20)
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∀p, (1 ≤ p ≤ P ) :

w = wp

penaltyp,C16 = 0

IF (night weekendw 6= 0) : ∀week, (1 ≤ week ≤ D/7) :





fri = |{t ξ 1 ≤ t ≤ S ∧ schedulep,((week−1)∗7+4)∗S+t 6= 0}|
sat = |{t ξ 1 ≤ t ≤ S ∧ schedulep,((week−1)∗7+5)∗S+t 6= 0}|
sun = |{t ξ 1 ≤ t ≤ S ∧ schedulep,((week−1)∗7+6)∗S+t 6= 0}|

IF (weekendw = 0 ∨ weekendw = 3)



n = |{t ξ 1 ≤ t ≤ S ∧ schedulep,((week−1)∗7+4)∗S+t 6= 0
∧ st ∈ night}|

penaltyp,C16 + 1, IF (sat + sun = 0 ∧ n = 1)

IF (weekendw = 1 ∨ weekendw = 2)



n = |{t ξ 1 ≤ t ≤ S ∧ schedulep,((week−1)∗7+3)∗S+t 6= 0
∧ st ∈ night}|

penaltyp,C16 + 1, IF (fri + sat + sun = 0 ∧ n = 1)

(2.21)

and Sunday. An absence will take a dummy value for this constraint, in order
to generate the lowest possible penalty. The constraint is presented in (2.22).

Constraint 18 Maximum number of consecutive working weekends

This constraint limits the number of weekends in which duties are assigned with
max consecutive weekendsw. It does not matter if the weekends are not com-
pletely scheduled. Only Saturdays and Sundays contribute to this constraint,
even if Friday and/or Monday are considered part of the weekend. As is ex-
plained for other constraints on the order in which assignments may or may
not be made (consecutiveness constraints), values are transferred to the next
planning period. The number of consecutive weekends in person p’s schedule at
the end of the previous planning period is previous consecutive weekendsp. A
formal representation can be seen in (2.23).

Constraint 19 Maximum number of working weekends in 4 weeks

The constraint is a restriction on weekend work during periods of 4 consecutive
weeks, provided that at least one of the 4 weeks belongs to the planning period.
The maximum number of weekends is given by max weekends 4 weeksw. Sup-
pose, for example, that we have a planning period of x weeks. The constraint
will be evaluated in x overlapping periods, from the period which starts 3 weeks
before the current one, up until the period which ends with the last week of the
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∀p, (1 ≤ p ≤ P ) :

w = wp

penaltyp,C17 = 0

IF (identical weekendw = 1) : ∀week, (1 ≤ week ≤ D/7) :





∀t, (1 ≤ t ≤ S) :



sat = t IF (schedulep,((week−1)∗7+5)∗S+t 6= 0)
sun = t IF (schedulep,((week−1)∗7+6)∗S+t 6= 0)
absence sat = days offp,(week−1)∗7+5 IF (sat = 0)
absence sun = days offp,(week−1)∗7+6 IF (sun = 0)

penaltyp,C17 + 1, IF (sat 6= sun ∧ absence sat + absence sun = 0)

(2.22)

current period. The number of working weekends for person p in the previous
planning period is given by previous weekends 3p, previous weekends 2p, and
previous weekends 1p. It is a very specific request which was implemented to
satisfy the needs of particular users of the software based on an earlier version
of ANROM and is formally illustrated in (2.24).

Constraint 20 Maximum number of assignments on bank holidays

Unlike most of the other constraints this constraint is cumulative. Bank holidays
are recorded over a longer period than the planning period only. For each
person, the number of cumulative assignments on bank holidays is denoted by
previous bankp. The maximum number of assignments on bank holidays per
work regulation is given by bank holidaysw. A structure bank is an array of
length D and it has value 1 for bank holidays and value 0 for other days. Usually
hospitals prefer to limit the number of assignments on bank holidays during an
entire year with this value. The constraint is formally demonstrated in (2.25).

Constraint 21 Restriction on the succession of shift types

The constraint on the minimum time between shift types already restricts some
sequences of constraints. However, the current constraint can explicitly forbid
particular combinations of shift types. Unlike the constraint on minimum time
between assignments, this constraint evaluates shifts which are scheduled on
consecutive days. A scheduled shift is connected to the day at which the shift
starts. The succession constraint also provides the possibility of forbidding cer-
tain shifts after a free day or even free days after certain shifts. The restrictions
are denoted by successionw, a two dimensional structure with a column and
row for each shift type in addition to one for an empty day. The elements in
successionw are 0 when the column shift cannot be scheduled after the row
shift, and 1 when there is no restriction on the succession. Only the last day
of the previous planning period can influence the evaluation of the constraint
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∀p, (1 ≤ p ≤ P ) :

w = wp

consecutive weekends = previous consecutive daysp

penaltyp,C18 = 0

∀week, (1 ≤ week ≤ D/7) :





sat = |{t ξ 1 ≤ t ≤ S ∧ schedulep,((week−1)∗7+5)∗S+t 6= 0}|
sun = |{t ξ 1 ≤ t ≤ S ∧ schedulep,((week−1)∗7+6)∗S+t 6= 0}|
consecutive weekends + 1, IF (sat + sun > 0)
x = consecutive weekends−max consecutive weekendsw

penaltyp,C18 + x, IF (x > 0)
consecutive weekends = 0





IF (sat + sun = 0)

(2.23)

in the current period. The parameter last dayp,t, has value 1 when the cor-
responding assignment unit t on the last day of person p’s previous planning
period is occupied. A real-world example demonstrating this constraint is given
in Table 2.5. The combinations of letters in the rows and columns (SE, EE,
etc) are abbreviations of shift types in a practical hospital application. The
corresponding shift types have been presented in Table 2.4.

Constraint 22 Patterns

A pattern is a very complex constraint which is built with a combination of
different pattern types. Patterns guide the schedule to follow certain predefined
cyclic arrangements. Every work regulation is subject to at most one pattern
patw. The value is the serial number of the corresponding pattern, or is 0 when
no pattern is assigned to the work regulation. Each pattern pa, (1 ≤ pa ≤ PA)
is defined by an array of length pattern lengthpa, which is restricted to a whole
number of weeks. The start date for the pattern can differ for every personnel
member, but it is confined to Mondays in our approach. At the end of a pattern,
the pattern will start all over again (it is independent of the planning period).
We denote it by the number of the week in which the pattern for person p starts
in the current planning period: start patternp. This enables taking weekends
and particular days of the week into account in the definition.
The software provides 7 types of building blocks for the patterns, some of which
are still modifiable. In order to define a pattern, one of these building blocks
has to be assigned to every day of the pattern period. The 7 types of block
are:

PAT–1 Obligatory assignment of a shift. This building block does not specify
the shift type but prevents the corresponding day from being a free day.
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∀p, (1 ≤ p ≤ P ) :

w = wp

penaltyp,C19 = 0

∀period, (1 ≤ period ≤ D/7) :





n = 4− period

weekends =
{

previous weekends np IF (n > 0)
0 ELSE

∀week, (−n ≤ week ≤ −n + 4 ∧ week > 0) :





sat = |{t ξ 1 ≤ t ≤ T ∧ schedulep,((week−1)∗7+5)∗S+t 6= 0}|
sun = |{t ξ 1 ≤ t ≤ T ∧ schedulep,((week−1)∗7+6)∗S+t 6= 0}|
weekends + 1, IF (sat + sun > 0)

x = weekends−max weekends 4 weeksw

penaltyp,C19 + x, IF (x > 0)

(2.24)

PAT–2 Obligatory assignment of a certain shift type. The user has to set the
shift type.

PAT–3 Obligatory assignment of a shift type of a certain duration, to be pre-
set. The algorithm allows for a small deviation from that preset time,
generally 15 minutes.

PAT–4 No restriction on this day.

PAT–5 Free day.

PAT–6 Day off; the day off type has to be indicated, this can be compensa-
tion, holiday, refresher courses, family reasons, etc. Depending on the
type, the day off can be important for some other constraints (see also
Constraint 6 and 7).

PAT–7 Forbidden shift types. Any combination of shift types can be forbid-
den. This building block provides the possibility of keeping Wednesday
afternoons free, for example. All shift types that last longer than 12:00
or start before 19:00 will cause a violation.

Users are free to assemble these building blocks in any combination in the pat-
tern. A pattern, built with pattern blocks and their corresponding pattern
details, can schematically be presented as follows:
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∀p, (1 ≤ p ≤ P ) :

w = wp

bank days = previous bankp

penaltyp,C20 = 0

∀d, (1 ≤ d ≤ D ∧ bank[d] = 1) :

{
x = |{t ξ 1 ≤ t ≤ S ∧ schedulep,(d−1)∗S+t 6= 0}|
bank days + 1 IF (x > 0)

y = bank days− bank holidaysw

penaltyp,C20 = y IF (y > 0)

(2.25)

Succession - SE EE SD E D SL L LL N
- v v v v v v v v v v
SE v v v v v v v v v v
EE v v v v v v v v v v
SD v v v v v v v v
E v v v v v v v v
D v v v v v v
SL v v v v v
L v v v v v
LL v v v
N v v

Table 2.5: Allowed successions of shift types on consecutive days are represented
by ‘v’, ‘-’ denotes a day on which nothing is scheduled

∀pa, (1 ≤ pa ≤ PA) :

∀d, (1 ≤ d ≤ pattern lengthp) :
pattern daypa,d ∈ {PAT-1, PAT-2, . . . , PAT-7}




1 ≤ pattern detailpa,d ≤ S IF (pattern daypa,d = PAT-2)
1 ≤ pattern detailpa,d ≤ 24 ∗ 60 IF (pattern daypa,d = PAT-3)
pattern detailpa,d = day off type IF (pattern daypa,d = PAT-6)
pattern detailpa,d = {f1, f2, . . . , fn} IF (pattern daypa,d = PAT-7)

with n = number of forbidden shift types;
fi corresponds to a shift
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∀p, (1 ≤ p ≤ P ) :

w = wp

succession = successionw

last day = last dayp

penaltyp,C21

= |{(t, u) ξ (1 ≤ t ≤ S ∧ 1 ≤ u ≤ t) ∧
(last dayt 6= 0 ∧ schedulep,u 6= 0) ∧ successiont,u = 0}|

+ |{(t, u) ξ (1 ≤ t ≤ T − S ∧ t < u ≤ t + S) ∧
(schedulep,t 6= 0 ∧ schedulep,u 6= 0) ∧ successionst,su = 0}|

+ |{t ξ (1 ≤ t ≤ S) ∧ successiont,− = 0 ∧
last dayt 6= 0 ∧ |{u ξ 1 ≤ u ≤ S ∧ schedulep,u 6= 0}| = 0}|

+ |{t ξ (1 ≤ t ≤ T − S) ∧ successionst,− = 0 ∧ schedulep,t 6= 0
∧ |{u ξ 1 ≤ u ≤ S ∧ schedulep,(t/S+1)∗S+u 6= 0}| = 0}|

+ |{t ξ (1 ≤ t ≤ S) ∧ succession−,t = 0 ∧
schedulep,t 6= 0 ∧ |{u ξ 1 ≤ u ≤ S ∧ last dayu 6= 0}| = 0}|

+ |{t ξ (S ≤ t ≤ T ) ∧ succession−,st = 0 ∧ schedulep,t 6= 0
∧ |{u ξ 1 ≤ u ≤ S ∧ last day(t/S−1)∗S+u 6= 0}| = 0}|

(2.26)

Since a pattern can be incompatible with some of the other constraints of the
work regulation, a method was developed to make conflicting soft constraints
idle. Patterns in which the activities are set for every day (work days and free
days are known) require no evaluation of the day type constraints (e.g. Con-
straint 3, 4, 5, 6, 7, etc). The pattern constraint has priority over these day type
constraints. Other constraints, such as overtime and undertime (Constraint 8
and 9), and personal constraints (Constraint 24, 25, and 26) remain valid no
matter what is in the pattern.
Details on the constraints which are made idle by certain pattern types can be
found in Table 2.6, which presents a selection of possible pattern type combi-
nations. In practice, the table includes all the possible pattern types which can
be obtained by combining the pattern blocks of the above list. The first column
of the table presents the combination of building blocks in the pattern. Every
other column represents a soft constraint of the problem. Active constraints are
denoted by a v in the table. All the constraints of the counter type (Constraint
23) are grouped in one column in the simplified representation of Table 2.6.
Some of them are idle and others are active for the same pattern type combi-
nation, which is denoted by a (v) in the table. In order not to overload the
notations, we do not explain further details about the validity of the different
possible counter constraints combined with a pattern. The formal definition is
given in (2.27).

Constraint 23 Counters
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blocks Constraints
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

none v v v v v v v v v v v v v v v v v v v v v v v v v v v
PAT-1 v v v v v v v v v v v v (v) v v v
PAT-2 v v v v v v v v v v v v (v) v v v
PAT-3 v v v v v v v v v v v v (v) v v v
PAT-4 v v v v v v v v v v v v v v v v
PAT-6 v v v v v v v v v v v v v (v) v v v
PAT-7 v v v v v v v v v v v v v v v v v v v v (v) v v v v v
PAT-12 v v v v v v (v) v v v v v
PAT-13 v v v v v v v v (v) v v v
PAT-14 v v v v v v v v v v v v v v v v v v v v v v v v v v v
PAT-15 v v v v v v v v v v v v v v v v v v v
PAT-16 v v v v v v v v v v v v v (v) v v v
PAT-17 v v v v v v v v v v v v v v v v v v v v (v) v v v v v
PAT-123 v v v v v v v v v v v (v) v v v
PAT-124 v v v v v v v v v v v v v v v v v v v v v v v v v v v
PAT-125 v v v v v v v v v v v v v v v v v v v
PAT-126 v v v v v v v v v v v v (v) v v v
PAT-127 v v v v v v v v v v v v v v v v v v v (v) v v v v v
PAT-134 v v v v v v v v v v v v v v v v v v v v v v v v v v v
PAT-135 v v v v v v v v v v v v v v v v v v v
PAT-136 v v v v v v v v v v v v v (v) v v v
PAT-137 v v v v v v v v v v v v v v v v v v v v (v) v v v v v
PAT-146 v v v v v v v v v v v v v v v v v v v v v v v v v v v
PAT-1236 v v v v v v v v v v v v (v) v v v
PAT-1246 v v v v v v v v v v v v v v v v v v v v v v v v v v v
PAT-1346 v v v v v v v v v v v v v v v v v v v v v v v v v v v
PAT-12345 v v v v v v v v v v v v v v v v v v v v v v v v v v v
PAT-123456 v v v v v v v v v v v v v v v v v v v v v v v v v v v
PAT-23 v v v v v v v v v v v v v v v
PAT-24 v v v v v v v v v v v v v v v v v v v v v (v) v v v v v
PAT-26 v v v v v v v v v v v v v (v) v v v
PAT-27 v v v v v v v v v v v v v v v v v v v v (v) v v v v v
PAT-234 v v v v v v v v v v v v v v v v v v v v v v v v v v v
PAT-236 v v v v v v v v v v v v (v) v v v
PAT-237 v v v v v v v v v v v v v v v v v v v (v) v v v v v
PAT-246 v v v v v v v v v v v v v v v v v v v v v v v v v v v
PAT-2346 v v v v v v v v v v v v v v v v v v v v v v v v v v v
PAT-34 v v v v v v v v v v v v v v v v v v v v v v v v v v v
PAT-36 v v v v v v v v v v v v v (v) v v v
PAT-37 v v v v v v v v v v v v v v v v v v v v (v) v v v v v
PAT-346 v v v v v v v v v v v v v v v v v v v v v v v v v v v
PAT-46 v v v v v v v v v v v v v v v v v

Table 2.6: Constraints conflicting with a selection of the total set of pattern
types; v denotes which constraints have to be evaluated with the corresponding
pattern types; according to the type of counter (v) can either mean evaluate or
not
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∀p, (1 ≤ p ≤ P ) :

w = wp

IF (patw 6= 0)

pa = patw
st = start patternp

l = pattern lengthpa

∀d, (1 ≤ d ≤ D) :

pa dayd = pattern daypa,(1+l−st)/l∗7+d

pa detaild = pattern detailpa,(1+l−st)/l∗7+d

penaltyp,C22

= |{d ξ 1 ≤ d ≤ D ∧ pa dayd = PAT-1 ∧
|{t ξ 1 ≤ t ≤ S ∧ schedulep,(d−1)∗S+t 6= 0}| = 0}|

+ |{d ξ 1 ≤ d ≤ D ∧ pa dayd = PAT-2 ∧
|{t ξ 1 ≤ t ≤ S∧
((schedulep,(d−1)∗S+t 6= 0 ∧ st 6= pa detaild)
∨ (schedulep,(d−1)∗S+t = 0 ∧ st = pa detaild))}| = 0}|

+ |{d ξ 1 ≤ d ≤ D ∧ pa dayd = PAT-3 ∧ xd}|
+ |{d ξ 1 ≤ d ≤ D ∧ pa dayd = (PAT-5 ∨ PAT-6) ∧

|{t ξ 1 ≤ t ≤ S ∧ schedulep,(d−1)∗S+t 6= 0}| 6= 0}|
+ |{d ξ 1 ≤ d ≤ D ∧ pa dayd = PAT-7 ∧

|{t ξ 1 ≤ t ≤ S ∧
(schedulep,(d−1)∗S+t 6= 0 ∧ st ∈ pa detaild)}| = 0}|

with xd =
{

yd IF (|yd| > 15)
0 ELSE

and yd =
∑S

t=1(schedulep,(d−1)∗S+t 6= 0) ∗ shift durationst

− pa detaild

(2.27)
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For personnel members belonging to the same work regulation, there is a possi-
bility of defining a maximum value for the workload and to balance the workload
over a period different from the planning period. Users can define a set of coun-
ters (1 ≤ cntr ≤ CNTR), which become available for every work regulation in
the ward. The defined counters can be related to work regulations but not
all the work regulations need to be related to all the counters. We denote by
countersw the list of counters which are valid for work regulation w. Every
counter consists of the following fields:

- Subject to count: counter subjectcntr. This can be anything like hours,
assignments, days off, shift types s (1 ≤ s ≤ S). A different counter
can be defined per shift type.

- Time measure: counter timecntr. Each of the subjects can be counted
on certain time measures, as there are: weekdays, weekends, all days,
specified days of the week day (1 ≤ day ≤ 7), bank holidays, . . .

- Start date: counter startcntr

- Duration: counter durationcntr. The counter restarts each time a period
as long as the start date plus the duration is finished.

- Balance: counter balancecntr can take the value 1 for balanced, 0 for not
balanced.

When a counter is used in a work regulation, a maximum value has to be set.
The value is denoted by counter maxw,cntr. Different work regulations can make
use of the same counter but define their own maximum value (for example, 6
night shifts during weekends in a period of 3 months for full time contracts; 3
night shifts in weekends for the half time work regulation in the same period).
When the maximum appearance of the subject to count on the time measure
is violated during the counter period to which the planning period belongs, the
constraint will generate a penalty. This is the contribution of the capacity part
of the counter constraint to the penalty. Several counter periods can be valid
during the planning period, each one requiring an evaluation. In order not to
make the formulation too complex, we assume in the formulas that the counter
period covers the planning period completely. For every personnel member p,
the balance for each counter cntr, at the end of the previous planning period,
is denoted by counter previousp,cntr.
The second constraint type which can be evaluated with counters is more
complex. Balancing the counters requires information about all the personal
schedules of people for whom the work regulation is related to the counter.
The evaluation of the balancing is organised as follows. In a first step,
the sum sum counter maxcntr of all the maximum values for the counter
(counter maxwp,cntr, for every personnel member p in the schedule) are made.
The maximum values are those which belong to the work agreement corre-
sponding to the personnel member. In case the person has absences or hol-
idays in the counter period, the maximum number is corrected correspond-
ingly (see also Constraint 3 and 8). The number of occurrences in the sched-
ule of the subject to count on that particular time measure is summed for
all the people who belong to a work regulation which includes the counter
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in sum counter actualcntr (=
∑P

p=1 counter actualp,cntr). Note that the pe-
riod is not the current planning period but the period corresponding to the
counter (which is the counter’s start date plus its duration) and thus, for all
the personnel who work with the counter, the value at the end of the previ-
ous planning period is added. For every person, the balanced value for the
counter can be calculated by multiplying the maximum value with the ratio
counter actualcntr/counter maxcntr. The result rarely is a whole number and
therefore, the value is replaced by an interval of length 1 whose lower limit is the
integer smaller than the value (small valuecntr) and whose upper limit is the
integer larger or equal (large valuecntr). To make this constraint less restric-
tive, the user can set a threshold value thresholdcntr for each counter. If a value
belongs to the interval whose lower limit is small valuecntr− thresholdcntr and
whose upper limit is large valuecntr + thresholdcntr, no violation is generated.
Counters evaluating hours require a different threshold than daily counters. The
threshold value for hours is the same as in Constraint 8. A detailed description
of the constraint can be seen in (2.28).

Personal constraints

It is often possible for individual personnel members to make agreements with
the personnel manager or head nurse. External or private obligations do not
fall under the category of hard constraints. They can theoretically be cancelled
in emergency situations. However, there are several possibilities of giving ex-
tra weight to a personal obligation. The reason for the absence can be taken
into account in addition to the importance of the external commitment. Such
situations are represented by the following constraints.

Constraint 24 Day off

Anything that prevents the personnel member from being at work can be han-
dled as a day off in the cost function. Depending on the reason for the day off,
some types of requests for absence will affect the value which is set for some of
the other constraints (see Constraint 3, 7, 8, 9, etc). Every person has the right
to take holiday during the working year. We do not want to generate penalties
for undertime when a person takes holidays in the same period.
Illness, refresher courses, compensation, and occasional family reasons are all
examples of day off types which can be placed in the schedule. The requested
days off for person p at day d are denoted by 1 in days offp,d. The program
foresees a possibility of using an extra weight (to multiply the weight factor
with) for imperative needs. When the extra weight is valid, we find a 1 in the
structure extrap,d. The value of the extra weight is the same for the entire ward:
extra penalty. The system will thus distinguish between strong and weak day
off requests and penalise correspondingly. This constraint is formally defined in
(2.29).

Constraint 25 Shifts off
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∀cntr, (1 ≤ cntr ≤ CNTR) :

sum counter maxcntr = 0
sum counter actualcntr = 0

∀p, (1 ≤ p ≤ P ) :





w = wp

penaltyp,C23 = 0
penaltyp,C23,max = 0
penaltyp,C23,balance = 0

∀cntr ∈ countersw :



counter currentp,cntr =
|{t ξ t ∈ counter timecntr

∧{t, schedulep,t} ∼ counter subjectcntr}|
counter actualp,cntr =

counter previousp,cntr + counter currentp,cntr

sum counter actualcntr + counter actualp,cntr

sum counter maxcntr + counter maxw,cntr

x = counter actualp,cntr − counter maxw,cntr

(in case of absence, an adaptation to counter max is made
corresponding to the correction in Constraint 3)

penaltyp,C23,max + x IF (x > 0)

∀p, (1 ≤ p ≤ P ) :





w = wp

∀cntr ∈ countersw :



balancep,cntr = counter maxw,cntr

∗sum counter actualcntr/sum counter maxcntr

large valuecntr = dbalancep,cntre
small valuecntr = bbalancep,cntrc
y = counter actualp,cntr − (large valuecntr + thresholdcntr)
z = (small valuecntr − thresholdcntr)− counter actualp,cntr

penaltyp,C23,balance +
{

y IF (y > 0)
z IF (z > 0)

penaltyp,C23 = penaltyp,C23,max + penaltyp,C23,balance

(2.28)
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∀p, (1 ≤ p ≤ P ) :

penaltyp,C24 = 0
∀d, (1 ≤ d ≤ D) :



x = |{t ξ 1 ≤ t ≤ S ∧ schedulep,(d−1)∗S+t 6= 0}|
IF (days offp,d = 1 ∧ x > 0)

penaltyp,C24 +
{

1 IF (extrap,d = 0)
extra penalty ELSE

(2.29)

∀p, (1 ≤ p ≤ P ) :

penaltyp,C25 = 0
∀t, (1 ≤ t ≤ T ) :



IF (shift offp,t = 1 ∧ schedulep,t 6= 0)

penaltyp,C25 +
{

1 IF (extra shiftp,t = 0)
extra penalty ELSE

(2.30)

People can avoid certain shifts on a particular day of the planning period and
then shift offp,t equals 1. For the rest of the assignment units of the planning
period, the value is 0. It is recommended to avoid conflicts with certain activities
in the personal agenda by blocking small parts of the planning period. The
idea is the same as in patterns, but this constraint is not cyclic. Also, the
feature to attach a stronger weight to some requests (as explained with respect
to Constraint 24), exists for this constraint. Those requests which require a
stronger penalty have 1 in extra shiftp,t The formal definition can be seen in
(2.30).

Constraint 26 Requested assignments

There are cases in which a person wants to be assigned to a specific shift type
on a certain day. The set of required assignments (corresponding to assignment
unit t) for person p is denoted by 1 in requested assignmentp,t. For the other
assignment units, the value is 0. As explained with respect to Constraint 25,
there is a possibility for giving a higher or lower importance to each requested
assignment. For the required assignments with a higher importance, the struc-
ture extra requested shiftp,t has the value 1. The system applies the same
weight factor and multiplication factor for violations on personal constraints
as explained in the day off constraint (Constraint 24). A formal illustration is
presented in (2.31).

Constraint 27 Tutorship

There exists a possibility of defining a tutor for a personnel member who cannot
work alone: tutorp. This constraint implies that the tutor has to be working
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∀p, (1 ≤ p ≤ P ) :

penaltyp,C26 = 0
∀t, (1 ≤ t ≤ T ) :



IF (requested assignmentp,t = 1 ∧ schedulep,t 6= 0)

penaltyp,C26 +
{

1 IF (extra requested shiftp,t = 0)
extra penalty ELSE

(2.31)

∀p, (1 ≤ p ≤ P ) :

tutor = tutorp

penaltyp,C27 = |{t ξ 1 ≤ t ≤ T ∧ schedulep,t 6= 0 ∧ covertutor,t = 0}|

with

covertutor,t = |{u ξ (t/S) ∗ S ≤ u ≤ (t/S + 1) ∗ S
∧ shift startsu ≤ shift startst ∧ shift endsu ≥ shift endst}|

(2.32)

whenever the other person is. The same concept can be used for any set of people
who want to work at the same time (e.g. tutees, car-poolers, etc). ANROM does
not generate a penalty when the tutor is working during a free moment of the
tutee, and neither when the tutor’s shift overlaps completely with the tutee’s
shift. When two people are required at the same time all the time, they can be
set as each other’s tutor. The constraint is presented in (2.32).

Constraint 28 People not allowed to work together

This constraint applies the same idea as the above. It only prevents the two
people involved from being present in the ward at the same time. The person
not togetherp should not work when p is at work. The constraint is often
used in order to provide a maximal availability of people with equal skills.
Other applications are those in which family members prefer to alternate their
working time in order to take care of the children. All the assignments which are
overlapping in time in their schedules violate this constraint which is formally
presented in (2.33).

2.5 Summary

The nurse scheduling model tackled in this thesis is derived from the real-world
problem of short-term personnel rostering in Belgian hospitals. In this chapter,
we introduced a novel personnel rostering terminology and developed formal
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∀p, (1 ≤ p ≤ P ) :

not = not togetherp

penaltyp,C28 = |{t ξ 1 ≤ t ≤ T ∧ schedulep,t 6= 0 ∧ overlapnot,t 6= 0}|

with

overlapnot,t = |{u ξ (t/S) ∗ S ≤ u ≤ (t/S) ∗ S + S
∧ (shift startst

≤ shift startsu
< shift endst

∨ shift startst
< shift endsu

≤ shift endst
)}|

(2.33)

model components, upon which the general nurse rostering framework of this
thesis is based.
Hospital personnel belong to various skill categories that can be defined by
the planners. There is even a possibility for certain personnel members to
carry out jobs for other skills. Substitutability of personnel is much more
flexible than in hierarchical organisations. This will be explained in detail in
the literature overview of Chapter 3. Hard constraints, which should never be
violated, make sure a sufficient number of people with the requested skills is
scheduled at any time during the planning period. A very extended list of soft
constraints enables the search algorithms to take personal requests, balanced
workload, etc into consideration. The user definable work regulations enable
a very high flexibility towards defining constraints. They group constraints
on the schedules of people with the same contracts. Some hospitals in
practice work with personalised work regulations in order to cope with varying
preferences related to the personal life of the nurses. The cost parameters
per constraint are the same for all the employees of a ward (see Chapter 4)
and the evaluation of a schedule is carried out in an impartial way. Long
term fairness can be obtained by an appropriate definition of the counter
constraints (Constraint 23). For the evaluation of most of the other constraints,
a fair consideration at the transition of consecutive planning periods is provided.

PART II, III and IV of this work focus on solving the advanced nurse ros-
tering model introduced in this chapter.
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Chapter 3

The State of the Art

3.1 Introduction

Employee scheduling has occupied personnel managers, operations researchers
and computer scientists for more than 40 years. The domain often covers
staffing, budgeting and short-term scheduling problems. Although these fields
have variable time horizons, they are strongly interrelated. Scheduling of
hospital personnel is particularly challenging because of different staffing needs
on different days and shifts. Unlike most other facilities, healthcare institutions
work around the clock.
Until recently, nearly all personnel scheduling problems in Belgian hospitals
were solved manually. This type of planning process is now referred to as
self-scheduling (Section 3.2.4). Scheduling by hand used to be a very time
consuming and unrewarding task for a head nurse in hospitals or a personnel
manager or foreman in other work situations. Planners had no automatic
tool to test the quality of a constructed schedule. They made use of very
straightforward constraints on working time and idle time in the recurring
process.
The importance of a systematic approach to create good timetables is very high,
especially in healthcare, where it is unacceptable not to fully support patient
care needs. The jobs in hospitals are hard to automate, difficult to value, and
very labour intensive. There are still great possibilities for automated nurse
scheduling.

In this literature overview, we distinguish between hospital personnel
scheduling and general employee scheduling (Section 3.4). Although the main
purpose is the same, the problems often differ considerably and so do the ap-
proaches to solve them. The overview on hospital personnel presents the prob-
lem both from problem formulation (Section 3.2) and from solution method
perspectives (Section 3.3).

In the general introduction (Chapter 1), the different scheduling approaches
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for various time horizons are mentioned. Since this research concentrates on the
short-term timetabling part of the problem, which is often called ‘nurse roster-
ing’, we will only briefly discuss the management decision part. Section 3.2.2
especially stresses the difference between the topic of this research and the long-
term management decision called ‘staffing’. In the next sections, ‘centralised or
unit scheduling’, ‘tour scheduling’, and ‘self scheduling’ are briefly introduced.
Before going into the details of approaches to solve nurse rostering problems
(Section 3.3), the often very attractive cyclical schedules are presented in Sec-
tion 3.2.5. Section 3.2.6 gives a comparison between the problem tackled in this
thesis and other problems, with respect to particular constraints and dimen-
sional criteria.
It is much easier for personnel members to accept an automatically obtained
schedule because it is obviously unbiased. Mathematical or heuristic approaches
can easily produce a number of solutions, they can report on the quality of sched-
ules, they can try to divide the work evenly among workers, etc. One of the
largest benefits of automating the personnel scheduling process is undoubtedly
a very considerable time-saving for the administrative staff involved.
When discussing nurse scheduling approaches in this literature overview, we
compare the complexity of the tackled problems to the problems addressed in
this project.

3.2 Nurse Scheduling - Classifications

Nurse rostering or nurse scheduling covers several types of personnel scheduling.
In the literature [26, 193, 204, 214], staffing and rostering tackle different decision
levels. Manual or automated scheduling, cyclical or non-cyclical scheduling, are
important decisions which can lead to completely different solutions. In this
classification, we do not concentrate on the scheduling procedures but merely
on the strategic decisions.

3.2.1 Literature overviews

Some literature reviews on personnel scheduling are discussed in this section.
Most of them specifically tackle personnel scheduling in healthcare.

In his overview, Warner [214], (1976), distinguishes 3 major areas of re-
search: staffing, scheduling and reallocation of nurses. 5 different criteria are
defined for the scheduling part of the problem.

- coverage: the difference between the required and the scheduled number
of people for a task

- quality: including fairness, work stretch length, etc (comparable to some
soft constraints considered in Section 2.4)

- stability: in terms of the perception of nurses that schedules are generated
consistently and that they can predict on/off days and weekends

- flexibility: how well the system can adapt to changes in the environment
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- cost: resources consumed in making the decision: e.g. personnel manager’s
time, computer time, etc.

It is very interesting to combine these criteria for evaluating schedules since they
address more than computable standards. From a general hospital scheduling
point of view, it makes sense to take such a broad interpretation of cost (to
generate the schedule) into account. However, it would also make sense to add
other criteria (like ‘personnel cost’, for example) to the list. Nearly all the
criteria are very hard to measure. Coverage can only be calculated provided
the required number of personnel has reliably been derived. ‘Stability’ is a very
interesting criterion, which is not evaluated in the research of this thesis. At the
time Warner did his research, it was much harder to make trustworthy schedules
long time in advance. This is less a problem today, although stability is not easy
to calculate. The pattern constraint (Constraint 22 in Section 2.4.3), however,
was introduced in ANROM exactly to give in to the personnel’s request for
stability.
Warner compares three scheduling approaches against these 5 criteria:

- The Traditional Approach, in which the schedules are generated by hand.
The only advantage with respect to the criteria is that this policy is flex-
ible.

- Cyclical Scheduling generally provides good schedules but it cannot eas-
ily address personal requests. The cost of such schedules is low but the
method is not flexible enough to cope with changing environments.

- Computer Aided Traditional Scheduling enables a fast and more complete
search for good schedules. The advantages of this approach are high with
respect to all the criteria considered.

Compared to the research in this thesis, Warner’s overview is more oriented
towards the staffing decisions, which are also briefly discussed in Section 3.2.2.

Fries [98], (1976), presents a bibliography of early methods for personnel
rostering in healthcare institutions. Many of these early approaches rely on
manual procedures, following a set of arbitrary rules. They are too restricted
to be applicable for problems with the complexity of the situations in Belgian
hospitals.

Tien and Kamiyama [204], (1982), present a list of personnel scheduling
algorithms, not restricted to healthcare. Many of them are based on arbitrary
trial and error methods. Tien and Kamiyama concentrate on the hospital
scheduling situation in the United States.
In their literature overview, they decompose the manpower scheduling problem
into five separated stages: determination of temporal manpower requirements,
total manpower requirement, recreation blocks, recreation/work schedule, and
shift schedule.
Stage 1 and stage 2 are management decisions (also called the ‘manpower
allocation problem’) which belong to the long-term staffing part of the problem
(see again Section 3.2.2). Both stages consider defining hospital requirements
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and selecting resources. The problem tackled in this thesis expects the results
of stage 1 and 2 as input data for the scheduling problem. However, ANROM is
very flexible in that it provides the possibility to define minimum and preferred
personnel requirements for certain shifts or time intervals; it also allows the
possibility of setting different personnel requirements for every moment of the
day (not mentioned in Tien and Kamiyama’s overview).
In the classification of [204] stages 3 to 5 include the entire short-term
timetabling part of the problem, taking preferences and constraints on personal
schedules into account. The research of this thesis tackles the three latter
stages simultaneously, whereas some other methods solve one phase after
another. No automatic interaction between the manpower allocation and
the automated scheduling engine exists in ANROM. However, the interactive
program allows for re-allocating people and rescheduling resources in a very
simple way. Most papers referred to in the overview treat constraints, which
are soft in ANROM, as hard constraints, e.g. precedence constraints (no
changeover from later to earlier shifts on consecutive days, consecutive working
days, number of free days, number of consecutive free days, free weekends per
number of weekends,etc).
Tien and Kamiyama were able to classify a large number of papers in their
5 stage model, some covering a number of stages simultaneously. However,
we believe that this division is often too simplified to capture all the problem
specific features of certain problem areas and applications.

Sitompul and Randhawa [194], (1990) define the objective of manpower
scheduling in hospitals as the objective to develop a ‘systematic procedure’ for
allocating nurses to work shifts and work days to ensure continuous high qual-
ity service. The organisation has to provide a variable mix of nursing skills and
specialisations, and to satisfy organisational scheduling policies such as work
patterns. Finances are central in this paper; the goal is to reduce the personnel
cost.
Sitompul and Randhawa divide the nurse scheduling approaches according to
three different models: heuristic, optimising and AI-based methods. Character-
istics of manpower scheduling in hospitals are:

- fluctuating demand
- human effort (which cannot be inventoried)
- critical customer convenience.

while the schedules are subject to different kinds of constraints.
It is a very interesting idea to base decisions on the analysis of human effort and
on the measurement of patient satisfaction. So far, ANROM only provides an
evaluation of mathematically measurable constraints in terms of working time
and skill classes.
Sitompul and Randhawa define four stages in nurse scheduling:

- determine a set of feasible schedules that satisfy the constraints
- select the best schedule in terms of cost, coverage, and/or other criteria
- fine tune to accommodate changes
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- make specific shift assignments.

For real-world problems tackled by other researchers, this division into four cate-
gories is often very arbitrary. It would be very difficult to categorise the problem
tackled in this thesis with respect to these categories. Instead, ANROM covers
the four stages simultaneously, respecting the coverage constraints. In real-
world situations, the problem complexity makes it nearly impossible to satisfy
the constraints (stage 1). In this research, we do not evaluate schedules in terms
of personnel cost and coverage (stage 2). The personnel are (usually) hired for
a longer period than the planning period; pure personnel management decisions
do not belong to the short-term rostering field. Minimum coverage is a hard
constraint in our approach. It is an interesting idea, however, to compare sched-
ules with respect to the perceived quality by the personnel members (a criterion
of Sitompul and Randhawa) instead of using the violation of constraints as a cri-
terion. ANROM provides plenty of possibilities to address changes (stage 3), for
example freezing parts of the schedule (see Section 5.3), interactive scheduling
with immediate diagnosis of the violated soft constraints, etc. Moreover, fluc-
tuating daily personnel demands are part of ANROM. Most of the constraints
are directly related to the personnel members personally. Therefore it makes
no sense to unlink specific shift assignments (stage 4) and the schedule design
because assignment to different people really influences the quality of the sched-
ule.
In the overview, Sitompul and Randhawa distinguish between optimal and
heuristic scheduling techniques. They remark that people using optimising tech-
niques work with a simplified version of real-world problems. When the prob-
lems are complex, planners apply heuristic techniques and accept non-optimal
solutions. Heuristic scheduling techniques are applied to generate cyclical sched-
ules in most cases. Other mentioned approaches are rule-based decision support
systems. Since hospitals and even wards within a hospital differ largely, it is
very difficult to integrate experts’ knowledge in a workable system.
Sitompul and Randhawa advocate the approach of tackling staffing and rostering
at the same time. They argue that separating the rostering from management
decisions leads to sub-optimal schedules. In the case of Belgian hospitals, how-
ever, we believe that a general scheduling procedure would not work without
significant changes in working practices, for several reasons:

- even though there is a high fluctuation in patient needs, shifting personnel
around the hospital all the time is not recommended

- it would not be acceptable to take on additional staff or to lay off workers
each time the personnel request does not match the available staff

- people prefer to express personal preferences with respect to work and free
time, these preferences differ from month to month. Planners only grant
personnel wishes if they do not deteriorate the quality of the work

- the problems are nearly all over-constrained and too complex to find an
optimal solution in a reasonable amount of time, hospital people accept
non-optimal schedules.

Sitompul and Randhawa believe that decision support systems can address

71



many problems which seem unsolvable with the previously discussed techniques.
A decision support system can incorporate the objectives of the hospital and
the personnel by adding an interactive component to automatic schedule
generation. It can make use of a database with solutions for specific problems.
The characteristics of the problems in many hospitals are undefined at the
outset. A drawback of many analytical formulations is that they are rigid
and incomplete. They cannot be easily adapted to the changing needs of
the sector. Users are also reluctant to enter a lot of data in an analytical
system. Sitompul and Randhawa realise, however, that a lot of obstacles have
to be taken into account in order to develop a workable decision support system.

Bradley and Martin [26], (1990), distinguish three basic manpower deci-
sions in hospital personnel scheduling: staffing, personnel scheduling and allo-
cation (as introduced by Warner [214]).
The first problem consists of determining the long-term number of personnel
which have to be employed. People with different skills are hired to be assigned
to certain wards or teams. The number of personnel is expressed in terms of
FTE (full time equivalents) and is supposed to be sufficient to cover holiday
periods (annual leave), training and further education. Hiring part-time nurses,
allowing flexible work (or permitting the definition of different work agreements
like in this work), etc permits a closer match between the personnel demands and
the effective hours worked. Staffing decisions are influenced by the stochastic
nature of personnel requirements and personnel capabilities. Personnel man-
agers often deal with the problem to weigh up the pros and cons of overstaffing
and understaffing. The work in this thesis starts from the results of this staffing
phase. The examples of flexible work, personal education, different skills, etc
can all be handled in ANROM.
The second phase in Bradley and Martin’s manpower decision scheme is the
conversion of expected daily work force into precise assignments: personnel ros-
tering. It consists of determining which person works which shift on which day,
matching the minimum service requirements and taking some constraints on
personal schedules into account. These constraints can be of a legal nature, as a
result of negotiated labour agreements. Better schedules can be generated if the
problem allows for differentiation between days of the week, seasonal variations,
etc. Patients needs are very hard to predict. Since schedules are generated
before the actual patient needs are known, the personnel manager or scheduler
has to anticipate the personnel requirements. This phase corresponds strongly
to the work presented in this thesis for the Belgian hospital market. ANROM
does not provide a tool for the calculation of personnel requirements, however.
The daily personnel requirements (per shift or per hour) are expected as input
to the system. Thanks to the high flexibility in defining minimum and preferred
personnel requirements, and thanks to the possibility to handle overstaffing (by
adding shifts and by choosing different planning procedures, see Section 5.6)
and understaffing (by allowing overtime and reporting it), it is possible to check
certain scenario’s (see Section 5.2). Considering the precise shift assignment to
personnel, ANROM provides, in comparison with other approaches, a very large
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range of soft constraints for the personal schedules (Section 2.4).
The third phase, the allocation phase, refers to assigning people to actual work
sites. It is remarkable that many researchers consider this as a separate phase
(see also [194, 204], etc). Somehow, most Belgian nurses differ so much from
each other (in skills, work regulation and preferences) that the allocation is bet-
ter not postponed until the end of the process.
Bradley and Martin make a classification of schedules both formally and from
a solution method viewpoint, just like Sitompul and Randhawa [194] do:

- exact cyclical
- heuristic cyclical
- exact non-cyclical
- heuristic non-cyclical.

Siferd and Benton [193], (1992), presented a review of factors influencing
hospital staffing and scheduling in the United States. A survey among hospi-
tal managers reveals the complexity of the problem. The work first discusses
the staffing history in which cost reduction became more and more important.
In the second part of the work short-term personnel scheduling is discussed,
in which various constraints on the nurses’ schedules are taken into account.
Many operations management researchers and hospital managers understand
the linkages between decision making in staffing and scheduling. Hiring part
time nurses and making use of ‘pool’ nurses, in addition to making use of over-
time became more customary in this respect. It allows for more flexibility in
short notice personnel demand increases. Hospital managers have to understand
the stochastic and variable nature of the demand for service. Patient care can
vary over a very wide range but is often arbitrarily based on the number of beds.
Scheduling issues such as length of shifts, number of weekends worked, days on
and off, and general flexibility of the nursing staff are intertwined with issues of
the qualifications of nurses from temporary nursing services and in-house nursing
pools. Many cyclical approaches are mentioned, some of them take preferences
into account and others are less flexible. The researchers collected data from 31
different hospitals, and, in total, 348 wards. Decentralised manual scheduling
was the most common approach, often performed in co-operation with a large
number of people per ward. The questioned hospitals work with different skill
classes for personnel. Personnel shortage is often solved by allowing overtime
(sometimes leading to 12 or 16 hours per day services) and by using personnel
from other wards. Full time work seems to be still more popular than any kind
of part time work. It is also rather rare to have nurses doing both day and night
shifts. In many cases the night work is done by a special group of personnel (this
is not generally the case in Belgium). A large number of personnel is assigned
to a set shift in practice. Most shifts have fixed start and end times (unlike
the approach in ANROM), 50% of the hospitals work with three start times for
day shifts on weekdays and 30% have 5 different start times. A small number
of constraints, which are comparable to the constraints handled in this research
can be extracted from the survey. Most hospitals seem to work with stricter
rules (e.g. in 93% of the cases, there are no ‘split’ shifts, or, people working the
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same days every week). We note that ANROM allows for a much more flexi-
ble definition of constraints, work regulations, etc than any of the approaches
mentioned. Some of the ‘soft’ constraints from this US review are:

- limit on the number of weekends worked (comparable but less flexible than
Constraint 19 in Section 2.4.3, which limits the number of weekends per
4 weeks)

- set patterns for days on and off (less flexible than ANROM’s Constraint
22, in which the user can define his own pattern items).

The personnel rostering problem addressed by ANROM corresponds strongly
to the second scheduling phase of Siferd and Benton. However, the constraints
and features in the US hospitals are less complex than the requirements we
identified in Belgian hospitals.

Hung [120], (1995), collected 128 articles on nurse scheduling, from the
60’s up until 1994, and presents the references as an overview. Most papers
study the experience of new work week arrangements. Hung’s main interest is
to meet the requirements by patients and to find work arrangements that lead
to high personnel satisfaction. It is mainly management and constraint issues
that are taken into account, to improve the schedules. Some examples are:
experiments with shifts of different length, 3-days work schedule, 4-weeks work
schedule, 7-days work every two weeks, self-scheduling, etc.

There are a few PhD dissertations on the topic of hospital scheduling,
most of them belong to the staffing domain:

- D.M. Warner: A Two Phase Model for Scheduling Nursing Personnel in
a Hospital, Tulane University, New Orleans, LA, (unpublished), 1971

- D. Schneider: A Systems Analysis of Optimal Manpower Utilization in
Health Maintenance Organizations, University of Florida, Gainesville,
Florida, 1973

- V.M. Trivedi: Optimum Allocation of Float Nurses Using Head Nurses’
Perspectives, University of Michigan, Ann Arbor, Michigan, (unpub-
lished), 1974

- M.V. Tobon Perez: An Integrated Methodology to Solve Staffing, Schedul-
ing and Budgetting Problems in a Nursing Department, University of
Pittsburgh, 1984

- D. Lukman: An Hierarchical Approach in Schedule Formulation and Main-
tenance under Uncertainty, University of Pittsburgh, 1986
In the developed rule based decision support system there is no possi-
bility to change or add rules and the number of required personnel is
not calculated. The system allows for qualitative considerations without
quantitative values.

- I. Ozkarahan: A Flexible Nurse Scheduling Support System, Arizona State
University, 1987
A goal programming formulation, including both the determination of
possible schedules and the assignment of individual nurses to these sched-
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ules is presented in this work. Ozkarahan realises that her formulation
requires a zero-one integer program much larger than anything available
at that time. The work is considered a part of a large decision support
system which can incorporate artificial intelligence techniques in the nurse
scheduling process.

- J.M.H. Vissers: Patient flow based allocation of hospital resources, Eind-
hoven University of Technology, 1994
The research focuses on the analysis, design and control of operational
health care processes and systems. Special interest areas are the develop-
ment of the process concept and the allocation of shared resources within a
hospital setting and beyond. The personnel scheduling part of this works
belongs to the staffing domain.

- J.H. Oldenkamp: Quality in Fives: On the Analysis, Operationalization
and Application of Nursing Schedule Quality, Rijksuniversiteit Groningen,
1996
The thesis describes a study of the support of scheduling nurses, in which
it focusses on the consequences of nursing schedules on the performance of
the nursing unit. Three parts are distinguished in this performance: the
effectiveness in providing nursing care, the efficiency of a nursing unit and,
the influence of a nursing schedule on the nursing unit’s performance.

- U. Aickelin [4]: Genetic Algorithms for Multiple-Choice Optimisation Al-
gorithms, European Business Management School University of Swansea,
1999
One multiple choice problem of Aickelin’s work is strongly related to the
subject of this thesis. The corresponding part of [4] is called ‘A Direct
Genetic Algorithm Approach for Nurse Scheduling’. It is the main aim to
balance feasibility and solution cost or quality within a genetic algorithm
framework.

- H. Meyer auf ’m Hofe: Kombinatorische Optimiering mit Constraintver-
fahren - Problemlösung ohne anwendungsspezifische Suchstrategien, Uni-
versity of Kaiserslautern, 2000
The work builds on the development of a constraint library for a commer-
cial personnel planning system. Soft constraints represent different kinds
of restrictions on personal schedules, going from rather strict general con-
ditions to flexible personal requests and costs. Search algorithms for the
combinatorial problems make use of special propagation procedures from
the constraint library.

3.2.2 Staffing

Hospital staffing involves determining the number of personnel of the required
skills in order to meet predicted requirements. In practice, several interrelated
considerations make the task very complex. Factors are the organisational
structure and characteristics, personnel recruitment, skill classes of the per-
sonnel, working preferences, patient needs, circumstances in particular nursing
units, etc. Another significant staffing decision is to define work agreements
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for part time workers, to decide whether substitution of skill classes is allowed
and for which people, etc. In the real-world problems studied in this thesis,
staffing, budgeting and personnel rostering takes place at different levels
and for completely different time horizons. Many researchers have therefore
decomposed the nurse rostering problem in phases (3 phases in [26, 214], 4
in [194], and 5 phases in [204]). Interaction between the levels is certainly
necessary but in practice it would be unworkable to handle the problems
simultaneously all the time, although sub-optimal short-term decisions could
theoretically be avoided. Personnel are usually hired for longer periods than
the short-term rostering period. Although staffing and hospital management
decisions are beyond the scope of this project, a brief summary of some work is
presented. This section is mainly presented to discover different kinds of input
data for the short-term timetabling problem. The system discussed in this
thesis will preferably tackle the most general and complete staffing decisions.
The literature overviews from Section 3.2.1, nearly all mention some of the
staffing stages [26, 120, 193, 194, 204, 214].

From the 1960’s on, hospital staffing has fascinated many researchers from
varying fields: pure mathematics, operations research, artificial intelligence,
social and life sciences. Wolfe and Young [221, 222], for example, presented
in 1963 a model to minimise the cost for assigning nurses of different skill
classes to various tasks.

Schneider and Kilpatrick [183], (1975), developed mathematical
programming models to determine optimal manpower utilisation in health
maintenance organisations. The problem corresponds very well to that of group
practices and outpatient settings and thus differs from the nurse scheduling
problem in hospitals. Three different healthcare team configurations are
considered, having people with different medical skills. The analytical models
combine medical care aspects and financial considerations to search for an
optimal solution. The developed methods produce very good results when
applied in the very early stages of setting up a health maintenance organisation.

Warner [214], (1976), presented an overview of three stages: nurse staffing,
nurse scheduling (see also Section 3.2.1) and nurse reallocation. The staffing
problem in this work is defined as an annual decision in which seasonal variation
can be considered. It consists of determining an appropriate number of full time
equivalent nurses for each skill. A methodology for the staffing decision is pro-
posed by Warner and many hospitals accept it (subject to small adaptations).
After the scheduling phase comes the third step: the reallocation of nurses.
This phase is a fine-tuning of staffing and scheduling. It involves determining
how float nurses are assigned to units based on nonforecastable changes or
absenteeism. Among hospital schedulers, the potential benefits of this realloca-
tion step in the process are still uncertain. However, Warner is convinced that
the combination of the three stages in the end leads to a better scheduling policy.
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de Vries [80], (1987), developed a framework to balance the supply and the
demand for nursing care. There seems to be a range of balance between them
instead of a strict equilibrium. He counts the actual capacity utilisation by
dividing the actual workload per hour by the available staff per hour. Uniform
criteria can be handled for all wards in the hospital. However, differences
in workload between wards can be registered and result in a mechanism for
co-ordination between wards.

Smith-Daniels et al. [198], (1988), present a literature overview on
capacity planning in healthcare. They distinguish between capacity decisions
on facility resources and on work-force resources. In these categories, two
decision levels are selected: acquisition decisions and allocation decisions.
The acquisition decisions for work-force resources match the meaning of
‘staffing’ as it is defined in this section. The research domain of this thesis
only considers the allocation decisions for work-force resources, namely the
assignment of workers to days and shifts. This part is not deeply studied in
[198]. Two other decisions in the group are the assignment of workers to units
and to tasks. Many different strategies and approaches have been collected.
Smith-Daniels et al. predict that the strict staffing and timetabling of people
and other resources will all be combined in an objective for the new large scale
health organisations.

Easton et al. [86], (1992), compare 12 different staffing policies during a
one month period in a large hospital in the United States. They are attempting
to provide adequate staffing levels to meet the patients needs and attractive
work schedules to satisfy the personnel. The research is carried out at the
management level, considering costs and the annual percentage of personnel
turnover, reflecting dissatisfaction.
It is a common problem in hospital environments that unplanned capacity ad-
justements have to be made from time to time. In busy periods, unscheduled
nurses will be expected to work, and in slack periods, people will work too few
hours to earn their full wages.
Restrictions on shift rotation and work stretches, distribution of unattractive
work, higher wages for weekend and night work, 12-hour shifts during the week-
end, etc are considered. Alternative scheduling patterns (called ALTOURs in
[86]) are getting more and more common in nurse scheduling environments. The
patterns involve 8, 10, 12 or 16 hours shifts, combined with days off patterns
and compensation days.
Easton et al. also discuss the possibility of working with ‘float’ nurses. Float
nurses can easily solve temporarily occurring under- and overstaffing in different
wards. It is not recommendable however, to ask float nurses to undertake high
risk tasks that require a lot of experience, such as working in intensive care,
assisting in an operating theatre, etc.
Finally, the overview presents the results of 12 different methods, it compares:

- scheduled hour utilisation
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- paid hours
- workforce distribution
- the number of different ‘tours’ (see also Section 3.2.5)
- . . .

for both unit scheduling and centralised scheduling (see Section 3.2.3). They
conclude that the expected nursing expenses decrease as the scheduling alter-
natives increase. In order to obtain this result, the nursing requirements have
to obey some rules. The research also excludes overtime, part-time work, un-
derstaffing, etc because it is very hard to formalise them.
Although this thesis provides no staffing policies, the algorithms can handle the
results of any of the management decisions discussed in this section.

3.2.3 Centralised and unit scheduling

Centralised scheduling [86, 193, 198, 214] relieves head nurses from the time
consuming task of constructing schedules on a very regular basis. Two major
advantages of this approach are fairness to employees through consistent, objec-
tive, and impartial application of policies and opportunities for cost containment
through better use of resources.
When head nurses or unit managers are given the responsibility to generate the
schedules locally [5, 26, 84, 138, 142, 194], etc, it is considered an advantage
that nurses get more personalised attention. Consequently, personnel members
might see their schedule as a punishment or suspect the head nurse to give pref-
erential treatments to the same people.
ANROM allows for unit scheduling, but thanks to the handling of constraints
and the automatic search procedure, the major drawbacks of the method are
avoided. There are plenty of possibilities to impose constraints and policies on
a centralised level as well.

3.2.4 Self-scheduling

As opposed to computer decision support systems, discussed in Section 3.3,
self-scheduling is a manual process. The technique is more time consuming
than automatic scheduling but it has the advantage that the nurses co-operate
and are asked for advice.

Generally it is performed by the personnel members themselves and co-
ordinated by the head nurse of a ward. Nurses and other personnel collectively
develop their schedules, taking coverage and time-related constraints into
account. While the individual personnel members express their preferences
for schedules and help setting the number of people required at any time, the
personnel manager ensures that the hospital requirements are met. It is a very
labour intensive procedure in which the nurses indicate their preferences and
negotiate during breaks and before and after a shift. The effort for the per-
sonnel manager is reduced, his task is more supervisory. The term ‘interactive
scheduling’ is also used in this respect (Miller [146] and Ringl and Dotson [178]).
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Manual scheduling has been generally adopted in hospital wards. It is not
recommended to eliminate it completely. ANROM provides algorithms to gen-
erate the schedules automatically but it also enables users to set specific pref-
erences and adapt parameters. Resulting schedules can always manually be
adapted to better satisfy people.

3.2.5 Cyclical scheduling

Cyclical scheduling concerns organisations in which each person works a cycle
of n weeks. This type of schedule is common if the day is partitioned in distinct
shifts and if the personnel requirements per day and per shift obey a cyclical
pattern.

Cyclical schedules offer several advantages (Warner [214], 1976). Personnel
members know their schedule a long time in advance, the same blocks are used
repeatedly, the work is divided evenly, unhealthy work rotations are avoided
because it is common to apply ‘forward’ rotation, etc (Forward rotation is met
when a schedule includes no shift starting at an earlier time than a shift on
the day before.) The benefits are plenty but cyclical schedules unfortunately
lack generality. They cannot address (without big changes) flexible work
regulations, fluctuating personnel demands and personal preferences. Also,
cyclical scheduling requires a higher level decision to provide a precise number
of skilled personnel members and strict personnel tasks. Working accord-
ing to cyclical schedules is impossible if the problem is not very correctly stated.

Hung [119], (1991), presents a cyclical pattern for short-term nurse
scheduling. He introduces 4-day workweeks with 10-hour shifts. Long shifts
have plenty of benefits if the overlaps are strategically timed. Hospitals can
cope with daily peak overloads, the communication between consecutive shifts
is improved, and overtime is reduced. Hung allows ‘downward’ substitution
in order to fill shortages for certain skill classes. The approach provides a
permanent-shift system; this is a schedule in which nurses do not rotate.
Advantages are that the people who work at the same time form a real team.
There are also benefits for the social activities of the personnel members. For
the scheduling problem, it implies the consideration of days on and off only,
which reduces the complexity of the problem considerably.
The constraints on the algorithm are the workforce, and some constraints
correspond to the soft constraints in ANROM: three free days per week (strict
version of Constraint 12) and at least a number of free weekends per set
of weeks (Constraint 19). The algorithm is not complex at all and can be
implemented by hand. Some results are presented for problems in which the
daily personnel requirements are not constant. The schedules match perfect
cyclical schedules to a high extent.

Cyclical personnel rostering problems are generated using constraint satis-
faction by Muslija et al. [154], (2000), and applied on real-world examples
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(see Section 3.3.2).

Tour scheduling

Tour scheduling is a special case of cyclical scheduling. The tour scheduling
problem is one of simultaneously determining optimal levels for nursing
resources and deploying these people among a set of feasible schedules or tours.
By redefining traditional work weeks for nurses, many hospitals implemented
new nurse schedules (or tours). As an example, alternative scheduling patterns
(ALTOURs) were introduced in the work of Easton et al. [86] in Section 3.2.2.

Bechtold and Showalter, [16], (1987) combine the problem of staffing
and scheduling personnel in a tour scheduling model. A similar example of a
tour scheduling approach is presented in [14].

Although they can easily be generated and cover the personnel requirements,
cyclical schedules are not flexible at all where it comes to addressing slight
changes in personnel demands or in expressing personal preferences. For specific
problems encountered in Belgian hospitals, cyclical scheduling is only applicable
in very rare cases. Moreover, personnel seem to prefer ‘ad hoc’ schedules. Such
schedules address fluctuating hospital demands in addition to flexibility with
respect to private preferences of the personnel.

3.2.6 Problem dimensions and complexity

Tables 3.1 to 3.20 help to place the problem tackled in this thesis within the
context of the group of problems studied in the literature. They present a
systematic overview of some dimensional parameters and objectives collected
from a range of publications.
In this thesis we are particularly concerned with the real-world nature of the
problems tackled: the flexibility of defining shift types, work regulations, skill
categories, the applicability in practice, etc.

When only considering the short-term rostering problem, two main goals
are distinguished: coverage and time related constraints for personnel (Table
3.1). It is mandatory to provide enough assigned personnel at any time of
the planning period in ANROM at the expense of violations on time related
constraints. The approaches in which personnel requirements are not hard
allow decisions of management level in the short-term planning. In ANROM,
however, we have not let the algorithm make coverage decisions. The model is
interactive enough to change the personnel requirements when necessary.
All the constraints in ANROM are modifiable and extendable but violations
are allowed and explained. Those who have hard time related constraints all
have fewer and less strict constraint types. In ANROM, schedules satisfying
them all are not realistic.

80



Hard Constraints Soft Constraints
Coverage ANROM: Burke et al.

[36, 39], De Causmaecker
and Vanden Berghe [74]

Meyer auf’m Hofe [142,
144]

Kawanaka et al. [126] Chen and Yeung [56]
Warner and Prawda
[216]: minimum
coverage is obligatory

Warner [215]: minimum
coverage can be violated
on predefined days

Meisels et al. [138] Miller et al. [147]
Schaerf and Meisels [182] Okada [158], Okada and

Okada [159]
Aickelin and Dowsland
[5]

Time Related Berrada et al. [21] Warner [215]
Constraints for
Personnel

Miller et al. [147]: feasi-
bility set (3 constraints)

Miller et al. [147]: non-
binding constraints
ANROM: Burke et al. [34,
36, 37, 39]
Meisels et al. [138]
Meyer auf’m Hofe [142,
144]

Table 3.1: Hard and Soft Constraints

The objectives differ from approach to approach, which is clear from
the straightforward categories in Table 3.1. In Table 3.2, a list of pos-
sible goals is presented in two different categories: the optimising and the
heuristic approaches. Some of these examples include decisions of a higher level.

Examples in which all the constraints and parameters are set are quite rare
and are very often pure theoretical implementations of one single problem.
Most systems allow the user to adapt some predefined constraints and penalty
values to their own needs (Table 3.3). Flexible software systems, which are
extendible with new constraints, are much more complex to generate solutions.

Generally, the design of cyclical schedules requires more than short-term
rostering decisions only (see also Section 3.2.5). However, once the requirements
are set, cyclical schedules are much easier to generate than others because the
search space is considerably smaller.

Most researchers allow small violations of the coverage constraints (see
Table 3.5), and penalise them in a cost function. In the context of ANROM,
personnel demands per shift or per time interval are expected to be satisfied.
If they are not carefully defined by the users, a consistency check will indicate
infeasibilities (Section 5.2). ANROM also provides several planning options to
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Optimising Heuristic
Minimise violations on
time related constraints

Warner [215]: schedules
constructed with
predefined patterns, the
objective is to minimise∑

people (‘aversion’ for
the pattern)

ANROM: Burke et al.
[36], minimise

∑
people

(violations on soft con-
straints)

Arthur and Ravindran
[8]: minimise staff dis-
satisfaction by minimis-
ing the number of staff
with ungranted requests

Combined coverage and
time related constraints

Miller et al. [147]: nearly
optimal solution gener-
ated with a mathemati-
cal algorithm

Okada [158], Okada and
Okada [159]

Minimise number of em-
ployees

Alfares [6] Easton and Mansour [85]

Arthur and Ravindran
[8]

Minimise personnel cost Tanomaru [201] Meyer auf’m Hofe [142]
takes personnel costs
into account in addi-
tion to the cost for
expenditure of work

Minimise non-negative
coverage

Warner and Prawda
[216]: the cost for ‘nurs-
ing care shortage’ is
minimised

Uniform distribution of
shortages and surpluses
over weekdays

Berrada et al. [21]

Minimise deviation be-
tween scheduled nurses
and demand

Ozkarahan [162]: min-
imise nurse shortages
and surpluses
Arthur and Ravindran
[8]

Minimise deviation be-
tween scheduled people
and the total work capac-
ity from the work regula-
tions

Ozkarahan and Bailey
[166]

Table 3.2: Objectives
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Constraints Costs and Weights
Fixed Aickelin [4], Aickelin and

Dowsland [5], Dowsland
[84]

Berrada et al. [21]: weights
are fixed

Warner [215]
Adaptable Musa and Saxena [153] Musa and Saxena [153]

Warner and Prawda
[216]: a few organisa-
tional constraints

Warner [215]: personal and
unit wide ‘aversion’ for pat-
terns

Miller et al. [147] Miller et al. [147]: personal
‘aversion’ for non-binding
constraints

Okada [158]
User Definable ANROM, cost parame-

ters: Burke et al. [36]
ANROM: Burke et al. [36]

Weil et al. [218]: generic
model can cope with dif-
ferent legal regulations

ANROM, weights in Burke
et al. [35]

Meyer auf’m Hofe [144] Meyer auf’m Hofe [144]
Meisels et al. [138] Meisels et al. [138]

Table 3.3: Flexibility

find the best coverage in every situation (Section 5.6).

Most authors restrict the applicability of their models to some simplified
examples of nurse rostering, with, for example, three different shifts, short
planning horizons, a limited number of possible patterns for personnel members
with an identical work regulation, etc.
Skill classes are hierarchically substitutable when higher skill classes can do jobs
replacing lower skilled people (see Table 3.6). In other problems, people from
different skill classes can substitute each other in a user defined way. The latter
approach reflects the real-world situation as it occurs in Belgian hospitals best.
Among the group of people with the same skill class, some are more experi-
enced or have better management skills to replace the head of their department.

In simplified research examples, the problems are often defined with equal
constraints for all the personnel members. The assignment of schedules to
people is then very arbitrary. More realistic examples take part time contracts
into account and provide flexibility to define personal work agreements.
It is also shown in Table 3.7 that in case of personnel shortage, many hospitals
make use of a group of ‘float’ nurses, to assist temporarily. In the current
version of ANROM, people from other wards can assist in very busy wards.
There is a procedure to evaluate time related constraints over the different
wards.
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Cyclical Semi-Cyclical Non-cyclical
Chan and Weil [55]: but
flexible with respect to
annual leave and unex-
pected events

ANROM provides the
possibility to define
cyclical patterns (Con-
straint 22) which can
be superimposed on
non-cyclical schedules

ANROM: Burke et al.
[34, 36, 39]

Muslija et al. [154] Warner [215]: manual
preprocessing of the
number of people who
rotate day and night
weeks

Aickelin [4], Aickelin and
Dowsland [5]

Alfares [6] Smith [195]: not all the
personnel members have
a rotating schedule

Meyer auf’m Hofe [142,
144]

Chan and Weil [55] Miller et al. [147]
Dowsland [84]
Kawanaka et al. [126]
Okada [158], Okada and
Okada [159]
Schaerf and Meisels [182]

Table 3.4: Cyclical and Non-cyclical Approaches

Some approaches generate schedules which consist of days off and on. The
next step in the process, the assignment of actual shifts to people is left for a
head nurse to do manually. Algorithms which are developed for use in practical
healthcare environments do not work with three strictly distinct shift types
(see Table 3.8). The activities in hospitals are so varied that a large number
of user-definable shifts is allowed. In ANROM, start and end times can even
be personal as a result of a negotiation with the hospital manager for practical
reasons (see Section 2.2.4). The higher the number of shift types, and the more
flexible they are, the larger the search space is.

Most researchers are aware of regular changes in personnel demands (Table
3.9). This is one of the reasons why pure cyclical schedules are generally not
workable. It is a part of Warner and Prawda’s scheduling work [216] to predict
the personnel requirements for the next few days. The personnel requirements
are nearly always expressed as a number of people required per shift type or
even per day. ANROM tackles the problem in a much more flexible way as a
result of feedback from the users of this system in several Belgian hospitals.
Not only is the number of possible shift types higher than in most problems
encountered, but also the approach to compose a schedule with different
combinations of shift types is exceptional.
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Understaffing Overstaffing More Options
Allowed Not Allowed Allowed Not Allowed
Miller et al.
[147]

ANROM:
unless
certain cir-
cumstances
occur (see
Section 5.2)

Miller et al.
[147]

ANROM:
unless
certain cir-
cumstances
occur (see
Section 5.2)

ANROM: mini-
mum, preferred,
compromise, add
hours, etc

Warner
[215]

Warner and
Prawda
[216]

Warner and
Prawda
[216]

Ozkarahan
[162]

Kawanaka
et al. [126]

Ozkarahan
[162]

Isken and
Hancock
[121]

Meyer
auf’m Hofe
[144]

Isken and
Hancock
[121]

Meyer auf’m Hofe
[144] defines mini-
mum and standard
staffing levels which
are treated as fuzzy
constraints, there
is a considerably
larger penalty for
understaffing than
for overstaffing

Ahmad
et al. [3]

Ahmad
et al. [3]
only for day
shifts

Schaerf
and Meisels
[182]

Okada [158],
Okada and
Okada [159]

Schaerf
and Meisels
[182]

Table 3.5: Coverage
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Number of Skill Categories
1 2 3 User Defin-

able Number
Skill
Classes

Weil et al.
[218]

Ozkarahan
[162]

Musa and Sax-
ena [153]

Schaerf and
Meisels [182]

Scheduled
Separately

Chen and Ye-
ung [56]

Okada and
Okada [159]

Arthur and
Ravindran [8]

Isken and
Hancock [121]

Kawanaka
et al. [126]
Warner [215]
Okada [158]

Hierarchical Substitutability Aickelin [4],
Aickelin and
Dowsland [5]

Meisels et al.
[138]

Dowsland [84]
User Definable Sustitutability Miller et al.

[147]: a sub-
group of the
regular nurses
might be the
group of those
who can per-
form as head
nurses

Warner and
Prawda [216]:
small overlap
(substitution)
between skill
classes al-
lowed, not
related to
people individ-
ually
ANROM:
Burke et al.
[39, 34], see
also Section
2.2.2

Table 3.6: Skill Categories

Short planning periods are much easier to generate schedules for. It can be
an option to split the period into smaller intervals and to combine the schedules
afterwards. In nearly all the cases this will lead to sub-optimal solutions. Table
3.10 gives examples of some of the realistic and theoretical approaches studied
in this literature overview.

The number of personnel members in a hospital ward can vary from less
than 10 to far over 100. In cases where the problem cannot be split into
sub-problems, the algorithms must be powerful enough to solve problems with
widely varying dimensions (Table 3.11).
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Identical for Miller et al. [147]: full time nurses only
all People Arthur and Ravindran [8]: full time nurses only

Weil et al. [218]: full time nurses only
Warner and Prawda [216]: no distinction between people
Chen and Yeung [56]

Mixed Workforce: Ozkarahan and Bailey [166]: different work regulations
FT & HT Musa and Saxena [153]: various part time options are

possible
User Definable ANROM; see ‘work regulations’ in Section 2.4.3

Meyer auf’m Hofe [142, 144]
Chiarandini et al. [58]
Schaerf and Meisels [182]
Warner [215]: people can have different ‘contracted work-
loads’

Float Nurses in ANROM it is possible to let people work in more than
one ward, see Section 5.3
Warner and Prawda [216]: generally, nurses are assigned
to a unit and do not move around at zero cost; a few
‘float’ nurses do move around
Meyer auf’m Hofe [142, 144] constrains the expenditure
of work
Trivedi and Warner [208]

Table 3.7: Work Regulation

Table 3.12 presents purely theoretical models in addition to algorithms
which are implemented in software packages for practical use. The generic
systems belong to the most flexible and complex problems for nearly all the
dimensional parameters presented in this section. In fact, the software systems
in the right column of Table 3.12, are among the very few that offer automatic
procedures for solving widely varying nurse rostering problems.

Tables 3.13 to 3.20 present a list of time related constraints, which belong
to the category of soft constraints in ANROM (Section 2.4). Some researchers
set strict values for the constraints, while others let them be user definable. If
we compare the table with Table 3.12, it is clear that the most flexible defi-
nitions exist in the approaches which are applicable in real scheduling situations.

3.3 Nurse Rostering Approaches

This section will present some scheduling approaches and models. The methods
are grouped according to an arbitrary categorisation into optimising, heuristic,
AI, etc methods.
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Strictly Distinct Overlapping Allowed
1 Single Shift or Miller et al. [147]
no Shifts Defined: Musa and Saxena [153]
Days Narasimhan [157]
3 Different Shifts Berrada et al. [21]; there

is no rotation: the problem
can be split into 3 single-
shift problems

Weil et al. [218]: 8-hour day
and evening shifts and 10-
hour night shift

Ahmad [3] overlap control-
eren

Hung [119]: 3 slightly over-
lapping 10-hour shifts

Aickelin [4]; Aickelin and
Dowsland [5]; Dowsland
[84]: the night shifts are
scheduled separately to a
certain extent so the com-
plexity is reduced to a 2-
shift problem

Okada [158], Okada and
Okada [159]: the shifts have
very strict start and end
times, on Saturdays, a dif-
ferent morning shift (same
start time, half the dura-
tion) is accepted

Warner [215]
Trivedi and Warner [208]
Warner and Prawda [216]: 3
8-hour shifts per day
Strict Start-End Times Floating Intervals

Defined Length Bailey and Field [10]: 12-
hour shifts instead of 8-hour
shifts; the shifts can start at
any time of the day

User Definable Meyer auf’m Hofe [142, 144] Tanomaru [201]
Shifts ANROM: Burke et al. [34,

36, 39]
ANROM: Burke et al. [37],
see Chapter 6

Kawanaka [126] Isken and Hancock [121]:
variable starting times in-
stead of 3 fixed shifts per
day

Meisels and Lusternik [140] Brusco and Jacobs [30]
Meisels et al. [138]
Schaerf and Meisels [182]
Chiarandini et al. [58]

Table 3.8: Shift Types
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Days Shifts Hours Minimum-
preferred

Constant Ahmad et al.
[3]

Weekdays-
weekends

Kawanaka
et al. [126]

Fluctuating Alfares [6] ANROM:
Burke et al.
[34, 39]

ANROM:
Burke et al.
[37]

ANROM:
Burke et al.
[34, 37, 39]

Miller et al.
[147]

Warner [215] Miller et al.
[147]

Meyer
auf’m Hofe
[142, 144]

Warner and
Prawda [216]
(4 days ahead)

Meyer auf’m
Hofe [142, 144]

Warner and
Prawda [216]

Aickelin [4],
Aickelin and
Dowsland [5],
and Dowsland
[84]

Table 3.9: Personnel Demand

Since the 1960’s many papers have been published on various aspects of health-
care personnel scheduling. Most mathematical scheduling approaches make use
of an objective function which is optimised subject to constraints. Earlier papers
[147, 208, 215, 216] are nearly all examples of optimising scheduling algorithms.
Researchers attempted to develop linear models for the problems. When it
comes to real-world applications, pure mathematical algorithms are rarely ap-
plied. Most real-world problems are NP-complete (Tien and Kamiyama [204],
for example, call it more complex than the travelling salesman problem, which
is NP-complete) thus too complex for optimising algorithms. For real-world
problems, in which the optimal solution is not really required, several heuristic
methods have been developed [7, 24, 25, 128, 196, 197].
Although cyclical schedules are generally considered less difficult to generate,
most of them are constructed with heuristic techniques. In the 1980’s and later,
artificial intelligence techniques for nurse scheduling (declarative approaches,
constraint programming, expert systems, etc) were investigated. Some of these
approaches are still relevant to today’s research issues [55, 58, 144].
Many of the most recent papers (1990’s and later) tackle the problem with
meta-heuristic approaches.
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4 days Warner and Prawda [216]: longer periods are not trust-
worthy with respect to personnel demand forecast

1 week Aickelin [4], Aickelin and Dowsland [5]
2 weeks Musa and Saxena [153]

Blau and Sear [25]
3 weeks Alfares [6]
2-4 weeks Berrada et al. [21]

Ahmad et al. [3]: maximum 30 days
2-6 weeks Warner [215]

Miller et al. [147]
1 month Smith and Wiggins [197]
1 year Chan and Weil [55]
User Defined ANROM: Burke et al. [34, 36, 39] usually 4 weeks

Table 3.10: Planning Period

User Definable Ozkarahan and Bailey[166]
Fixed Number Warner [215]: examples with 19-47 nurses

Miller et al. [147]
Musa and Saxena [153]: example with 11 people
Aickelin [4], Aickelin and Dowsland [5], and Dowsland [84]
Chan and Weil [55]: 150 people
Ahmad et al. [3]: maximum 30 people
ANROM: Burke et al. [34, 36, 39]

To Be Minimised Arthur and Ravindran [8]; the model relies on an even
number of nurses to function properly
Alfares [6]
Easton and Mansour [85]

Table 3.11: Staff Size

3.3.1 Optimising approaches: mathematical program-
ming

These methods are especially interesting for finding optimal solutions but
they are not useful to solve complex real-world problems because of their
combinatorial complexity. Most researchers restrict the problem dimensions
and consider a small set of constraints in their models.

Most of the mathematical approaches are based on optimising the value
of a single objective function. However, a number of experiments have been
carried out with goal programming or multi objective decision making.
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Theoretical Applied in Practice
Approaches One Single Problem Generic
Ozkarahan [162] Aickelin and Dowsland

[5], Dowsland [84]
Plane (ANROM)

Meyer auf’m Hofe [142]:
ORBIS Dienstplan

Meisels and Lusternik
[140]

Meisels et al. [138]:
TORANIT

Table 3.12: Applicability of the approach

Linear and integer programming

Abernathy et al. [2], (1973), isolated nurse scheduling from the general
staffing problem and solved it using mathematical (stochastic) programming
techniques. They divide the staffing of hospitals into three decision levels:
policy decisions (including the operating procedures for service centers and for
the staff-control process), staff planning (including hiring, discharge, training
and reallocation), and short-term scheduling of available personnel subject to
the constraints imposed by the first two stages. Even the short-term scheduling
in Abernathy et al.’s work involves more management decisions than the
timetabling problem which is subject of this thesis. The number of people
required to fulfil the -stochastically varying- personnel demands is not yet deter-
mined. Specific skills have to be considered, unlike in other work environments
where the quality of the work is less dependent on the person. The solution
has an iterative and a non-iterative part. It is applied to an example application.

Warner and Prawda [216], (1972), present a mixed-integer quadratic
programming formulation to calculate the number of nurses from a certain skill
class to do a number of shifts per day. Three non-overlapping shift types of
8 hours each are used. The goal function aims at minimising the difference
between a given lower limit for the number of nurses and the variables which
are the number of nurses. By adding nursing time (i.e. employing more people),
the cost for personnel shortage can be reduced (never under zero, however).
The minimum staffing requirements should consider the possibility to replace
personnel members with different skills and the organisation’s established
standards (comparable to the hospital and work regulation categories in
Section 2.4.3). There is no possibility to include personal preferences in the
model of Warner and Prawda, all the nurses are anonymous. An excess of
nursing supply for a particular skill class can absorb (at some suitable rate)
the shortage of other skills. The implementation in this research (Section
2.2.2) actually builds upon the same ideas inspired by solutions in practice. A
drawback of the approach is that an accurate forecast of personnel demand
cannot be trustworthy for a period longer than four days. Due to the com-
plexity of the non-linear formulation, Warner and Prawda advice to apply a
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User Definable Set Values
Finite Capacity Constraints

Maximum Number of
Assignments

ANROM: Burke et al. [36]
(Constraint 3)

Kawanaka [126]: restrict
the number of free days to
the total number of Sat-
urdays, Sundays and bank
holidays
Miller et al. [147]: exact
number of assignments: 10
per 14 days; hard con-
straint
Meyer auf’m Hofe [144]:
10 per 14 days, a legal con-
straint

Overtime ANROM: Burke et al. [36]
(Constraint 8) and also
Constraint 23 for other
time intervals than the
planning period

Meyer auf’m Hofe [142]:
minimise overtime

Meisels et al. [138] Chen and Yeung [56]
Maximum Number of
a Shift Type

ANROM: Burke et al. [36]
(Constraint 11): a gen-
eral constraint which can
be adjusted for every shift
type

Maximum Number of
Shifts per Week

ANROM: Burke et al. [36]
(Constraint 12): can be set
per shift type
Meisels et al. [138]
Berrada et al. [21]:
hard constraint; restricted
version limiting the total
number of assignments per
week, can also be organ-
ised with Constraint 23

Table 3.13: Soft Constraints: Capacity
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Personal Preferences
General (unspecified) Meyer auf’m Hofe [142]

Warner [215]
Days Off ANROM: Burke et al. [36] (Constraint 24): with extra

information about the type of absence (holiday, illness,
educational, etc)
Miller et al. [147]: special requests can even overrule
some of the feasibility constraints
Chen and Yeung [56]
Berrada et al. [21]
Kawanaka [126]
Okada [158], Okada and Okada [159]
Meisels et al. [138]

Shifts Off ANROM: Burke et al. [36] (Constraint 25)
Days On ANROM: Burke et al. [36] (Constraint 22): possibility to

define working days without specifying a particular shift
type
Berrada et al. [21] allow to ask for specific working days

Shift On ANROM: Burke et al. [36] (Constraint 26)
Meisels et al. [138]

Table 3.14: Soft Constraints: Personal Preferences

linear programming formulation with post-optimality analysis could be applied
instead. Since the model does not include anything personal, they suggest that
the results should be considered to be a good quality input for the problem of
assigning individual nurses to specific wards and shifts.

Warner [215], (1976), elaborates on his previous formulation [216] by
introducing weights or fairness levels. Warner works with shift patterns of 2
weeks length, with a fixed day and night rotation but which respond differently
to some flexible constraints. The degree of freedom to construct a schedule is
considerably smaller than in ANROM because the implemented constraints in
Warner’s approach are predefined and not to be violated, thus reducing the
number of possible patterns. The constraints in Warner’s work belong to the
category of soft and modifiable constraints in our approach (e.g. Constraint 4,
Constraint 7, Constraint 18, etc in Section 2.4.3). Some work stretches allow
for extended weekends (3 or 4-days weekends), similar to our flexible weekend
length (see Constraint 15).
Nurses and entire wards distribute a number of ‘penalty weights’ to constraints
and thus to patterns and schedules. The sum of the weights for a schedule is
called the ‘cost’. This approach allows for a very fair evaluation of obtained
schedules. Moreover, full time nurses, for example, have a higher amount of
penalties to apportion than half time nurses. The sum of the costs for each
personal schedule are part of the objective function. This global ‘aversion’ to
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User Definable Set Values
Consecutiveness Constraints (1)

Maximum Number of
Consecutive Days

Miller et al. [147]: non-
binding constraint; non-
binding maximum < feasi-
bility maximum

Miller et al. [147]: feasi-
bility constraint: feasibil-
ity maximum

ANROM: Burke et al. [36]
(Constraint 4)

Warner [215]

Berrada et al. [21] Chen and Yeung [56]: re-
stricted to 6

Okada [158], Okada and
Okada [159]

Arthur and Ravindran [8]:
implicitly restricted to 12
because every other week-
end is free

Weil et al. [218]
Warner [215]: some work-
stretches allow for a 3 or 4
day weekend

Minimum Number of
Consecutive Days

ANROM: Burke et al. [36]
(Constraint 5)

Warner [215]: no isolated
working days

Miller et al. [147]: non-
binding constraint: non-
binding minimum > feasi-
bility minimum

Miller et al. [147]: feasi-
bility constraint: feasibil-
ity minimum

Weil et al. [218]: minimum
2; no isolated days on

Chen and Yeung [56]: min-
imum 2; on/off patterns
are avoided

Berrada et al. [21]: mini-
mum 2; no on/off patterns

Warner [215]: off/on/off
days are avoided

Jaszkiewicz [122] grouping
working days

Number of Consecu-
tive Days

Aickelin [4], Aickelin and
Dowsland [5]: a set num-
ber, incorporated in the
shift pattern cost

Maximum Number
of Consecutive Free
Days

ANROM: Burke et al. [36]
(Constraint 6)

Miller et al. [147]: no pat-
terns containing 4 consec-
utive days off
Jaszkiewicz [122] grouping
free days

Table 3.15: Soft Constraints: Consecutiveness Constraints (1)
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User Definable Set Values
Consecutiveness Constraints (2)

Minimum Number
of Consecutive Free
Days

ANROM: Burke et al. [36]
(Constraint 7)

Weil et al. [218]: minimum
2; no isolated free days

Warner [215]: minimum 2;
no isolated free days

Aickelin [4], Aickelin and
Dowsland [5]: incorpo-
rated in the shift pattern
cost
Chen and Yeung [56]: min-
imum 2; on/off patterns
are avoided
Miller et al. [147]: no
on/off/on patterns, non-
binding constraint
Berrada et al. [21]: mini-
mum 2, another aim is to
group days off

Patterns ANROM: Burke et al. [36]
(Constraint 22)

Aickelin [4], Aickelin and
Dowsland [5]: rotate night
shifts and weekend work

Warner [215]: restricted
number of 2 week patterns
for day/night weeks and
alternating free weekends;
nurse specify their ‘aver-
sion’ to certain patterns

Berrada et al. [21]: hard
constraint; restricted con-
straint on weekend work-
ing patterns

Miller et al. [147]: days
on/off patterns only; less
possible patterns than
[215]
Musa and Saxena [153]:
nurses chose which one of
2 alternative weekends to
be free
Meyer auf’m Hofe [142]:
preference of working
time models (common
sequences of working
shifts); less flexible than
Constraint 22, usually 2
weeks long
Arthur and Ravindran [8]:
5 possible shift patterns

Table 3.16: Soft Constraints: Consecutiveness Constraints (2)
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User Definable Set Values
Consecutiveness Constraints (3)

Free Days after Night
Shifts

ANROM: Burke et al.
[36], a minimum number of
consecutive free days after
each overnight shift type
(Constraint 14)

Okada [158], Okada and
Okada [159]: appropriate
interval between series of
night attendances

Time Between As-
signments

ANROM: Burke et al. [36]
(Constraint 1): defines a
minimum rest time which
depends on the shift types

Kawanaka [126]: no early
or day shift after a night
shift; can also be formu-
lated with Constraint 13

Meyer auf’m Hofe [142,
144]: obligatory and pre-
ferred breaks between con-
secutive assignments

Warner [215]: no ‘doubling
back’: not less than 16
hours between two assign-
ments

Consecutive Shifts ANROM: Burke et al. [36]
(Constraint 13): to allow
or forbid shift sequences on
consecutive days

Kawanaka [126]: no early
or day shift after a night

Meyer auf’m Hofe [144]:
defines a minimum and
preferred rest time be-
tween shifts

Sequences of Shift
Types

ANROM: Burke et al. [36]
(Constraint 13): flexible
definition for each shift
type

Meyer auf’m Hofe [144]:
undesired sequences of
work and free time

Mixture of Day and
Night Shifts in 1
Week

Aickelin [4], Aickelin and
Dowsland [5]: could be for-
mulated with Constraint
12 in ANROM: Burke
et al. [36]

Table 3.17: Soft Constraints: Consecutiveness Constraints (3)

96



User Definable Set Values
Balance the Workload

Balance ANROM: Burke et al. [36]
(Constraint 23)

Kawanaka [126]: balance
of shifts

Meyer auf’m Hofe [144]:
balance working time ac-
counts

Okada [158], Okada and
Okada [159]: balance night
shifts, work on Sundays
and work on bank holidays
per month and per year

Chen and Yeung [56]:
some fairness measures

Okada [158], Okada and
Okada [159]: night shifts
evenly distributed per day
of the week (per person)

Warner [215]: nurses and
entire wards distribute a
limited amount of penalty
weights to constraints

Chiarandini et al. [58]:
long-term fair distribution
of undesired shifts as well
as a distribution among
personnel members of vi-
olations on the number of
assignments per week

Miller et al. [147]: in-
dividual ‘aversion’ coeffi-
cient for violations of non-
binding constraints

Jaszkiewicz [122]: dis-
tribute the shifts evenly
among nurses

Table 3.18: Soft Constraints: Balance the Workload

the schedule is compensated by scheduling more nurses than strictly required.
Certain parts of the scheduling are done manually before the optimisation
starts: weekends are assigned by hand and there is also a manual determination
of people who will rotate. This simplifies the model. The mathematical
programming algorithm consists of 2 phases: a search for feasibility and an
improvement of the objective. In 20-30 % of the time the personal constraints
do not allow a feasible solution (considering the number of constraints ANROM
provides, a solution satisfying all the soft constraints is non-existent in nearly
all cases). Therefore, the personnel are shifted around in order to move the
shortages to some specified days on which the minimum coverage can be
violated.
At the time of publication, the algorithm was implemented in several hospitals
in the United States. A few hospitals which were used to schedule cyclical
rosters did not see the benefits of the approach. Other users perceived a slight
increase of the quality of the schedules and a very considerable reduction of
scheduling time. Automatically generated schedules can still be fine-tuned
manually, just like in the approach presented in this thesis.
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User Definable Set Values
Weekends

Weekends in x Weeks ANROM: Burke et al. [36]
(Constraint 19): per 4
weeks
Miller et al. [147]: per 4 or
6 weeks

Complete Weekends
and Extended Week-
ends

ANROM: Burke et al. [36]
(Constraint 15); weekends
can be extended with Fri-
day and/or Monday

Berrada et al. [21]:
encourage to extend the
weekends

Miller et al. [147]
Warner [215]: some work
stretches allow for a 3 or 4
days weekend

Compensate Week-
end Work

Meyer auf’m Hofe [144] Okada [158], Okada and
Okada [159]: days off to
compensate for work on
Sunday and half days off
to compensate for 8-hours
Saturday work; preferably
within that week

Number of Consecu-
tive Weekends

Warner [215]: alternate
free weekends (e.g. one ev-
ery 2 or 3 weeks)

Arthur and Ravindran
[8]: strictly schedule every
other weekend off

ANROM: Burke et al. [36]
(Constraint 18)
Musa and Saxena [153]:
alternate free and work-
ing weekends, individual
nurses can choose which
weekends are free
Miller et al. [147]

Table 3.19: Soft Constraints: Weekends
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User Definable Set Values
Other Constraints

Preference to Work
Days or Nights

Aickelin [4], Aickelin and
Dowsland [5]; can be
formulated with maximum
number of shift types (per
week (Constraint 12) and
in the planning period
(Constraint 11) or by
defining a corresponding
work regulation

Working History ANROM: Burke et al.
[36], influence on most
constraint evaluations; see
Section 2.4.2

Aickelin [4], Aickelin and
Dowsland [5] (cost of the
previous period is added
to the current one, with a
maximum of 100)

Miller et al. [147]: in-
dividual ‘aversion’ index
(historical schedule qual-
ity versus personal prefer-
ences)

Changes in Working
Shifts on Consecutive
Days

Jaszkiewicz [122]: changes
should be minimised

Maximum Num-
ber of Consecutive
on/off/on Patterns

Miller et al. [147]: feasibil-
ity constraint

People Working To-
gether or Not

ANROM: Burke et al.
[36], (Constraint 27 and
28)

Okada [158], Okada and
Okada [159]: work with as
many different personnel
members as possible for
weekend and night work,
this constraint is not as
such implemented in AN-
ROM

Ahmad et al. [3]: nurses
have the right to select
preferred partners

Table 3.20: Soft Constraints: Others

99



Trivedi and Warner [208], (1976), describe a branch and bound algorithm
to arrange the short-term assignment of nurses from different units (called
‘float’ nurses) whenever there is a shortage of personnel. However, the system
does not deal with time intervals but with 3 shift types, usually referred to
as Early, Late and Night shift. These mathematical approaches cope with
small-scale problems only.

Miller et al. [147], (1976), formulated the personnel requirements in terms
of minimum and preferred number of personnel per day, just like in ANROM
(Section 5.6). Everything is scheduled in terms of days on and off, however,
without specifying shifts. Many other characteristics of the problem are also
quite similar to the nurse rostering tackled in this thesis. It includes fewer
constraints and fewer modifiable features, however. All the personnel members
have full time contracts and they can belong to different skill classes. A
certain amount of substitutability amongst skill classes is organised by defining
subgroups which can, for example, perform as head nurses.
Staffing coverage and time related constraints with individual preferences
are weighted against each other. Compared to Warner’s approach [215],
the number of unwanted shift patterns is much higher, thus reducing the
complexity of the problem. The time related constraints (much fewer than
soft constraints in ANROM) are divided in two groups: the feasibility set and
the non-binding constraints. Most of the non-binding constraints are stricter
versions of already existing feasibility constraints. Feasibility constraints are:
the maximum number of assignments per person (Constraint 3 in Section 2.4.3),
maximum/minimum number of consecutive working days, taking the previous
planning period into account (Constraint 4 and 5). Non-binding constraints
can be defined individually per nurse: consecutive days work (Constraint 4 and
5), consecutive free days (Constraint 6 and 7), the number of working weekends
(Constraint 19), working complete weekends (Constraint 15). One constraint of
Miller et al.’s approach is not implemented in this thesis. It limits the number
of consecutive patterns of the type (working day - free day - working day).
Apart from the objective penalty assigned to a violated constraint, an extra
weight is added reflecting the nurse’s personal perception of that violation. In
ANROM, the only way to treat constraints individually is by defining personal
work agreements; the weight factors per constraint are set for the entire ward.
Miller et al. introduce even an ‘aversion’ index, which is a measure of how
good or bad this particular nurse’s schedules have been in the past. Unless for
overtime (Constraint 8) and undertime (Constraint 9), this historical ‘aversion’
feature is not part of ANROM.
Personal requests, such as the demand for a day off (comparable to Constraint
24) are permitted. When granted, these personal preferences cancel the violated
binding constraints out. They reduce the number of possible patterns, and
thus the search space, even further.
A cyclic coordinate descent algorithm is applied to look for a nearly optimal
solution. A comparison with a branch and bound algorithm demonstrates
that the algorithm by Miller et al. requires a much lower computation time.
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The obtained solutions are not always feasible. Some schedules are under- or
overstaffed on certain days of the planning period.

Bailey and Field [10], (1985), formulated a general mathematical model
for the nurse scheduling problem. The cost function in their definition is the
sum of the cost for utilising a shift type times the number of occurances of
that shift type in the schedule. A number of constraints are imposed on the
schedule. Schedules minimising cumulative costs are identified, they do not
take personal preferences into account. Choosing one schedule out of the
set can be done manually or by a linear program. Bailey and Field reduced
idle time in schedules, they propose a 12-hour scheduling period instead of a
traditional 8-hour period. Their method allows shifts to begin at any time
during the day.

Fuller [99], (1998), solves the same problem as Aickelin and Dowsland.
The problem is described in detail in Section 3.3.4. She used XPRESS MP, a
commercial integer programming software package. It was necessary to develop
extra software in order to obtain results in a reasonable amount of calculation
time.

Goal programming

Mathematical programming techniques are not always flexible enough to cope
with relative ranking assigned to various goals. They are often restricted to
optimising one single goal or criterion. Goal programming defines a target level
for each criterion and relative priorities to achieve these goals. The method
aims at finding a solution as close as possible to each of the targets in the order
of the priorities given. The approach is also called a ‘multi criteria’ method (see
Chapter 10, in which this approach is investigated for the problem of this thesis).

Arthur and Ravindran [8], (1981), propose a two phase goal program-
ming heuristic for the nurse scheduling problem. They aim simultaneously at
minimising (in priority sequence) staff size, the number of staff with ungranted
requests or preferences, staff dissatisfaction, and the deviation between sched-
uled and desired staffing levels. A zero-one goal programming approach is used
to assign days on and off to nurses. The schifts are heuristically assigned to
the personnel members at the end of the scheduling process.
The overall problem definition is rather simple compared to the real-world
problems encountered in this thesis. To reduce the complexity, Arthur and
Ravindran recommend scheduling periods of one week. All the nurses have full
time contracts and they belong to three -independently scheduled- skill classes.
For the model to function properly, an even number of nurses is recommended.
Time related constraints are restricted due to a limit of 5 shift patterns for each
nurse. There is no limit on the work stretch length, however, but the system
strictly schedules every other weekend off.
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Musa and Saxena [153], (1984), propose an interactive heuristic procedure
for solving the nurse rostering problem. Users can change the relative weights
given to the goals during the scheduling process in order to take special
temporal conditions into account. This is certainly a very interesting feature
for real-world problems in which scheduling circumstances change regularly and
are very hard to model mathematically. Within a planning period, the method
introduced in Chapter 10 for the problem of this thesis, no weight changes are
allowed.
In the problem tackled by Musa and Saxena, there are 11 people belonging to
3 different skill classes. Various part time options can be defined but individual
preferences are not incorporated in the model. Free and working weekends
alternate but the nurses can choose which one out of two weekends to work.
With a two week planning period and one single shift to be scheduled, the
complexity of the tackled problem remains rather low.

Ozkarahan and Bailey [166], (1988), defined three basic objective
functions for their goal programming approach. The first goal is to minimise
the deviation between the number of nurses scheduled and the demand, for
each period of the day (called time-of-day scheduling). Just like in ANROM,
the staff size is fixed and thus the hourly coverage will be maximised by this
approach. The second goal minimises the deviations between the sum of days
on work patterns and the size of the work force (called day-of-week scheduling).
With this goal, the system tries to schedule people according to their contract
or work agreement. The third goal combines the day-of-week and time-of-day
scheduling problems. Ozkarahan and Bailey demonstrate the flexibility of the
method by modifying the three basic objective functions.
Since the computational size of the studied problems is very large, they
suggest to divide the work into two phases: one to determine schedules for the
day-of-week and time-of-day schedules and one to assign people to the proposed
schedules. It is a heuristic assignment of schedules, the algorithm does not
assign shift times and days to individual nurses. Compared to ANROM, the
latter signifies an important simplification. All the soft constraints in ANROM
are related to individual personnel members.

Ozkarahan [162], (1991), presents a goal programming approach for a
decision support system. The model aims at maximising the utilisation of full
time personnel, minimising over- and understaffing, and minimising several
kinds of personnel costs. It provides support for staffing decisions and for
nurses’ preferences. The problem dimensions are also very small compared to
those studied in this thesis. There exist only two strictly distinct skill classes.
A brief overview of one of the scheduling models is presented.
For her PhD (1987), Ozkarahan presented a formulation which would require
a very large 0-1 integer program, unsolvable at that time. Later publications
still present nurse scheduling models but are decomposed [166] and simplified
[162, 163]. In 1995 [164] and 2000 [165], Ozkarahan has publications on
allocating surgical procedures to operating rooms.
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Franz et al. [96], (1989), developed a multi-objective integer linear
program for health care staff working at different locations, called multi-clinic
health regions. The problem involves staffing of personnel with varying skills,
minimising travel costs, maximising the quality of service by considering
personal preferences in addition to personnel requirements. Compared to
the problem of this thesis, Franz et al. developed a much more general
optimisation approach, covering decisions at higher levels than short-term
personnel rostering only. Purely looking at the timetabling problem, they do
not investigate it in as much detail as we do in ANROM.

Chen and Yeung [56], (1993), combine goal programming with expert
systems. Assigning shift types to personnel members is carried out by the
expert system part of the approach (see also Section 3.3.2). Goal programming
assists in satisfying the time related constraints on personal schedules (which
are comparable to the soft constraints in this project) and attempts to cover
personnel demands in the meantime.

Berrada et al. [21], (1996), combine a multi-criteria approach for the nurse
scheduling problem with tabu search (see also Section 3.3.3) in a very flexible
tool. In order to obtain a feasible solution, a set of hard constraints, differing
slightly from the hard constraints in this thesis, must be satisfied. The hard
constraints are related to administrative and union contract specifications:

- weekend working patterns (comparable to Constraint 18 and to Constraint
22 in a simplified manner)

- the number of weekly working days (comparable to Constraint 12 but the
constraint in ANROM [36] can distinguish between shift types which is
not necessary in [21])

- uniform distribution of the surplus or shortage of nurses over weekdays (it
is a hard constraint in ANROM not to have surpluses or shortages on the
number of personnel at any time).

The soft constraints are treated as goals to be reached and the overall objective
is to get as close as possible to these goals:

- limited number of consecutive working days to prevent long stretches
(Constraint 4)

- no off/on/off situations (Constraint 7 in ANROM [36])
- the daily requirement for supervising personnel (in ANROM, users can de-

fine appropriate personnel requirements for the particular situation, per-
sonnel requirements have to be satisfied in all circumstances)

- grouping days off and extending the weekend. Days off can be grouped in
ANROM with constraint 7 and weekends can be extended by Constraint
15 and the specification of longer weekends, i.e. weekends which include
Friday and/or Monday (Burke et al. [36]).

The method can be extended to define additional constraints:
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- specific day off (personal requests, Constraint 24)
- specific working day (corresponds to Constraint 26)
- satisfying the daily demand exactly on specific days (this constraint is not

applicable to ANROM since the daily demands are hard constraints).
There is one single skill class and not more than the three regular (non-

overlapping, 8-hour) shift types. Every nurse works the same shift all the
time. There is no rotation. This implies that the problem can be split into 3
single-shift problems of reduced complexity. For several reasons, the planning
horizon is limited to 2-4 weeks. Short-term requests of individual nurses are
easier to implement and the scheduling problem remains simple.
For some real-world examples, the approach produces satisfactory results,
compared with those of a commercial software package (CPLEX).
In order to really assist head nurses and save time, a user friendly software
system should be developed in which it is possible to modify the weights for
the different objectives.

Jaszkiewicz [122], (1997), introduces a decision support system for the
nurse scheduling problem in Polish hospitals. The requirements on personal
schedules are considerably less extensive than the soft constraints in this thesis
and the results are much more rigid than what is required in ANROM. Working
days and free days are preferably grouped, the number of shift changes on
consecutive working days should be minimised, and shifts have to be divided
evenly among nurses.
The problem is solved in two stages. In the first stage, a simulated annealing
approach is applied in combination with a multi-objective algorithm (called
Pareto-Simulated Annealing) in order to generate a set of good quality
solutions. The samples are work stretches which meet the objectives in a
satisfactory way. A hospital planner evaluates these results in an interactive
way in the second phase.

In the mathematical approaches, exact methods are used to find a feasible set
of schedules. However, the real-world problem is so complex that almost all the
publications mention heuristic methods to assign work patterns to people and to
take preferences into account. In order to make the optimising algorithms work
properly, other researchers simplify a large number of problem characteristics.

3.3.2 AI Methods

Declarative and constraint programming

Okada and Okada [159], (1988), present a formal core method in Prolog which
assists in the assignment of shifts to nurses. Skilled and unskilled nurses are
the only two considered skill classes. There are three very strictly defined shift
types among which two are overlapping by half an hour. On Saturdays, an
extra morning shift can be scheduled, with precisely the same start time as the
regular morning shift but with only half the duration.
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The relative significance of various requirements can change during the planning
period. Not all of the constraints have to be strictly satisfied, Okada and Okada
find it even hard to define what an optimal schedule is. They distinguish between
the scheduling task and the general requirements that must be fulfilled. The
scheduling tasks are:

- On weekdays, assign the required number of personnel to night and
evening shifts. The remaining personnel members are assigned to day
shifts unless otherwise specified.

- On Saturdays, assign members to 8-hour shifts in addition to night and
evening shifts. The remaining staff serve only in the morning, unless
otherwise specified.

- On Sundays and bank holidays, assign members to all 3 shifts. The rest
of the personnel are free unless otherwise specified.

- Give a compensatory half day off to those who worked 8 hours on Saturday.

Give a compensatory day off for those who worked on Sunday, etc.
- Assign an evening shift to the nurses who worked a night shift the day

before (respecting one of the most encountered constraints: no back-
ordering).

The other goals are general requirements:

- Night shifts and Sunday/bank holiday assignments should be equally di-
vided among staff members each month, each year.

- An interval of an appropriate number of days must be placed between
night attendances.

- A specified number of skilled nurses must be in service at any shift of a
given day.

- For any given nurse, night shift assignments should preferably be dis-
tributed over each day of the week.

- As for night and Sunday/bank holiday attendances, each staff member
should preferably gain the experience of working with as many different
members as possible.

- Individual preferences for days off or assignments to particular shifts
should be taken into account as much as possible.

- Days off to compensate for Sunday attendance and half days off for Sat-
urday are preferably given within that week.

The approach is much stricter than ANROM. There is a very systematic
method to assign shifts whereas in ANROM, nearly anything can be scheduled
and a penalty cost will be generated for the violated constraints. Assignments
are done in a manual-like manner, following a strict procedure which is visible
in the ‘general requirements’ above.

Okada [158], (1992), elaborated on the general scheduling procedure
presented in [159] in order to develop a system which can handle varying
institution-specific requirements. A declarative program, which is generated
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through an interview with the user, models institution-specific information.
The method represents a set of ‘role sequences’ as a language, in which the
constraints are presented as a grammar, individual preferences are constraints
on strings, etc. There are multiple criteria to evaluate the possible schedules
for personnel members. By taking them all into account, the system tries to
discover the ‘best’ schedules.
The problem dimensions are comparable to those of [159] but there is an extra
skill class, consisting of two leaders. Like in ANROM, Okada’s system allows
for a very flexible definition of the soft constraints by the users of different
types of hospitals.

Weil et al. [218], (1995), reduce the complexity of a constraint satisfaction
problem by merging some constraints and by eliminating interchangeable values
and thus reducing the domains. They consider problems with three shift types,
a day and an evening shift of 8 hours and a 10-hour night shift. The model is
generic and can cope with different legal regulations. Some time related soft
constraints in ANROM are also present in this approach, be it in a very strict
manner: no isolated days on (Constraint 5 with value 2), no isolated days off
(Constraint 7 with value 2), a maximum work stretch (Constraint 4). However,
no individual preferences are included in the model.

Darmoni et al. [69], (1995), describe a software system called Horoplan
for scheduling nurses in a large hospital. They make use of knowledge based
rules for the assignments, although they could also be handled with the applied
constraint logic programming tool CHARME.

Meisels et al. [138], (1995), combine constraint networks and knowledge-
based rules to solve employee timetabling problems. The described approach
is implemented in a commercial software package, called TORANIT, which is
particularly flexible with respect to defining constraints and shifts. It cannot
guarantee optimal timetables because of the complexity of allowed formulations.
For the constraint programming approach, constraints fall into 3 groups:

- mutual exclusion constraints: a nurse can be assigned to one job at one
time (introduced as a hard constraint in ANROM in Section 2.3, although
ANROM allows for flexibility, see Section 6.3)

- finite capacity of employees: a limited number of daily/weekly/monthly
working hours, a limited number of night shifts per employee, etc. These
constraints are represented by a counter, which is comparable to Con-
straint 23 in this work.

- objectives: constraint the distribution over time of employee assignments
per shift (a minimum number of people of a certain skill class must be
present).

The rule-based part of the system combines assignment rules and constraint
rules, which are representations of human knowledge. Personal preferences
for certain shifts are tackled by the assignment rules. This constraint orders
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assignments by preference, e.g. rather morning shifts than late shifts. It is a
constraint which is not defined in ANROM. In order to model preferences such
as this, we would need to adapt several constraints. The constraint rules handle
the demand for certain types of nurses or for individual nurses, in addition to
personal constraints.
As a real-world example, Meisels et al. describe a team of 14-18 nurses of 3
hierarchical skill classes, which have to be assigned to 3 different shift types in
weekly planning periods. They conclude that generic non-binary constraints in
constraint networks and the ordering of constraints in line with their preference
are very efficient to solve the constraint networks.

Meisels and Lusternik [140], (1997) also investigate constraint networks
for employee timetabling problems. Just like in [138], a very flexible problem
formulation should be possible. The approach consists mainly of standard
constraint processing techniques, which solve randomly generated test prob-
lems. Experiments show that the domain size of the variables in the constraint
networks is a critical factor to have solvable problems. Meisels and Lusternik
also tested a genetic algorithm and found the same results.

Meyer auf’m Hofe [142], (1997), presents the nurse rostering problem
as a hierarchical constraint satisfaction problem. His research resulted in the
development of a library containing various search algorithms and constraint
propagation techniques. All of this is part of a nurse scheduling system (ORBIS
Dienstplan), which is tested on complex real-world problems in hospitals and
fire departments.
The model provides the possibility of flexibly defining personnel requirements,
provided that they are expressed in terms of shift types. It enables the use
of arbitrary sets of shifts, by adding additional overlapping shift types to the
tradional Early, Day and Night shift. Like in ANROM, the personnel require-
ments can differ from day to day and they are specified as a minimum and
as a preferred size of crew attendance. Generated schedules also have to meet
requirements like: legal regulations, personnel costs, flexibility with respect to
the actual expenditure of work, and the consideration of special qualities. Some
of the previous considerations belong to a higher decision level than the pure
short time rostering which is the subject of this thesis. It is not clear, how-
ever how staffing decisions are implemented in the model. They might be also
just input data, like in ANROM. Employees’ contracts (work regulations in this
thesis) determine to which extent requirements can be fulfilled, taking different
skill categories into account. The software enables users to adapt it to their
own needs. It enables the definition of work regulations and Meyer auf’m Hofe
mentions qualified and experiences personnel but it is not clear how the system
deals with them.
The time related constraints are less general than in ANROM, but they cer-
tainly belong to the most elaborate of the published approaches. Some specific
constraints are:
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- ensure minimum crew (a hard constraint in ANROM)
- prefer standard crew (scheduling more people than strictly needed to meet

the requirements is considered better, this is comparable to the ‘Planning
Procedures’ in Section 5.6)

- compensate work on weekends (not explicitly defined as a constraint in
ANROM, but easy to simulate with the counter on weekends: Constraint
23)

- keep working time accounts in balance (can be done with the counters,
Constraint 23 in ANROM)

- minimisation of overtime (Constraint 8)
- management of vacation and absence (Constraint 23)
- a minimum and preferred rest time is defined, these are constant values

for all the shift types (ANROM permits rest times which depend on the
shift type, there is only a minimum time defined: Constraint 1)

- working time models: preferred sequences of shifts, usually of two weeks
length (comparable to Constraint 22 in ANROM but less flexible)

- undesired sequences of shifts, e.g. long chains of night shifts,
work/free/work sequences, etc (instead of defining them strictly, ANROM
allows for a flexible definition related to work regulations for any of the
constraints)

All the above requirements can be represented by constraints in the con-
straint satisfaction approach. Just like in this thesis, it is impossible in
practice to satisfy all the constraints; Meyer auf’m Hofe therefore mentions
‘partial’ constraints satisfaction. Consequently, requirements are treated in
order of importance. It is a very complex task to generate a satisfactory
schedule in practical personnel planning situations, but like in ANROM, the
method is interactive and the user can alter the result of the algorithms by hand.

In [144], (2000), Meyer auf’m Hofe, builds on his previous research and
on experiences of the software system [142], which is used in practice. The
generic model is developed for use in different real-world personnel rostering
settings and it corresponds therefore better to the approach in ANROM than
any of the other methods discussed in this section.
Hierarchy levels and constraint weights are defined, it is not possible to satisfy
all the constraints anyway. Instead of tackling it with constraint satisfaction,
nurse rostering is rather constraint optimisation. Fuzzy or ‘non-crisp’ con-
straints are introduced in this approach as constraints which can be partially
violated and partially satisfied.
A hybridisation of iterative improvement and branch and bound are used in a
constraint propagation algorithm that deals with the fuzzy constraints. It is
robust enough to handle varying real-world formulations of the nurse rostering
problem.

Chan and Weil [55], (2000), construct timetables for a continuous work
environment, not in the healthcare sector. They provide a cyclical pattern

108



for 150 people during an entire year but the general problem characteristics
are less complex than in ANROM. The requirement constraint is comparable
to the hard coverage constraint in the problem tackled in this thesis. The
rosters are constructed with 3 different shift types and they are flexible with
respect to annual leave and other unforeseen events breaking the work cycles.
When assigning cyclical timetables, some constraints have to be relaxed in
order to obtain feasible schedules. Chan and Weil propose a unified model by
increasing the time units from days to weeks and they solve it with constraint
logic programming.

Muslija et al. [154], (2000), generate cyclical solutions for a simplified
version of general workforce scheduling problems. Rotating workforce schedules
are beneficial for the employees’ health and satisfaction, and thus increase the
work performance of the personnel.
Muslija et al. generate allowed (satisfying legal constraints) shift sequences in
a one week planning period. Certain coverage levels must also be guaranteed.
Important characteristics of schedules are the length of work blocks and
‘optimal’ weekend characteristics. Even when generating this type of rotating
schedule, personal preferences and extra constraints can be implemented.
The proposed method can assist in calculating good schedules very quickly
but is probably too simplified to be of use in large scale healthcare environments.

Expert systems - Decision support systems

Decision support systems provide the possibility of developing user-interactive,
integrated (staffing, rostering, etc) approaches to nurse scheduling problems.

Smith et al. [196], (1979), developed a ‘what-if’ decision support system
for various sets of weights instead of providing optimal solutions. The software
is interactive and allows users to assign weights to different objectives and to
take personal preferences into account. The time related constraints are very
basic compared to those of ANROM.

The decision support system introduced by Ozkarahan [162], (1991),
makes use of a goal programming model (see Section 3.3.1). The problem
dimensions are kept very small in order to make the approach function well.
The problem of this thesis would be far too complex to be tackled with the
proposed method.

Ozkarahan and Bailey [166], (1988) describe more or less the same work,
but they define three objectives in the goal programming approach (see also
Section 3.3.1).

Chen and Yeung [56], (1993), schedule full time nurses of a single skill
class with a hybrid expert system approach. The system handles constraints
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such as requested days off, maximum consecutive working days (restricted to
6), minimum consecutive free days, avoiding on/off patterns and minimising
overtime. Some other fairness measures are also taken into consideration. In
the meantime, the program attempts to meet minimum staff levels by applying
a goal programming module. Unlike in ANROM, where minimum coverage
is a hard constraint, Chen and Yeung define aspiration levels for each goal.
Minimum staffing requirements on particular days can thus be relaxed.
The expert system itself is involved in assigning early, late and night shifts.
Problem dimensions are very small compared to the real-world situation, all
personnel members have the same work regulation and the same skills.

3.3.3 Heuristics

Real-world nurse rostering problems have a quasi uncountable number of
alternative solutions. Finding the optimal solution, in terms of the value of
the cost function, cannot be attained in a polynomial calculation time (=
NP hard). In practice, the problem size, and the lack of knowledge about
the structure of most nurse rostering problems hinders the applicability of
exact optimisation methods. Many heuristics have been developed to obtain
high-quality schedules for real-world problems in an acceptable computation
time.
The applicability of heuristic scheduling algorithms requires a clear formulation
of the hospital requirements. It is necessary to quantify the quality of different
schedules in an unambiguous way. Heuristic schedulers outline a number of
steps in order to generate a schedule which respects the constraints. Most
heuristics are developed to generate cyclical schedules and very often they
emulate the trial-and-error manner in which the planner used to construct the
schedule by hand. In this section, most of the researchers apply meta-heuristics,
which are more realistic attempts to solve complex real-world scheduling prob-
lems.

Smith [195], (1976), presents an interactive algorithm which helps the
scheduler to construct a cyclical schedule. The algorithm takes coverage
constraints and days off policies into account and it determines the number of
personnel members, which is a staffing decision (Section 3.2.2). Not all the
staff members can have rotating schedules, however.

Smith and Wiggins [197], (1977), developed a software system, using
list-processing techniques generating non-cyclical monthly schedules for several
skill categories, which allows for different kinds of part time work. Schedules
are developed per person, meeting the staffing requirements by alternating days
off. This is more similar to the work done in this thesis than Smith’s earlier
work [195]. The model incorporates a considerable number of constraints
corresponding to some soft constraints in this research: patterns (Constraint
22), days off (Constraint 24), etc. It also allows the specification of the type
of leave (see Section 2.4.3). Just like ANROM, the system is interactive, users
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can make manual changes to the generated schedules.

Blau and Sear [25], (1983), generate all possible shift patterns in a two
week period and evaluate them with respect to the nurses’ preferences in
a first step. A cyclic descent algorithm is used in the second step in order
to find an optimal overall schedule with one of the 60 best patterns for
each nurse, taking over- and understaffing into account. The approach is de-
veloped for wards with three skill classes in which substitutability is hierarchical.

Blau [24], (1985), tries to equalise the distribution of unpopular work in
addition to the frequency with which employees are granted requests for shifts
or days. In ANROM, the latter feature does not exist.

Anzai and Miura [7], (1987), present a cyclic descent algorithm for a
ward in which the personnel members are identical (with respect to skills and
work regulations). They admit that their model is too simplified for practical
applications.

Kostreva and Jennings [128], (1991), solve the nurse scheduling problem
in two phases. Groups of feasible schedules are calculated in a first step. The
groups respect the minimum staffing requirements and each individual schedule
fulfils all major working constraints. In the second phase, the best possible
‘aversion score’, which is based on the preferences of the individual nurses,
is calculated. The tackled problems are not complex, all the skill classes are
scheduled independently, for example.

Schaerf and Meisels [182], (1999), present a general definition of employee
timetabling problems. They define employee timetabling as the problem of as-
signing employees to tasks in shifts. The shifts are predefined time periods that
can reside anywhere on the time axis. A general problem definition is given,
with strict coverage constraints but with flexibility in time related constraints.
The problem involves exactly meeting the coverage and a set of time related
constraints, while trying to meet preferences in assignments.
A general local search is introduced that allows partial assignments and thus
makes use of a larger search space. The paper concentrates on hill climbing
algorithms for the local search. Each technique concentrates on a different part
of the search space, denoting their ‘steepness’. In the approach, the neighbour-
hood functions can include ‘insert’, ‘delete’, and ‘replace’ moves. The approach
has been tested in theoretical environments: a hospital and a production envi-
ronment.
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3.3.4 Meta-heuristic scheduling

Simulated Annealing

Isken and Hancock [121], (1990), belong to the rare group of researchers who
allow variable starting times instead of 3 fixed shifts per day. They formulate
the problem, which is (in other respects) rather simplified (1 skill class, for
example) as an integer program. Unlike in the research of this thesis (Chapter
6) under- and overstaffing are allowed but penalised. Isken and Hancock thus
solve a different problem, thanks to the flexibility in personnel coverage.

Brusco and Jacobs [30], (1995), combine simulated annealing and local
search to generate cyclical schedules for continuously operating organisations.
Apart from hospitals, many other organisations (including telecommunications,
public safety, and transportation organisations ...) face demands for labour on a
continuous basis - 24 hours per day, 7 days per week. Commonly, organisations
that must service continuous demand allow their workers’ schedules to begin
at any hour of the week. This problem, comparable to the ‘floating personnel
demands’ of Chapter 6, is rather exceptional and makes the scheduling process
far more complex than the shift type rostering.
The work concentrates merely on staffing by comparing the cost of alternative
personnel scheduling options.
Brusco and Jacobs call their problem a tour scheduling problem; it determines
daily shift schedules and weekly days-off assignments for employees across a
specified planning horizon. One of the most common flexibility alternatives
for pure tour scheduling encountered in practical applications is the use of a
mixture of both full-time and part-time workers (mixed workforce). One such
approach involves a problem reduction that prohibits the use of daily shift
schedules that would overlap from one 24-hour period to the next (comparable
to Constraint 1 but less general). The mathematical problem associated with
this reduction is referred to as the ‘discontinuous tour-scheduling’ formulation.

Tabu Search

Berrada et al. [21], (1996) combine tabu search with a multi-objective
approach (see also goal programming in Section 3.3.1). The tabu search
moves are very similar to the moves applied in this research (see Section
7.3.1). The moves switch days off and working days for different people, while
in ANROM, an assigned shift is moved to a person without assignment for
the shift on the particular day. Since the problem dimensions of Berrada’s
work are much smaller than in ANROM, it is not possible to compare the results.

Dowsland [84], (1998), makes use of different neighbourhood search
strategies in a tabu search algorithm. The heuristic oscillates between feasible
solutions meeting the personnel requirements and schedules concentrating on
the nurses’ preferences. At any time of the planning period, the algorithm must
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provide enough personnel with the requested qualities, while satisfying the
people by granting personal requests in a fair manner. The attractiveness of
work patterns differs from person to person in this work. Three different skill
classes are hierarchically substitutable and the problem dimensions are rather
low compared to those of this thesis. The planning horizon is one week, there
are three different shifts, of which the night shifts are scheduled separately.
Rather than designing a generic, widely applicable algorithm, this work was
developed to solve the personnel scheduling problem in one particular hospital
(see also Aickelin and Dowsland [5] and Aickelin [4]). This explains the very
good quality of the results.

Genetic Algorithms

Easton and Mansour [85], (1991), developed a distributed genetic algorithm
for an employee staffing and scheduling problem called ‘tour scheduling’.
The algorithm aims at minimising the number of personnel members to fulfil
the demands. The fitness function represents violations of constraints and
individual solutions are improved with local hill climbing operators. Personal
preferences are not implemented in this work. The genetic algorithm works
very well for a set of test problems.

Tanomaru [201], (1995), developed a genetic algorithm to solve a staff
scheduling problem. The objective is to minimise the total wage cost, in
a situation where the number of personnel is not fixed. Solutions have to
meet the total workforce requirements while respecting the maximum number
of individual working shifts. Overtime is allowed, however. Although the
problem dimensions are very basic (one week planning horizon, low number
of constraints, etc), this is one of the very few researchers who allows flexible
starting times for the shifts. Solutions for the personnel are represented by 7
pairs of integers, giving the start and stop times per day.
For real-life problems, Tanomaru concludes that his heuristic mutation opera-
tors might be too time consuming.

Aickelin [4], (1999) wrote a PhD thesis on Genetic Algorithms for Multiple-
Choice Optimisation Problems. One of the two problems he introduces to
present his method is a nurse scheduling problem.
The same problem is tackled by Aickelin and Dowsland in [5], (2000), where
the evolutionary approach is a complex ‘co-operative genetic algorithm’. Prob-
lem specific knowledge is used both to guide the crossover operator and a hill-
climbing operator within the evolutionary algorithm.
Separate soft constraints on the personnel schedules are not evaluated. Aickelin
and Dowsland determine the value or penalty of weekly schedules beforehand
(this is similar to what Warner [215] does). Only a limited number of such
patterns exists and instead of evaluating constraints, the values per pattern
are determined and saved. Constraints which are taken into account in the
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evaluation of patterns are:

- days off together or separate (Constraint 7)
- mixture of day and night shifts in a week (can be organised with Constraint

12)
- preference to work days or nights (Constraint 11 and again Constraint 12)
- preference to work certain shifts (Constraint 26)
- number of consecutive days: a set number (Constraint 4)
- rotating night shifts (Constraint 12 or Constraint 22)
- rotating weekend work (Constraint 18)
- the working history is taken into consideration: the cost of the previous

schedule is added to this one, with a maximum of 100.

All, but the last constraint are also applied in ANROM. The previous planning
period is taken into account in some constraints (consecutive days, rotating
nights, consecutive days, etc). This corresponds to the approach in this thesis
(see Section 2.4.2). Since the planning period in Aickelin’s work is only one
week, this constraint is really useful to provide a minimum fairness level among
employees. In ANROM, which has a longer planning period, the value of the
cost function is assigned only once. However, for many constraints which are
not taken into account in Aickelin’s work, our system takes the working history
into account, for example, Constraint 8 (overtime), Constraint 9 (undertime),
Constraint 23 (all kinds of different counters), . . .
The work looks at a planning period of one week, schedules three different
shift types (morning, late and night shift) for three different skill classes
(called grades). Nurses’ preferences can change, so a cyclic schedule cannot be
generated to satisfy the requirements.
In the presented approach, Aickelin tries to decompose the problem in ‘easier
to solve’ sub-problems. Night and day shifts are preferably not combined in a
personnel member’s weekly schedule. Night shifts can be scheduled separately
to a certain extent. The skill classes are handled in a hierarchical manner in
that higher qualified people can replace lower qualified people. This approach
works very well for the personnel scheduling problem of a particular hospital.
However, it would not be applicable to the situation in Belgian hospitals, in
which it is rather unthinkable to allocate highly qualified personnel to tasks
for junior nurses (see Section 2.2.2). Substitutability among skill categories is
personalised in practice. Scheduling night shifts separately is not in accordance
with most Belgian hospital customs.

An evolutionary approach called a population-less co-operative genetic
algorithm is applied to solve another 3-shift problem by Ahmad et al. [3],
(2000). They distinguish between hard and soft constraints. Feasible schedules
satisfy the hard constraints, which are coverage constraints and personal
requests for days off. The soft constraints are time-related constraints on
personal schedules (a subset of the soft constraints in this thesis). A 15-days
history of personal schedules is taken into account for the evaluation. It is
not clear how a feasible initial schedule is created. After the initialisation, the
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genetic algorithm searches solutions in the feasible region only. New schedules
are generated by applying a two-point crossover on two personal schedules:
the worst schedule and a randomly selected one. The search stops when a
predefined number of generations is reached. Some optimisation methods have
been explored: increasing the number of mates for crossover, diversification
and the application of mutation and ‘escape’ operators.
More realistic individual cost functions are required, in addition to an evalua-
tion procedure for the hospital planner to estimate the quality of a schedule.

Kawanaka et al. [126], (2001), developed a genetic algorithm for scheduling
nurses under various constraints. Three skill classes are defined, the personnel
requirements in the weekends differ from those on weekdays. In the approach,
a distinction is made between ‘absolute’ and ‘desirable’ constraints. Among the
absolute constraints are the minimum coverage per skill class for the constraints
which are equal to the hard constraints in this work (Section 2.3). The other
constraints of this category are treated as soft constraints in ANROM, they
are:

- maximum number of night shifts (a particular example to be formulated
by Constraint 11)

- at least one free day per week (maximum number of assignments per week
in ANROM is more flexible, Constraint 12)

- the total number of free days equals the total number of Saturdays, Sun-
days and bank holidays (can be implemented by setting the maximum
total number of assignments to the total number of days minus this value,
Constraint 3)

- after a night shift, no early or late shift is allowed (can be done by strictly
setting the constraint on time between shifts, Constraint 1, or by Con-
straint 14 if two free days have to be scheduled after a night shift).

The objective function considers weights for the desirable criteria: the balance
of shifts, the granting of requested holidays, the number of night shifts assigned
to unskilled, new nurses, etc.
When crossover is applied to strings by genetic operators, many absolute
constraints are violated (see also Section 9.3). Shifts are exchanged in order
to overcome this problem while attempting to maintain the characteristics
of the parents. Compared to a conventional method, which only implements
the absolute constraints in the evaluation function, the presented approach
generates considerably better results.

3.4 General Personnel Scheduling

Apart from hospital and healthcare personnel scheduling, there are several
other organisations which require personnel attendance 24 hours per day.
Glover and McMillan [105], for example, define a general employee scheduling
problem and tackle the design of shifts and the assignment of these shifts to
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workers as one problem.

Burns and Carter [45], (1985), present an operations research approach
for employee scheduling. The main aim of the work is to design work cycles
which minimise workforce requirements and fulfil a set of constraints. Some of
the presented heuristics for solving the problem are proven to be optimal. The
constraints treated by Burns and Carter are a subset of the constraints presented
in Section 2.4, only the simplest constraints are considered. Emmons and Fuh
[90], (1997), developed a method for optimising the workforce, and for scheduling
full-time and half-time personnel while considering some soft constraints. Millar
and Kiragu [145], (1998), combine all the possible shift patterns of 4 days length.
They construct a network in which each node represents a feasible pattern and
solve it with an algorithm based on CPLEX software.

Although doctors and surgeons are hospital personnel, they are normally
not scheduled in the way nurses are. In some cases, a separate algorithm is
developed for this category of healthcare personnel (e.g. Graff and Radford
[110]). Locations (operating theatres, patients’ addresses, for example) or avail-
able equipment

such as cars (De Causmaecker et al. [74]), specialised medical equipment
(Schreuder [185]) can play an important role in the healtcare sector. Similar
problems are those of magistrates in justice courts (Schreuder [184]).
Many of the employee scheduling problems are less complex than hospital
scheduling, e.g. the bank sector, customs personnel, call centers, postal centers,
etc. They are often solved with cyclical schedules, which are also very common
in production environments. Media personnel, for example in broadcasting
stations and publishing environments, cannot work according to perfect cyclical
patterns either.
All kinds of commercial activities require employee scheduling: sales assistants,
cash registers in stores, telephone sales, etc. Fast food restaurants form
another group, in which duties are composed of very short tasks. Personnel
requirements per task depend strongly on the time of the day. Good schedules
are those in which people can work continuously, even though they may be
undertaking different tasks all the time.
The personnel demands in many other personnel scheduling, are fluctuating
less from day to day and the number of different skill categories for personnel
is generally lower. However, some other personnel timetabling domains include
constraints which are normally not considered in hospitals. Examples are
law enforcement (Tien and Kamiyama [204]), prison staff, police (Taylor and
Huxley [202]), security personnel, fire departments, service personnel (Collins
and Sisley [59]), etc in which locations can play a role. Such schedules must
address emergency situations in addition to routine personnel demands. In
healthcare, emergencies are often covered by assigning the typical ‘keep guard’
duties. The personnel members which are on guard duty are called when a
sudden personnel shortage occurs. Military manpower scheduling problems
form a special group within this category.
Scheduling courses (Carter and Laporte [51]), exams (Burke et al. [40], Carter
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and Laporte [50]) and teaching personnel in schools or universities is another
related problem (Bardadym [11]). Constraints on groups of students, on the
programme and on rooms with special facilities make the problems very hard
to solve.
Other related problems which involve locations are audit personnel scheduling,
generating preachers’ timetables (Corne and Ogden [62]), etc. Courier services,
telephone engineers, transportation (Bürckert et al. [32]), personnel at airline
stations [31], sanitation (Tien and Kamiyama [204]), etc incorporate constraints
on vehicles and routes. The problem definition differs strongly from the subject
of this thesis.
There is a group of problems called ‘crew scheduling’ (Beasley and Cao [13],
Bianco et al. [22], Caprara et al. [47], Morgado and Martins [151]): scheduling
buses (Wren and Rousseau [225]), with e.g. partial driver shifts, trains, boats,
airports and aircrafts (Dowling et al. [82], Gopalan and Talluri [109]), etc. A
team of people, with the required skills, has to take a vehicle from one place to
another. In many situations, locations cause extra difficulties when the crew
stays at the destination point until another vehicle is scheduled back.

The personnel rostering techniques which are developed for this research
are to a certain extent applicable to other personnel scheduling domains but in
many cases, a lot of extra information is required.

Some scheduling approaches for non-healthcare personnel have been intro-
duced in Section 3.2 and Section 3.3 already [30, 55, 85, 138, 140, 154]. A few
other problems, which differ even more from the nurse rostering problem, are
presented in this section.

Bailey [9], (1985), models days on and off patterns for service organisations
with hourly fluctuating demands. He distinguishes ‘shift scheduling’ and ‘days
off’ scheduling; the first determining the number of 8-hour shifts needed to
satisfy fluctuating demands during the day and the second one to determine
the weekly work patterns for personnel members. Bailey presents a decom-
posable linear programming approach. Constraints on the daily level, such
as consecutive days off, staff size, overtime, etc belong to the shift scheduling
part of the problem while hourly demand variations, changes in the cost of
understaffing and overstaffing are reflected in the days off problem. The goal is
to minimise the number of work patterns with the highest difference between
start times over the week.

Alfares [6], (2000), developed a method to solve a real-world -non
healthcare- employee timetabling problem with days on and off, which is
especially suitable for personnel working in remote areas. He minimises the
number of assigned employees while respecting a very strict cyclical schedule.
The presented method is optimal, it makes use of the dual LP formulation but
avoids the inefficient use of integer and linear programming. The application is
used by an oil company to schedule workers in remote areas.
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Chiarandini et al. [58], (2000), apply tabu search to generate solutions
for general employee timetabling problems. Personnel members are assigned
to tasks and locations in the form of shifts under flexible workload conditions.
The method aims at a long-term fair distribution of undesired shifts. Different
contracts involve different values for the constraints. A planning period of one
week is common. The qualifications of employees enable them to fulfil certain
types of tasks.
In the objective function, the following soft constraints are implemented as a
weighted sum:

- preferential ability and availability: personnel members express their pref-
erences for certain shifts and for work requiring particular skills

- flexible workload: violations on the number of assignments per week (both
positive and negative) have to be evenly distributed among personnel
members and over time

- fairness for special shifts (can be achieved with counters, Constraint 23)
- shift and location stability: people prefer to be assigned to the same shift

and the same place in a week time (in ANROM, locations are not a subject
to consider; the shift stability could be attained by setting the minimum
value for consecutiveness of certain shifts, Constraint 5).

Special shifts can be defined by the user, typical examples are weekend shifts
and night shifts. For test examples with 50 and 100 employees, the method
generates good solutions and requires very few calculation time.

Cowling et al. [64], (2000), test several hyperheuristics on a sales summit
scheduling problem. Hyperheuristics do not require much problem specific
knowledge and therefore represent a very promising research direction for
building more general scheduling systems. A choice function determines which
low-level (local search) heuristic to choose from a set of problem-independent
algorithms, under the given circumstances.
The problem consists of organising meetings between ‘suppliers’ and ‘delegates’,
subject to constraints. Although this problem does not resemble the nurse
scheduling problem at all, the hyperheuristic approach certainly has potential
to be applied for different types of personnel scheduling problems.

3.5 Conclusions

Nurse rostering belongs to the general domain of personnel scheduling. In the
literature about personnel scheduling, several planning levels are distinguished:
‘staffing’, which covers a long-term planning horizon, intermediate levels such
as ‘cyclical scheduling’, in which long-term patterns are set up, and ‘rostering’,
the short-term timetabling part.
Compared to the planning and scheduling literature for personnel, the problem
tackled in this thesis is situated among the short-term rostering problems which
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require management decisions as an input. ANROM does not deal with staffing
nor human resources problems but provides a tool for generating personal
schedules which fulfil the hospital, patient, and personal needs without altering
the local customs in a ward.

The review in this chapter first compared the dimensions and the com-
plexity of related problems with the description of ANROM. By setting up
tables of comparison between several nurse rostering issues, we could clearly
state that ANROM is the most flexible and complete model encountered.
It provides more options for setting the goal of the planning algorithms, in
addition to flexible personnel requirement formulations in any kind of planning
period, user definable shift types, work regulations, skill categories, and most
importantly, it has the most extensive set of modifiable time related constraints.

The second part of the review presented a discussion on different nurse ros-
tering approaches: mathematical programming, artificial intelligence, heuristic
and meta-heuristic approaches, etc. Manual schedulers tend to defend cyclical
schedules, which are easier to construct but not very flexible. Automatic
scheduling generally involves a decrease in time to construct the schedule and
also a higher satisfaction level for the personnel. Although many advanced
techniques were developed to tackle real nurse rostering problems, none of
the approaches is directly suitable for solving a problem equally difficult as
ANROM. The problem definitions vary widely, not uncommonly because of
varying rules and habits in different countries. Most researchers develop a
solution method which directly relates to their particular problem structure.

Other employee scheduling approaches were also briefly mentioned. The
main goal and most of the constraints are comparable to those of the nurse
rostering problem, yet solution methods which work for general employee
timetabling are not flexible enough to cope with the problem defined in this
thesis. Nevertheless, a set of employee timetabling problems provides restric-
tions that are not considered in ANROM. Examples are locations, equipment,
etc.

Compared to what the research community has done, strong arguments for
the importance of the work presented in this thesis are the flexibility of the
approach, the applicability in practice, and the generic problem formulation.
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Chapter 4

The Evaluation of Solutions

4.1 Introduction

The search heuristics for solving the ANROM model introduced in Chapter 2
are driven by an evaluation function which estimates the quality of schedules.
In this chapter we introduce a new method to model and evaluate the soft
constraints. It is implemented as a series of modules, each corresponding to a
time related constraint on personal schedules. For all the personnel members
in the problem, the evaluation function sums all violations of these constraints.
Users fix the parameters and set the penalty weight per unit violation of a soft
constraint.

We consider a particular cost function approach that allows for a quick
evaluation and is general enough to address other kinds of resource planning
problems with time related constraints. It can tackle a high number of specific
and modifiable constraints of a very different nature such as the constraints
of Section 2.4. Simple constraints (e.g. those affecting the personal wishes of
employees) and global constraints (e.g. balancing the workload among people)
can be formulated easily using this method. The addition of new constraints
is relatively straightforward. A major benefit of the presented approach lies in
the simple evaluation of solutions, considering all the soft constraints with the
same evaluation function.
Our approach deals with very complex time-related constraints as well as con-
ditions that are related to previously planned work. Moreover, it provides clear
feedback about violation of constraints.
A slightly modified version of this chapter was published as E.K. Burke, P.
De Causmaecker, S. Petrovic, and G. Vanden Berghe: Fitness Evaluation for
Nurse Scheduling Problems, Proceedings of Congress on Evolutionary Compu-
tation, CEC2001, Seoul, 2001, IEEE Press, 1139-1146 (Burke et al. [36]).
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From Till
M morning shift 06:45 14:45
L late shift 14:30 22:00
N night shift 22:00 07:00

Table 4.1: The shift types

4.2 The Evaluation Approach

Our method evaluates the group of very different constraints that is outlined in
Section 2.4. More generally, the method also provides a technique to calculate
the extent to which constraints on the schedule are violated. The main ideas
of the approach, as well as some guidelines to translate real-world constraints
into the model, are explained in this section.
The approach allows for the evaluation of the solution per resource (in this
nurse rostering example, a resource is a person). The solution of every resource
will be evaluated against a schematic representation of the constraints in order
to determine the value of the evaluation function for the solution.
To facilitate the explanation of the evaluation method, we consider again the
simple example consisting of a one-week planning period for a ward with 5
people, which was introduced already in Section 2.2.4 and 2.2.6. The number of
shift types in use is restricted to the morning (M), late (L), and night (N) shifts
presented in Table 4.1. All personnel members have the same work agreement.
This implies that their personal schedules are all subject to the same set of soft
constraints. Each requested shift can be assigned to any of the nurses because
they all belong to the same skill category.

A schedule or solution is depicted as a two dimensional matrix, in which the
rows represent the personal schedules (see Section 2.2.6). For each shift on each
day of the planning period, there is a column in the matrix. Fig. 4.1 shows
a personnel schedule especially constructed to demonstrate the solution repre-
sentation and the evaluation approach. The schedule for the previous planning
period is also presented in the table. The previous solution is used for defining
the start values of the constraints to be evaluated.

4.2.1 Formal description of the evaluation method

The basic ideas of the evaluation method are presented formally in this sec-
tion. The assignment units introduced in Section 2.2.6 are basic concepts in
the description. Suppose there are D days in the planning period and that the
problem consists of S shift types, then D ∗S assignment units are used. The set
of assignment units (1, 2, . . . , T ) is denoted by AU . Fig. 4.1 is translated into an
assignment unit schedule in Fig. 4.2. In this example, D = 7 and S = 3. Since
the example consists of only 3 possible shift types, every day in the real-world
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Previous planning period
Mon Tue Wed Thu Fri Sat Sun

P1 M M
P2 M L L N
P3 L L
P4 L L
P5 N N N N N

Current planning period
Mon Tue Wed Thu Fri Sat Sun

P1 M M L L N
P2 N N L L
P3 M M M M M M M
P4 M L N N N
P5 M L L L L

Figure 4.1: Solution for the basic problem with 5 people (P1,. . . , P5) and 1
week; M, L, and N being the shift types introduced in Table 4.1

planning is represented by 3 columns in the assignment unit schedule.
We introduce numberings as templates that are put on each personal schedule
in order to evaluate constraints in a uniform way. Instead of writing a separate
algorithm for the evaluation of each constraint, we designed the numberings so
that all constraints can be evaluated using a single algorithm. The evaluation
of every personal schedule is performed in one go, starting from the first assign-
ment unit for which the person is scheduled and ending at the last. For some
easy constraints (e.g. Constraint 3, 4, 5, etc), very simple numberings suffice.
When we come to complications involving weekends (e.g. Constraint 15, 17, 19,
etc), night work (e.g. Constraint 14, 16, etc), the numberings are constructed
in order to allow for sufficient abstractions from the real-world details of the
problem.

Definition 1 A numbering Ni is a mapping of the set of assignment units
AU to a set of numbers i.e.

Ni : AU → {−M,−M + 1, . . . , 0, 1, . . . ,M − 1, U}
where i=1, . . . , I and I is the total number of numberings.

M is a positive integer and U is a symbol introduced to represent the assignment
units for which the numbering is undefined.

The mapping need not be into or onto, nor need it conserve the sequence. A set
of 9 constraints of different nature are selected from the real-world constraints
to explain how the approach covers the personnel rostering problem (see Table
4.2). Fig. 4.3 presents 3 numberings denoted by N1, N2, and N3, created for
the schedule presented in Fig. 4.1. The value for M in both N1 and N2 is
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Previous planning period
P1 * *
P2 * * * *
P3 * *
P4 * *
P5 * * * * *

Current planning period
P1 * * * * *
P2 * * * *
P3 * * * * * * *
P4 * * * * *
P5 * * * * *

Figure 4.2: Assignment unit representation of the solution in Fig. 4.1: ‘*’ de-
notes that the schedule position differs from 0 (it is ‘assigned’) while ‘-’ denotes
that the schedule position has value 0 (it is free)

Previous planning period
N1 -7 -7 -7 -6 -6 -6 -5 -5 -5 -4 -4 -4 -3 -3 -3 -2 -2 -2 -1 -1 -1
N2 U U -7 U U -6 U U -5 U U -4 U U -3 U U -2 U U -1
N3 U U U U U U U U U U U U U U U -3 -3 -3 -2 -2 -2

Current planning period
N1 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
N2 U U 0 U U 1 U U 2 U U 3 U U 4 U U 5 U U 6
N3 U U U U U U U U U U U U U U U 0 0 0 1 1 1

Figure 4.3: Numberings used for the real-world constraints of Table 4.2

7 and M is 2 in N3. Each numbering is assigned to one or more constraints.
When constraints are related to days, for example, the numbering will consist
of increasing numbers for the assignment units corresponding to the days (as in
numbering N1). In Fig. 4.3, the appropriate numbers identifying the previous
planning period are also shown. These numbers will be used for the initialisation
of the evaluation method. In fact, the 3 presented numberings are sufficient
to evaluate the 9 selected real-world soft constraints given in Table 4.2. The
values in the numbering depend on the nature of the real-world constraints.
Numberings provide the possibility of implementing irregular concepts such as
days off, bank holidays, etc. All numberings are potentially susceptible to the
same set of numbering constraints, introduced later on in Section 4.2.2. One
of the main aims of the approach presented in this chapter is the reduction
of the effort of implementing new real-world constraints to designing a proper
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Soft Constraints V C N
3 maximum assignments 6 1 N1

4 maximum consecutive days 4 1 N1

5 minimum consecutive days 2 1 N1

6 maximum consecutive free days 8 1 N1

7 minimum consecutive free days 2 1 N1

10 maximum assignments per day of the week 1 1 N1

11 maximum night shifts 3 1 N2

13 minimum consecutive night shifts 2,3,4 1 N2

15 work full weekends 1 1 N3

Table 4.2: Some soft constraints; the column V denotes the value, C denotes
the cost parameter and N denotes the numbering associated with the constraint

numbering. The following definitions allow us to be more specific.

Definition 2 A personal schedule for person p is a mapping

schedulep : AU → {assigned, free}.
In the personal schedule, an event occurs at every assignment unit when the
person is assigned to a shift (or when schedulep 6= 0 ). At an event, each
numbering associated with the personal schedule will be checked against its
constraints. The events are generated following the order of the assignment
units and will be evaluated in that sequence in the algorithm (see Fig. 4.4).

Definition 3 For a given personal schedule schedulep, an event is an assign-
ment unit e for which schedulep,e 6= 0. Denote by Eschedulep the set of all events
that are induced by schedulep.

Denote by AUN the set of assignment units for which the numbering N does not
have value U (undefined). Denote by EN,schedulep the set of events of schedulep

which are defined for the numbering N. In other words, EN,schedulep = AUN ∩
Eschedulep .
The basic idea of the evaluation method is to go through the set EN,schedulep for
each personal schedule of person p and consider the values N(e) of each event
in EN,schedulep . The number of constraint types per numbering is limited to 8
and we will now explain their meaning.

4.2.2 Numbering constraints and values

A formal description of the numbering constraints and their values is given here.
A numbering constraint is a condition, which is checked against its value during
or at the end of the evaluation. Numbering constraint values (between brackets
in Table 4.3) are derived from the real-world constraints’ values (denoted by V
in Table 4.2) as presented in the left part of the columns.
Max total is an upper limit for the number of events
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N1 N2 N3

Constraints (Real-world constraint) Penalty costs
max total 6 (3) 1 3 (11) 1 cost max total
min total cost min total
max pert 1 (10) 1 cost max pert
min pert cost min pert
max between 8 (6) 1 cost max between
min between 2 (1) 1 cost min between
max consecutive 4 (4) 1 cost max consecutive
min consecutive 2 (5) 1 2 (13) 1 2 (15) 1 cost min consecutive

Table 4.3: Constraint values and penalty costs for each of the 3 numberings in
Fig. 4.3; the numbers between brackets refer to the corresponding real-world
constraints of Table 4.2

#EN,schedulep ≤ max total

The real-world constraints given in Table 4.2 are translated into 8 numbering
constraints presented in Table 4.3. In the real-world constraints 3 and 11 pre-
sented in Table 4.2 max total has value 6 and 3 (see Table 4.3). The other
real-world constraints in Table 4.2 are not evaluated with the max total con-
straint.
Min total is a lower limit for the number of events

#EN,schedulep ≥ min total

In fact, an evaluation of the numbering constraint min total is not required for
the selected elementary set of constraints in Table 4.2. The real-world con-
straints on undertime (Constraint 9), patterns (Constraint 22), and required
assignments (Constraint 26) in Section 2.4 make use of min total for their eval-
uation.
Max pert is an array of size M representing for each number in the numbering
the maximum number of events that can be mapped to it.
Min pert is an array of size M which is similar to max pert except that it rep-
resents a minimum instead of a maximum. None of the constraints in Table 4.2
makes use of the min pert constraint. In more realistic rostering problems, how-
ever, the constraint is used to evaluate real-world constraints such as patterns
(Constraint 22), identical shifts in weekends (Constraint 17), and balancing the
workload (Constraint 23) in Section 2.4.
For convenience, we introduce a new operator:

Definition 4 Two numbers a and b (where a ≤ b) are said to be consecutive
with respect to a numbering N if and only if for every number m in {a,. . . ,b}
the numbering N maps an event in EN,schedulep to m.

This allows us to introduce four additional constraints:
Max consecutive is the maximum number of consecutive events. The con-
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straint max consecutive is used in numbering N1 for the real-world constraint
4 of Table 4.2 and its value is 4.
Min consecutive is the minimum number of consecutive events. 3 different
real-world constraints are evaluated with this constraint, and so 3 different num-
berings are required. Constraints 5, 13, and 15 use numberings N1, N2 and N3

respectively. In the example, the value of min consecutive is 2 for all the num-
berings.
Max between is the maximum gap between two non-consecutive events a and
b i.e. b − a ≤ max between. Constraint 6 is evaluated with max between. It
has value 8.
Min between is the minimum gap between two non-consecutive events a and b
i.e. b−a ≥ min between. For Constraint 7 in Table 4.2 the value of min between
is 2 and the numbering is N1. In Table 4.4 a list of all the numbering constraints
for each of the soft constraints introduced in Section 2.4, is presented.

4.2.3 Counters

A counter is a variable that is initiated at the beginning of the evaluation and
changes during the procedure in order to calculate the constraint violations.
Some real-world constraints can be handled with a single counter, for others a
counter array is required. The counters will be adjusted during the course of
the evaluation and checked against the values of the constraints. The real-world
constraints described in Section 2.4 can be evaluated using not more than 8
different constraint types. The counters are: total, consecutive, pert, and last;
respectively representing the total number of events for the numbering, the
number of consecutive events, the number of events per value in the numbering
and the number of the last evaluated event. The pert counters are used to count
certain scheduling features for different time periods (e.g. count night shifts in
weekends). Among the real-world constraints in Table 4.2, only the 7th uses
max pert as a constraint. For every value of the numbering N1, max pert is set
to 1.
The constraints introduced above can all be evaluated by one single algorithm.
In Section 4.3 we demonstrate, using the schedule of Fig. 4.1 and the real-world
constraints presented in Table 4.3 as an example, how the evaluation approach
is implemented.

4.2.4 Cost parameters

The evaluation function is completely modifiable. The approach allows for the
establishment of weight factors adapted to the needs of the schedulers. Any
violation of a constraint will contribute to the overall value of the cost function
in proportion to the weight factor.
In the evaluation approach, weight factors are denoted by the term cost followed
by the type of the numbering constraint as defined in Section 4.2.1. For the
demonstration, all cost parameters for the real-world constraints of Table 4.2
(denoted by C) are set to 1, as presented in the right part of Table 4.3.
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Table 4.4: Numbering constraints used for the evaluation of the soft constraints
in ANROM (in column RWC)

130



4.2.5 Changing work regulation or skill categories

During the planning period, the work regulation or skill category of personnel
members is not necessarily constant. People can, for example, change from
full time to part time contracts, at a certain date in the middle of the plan-
ning period. We introduce wp,d for the work regulation of person p at day d
(1 ≤ d ≤ D). The possible change of work regulations implies that the con-
straints to be evaluated change abruptly. The user of ANROM still wants to
know exactly when violations of constraints happen and therefore we have in-
troduced a ‘split’ evaluation, in which the constraint values at the end of the
first work contract provide the input for the constraints of the second one. The
idea is similar to the procedure presented in Fig. 4.5, where the impact of a pre-
viously scheduled planning period on the current evaluation is explained. When
considering the previous planning period, however, the initial values have to be
calculated only once, while in this case, the schedule changes constantly and so
do the constraint values.
The case in which a person receives promotion or changes his/her skill cate-
gory can be treated equally. Also, the set of alternative skill categories can
be updated within the planning period. The simplest situation occurs when a
personnel member acquires or looses an alternative skill class because this will
only affect one constraint. For every person p, qp,d denotes the skill category,
and QAp,d denotes the set of alternative skill categories at day d (1 ≤ d ≤ D).
As is explained in Section 2.2, the subscript d is dropped in the problem de-
scription whenever a person has an unchanged work regulation, skill category
and set of alternative skills during the entire planning period.

4.2.6 Evaluation mechanism

Every personal schedule is evaluated separately. The procedure can be presented
schematically as in Fig. 4.4. An evaluation starts with the initialisation of the
numbering counters, for which the schedule of the previous planning period is
used. We call previousp the personal schedule of the previous planning period
for person p.

The initialisation procedure is described in Fig. 4.5. The start values
are only important for the constraint types max consecutive, min consecutive,
max between and min between. After the initialisation phase, the evaluation
will go from one event to another adjusting the counters for all the number-
ings. The method is schematically presented in Fig. 4.6. Suppose the number
corresponding to the event is n (different from U) then the value of total will
be increased by 1, as will the value of pert[n]. Depending on the relationship
between n and the number of the last event encountered, either consecutive will
be increased by 1 or an intermediate evaluation of the ‘between’ and ‘consecu-
tive’ counters will be performed. The details of this intermediate evaluation are
presented in Fig. 4.6. When the evaluation has reached the last event in the
planning period, a final evaluation of the constraints is required (Fig. 4.7). This
provides the values of all the violations of the constraints for the schedule. Since
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Copy the start values (Fig. 4.5) into the numberings.

Find first element e of AU belonging to Eschedulep .

DO

- Update all the numbering counters in the intermediate evaluation
(Fig. 4.6).

- Find next element e of AU belonging to Eschedulep .

WHILE the end of the solution is not reached.

Perform a final evaluation of all numbering constraints (Fig. 4.7).

Communicate the results to an output device.

Figure 4.4: Overview of the evaluation of a schedule

the violation values are stored in appropriate data structures, called penalty x
where x is one of the numbering constraints (see Fig. 4.7), the quality of the
schedule in terms of each particular constraint can easily be traced back. This
approach reduces the difficulty of defining proper cost parameters considerably
because the impact of changes to the parameters is immediately visible in the
value of all the constraints’ violations. In Section 4.3 the whole procedure is
executed on a particular personal schedule from the example in Fig. 4.1.

4.3 Example

4.3.1 Demonstration of the method

In this section, we demonstrate how the soft constraints from Section 2.4 are
formulated and evaluated using this approach. All the data is presented in Ta-
bles 4.1 to 4.3 in Section 4.2. We will follow the entire evaluation procedure
of Fig. 4.4 for two different personnel members. The results for these people
are presented in Tables 4.5 and 4.6. The left part of the table shows the initial
values for the counters. The values can be stored in memory since they will
not change when evaluating new solutions. Some counters in the numbering
do not reflect any real-world constraints in this particular example (see empty
fields in Table 4.3). They hardly affect the evaluation method; their impact on
calculation time and memory is very low indeed. For each numbering, only one
value for each counter and penalty is stored in the memory.
In the left part of the tables, the initial values for the counters are given. They
need not be recalculated when the evaluation of another than the current sched-
ule is required. From left to right in the table, the chronological updating of
the counters is illustrated. Due to the different number of assignments to the
personnel members, there is a different number of events in the numbering eval-
uation. Note that the values of the counters can change each time a new event
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Table 4.5: Evaluation procedure for 1st person’s schedule (P1)
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FOR i=1,. . . ,I (I is the total number of numberings)

numbering initialised=False

consecutive=0

last nr=Ni(t); t: the assignment unit for the smallest value of Ni

max nr=Ni(t); t: the assignment unit for the highest value of Ni

Find last element e of AU belonging to Epreviousp

DO

nr = Ni(e)

nr = nr −max nr − 1

IF (nr 6= U)

IF (nr = last nr − 1)

consecutive = consecutive + 1

ELSE IF (nr < last nr − 1)

numbering initialised=True

last nr=nr

Find previous element e of AU belonging to Epreviousp .

WHILE (¬numbering initialised)

i=i+1
Save the results.

Figure 4.5: Pseudo code for the initialisation algorithm

is found. The 2 personal solutions we choose for this explanation (P1 and P4)
consist of 5 assignments (events) in the planning period. For P1, no penalty
is created during the intermediate evaluation phase (see Fig. 4.6). After the
last event was found, the evaluation goes to the final evaluation phase of the
algorithm (see Fig. 4.7). In this part of the algorithm, a penalty is created for
the max consecutive constraint in numbering N1 and one for min consecutive
in N2. Translating the results back into feedback for the planners, the penalties
for P1 indicate that the maximum number of assignments on consecutive days
is violated with three. In addition, the number of consecutive night shifts is one
less than required.
Following the evaluation for the P4 solution step by step, the second event al-
ready creates a penalty in the intermediate evaluation phase of Fig. 4.6. The
min between constraint of numbering N1 is violated when going from event 1
(where the corresponding number is 0) to event 2 (the corresponding number
is 2). Since the (nr = last nr + 1) condition of Fig. 4.6 is not fulfilled, the
intermediate evaluations are executed. One extra violation occurs during the
final evaluation because the min consecutive constraint of N2 is violated. In
terms of real-world constraints, this schedule violates the minimum number of
consecutive free days with one and the constraint on scheduling complete week-
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FOR i=1,. . . ,I

nr = Ni(e)

IF (nr 6= U)

total = total + 1

IF (nr = last nr + 1)

consecutive = consecutive + 1

ELSE IF (nr > last nr + 1)

IF (consecutive < min consecutive)

penalty min consecutive = penalty min consecutive +
cost min consecutive ∗ (min consecutive− consecutive)

IF (consecutive > max consecutive)

penalty max consecutive = penalty max consecutive +
cost max consecutive ∗ (max consecutive− consecutive)

IF (nr − last nr − 1 < min between)

penalty min between = penalty min between +
cost min between ∗ (min between− (nr − last nr − 1))

IF (nr − last nr − 1 > max between)

penalty max between = penalty max between +
cost max between ∗ ((nr − last nr − 1)−max between)

consecutive = 1

pert[nr] = pert[nr] + 1

last nr = nr

i=i+1

Figure 4.6: Pseudo code for the intermediate evaluation

ends.
This explanatory feedback is especially interesting for practical use when the re-
sult of calculations is presented to the planners in practice. Considering the high
number of implemented soft constraints in ANROM (Section 2.4), it is nearly
impossible to have an estimation of the quality of a schedule on sight. The
detailed interpretation enabled by this modular evaluation approach is essential
for the practical use of the model.

4.3.2 Real-world issues

The following figures give an idea of the importance of a quick evaluation scheme
for the solutions of the nurse rostering problem tackled with ANROM. In a
hospital, all wards (the number of wards can be hundreds) have access to the
planning system. A modest ward consists of 20 people, has 6 different shift types
and about 30 different soft constraints per personal schedule. The length of the
most encountered planning period is 4 weeks. One iteration in the evolutionary
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Table 4.6: Evaluation procedure for 4th person’s schedule (P4)

136



FOR i=1,. . . ,I

IF (total > max total)

penalty max total =
penalty max total + cost max total ∗ (total−max total)

IF (total < min total)

penalty min total =
penalty min total + cost min total ∗ (min total− total)

IF (consecutive > max consecutive)

penalty max consecutive = penalty max consecutive +
cost max consecutive ∗ (consecutive−max consecutive)

IF (consecutive < min consecutive)

penalty min consecutive = penalty min consecutive +
cost min consecutive ∗ (min consecutive− consecutive)

∀t ξ Ni maps an event to t

IF (pert[t] > max pert[t])

penalty max pert =
penalty max pert + cost max pert ∗ (pert[t]−max pert[t])

IF (pert[t] < min pert[t])

penalty min pert =
penalty min pert + cost min pert ∗ (min pert[t]− pert[t])

IF (Ni(1) + Ni(AUNi
)−Ni(last event) > max between

penalty max between = penalty max between + cost max between ∗
(Ni(1) + Ni(AUNi

)−Ni(last event)−max between)

i=i+1

Figure 4.7: Pseudo code for the final evaluation of the algorithm

algorithms described in Chapter 7-9 requires approximately 100 evaluations of
the cost function. On an IBM RS6000, it takes about one minute to perform
300 iterations.
The evaluation approach introduced in this chapter is perfectly suitable for
personnel scheduling problems (such as those presented in Section 3.4) and even
more generally, for other timetabling and scheduling problems such as (Burke
et al. [42]) and (Paechter et al. [167]), especially when evolutionary algorithms
are being applied.
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4.4 Conclusion

The new evaluation approach for the nurse rostering problem has proven to be
very effective. It makes use of a simple evaluation function, independent of the
number and character of the constraints imposed on the system. Although the
problem is complex, the current approach enables a fast evaluation of solutions.
This is crucial for the high number of cycles that is typical for meta-heuristic
algorithms.
We introduced the concept of numberings, which form a generic way of evalu-
ating constraints. They also provide a very structural technique for modifying
existing constraints and for handling new constraints. The modular nature of
the approach allows the evaluation method to provide some feedback for the
planners and thus assist with the interpretation of the quality of a schedule.
This novel evaluation approach is also applicable to other application domains.
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Chapter 5

Planning Procedures

5.1 Introduction

Before describing meta-heuristic approaches to nurse rostering problems, we
introduce a few pre- and post-planning heuristics, which can be combined with
the algorithms of Chapter 7-10. They are presented as separate planning options
in order to isolate the meta-heuristics from typical objectives when the ANROM
model is applied in practice. Fig. 5.1 schematically demonstrates the order in
which these planning procedures (presented in bold) appear in the total planning
process. Experiments with real-world data revealed the benefit of dividing the
rostering problem in sub-problems and thus, we opted in ANROM for executing
all the planning procedures per skill category. The large box in Fig. 5.1 indicates
which part of the solution framework is executed per group of people belonging
to the same skill category. The meta-heuristics are not specified in this figure
but any search algorithm maintaining the coverage can be plugged in. Boxes
presented on the same level denote exclusive options, e.g. ‘accept’ and ‘repair’
when the consistency check discovers infeasibilities.

Nearly all the data in the nurse scheduling model ANROM are modifiable.
This enables a large number of very diverse teams to cover the hospital needs,
while the system offers a general approach to solve the problems. However, a
drawback in practice is the danger of defining the problem in such a way that
it causes difficulties for the algorithms to find good quality or even feasible so-
lutions. A few modules that have been built to especially overcome particular
problems, are also introduced in this chapter.
The relaxation procedures introduced in this chapter are the subject of the
following paper: P. De Causmaecker and G. Vanden Berghe: Relaxation of
Coverage Constraints in Hospital Personnel Rostering, accepted for publication
in Proceedings of the 4th International Conference on Practice and Theory of
Automated Timetabling, Gent, 2002 (De Causmaecker and Vanden Berghe [78]).
In Section 5.2, a consistency check algorithm for assisting the planner in repair-
ing some infeasibilities in the data is introduced. Certain circumstances require
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Figure 5.1: Overview of the solution framework
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a reduced search space (Section 5.3). It is the case when a previously gener-
ated schedule can be partly re-used. The possible options for creating an initial
schedule are explained in Section 5.4. In Section 5.5, we explain how the prob-
lem can be divided into sub problems which are related to the skill categories.
The large solution space can be split into smaller regions which are not neces-
sarily completely disjunctive. A number of strategies of which some are applied
after the search heuristics have ended, are introduced in Section 5.6. Finally, in
Section 5.7, we indicate how the stop criteria are adjustable to widely varying
problems.

5.2 Consistency check on available people

When the hard constraints are so strict that no feasible solution exists, planners
can opt to relax them. The planning system is not developed for handling
infeasible problems. In most cases, the hard constraints are so strong that it is
obvious, after a preliminary check, that some of the soft constraints cannot be
satisfied.
The following situation, in which a ward consists of 10 people, is a simple
example of how we can calculate that the number of people will not be sufficient
to satisfy the personnel required, where we might add inconsistentq,t (see lower)
to the number instead. Suppose that 10 people are available on a particular day,
and that the staff who are not working according to a predefined pattern have
special requests:

- 2 ask for a day off (Constraint 24)
- 1 person asks to work the late shift (Constraint 26).

The patterns for the other staff on that day are as follows:

- 2 people have a day off (Constraint 22, PAT-6)
- 2 people work an early shift (Constraint 22, PAT-2)
- 2 people work a night shift (Constraint 22, PAT-2).

Suppose 4 early shifts are required on the day in question. Since, from
the 10 people available, 7 are already planned for other things than an early
shift, the soft constraints above will certainly be violated when satisfying the
hard constraints. However, when accepting the suggested changes for the hard
constraints by the consistency check algorithm (‘repair’ in Fig. 5.1), the hard
constraint for 4 early shifts that day can be relaxed to 3, allowing all these soft
constraints to be satisfied.
In order not to expect too much insight from the hospital planners who set up
the data, a simple consistency check is performed before the planning starts. In
this pre-planning process, the number of available people of a certain skill cat-
egory is compared with the number of requested people for that skill category
at any time during the planning period. Depending on the formulation of the
personnel demands (see Section 2.3.3), the algorithm checks shift types or time
intervals.
Apart from an obvious check on the hard constraints, the users demanded an
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extra check on some ‘precedence’ soft constraints, namely on Constraint 22
(patterns), 24, 25 (personal requests for days and shifts off), and 26 (requested
shift assignments). Initially, time slots which are not available for assignments
of shifts for a skill category are presented in Fig. 5.2. A clear distinction be-
tween hard and soft constraints is made in the figure. The algorithm for shift
type personnel requirements is schematically presented in Fig. 5.3. The con-
sistency check respects the planning order of the skill categories. For every
personnel member, a list of available time slots (shift types or time intervals)
is constructed. The personnel requirements are reduced with the number of re-
quested assignments (Constraint 26) or requested shifts in the patterns (building
blocks PAT-1 and PAT-2 of Constraint 22).
In Fig. 5.3, the term requirements is used instead of the more specific options
minimum or preferred personnel requirements. We explain in Section 5.6 how
the hard coverage constraints for the scheduling algorithm are derived from the
personnel requirements and the planning options.
Some assignments cannot be removed by the scheduling algorithms (see Section
5.3). The variable occupied has been introduced in the algorithm to keep track
of the areas in the schedule that are not free for assignments. All the free days
in patterns (type PAT-5) render the corresponding days in the schedule occu-
pied. When estimating the number of assignments in a schedule, the algorithm
starts with calculating all the requested shifts (Constraint 26 for the considered
assignment unit). Patterns (Constraint 22), in which a type PAT-2 for the shift
type corresponding with the day and assignment unit, are also added to the
assignments. In all these cases, we set occupiedp,t equal to 1, for all the assign-
ment units t of the day on which the imaginary assignment was made. If, for
a certain assignment unit t, the assignments already exceed the requirements,
the value inconsistentq,t is set equal to the excess.
In the other case, the algorithm searches positions in the schedule where extra
assignments can be made. For all the time units on which the assignments are
less than the requirements, we try to add shifts to unoccupied schedule posi-
tions with a pattern type PAT-1, or with PAT-2 if it corresponds to the duration
of st. All the assignments in this step set the value of occupiedp,t equal to 1,
on the corresponding days. When there is still an excess of requirements, the
algorithm continues by assigning the shifts to personal schedules that are still
unoccupied on the particular day. If there are not enough such schedules, the
value inconsistentq,t equals the number of assignments minus the number of
requirements.
Blocking the entire day on which an assignment is made is often more strict than
necessary. However, in real-world situations, it rarely occurs that a personnel
member in healthcare is assigned to more than one shift per day. We found it
better to identify such problems as inconsistent. Manual planners are free to
accept or ignore the suggested modifications. The more flexibility the algorithm
allows for doing the preliminary assignments, the more accurate the diagnosis
will be. In the algorithms implemented for solving ANROM, alternative skill
categories are also taken into account. Assignments for alternative qualifica-
tions can often help to satisfy Constraint 22 and 26 if the problem would be
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∀q, (1 ≤ q ≤ Q) :
∀p, (1 ≤ p ≤ P ), ∀t, (1 ≤ t ≤ T ) :

w = wp

pa = patw
IF (pa 6= 0)



d = t/S + 1
st = start patternp

l = pattern lengthpa

pa dayd = pattern daypa,(1+l−st)/l∗7+d

pa detaild = pattern detailpa,(1+l−st)/l∗7+d

schedulep,t is NOT available for skill category q IF

Hard Constraints
{p, t} 6∈ search space
schedulep,t 6= 0
qp 6= q ∧ q 6∈ QAp

Soft Constraints
day offp,t/S+1 = 1
shift offp,t = 1
|{u ξ 1 ≤ u ≤ S ∧ u 6= st ∧ required assignmentp,(d−1)∗S+u = 1}| 6= 0
pa 6= 0 ∧



(pa dayd = PAT-2 ∧ pa detaild 6= st)∨
(pa dayd = PAT-3 ∧ (|shift durationst − pa detaild| > 15))∨
(pa dayd = PAT-5 ∨ pa dayd = PAT-6)∨
(pa dayd = PAT-7 ∧ st ∈ pa detaild)

Figure 5.2: Unavailable timeslots
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∀k, (1 ≤ k ≤ Q) :

q = QOk

∀p, (1 ≤ p ≤ P ), ∀t, (1 ≤ t ≤ T ) :
occupiedp,t = 1 IF



day offp,t/S+1 = 1
shift offp,t = 1
|{u ξ (S ∗ (t/S − 1) + 1 ≤ u ≤ S ∗ t/S) ∧ required assignmentp,u 6= 0}|
∨ (pa 6= 0 ∧ (pa dayd = PAT-2 ∨ pa dayd = PAT-5
∨ (pa dayd = PAT-6 ∧ pa detaild = st)
∨ pa dayd = PAT-7))

occupiedp,d = 0 ELSE

∀t, ((start− 1) ∗ S + 1 ≤ t ≤ end ∗ S) :
assignedq,t = |{p ξ 1 ≤ p ≤ P ∧ automaticp 6= 1
∧ (schedulep,t = q ∨ schedulep,t = pref + q)}|
+|{p ξ 1 ≤ p ≤ P ∧ {p, t} ∈ search spaceq

∧ ((required assignmentp,t 6= 0) ∨ (pa 6= 0 ∧
pa dayd = PAT-2 ∧ st = pa detaild))}|

with



d = t/S + 1
w = wp

pa = patw
st = start patternp

l = pattern lengthpa

pa dayd = pattern daypa,(1+l−st)/l∗7+d

pa detaild = pattern detailpa,(1+l−st)/l∗7+d

. . .

Figure 5.3: Schematic procedure for the consistency check on the available per-
sonnel in the case of shift type personnel requirements (1)
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. . .

IF (assignedq,t > requirementsq,t)
inconsistentq,t = assignedq,t − requirementsq,t

ELSE
p = 1
WHILE(assignedq,t < requirementsq,t ∧ p ≤ P )



IF {p, t} ∈ search spaceq ∧ occupiedp,t = 0 :
IF (pa ∧ pa dayd = PAT-3∧

|pa detaild − shift durationst | ≤ 15)

∀u, (S ∗ (t/S) + 1 ≤ u ≤ S ∗ (t/S + 1)) :
{

occupiedq,t = 1
assignedq,t + 1

p + 1
p = 1
WHILE(assignedq,t < requirementsq,t ∧ p ≤ P )



IF {p, t} ∈ search spaceq ∧ occupiedp,t = 0 :
IF (pa ∧ pa dayd = PAT-1)

∀u, (S ∗ (t/S) + 1 ≤ u ≤ S ∗ (t/S + 1)) :
{

occupiedq,t = 1
assignedq,t + 1

p + 1
p = 1
WHILE(assignedq,t < requirementsq,t ∧ p ≤ P )



IF {p, t} ∈ search spaceq ∧ occupiedp,t = 0 :

∀u, (S ∗ (t/S) + 1 ≤ u ≤ S ∗ (t/S + 1)) :
{

occupiedq,t = 1
assignedq,t + 1

p + 1

IF (assignedq,t < requirementsq,t)
inconsistentq,t = assignedq,t − requirementsq,t

Figure 5.4: Schematic procedure for the consistency check on the available per-
sonnel in the case of shift type personnel requirements (2)
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inconsistent for the main skill category.
The scenarios are equivalent for all the possible personnel requirement formula-
tions (RM , RP , RIM , and RIP ).
Since the system does not handle infeasible problems, the algorithm always
reduces the personnel requirements if an unavoidable violation is detected.
As the user starts a planning, the algorithm informs about inconsistencies in
the personnel demands. The inconsistencies for minimum and preferred shift
type requirements are represented in the structures inconsistentRMq,t and
inconsistentRPq,t. For floating requirements, they are correspondingly denoted
by inconsistentRIMq,t and inconsistentRIPq,t. The values are 0 when the re-
quirements cause no inconsistency. A value larger than 0 indicates that the
requirements should be increased by that value, a negative number requires a
corresponding decrease. Either the user can accept the remedy by relaxing the
personnel requirements when necessary or he can deliberately choose to violate
the soft constraints that were checked. Both options are demonstrated in the
overview of Fig. 5.1.

5.3 Freezing parts of the Schedule

The working area of rostering algorithms can be restricted for several reasons.
In the most common approach, all the personnel members of a ward have to be
scheduled from the first till the last day of the planning period. We distinguish
3 different reasons to limit the search space. They are explained in the following
sections.

5.3.1 People who must not be scheduled automatically

Some hospital situations require an interactive way of scheduling certain
personnel members. It should be possible to generate the schedule of particular
nurses by hand. In order to maintain these personal schedules, it is forbidden
for the rostering algorithms to add or remove any assignment. Each personnel
member whose schedule must not be planned automatically have value 0
for automaticp. Frozen personal schedules are evaluated against the soft
constraints in the same way as the schedules of personnel members who are
part of the automatic planning process. Also, frozen personal schedules do not
relax the hard constraints.
Schedules with frozen areas have a restricted search space. The calculation
time is generally less than for the corresponding full schedules. On the other
hand, the frozen areas constrain the solution space and make it harder to find a
good quality solution. With a rigid assignment of shifts and free days to parts
of the schedule that are frozen for the planning algorithms, it might be much
more difficult to meet the personnel requirements in a good quality solution
with the remaining personnel members and within the remaining time interval.
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5.3.2 Freeze parts of personal schedules

The start and end date of personal contracts do not necessarily coincide with the
start and end times of the planning period. This option provides the possibility
for allocating personnel temporarily in other wards. In ANROM, the minimum
period during which people are allocated to a ward is one day. On that day,
shift assignments can be made. The value of employedp,d is 0 if person p is not
employed in the ward at day d, otherwise it is 1.
Soft constraints are always evaluated over the entire planning period. For peo-
ple who are not employed during the entire planning period, an adjustment of
the cost function is necessary for certain constraints (e.g. Constraint 3, 8, 11,
etc). For example, the values Ap, AHp, etc (introduced in Section 2.4) take the
time during which the person p is not in the service of the hospital into account.
The activities of personnel members working in other wards are not calculated
when evaluating the hard constraints of the current ward. However, they do
contribute to the evaluation of the cost function.
In Section 4.2.5, we explained how personnel members can change work regu-
lation and/or skill category within the planning period. A transition from one
work regulation to another does not affect the search space. Neither does a
transition of skill categories change the global search space, but it changes the
search space for the skill categories concerned (see Section 5.5). In order not to
overload the pseudo code of the algorithms in this section, we assume that the
skill categories remain the same within a planning period.

5.3.3 Freeze periods in time

Schedules can be frozen partially in time. In case urgent rescheduling is
required, it is recommended not to disturb already existing personal schedules
drastically. A typical problem in healthcare occurs when a personal member is
not able to perform the assigned shifts, for example during an illness period.
Instead of re-planning the ward with the modified constraints, the personnel
prefer their previously generated schedules to remain unchanged as much as
possible. Generating a schedule from scratch, taking the new situation of
the constraints into account would probably lead to a much better overall
quality in terms of the cost function, but that is not what the personnel
want. Only a few personal schedules will be affected by the replacements
due to the option presented in this section. In ANROM, we modelled a
possibility for freezing one or two time intervals of the schedule. Frozen parts
are restricted to the start and/or the end of the planning period. We denote
the first day of the planning period by start and the last day by end. Whether
or not the hard constraints are satisfied within these frozen parts of the
search space, the rostering algorithms will not add or remove any assignment
in these periods. The scheduled shifts in these periods do contribute to the
evaluation of the cost function, which always looks at the entire planning period.

Fig. 5.5 explains which parts of the schedule belong to the search space of
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the rostering algorithms.

∀p, (1 ≤ p ≤ P ), ∀t, (1 ≤ t ≤ T ) :

{p, t} ∈ search space IF





automaticp = 1
employedp,d = 1
S ∗ (start− 1) + 1 ≤ t ≤ S ∗ end

Figure 5.5: Non-frozen parts of a schedule

5.4 Initialisation

The initialisation of the scheduling algorithm consists of two phases for con-
structing a feasible initial solution. It suffices for a schedule to satisfy all the
hard constraints to be called feasible. In the first phase, the input is loaded
(after an option has been selected, Section 5.4.1). The second phase makes the
schedule feasible.

5.4.1 Input for the initialisation

For practical planning problems three possible strategies are introduced.
- Current schedule

The option starts from the currently available schedule, which can either
be the result of a previous attempt to generate a solution, or the planning
that existed before certain extra restrictions occurred. Very regularly
the rostering does not happen in one go. The hospital planner will often
quickly calculate a schedule to check certain constraints or personal
preferences, after which (by making changes to constraints or personnel
requirements if necessary), a final schedule will be calculated. The
option to take the current schedule as input for the initialisation phase is
especially useful when urgent changes in an existing schedule are required.
In real life this may happen when a personnel member is suddenly ill and
has to be replaced. Of course, this emergency is not supposed to change
the schedule for other people drastically. In many practical occasions,
schedulers applying this option make use of the ‘freezing’ tool (Section
5.3.3).

- Schedule of the previous planning period
This option is useful when the schedule in the previous planning period
is of very high quality and when the constraints on the current and
the previous planning period are similar. It is not recommended to use
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the previous schedule as an input when the number of personnel is not
the same in both periods nor when the planning periods include bank
holidays. We also advice not to select this option when the pattern
constraint has a period different from the planning period for some
personnel members.

- Empty schedule
The simplest input option starts the initialisation from an empty schedule.

Although the two first initial schedule constructors may seem very attractive,
our experiments show that it is not too difficult for the meta-heuristic algo-
rithms to produce schedules of comparable quality starting from a random ini-
tial schedule. Indeed it is often the case that with the two latter initialisations,
the algorithm is already in a local minimum and has problems escaping from it.

5.4.2 Create a feasible solution

Given the entire search space of the ANROM problem, each element of that
search space, called a schedule, corresponds to a potential solution. We call the
schedule feasible when it satisfies all the hard constraints. In order to satisfy the
hard constraints in the initial schedule, an algorithm is used that adds and/or
removes shifts until the personnel requirements (according to the planning op-
tions of Section 5.6) are met. The process takes some of the soft constraints
into account but it is mainly random driven. Users of the software based on
ANROM suggested to force satisfaction of the personal requests for days and
shifts off (Constraint 24 and 25), and satisfaction of the patterns (Constraint
22). These are precisely the constraints that play a role in determining the
consistency of the data (Section 5.2). It seems contradictory to the previously
explained concept of treating the cost function (which sums violations of all the
constraints, Chapter 4) as the only evaluation means. However, even though
the planners can freely set cost parameters, a schedule in which less personal
constraints are violated will often be preferred to better quality schedules (with
respect to the cost function) containing more violations of these particular con-
straints. Fig. 5.7 describes the entire initialisation phase but the procedure will
be explained step by step. The initialisation is always executed per skill cate-
gory. The group of people belonging to the skill category is extended with the
people who have that skill as an alternative qualification. In Fig. 5.6, we demon-
strate how the schedule is divided into sub-schedules that correspond to each
skill category. Some of the personnel members have alternative qualifications
in this simplified example and 1 person even changes skill category during the
planning period. The initialisation algorithm makes a first attempt, only in the
case when the Empty schedule option holds, to satisfy the pattern constraint.
When a pattern requires an obligatory shift, the algorithm assigns a randomly
chosen shift to the corresponding people, provided the assignment never violates
the hard constraint on the number of people required. In order to be general,
we have used a simplified notation requirements (see also Section 5.2) for the
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schedule skill category QO1

P1 P1
P2 P2
P3 P3
P4 P4
P5 P5
P6 P6

skill category QO2

P1
P2

→ P3
P4
P5 alternative
P6

skill category QO3

P1
P2
P3
P4
P5
P6 alternative

Figure 5.6: Example of the division of a schedule into partial schedules that are
solved per skill category. P3 moves from skill category QO2 to QO1 during the
planning period. P5 belongs to QO3 but is also allowed to carry out shifts for
QO2, and P6 belongs to QO1 with alternative qualification QO3.

personnel requirements. The notation does not specify whether it is minimum
or preferred requirements. In Section 5.6, we explain which type of personnel
requirements determine the hard coverage constraints.
In case the shift type is specified (building block PAT-2 of the pattern, Con-
straint 22), the shift will be assigned to the person if there is a shortage in the
schedule for the shift on the particular pattern day. For the 3rd building block,
PAT-3, the algorithm randomly chooses a shift type of the specified duration
(allowing the small deviation of the preset time, i.e. 15’), for which the person-
nel requirements are not yet met.
The algorithm afterwards moves to an iterative phase which stops when the per-
sonnel requirements are fulfilled for every assignment unit or when a maximum
number of attempts to assign randomly is reached. The maximum number of
attempts is function of the number of people who can carry out jobs for the skill
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category. It is called max attempts in Fig. 5.7. In case the number of scheduled
personnel is too low to meet the requirements, the algorithm will assign the
corresponding shift type randomly to a personal schedule, provided it is part of
the search space for that qualification.
Experiments with varying real world problems led to the procedure described
in this section. It turned out to be a very satisfying approach for tackling the
large set of nurse rostering problems occurring in practice.
We will now explain the procedure in detail. The personnel are divided into
groups with equal eagerness for the assignment. In the case where all people
in a group already have an assignment for the shift (either for the currently
scheduled skill category or for another), the assignment fails. The algorithm
stops if a random assignment is possible in a group, that is if a person of the
group has no assignment. If no such person exists, the algorithm moves to the
next group. People can only belong to a group if the considered part of the
schedule (assignment unit) belongs to the search space. The number of groups
for adding assignments is called add max in Fig. 5.7.

ADD–1 All the people having a personal request for the shift corresponding to
the time to be scheduled (Constraint 26) and no assignment yet.

ADD–2 All the people working according to a predefined pattern, for which a
PAT-2 type corresponds to the day and the detail to the shift to be
scheduled, with an empty schedule for that assignment unit.

ADD–3 All the people working according to a predefined pattern, for which a
PAT-3 type corresponds to the day and the detail to the duration of
the shift to be scheduled (+/- the deviation), and an empty schedule
for that assignment unit.

ADD–4 All the people who have the scheduled skill category as main skill cat-
egory and do not have a personal request (with a high importance) for
a day off or shift off at the time to be scheduled (see Constraint 24 and
25), and have an empty schedule for that assignment unit.

ADD–5 All the people who have the skill category as alternative and do not
have a personal request (with a high importance) for a day off or shift
off at the time to be scheduled, and have an empty schedule for that
assignment unit.

ADD–6 All the people who belong to the skill category, have a marked assign-
ment for another skill category that has not been scheduled in this run
(a skill category which is lower in the planning order hierarchy).

ADD–7 All the people who have the skill category as alternative, have a marked
assignment for another skill category that has not been scheduled in this
run (a skill category which is lower in the planning order hierarchy) and
which is different from the main skill category of the particular people.
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ADD–8 All the people who are authorised for the skill category and have an
empty schedule for the shift.

The group ADD-7 is exceptional in that a marked assignment will be removed
in order to enable the assignment that will make the schedule feasible.
An analogous procedure has been developed for removing shifts when a sched-
ule exceeds the requirements for certain shifts. We identify rem max different
groups (see Fig. 5.7). The hierarchy of the groups to which the removal of a
shift is applied is listed below:

REM–1 All the people who have the skill category as alternative and have a
marked (see Section 5.6) assignment for the skill category being sched-
uled.

REM–2 All the people who belong to the skill category and have a marked
assignment for it.

REM–3 All the people who have the skill category as alternative and have an
assignment for the skill category being scheduled.

REM–4 All the people who belong to the skill category and have an assignment
for it.

In Section 5.6, we will explain how the personnel requirements for the initiali-
sation depend on the planning options.

5.5 Planning order of skill categories

Hard constraints must never be violated (see Section 2.3), thus shifts for a skill
category cannot be assigned to unqualified people. In Section 2.3.3, we ex-
plained that personnel requirements are defined per skill category. Each skill
category is scheduled separately.
Dividing the rostering in sub problems reduces the search space. The number
of personnel belonging to each skill category is often considerably smaller than
the entire staff in the ward. The number of shifts to be assigned (whether or
not translated from floating requirements) is also lower.
In case people have the permission to carry out shifts for other than their main
skill category, there are a few difficulties. After the planning for a qualification
has stopped, the algorithm moves on to the next qualification and temporarily
freezes the already assigned shifts. The fixed shifts can hinder the planning
of the following qualifications, especially when they occur in the schedule of a
person who has another main skill category.
Planners can freely arrange the order in which the qualifications must be
planned. We denote the planning order of skill categories by QO. The el-
ements of this list of length Q are the qualification numbers, with QO1 the
qualification to plan first, and QOQ the last one. In Fig. 5.8, the procedure of
planning the shifts for different qualifications in a predefined order, is schemat-
ically presented.
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∀k, (1 ≤ k ≤ Q) :

q = QOk

∀t, (1 ≤ t ≤ T ) :
scheduledq,t = |{p ξ 1 ≤ p ≤ P ∧ (schedulep,t = q ∨ schedulep,t = pref + q)}|

attempt = 0
x = 1

WHILE (scheduledq,t < requirementsq,st,t/S+1 ∧ x ≤ add max)



IF (random p ∈ ADD-x)



schedulep,t = pref + q
scheduledq,t + 1
attempts + 1
IF (attempts = max attempts){

x + 1
attempts = 0

ELSE
x + 1

WHILE (scheduledq,t > requirementsq,st,t/S+1 ∧ x ≤ rem max)



IF (random p ∈ REM-x)



schedulep,t = 0
scheduledq,t − 1
attempts + 1
IF (attempts = max attempts){

x + 1
attempts = 0

ELSE
x + 1

Figure 5.7: Schematic representation of the construction of a feasible schedule
for shift type requirements
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∀q, (1 ≤ q ≤ Q) :
- Make the schedule feasible with respect to the personnel requirements
for QOq (see Section 5.4)

- Execute the planning algorithm within the group of people having
QOq as main or alternative skill, by replacing only assignments in the
schedule which correspond to QOq and pref + QOq

Figure 5.8: Skill categories are scheduled sequentially

Intuitively, many schedulers choose a hierarchical order for the skill categories
(i.e. starting with the head nurse qualification and ending with the cleaners).
It is often beneficial, however, to first plan the most constrained categories or
the qualifications for which it is unavoidable to deploy people with other main
skill categories. Suppose, for example, a ward consisting of one head nurse and
a large group of regular nurses. Imagine that one of the regular nurses is desig-
nated as substitute for head nurses. If there is head nurse presence required on
every day shift during the weekdays, the head nurse has to be replaced whenever
he/she is absent (denoted by Constraint 24 or 25). It is not very difficult, in this
case, to assign the regular nurse to the required duties during the absence of the
head nurse. This is not a problem when the particular regular nurse’s schedule
is still empty at the time the head nurse qualification is being planned. It can be
a problem, however, if the regular nurse cannot replace the head nurse because
there is a duty assigned already for the same assignment unit in the substitute’s
schedule. In Section 2.3, we stated that a person cannot be assigned to the same
shift more than once. This involves that the head nurse will be assigned to the
shift, although there is probably a very severe reason for being absent.

A particular diversification algorithm, which is implemented in the software
system based on ANROM as part of some of the hybrid planning algorithms
which are introduced in later chapters (Fig. 5.9) was especially developed to
avoid such problems. This diversification algorithm only looks at a few soft
constraints (Constraint 22, 24, and 25) for its moves and generally produces a
worse overall solution. The algorithm investigates whether people can take over
shifts assigned on absence days of other personnel members. Nurses who are
absent themselves are not considered. It is the first goal to find a replacement
among the personnel belonging to the skill category of the duty to be moved.
If there is no such person available, people who have the skill category as alter-
native are considered. In a more elaborated version of this algorithm, further
replacements are also considered. The details of this extended algorithm are not
explained in this work but a simple example will demonstrate the aim. Suppose
Nurse A has an assignment to a shift type on an absence day. Let Nurse B be
skilled to carry out that shift. Suppose B has no absence on that particular day
but has an assignment for the same shift type (but for another skill category)
already. An extra step in the algorithm will try to move B’s assignment to a
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∀k, (QOQ ≥ k ≥ 1) :
∀p, t, {p, t} ∈ search space

q = QOk

d = t/S + 1
IF ((schedulep,t = q ∨ schedulep,t = pref + q)∧

(day offp,d = 1 ∨ shift offp,t = 1 ∨ pat dayoffp,t = 1))



found = 0
b = 1
WHILE (found = 0 ∧ b ≤ P )



IF ({b, t} ∈ search space ∧ scheduleb,t = 0 ∧ bq = q ∧ b 6= p
∧ (day offb,d = 1 ∨ shift offb,t = 1 ∨ pat dayoffb,t = 1))




schedulep,t = 0
scheduleb,t = q
found = 1

b + 1
IF (found = 0)
b = 1
WHILE (found = 0 ∧ b ≤ P )



IF (scheduleb,t = 0 ∧ q ∈ bQA

∧ (day offb,d = 1 ∨ shift offb,t = 1 ∨ pat dayoffb,t = 1))



schedulep,t = 0
scheduleb,t = q
found = 1

b + 1

with



pat dayoffx,t = 1 IF (pa 6= 0 ∧ pa dayd = PAT-5 ∨ PAT-6
∨ (PAT-7 ∧ st ∈ pa detaild))

pat dayoffx,t = 0 ELSE
and



w = wx

pa = patw
st = start patternp

l = pattern lengthpa

pa dayd = pattern daypa,(1+l−st)/l∗7+d

pa detaild = pattern detailpa,(1+l−st)/l∗7+d

Figure 5.9: Search algorithm to increase the quality of the schedule in case of
an unfortunate planning order of the skill categories
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third nurse’s schedule, after which A’s assignment can be put in B’s schedule.
This algorithm is not very useful unless it is followed by a proper search algo-
rithm because it does not generally improve the overall quality.
Some real-world situations require rescheduling the personnel members of a sin-
gle skill category. In that case, freezing concerns all the assignments for other
skill categories.

5.6 Coverage Procedures

In practice, the number of required personnel on a certain day is not completely
strict. Experienced planners know very well when it is reasonable to plan more
or less personnel than required. However, because there exist no clear rules for
decisions like this, planners using ANROM can optionally choose among differ-
ent coverage strategies. In Section 2.3.3, we introduced the difference between
minimum and preferred personnel requirements. Any solution with fewer as-
signments than the minimum requirements, or with more than the maximum
requirements, violates the hard constraints.
The framework provides planning options to set the coverage constraints, which
will be hard constraints for the rostering algorithms. It is also possible to allow
a few post-planning algorithms, which can change the coverage after a schedule
has been generated. We will now explain some of these options in more detail.

5.6.1 Minimum - preferred requirements

The hospital scheduler can choose to plan the minimum personnel requirements
or the preferred requirements as hard constraints. During the entire planning
process, the number of planned shifts (be it minimal or preferred) will not change
when applying the meta-heuristics discussed later in this work.
This planning option holds for both shift type and floating requirements.

5.6.2 Plan towards preferred requirements

Instead of strictly setting the hard constraints, this option allows to work with
a range in which the hard constraints are considered satisfied. The algorithm to
organise this option first takes the minimum requirements as hard constraints.
After a result has been calculated by the scheduling algorithms (Chapter 7 -
9), the system searches possibilities for adding shifts to the schedule wherever
this does not involve an extra violation of soft constraints. For every day
on which there is a difference between what is actually scheduled and the
preferred requirements, the system adds a shift to that personal schedule,
which improves the overall quality of the schedule most. Adding a pair of shifts
on consecutive days in a personal schedule is often less harmful than adding
an isolated shift. In the competition for the best candidates to assign extra
shifts to, ‘twin assignments’ are also considered (provided none of the assigned
shifts causes an excess with respect to the preferred personnel requirements of
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scheduledq,t = |{p ξ 1 ≤ p ≤ P ∧ (schedulep,t = q ∨ schedulep,t = pref + q)}|
∀p, (1 ≤ p ≤ P ) : penaltyp = penalty(schedulep)
∀t, (start ∗ (S − 1) + 1 ≤ t ≤ end ∗ S) : extrat = RPq,t − scheduledq,t

extra =
∑

t extrat

stop = 0

WHILE (extra ∧ stop 6= 1)



best = ∞

IF (best ≤ 0)





schedulebestp,bestt
= pref + q

extrabestt
− 1

IF (bestt2 6= 0)
{

schedulebestp,bestt2 = pref + q
extrabestt2 − 1

ELSE stop = 1

Figure 5.10: Post-planning algorithm to satisfy the preferred shift type person-
nel requirements better for skill category q

the schedule). Since the complexity of finding optimal ‘twins’ to add to the
schedule is exponential, we reduced the search to the selection of the best set
of equal shift types on two consecutive days for a personal schedule. The entire
procedure is illustrated in Fig. 5.10.

For floating personnel requirements, a slightly different approach is needed.
Instead of searching the best candidate to assign an extra shift or an extra pair
of shifts to, we have to add switches from a shift to a longer shift, from a pair
of shifts to a single shift with a longer entire duration or from a single shift to
a pair of shifts that last longer (see also Chapter 6).

The system allows even for a more flexible approach by providing a threshold
value for the individual cost function value: thresholdcost. In this case, the
algorithm will add extra assignments, whenever the personal cost function
value does not exceed that threshold.
Every shift type that is added to the schedule after the planning algorithm has
stopped, will be marked. The location of such marked shifts in the schedule
is the result of a post-processing algorithm, while the other shift types have
been assigned by search algorithms which look at the entire search space.
It is recommended during some planning activities to remember which shift
removals will harm the schedule less. We explained the importance of the
marking in Section 5.4.2.
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5.6.3 Adding hours

The option to add shifts to people with undertime does not necessarily respect
the (hard) preferred personnel coverage constraints which hold during the course
of the planning. It is a pure post-planning option. Once a schedule has been
calculated, an algorithm searches for every personal schedule the best point in
time to assign extra shifts. The constraint holds that a shift cannot be added
unless such shift occurs already in the personnel requirements for that day and
skill category.
By default, nothing will happen if it would increase the value of the cost function.
As explained in the previous option, there is also a possibility for setting a
threshold: thresholdhours. In this case, the threshold determines the maximum
number of excess hours (overtime). When a personal schedule has reached this
number, the algorithm does not add extra shifts. Just like in the previous
section, where shifts are added towards the preferred requirements, the extra
shifts are marked. The procedure is explained in Fig. 5.11. Since it can be
better in terms of the cost function to add a pair of shift types on consecutive
days, the possibility is also evaluated when searching for the best time to assign
extra shifts.

5.7 Stop Criterion

When applying the meta-heuristics introduced in the Chapters 7-9, a stop cri-
terion is required. The tabu search algorithms of Chapter 8 have been in use
in hospitals for quite some years now and the stop criteria for these have been
fine tuned all the time. This experience forms the basis for the stop criteria of
the algorithms introduced in the other sections.
The search space per skill category depends largely on the number of people in
that group (of which the schedule is not frozen), the length of the non frozen
part of the planning period and the total number of available shift types to be
scheduled. Depending on how good a schedule is supposed to be, the planners
can choose among a number of options, thus combining different hybrid algo-
rithms. For every single algorithm used in the hybrid approaches, a separate
stop criterion will be applied. A steepest descent algorithm will stop as soon as
there exists no more improvement in the neighbourhood. Some diversification
and greedy algorithms (introduced in Section 8.3.6) stop after the first iteration
without improvement.
The stop criteria for the specific meta-heuristics will be discussed when intro-
ducing the algorithms in Chapter 7-9.
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∀p, (1 ≤ p ≤ P ) :
penaltyp = penalty(schedulep)
stop = 0
w = wp

best = ∞
hours = previous hoursw

+|{t ξ 1 ≤ t ≤ T ∧ schedulep,t 6= 0}| ∗ shift duration st

WHILE (hours < max hoursw −AHp ∧ stop 6= 0)



best = ∞
∀t, (start ∗ (S − 1) + 1 ≤ t ≤ end ∗ S) :



IF (RPq,t > 0 ∧ {p, t} ∈ search spaceq ∧ schedulep,t = 0
∧ penaltyp,C8 < thresholdhours + shift durationst

)



schedulep,t = pref + q
new penalty + p = penalty(schedulep)
schedulep,t = 0
IF (penaltyp − new penaltyp ≤ best)



bestp = p
bestt = t
bestt2 = 0
best = penaltyp − new penaltyp

IF (RPq,t > 0 ∧RPq,t+S ∧ {p, t} ∈ search spaceq ∧ schedulep,t = 0
∧ {p, t + S} ∈ search spaceq ∧ schedulep,t+S = 0
∧ (penaltyp,C8 < thresholdhours + 2 ∗ shift durationst))




schedulep,t = pref + q
schedulep,t+S = pref + q
new penalty + p = penalty(schedulep)
schedulep,t = 0
schedulep,t+S = 0
IF (penaltyp − new penaltyp ≤ best)



bestt = t
bestt2 = t + S
best = penaltyp − new penaltyp

IF (best ≤ 0)





schedulep,bestt = pref + q
hours + shift durationst

IF (bestt2 6= 0)
{

schedulep,bestt2 = pref + q
hours + shift durationst

ELSE stop = 1

Figure 5.11: Post-planning algorithm to decrease undertime for people with skill
category q
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Chapter 6

Floating Personnel
Requirements

6.1 Introduction

The motivation for the alternative way of modelling personnel requirements
has been provided by hospital administrators/schedulers who apply the nurse
rostering software based on ANROM (see Section 2.1) in practice. This
approach is a direct response to the requirements and demands of difficult real
world scheduling problems. The presented model aspires to accommodate the
customs and practices employed by the personnel planners in hospitals and
allows for a high flexibility in constructing the timetables.
This new formulation was not developed until some of the algorithms intro-
duced in PART III of this thesis were applied in practice. However, we decided
to describe these floating personnel requirements model in PART II because
it is now available as an alternative path in the solution framework. All the
meta-heuristics of PART III are applicable both on the traditional shift type
requirements and on the new floating requirements model.

Hospitals define a high number of shift types that match the typical activi-
ties of the institution and allow for several kinds of part-time employment. The
personnel requirements are nearly always expressed as a number of people re-
quired per shift type or even per day. We tackle a much more flexible approach
in this chapter. Not only is the number of possible shift types higher than in
most problems encountered, but also the approach to compose a schedule with
different combinations of shift types is (as far as the author is aware) unique.

The meta-heuristics presented in Chapter 7-9 depend very much on cate-
gorising staff into certain shift types. However, the planners in practice often
find it hard to translate the real world situation generated by their daily staff
complement into rigorous staff duty categories. The approach described in
this chapter concentrates on an advanced representation of the daily personnel
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requirements of healthcare institutions. Instead of formulating the requirements
as a number of personnel needed per skill category and per shift type for each
day of the planning period, we now introduce ‘floating’ personnel requirements
(Section 2.3.3). Floating personnel requirements allow for the representation of
the personnel requirements per day in terms of time intervals, i.e. start and
end times of personnel attendance. This formulation enables the provision of
a greater choice of shift work and part time work and reduces the amount of
unproductive time because it enables the shifts to be split and combined. We
present an algorithmic approach to handle this new formulation. We also set
up a series of experiments indicating that, not only does this approach take
into account the requests and requirements of hospital schedulers, but it also
generates higher quality schedules when compared with shift type approaches.
The obtained results are better in the sense that various specific real world soft
constraints (e.g. Constraint 11, 12, 13, 17, etc) can be satisfied by scheduling
appropriate shift type combinations whereas in the shift type approach fixed
shift types restrict the solution space.

In Section 6.2, a few examples of similar coverage problems in literature
are presented. Section 6.3 elaborates on the problem definition, starting from
the real world hospital practices that induced the development of the floating
personnel requirements presented in this chapter. In Section 6.4, we introduce
a two-step approach to construct a shift type schedule from time based per-
sonnel requirements. The method preserves the desirable features of the meta-
heuristics which are explained in PART III of this thesis. Examples illustrating
the working of the algorithms are given in Section 6.5. In Section 6.6, we discuss
the impact of the floating requirements method on the resulting timetable. A
comparison with the shift type personnel requirements model is presented in
Section 6.7.

6.2 Coverage Constraints

No matter how the coverage constraints are formulated (shift type requirements
or floating requirements, Section 2.3.3), the search algorithms do not violate
these constraints during the iterations. Coverage remains a hard constraint.
In Table 3.8 of the literature review, a brief overview of possible shift types for
the coverage constraints is presented. Many automatic scheduling systems still
work with three strictly defined shifts. More recent approaches, of which some
are applied in practice, provide user definable shift definitions (e.g. Chiarandini
et al. [58], Kawanaka et al. [126], Meisels et al. [138], Meisels and Lusternik
[140], Meyer auf’m Hofe [142, 144], Schaerf and Meisels [182], etc). Apart from
ANROM, there are very few researchers who allow a time interval formulation
of coverage constraints.
Bailey and Field [9] use 12-hour scheduling periods which can start and end at
any time of the day. By applying a linear program, they identify shift config-
urations which minimise costs. Their findings are that the 12-hour ‘flexshift’
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concept reduces idle time considerably compared to other approaches in which
8-hour shifts are used. For Isken and Hancock [121], coverage is a soft con-
straint. Under- and overstaffing are penalised. The size of tackled problems is
very small compared to what is carried out in ANROM (Chapter 2). Brusco
and Jacobs [30] allow flexible start and end times for the work but they are
more concerned with staffing than short-term rostering. Cyclical shift-days off
schedules are generated over a limited planning horizon. Tanomaru [201] allows
flexible start and end times for the shifts. Coverage is not a hard constraint
in [201], where even the number of personnel is not fixed. The dimensions of
the tackled problems are very low compared to the problem size of ANROM.
Tanomaru schedules periods of one week, and provides personal schedules in
which 7 pairs of (start and end) times are presented.
The problem definition in this chapter is the result of feedback from the users
of the nurse rostering package in several Belgian hospitals.

6.3 Personnel Requirements in Time Intervals:
Floating Requirements

Personnel requirements express the number of personnel of each skill category
needed to staff the ward. They are set by management and are usually expressed
in terms of the minimum number of personnel needed and the preferred number
of personnel available. The minimum number of personnel strictly meets the
personnel needed to carry out all the work while the preferred number of person-
nel will ameliorate the atmosphere by reducing the workload of staff members
(see also Section 5.6). The requirements can be formulated either in terms of
shift types (which is the traditional approach used in the literature) or in terms
of begin and end times. The personnel requirements can depend on the time
of the day, the day of the week, etc. For a more formal description of person-
nel requirements, we refer to Section 2.3.3. Table 2.2 presents an example of
personnel requirements on a certain day of a planning period (expressed as a
number of required shift types per skill category). If we deduce the personnel

Shift types From Till
Short Early 7:00 13:00
Early 7:00 15:00
Day 8:00 17:00
Late 13:00 21:00
Short Late 15:00 21:00
Night 21:00 7:00

Table 6.1: Set of shift types; Dataset 1

requirements from the shift types it is possible to allocate several kinds of part-
time employment over the shift period. We call this new representation ‘floating
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personnel requirements’.
Floating requirements are defined on a time interval basis. They are expressed
as a varying number of personnel needed for each skill category during the day
(see Section 2.3.3). The main goal of the approach described in this thesis is
to construct a timetable covering all the personnel requirements, only using the
shift types applied in the hospital. In practice, the time intervals will not always
correspond exactly to the start and end time of actual shift types.
Compared to shift type requirements, the floating requirements method changes
the size and structure of the problem. On one hand, the problem definition
becomes more intricate and the complexity of constructing feasible solutions in-
creases. We must find a satisfactory combination of the shift types used in the
hospital to fulfil the floating requirements. On the other hand, the search space
is considerably enlarged. This formulation creates an extra degree of freedom
to construct a high quality timetable, because the floating requirements can
usually be met with different combinations of shift types.
Considering the shift types given in Table 6.1, the period from 7:00 till 21:00 can
be covered with a {Short Early - Late} combination but also with an {Early
- Short Late} set. In the traditional shift type approach, the planner has to
determine the shift type combination as part of the input data, thus restricting
the number of possible solutions. By switching between satisfying shift type
combinations we can try to improve the personal timetables (see Section 6.4.2).
For the representation of floating personnel requirements, we need:

- The shift types with their start and end times (e.g. Table 6.1).
- A depiction of which shift types can form legal sequences: joining to-

gether tightly. Shift types with this ‘joining’ relationship are those which
are considered consecutive in terms of time. The implication for the float-
ing personnel requirements approach is that ‘joining’ shift types can be
replaced by another shift type covering the time intervals which were cov-
ered by both individual shift types. Two shift types with a common start
and end time are considered to have that relationship. In practical appli-
cations, however, it is often the case that time gaps or overlaps are not
considered to be restrictive. This is explained later on in Section 6.5.

- The number of personnel needed for each skill category q in terms of time
intervals ti and days d (called RIMq,ti,d for minimum requirements and
RIPq,ti,d for preferred requirements).

An elementary real world example (Dataset 1) is used to explain the formulation
of floating personnel requirements. The problem consists of 6 different shift
types, presented in Table 6.1.
In practice, legal sequences of shift types are not always equally obvious as in
this example. Sometimes a gap or an overlap between consecutive shifts does
not cause problems at all. In many real world situations, an overlap in time is
required to consider shift types as joining together tightly. It is often necessary
for 2 colleagues to have a discussion between shift changes. This can lead to
situations in which a 7:00-15:00 cannot be replaced by a 7:00-11:00 – 11:00-15:00
couple. There are other examples in hospitals where it is no great matter to have
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Join tightly Short Early Early Day Late Short Late Night
Short Early x
Early x
Day
Late x
Short Late x
Night x x

Table 6.2: Shift types that join together tightly in Dataset 1

an intermission between shifts. Cleaner’s and Nurse Aid’s tasks, for example,
are not necessarily uninterrupted. In order to construct good timetables, it
is important to know which shift types can precede or follow others without
affecting the hospital activities.
In the Dataset 1 example, the shift types that join together tightly are those
that are considered to be consecutive in terms of time (see Table 6.2) it is the
simplest case which hardly ever occurs in practice. To reduce the complexity of
the example, we assume that the situation described in Table 6.2 holds for all
the skill categories. Table 6.3 presents the personnel requirements per day of
the week. Both the minimum and the preferred number of required personnel
are given, in the columns ‘RIM’ and ‘RIP’ respectively.

6.4 A Two-Step Approach

The method discussed in this chapter is a two-step approach towards a high
quality timetable. The goal of the first step is to find a roster that satisfies the
personnel requirements, without taking into account the soft constraints on the
personal schedules. In the next step, an efficient hybrid tabu search algorithm is
applied, in which the required shift types are set. The details of this algorithm
are explained later on in Section 8.3.6. The meta-heuristic algorithms will never
violate the hard constraints in their process of finding a schedule matching as
many soft constraints as possible.

6.4.1 Initialisation

The initialisation phase employed in the more traditional shift type approach is
maintained in the current algorithms (see Section 5.4). One extra initialisation
step has to be performed to translate the personnel requirements from time
intervals to shift types. The consistency check algorithm, which was introduced
in the previous Chapter (Section 5.2), gives guidelines to repair infeasibilities
but cannot translate the subjective requirements in practical situations. The
result of this step is the input for the regular initialisation step (see Fig. 6.3 in
Section 6.4.3). The procedure is explained in the latter part of this section.
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Table 6.3: Minimum (RIM) and Preferred (RIP) personnel requirements of
Dataset 1 for a period of one week and for three different skill categories
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Initialisation in the shift type approach:

The only aim of the initialisation step is to construct a feasible solution. The
quality of the solution is not taken into account because the scheduling algo-
rithms (described in Section 6.4.2) can cope with any input, as long as it does not
violate any hard constraints. ANROM provides three options for constructing
the initial schedule (as presented in Section 5.4).

Initialisation in the floating personnel requirements approach:

The main goal is to find, for every day of the planning period, shift type com-
binations that fulfil the personnel requirements. To tackle this particular phase
of the timetabling problem, we enumerate the solutions of the linear program
described in Fig. 6.1. So far we have not encountered problems of the trans-
lation from floating requirements into shift type combinations that cannot be
solved with an exact method. The algorithm provides all the possible shift type
combinations fulfilling the personnel requirements. In the linear problem, we
try to find the sets of shift types for which, at each point in time, the person-
nel requirements are satisfied without a surplus of personnel. If the set contains
shift types that ‘join together tightly’ without an exactly matching start and end
time, corrections are taken into account. In practice, the initialisation algorithm
randomly chooses shift type combinations among the enumerated possibilities.
The method used to translate the floating personnel requirements into shift
type combinations, described in Fig. 6.1, will only work if there exists at least
one shift type combination that matches the floating requirements. A problem
arises when there is no such shift type combination because in that case the
linear programming approach will not produce any solution at all. We could
consider developing a more flexible heuristic for the initialisation phase in order
not to have a dead end. This more flexible heuristic could provide a graceful
degradation of the system, by producing a shift type combination that comes as
close as possible to the floating requirements. The planners in practice find it
better, however, to get a warning message when the requirements are infeasible.
They expect guidelines on how to make their personnel requirements realistic
(and thus translatable to shift types). This advisory warning helps the planners
to increase or diminish the personnel requirements in a certain time interval, in
order to find at least one shift type set satisfying the requirements. In addition
to the consistency check which was introduced in Section 5.2, ANROM pro-
vides an extension which can deal with floating personnel requirements. This
particular algorithm gives feedback to the users about any inconsistent hard
constraints in terms of floating personnel requirements.

6.4.2 Improving the quality of the schedule

In this part of the nurse rostering algorithm, meta-heuristics are applied to
the preliminary schedule in order to reduce violations of the soft constraints.
For this step we can apply the same algorithms as for the shift type personnel
requirements (see PART III).
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SOLVE THE LINEAR PROBLEM:
ENUMERATE all possibilities for SOLUTION

SUBJECT TO
DIFFERENCE[y] ≤ 0 ∀y

in which
- SOLUTION: list of length S giving the number of appearances for each
corresponding shift type in the solution.

- DIFFERENCE:
list of length TI, for each element x depicting the difference between
RIM[x] and AVAILABLE[x]

- RIM: ordered list of length TI containing the personnel requirements
for the corresponding time in PIT.

- PIT: ordered list of length TI containing all the start and end times of
the time intervals in the floating requirements in addition to all the
start and end times of the shift types, duplicates are removed.

- AVAILABLE: list of length TI, for each element x giving the number
of personnel scheduled at time PIT[x] according to SOLUTION and
taking RELAXATION into account

AVAILABLE[x]
=

∑
s∈SOLUTION

(SOLUTION[s]+RELAXATION[x])*((shift starts ≤ PIT[x])
AND (PIT[x] < shift ends))

- RELAXATION: list of length TI, the elements of the list give the
relaxation of the personnel requirements according to the JOIN
MATRIX.

∀ a, (1 ≤ a ≤ S), ∀b, (1 ≤ b ≤ S), and ∀ x ∈ PIT :
IF JOIN[a][b]=1

IF(shift enda < x AND x ≤ shift startb)
THEN RELAXATION[x]=min{SOLUTION[a],SOLUTION[b]}

ELSE
IF(shift startb ≤ x) AND (x < shift enda)

THEN RELAXATION[x]=-min{SOLUTION[a],SOLUTION[b]}
ELSE RELAXATION[x]=0

- JOIN: 1/0 matrix with dimension S*S depicting the shift types which
join together tightly.

Figure 6.1: Linear problem for the initialisation phase in case of ‘floating’ per-
sonnel requirements, we only present the minimum requirements: RIM

168



Meta-heuristics in the shift type environment:

The shift type requirements formulation is less complex than the floating re-
quirements approach in ANROM. After the initialisation phase which satisfies
all the hard constraints of the problem, we only apply algorithms maintaining
the solution of the hard constraints, in a shift type schedule.
The aim of the timetabling algorithm is to reorganise the assigned shifts in order
to diminish the value of the cost function. We will apply the meta-heuristics
that are developed for the shift type requirements, especially the hybrid tabu
search algorithms (see Section 8.3.6) implemented in the software package
based on ANROM. The tabu search algorithm uses an environment where
shifts can be moved from one person to another on the same day (see ‘single
shift-day’ neighbourhood in Section 7.3.1). This step will be referred to as a
‘move’. The only restriction on the moves is to conserve the satisfaction of
hard constraints. A shift for a certain skill category can thus not be moved to
a person who is not qualified to do it. The move of a shift to a person who
is already assigned to this shift on the day considered is also forbidden. We
explain the details of the moves in detail in Section 7.3.1.

Meta-heuristics in the floating requirements environment:

In this compound algorithm, shift types in the personal schedules will be moved
from one person to another (‘moves’ as briefly mentioned above are explained in
detail in Section 7.3.1), while the shift type combinations satisfying the person-
nel requirements will be varied (‘swaps’, see Fig. 6.3 in Section 6.4.3). In this
alternating system, the possibility of satisfying the personnel requirements with
different shift type combinations enlarges the solution space considerably, affect-
ing the calculation time to a very high extent. In order to keep the computing
time down we have tuned the alternation of ‘moves’ and ‘swaps’ experimentally
by adjusting the stop criteria for each of them (see Fig. 6.2). The planning
algorithm starts with the tabu search ‘moves’ (for a detailed description, see
Section 8.3.1) until the stop criterion for the moves is reached (a number of
iterations without improvement). Instead of switching to the hybridisations,
in the floating personnel requirements approach, we allow for a diversification
by applying these swaps in the schedule. For every day of the planning pe-
riod, we search all possible alternatives for the shift type combinations. The
best one of these swaps will be performed in any case (even if the quality of
the timetable deteriorates). The cost function (Chapter 4) is applicable to the
floating requirements without any modification because the schedules are set up
with shift types. It allows for a quick calculation of the best people to assign
the new set of shift types to. Suppose, for example, that person A works during
the period 8:00-17:00 and that we want to swap that shift type to 8:00-12:00 -
13:00-17:00 (provided they are defined as joining together tightly). Our algo-
rithms will find the best, in terms of the cost function, personnel pair B and C
to carry out the 8:00-12:00 and the 13:00-17:00 shift type. Until a swap worsens
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INITIALISE schedule X (result of Fig. 6.1)
BEST SCHEDULE=X; number steps=0

WHILE (number steps < maximum number steps)
number moves=0; number swaps=0; weekend step=0; worst personal schedule=0
WHILE (number moves < maximum number moves)

X’=move(X)
IF (f(X′) < f(BEST SCHEDULE))

number moves=0
number steps=0
BEST SCHEDULE=X’

ELSE
number moves=number moves+1
number steps=number steps+1

X=X’
END

WHILE (number swaps = 0)
X’=swap(X)
IF (f(X′) < f(BEST SCHEDULE))

number steps=0
BEST SCHEDULE=X’

ELSE
number swaps=number swaps+1

X=X’
END

IF (number weekend steps < maximum number weekend steps)
X’=WEEKEND STEP(X)
IF (f(X′) < f(BEST SCHEDULE))

number steps=0
BEST SCHEDULE=X’

ELSE
number weekend steps=number weekend steps+1

X=X’
END

ELSE
WHILE (worst personal schedule=0)
X’=WORST PERSONAL SCHEDULE(X)
IF (f(X′) < f(BEST SCHEDULE))

number steps=0
number weekend steps=0
BEST SCHEDULE=X’

ELSE
worst personal schedule=worst personal schedule+1

X=X’
END

END
BEST SCHEDULE=GREEDY SHUFFLING(BEST SCHEDULE)

maximum number steps, maximum number moves, maximum number weekend steps are
calculated before the algorithm starts, as function of the dimensions of the search space, f
denotes the cost function

Figure 6.2: Heuristics for the scheduling phase when using ‘floating’ personnel
requirements
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Figure 6.3: Diagram of the heuristics for the nurse rostering problem with ‘float-
ing’ personnel requirements

the schedule, the swap step will be repeated.
After swapping, it is very likely that some tabu search moves will enable an
improvement of the schedule again. This combined process of moves and swaps
is repeated until another stop criterion, calculating the iterations without im-
provement, is reached. Depending on the problem characteristics and on the
wishes of the planner, the next step is one of the hybridisations described above.
The dimensions of the problem, (the number of personnel to be scheduled, the
number of different shift types, the duration of the planning period, etc) influ-
ence the size of the solution space. The dimensions will depict the overall stop
criterion as well as the stop criteria on the moves and hybridisations. Fig. 6.2
demonstrates the most advanced option, in which all the hybridisation steps
(explained in Section 8.3.6) are executed.

6.4.3 Diagram of the modules

In this section we demonstrate where the newly developed parts of the algo-
rithm are situated. The initialisation and hybridisations, which are summarised
in Section 5.4 and 6.4.2 (and fully elaborated in Chapter 8) are represented by
a single frame in Fig. 6.3.
The diagram only shows that part of the scheme which is affected by the floating
personnel requirements. In the case where the personnel requirements are ex-
pressed as floating requirements, the pieces in dashed frames are employed. The
ANROM model can still be used in the original way (with shift type personnel
requirements) and it then simply skips the parts of the algorithm represented
by dashed boxes in the diagram.
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6.5 Examples

Considering the example given in Tables 6.1, 6.2, and 6.3, there are 3 possibili-
ties to combine shifts for weekdays, for the minimum as well as for the preferred
requirements. If we have a schedule that does not violate either of them, six
different combinations of shift types can satisfy the (Regular Nurse’s) personnel
requirements on the weekdays Monday to Friday (see Table 6.4). Both the

RIM RIP
RIM C1 RIM C2 RIM C3 RIP C1 RIP C2 RIP C3

Short Early 2 1 3 2 1
Early 1 2 1 2
Day
Late 2 1 2 1
Short Late 1 2 1 2
Night 1 1 1 1 1 1

Table 6.4: Possible solutions for the Regular Nurses on a weekday (Dataset 1)
RIM Cx: Minimum personnel requirements shift type Combination; RIP Cx:
Preferred personnel requirements shift type Combination; the index x denotes
the number of the combination

RIM RIP
Short Early
Early 1 1
Day
Late 1 1
Short Late
Night 1 1

Table 6.5: Possible solutions for the Regular Nurses on a weekend day
(Dataset 1)

possible shift type combinations for the minimum personnel requirements (de-
noted by MC) and for the preferred personnel requirements (PC) are given. The
results for the weekend requirements are presented in Table 6.5. In this table,
we can see that only one combination satisfies the personnel requirements. To
study the mechanism of the swaps, we have counted (in a period of one month)
the number of appearances of each shift type combination (initially and after
the algorithm). The results for the weekdays only are displayed in Table 6.6.
The swaps in the algorithm have given preference to the second solution (in
Table 6.6). This is most probably due to the character of the soft constraints
on personal schedules. In the Dataset 1 example, there was a restriction on the
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RIM C1 RIM C2 RIM C3
Initially 6 8 6
Result after the algorithm 2 13 5

Table 6.6: Appearance of the shift type combinations in the initial solution and
in the final result (Dataset 1); RIM Cx: Minimum personnel requirements shift
type Combination with index x

Join tightly EE SE E D SD L SL LL N
EE x x
SE x
E x
D x
SD
L x
SL x
LL x
N x x

Table 6.7: The shift types that join together tightly in Dataset 2

maximum number of each shift type a person could work during the planning
period. The solutions MC1 and MC2 both combine a lower number of shift
types, which could in some circumstances lead to violations of the particular
constraint mentioned.
The next example (all information is in Tables 2.4, 6.7, 6.8 and 6.9) is also taken
from the real world, the shift types are represented by an abbreviation from the
names given in the particular hospital. The example illustrates the extra diffi-
culty of the joining tightly constraint of shift types. It is easy to understand that
the shift types SE and D join together tightly. SE lasts till 10:00 and D starts

From Till Requirements
00:00 06:00 1
06:00 08:00 2
08:00 17:00 4
17:00 18:00 3
18:00 22:00 2
22:00 24:00 1

Table 6.8: Personnel requirements for a single qualification on one day
(Dataset 2)
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Combinations C1 C2 C3 C4 C5 C6 C7 C8
EE 2 1 1 2 2
SE 2 1 1
E 2 2 2 2 2 2 2 2
D 2 1 1
SD
L 2 1 1 1
SL 2 1 1 2 1
LL 2 1 2 1 2 2 1
N 1 1 1 1 1 1 1 1

Table 6.9: Possible shift type combinations satisfying the daily personnel de-
mand of Dataset 2

SL + LL ↔ L

EE + L ↔ SE + D + LL

⇓
EE + SL ↔ SE + D

Figure 6.4: Possible swaps between shift types of Dataset 2

at 10:00. The impact of this characteristic is that replacing one person working
before and after 10:00 by two people who switch shifts at 10:00 does not affect
the hard constraints of the work schedule. In the example, the only exceptions
to the expected shift-type-joins are D-LL and SL-LL, as can be derived from
Table 6.7. The joins are exceptional because both D and SL last until 18:00
and LL starts at 17:00. Fig. 6.4 illustrates possible swaps between shift type
sets. A nurse working the L shift (from 14:00 till 22:00) can be replaced by two
colleagues working the SL shift (from 14:00 till 18:00) and the LL shift (from
17:00 till 22:00) respectively, because of the allowed sequences. The opposite
swap is more significant, because, if we replace two nurses (both in the SL and
the LL shift) by one doing the L shift; the number of personnel in the ward
between 17:00 and 18:00 is reduced by one.
Fig. 6.4 also demonstrates how 2 people (doing the EE and L shift) can be
replaced by 3 people in the SE, D and LL shift, and vice versa. From these
allowed ‘swaps’ in shift types, others can be derived, as shown in the last line
of Fig. 6.4.
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6.6 Test Results

Solutions that are not within reach (not satisfying the hard constraints) in the
classic approach defining shift type personnel requirements, can be constructed
by the swap steps in the floating requirements approach. Although there is no
direct and simple way of comparing this approach with those of Chapter 8, we
have specifically developed a method to compare both approaches. First, we
run tests on shift type and floating requirements datasets, each with the proper
algorithms for the problem type. Afterwards, tests have been carried out on
the two kinds of datasets, traditional algorithms (eliminating the swaps) for
the floating requirements dataset and floating algorithms (enabling swaps) for
the shift type dataset.

Schematically, both kinds of experiments, set up for comparison reasons,
are:

- Allowing ‘swaps’ in a ward with traditional shift type personnel require-
ments.

- Omitting the ‘swaps’ in a ward with ‘floating’ personnel requirements.
We now compare the following algorithms:

- Tabu Search Algorithm constructed for the traditional shift type personnel
requirements (Section 8.3.6).

- Algorithm for the ‘floating’ personnel requirements (subject of this chap-
ter).

For the purposes of comparison, we selected an algorithm used in practice (be-
cause of the trade off between time taken and quality of solution) and not the
most complex algorithm described in Chapter 8. The scheduling algorithm cho-
sen is the TS1 algorithm (described in detail in Section 8.3.6). TS1 consists
of the tabu search moves combined with the ‘complete weekends’ and ‘worst
personal schedule’ hybridisations. They will be discussed in detail later on in
Section 6.4.2. It is the aim of the model explained in this chapter to demon-
strate the possibility of formulating a time interval problem and producing a
shift type solution of high quality. The results of the experiments with data
obtained from schedulers applying ANROM are presented in Tables 6.10 and
6.11. The column Value represents the value of the evaluation function. The
duration of the calculations on an IBM Power PC RS6000 is given in the column
Time.
Test sets can be downloaded from http://extern.kahosl.be/greet.vandenberghe/.
For reasons of confidentiality, the available data sets do not correspond to any
of the hospitals that apply the software based on ANROM.
It was necessary to reformat the input data slightly for these tests. We will ex-
plain here how the user data constructed for the shift type formulation is made
fit for the floating approach and vice versa. In the traditional problem 1 (TP1:
12 people, 6 shift types), we defined the shift types which join together tightly
in the most careful way. We forbid gaps and overlaps between shift types and
only allow shift type swaps if they cover exactly the same time period. For the
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Traditional Problem RM RM - RP
Value Time Value Time

TP1 Traditional Algorithm 643 8’27” 618 8’31”
Floating Algorithm 511 1h15’36” 500 1h18’07”

TP2 Traditional Algorithm 1862 21’44” 1715 22’13”
Floating Algorithm 1009 3h57’12” 932 5h24’30”

Table 6.10: Test results of the Traditional and Floating Algorithm on a problem
with a traditional personnel demand formulation

second problem (TP2: 20 people, 8 shift types), we constructed more possibili-
ties for the swaps. There is a case in which we allow a swap with a 30’ overlap
and legalise another swap with a 60’ gap.
The test data formulated as ‘floating’ requirement problems, already introduced
on previous pages as Dataset 1 and Dataset 2, required reformatting in order
to match the shift type formulation. Translating the floating requirements into
shift type personnel requirements, which is necessary to create an input for
the traditional algorithm, was performed in two different ways. FP1 and FP2
are slight variations on Dataset 1; FP3 is the Dataset 2 problem. In the first
approach (FP1), the requirements are equal to the combination of shift types
resulting from the branch and bound algorithm (the first solution). Several
days of the planning period have exactly the same ‘floating’ requirements and
therefore the result in terms of shift type requirements will be the same on these
days. The FP2 data set was constructed from the same original set as FP1, but
it differs in the translation to shift type requirements. Instead of taking the first
solution, we construct a random solution for every day of the planning period.
Like FP2, the daily shift type combinations of FP3 are chosen randomly from
the possibilities in Dataset 2.
Experiments matching the minimum personnel requirements exactly (‘Minimum
Requirements’ in the Tables 6.10 and 6.11) and with a feasible domain between
the minimum and the preferred personnel requirements (‘Min-Pref’, as explained
in Section 5.6.1) obviously lead to different results. As will be stated in Chapter
9, tests prove that minimising the calculation time and maximising the solution
quality are not compatible.
The calculation time for the Floating Algorithm is much higher than for the
Traditional Algorithm. The conclusion holds for both experiments (Table 6.10
and 6.11). This is according to our expectations because the number of possible
solutions is increased considerably by not restricting the schedule to a given shift
type combination. In all the test examples, the quality of the result is better
for the Floating Algorithm. Splitting long shift types into two or more shorter
shifts and assigning them to different people, or vice versa, can overcome soft
constraint obstacles in the personal schedules.
Although the FP1 and FP2 data set of Table 6.11 are basically the same, it
is not surprising that the Traditional Algorithm produces better results for the
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’Floating’ Problem RIM RIM - RIP
Value Time Value Time

FP1 Traditional Algorithm 1555 4’20” 1456 4’34”
Floating Algorithm 1197 1h47’08” 1014 3h59’46”

FP2 Traditional Algorithm 1799 5’54” 1714 6’04”
Floating Algorithm 1197 1h47’08” 1014 3h59’46”

FP3 Traditional Algorithm 2641 17’27” 2598 18’04”
Floating Algorithm 1622 5h08’48” 1014 12h57’27”

Table 6.11: Test results of the Traditional and Floating Algorithm on a problem
with a ‘floating’ personnel demand formulation

FP1 variant. Since the shift type combinations are chosen randomly in FP2,
the initialisation results in a wide variety of daily shift type combinations. The
Traditional Algorithm has no swap steps thus the scattered shift type combi-
nations will be maintained during further calculations. Many soft constraints
(e.g. the minimum number of consecutive shifts of the same type) are much
easier to solve when the shift types on consecutive days are equal.
The considerable increase of the solution space, due to the high number of shift
type combinations satisfying the requirements, reveals itself in the calculation
time of FP3. No further comparison with other approaches is possible because
problems similar to this one have not been solved before.

6.7 Conclusion

The formulation of ‘floating’ personnel requirements simplifies the practical
use of the nurse rostering model, in that it corresponds very well to the real
world situation. The developed approach, which deals with the expanded nurse
rostering problem, produces even better results than approaches developed for
the less complex problem.
Floating personnel requirements have been identified to reflect the particular
difficulties that hospital planners face when automating their personnel ros-
tering process. Users of planning software were asked to carefully define their
personnel requirements in order to avoid infeasibilities in the translation to shift
types. The floating requirements mechanism simplifies this task. The input
data for the personnel rostering software with floating personnel requirements
matches the real world practice in hospitals better. Moreover, work can be
structured more around patients’ needs and thus unproductive time will often
be reduced.
Enabling a considerably higher number of shift type combinations to staff
hospital tasks provides more possibilities for individual personnel members to
satisfy their private needs and wishes. In spite of being more time consuming
than rostering personnel problems on a shift type base, the ‘floating’ personnel
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approach induces much better quality schedules, with respect to the personal
constraints of the staff (the soft constraints). The search space with feasible
solutions is considerably larger than it is when shift type personnel requirements
are defined. The higher degree of freedom allows for tackling particular soft
constraint problems by making the most of different shift type combinations
in the construction of the timetable. It allows for many kinds of part time
employment without requiring restrictive decisions on shift type combinations
from the personnel manager or planner.
Experiments have shown that both personnel and hospitals benefit from this
new approach. Everything which is possible with the meta-heuristics developed
for shift type requirements (Chapter 7-10) remains possible with the current
methods. In fact, the search space in the shift type approach is a subset of the
search space for floating requirements. ‘Floating’ personnel requirements are
an important improvement of the shift type system. This approach provides
a higher level of personnel satisfaction, creates plenty of possibilities for part
time employment, and leads to efficient and flexible organisations.

The benefits of allowing floating personnel requirements have been demon-
strated in this chapter. Both the hospital and the patients are served better, but
especially for the personnel, this new model offers plenty of possibilities for part
time contracts and for combining personal objectives with the organisational
requirements. All the meta-heuristics in PART III of this thesis can be carried
out both with shift type and floating requirements and are thus applicable in a
very wide range of personnel rostering environments.
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Part III

Meta-Heuristics and
Hybrids
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Chapter 7

Variable Neighbourhood
Search

7.1 Introduction

The nurse rostering meta-heuristics discussed in PART III of this work are
not aimed at specific individual hospitals. On the contrary, the intention is
that such algorithms should be applicable across the whole healthcare sector.
Applying nurse rostering algorithms to real-world problems often involves
very generic heuristics to deal with widely varying hospital customs and
requirements. Escaping from local optima can be very hard for the search
algorithms because of the broad variety of constraints. Some constraints refer
to particular duties of the nurses while other constraints restrict consecutive
shifts, days, weekends, etc (see Chapter 2).
The research presented in this chapter attempts to make more use of problem
specific characteristics to dynamically change the search heuristics and their
neighbourhoods in order to overcome some typical drawbacks of meta-heuristics
for complex combinatorial problems. Hidden parts of the solution space be-
come accessible by applying appropriate problem specific neighbourhoods.
The method allows for a better exploration of the search space, by combining
short sighted neighbourhoods, and very greedy ones. Experiments demonstrate
how heuristics and neighbourhoods can be assembled for finding good quality
schedules in a relatively short calculation time.
Other meta-heuristics (see Chapter 8 and 9) developed for solving the nurse
rostering problem of ANROM apply the neighbourhoods which are introduced
in this chapter in their local search algorithms. While studying many different
real-world implementations of the rostering problem, cases appeared in which
previously developed heuristics did not manage to overcome some difficulties
that originate from very particular constraint combinations. The overall quality
of the resulting schedule in terms of the cost function is not necessarily bad but
it is hard for hospital planners to accept results, which they can make more
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acceptable by some very small manipulations to the schedule by hand. The
characteristics of the constraints are so different good quality solutions are very
hard to find in the search space.
The main ideas of this variable neighbourhood approach were published
as E.K. Burke, P. De Causmaecker, S. Petrovic, and G. Vanden Berghe:
Variable Neighbourhood Search for Nurse Rostering Problems, Proceedings of
4th Metaheuristics International Conference, MIC2001, Porto, 2001, 755-760
[38].

The chapter is organised as follows. We introduce variable neighbourhood
search in Section 7.2. Different neighbourhoods for the search heuristics are
defined in Section 7.2. In Section 7.4, we explain how the heuristics can be com-
bined in order to reach results that might remain behind big barriers when using
single neighbourhood strategies. A few ideas to combine, repair and restart dif-
ferent heuristics applying several neighbourhoods are explored. The results of
the developed variable neighbourhood algorithms are discussed in Section 7.5,
and we conclude in Section 7.6.

7.2 Variable Neighbourhood Search

The idea of changing neighbourhoods while performing a meta-heuristic search
was already introduced by Glover [103], (1986), as a means for increasing the
performance of the algorithms. He suggests diversification strategies to explore
the search space of combinatorial problems effectively. It is often the only possi-
ble way to reach regions behind barriers in the landscape of solutions. Variable
neighbourhood search [148] combines local search heuristics, which stop in local
optima, and neighbourhood changes to escape from these local optima. The
approach is applicable in combination with meta-heuristic algorithms as a di-
versification strategy for the local search.
Variable neighbourhood search has been applied to several NP hard problems
by Hansen and Mladenovic. Examples are the travelling salesman problem,
the location-allocation problem, a clustering problem, the bilinear program-
ming problem with bilinear constraints [113, 148]. Other applications are: the
linear ordering problem (Gonzáles and Pérez-Brito [108]), scheduling problems
(Davidovic et. al. [72], den Besten and Stützle [79]), vehicle routing (Crispim
and Brandão [67]), the p-median (Crainic et. al. [65], Hansen and Mladenović
[113]), the max-cut [93], and the k-cardinality tree problem (Mladenović and
Urošević [150]), etc.
Different approaches exist for selecting neighbourhoods and for going from one
neighbourhood to another. It is often recommended to shake the solution, i.e.
to randomly swap to a solution in the neighbourhood of the current one.
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7.3 Variable Neighbourhood Search for the
Nurse Rostering Problem

For the approach presented in this chapter, a set of neighbourhood structures,
which use specific information about the problem, are defined. When a search
heuristic fails to improve the solution (within a certain amount of time or a
number of iterations), the algorithm dynamically chooses a different neighbour-
hood.
In ANROM, the personnel requirements are hard constraints and we call all
the solutions satisfying them ‘feasible’ solutions. Any solution must provide a
sufficient number of qualified personnel at any time during the entire planning
period. In all the meta-heuristics developed for this nurse rostering problem, we
remain in the feasible part of the search space during the iterations. Consider
the matrix representation of Fig. 4.1. Feasibility with respect to the coverage
constraints (Section 2.3.3) can only persist if no other than vertical displace-
ments of assignments are allowed. In order to satisfy the hard constraints on
required skills (Section 2.3.2), a procedure in the algorithms prevents assign-
ments from being shifted to unqualified personnel (this was already introduced
in the procedures of Chapter 5). To guarantee the satisfaction of the hard con-
straints, shifts will thus only be moved to another person’s schedule on the same
day. The moves are not allowed unless the person is qualified to perform the
duty and provided this person is not yet assigned to the same shift.
During the search process, the algorithms aim at minimising the number of
violations of the soft constraints taking cost parameters into account (see Sec-
tion 4.2.4). The cost function is the motor of the search heuristics, but since
it does not interpret the problem characteristics, the algorithms are quite blind
to certain improvements. While improving the schedule with respect to one
constraint, it might make the solution much worse with respect to others.
Some of the constraints are of particular importance for the research presented
in this chapter. We have constructed neighbourhoods in order to especially
satisfy a number of these constraints (see Section 7.3.1).

7.3.1 Neighbourhoods for the nurse rostering problem

We introduce a number of different neighbourhoods, which enable the heuristics
to search for good solutions with respect to the evaluation function of Chapter
4. We expand this group with sets of new neighbourhoods related to soft con-
straints, and greedier neighbourhoods, which are inspired by manual scheduling
processes.

Single shift-day (D)

The simplest neighbourhood of a schedule includes all the feasible solutions that
differ in the position of one scheduled shift. It is the basic neighbourhood for
all the meta-heuristic approaches (Chapter 7 - 10) executed on the problem
described in Chapter 2. Note that the position refers to the personnel member
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Figure 7.1: Possible moves in a single shift-day neighbourhood; Shifts are Early
(E), Day (D), Late (L), and Night (N)

whose schedule the assigned shift belongs to. The single shift-day neighbour-
hood considers the solutions in the nearest environment of the current solution.
In order to create the neighbourhood, it suffices to consider all the allowed dis-
placements of a scheduled shift from the personal schedule, which contains the
shift type, to another person’s schedule which is empty for that shift type on the
same day. We will further refer to these displacements as ‘moves’. The solution
corresponding to that move does not violate the hard constraints, provided the
2nd person is qualified to work that shift type. Fig. 7.1 presents the allowed
moves in the single shift-day neighbourhood. A very small ward, consisting of
one head nurse and three regular nurses, is presented. One of the regular nurses
has the head nurse skill as an alternative. This will be the person to replace
the head nurse during absence. A very small part of a realistic planning pe-
riod is shown and there are four shift types: Early (E), Day (D), Late (L), and
Night (N). Arrows demonstrate the possible moves in the neighbourhood. Note
that the head nurse’s Day shifts cannot be moved into the schedules of Nurse
B and C because that would violate the hard constraint on skills. Neither can
shifts for the regular nurses (Nurse A, B, and C) be moved to the head nurse’s
schedule. Shifts cannot be moved horizontally in the schedule either because
that would disturb the equilibrium between required personnel members and
scheduled ones.

Soft constraint related neighbourhoods

The neighbourhoods introduced in this section are not comparable to the others
because they perceive the landscape of the solution space in a different way.
While searching schedules, which better satisfy one particular soft constraint,
the algorithms are blind to the overall quality of the result. This is one of the
main reasons why such neighbourhoods are not applied in the final phase of a
search algorithm.
The inspiration for developing these neighbourhoods comes from real-world
suggestions from hospital planners (they wanted the violations on weekend
constraints to be reduced in the solution for example). Looking at an auto-
matically generated schedule, they can point out shortcomings with respect to
some sensitive constraints. Solving these problems does not necessarily lead
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Figure 7.2: Possible moves in a weekend neighbourhood

the search to a very interesting part of the solution space but it generally does
not hinder the search either.
Although it is against the philosophy of working with abstractions of the
individual constraints in the search for better solutions (see also [36]), we
propose the use of these neighbourhoods even if they only act as a means of
diversification.
Examples of such soft constraint related neighbourhoods are:

Weekend neighbourhood (W)
This neighbourhood consists of all the solutions differing from the current solu-
tion by the assignment of one shift on a day of the weekend. This weekend neigh-
bourhood is of importance only in the case where the constraint of ‘complete
weekends’ (Constraint 15) is applied to at least one of the personnel members.
The weekend neighbourhood is empty if the constraint on complete weekends is
fully satisfied. If it is not completely satisfied, all the personal schedules which
are subject to the complete weekends constraint have one violation of this con-
straint less than the current solution. Fig. 7.2 illustrates the possible moves in
the weekend neighbourhood for a very simple example.

Overtime - Undertime neighbourhood (OU)
This neighbourhood only considers moving shifts from people with overtime
(violation of Constraint 8) to people with undertime (violation of Constraint
9 or people for which additional assignments do not generate a penalty on
overtime). An extension of this neighbourhood includes all the moves that
do not increase the sum of the overtime and undertime violations in the schedule.

Alternative qualifications neighbourhood (AQ)
Experienced people have the authority to carry out work for other skill cate-
gories in order to replace absent personnel members. However, it is better for
the quality of a schedule when the number of replacements is low (Constraint
2). This neighbourhood consists of all schedules which have one assignment,
that involves a skill category replacement, less.

Personal requests neighbourhood (PR)
The soft constraint on personal requests (Constraint 24, 25, and 26) has a
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modifiable cost parameter, like all other soft constraints. In many circum-
stances, the result of the scheduling algorithm will violate a few of these
constraints. The nature of the cost function (which sums the violations of
soft constraints) guarantees a solution, which is not biased towards solving a
particular constraint.
Nurses can be very sensitive about their personal request for a certain shift
or day off. This particular neighbourhood has been developed to search for
solutions which satisfy the personal requests. By moving from one solution to
another in this personal requests neighbourhood, the size of the neighbourhood
should decrease. Ideal schedules without penalties for personal requests have
this neighbourhood empty.

The most violated constraint neighbourhood (MV)
The modular nature of the cost function allows for isolating constraints. This
neighbourhood pays more attention to moves affecting one particular constraint,
namely the constraint that is violated to the highest extent. We consider the
number of violations per constraint in every personal schedule in order to de-
termine the most violated constraint. The MV neighbourhood itself contains
all the solutions of the simplest neighbourhood (single shift-day) but the eval-
uation function temporarily takes a higher value for the cost parameter of the
most violated constraint. By doing this, the search will be guided towards dif-
ferent parts of the search space. After having applied the MV neighbourhood,
the cost parameters are set back to their original values.

Swapping large sections of personal schedules

The system based on ANROM allows hospital schedulers to change the schedule
manually. Their manipulations often have the aim of creating schedules, which
are visually more satisfying. This inspired us to design this category neigh-
bourhood, in which we try to imitate very common real-world manipulations
of schedules.
Unlike the previous group of neighbourhoods, in which neighbouring solutions
only differ in the position of one single shift type, this set of neighbourhoods
looks at schedules which differ considerably from the original solution. Re-
allocating larger groups of shifts at once is often less harmful for the quality of
a schedule than moving single shifts around. The drawback of applying this
category of neighbourhoods is that the number of neighbouring solutions is
very large, and thus so is the calculation time. Examples are:

Shuffle neighbourhood (SH)
The ‘shuffle’ environment considers switches from a part of the worst, in terms
of the evaluation function, personal schedule with any other schedule. Instead of
moving duties (as in the simple single shift-day neighbourhood), all the assign-
ments in a period from one day to a number of days equal to half the planning
period, are switched between the person with the worst schedule and another
person in the ward. All possible feasible shuffles during the planning period are
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considered (see Fig. 7.3 for a part of the shuffle neighbourhood).

Greedy shuffling neighbourhood (GS)
The greedy shuffling environment is comparable to the shuffle environment,
but it is much bigger. It consists of all possible shuffles between any set of two
people in the schedule. We call this shuffling greedy because the neighbourhood
is very large and very time-consuming to evaluate, and also because the steps
involve large sections of the schedule.

Core shuffle neighbourhood (CS)
Compared to the shuffle neighbourhood, we apply an extra shuffle, moving an
internal part of the shuffle section back (see Fig. 7.4). The core shuffle neigh-
bourhood considers two consecutive swaps between a pair of personal schedules
at a time. In the first phase, a move from the greedy shuffling neighbourhood is
performed. Within the swapped time interval of that move, a new time interval,
also consisting of full days, is swapped back in the second phase. The second
interval must start at least one day after the beginning of the first time interval
and end at least one day before the other ends.

7.3.2 Shaking the solution

Shaking allows the algorithm to explore the solution space in a random manner.
It is defined as the move to a random element of the neighbourhood. Some
moves within the ‘soft constraint neighbourhoods’ already act as shakes. They
do not generally improve the overall quality of the schedule but they pro-
vide a different viewpoint in the search space. Examples of the other shakes are:

Shake a shift
Making a random move in the single shift-day neighbourhood is seldom an
interesting shake. Neither are the chances high that the move will improve
the solution or take the schedule to an unexplored area because most of the
environment remains unchanged after moving a single shift.

Shake weekends (swap a weekend between two personnel members)
The nature of some weekend constraints often prohibits the single shift-day
neighbourhood to remove weekend shifts from a personal schedule. Removing
(or adding) a single shift on Saturday or Sunday can create violations of the
‘complete weekends’ (Constraint 15) and very often also on some consecutive-
ness constraints. Removing or adding simultaneously a Saturday-Sunday shift
pair in a person’s schedule can overcome barriers in the cost function. Even if
a weekend shake does not improve the quality of the schedule, it has taken the
solution into a considerably different area of the search space.

Shake 2 people (swap two personal schedules)
Swapping personal schedules for people with different work regulations will nor-
mally make both schedules worse. Even if two people have the same work
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Figure 7.3: Possible moves in a shuffle neighbourhood between the personal
schedules of Nurse A and Nurse C; for clarity, the moves are presented on 4
instances of the schedule
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Figure 7.4: Examples of moves between Nurse A and Nurse C in a core shuffle
neighbourhood
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Neighbourhood Steepest Descent Tabu Search
D single shift-day x
PR personal requests x
W weekend x
MV worst constraint x
SH shuffle x
GS greedy shuffle x
CS core shuffle x

Table 7.1: Selection of pairs of neighbourhoods and heuristics for the test results
of Table 7.2

regulations, their personal schedules can be very different in terms of the value
of the cost function. For the purpose of diversification, this is certainly a good
shake. The value of the cost function, however, will rarely drop after this shake.

7.4 Variable Neighbourhood Approaches

We refer to Section 5.4 for the initialisation phase. In the variable neighbour-
hood experiments presented in this chapter, we applied the last initialisation
option, in which all the required shifts are assigned at random. The heuristics
start from feasible schedules (see procedure of Fig. 5.7 in Section 5.4.2).
The nurse rostering problem is solved by scheduling each skill category
separately as explained in Section 5.5. We opted for applying two different
search algorithms to this problem, namely steepest descent and tabu search.
The details of the tabu search algorithm will be explained thoroughly in
Chapter 8. For both steepest descent and tabu search, the decision for a move
is made at random out of the set of equally good solutions. Several layouts
have been implemented for swapping between these algorithms, combining
different neighbourhoods from the set defined in Section 7.3.1. The experiments
which have been carried out in Section 7.5 to test the variable neighbourhood
approach have fixed algorithm-neighbourhood pairs. Table 7.1 presents all the
combinations. Previous experiments indicated that it is better to combine the
single shift-day neighbourhood with tabu search than with steepest descent.
In problems of realistic size, there are plenty of non-tabu moves which can
guide the search out of the environment of a local optimum, whereas steepest
descent ends in the first local optimum. As long as there are improving moves,
the search in shuffle neighbourhoods continues. We deliberately combine
these neighbourhoods with steepest descent because they generally reach good
quality local optima (provided they are explored after a search in a smaller size
neighbourhood). Applying tabu search in the shuffle neighbourhoods would
increase the calculation time enormously. Experiments have also been carried
out with ‘shaking’ the neighbourhood (Section 7.3.2). Shaking did not generally
contribute to finding good quality schedules in preliminary experiments and we
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decided not to keep it in the algorithm. Rather, most of the neighbourhoods
of the soft constraint class (2nd category in Section 7.3.1), have the effect of
shakes since they search improvements for a partial set of soft constraints only.
Searching in these neighbourhoods can be seen as a process which reduces the
contribution of a particular soft constraint to the overall cost function and is
thus much more relevant than random shakes.
The steepest descent algorithm (obviously) stops when the neighbourhood
contains no better solution than the current one. The stop criterion for the
tabu search algorithm is defined as a number of iterations without improvement
(see Section 8.3.4). The number depends on the problem dimensions (number
of people, number of shift types, length of the planning period, etc). When the
stop criterion for a heuristic and neighbourhood combination is reached, the
heuristic switches to another neighbourhood, or to the other search algorithm.
Starting from an initial solution, local search is applied in the first neighbour-
hood. If the local optimum thus found is better than the current best solution,
the algorithm moves there and continues the search in the first neighbourhood;
otherwise, it employs the next neighbourhood and applies the corresponding
search method. The algorithm stops when the search in the last neighbourhood
does not lead to an improvement. Fig. 7.5 presents a schematic overview of the
procedure.

initialise:
select a set of algorithm-neighbourhoods pairs
(neighbourhoods Nk, k = 1 . . . kmax)
set success rate successk

define a local stop criterion
construct an initial feasible solution x

search:
set k = 1
WHILE k ≤ kmax

IF successk ≥ 1
explore the neighbourhood until local stop criterion
is met
IF the best solution x′ is better than x

x = x′

k = 1
ELSE

successk = successk − 1
k = k + 1

Figure 7.5: Pseudo code for the variable neighbourhood approach
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Neighbourhoods can be applied in many different orders, which affect the
result of the search considerably. It is shown to be the best approach to
develop algorithms exploring neighbourhoods with increasing size. Whenever a
neighbourhood generates a better solution, the algorithm starts over from the
first (finest) neighbourhood, which is generally also the least time consuming.
As will be explained in detail in in Chapter 8 and 9, it is always beneficial for
use in practice when, after the most greedy step, no finer neighbourhood is
explored. The same holds for the core shuffle neighbourhood as it brings the
solution into a ‘finalised shape’. The nature of the GS and CS environments
leads to solutions that are judged positively by the schedulers. Additional
moves which do not worsen the quality, might bring the solution into a new area
that stimulates hospital planners to explore it manually. The greedy shuffling,
and even more so the core shuffling neighbourhood, are not recommended for
very large problems when the calculation time is limited. Exploring the entire
neighbourhood is (for both approaches) an extremely intensive task.
The soft constraint related neighbourhoods are not equally interesting for
every type of problem. We therefore developed a method to avoid those
neighbourhoods that never contribute to better solutions. The probability
of selecting a particular soft constraint neighbourhood will change during
the course of the calculations, depending on the results produced by that
neighbourhood. We introduce a parameter successk which is decreased by 1
each time neighbourhood k does not lead to better solutions (see also Fig. 7.5)
When successk is less than 1, the neighbourhood k will not be applied in later
iterations. The single shift-day neighbourhood initially has a very high value
for successk whereas soft constraint related neighbourhoods preferably start
with smaller values (1 or 2).
When changing the neighbourhood, it is possible to start from the most recent
solution reached in the previous algorithm-neighbourhood combination; or
from the overall best solution found. It appeared from experiments that the
best solution is always a recommendable start position.
Since the variable neighbourhood search has been applied to real-world prob-
lems, we cannot ignore the calculation time. The test data sets are complex
and large, and hospital schedulers expect a schedule to be generated within a
reasonable calculation time.

7.5 Test Results

Experiments have been carried out on real-world data with different combina-
tions of the neighbourhoods defined in Section 7.3.1. Test data can be obtained
from the website http://extern.kahosl.be/greet.vandenberghe/. Depending on
the nature of the test data (whether certain soft constraints are applied or not,
whether the corresponding cost parameter is high, etc) the effect of the neigh-
bourhoods corresponding to soft constraints is completely different.
In Table 7.2, the test results on a rather simple real-world problem are presented
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Algorithm r rsD rs Result Time
D CS v v 572 23’19”
D W CS v v 572 23’13”
D SH CS 527 21’16”
D W GS v 572 8’09”
D W MV GS (see Fig. 7.6) v v 572 9’14”
D PR W SH GS v 572 8’12”
D PR W SH GS v v 527 7’34”
D PR W SH GS v v 527 7’13”
D PR W SH CS v v 572 21’05”
D W SH GS CS v v 527 11’16”
D W SH GS 602 3’30”
D W SH GS v 573 4’09”
D W SH GS v v 573 4’09”
D W SH GS v v 587 3’41”
D PR W SH GS CS 527 9’18”
D PR W SH GS CS v v 527 13’24”

Table 7.2: Test results for algorithms combining different neighbourhoods in the
search

for a variety of algorithms. The scheduled ward consists of 20 personnel mem-
bers, 6 shift types and very stringent soft constraints for which simultaneous
satisfaction can never produce a feasible schedule. The combination of applied
neighbourhoods is denoted by the abbreviations in the column ‘algorithm’. All
the abbreviations stand for the neighbourhoods, which can be found in Section
7.3.1. To summarise, the neighbourhoods used in the test example are: single
shift-day (D), weekend (W), most violated constraint (MV), shuffle (SH), greedy
shuffle (GS), and core shuffle (CS). Columns 2-4 present restart options:

r repeat ‘large section’ neighbourhoods with the best solution found after
the global stop criterion is reached for the first time

rsD restart from the first neighbourhood with the best solution found after the
global stop criterion is reached for the first time

rs identical to rsD but skip the single shift-day neighbourhood

Fig. 7.6 schematically presents the scenario for one of the test algorithms. The
algorithm applies 4 different neighbourhoods: the single shift-day neighbour-
hood D, two soft constraint related neighbourhoods W and MV, and one large
section neighbourhood GS. The smallest box shows the nearest neighbourhood
whereas bigger peripheries of the neighbourhoods are represented by bigger
boxes. Note that D and W are explored with tabu search while in the other 2
neighbourhoods steepest descent is applied. The numbers 1-8 explain the order
in which the neighbourhoods are passed through. After the first exploration of
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GS was finished, the numbers 4-6 demonstrate how the option rsD is applied. It
makes the search restart from the smallest neighbourhood. Number 7 indicates
option r, for which GS is applied at the end of the search, starting from the
best solution found.

RESULT

INITIALISATION

single soft
constraint

large
sections

D W

MV GS

-

?

6
??

-
-

-
-

i1

i2

i3

i4

i5

i6
i7

i8Tabu Search Steepest Descent

Figure 7.6: Diagram of the scenario for the algorithm D W MV GS with options
r and rsD, the initialisation starts from an empty schedule and there are no post
planning options selected (Fig. 5.1)

The Result is the value of the cost function, i.e. the weighted sum of the
violations of soft constraints, summed over all the personnel members of the
ward (see Chapter 4). The calculation time was recorded on an IBM RS6000
PowerPC. It is presented in the column Time. Fig. 7.7 schematically shows
the effect of applying the neighbourhoods of Fig. 7.6 on the solution quality.
The progress of the quality corresponds very well to our intuitive findings
after testing many different combinations. When applying the single shift-day
neighbourhood, the number of violations drops drastically. The value of the cost
function increases while exploring the soft constraint related neighbourhoods,
because they do not take the overall quality into account when searching
improvements for one particular constraint. In the greedy neighbourhood, more
time is required for improving the solution than in the single neighbourhood.
Although the improvement is small, the overall satisfaction of planners is
much higher after applying this neighbourhood. This cannot be stated with
the figure, however, because there is not much difference in terms of the cost
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Figure 7.7: Effect of applying the neighbourhoods of Fig. 7.6 on the solution
quality and the computation time

function value.

Many algorithms reached a solution with value 527, which is the best cost
function value found. The solutions are all different, however. Some constraints
cannot be satisfied and their violation appears in all the solutions, all be
it in the schedule of different people. It is remarkable that the category of
algorithms, which reached the value 527, all make use of the greedy and/or
core shuffle neighbourhood. Larger scale swaps are very useful at the end of
the search. This finding will be confirmed for other meta-heuristics in Section
8.4 and 9.5.
The order in which neighbourhoods are explored is very important. It would
be a waste of effort to use a greedy neighbourhood to improve the randomly
obtained initial solution. Greedy algorithms require a lot of time to explore
the entire search space and they would improve the schedule in a very slow
manner. The single shift-day neighbourhood is rather small and quickly brings
the initial solution into an area with acceptable quality.
It is also remarkable that a combination of the single shift-day (D) and the
core shuffle (CS) neighbourhood alone is not interesting at all. The solution
quality is not impressive and the calculation time is very high. With the
D neighbourhood only, the search stops in a solution which is the result of
single shift swaps. The CS neighbourhood finds many changes which make the
solution better and therefore requires a lot of calculation time. When applying
the CS neighbourhood after a series of smaller scale neighbourhoods (but larger
than single shift-day) the possible improvements are smaller, and so is the
calculation time.
Some medium scale (soft constraint related) neighbourhoods have been used
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in the algorithms: weekend, personal requests and most violated constraint.
Searches in these neighbourhoods are rather considered as swaps than as
real improvement steps. They do not contribute by generating overall better
solutions but they act as a diversification in the search (see Fig. 7.7). If the soft
constraint neighbourhood does not contribute it is eliminated by the success
variable. The soft constraint related neighbourhoods are not necessarily
developed to solve particular soft constraints but rather to explore parts of the
solution space in which these constraints are satisfied. Later iterations might
take the solution back to a schedule with a reduced number of violations for
that constraint. Since the problem specific neighbourhoods, which the soft
constraint neighbourhoods are, cannot consume much calculation time, the
chances of finding good solutions in a reasonable amount of time increase.

The discussion in this chapter only presents the final findings after plenty
of experiments on real-world (but confidential) data. We figured out that it is
not worth spending effort on constructing a good quality initial solution for the
problem defined by ANROM (in contrast with what is often claimed in literature
on meta-heuristics), but that the local search heuristics on the single shift-day
neighbourhood are able to quickly improve the quality of a random initial solu-
tion towards a reasonable value of the evaluation function. In comparison with
most other solution methods for the nurse rostering problem (see conclusions of
the literature review in Section 3.5), the approach presented in this thesis was
tested in practice in widely varying healthcare environments. The observation
of how experienced planners manually modify the resulting schedules inspired
us to implement neighbourhoods such as greedy shuffling and core shuffling,
that attempt to finalise the search in a way the manual schedulers appreciate
best. In fact, it turned out to be often more satisfying to spend quite a lot more
calculation time on calculating minor improvements with respect to the evalu-
ation function value, but important improvements with respect to the overall
impression of users in practice.

7.6 Conclusion

Changing neighbourhoods, when applying meta-heuristics to the nurse rostering
problem, enables the system to find schedules which are hidden for single
neighbourhood heuristics.
The nature of the problem tackled is such that it has a very complex search
space compared to other problems reported upon in literature. Meta-heuristics
are not always effective enough to explore the search space thoroughly. In the
novel approach presented in this chapter, we demonstrate how adding problem
specific neighbourhoods to straightforward ones increases the applicability of
general heuristics while keeping the calculation time down.
Experiments revealed that it is often beneficial to perform intensive local search
in the immediate surroundings of a an obtained schedule. After reaching a
local optimum, we recommend the exploration of wider environments.
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Several algorithms reach results of equally good quality. The fastest among
these is D PR W SH GS, with the single shift-day, two soft constraint related
neighbourhoods, and the shuffle and greedy shuffle as large section neighbour-
hoods. When the stop criterion is reached for the first time, the algorithm
passes through all the stages again, except the smallest neighbourhood one (rs
option). The algorithm ends with exploring the GS neighbourhood proceeding
from the best solution found. The second runner up is nearly the same
algorithm but it restarts with the rsD instead of the rs option. It does not find
a better solution although it explores an extra neighbourhood after restarting
(which explains the longer calculation time). The worst algorithm in terms of
quality is D W SH GS, but it is the fastest. Algorithms with a long calculation
time do not necessarily produce good results (see D CS and D W CS) because
they perform intensive local search in the environment of early found local
optima.
We developed a method to organise the changes of neighbourhoods, and to
choose particular soft constraint-related neighbourhoods, which are beneficial
for the search, resulting in schedules with a low value of the overall cost
function. It is often more beneficial to apply simple heuristics such as steepest
descent, with a variety of neighbourhoods than to use sophisticated heuristics
which are blind to large parts of the search space.

The variable neighbourhood approach is not the most robust meta-heuristic
for the nurse rostering problem. In the following chapters, we will introduce
more hybrid approaches, which all apply neighbourhoods introduced in Section
7.3.1.
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Chapter 8

Hybrid Tabu Search

8.1 Introduction

The complexity of the problem described in Chapter 2 requires other than pure
mathematical approaches in real-world applications. For the implementation of
ANROM for practical use (Section 2.1), we developed hybrid tabu search algo-
rithms. These heuristics deserve a full chapter in this work because they still
form the basis of the software application used in practice. A slightly modified
version of this chapter was published as E.K. Burke, P. De Causmaecker, and
G. Vanden Berghe: A Hybrid Tabu Search Algorithm for the Nurse Rostering
Problem, X. Yao et al. (Eds.): Simulated Evolution and Learning 1998, Lecture
Notes in Artificial Intelligence, Vol. 1585, 1999, 187-194, Springer (Burke et al.
[39]).
In Section 8.2, we briefly introduce tabu search and some applications of the
meta-heuristic. Section 8.3 describes the details of the tabu search implementa-
tion for this nurse rostering problem. The hybridisations in Section 8.3.6 have
been developed to make the algorithms more generally applicable and to in-
crease their overall performance. Some test results for real world problems are
presented in Section 8.4. We conclude in Section 8.5.

8.2 Tabu Search

The term tabu search was first introduced by Glover in 1986 [103], at the same
time as the term meta-heuristics. Both the operations research (OR) and ar-
tificial intelligence (AI) domains have contributed to the foundations of tabu
search. While OR was focussing on optimisation and mathematical results, AI
was more into qualitative analysis.
Tabu search is a meta-heuristic which guides a local search procedure to explore
the solution space beyond local optimality. The local procedure is a search
heuristic that makes use of a move to reach the neighbourhood of any given
solution (Glover and Laguna [104]). It is an improvement on a descent search
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with a neighbourhood structure and a cost function [117].
Tabu search iteratively explores all the possible solutions in the neighbourhood
of a current solution and moves to the best one. In order to prevent the heuristic
from cycling, a memory structure, called the tabu list, is incorporated in the
method. Tabu search applies this list to force the search away from solutions
selected for recent iterations. The neighbourhood of a solution thus depends on
the iteration number. The tabu list is referred to as the short term memory of
the heuristic.
The tabu list, which is based on certain attributes of the most recent moves,
can function in accordance with the first in, first out principle. If a move sat-
isfies certain tabu list conditions, it should be rejected. Aspiration criteria are
required in order not to ignore moves to solutions that are better than any
previous solution. Attribute based tabu lists avoid cycling by preventing the
search from going back to an already visited local optimum. It also excludes
many solutions that have not been visited before, by forcing the search into
unexplored regions.
There is no rule to set the tabu list sizes for different problems. The determi-
nation of the best list size can only acquired by experiments on the particular
type of problems for which the algorithms are developed. Intuitively, large scale
problems should benefit from long tabu lists to avoid cycling. Longer tabu lists
are expected to be more effective against falling back in the same local opti-
mum. If cycling must be completely avoided, the calculations and memory use
are very expensive [106].
In the tabu search algorithm for nurse rostering (Section 8.3), we have imple-
mented hashing functions. They were first introduced by Hansen and Jaumard
[112]. Woodruff and Zemel [223] have explored the ideas in detail to keep the
memory use for tabu lists down. The hashing functions introduced in Section
8.3.1 are applied in the algorithms for ANROM. Vectors resulting from moves
are mapped to integers, which can be stored for a large number of recently vis-
ited solutions. Hash functions are the mappings from vectors to integers and
the hash list is the list of hash functions for recently visited solutions.
Tabu search enables moves to strictly selected parts of the search space. It
is very probable that the list prevents the search from visiting attractive solu-
tions. Aspiration conditions therefore overrule the tabu status of certain moves
at some occasions. If a move leads to a solution of higher quality than any
solution found before, the move should be accepted.
Memory in tabu search can also be used for learning in a more long-term mean-
ing. Intensification and diversification are two important components that help
tabu search to behave intelligently. It is interesting to investigate if good so-
lutions have common properties. Intensification can either restrict the neigh-
bourhood or change the current solution to satisfy beneficial properties which
occurred in previously visited good solutions. It afterwards discourages the
properties from being violated during the search.
Pure intensification is insufficient to guarantee good results for different kinds
of optimisation problems. It is necessary to apply diversification to allow the
most effective search of the solution space. Diversification guides the search to
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contrasting regions.
In the literature overview of Chapter 3, several examples of tabu search imple-
mentations are discussed: nurse rostering (Berrada et al. [21] and Dowsland
[84], Section 3.3.4) and other personnel scheduling problems (e.g. Chiarandini
et al. [58] in Section 3.4).
Many other researchers have made important contributions to tabu search and
developed a large number of very successful applications. There are also ex-
amples of tabu search in manufacturing (Srivastava and Chen [200]), planning
and scheduling (Barnes and Laguna [12], Brandimarte [27], Brucker and Schu-
macher [29]), transportation and routing (Gendreau et al. [102], Semet and
Taillard [190]), layout problems (Blacewicz et al. [23], Bennell and Dowsland
[19]), graph colouring (Costa [63]), graph timetabling (Hertz [116], White and
Xie [219], Di Gaspero and Schaerf [81]), assignment problems (Ferland [92]),
etc.

8.3 Tabu Search Algorithm for the Nurse Ros-
tering Problem

8.3.1 Original tabu search algorithm

The original tabu search algorithm developed for this nurse rostering problem
applies the single shift-day neighbourhood (D). It is a move of a duty from
one person to another on the same day. Essentially we move one assignment
within a column of the solution representation given in Fig. 7.1. The move is
not allowed if the goal person is not of the right skill category of or is already
assigned to that duty. Hence the hard constraints will still be respected. For a
detailed description of this neighbourhood, we refer to Section 7.3.1.
For each skill category (for each iteration) possible moves will be calculated and
the move leading to the highest benefit will be performed. If the highest benefit
is negative, the move will be performed anyway, unless this move is forbidden
by the tabu list. When a move is accepted, a rectangular area in the roster
around the roster point where the duty comes from and where it is moved to
may not be changed.
For comparison purposes only, we introduced a steepest descent algorithm in
which the neighbourhood of the moves is exactly the same as in the tabu search
algorithm. After evaluating all the possible moves in the neighbourhood, the
best one will be performed, unless this best move does not improve the schedule,
in which case the algorithm stops. The algorithm chooses at random among
moves leading to equally good solutions. These algorithms turned out not to be
powerful enough to produce good solutions for complex problems as is shown
in the ’steepest descent’ and ’tabu search’ experiments in Table 8.1 and 8.2
(Section 8.4). The tabu search algorithm performs better than the steepest
descent algorithm and is therefore used as a local search heuristic in the hybrid
algorithms described in Section 8.3.6.
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Figure 8.1: Illustration of the rectangles around the positions of a swap, which
are used in the hash function

8.3.2 Tabu list

The tabu list for this application is implemented with a hashing function. We
store in each hash element the serial numbers of the people whose schedules are
involved in the swap, the assignment unit of the swap and a character table
in which the roster positions, in the surrounding areas of the swap origin and
goal of the move, are saved. The surrounding areas of both origin and goal, are
rectangles with dimensions tabu height and tabu width. For both origin and
goal of the swap, we consider tabu height/2 people with a lower serial number
than the person whose schedule is being manipulated, and tabu height/2 people
with a higher serial number. It is demonstrated in Fig. 8.1, which makes use
of the representation in Fig. 4.2 for presenting the schedule. Each assignment
unit of the planning period has a separate column. Analogously, the schedule of
tabu width/2 assignment units before and an equal number after the assignment
unit considered are kept in memory for all these personal schedules. For some
swap positions, which are near the borders, no rectangle of the required size can
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be drawn within the schedule. The hash function simply works with rectangles
of smaller width and height in that case, as is indicated in Fig. 8.1. As is
explained in Section 5.5, the only personal schedules considered are those of
the people who are skilled for the category being scheduled. In the program,
we temporarily map the serial numbers of the personnel members to a new list
with length Pq.
A hash element h has three fields for integer values, 2 for saving the serial
numbers of the people whose schedule is involved in the swap and 1 for the time
of the swap. It has an extra field for a table representing the assignments in
the rectangles around the swap positions. The addressh1 of the hash element
corresponding to the origin node of the move is calculated by the following hash
function:

addressh1 = [ |{u, p ξ tl ≤ u ≤ th ∧ p1l ≤ p ≤ p1h ∧ schedulep,u 6= 0}|
+(t + (Pq + p1) ∗ (Pq + p2)) ] %HASH SIZE

Analogously, the hash element which corresponds to the goal position of the
move is calculated as follows:

addressh2 = [ |{u, p ξ tl ≤ u ≤ th ∧ p2l ≤ p ≤ p2h ∧ schedulep,u 6= 0}|
+(t + (Pq + p1) ∗ (Pq + p2)) ] %HASH SIZE

The value of HASH SIZE in the formulas equals T ∗ Pq ∗ 0.3 (Pq being the
number of people who can work for skill category q). The value was determined
after some experiments.
In our application, we keep the memory use down by not allocating memory
for hash elements unless we need it. We check for collision by comparing the
people and the time of the swap when an address in the hash list appears to
be occupied. If necessary, the assignments for the schedule positions in the
rectangles can be compared. The chance for collision does not need to be 0.
Thanks to the aspiration criterion, any better solution than the best one found
will be accepted anyway.

8.3.3 Aspiration

The simplest tabu criterion would be to prevent the reversal of a move for a
certain number of subsequent iterations. Due to the characteristics of the tabu
elements, it is not unthinkable that a tabu move leads to an overall better
solution.
As an example, we consider the part of an imaginary schedule as it is presented
in Fig. 8.1. If subsequent moves change the schedule in areas which do not
overlap with the rectangles corresponding to the presented move, the opposite
move does not necessarily lead to an already visited solution because the rest
of the schedule has changed. The algorithm therefore evaluates the quality of a
new solution before it checks the tabu list.
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Figure 8.2: Diagram of the hybrid tabu search algorithms for the nurse rostering
problem, plug-in for Fig. 5.1

8.3.4 Stop criterion

The original tabu search algorithm stops after a number of iterations with-
out improvement. We have empirically set the value of that number equal to
Pq ∗ T . This number does not take the coverage into account (schedules with a
high coverage have a smaller search space than schedules with a low coverage).
Hybridisations such as problem specific diversification moves turned out to be
more beneficial for the quality of the algorithms than increasing the number of
iterations in the simplest tabu search environment (see Section 8.3.6). After
diversification steps, the iterations counter restarts from 0, whether or not an
improvement was found. A simplified representation of the flow diagram of the
hybrid tabu search algorithms described in this section can be seen in Fig. 8.2.
We refer to Chapter 5 for a thorough description of the possible procedures
but the general pre- and post-planning procedures are not copied in this figure.
After the initialisation phase, in which a feasible schedule is generated, the al-
gorithm enters the tabu search part of the process. Depending on the chosen
hybridisation, the results for TS1 or TS2 will be generated.
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8.3.5 Some diversification heuristics for the problem

Here we describe some heuristics that can be employed (in conjunction with the
original tabu search algorithm) to improve the solution.

Diversification 1: Complete weekend

For this diversification, the weekend neighbourhood (W) from Section 7.3.1 is
applied. Although the users of the program based on ANROM can assign a
cost parameter to this constraint, it is very hard to find satisfactory solutions.
The problem is that there are so many constraints and the degree of freedom
of ANROM is so high that it is likely to find solutions satisfying many other
constraints but not this one. In the graphical user interface, incomplete week-
ends really catch the eye, while other constraints such as overtime or too many
morning shifts on Mondays,. . . are not immediately visible. Since it is almost
impossible to guarantee good solutions with a certain setting of the parameters,
we decided to provide a manner of solving this problem the hard way, by not
caring about possible problems for other constraints. The stop criterion for the
Diversification 1 step is very simple. It stops when no further improvement
with respect to the weekend constraint (Constraint 15) is possible. The search
space for this step is rather small, the number of weekends in a schedule equals
W ∗ Pq, for the skill category q. The maximum number of moves required to
go from the worst case (highest possible number of violations of this constraint)
to the best (lowest possible number of violations) is approximately Pq/2 ∗ W .
In the worst case, none of the weekends for none of the personnel members
is a complete weekend, which means that there are Pq ∗ W violations. The
best case has no violations. By moving a weekend shift from one weekend to
another, the first one becomes empty (no violations), unless there were several
shifts planned on the same day for one person, and the other weekend becomes
a complete weekend.
The weekend steps are diversifications because they reach regions which cannot
easily be explored by the original tabu search moves. Moreover, good schedules
cannot afford high violations of the weekend constraints. They have certain fea-
tures in common, which reflect good assignments during weekends. This means
that the Diversification 1 step can also be looked at from an intensification point
of view. It aims at obtaining certain good properties in the solution.

Diversification 2: Consider the worst personal schedule

The Diversification 2 algorithm makes use of the shuffle neighbourhood (SH)
introduced in Section 7.3.1. If the complete weekend function (above) has not
changed the schedule, it can be beneficial to look at the people with the worst
schedule (according to the evaluation function). For every person (within the
category being scheduled) it is possible to calculate the value of the evaluation
function after exchanging a part of the schedule of the people involved. The
parts of the schedule always contain full days and the maximum length is half
the planning period. After all possibilities have been calculated, which is quite
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time consuming, the best exchange (chosen at random from equal values) is
performed. The result of this process often provides a better solution. However,
it is possible that the best shuffle does not improve the schedule. Therefore, a
separate tabu list is maintained to prevent successive shuffles from cycling.

Greedy shuffling: Model human scheduling techniques

The neighbourhood used for this search is the greedy shuffling (GS) neighbour-
hood introduced in Section 7.3.1. In practical applications, there was a problem
with the results of the tabu search algorithm because sometimes a human could
improve the visual result by making a small change. This process calculates all
possible Diversification 2 (above) moves for every pair of people. After listing
the gain in the cost function for every possible exchange, the shuffle leading to
the best improvement will be performed. Afterwards, the next best improve-
ment in the list is performed, provided none of the considered personal schedules
were already involved in an earlier shuffle. As long as there are improving ex-
changes in the list, they are carried out. The whole procedure starts over again
until none of the possible exchanges improves the quality of the schedule. Note
that greedy shuffling only considers improvements. Unlike Diversification 2,
greedy shuffling will never move to an equally good or worse solution and thus
withstands cycling.
The improvements on the schedule, which can be obtained by employing this
procedure together with tabu search (described as TS2 below), are considerable
but the biggest advantage of this step is that it creates schedules for which it is
almost impossible for a human to improve the schedule.

8.3.6 Hybrid tabu search algorithms

After extensive testing of hybrid versions of the tabu search algorithm and the
above heuristics, two algorithms were developed. The first one produces sched-
ules when a very short computation time is required (as it often is when planners
must react to unforeseen events such as staff absenteeism). The second algo-
rithm needs more computation time but generates schedules of a considerably
higher quality. Both algorithms are briefly described below.

Tabu search + diversification: TS1

The aim of this algorithm is to provide reliable solutions in a very short time.
In practice this algorithm has proved to be very useful to check whether the
constraints are realistic, whether during the holiday periods it will be possible
to plan good schedules if every person gets their desired holiday period, etc.
The algorithm is constructed quite simply from the original tabu search algo-
rithm. If after a number of iterations no improvement is found, the weekend
step is performed. In case the weekend step does not result in a different sched-
ule the second diversification step is performed. After this diversification step,
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Problem 1 RM RMP RMC
Value Time Value Time Value Time

steepest descent 2594 1’26” 2395 1’37” 2657 1’36”
TS 2435 2’05” 2214 2’06” 1928 1’59”
TS stop crit. x50 1915 40’58” 1675 41’21” 1534 23’58”
TS1 1341 6’00” 1089 5’59” 929 5’27”
TS2 1264 20’15” 1011 24’39” 809 28’08”

Table 8.1: Value of the evaluation function and results of the steepest descent
and variants of the hybrid tabu search algorithm for Problem 1, planning order
of the qualifications as chosen by the customer

the original tabu search algorithm is used again and so on. The calculations
stop after a global number of iterations without improvement.

Tabu search + greedy shuffling: TS2

This algorithm combination requires more time but the results are considerably
better from the human point of view. Anecdotal evidence suggests that the level
of satisfaction with schedules produced by this algorithm is actually higher than
the cost function indicates. The main reason for this is that after the shuffling
step the users cannot easily improve the results.
It is important for the greedy shuffling step at the end of the calculations because
its real aim is to perform the exchanges a human user would perform. It is
because of the exhaustive search character of the shuffling that this step takes a
lot of time. It is very important to calculate this step until there are no further
improvements because otherwise the goal of excluding manual improvements to
the schedule might be lost (Greedy shuffling in Section 8.3.5).

8.4 Test Results

The tests in this chapter are restricted to planning the minimum requirements
RM , planning between the minimum and the preferred requirements RMP
(= RM + coverage option Fig. 5.10), and planning according to the calculated
demands RMC (= RM + inconsistentRM ) as explained in Section 5.2. All
the experiments started from an empty initial schedule, which is made feasible
according to the algorithm described in Fig. 5.7 (Section 5.4.2). If we look at
Fig. 8.2, it means that we only present experimental results for shift type re-
quirements in this chapter. For the latter we decided to perform the step ‘add
shifts towards preferred personnel requirements’ (see Section 5.6.1) as a post
planning option, whenever this does not cause a violation of the soft constraints
(Section 5.6). In Table 8.1 and 8.2, the results of the variants of the tabu search
algorithm are compared to the steepest descent algorithm. The test examples
Problem 1 and Problem 2 are rather hard to solve real world problems and in
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Problem 2 RM RMP RMC
Value Time Value Time Value Time

steepest descent 1338 44” 1338 45” 1134 47”
TS 1189 57” 1189 58” 933 1’03”
TS1 843 3’18” 843 3’18” 867 2’14”
TS2 809 6’25” 809 6’25” 588 10’19”

Table 8.2: Value of the evaluation function and results of the steepest descent
and variants of the hybrid tabu search algorithm for Problem 2, planning order
of the qualifications as chosen by the customer

both cases the personal demands make a good schedule almost impossible.
The column ’Value’ shows the value of the evaluation function for the en-
tire schedule (see Chapter 4: the cost parameter per constraint times the
extent the constraint is violated). The column ’Time’ contains the compu-
tation time on an IBM Power PC RS6000. Test examples are available at
http://extern.kahosl.be/greet.vandenberghe/.
The third set of results, where the demands are adapted to the constraints as
described in Section 5.2 (RMC: calculating more realistic demands), are better
than the results in the first column. This is according to our expectations be-
cause the hard constraints were changed in order to prevent some unavoidable
violations. The steepest descent algorithm in the first table performs worse.
In Problem 2, there was no difference between the minimum and the preferred
requirements.
For all the considered examples, the tabu search algorithm performs better than
the steepest descent algorithm. We decided to organise the stop criterion for the
tabu search algorithm such that the computation time is of the same order of
magnitude as the time required to do steepest descent. Only Table 8.1 contains
the results of the original tabu search algorithm for a longer computation time.
It is obvious from the experimental results that it is much better to implement
problem specific diversification steps and to hybridise it than to increase the
computation time for the simplest algorithm.
The behaviour of the hybrid algorithms is better than the behaviour of the nor-
mal tabu search algorithm (with a short computation time). Even considering
the computation time, for application in practice it is worth using the hybrid
tabu search algorithm because the degree of confidence the users have in the
program is much higher.

8.5 Conclusion

The tabu search algorithm developed for the nurse rostering problem of
Chapter 2 respects the hard constraints during the search. Some diversification
steps, which are larger moves in the solution space, have proven more beneficial
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for the quality of the results than an increase of the calculation time for the
simplest version of the tabu search algorithm. Different users will choose
different algorithms, depending on their opinions and their requirements. The
runtime/quality trade-off depends very much on the individual planner. Some
users are really interested in the lowest possible value of the evaluation function,
no matter how long the calculations take, particularly in smaller hospitals
where a single planning officer generates the roster for the whole hospital and
will not mind if roster generation takes an overnight run. Others, for instance
in very big hospitals with many wards to be scheduled by individual head
nurses, needed quick calculations and a slightly lower quality of the schedule is
good enough, since each head nurse may have a very tight window in which to
generate a schedule.
Combining the original tabu search algorithm with some specific problem
solving heuristics not only guarantees better quality rosters but also satisfies
the hospital planners to a very high extent because it is almost impossible for
experienced planners to improve the results (considering the soft constraints)
manually. For many practical scheduling problems the higher quality of the
solutions produced by the hybrid algorithm compared to the simple tabu search
algorithm compensates for the increase in calculation time.

For application in practice, the hybrid tabu search approach combines fast
scheduling and good quality results. However, the approach has some short-
comings when applied to extremely difficult real world examples, in which the
application can benefit from extra information given by the users. In the next
chapter, we attempt to overcome some of these problems, by defining heuristics
which explore a much larger part of the solution space.

209



210



Chapter 9

Memetic Algorithms

9.1 Introduction

In this chapter, we introduce a range of new memetic approaches for the nurse
rostering problem. The algorithms apply steepest descent improvement heuris-
tics within a genetic algorithm framework. The main ideas of the memetic
algorithms described in this chapter were published as E.K. Burke, P. Cowl-
ing, P. De Causmaecker, and G. Vanden Berghe: A Memetic Approach to the
Nurse Rostering Problem, Applied Intelligence special issue on Simulated Evo-
lution and Learning, Vol. 15, Number 3, 2001, 199-214 [34].
Tabu search heuristics can be made effective, particularly for obtaining rea-
sonably good solutions quickly for smaller rostering problems, as mentioned in
Chapter 8. The tabu search algorithms do sometimes display considerable short-
comings for practical applications, particularly that they are not sufficiently
robust to handle difficult problems well. This provided the motivation to in-
vestigate population based approaches for the same problem. We discuss the
robustness problems, which arise in practice for tabu search heuristics. We pro-
vide empirical evidence to demonstrate the best features of a memetic algorithm
for the rostering problem, particularly the nature of an effective recombination
operator, and show that these memetic approaches can handle initialisation pa-
rameters and a range of instances more robustly than tabu search algorithms,
at the expense of longer solution times. Having presented tabu search (Chap-
ter 8) and memetic approaches (both with benefits and drawbacks) we finally
present an algorithm that is a hybrid of our memetic approaches and tabu
search approaches. This technique produces better solutions than either of the
earlier approaches and it is relatively unaffected by initialisation and parameter
changes, with a running time comparable to that of the memetic approaches,
combining some of the best features of each approach to create a hybrid which
is greater than the sum of its component algorithms. Any successful solution
method must be robust enough to cope with widely varying cost functions and
problem instances. In Section 9.2, we introduce evolutionary algorithms, and
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make a distinction between genetic and memetic algorithms. In the Sections
9.3 and 9.4 we present algorithms for ANROM. Section 9.3 presents several dif-
ferent genetic and memetic algorithms and Section 9.4 brings together Sections
8.3.6 and 9.3 to consider hybridisations between the two different approaches.
In Section 9.5 we compare and contrast the performance of the algorithms on
specific real-world problems. We present conclusions in Section 9.6.

9.2 Evolutionary Algorithms

9.2.1 Genetic algorithms

Darwin’s work, The Origin of Species [71], forms the basis of the evolution-
ary computation which has applications in artificial intelligence, optimisation,
game theory, etc. In the 1960’s, evolutionary algorithms have been introduced
to model natural evolution processes (Bremermann [28] and Fraser [97]). In
1975, Holland [118] presented the first genetic algorithm for discrete domains.
Schwefel [187] introduced evolution strategies for continuous optimisation and
Goldberg [107] explains how genetic algorithms can be applied to search, op-
timisation, and learning. Reeves [176] demonstrates that genetic algorithms
have become very popular for solving hard combinatorial problems. Fogel [95]
presents an extensive overview of early genetic approaches.
Genetic algorithms are inspired by biological processes. Natural species undergo
a process of slow evolution by mutation and crossover in genes. Gradually, good
qualities will emerge and uninteresting characteristics will disappear while the
species adapt themselves to their environment. Mutation perturbs single indi-
viduals and thus avoids local minima while crossover combines characteristics
of two (or more, in some approaches) parents. Solutions that are maintained in
the next generation are selected on the basis of their fitness.
A genetic algorithm maintains a population of individuals or solutions, which
are all built up by a set of genes. The quality of such a solution is given by its
fitness which is the value of the evaluation function. During the genetic process,
new generations will replace old ones. The members of a new generation are
constructed by applying the genetic operators on the individuals of the current
generation.
In Section 3.3.4, some examples of genetic algorithm approaches for nurse
scheduling are presented (Aickelin and Dowsland [5], Easton and Mansour [85],
and Tanomaru [201]). Other timetabling applications of population based ap-
proaches are school timetabling (Burke and Newall [41], Burke et al. [43], Car-
rasco and Pato [48], Paechter et al. [167], Ueda et al. [211]) or examination
timetabling (Ross et al. [180]), general personnel scheduling (Corne and Og-
den [62]), bin packing (Pimpawat and Chaiyaratana [172]), etc. Evolution-
ary approaches have also been successfully implemented in engineering (Gar-
cia et al. [100]), robotics (Han and Oh [111]), control (Ge et al. [101]), op-
timisation (Cercueil and François [53], Myung and Kim [149]), games (Dar-
wen and Yao [70], Reiser and Riddle [177]), neural networks (Kaise and Fu-
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jimoto [124]), forecasting (Lam [129], Liu and Yao [132]), pattern recognition
(Scott et al. [188], Tsjujimura and Gen [210]), programming (Liang et al. [130]),
data mining (Sierra [192]), etc.

9.2.2 Memetic algorithms

Hybrid evolutionary algorithms, which incorporate local search methods, are
named memetic algorithms. The term was first introduced by Moscato and
Norman [152] in 1992, while Radcliffe and Surry [174] further formalised the
idea.
Apart from genes, which are known to evolve in biology, also ideas can evolve.
Dawkins [73] describes a meme as a unit of cultural transmission, which can be
an idea or behaviour. Ideas can be combined to form new ideas (crossover), and
they can change by accident (mutation). Good ideas will survive longer than
bad ones. The difference with genes, however, is that memes can be improved
by individuals before they are passed on. A local improvement algorithm is
performed on each meme.
There are examples of memetic algorithms for a range of optimisation problems:
vehicle routing (Moscato and Norman [152]), timetabling (Burke et al. [42, 43],
Peachter et al. [168, 169]), job shop scheduling (Cheng and Gen [57]), mainte-
nance scheduling (Burke and Smith [44]), etc.

9.3 Evolutionary Algorithms for Nurse Roster-
ing

A basic genetic algorithm with just mutation and crossover operators can be
employed but to reach convergence it is important to have crossover operators
that combine parts of good solutions to produce good new solutions. A dif-
ficulty with rostering problems is often that the quality of a solution is not
necessarily a sum or a combination of the qualities of the partial solutions. We
have carried out a number of experiments with several crossover operators, ei-
ther conserving the ‘building blocks’ as much as possible or repairing the roster
if it is destroyed by the crossover. This section will describe a memetic algo-
rithm which incorporates the tabu search and hybrid tabu search algorithms
of Section 8.3.6 into a genetic algorithm. The components of the algorithms
introduced in this section and in Section 9.4, especially developed for solving
ANROM, can be seen in Fig. 9.1. We will describe how the algorithms can be
constructed with the components displayed. In the memetic algorithm used for
the nurse rostering problem, an initial population consists of N feasible sched-
ules, generated randomly using the initialisation techniques discussed in Section
5.4. There are several possibilities for recombination to create new offspring.
It is very important to organise the recombination so that the children inherit
the good characteristics of a parent generation. Since the quality of a schedule
is the sum of the schedule quality for each person, it is important to get these
personal schedules right. The characteristics of the constraints are such that
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Figure 9.1: Diagram of the components of the genetic and memetic algorithms
for the nurse rostering problem, plug-in for Fig. 5.1
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mixing up the scheduled events for a person usually leads to very bad schedules.
In the following algorithms, we have used many variants of the recombination
operators. Some preserve personal schedules to a high extent, others do not but
preserve the position of well-placed events. Each generation requires significant
calculation time, so we decided not to plan a high number of generations. Each
of the memetic algorithms stops when no improvement arises during two con-
secutive generations. The variants of the memetic algorithm (described below)
contain different recombination mechanisms.

Original memetic algorithm: M

In the simplest memetic algorithm, a steepest descent is performed for each
individual. The steepest descent algorithm applies the single shift-day neigh-
bourhood (D in Section 7.3.1) for the moves as the simplest tabu algorithm
(Section 8.3.1) where the planning order of skill categories (see Section 5.5) is
as given by the user. After evaluating all the possible moves in the neighbour-
hood, the best one is performed, unless this best move does not improve the
schedule, in which case steepest descent stops. After this step, there is a simple
tournament selection of the best individuals for creating offspring. For each pair
of parents, two new individuals are created. The first child contains the best
personal schedule (referred to as ‘row’ in the schedule) from the first parent +
the best personal schedule from the second parent (different from the first one
selected). The other personal schedules are chosen in a pair wise tournament
between the rows of the parents. This normally does not result in a feasible
schedule, so to make the child schedules feasible, shifts are added or taken away
at random where necessary (see algorithm Fig. 5.7 in Section 5.4.2). This leads
to diverse schedules of poor quality, prior to the application of the steepest de-
scent heuristic. The algorithm is schematically presented in Fig. 9.2.

Diverse memetic algorithm: DM

With the shortcomings of the tabu search algorithms in mind, we decided not
to plan the skill categories according to the planning order chosen by the cus-
tomers (Section 5.5) as in algorithm M above. In the DM algorithm, each time
the steepest descent algorithm is performed, the planning order of the skill cat-
egories is randomly chosen for each schedule, causing additional diversity in the
population. All other features of the algorithm are the same as for algorithm
M.

Diverse memetic algorithm with random selection: DMR

Here we use the steepest descent approach and other features of the DM al-
gorithm, but rather than choose the rows of the child rosters by tournament
selection, each personal schedule is chosen randomly from one of the parents.
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- create N different schedules using random initialisation
while stop criterion is not reached (stop criterion: no improvement
during two generations), repeat:

- make all the schedules feasible by randomly adding and deleting
appropriate shifts (algorithm of Fig. 5.7 in Section 5.4.2)

- perform steepest descent on each of the individuals
- select parents from the individuals by tournament selection
- recombine the parents,
per pair of parents, generate two children:

child 1:

- best personal schedule (row) from parent 1
- best personal schedule (row) from parent 2
- (or the second best one if the same row is best for both parents)
- for the other child rows use tournament selection from parent

rows

child 2:

- best personal schedule (row) from parent 2
- best personal schedule (row) from parent 1
- (or the second best one if the same row is best for both parents)
- for the other child rows use tournament selection from parent

rows

Figure 9.2: Schematic representation of the original memetic algorithm

Memetic algorithm with string recombination: MSR

In this algorithm, a different technique is used to generate offspring. It no longer
copies an entire schedule from one of the parents. For each personal schedule
(row) in the current solution, a time unit (day and shift, corresponding to a
column in the current period of Fig. 4.1) is randomly chosen. The part of the
schedule between the start of the planning period and this time unit is copied
from the first parent and the remainder from the second parent. The procedure
is repeated for the second child, except that the first part of each row of this
child is taken from the second parent and the remainder from the first parent.
Apart from this new recombination operator, this algorithm is the same as the
DM algorithm.

Memetic algorithm copying the x best events: MEx

The difference between the MEx algorithm and the DM algorithm considered
previously, is the way in which child schedules are generated from their parents.
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Good results were found when copying the ‘best placed’ events for every person,
from the parents to the children. The ‘best placed’ events are those events that
would lead to the worst increase in the cost function when removed. Experi-
ments have been carried out that copy x = 2, 3, 4, and 5 events per parent to
the child. If the best personal events are the same in both parents, this will
lead to only x events in the offspring. Again, the schedules are made feasible by
randomly adding the other events (according to Fig. 5.7), which of course leads
to more diversity.

9.4 Combining the Qualities of the Hybrid Tabu
Search and the Evolutionary Algorithm

Tabu search algorithms using different initial solutions and randomis-
ing the planning order of the skill categories: TSPOP

The tabu search algorithm (without hybridisations) and the memetic algorithms
do not always lead to excellent solutions for the complex problems hospital
planners have to deal with. Unfortunately, the quality of the solution depends
strongly on the initial schedule. Not that the schedule has to be good, on
the contrary, very good initial schedules are sometimes hard to improve by the
methods considered. The problem is actually that the small move made during
the tabu search (Section 8.3.1) cannot lead the solution away from some of the
local minima. In the commercial version based on this research, only the hybrid
versions of the tabu search algorithm are used. The users’ informal feedback
about the hybrid algorithms points to insensitivity to the random seed (initial
solution). The strength of the memetic algorithm approach is that many differ-
ent starting points are taken and a diversity of different schedules is maintained
throughout. An even bigger advantage is the possibility of planning the skill
categories in different orders. It might be argued that starting our tabu search
from multiple different starting points might produce solutions of comparable
quality to the memetic algorithms and hybrids. In order to compare directly
the performance of our tabu search approaches and our memetic approaches
and hybrids, given similar time, the TSPOP algorithm first produces a popu-
lation of initial solutions that are one by one improved by the TS1 algorithm
(Section 8.3.6) except that the ordering of skill categories is random. Greedy
shuffling (explained in Section 7.3.1) is applied to the best individual solution
of the population (see also Fig. 9.1).

Memetic algorithm with human inspired improvement functions:
MEH

If we combine the extra functions of the tabu search algorithm with the memetic
algorithm, either by using them as local improvement functions or by perform-
ing them on the best individual of the memetic algorithm, the results get much
better. The solutions thus found are of the same quality as, or better than the
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1. create N random individual solutions while the stop criterion is not
reached
(stop criterion: no improvement during two generations), repeat steps
2 - 5:

2. make all the schedules feasible by adding and removing appropriate
shifts randomly (Fig. 5.7 in Section 5.4.2)

3. perform the TS1 on each of the individuals
(choose the planning order of the skill categories at random)

4. select parents from the individuals by tournament

5. recombine the parents as explained in the ME4 algorithm

6. perform the greedy shuffling step on the best individual

Figure 9.3: Schematic representation of the memetic algorithm with human
improvement functions

solutions found with the hybrid tabu search algorithm. The reason why better
solutions are found is the diversification of the algorithm. By starting the calcu-
lations from different starting situations, and by changing the planning order of
the skill categories, the probability of finding better solutions is increased. For
the tests, we used the ME4 algorithm from Section 9.3. On the best individual
obtained with this ME4 algorithm, the greedy shuffling step (Section 7.3.1) is
applied. The algorithm is schematically presented in Fig. 9.3.

Switch: SWT

In all the previous algorithms, the number of staff of each skill category and
each shift remained constant once the initial feasible solution was found. Here
we add an additional move where, every now and then, the schedule is randomly
changed, for a random person and at a random day and shift. In case nothing
was scheduled for this person at this time, we introduce a new ‘event’ in the
schedule (i.e. if schedulep,t = 0, we insert an assignment: schedulep,t = qp). In
case something was scheduled already for the skill category being planned, we
remove the scheduled event (i.e. if schedulep,t ∈ {qp, pref + qp}, we remove an
assignment: schedulep,t = 0). The random changes may not violate the hard
constraints. As long as the number of scheduled people is not lower than the
minimum number and not higher than the preferred number, and as long as the
person in whose schedule there is a switch is of the right skill category, there is no
problem. Let us for example assume that the number of late shifts for caretakers
is minimum 2 and preferably 3 on a certain day in the planning period. Let
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us also assume that in the current solution 3 late shifts are scheduled on that
day. Assume that the ‘switch’ move, described in this section, randomly picks
this day and the late shift for the move. In case the randomly chosen person
was not assigned to the late duty that day, the algorithm cannot change this
because adding a late duty for that person would violate the hard constraints (4
late duties planned instead of the preferred number of 3). The other possibility
is that the algorithm picks at random a person who was already scheduled
for the late duty. In that case, the late duty will be removed. The removal
causes no violation of the hard constraints since the minimum required number
of scheduled late duties is still scheduled. With the ‘switched’ tabu search
algorithm, we allow more flexibility for staff to be scheduled at lower or higher
levels than usual, where this is permitted, according to the hard constraints on
coverage discussed in Section 2.3.3. We decided to alternate the ordinary tabu
search and the switch function within the SWT algorithm, since after a switch
the resulting solution is often of poor quality. The SWT algorithm is the ME4
algorithm with this additional change.

9.5 Results

We tested our algorithms on four difficult real-world rostering problems (two are
identical to the test problems discussed in Chapter 8) arising in Belgian hospi-
tals. Due to complex confidentiality and operating requirements, gathering each
set of problem data required significant amounts of time and effort. Each of the
four rostering problems has different characteristics and consistent performance
across these four different problems provides strong empirical evidence of per-
formance overall. It is not appropriate to test our algorithms using random data
that would not have the same problems associated with solution as are encoun-
tered in practice. The results of applying our heuristics to the problems are given
in Tables 9.1 - 9.4. We have given the value of the evaluation function and the
time taken for the planning of the minimum staff requirements (RM), planning
towards the preferred numbers of staff at each skill category (RMP , see Section
5.6), and planning the recalculated requirements which will aid satisfaction of
the soft constraints (RMC) as explained in Section 5.2. In all the tables, the
column ‘Value’ shows the value of the evaluation function. The column ‘Time’
contains the calculation times on an IBM Power PC RS6000. None of the four
problems is feasible. At http://extern.kahosl.be/greet.vandenberghe/ some test
examples are available.
The consistency check procedure suggests to modify the hard constraints in all
the cases.

Problem 1 is large with many conflicting soft constraints, being by far the
most difficult problem of this group. Problems 2 and 4 are smaller problems,
they also have fewer difficult soft constraints and are thus much easier than
Problem 1. In Problem 2, a feasible solution requires many alternative skill
category assignments. Some of the skill categories are understaffed, and many
people go on long leave during the planning period. Problem 3 is of intermediate
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Problem 1 RM RMP RMC
Value Time Value Time Value Time

M (10 generations) 1445 52’33” 1296 52’42” 1103 50’18”
M (100 generations) 1435 4h46’34” 1293 4h59’04” 1100 4h22’41”
DM 1334 52’40” 1298 52’58” 1091 50’28”
DMR 1993 1h00’01” 1829 1h00’20” 1716 59’01”
MSR 1991 31’14” 1806 31’49” 1695 34’51”
ME2 1397 1h24’25” 1266 1h24’36” 1203 1h16’57”
ME3 1300 2h10’18” 1209 2h10’40” 1120 2h13’45”
ME4 1208 2h08’30” 1087 2h08’41” 1003 2h00’43”
ME5 1322 2h02’43” 1199 2h02’52” 1127 1h58’22”

TS 2435 2’05” 2214 2’06” 1928 1’59”
TS1 1341 6’00” 1089 5’59” 929 5’27”
TS2 1264 20’15” 1011 24’39” 809 28’08”
TSR 2893 2’20” 2714 2’21” 2983 2’22”
TS1R 1911 18’33” 1692 35’14” 1573 35’03”
TS2R 1911 34’16” 1691 53’55” 1573 40’09”
TSPOP (12 individuals) 1352 1h38’33” 1089 1h42’55” 736 1h41’47”
TSPOP (24 individuals) 1352 3h40’16” 1083 3h07’30” 746 2h52’02”

MEH 1192 2h22’04” 904 2h28’28” 769 2h31’51”
SWT 1090 1h45’17” 1094 2h20’26” 807 30’14”

Table 9.1: Comparison between the algorithms for Problem 1

complexity. We deliberately tested the approach on four test problems of a very
different nature, in order to demonstrate the sensitivity of the newly developed
algorithms. Some of the hybrid tabu search results of chapter 8 are repeated in
this section for Problem 1 and 2, for comparison only.

The original tabu search algorithm TS is very good at producing a reason-
able starting solution from a random initialisation in a short time. It is however
a very slow method if it is used to generate acceptable solutions. Though the re-
sults of the hybrid tabu search algorithms TS1 and TS2 are considerably better,
there is no indication how much more they could be improved. Unacceptable
solutions usually arise when the constraints on the problem are contradictory.
It is then very hard to find the very narrow valleys in the solution space, which
contain good schedules. Giving a very high value to the cost parameter cor-
responding to a particular constraint does not necessarily guarantee that the
solution will be free from violations of this constraint.

Since the test problems consist of wards with different skill categories, we
also tested what the influence of changing the planning order was (see Section
5.5). There are particular difficulties when the requirements for people with
a certain skill category are higher than the number of people available. They
are only significant in the tabu search algorithm where every ward is planned
skill category by skill category. The customers can freely decide upon the order
in which they want the skill categories to be planned. When planning such a
skill category, the algorithm is free to place the required shifts on every day
that the people within the category under consideration (or with this category
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Problem 2 RM RMP RMC
Value Time Value Time Value Time

M (10 generations) 1245 4’09” 1245 4’09” 1060 4’12”
M (100 generations) 1245 10’53” 1245 10’53” 1060 10’22”
DM 800 4’10” 800 4’10” 823 4’40”
DMR 1037 2’56” 1037 2’56” 992 2’56”
MSR 1104 2’51” 1104 2’51” 1080 2’59”
ME2 1123 22’02” 1123 22’02” 1130 22’02”
ME3 752 22’16” 752 22’16” 748 21’42”
ME4 698 22’01” 698 22’01” 707 22’10”
ME5 782 21’51” 782 21’51” 769 22’05”

TS 1189 57” 1189 58” 933 1’03”
TS1 843 3’18” 843 3’18” 867 2’14”
TS2 809 6’25” 809 6’25” 588 10’19”
TSR 2614 48” 2614 50” 1584 49”
TS1R 1875 1’04” 1875 1’06” 554 8’21”
TS2R 790 15’10” 790 15’11” 554 9’37”
TSPOP (12 individuals) 885 29’36” 885 29’37” 464 32’34”
TSPOP (24 individuals) 892 50’19” 892 50’21” 457 53’48”

MEH 980 23’54” 980 23’54” 535 24’42”
SWT 992 19’09” 992 19’09” 578 19’26”

Table 9.2: Comparison between the algorithms for Problem 2

Problem 3 RM RMP RMC
Value Time Value Time Value Time

M (10 generations) 567 23’46” 560 23’58” 547 21’20”
M (100 generations) 552 1h37’14” 541 1h37’25” 547 1h15’14”
DM 403 23’57” 402 24’10” 396 24’10”
DMR 636 28’45” 629 28’58” 620 27’51”
MSR 612 27’12” 610 27’30” 604 27’28”
ME2 526 1h17’17” 521 1h17’30” 518 1h11’42”
ME3 472 57’03” 466 57’16” 459 56’54”
ME4 398 1h16’43” 392 1h16’41” 391 1h00’23”
ME5 397 1h09’55” 393 1h10’05” 390 1h04’42”

TS 422 2’05” 418 2’08” 415 2’06”
TS1 398 7’38” 389 7’42” 390 7’38”
TS2 391 13’52” 380 13’56” 377 14’11”
TSPOP (12 individuals) 624 1h35’50” 620 1h48’06” 583 1h32’27”
TSPOP (24 individuals) 608 2h56’11” 608 3h16’12” 583 2h55’00”

MEH 378 1h20’44” 379 1h22’45” 369 1h28’03”
SWT 381 1h17’09” 375 1h30’10” 364 1h26’32”

Table 9.3: Comparison between the algorithms for Problem 3
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Problem 4 RM RMP RMC
Value Time Value Time Value Time

M (10 generations) 226 8’47” 226 8’47” 224 8’09”
M (100 generations) 225 33’27” 225 33’27” 224 32’54”
DM 241 9’21” 241 9’21” 237 9’42”
DMR 266 9’33” 266 9’33” 260 10’39”
MSR 273 8’40” 273 8’40” 265 9’15”
ME2 200 42’11” 200 42’11” 205 39’23”
ME3 184 46’31” 184 46’31” 184 46’22”
ME4 186 45’40” 186 45’40” 187 47’19”
ME5 191 42’16” 191 42’16” 190 44’57”

TS 231 52” 231 53” 227 1’03”
TS1 190 2’21” 190 2’23” 189 2’14”
TS2 189 4’25” 189 4’26” 186 4’38”
TSPOP (12 individuals) 269 22’16” 269 23’09” 266 24’28”
TSPOP (24 individuals) 264 39’03” 264 40’21” 263 43’10”

MEH 182 23’54” 182 24’35” 175 24’42”
SWT 179 19’09” 179 19’59” 176 19’26”

Table 9.4: Comparison between the algorithms for Problem 4

as an alternative possibility) are available. When this step of the algorithm
stops, the shifts planned for this skill category are frozen. This sometimes
causes difficulties in planning the shifts for other skill categories, because of the
overlap between categories, demonstrated in Fig. 5.6. The other algorithms use
a random ordering of the skill categories. Practical experiments have shown
that it is the best strategy to plan those skill categories which are understaffed
first, but the decision as to the planning ordering is a difficult one requiring the
human planner’s expertise. We only present here an extract of these results,
namely the results of planning the skill categories in an order, which is the
reverse of the order initially chosen by the customer. We suppose this to be
the worst case and our results certainly support that this is a very bad choice.
The results for Problem 1 and Problem 2 are in the TSR, TS1R and TS2R
rows of Tables 9.1 and 9.2 respectively. For Problem 2, we actually find that the
reverse planning order for the skill categories generates a better solution than the
selected order (namely in the case of TS2-TS2R). Many hospital planners have
the habit of setting the planning order according to the hierarchical importance
of the skill categories. This example indicates that it is not always a good option
for generating good quality schedules. It is actually for solving this frequently
occurring problem that we set up the algorithm of Fig. 5.9. It can overcome
unfortunate settings of the planning order and it is included as a diversification
option in the software based on ANROM. This very time consuming algorithm
does not improve the quality, however, when planners have enough insight in
their specific problem to set the planning order right.

We see that in general, using a poor ordering of skill categories produces
much poorer results. This is particularly true for the difficult Problem 1. Sur-
prisingly, the TS2 algorithm produces slightly (2%) better results for the rel-
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atively easy Problem 2 when the planning order is reversed in TS2R. This
behaviour is due to the greedy shuffling step performed at the very end of the
TS2 algorithm’s calculation. This step goes again through all the skill cate-
gories following the planning order. It is thus possible to make changes in the
schedule of previously planned skill categories again. The original tabu search
algorithms (TS) and TS1 go through the schedule skill category by skill cat-
egory, visiting each category only once, with no chance to rectify poor choices
later. They are thus more strongly affected by the bad planning order of skill
categories.

Unless indicated otherwise in the tables with test results, all the memetic
algorithms stop after two generations without improvement, this is typically less
than 20 generations. All the algorithms used to produce the test results of the
Tables 9.1 - 9.4 have a population size of 12.

We can see that for each of the problems, the extra benefit from allowing
our original memetic algorithm M to run ten times longer produces little im-
provement in the final solution, since this approach does not generate sufficient
diversity. However, we see that for Problems 1, 2, and 3 the DM heuristic
produces better rosters than the M heuristic, since the random ordering of skill
categories gives greater population diversity. However, we can also see that the
DMR heuristic, which introduces still more diversity through choosing ran-
dom rows from the parent schedules instead of the best rows in each case has
arguably introduced too much diversity since its results are worse than those
for the DM heuristic. The same could be said for heuristic MSR that takes
an appropriate segment of each row from each parent, which demonstrates a
similar performance. Each of these memetic algorithms has a population size of
at least 12, which explains the slower running time of the memetic algorithms.
We will consider below the comparison between the memetic approaches and a
multi start tabu search approach TSPOP.

Copying large partial schedules of high quality from the parent schedules
to the children often turns out not to be a good idea. The steepest descent
technique used by the memetic algorithms is not powerful enough to generate
better schedules. We have obtained better results by copying small parts (with
good qualities) from the parent schedules, so that the degree of freedom after
making feasible solutions is high enough to provide diversity. Hence we see that
the memetic algorithms ME2, ME3, ME4, and ME5 which are more selective
about which parental traits are passed on, generate significantly better schedules
than the algorithms M, DM, DMR, and MSR. The algorithms copying the
smallest parts of the parent schedules are the MEx algorithms. We found that
the number x of events which are copied per personal schedule (row) has a great
influence on final solution quality. The results of copying 2, 3, and 4 events per
row are increasingly better but from 5 events on the results get worse again.
We believe that these ‘best placed’ events strongly influence the position of
all other events, so that the freedom of the solution to evolve is restricted to
good areas of the search space and the steepest descent heuristic is particularly
effective in improving the diverse schedules generated. ME4 represents the best
compromise between a diverse population of solutions and the ability to focus
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on interesting areas of the search space.

When we compare the best of our memetic algorithms, ME4, with TS2,
the best of our tabu search algorithms, we see that significantly better solutions
are produced by the ME4 algorithm for Problems 1 and 2 and comparable
results for Problems 3 and 4, at the expense of longer running times. A very
important advantage of the memetic algorithms with respect to the tabu search
algorithms, however, is the fact that the results of the memetic algorithms
are not dependent on the planning order of the skill categories chosen by the
user. The chance of becoming trapped in a local minimum, which is very far
from the optimal, is reduced. Problem 1 has a high number of very strict soft
constraints, with high cost parameters attached to them. Problem 2, on the
other hand, has fewer personnel and duty types and has few soft constraints.
Problem 1’s search space (only depending on soft constraints) will thus be much
hillier and full of traps for algorithms based upon neighbourhood search, so the
problem will differentiate more clearly between the algorithms. This explains
why the improvements of the hybridisations TS1 and TS2 are considerably
higher for Problem 1 than those of the original tabu search algorithms TS, and
the additional improvements yielded by the memetic approaches. We can see
in the TSPOP rows of Tables 9.1 - 9.4 that applying the TS1 algorithm using
random ordering of skill categories starting from a number of different initial
solutions (without any recombination or switch) is not effective - showing clearly
the dependence upon the human planner’s knowledge of the sequencing which
must be applied to the ordering of skill categories. It seems to be a good idea
not to do the time consuming greedy shuffling step on every individual but only
on the best one. The algorithms make use of a random generator (to create
an initial solution and to choose among equally good steps). This explains
why some of the experiments with more individuals lead to worse solutions
than with fewer individuals. However, the memetic hybrids SWT and MEH
and the memetic algorithm ME4 demonstrate that the recombination operator
consistently improves performance over the TSPOP algorithm which has no
recombination given similar time to solve the problems, and moreover, they do
not require the user to specify the order in which skill categories should be
scheduled.
The memetic/tabu hybrid MEH shows excellent performance over the more
difficult Problems 1 and 4 bettering all other solution methods except the hybrid
SWT algorithm. This demonstrates the better solutions obtainable and the
increased robustness offered by a hybrid approach.
Originally, when planning according to option RMP , we start planning the
minimum personnel requirements and at the end add duties to the schedule
whenever this does not introduce new violations of soft constraints (see Section
5.6.1). We are inclined to think that better results can be obtained by adding
duties while the planning algorithm is still active. The SWT algorithm, which
was developed to test this, indeed leads to good results for all the examples
tested. Note that this algorithm has no greedy shuffling step in the end, in
contrast to the TSPOP and the MEH algorithms.
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9.6 Conclusion

By automating the nurse rostering problem for Belgian hospitals, the scheduling
effort and calculation time are reduced considerably from the manual approach
that was previously used. The time for automatic schedule generation can be
tailored to suit the time available. Fast tabu search algorithms can quickly find
reasonably good schedules in response to events such as staff absenteeism. The
memetic algorithms are robust enough to produce excellent solutions to hard
problems when more time is available. The quality of the automatically pro-
duced schedules is much higher than the quality of the manual schedules.
We have described several memetic approaches and compared them to previ-
ously obtained tabu search results (Chapter 8). The hybrid tabu search algo-
rithm runs quickly and does produce good solutions but it is highly dependent
on the initialisation parameters, requiring the expertise of human planners to
judge the correct order of skill categories and displays a lack of robustness to
generate good schedules for all problems. The memetic approaches take much
longer to run than the tabu search approaches. Those memetic approaches
which copy only a carefully selected part of each parent schedule to the child
schedules use this extra time to good effect to produce better solutions and the
dependence on the initialisation and parameter changes is very much reduced.
The hybrid memetic algorithms, which combined the basic approach with the
hybrid tabu search provide good solutions in a similar time to the other memetic
algorithms. The solutions are significantly better than the best tabu search solu-
tion and they are relatively unaffected by initialisation and parameter changes.
We believe that these approaches are particularly robust to handle the variety
of instances that occur in the real-world.

225



226



Part IV

A Different Framework
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Chapter 10

Multi Criteria Approach

10.1 Introduction

In this chapter, we present a multi criteria approach to nurse scheduling which
overcomes some of the practical difficulties that personnel schedulers in hospi-
tals often face. Users of hospital personnel planning software often cope with
the complex task of translating their needs into several constraints of a very
different nature and with differing cost parameters (see Section 4.2.4). The ap-
proach presented in this chapter is an attempt to address this issue.
Compared to the previously developed cost function guided methods (Chapter
7 - 9), this method allows for a much more flexible formulation of the prob-
lem specific requirements. It is no longer the user’s responsibility to compare
different quality measures, whereas in the cost function approach, violations of
completely different constraints are added up for the evaluation (Chapter 4). In
this approach, schedules are evaluated by measuring their position in a prefer-
ence space. We especially construct that preference space in order to evaluate
all the criteria in dimensionless units.
In the multi criteria approach, users can express the importance of criteria ac-
cording to their preferences. This corresponds more to the hospital customs
than aiming at the overall best schedule in terms of a particular cost func-
tion. The new evaluation framework presented in this chapter is accepted for
publication as E.K. Burke, P. De Causmaecker, S. Petrovic, and G. Vanden
Berghe: A Multi Criteria Meta-heuristic Approach to Nurse Rostering, Pro-
ceedings of Congress on Evolutionary Computation, CEC2002, Honolulu, IEEE
Press, 2002, 1197-1202 [35].
Some problems for the user of the personnel planning software are outlined in
Section 10.3. Section 10.4 elaborates on the developed multi criteria method
in order to tackle these particular drawbacks of the personnel scheduling prob-
lem. We carried out a set of tests and the results are explained in Section 10.5.
In Section 10.6, some conclusions on the new multi criteria approach for the
personnel planning problem are drawn.
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10.2 Multi Criteria Decision Making

The assignment is subject to a set of constraints which vary from hospital
regulations to specific personal requests such as holidays and days off. In the
multi criteria approach, we still maintain the rule that the coverage constraint
(assign the requested number of skilled personnel at any time) can never be
violated during the course of the search. All of the meta-heuristics which were
discussed in Chapter 7 - 9 could be applied to the multi criteria approach
discussed in this chapter.

The nurse rostering problem is a complex combinatorial problem, which is
characterised by multiple goals. Some of the constraints are easier to satisfy
than others and that should be taken into consideration within the search
algorithm. Very few researchers have worked on multi criteria approaches to
nurse timetabling problems. In most approaches, personnel coverage is treated
as a goal, unlike in this thesis, where it is a hard constraint.

Some publications on multi criteria or goal programming for nurse schedul-
ing are mentioned in the literature overview. Arthur and Ravindran [8]
combine goal programming with a heuristic assignment of shifts. Musa and
Saxena [153] developed an interactive approach for small size problems. The
scheduling problem tackled by Franz et al. [96] differs considerably from the
problem defined in Chapter 2 in that personnel works at scattered locations.
Ozkarahan [162] and Ozkarahan and Bailey [166] consider coverage and time
related objectives, in addition to maintaining the usage of full time staff. Chen
and Yeung [56] apply goal programming in an expert system. Berrada et al. [21]
have developed a tabu search approach with multi objective mathematical
programming for small size problems and Jaszkiewicz [122] applies simulated
annealing in a multi criteria approach.

There are also applications of multi criteria approaches for other timetabling
problems. Lotfi and Cerveny [133] developed an exam scheduling package at a
large university. They give priorities to three different quality measures for a
schedule. Similar approaches to the method described in this chapter have been
developed for timetabling problems by Burke et al. [33] and Paechter et al. [170].
Although the main concept for the distance measure is the same, the high num-
ber of constraints in the nurse rostering approach makes it inconvenient to rely
upon the planner’s practical experience for setting the targets (as presented in
[170]). Burke et al. [33] developed their multi criteria approach for examination
timetabling as a two-phase algorithm. The first phase applies a graph colouring
heuristic to generate a set of timetables with a high quality with respect to
the criteria separately. Afterwards, an iterative search in the neighbourhood of
these timetables tries to improve the quality in terms of the other criteria. The
approach is similar to the multi criteria method developed for ANROM in that
weights of criteria reflect the importance of constraints and they are set by the
scheduler.
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10.3 Drawbacks of the Cost Function Approach

The development of ANROM started in 1993 but the model has not stopped
evolving as new hospital users appeared with different demands and planning
habits. The program currently in use is a very complex system based on AN-
ROM, which can be fine-tuned by the hospital planners in order to meet their
requirements.
ANROM has been adapted to an increasing number of user defined constraints,
in order to meet the high requirements of all the different hospital wards. The
system provides modifiable functionalities to all customers. However, the grow-
ing number of constraints renders the task of assigning cost parameters to con-
straints increasingly difficult. Also, it is rather artificial to unify constraints
with completely different characteristics, such as overtime, weekend work, re-
placing people with a different qualification class, etc.
The cost function per personal schedule is defined as a linear combination of the
violations of the constraints (see Chapter 4). For evaluating the entire schedule,
the cost function values per personnel member are summed.
The problem tackled in this thesis copes with extremely tough constraints. It
aims at producing a satisfiable schedule even when violations of the soft con-
straints are unavoidable.
Compared to similar problems described in the literature (Section 3.2.6), AN-
ROM offers plenty of possibilities for the schedulers to modify the evaluation
function by defining different flexible work regulations and by setting the cost
parameters related to the soft constraints. The latter, however, sometimes re-
quires more insight into the search heuristics than the hospital planners can be
reasonably expected to have.
An often encountered difficulty when applying ANROM for scheduling in prac-
tice is the fact that planners have no knowledge about the profile of the search
space. By increasing the cost parameter of one particular soft constraint, they
do not necessarily obtain better quality solutions in general, nor even with re-
spect to that constraint in some particular cases. The experience we built up
while testing a large set of rostering problems from practice learned that in-
creasing one cost parameter can create very high barriers, which cannot easily
be crossed, in the search space.

10.4 Multi Criteria Approach for the Nurse
Rostering Problem

10.4.1 Soft constraints

In this section, we set up the modelling of nurse scheduling problems as multi
criteria problems. We opted for the approach in which each criterion measures
the number of violations of one soft constraint. Violations of the soft constraints
are measured in different units: hours, shifts, days, weekends, and their com-
binations. A multi criteria approach enables constraints of different nature,
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expressed in different units, to be treated simultaneously. The soft constraints
enumerated in this section can take different values for different personnel mem-
bers in the ward. We will briefly describe the criteria groups based on the units
in which they are expressed.
Hours: The violation of this particular set of constraints can be measured in
terms of hours. Examples of such constraints are:

- Overtime (Constraint 8)
- Undertime (Constraint 9)
- Some of the counter constraints (Constraint 23)

Shifts: In order to calculate the violation of constraints belonging to this group,
we count assignments of shift types to the personnel members. Depending on
the constraint values, some sequences or occurrences will lead to violations. This
group contains constraints concerning a minimum or maximum total number
or sequence of shifts. Also belonging to this group are constraints which re-
quire people to work together, constraints on replacing people with a different
qualification, etc. Some of these constraints are:

- Allow work for an alternative skill category (Constraint 2)
- Maximum number of assignments (Constraint 3)
- Maximum number of assignments per day of the week (Constraint 10)
- Maximum number of assignments for each shift type (Constraint 11)
- Maximum number of a shift type per week (Constraint 12)
- Number of consecutive shift types (Constraint 13)
- Maximum number of assignments on bank holidays (Constraint 20)
- Restriction on the succession of shift types (Constraint 21)
- Some of the counter constraints (Constraint 23)
- Shifts off (Constraint 25)
- Requested assignments (Constraint 26)
- People who should work together (Constraint 27)
- People who should not work together (Constraint 28)

Days: These constraints are independent from the actual shift types or number
of hours scheduled. This constraint category needs information whether or not a
person works on a certain day. Violations of the minimum or maximum number
of days and consecutive days are expressed (as might be expected) as a number
of days. Examples are:

- Maximum number of consecutive days (Constraint 4)
- Minimum number of consecutive days (Constraint 5)
- Assign 2 free days after night shifts (Constraint 14)
- Some of the counter constraints (Constraint 23)
- Days off (Constraint 24)

Weekends: The weekend constraint group is treated separately because week-
ends seem to attract more attention in real-world examples than other con-
straints. Violations are expressed as a number of weekends in the following
constraints:

- Assign complete weekends (Constraint 15)
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- Assign identical shift types during the weekend (Constraint 17)
- Maximum number of consecutive working weekends (Constraint 18)
- Maximum number of weekends in a period of 4 weeks (Constraint 19)
- Some of the counter constraints (Constraint 23)

Miscellaneous: This set of constraints actually covers several of the constraint
groups described above. They represent very complex requirements to personnel
schedules and require a calculation of hours, shifts, days, etc for the evaluation.
Examples of such constraints are:

- Patterns (Constraint 22)
- Counters (Constraint 23)

10.4.2 Search space

The search space for the proposed multi criteria approach is defined in this Sec-
tion. We use compromise programming, which is based on the concept of the
distance from an ideal solution [226]. Each solution for the problem (a sched-
ule) is represented as a point in a criteria space whose dimension is equal to the
number of criteria. Two points in the criteria space have a special meaning: the
ideal point and the anti-ideal point. In the ideal point, all criteria take their best
value. Very often no solution corresponding to this ideal point exists. We also
define an anti-ideal point, represented by the worst value for all the criteria.
In order to tackle all the criteria in dimensionless units, the criteria space is
mapped to the preference space [171]. The quality of a solution is expressed
in terms of the number of violations of a constraint. Larger co-ordinates in-
dicate worse solutions. For each criterion, the best value is thus mapped to 0
and the worst value is mapped to wc, where wc denotes the relative importance
(weight) of the criterion c. Obviously, the ideal point is mapped to a point in
the preference space, whose co-ordinates are all equal to 0, while the anti-ideal
point is mapped to a point whose co-ordinates are all equal to the weights of
the criteria. A simplified example of a preference space is explained in detail in
Section 10.4.3 (see Fig. 10.1). In this approach the quality of a schedule will be
measured by its distance from the ideal point in the preference space. A smaller
distance indicates a higher quality.
In order to define a mapping from the criteria space of the nurse rostering prob-
lem onto a preference space, a best and worst value are calculated for each
criterion (here soft constraint). We call all the schedules which do not violate
a particular constraint ideal schedules with respect to that constraint. These
ideal schedules are mapped to points with co-ordinate 0 for the criterion corre-
sponding to the constraint. An example of a schedule which is ideal in terms of
the maximum number of hours worked (Constraint 8) is a solution in which the
constraint on overtime is not violated in any of the personal schedules. For the
constraint concerning the minimum number of consecutive days (Constraint 5),
it suffices to have no shorter sequence of working days in any of the personal
schedules, to consider the solution ideal. It is clear from experience that the
best value lies in an infeasible part of the solution space for nearly all real-world
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problems.
The calculation of the worst values of the criteria is more complex. We will
illustrate the idea by using a number of examples. Consider the constraints
with hourly measures. An estimation of the worst case in terms of overtime is a
schedule in which people have to work day and night, without any break during
the entire planning period. In this situation, both overtime and the minimum
time required between shifts will be violated to the highest extent. In order to
violate the undertime constraint (Constraint 9) to the highest extent, we con-
sider for all the personnel members, a schedule without any assignment.
For the constraints from the shift category which limit the number of assign-
ments (Constraint 11, 12, etc) the procedure is analogous to that for the hourly
constraints. The consecutiveness constraints, however, require a more careful
approach. In order to violate the constraint on the number of consecutive shift
types (Constraint 13) to the highest extent, we imagine a schedule with as many
forbidden sequences as possible. The highest number of forbidden sequences is
obtained by alternating the smallest forbidden sequence of assigned shifts and a
free day. The constraint on complete weekends (Constraint 15) can be violated
most by a schedule in which all Saturdays are free and all Sundays are assigned
(or the other way round), for all the personnel members.
Some constraints take the previous planning period into account. If the previous
planning period ends with a scheduled day, we will start the worst schedule for
‘Minimum number of consecutive free days’ with a free day, and vice versa.
For some criteria in which more than one person is involved, we combined full
and empty schedules to simulate the worst case. Table 10.1 gives an overview
of the schedule types which represent the anti-ideal points for each of the cri-
teria. ‘Full’ and ‘empty’ schedules are those in which all the possible shifts are
assigned and those in which no assignment is made during the planning period.

10.4.3 An algorithm for multi criteria search

Search Algorithms

Our aim is to use the previously developed meta-heuristics for ANROM (Chap-
ter 7 - 9) in a new multi criteria environment. Instead of a cost function summing
the violations of all the constraints, the driving force is now a minimisation of
the distance from a solution to the ideal point in the preference space.
The tests performed for this chapter make use of the hybrid tabu search al-
gorithm described in Section 8.3.6. After an initialisation phase, which basi-
cally consists of assigning all the requested shifts to qualified people randomly,
the tabu search algorithm is applied. The algorithm never violates any hard
constraints during the calculations. Also in the multi criteria approach, the
algorithm used to demonstrate this multi criteria approach makes use of two
hybridisations: sorting out full weekend work and improving the schedule of the
person with the worst result (called TS1 in Section 8.3.6).
In the cost function approach, the program enables users to set a cost parameter

234



Constraint Schedule Characteristics
1 Minimum time between two assignments Full
3 Maximum number of assignments Full
4 Maximum number of consecutive days Full
8 Maximum number of hours worked Full

10 Maximum number of assignments per day
of the week

Full

11 Maximum number of assignments for each
shift type

Full

12 Maximum number of a shift type per week Full
18 Maximum number of consecutive weekends Full
19 Maximum number of working weekends in

4 weeks
Full

20 Maximum number of assignments on bank
holidays

Full

24 Days off Full
25 Shifts off Full
23 Counters Full for this one, empty schedule

for all the other people
27 People who should work together 1 Full and 1 Empty schedule
28 People who should not work together Full schedule for both people
6 Maximum number of consecutive free days Empty
9 Minimum number of hours worked Empty

13 Number of consecutive shift types Alternating the smallest forbid-
den sequence and free days

21 Restriction on the succession of shift types Repeated forbidden sequences
26 Requested assignments Empty
5 Minimum number of consecutive days Alternating scheduled and free

days
7 Minimum number of consecutive free days Alternating scheduled and free

days
14 Assign two free days after night shifts Alternating Night Shifts and

empty days
15 Assign complete weekends Every Saturday planned, every

Sunday empty
17 Assign identical shift types during the

weekend
A shift type every Saturday a
different shift type every Sunday

22 Patterns Opposite of the pattern

Table 10.1: Schedules representing the worst cases of the corresponding con-
straints
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for every constraint (see Section 4.2.4). The value of the cost function is the
weighted sum of the violations of soft constraints. In an attempt to find a good
schedule a set of practical cost parameters, set by the customers of the software
were copied into the weights of the multi criteria approach. Section 10.5 also
presents results with other weight values.

Quality of the Schedule

Each personal schedule is considered separately by measuring its distance from
the ideal point in the preference space. The goal for the search algorithm is to
minimise the sum of the distances for P people in the schedule. We use as a
distance measure a family of Lx metrics, which gives a wide range of geometric
measures for different values of x. A distance from a personal schedule schedulep

for person p to the ideal point is denoted by Lx(p) (Definition 5) where schedulep

has co-ordinates wcsp,c (c = 1 . . . C: number of criteria) in the preference space.

Definition 5 Lx(p) = (
∑

c[wcsp,c]x)1/x; 1 ≤ x ≤ ∞
In the definition, sp,c is fp,c

fp,c,worst
, where fp,c is the value of criterion c in the

schedule of person n and fp,c,worst is the value of the criterion c for the worst
possible schedule for p. Smaller values of x allow for compensation among
criteria values, i.e. high satisfaction for one constraint can counterbalance low
satisfaction for another one. If the distance measure is ∞, the distance Lx(p)
defined in Definition 5 is the value of the largest co-ordinate in the preference
space. Only the most violated constraint will contribute to the value.

Definition 6 L∞(p) = maxc[wcsp,c]

The distance of the entire schedule S is the sum, for all the P nurses in the
ward, of the personal schedules (as denoted by Definition 7).

Definition 7 Lx(S) =
∑P

p=1 Lx(p)

The mapping of the criteria space into the preference space, with 2 criteria, is
depicted in Fig. 10.1 and Fig. 10.2 presents the pseudo code for a multi criteria
search algorithm.

10.5 Experiments

10.5.1 Test problems

In order to carry out preliminary experiments, it was our deliberate choice to
tackle simplified examples. In comparison with ANROM, the test problems in
this chapter have a limited number of constraints, smaller problem dimensions
and thus a smaller search space. These data enabled us to carry out preliminary
experiments with several approaches in a limited amount of calculation time.
After promising early results, this multi criteria approach will be tested on more
complex real-world data.
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Figure 10.1: Mapping from the criteria space into the preference space for person
p’s schedule

In Example 1, the personnel requirements consist of 4 different shift types, and
a planning period of 4 weeks is considered. It is much simpler than any of
the problems tackled in PART III of this thesis because this completely new
approach is still in a very early stage. The ward employs 9 people belonging to
2 different skill categories; one head nurse and 8 regular nurses. The head nurse
has a special work regulation (called Head Nurse) which allows day shifts only
and no weekend work. Among the regular nurses, five of them have a Full Time
work regulation, one has a personalised full time regulation (forbidding late and
night shifts on Tuesday, by Constraint 25) and the other two are Half Time
nurses. This particular problem has some extra difficulties, affecting the worst
case values of some personal constraints. One full time nurse is hired by another

- initialise a feasible schedule S
- BEST ← S
- WHILE stop criterion is not reached

- perform best non-tabu move to S′ in the
neighbourhood of S: S ← S′

IF Lp(S) ≤ Lp(BEST )
THEN BEST ← S′

- return BEST

Figure 10.2: Pseudo code for multi criteria search
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ward during the first two weeks of the planning period. Another full time nurse
leaves the ward after two weeks. Furthermore, one half time and one full time
nurse swap work regulations after the first week of the planning period. The

Multi Criteria Violations
Weights x Lx(S) Constraints #
all weights 1 2 14 patterns 8
patterns 2 56 patterns 8
other weights 1
patterns 3 117 patterns 7
other weights 1
patterns 4 336 patterns 7
other weights 1
patterns 5 525 patterns 7
other weights 1
patterns 10 1300 patterns 7
other weights 1
patterns 50 22707 # weekends in 4 weeks 1
other weights 1 min. consecutive days 1

patterns 5
cost parameters 225 patterns 5
Cost Function Violations
Cost Parameters Value Constraints #

250 patterns 5

Table 10.2: Results for Example 1

data in Example 2 represent the same ward as in Example 1 but the planning
period is different. It also involves different qualifications and work regulations
for some personnel members, another position in the cyclic patterns (because
of the value start patternp), different personal requests for days off, different
bank holidays, and a slightly different personnel demand on some days.
The tests have been carried out with distance measure x=1,2, and ∞ in the
preference space.

10.5.2 Discussion

Table 10.2 presents the test results for Example 1 and in Table 10.3 some test
results are displayed for Example 2. Experiments have been carried out with
different values for the weights. In the last two columns, the violated constraints
are presented together with the number of times the constraint is violated. The
last column sums the number of violations when they occur in different personal
schedules. An ideal schedule does not violate any of the soft constraints. Both
test examples demonstrate that increasing the relative importance of a particu-
lar constraint often results in a schedule with less violations of that constraint.
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Multi Criteria Violations
Weights x Lx(S) Constraints #

all weights 1 1 19 min. consecutive days 1
patterns 9

patterns 10 38 hours 3
other weights 1 min. consecutive days 2

patterns 2
patterns 50 8 hours 1
other weights 1 min. consecutive days 7
patterns 50, min. cons. days 10 312 hours 6
other weights 1 patterns 12

all weights 1 2 72 max. consecutive days 3
patterns 7

patterns 2 114 hours 2

other weights 1 patterns 8
patterns 5 hours 2
other weights 1 patterns 6
patterns 10 min. consecutive days 2
other weights 1 identical weekends 2

patterns 2
cost parameters 0

all weights 1 ∞ 125 hours 13
max. assignments 1
# weekends in 4 weeks 3
day off 3
min. consecutive days 5
complete weekends 1
identical weekends 1
patterns 9

patterns 10 777 hours 74
other weights 1 max. assignments 6

# weekends in 4 weeks 3
day off 4
min. consecutive days 13
complete weekends 2
identical weekends 6
patterns 14

cost parameters 3642 hours 192
max. assignments 18
max. consecutive days 6
# weekends in 4 weeks 1
min. time between 78
day off 5
min. consecutive days 6
complete weekends 1
identical weekends 7
patterns 14

Cost Function Violations
Cost Parameters Value Constraints #

7 min. consecutive days 7

Table 10.3: Results for Example 2
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This does not generally hold because of the local optima. Although we realise
that it is not possible to compare results for different objectives, the general
tendency of applying a multi criteria method will be explained.
The best solution for Example 1 violates the ‘pattern’ constraint 5 times. We
know, after investigating the simplified problem data thoroughly, that there is
no solution which corresponds to the ideal point. When assigning a moderate
weight to the pattern constraint, it is violated more often. Since the data of the
cost function approach is available anyway, we experimented with copying the
cost parameters into the weight factors of the corresponding constraints. It is
not irrelevant to assume a correspondence between the cost parameters set by
the users and the importance of the corresponding constraints. This option for
the weights led to the best results for the multi criteria approach. However, it
is not clear that these preliminary results will also hold for real-world problems.
The results from the Example 2 dataset clearly show that a lower value of the
distance measure x enables compensations between constraints. With higher
values of x, the algorithm tends to generate schedules which reduce the penalty
of the most violated constraint because its contribution to the value of the cost
function is very high. The results with distance measure ∞ are not promising
at all. The first experiment was carried out with all weights equal to 1. It is
only the pattern constraint which determines the value of the distance, although
many other constraints are also violated. Increasing the weight for the patterns
seems the most obvious thing to do, but as is presented on the next row in
Table 10.3, the results are even worse. For some people, the violation of that
particular constraint has decreased at the expense of other constraints. In the
schedule of some personnel members, when other constraints are responsible for
the distance, the violation of patterns has even increased. Copying the cost
parameters into the weights gives the worst results of all, whereas this was the
best option for the x=2 distance measures.
Increasing the weights for the most violated constraint almost always leads to
better quality solutions in which less constraints are violated. Also for this
test example, copying the cost parameters into the weights is the best option.
It is not possible to compare the results obtained using the cost function and
the multi criteria approach because they are based on different evaluation func-
tions. In fact, the comparison of these two approaches based on numbers of all
the constraint violations in the obtained schedules is a multi criteria problem
in itself. However, in one particular case, we can see that the multi criteria
approach outperforms the single cost function approach. It happened in the
Example 2 dataset when the multi criteria approach gave 0 violations of all
of the constraints while the cost function approach resulted in 7 violations on
minimum consecutive days (Constraint 5). Although there is no proof of the
quality of the newly developed multi criteria approach for realistic problems in
which simultaneously satisfying all the soft constraints is not possible, the first
obtained results are very promising.
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10.6 Conclusion

The new multi criteria approach presented in this chapter overcomes some prac-
tical difficulties for automated nurse rostering, which is a multi criteria problem
by nature. It enables handling dissimilar constraints in a better way than a
single cost function approach does, by taking the ranges of possible values of
criteria into consideration. The developed multi criteria approach, incorporated
in a meta-heuristic, allows the scheduler to control the compensation of con-
straints. Some of the constraints are easier to satisfy than others and that
should be taken into account within the search algorithm. The multi criteria
approach described in this chapter allows the users to set weights that reflect
the relative importance of the constraints. The search for a solution corresponds
more to reality in which the scheduler controls the compensation of constraints.
Instead of aiming at the lowest number of violations of soft constraints (taking
cost parameters into account), the current approach aims at an ideal point in
a preference space. Tests on real-world data have shown that previously devel-
oped search algorithms perform very well using the new multi criteria method.
Although comparing the results of different objectives is not possible, simple
tests provide strong indications that this new multi criteria approach responds
better to the planner’s changed objectives. Assigning a larger weight to a crite-
rion will make the corresponding constraint more important during the search,
without increasing the risk for cutting off parts of the search space.
In general, the multi criteria approach presented in this chapter has potential
to accommodate every day practice of hospital schedulers better than the single
cost function approach.
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Chapter 11

General Discussion

11.1 Problem Definition and Model Develop-
ment

Nurse rostering is a very complex combinatorial problem, for which hardly
any software system exists. During this study it became clear that, especially
in Belgian hospitals, any assistance for the head nurses or ward managers to
automatically generate their monthly rosters could save a lot of time and effort.
Several levels of decision making can be distinguished in nurse scheduling but
the problem dealt with in this thesis is situated at the short-term timetabling
level. Its main objective is to understand and automatically generate comfort-
able shift schedules for personnel members in order to meet the staff coverage.
The first major achievement of this research is the determination of the
key parameters in this issue and the development of a highly flexible
model for nurse rostering.

Hospital personnel scheduling deals with particular difficulties, originating
from real-world practical issues such as unpredictable work load, round the
clock work, a large number of different skill categories, flexible work contracts
such as part time work, night nurses, etc. One of the major contributions of this
thesis is that it captured the extensive set of realistic constraints, and
integrated them, together with explicit and implicit objectives, in a
general, flexible model called ANROM (Advanced Nurse ROstering Model).
The requirements of hospital planners motivated the choice for considering
personnel coverage as a hard constraint, which can be relaxed in a controlled
manner. In our model, the entire set of time related constraints on personal
schedules are all treated as soft constraints.
Although strategic decisions, such as hiring trained people for specific skill
categories or assigning personnel to specific wards, are not considered part of
rostering, we did include the results as input to our model. Furthermore, within
the limits of the available information, we did an effort to describe the problem
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as accurately as possible, including modifiable constraints and parameters, so
that it is applicable to a wide range of personnel scheduling problems.

The development of the solution framework, with modifiable
evaluation tools and a large set of heuristics targeting specific
objectives, constitutes a third contribution of this thesis. It enables to set
and modify constraints and selects a suitable combination of procedures for
particular requirements, without expecting a feasible problem formulation from
the planners. Thanks to the modular and abstract evaluation method,
the calculation of the solution quality can easily be fine-tuned and incorporates
violations of all the possible soft constraints. The evaluation procedure provides
feedback for the planners in practice, and assists them in making their problem
formulation more coherent.
We made an attempt to guide the planners by performing a consistency check
on their settings. Moreover, we provide procedures that assist in relaxing
certain hard constraints, or in avoiding understaffing by better aiming at the
preferred personnel coverage, and even in diminishing ‘undertime’ when some
personnel members are in danger of not fulfilling their contracts, etc. Floating
personnel requirements have been introduced in this thesis as a completely
new time interval based formulation of personnel requirements. In many cases,
floating requirements reflect much better than any other approach, what the
hospital planners want. Although this option substantially enlarges the search
space, it also enables the calculation of good quality solutions, by allowing
different shift type combinations for satisfying the coverage constraints.
This set of modules in the solution framework increases the applicability of
the rostering algorithms in different real-world settings. All the modules are
compatible with the search heuristics that form the third part of this thesis.

A set of meta-heuristics and hybrids are included in that solution frame-
work, as the central search force for solving ANROM problems. As the
research evolved, we gradually obtained more implicit knowledge about the
problem’s search space and the behaviour of meta-heuristics. The development
of many heuristics and hybridisations often originates in the understanding
of shortcomings of preceding approaches. We therefore consider the design
of new meta-heuristics and hybrids for nurse rostering as another key
contribution of this thesis.

While maintaining the hard constraints, a large set of search environments
can be considered. They were introduced as part of the variable neighbourhood
search heuristic. The approach enables the algorithms to escape from local
optima, especially by applying neighbourhoods which aim at solving particular
constraints and providing very sensitive optional characteristics in the solution.

The nurse rostering package based upon ANROM has become
commercially available and is now used in many wards in Belgian
hospitals. It includes the hybrid tabu search approach that was introduced in
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this thesis and provides different algorithm combinations, suitable for several
requirements. Fast tabu search algorithms can quickly find reasonably good
schedules in response to events such as staff absenteeism. Some hybridisations
have demonstrated that algorithms can be made much more effective through
the implementation of diversification and a greedy steepest descent search in
an environment inspired by watching interactions of users. The users of the
model often put an emphasis on the higher quality of the solution because
the algorithms provide an objective schedule treating all nurses equally and
in which the number of violated constraints is very low. Planners are pleased
by the fact that the system gives the ability to generate consistently better
solutions than manual planning procedures while providing a high level of
robustness. They acknowledge also that experienced planners cannot easily
improve the schedules by hand.
The new memetic approach is effective enough to produce excellent solutions
to hard problems when more time is available. Memetic algorithms outperform
the heuristics in which single solutions evolve, mainly because they provide a
search from different starting points but also due to our effort to find good
characteristics of solutions.

Another achievement of this thesis is that we gained insight in the
behaviour of applying heuristics and in making use of different
problem specific neighbourhoods.

No commercial package, nor models presented in literature were suitable for
tackling the widely varying nurse rostering problems encountered in practice.
They are either set up to solve a problem in one particular hospital, or they
have been tested on theoretical problems only. Consequently, benchmarking
is not possible and therefore we made use of test data provided by users of
the system based on ANROM. They represent a relevant group of hospital
schedulers, since the system is applied in over 40 Belgian hospitals, some of
which consist of 100 wards and more.

None of the developed meta-heuristics violate hard constraints during the
iterative search. They all aim at reducing the value of the cost function. Only
the multi criteria approach makes use of a different quality measure, namely
the distance from the solution to an ideal point in the preference space. The
multi criteria approach of this thesis opens perspectives for releasing
the planners from setting the cost parameters. It is more realistic and
increases the flexibility in setting the weights and thus modifying the relative
priority of the constraints. The multi criteria approach enables combining
objectives of different nature and importance in the preference space. It is
no longer necessary to compare costs for incommensurable quantities, such as
overtime, consecutive free days, etc. Some soft constraints are easy to satisfy,
others cannot be satisfied while maintaining feasibility. The definition of an
ideal and an anti-ideal point in the preference space simplifies the assessment
of good quality solutions.
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By automating the nurse rostering problem for Belgian hospitals, the
scheduling effort and time are reduced considerably as compared to the manual
approach that was previously used. The time for automatic schedule genera-
tion can be tailored to suit the time available by selecting appropriate search
heuristics.
The proposed solution method saves lots of time for the planners in practice
and provides an unbiased way of generating the schedules for all the personnel
members. It enables simple verification of the constraints, helps redefining un-
realistic hard constraints, and thus leads to an overall higher satisfaction among
the personnel, as is manifest in many applications.

11.2 Directions for Future Research

For inexperienced users of the system based on ANROM, the large set of soft
constraints is sometimes rather inconvenient. The model does not foresee
many options to warn the planners in case of conflicting requirements. Also,
application in practice revealed that hospital planners themselves are not always
very strict in satisfying what they define as hard constraints. The developed
nurse rostering model often requires more insight in the characteristics of
specific data than planners in practice can be expected to have. Some of the
planning procedures, which can be combined with the meta-heuristic search
algorithms, already assist in setting feasible hard constraints or relaxing them
when necessary. It will be beneficial for the model to take the idea of relaxing
the rather strict distinction between hard and soft constraints further.
The consistency check procedure already deals with some precedence soft
constraints, and guides the hospital planners towards a more consistent
definition of their problem. However, the remaining set of soft constraints that
are not pre-checked is very large. The consistency check procedure will merit
from an extension with pre-evaluation of a larger set of soft constraints. This
will provide interesting guidelines for planners to formulate their problem so
that feasible solutions exist.
Most personnel members attach a high importance to the personal constraints
such as days off, shifts off, requested assignments, and to patterns in which these
constraints appear. It is likely that these constraints are of less importance
for other people, who might, for example, be more concerned about overtime.
Since the problem is too complex to compute whether a solution exists that
satisfies all the constraints simultaneously, a more user dependent consistency
check would be very helpful.

The meta-heuristic approaches have depicted several possibilities for
improving their performance in widely varying real world applications. We
have built a set of neighbourhoods for local search, which are rather generally
applied in the algorithms. Future refinements of the algorithms will make more
use of problem-specific information to apply the best suitable neighbourhoods
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in their search.

Future research will certainly build upon the promising early findings of
testing our multi criteria approach on nurse rostering. With this novel method,
we have initiated an interesting new direction in nurse rostering research since
the problem is clearly a multi criteria problem by nature. We will pay attention
to appropriately calculating both the best and the worst values for all the soft
constraints related to every personnel member’s schedule. Coverage constraints
are objectives rather than hard constraints in real-world practice. Other
criteria that deserve some attention are: evenly dividing violations of certain
constraints among people, combining soft constraints (e.g. all the constraints
related to overtime), compensating unwanted schedules from the past, etc.
Our future work will also include testing the behaviour of search algorithms
that modify the weights of criteria in order to escape from local optima. It will
consider the fact that some constraints are more easily satisfied, and adapt the
weights specified for the corresponding criteria accordingly.

Although the nurse rostering model was developed explicitly to address
hospital personnel rostering, the techniques and methods developed as a
result of this research are certainly applicable to other personnel scheduling
problems. Of course the presented algorithms deal with the extensive set of soft
constraints, of which many are only valid in healthcare. Moreover, other sectors
require the evaluation of constraints on locations, equipment, etc irrelevant
in nurse rostering. Nevertheless, future development of widely applicable
real-world scheduling models can definitely profit from this thesis and build
upon its different modules, such as 1) the development of the main building
blocks of the model, with user definable constraints, modifiable variables
and parameters, 2) the inclusion of an explanatory evaluation function, 3)
the use of pre- and post-planning algorithms to assist in formulating the
requirements and to relax certain constraints, and lastly the application of
abstract meta-heuristics that generate good quality solutions.

Personnel rosters in healthcare are not only schedules for arranging patient
care but they also affect diverse aspects of the hospital organisation and directly
influence the lives of the personnel. The nursing profession is known to involve
very hard and stressful work, irregular hours, and lots of night and weekend
work. Shortage of staff is very common in hospitals and therefore this work
could (and does already) contribute to scheduling available staff more equitably
and more efficiently.
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[113] P. Hansen, N. Mladenović: An introduction to variable neighborhood
search, S. Voss et al. (Eds.): Advances and Trends in Local Search
Paradighms for Optimization, Kluwer Academic Publishers, Boston, MA,
1999, 433-358

[114] R. Heckmann, T. Lengauer: A Simulated Annealing Approach to the Nest-
ing Problem in the Textile Manufacturing Industry, Annals of Operations
Research, Vol. 57, 1995, 103-133

[115] W.B. Henderson, W.L. Berry: Heuristic Methods for telephone operator
shift scheduling: An experimental analysis, Management Science 22, 1976,
1372-1380

[116] A. Hertz: Tabu Search for Large Scale Timetabling Problems, European
Journal of Operational Research, 54, 1991, 39-47

[117] A. Hertz, E. Taillard, D. de Werra: Tabu search, E. Aarts, J.K. Lenstra
(Eds.): Local Search in Combinatorial Optimization, Wiley, ISBN 0-471-
94822-5, 1997, 121-136

[118] J.H. Holland: Adaptation in Natural and Artifical Systems, University of
Michigan Press, Ann Arbor, 1975

[119] R. Hung: A Cyclical Schedule of 10-Hour, Four-Day Workweeks, Nursing
Management, Vol 22, No 5, 1991, 30-33

[120] R. Hung: Hospital Nurse Scheduling, Journal of Nursing Administration,
Volume 25, number 7/8, 1995, 21-23

[121] M. Isken, W. Hancock: A Heuristic Approach to Nurse Scheduling in
Hospital Units with Non-Stationary, Urgent Demand, and a Fixed Staff
Size, Journal of the Society for Health Systems, Vol. 2, No. 2, 1990, 24-41

[122] A. Jaszkiewicz: A metaheuristic approach to multiple objective nurse
scheduling, Foundations of Computing and Decision Sciences, Vol. 22,
No. 3, 1997, 169-184

[123] B. Jaumard, F. Semet, T. Vovor: A generalized linear programming model
for nurse scheduling, European Journal of Operational Research, Vol. 107,
1998, 1-18

258



[124] N. Kaise, Y. Fujimoto: Applying the Evolutionary Neural Networks with
Genetic Algorithms to Control a Rolling Inverted Pendulum, B. McKay
et al. (Eds.): Simulated Evolution and Learning, 1998, Lecture Notes in
Artificial Intelligence, Vol. 1585, Springer, 1999, 223-230

[125] T. Kampe, Simulated Annealing: Use of a New Tool in Bin Packing,
Annals of Operations Research, Vol. 16, 1998, 327-332

[126] H. Kawanaka, K. Yamamoto, T. Yoshikawa, T. Shinogi, S. Tsuruoka: Ge-
netic Algorithm with the Constraints for Nurse Scheduling Problem, Pro-
ceedings of Congress on Evolutionary Computation, Seoul, IEEE Press,
2001, 1123-1130

[127] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi: Optimization by Simulated
Annealing, Science 220, 1983, 671-680

[128] M. Kostreva, K. Jennings: Nurse Scheduling on a Microcomputer, Com-
puters and Operations Research 18, 1991, 731-739

[129] S.S. Lam: A Genetic Fuzzy Expert System for Stock Market Timing,
Proceedings of Congress on Evolutionary Computation, CEC2001, Seoul,
IEEE Press, 2001, 410-417

[130] K.-H. Liang, X. Yao, C.S. Newton: Dynamic Control of Adaptive Param-
eters in Evolutionary Programming, B. McKay et al. (Eds.): Simulated
Evolution and Learning, 1998, Lecture Notes in Artificial Intelligence, Vol.
1585, Springer, 1999, 42-49

[131] J.S. Liebman, J.P. Young, M. Bellmore: Allocation of Nursing Personnel
in an extended care facility, Health Services Research 7, 1972, 209-220

[132] Y. Liu, X. Yao: Evolving Neural Networks for Hand Seng Stock In-
dex Forecast, Proceedings of Congress on Evolutionary Computation,
CEC2001, Seoul, IEEE Press, 2001, 156-260

[133] V. Lotfi, R. Cerveny: A Final Exam-Scheduling Package, Journal of Op-
erations Research, Vol. 42, 1991, 205-216

[134] J.P. Lyons, J.P. Young: A staff allocation model for mental health facili-
ties, Health Services Research 11, 1976, 53-68

[135] C. Maier-Rothe, H.B. Wolfe: Cyclical Scheduling and Allocation of Nurs-
ing Staff, Socio-Economic Planning Science, Vol. 7, 1973, 471-487

[136] R. Marett, M. Wright: A Comparison of neighbourhood search strategies
for multi-objective combinatorial problems, Computers and Operations
Research, Vol. 23, No.5, 1996, 465-483

[137] J.D. Megeath: Successful hospital personnel scheduling, Interfaces, Vol.
8, No. 2, 1978, 55-60

259



[138] A. Meisels, E. Gudes, G. Solotorevski: Employee Timetabling, Constraint
Networks and Knowledge-Based Rules: A Mixed Approach, E.K. Burke,
P. Ross (Eds.): Practice and Theory of Automated Timetabling, First
International Conference Edinburgh, Springer, 1995, 93-105

[139] A. Meisels, E. Gudes, G. Solotorevski: Combining rules and constraints
for employee timetabling, Journal of Intelligent Systems, Vol. 12, 1997,
419-439

[140] A. Meisels, N. Lusternik: Experiments in Networks of Employee
Timetabling Problems, E.K. Burke, M. Carter (Eds.): Practice and
Theory of Automated Timetabling II, Second International Conference
Toronto, Springer, 1997, 130-141

[141] A. Meisels, A. Schaerf: Modelling and Solving Employee Timetabling
Problems, Applied Intelligence, accepted for publication, (2001)

[142] H. Meyer auf’m Hofe: ConPlan/SIEDAplan: Personnel Assignment as a
Problem of Hierarchical Constraint Satisfaction, Proceedings of the Third
International Conference on the Practical Application of Constraint Tech-
nology, London, 1997, 257-271

[143] H. Meyer auf’m Hofe: Finding regions for local repair in partial constraint
satisfaction, Advances of Artificial Intelligence, No 1504 in LNAI, 1998,
Springer-Verlag, 57-68

[144] H. Meyer auf’m Hofe: Solving Rostering Tasks as Constraint Optimiza-
tion, E.K. Burke, W. Erben (Eds.): Practice and Theory of Automated
Timetabling, Third International Conference, Konstanz, Springer, 2000,
191-212

[145] H.H. Millar, M. Kiragu: Cyclic and non-cylcic scheduling of 12h shift
nurses by network programming, European Journal of Operational Re-
search, Vol. 104, 1998, 582-592

[146] H.E. Miller: Implementing Self Scheduling, The Journal of Nursing Ad-
ministration, Vol. 14, March 1984, 33-36

[147] H.E. Miller, W. Pierskalla, G. Rath: Nurse Scheduling Using Mathemat-
ical Programming. Operations Research 24, 1976, 857-870
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