8 research outputs found

    Developing Fine-Grained Actigraphies for Rheumatoid Arthritis Patients from a Single Accelerometer Using Machine Learning

    Get PDF
    In addition to routine clinical examination, unobtrusive and physical monitoring of Rheumatoid Arthritis (RA) patients provides an important source of information to enable understanding the impact of the disease on quality of life. Besides an increase in sedentary behaviour, pain in RA can negatively impact simple physical activities such as getting out of bed and standing up from a chair. The objective of this work is to develop a method that can generate fine-grained actigraphies to capture the impact of the disease on the daily activities of patients. A processing methodology is presented to automatically tag activity accelerometer data from a cohort of moderate-to-severe RA patients. A study of procesing methods based on machine learning and deep learning is provided. Thirty subjects, 10 RA patients and 20 healthy control subjects, were recruited in the study. A single tri-axial accelerometer was attached to the position of the fifth lumbar vertebra (L5) of each subject with a tag prediction granularity of 3 s. The proposed method is capable of handling unbalanced datasets from tagged data while accounting for long-duration activities such as sitting and lying, as well as short transitions such as sit-to-stand or lying-to-sit. The methodology also includes a novel mechanism for automatically applying a threshold to predictions by their confidence levels, in addition to a logical filter to correct for infeasible sequences of activities. Performance tests showed that the method was able to achieve around 95% accuracy and 81% F-score. The produced actigraphies can be helpful to generate objective RA disease-specific markers of patient mobility in-between clinical site visits

    Digital health technologies and machine learning augment patient reported outcomes to remotely characterise rheumatoid arthritis

    Get PDF
    Digital measures of health status captured during daily life could greatly augment current in-clinic assessments for rheumatoid arthritis (RA), to enable better assessment of disease progression and impact. This work presents results from weaRAble-PRO, a 14-day observational study, which aimed to investigate how digital health technologies (DHT), such as smartphones and wearables, could augment patient reported outcomes (PRO) to determine RA status and severity in a study of 30 moderate-to-severe RA patients, compared to 30 matched healthy controls (HC). Sensor-based measures of health status, mobility, dexterity, fatigue, and other RA specific symptoms were extracted from daily iPhone guided tests (GT), as well as actigraphy and heart rate sensor data, which was passively recorded from patients’ Apple smartwatch continuously over the study duration. We subsequently developed a machine learning (ML) framework to distinguish RA status and to estimate RA severity. It was found that daily wearable sensor-outcomes robustly distinguished RA from HC participants (F1, 0.807). Furthermore, by day 7 of the study (half-way), a sufficient volume of data had been collected to reliably capture the characteristics of RA participants. In addition, we observed that the detection of RA severity levels could be improved by augmenting standard patient reported outcomes with sensor-based features (F1, 0.833) in comparison to using PRO assessments alone (F1, 0.759), and that the combination of modalities could reliability measure continuous RA severity, as determined by the clinician-assessed RAPID-3 score at baseline (r2, 0.692; RMSE, 1.33). The ability to measure the impact of the disease during daily life—through objective and remote digital outcomes—paves the way forward to enable the development of more patient-centric and personalised measurements for use in RA clinical trials

    Recognition of Patient Groups with Sleep Related Disorders using Bio-signal Processing and Deep Learning

    Get PDF
    Accurately diagnosing sleep disorders is essential for clinical assessments and treatments. Polysomnography (PSG) has long been used for detection of various sleep disorders. In this research, electrocardiography (ECG) and electromayography (EMG) have been used for recognition of breathing and movement-related sleep disorders. Bio-signal processing has been performed by extracting EMG features exploiting entropy and statistical moments, in addition to developing an iterative pulse peak detection algorithm using synchrosqueezed wavelet transform (SSWT) for reliable extraction of heart rate and breathing-related features from ECG. A deep learning framework has been designed to incorporate EMG and ECG features. The framework has been used to classify four groups: healthy subjects, patients with obstructive sleep apnea (OSA), patients with restless leg syndrome (RLS) and patients with both OSA and RLS. The proposed deep learning framework produced a mean accuracy of 72% and weighted F1 score of 0.57 across subjects for our formulated four-class problem

    An automated algorithmic approach for activity recognition and step detection in the presence of functional compromise

    Get PDF
    Wearable technology is a potential stepping stone towards personalised healthcare. It provides the opportunity to collect objective physical activity data from the users and could enable clinicians to make more informed decisions and hence provide better treatments. Current physical activity monitors generally work well in healthy populations but can be problematic when used in some patient groups with severely abnormal function. We studied healthy volunteers to assess how different algorithms might perform for those with normal and simulated-pathological conditions. Participants (n=30) were recruited from the University of Leeds to perform nine predifined activities under normal and simulated-pathological conditions using two MOX accelerometers on wrist and ankle (Maastricht Instruments, NL). Condition classification was performed using a Support Vector Machine algorithm. Activity classification was performed with five different Machine Learning algorithms: Support Vector Machine, k-Nearest Neighbour, Random Forest, Multilayer Perceptron, and Naive Bayes. A step count algorithm was developed based on pattern recognition approach, using two main techniques, Dynamic Time Warping and Dynamic Time Warping-Barycentre Averaging. Finally, synthetic acceleration signal was generated that represented walking activities since there was limited access to patient data and to refine synthetic data generation in this field. Three dynamic coupled equations were used to represent the morphology of the desired signal. Wrist and ankle locations performed similarly and the wrist location was used for further analysis. Both condition and activity classification algorithms achieved good performance metrics i.e. that the volunteer has been correctly classified in the right condition, and the activities performed have been correctly recognised. Additionally, the novel step count algorithm achieved more accurate results for both conditions in comparison to existing algorithms from the literature. Finally, the signal generation approach seems promising since the normal condition synthetic signals matched closely to their associated original signals. Algorithms developed for a specific group or even person with functional pathology, using techniques such as Dynamic Time Warping-Barycentre Averaging produce better results than traditional algorithms trained on data from a different group

    Exploring the Application of Wearable Movement Sensors in People with Knee Osteoarthritis

    Get PDF
    People with knee osteoarthritis have difficulty with functional activities, such as walking or get into/out of a chair. This thesis explored the clinical relevance of biomechanics and how wearable sensor technology may be used to assess how people move when their clinician is unable to directly observe them, such as at home or work. The findings of this thesis suggest that artificial intelligence can be used to process data from sensors to provide clinically important information about how people perform troublesome activities

    Developing Fine-Grained Actigraphies for Rheumatoid Arthritis Patients from a Single Accelerometer Using Machine Learning

    No full text
    In addition to routine clinical examination, unobtrusive and physical monitoring of Rheumatoid Arthritis (RA) patients provides an important source of information to enable understanding the impact of the disease on quality of life. Besides an increase in sedentary behaviour, pain in RA can negatively impact simple physical activities such as getting out of bed and standing up from a chair. The objective of this work is to develop a method that can generate fine-grained actigraphies to capture the impact of the disease on the daily activities of patients. A processing methodology is presented to automatically tag activity accelerometer data from a cohort of moderate-to-severe RA patients. A study of procesing methods based on machine learning and deep learning is provided. Thirty subjects, 10 RA patients and 20 healthy control subjects, were recruited in the study. A single tri-axial accelerometer was attached to the position of the fifth lumbar vertebra (L5) of each subject with a tag prediction granularity of 3 s. The proposed method is capable of handling unbalanced datasets from tagged data while accounting for long-duration activities such as sitting and lying, as well as short transitions such as sit-to-stand or lying-to-sit. The methodology also includes a novel mechanism for automatically applying a threshold to predictions by their confidence levels, in addition to a logical filter to correct for infeasible sequences of activities. Performance tests showed that the method was able to achieve around 95% accuracy and 81% F-score. The produced actigraphies can be helpful to generate objective RA disease-specific markers of patient mobility in-between clinical site visits
    corecore