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Abstract

Wearable technology is a potential stepping stone towards personalised healthcare. It provides

the opportunity to collect objective physical activity data from the users and could enable clin-

icians to make more informed decisions and hence provide better treatments. Current physical

activity monitors generally work well in healthy populations but can be problematic when used

in some patient groups with severely abnormal function.

We studied healthy volunteers to assess how different algorithms might perform for those with

normal and simulated-pathological conditions. Participants (n=30) were recruited from the Uni-

versity of Leeds to perform nine predefined activities under normal and simulated-pathological

conditions using two MOX accelerometers on wrist and ankle (Maastricht Instruments, NL).

Condition classification was performed using a Support Vector Machine algorithm. Activity

classification was performed with five different Machine Learning algorithms: Support Vector

Machine, k-Nearest Neighbour, Random Forest, Multilayer Perceptron, and Näıve Bayes. A

step count algorithm was developed based on pattern recognition approach, using two main

techniques, Dynamic Time Warping and Dynamic Time Warping-Barycentre Averaging. Fi-

nally, synthetic acceleration signal was generated that represented walking activities since there

was limited access to patient data and to refine synthetic data generation in this field. Three

dynamic coupled equations were used to represent the morphology of the desired signal.

Wrist and ankle locations performed similarly and the wrist location was used for further anal-

ysis. Both condition and activity classification algorithms achieved good performance metrics

i.e. that the volunteer has been correctly classified in the right condition, and the activities per-

formed have been correctly recognised. Additionally, the novel step count algorithm achieved

more accurate results for both conditions in comparison to existing algorithms from the lit-

erature. Finally, the signal generation approach seems promising since the normal condition

iv



synthetic signals matched closely to their associated original signals.

Algorithms developed for a specific group or even person with functional pathology, using tech-

niques such as Dynamic Time Warping-Barycentre Averaging produce better results than tra-

ditional algorithms trained on data from a different group.
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Chapter 1

Introduction

1.1 Background

People with musculoskeletal disease often walk with impaired gait. That reduced mobility

can increase risk of secondary complications such as cardiovascular disease, so there is a drive

to increase patient physical activity. In other words, increased physical activity prevents and

delays onset of several chronic conditions (Phillips et al. 2018). Generally, physical activity

is very important since it influences peoples’ health and well-being (including mental health).

However, measuring physical activity in people with impaired gait is challenging.

Health tracking has received increased attention recently due to technological improvements

(Majumder et al. 2017). One way to measure daily physical activity is via commercially available

activity monitors. Although many monitors have been developed, almost all have been designed

for healthy people with a typical gait pattern, and who are able to perform moderate/vigorous-

intensity activities. For people who walk abnormally or slowly, and for light-intensity activities,

the devices are often inaccurate (Walker et al. 2016). Therefore, objective assessment of physical

activity is not commonly used in clinical practice, and instead, self-reported activity of patients

is used as a proxy.

Figure 1.1 demonstrates the life of a patient with chronic condition(s) throughout a year. Typ-

ically, patients with long term conditions visit the clinic once or twice a year. At this appoint-

ment, they are expected to recall details of their wellbeing, including their physical activity,

since they were last seen, with many physical activity questionnaires focusing on the most

1
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Figure 1.1: Schematic for patient’s daily life for a whole year

recent week. This can be problematic for two reasons; 1) a seven day period is not always rep-

resentative for the progression of the disease of the patient, and 2) the feedback from patients

is subject to recall bias. Remote patient monitoring offers the opportunity to provide a more

objective, long term overview of the progression of the disease.

Remote patient monitoring will benefit clinicians and patients. For example, clinicians could be

able to continuously collect objective patient data to improve their healthcare decision-making

(Baig et al. 2017). Patients could be provided with a patient-specific treatment with improved

feedback and support (Baig et al. 2017). Additionally, patients would not need to recall any of

the activities that they performed over a long period of time (Miller et al. 2013).

The potential clinical benefits of improved monitoring of physical activity mean that analysis

of activity tracker data warrants further attention. There is a clear need to develop algorithms

that can perform accurately in both healthy and pathological populations. Therefore, this thesis

explores the use of signal processing and machine learning algorithms to identify the activity

levels of users performing tasks of daily living. Additionally, a step count algorithm is described

to calculate the number of steps of the user. Importantly, the step count algorithm targets users

with atypical gait patterns.

Accelerometer sensors have been used extensively in wearables to measure physical activity as

they can be used for both activity recognition and step count purposes. The work of this thesis

provides the methodology required for, and implementations of, both activity monitoring and

step count using an accelerometer.

2
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1.2 Aim and objectives

The governing hypothesis being explored in this thesis is that tuneable activity monitor algo-

rithms could produce better outputs than standard algorithms if specifically trained to recognize

data relating to abnormal activities. Hence, the overall aim of this thesis is to explore the de-

velopment of tuneable algorithms to more accurately measure physical activity in people with

walking impairments.

Objectives:

1. To explore the effect of sensor mounting locations on condition classification and activity

recognition (Chapter 3)

2. To explore the performance of a machine learning algorithm in identifying whether a

patient is moving normally (Chapter 3)

3. To explore the performance of a set of machine learning algorithms in identifying different

types of physical activity in healthy participants under normal and simulated-pathological

conditions (Chapter 3)

4. To compare the ability of previously published step count algorithms to correctly count

the number of steps taken by healthy participants performing normal and simulated-

pathological gaits (Chapter 4)

5. To develop a novel step count algorithm to count the number of steps in healthy partici-

pants performing normal and simulated-pathological gaits (Chapter 5)

6. To generate synthetic acceleration data that represent normal and atypical walking pat-

terns in order to test the relevant algorithms (Chapter 6)

1.3 Thesis overview

The rest of the thesis will be structured as follows:

Chapter 2 reviews the existing literature around physical activity and the current methods that

are used to measure it. It outlines the advantages and disadvantages of each method before

concluding that the best method for this work was accelerometry. Different aspects of the

accelerometer sensor are then discussed in more detail, including how the sensor works and

3
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what the output signal means. Additionally, the chapter also provides a complete overview

of the Activity-Recognition-Chain process. The theory of popular machine learning and step

count algorithms is also presented. Furthermore, an overview of the literature regarding the

different methods used for activity recognition and step count is presented. Finally, relevant

methods of generating synthetic walking signals are also discussed.

Chapter 3 outlines the design of a pilot study carried out with healthy volunteers. In this

chapter the Activity-Recognition-Chain process, which was followed to analyse the acceleration

data, is discussed step-by-step. The purpose of this chapter is to analyse physical activity data

from healthy volunteers under normal and simulated-pathological conditions. The results show

that there is a need to develop population-specific activity recognition algorithms.

Chapter 4 presents four potentially suitable step count algorithms from the literature; 1) peak

detection, 2) thresholding (frequency-domain), 3) thresholding (time-domain), and 4) template-

matching. The performance of each algorithm is examined in both normal and simulated-

pathological gaits. Results from these analyses demonstrated suboptimal performance of the

existing algorithms in simulated-pathological gait and confirmed the need to develop an im-

proved algorithm.

Chapter 5 describes the development of a novel person-specific step count algorithm. It is

based on the template-matching technique and uses Dynamic Time Warping for a similarity

measure between the template and the acceleration signal. Finally, analysis within this chapter

confirms that the new algorithm performs better in simulated-pathological gait, when compared

to existing algorithms.

Chapter 6 describes a mathematical model that is used to generate synthetic data and was

developed because of the challenges in conducting research on patients, especially during the

COVID-19 pandemic. The model is inspired by McSharry and colleagues, who previously used

this method to generate synthetic electrocardiogram signals (McSharry et al. 2003). The syn-

thetic signals are validated using the data collected from the healthy volunteers. Therefore, this

chapter provides an important methodological development to enable the synthesis of realistic

accelerometer signals which will aid future advances in physical activity monitoring.

Chapter 7 draws together and discusses the main outcomes from each study as an integrated

body of work. It considers the relevance of these findings in the context of existing literature, and

4
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the general strengths and limitations of each study. In this context, it concludes by proposing

key areas for future research.
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Chapter 2

Literature review

2.1 Introduction

Chronic non-communicable diseases (NCDs) are one of the biggest health and development chal-

lenges in the 21st century and were responsible for the 71% of the world’s deaths in 2016 (WHO

2018). NCDs are associated with common risk factors such as obesity, tobacco and alcohol use,

unhealthy diets as well as physical inactivity, which are aspects of an unhealthy lifestyle (Maher

et al. 2012). Among these modifiable risk factors, lack of physical activity (PA) is the most

common (Warburton et al. 2006). Worldwide, one in four adults is insufficiently active (WHO

2017), and in the UK, 39% of adults do not meet physical activity (PA) recommendations (BHF

2017). Physical inactivity has been identified as one of the leading risk factors for premature

mortality and worldwide deaths by the World Health Organization (WHO) (Dumith et al. 2011;

Kohl et al. 2012; Lee et al. 2012; Taylor 2014; McPhail et al. 2014; Laarhoven et al. 2016; WHO

2017; Caron et al. 2017). Due to that, it is important to be able to measure PA accurately to

ensure adequate activity levels are reached.

2.2 Physical activity and current technologies for measuring PA

2.2.1 Physical activity

2.2.1.1 Definition

PA has been defined by (Caspersen et al. 1985) as any “bodily movement produced by skeletal

muscles which result in energy expenditure (EE)”. In other words, PA is the behaviour that
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increases EE above resting levels (Hills et al. 2014).

PA consists of four dimensions: frequency, intensity, time and type (FITT) (Butte et al. 2012;

Strath et al. 2013). This information shows how often or how much (frequency), hard (intensity)

and long (time), as well as what type of physical activity is performed (Hills et al. 2014). PA

can be quantified based on these dimensions. Table 2.1 demonstrates a few examples for each

category.

Table 2.1: Dimensions of physical activity and their parameters (Sliepen et al. 2018).

Dimension Parameter

Frequency
Number of level steps
Number of ascending steps
Number of descending steps

Intensity Walking cadence

Time
Time spent walking
Time spent sitting

Type
Walking
Sitting
Standing

2.2.1.2 Guidelines

Health guidelines on levels of PA have been developed and recommended to the public by the

WHO. The guidelines suggest that adults should participate in moderate PA for at least 150

minutes a week, or vigorous PA for at least 75 minutes a week, or an appropriate combination

of moderate and vigorous PA (González et al. 2017). Whilst the WHO only include moderate

and vigorous PA, recent studies have demonstrated that light intensity PA also provides health

benefits (Wannamethee and Shaper 2001; Pate et al. 2008; Calabró et al. 2014). Most of the

activities of daily living (ADL) fall in the category of light intensity activities (Calabró et al.

2014).

2.2.1.3 PA and health

Regular PA has been shown to improve health outcomes. For example, this includes: reducing

blood pressure and systemic inflammation; improving body composition, coronary blood flow

and cholesterol levels (Warburton et al. 2006). Additionally, regular PA reduces the likelihood

of 35 chronic conditions, such as cancer, musculoskeletal disorders, and cardiovascular diseases

(Booth et al. 2012; Pedersen and Saltin 2015). The relationship between PA and chronic diseases
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is a vicious circle: decreasing amounts of PA increases the likelihood of a person developing a

chronic disease. The chronic disease further decreases the amount of PA a person can perform,

thereby exacerbating their condition. Consequently, it is widely recognised that people with

chronic disease(s) tend also to undertake lower levels of PA (Durstine et al. 2013).

Physical inactivity is the fourth leading risk factor for mortality as identified by the WHO

(Veldhuijzen van Zanten et al. 2015). Physical inactivity is defined as any activity level insuf-

ficient to meet the current PA guidelines (Lee et al. 2012). Therefore, it is essential to know

how physically active or inactive an individual is, since PA is a modifiable risk factor (Schrack

et al. 2016). This means that with the appropriate guidance, individuals can improve their PA

behaviour and adapt to a healthier lifestyle (Strath and Rowley 2018).

2.2.1.4 Assessment

The importance of accurately monitoring and increasing PA has been well documented across

a range of long-term conditions. There is, therefore, a need to measure PA accurately and

precisely to enable us to develop and evaluate programmes that aim to increase PA and to

monitor patient’s wellbeing.

Various methods have been developed to measure PA (Vanhees et al. 2005). Traditionally, PA

has been assessed using subjective methods such as questionnaires. However, due to some of the

well recognised limitations of subjective measures, technological advancements, and demand for

better quality of life, objective methods are becoming increasingly more widely used (Taraldsen

et al. 2012; Broderick et al. 2014). This section discusses in detail various methods for assessing

PA by identifying their advantages and disadvantages.

Self-reports Questionnaires, such as the International PA questionnaire, and the Global PA

questionnaire, as well as activity diaries are examples of subjective methods used to assess

PA (Yang and Hsu 2010). They are simple to use, inexpensive and they offer the ability to

assess sedentary behaviour, such as recreational, transport-related activity and occupational

(Broderick et al. 2014). Another advantage of such methods is the ease of administration in

large groups (Mynarski et al. 2012).

However, there are several limitations to these subjective measures which limit their use in clini-

cal populations. They are reported to provide inconsistent assessment results since they depend
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on subjective interpretation and individual observation (Mynarski et al. 2012; Broderick et al.

2014), and they are prone to recall bias since people tend to report socially desirable outcomes

rather than true outcomes. Questionnaires, in particular, may also be cultural- and age-specific

which means that they cannot be used in different countries and populations (Taraldsen et al.

2012; Miller et al. 2013). There are also specific issues with these methods amongst older adults,

which is particularly important given the prevalence of multiple NCDs amongst this population.

Older adults might fail to remember exactly which activities they carried out throughout their

day (Taraldsen et al. 2012; Miller et al. 2013; Sylvia et al. 2014). Another key limitation is that

they are not very good at capturing low intensity activities which is where people with chronic

conditions get most of their PA from (Miller et al. 2013). This is because most questionnaires

include questions about moderate and vigorous physical activity tasks (Sylvia et al. 2014).

Direct calorimetry Human energy metabolism involves the transformation of energy from

the combustion of fuel in the form of carbohydrate, protein, fat, or alcohol. In this process,

oxygen (O2) is consumed and carbon dioxide (CO2) is produced via an exothermic reaction.

The measurement of energy expenditure (EE) involves the measurement of heat loss for each

subject using a calorimeter, which is referred to as direct calorimetry (Ndahimana and Kim

2017). This technique is used to quantify metabolic rate and it is often used to validate other

objective and subjective methods. However, since this method requires direct observation,

complete assessment is time consuming and requires a lab setting using expensive equipment,

so it prohibits real world assessment and is not suitable for large-scale studies (Vanhees et al.

2005).

Indirect calorimetry The indirect calorimetry technique measures respiratory gas volume,

such as O2 and CO2. This can be done using several methods, for example face mask, canopy

and Douglas bag (Ndahimana and Kim 2017). Like direct calorimetry, this method is expensive

and requires technical expertise. Additionally, the assessment must again be performed in a

lab setting since the user should be connected to the machine. It is non-invasive and produces

accurate results (Ndahimana and Kim 2017) but not well suited to large or real-world studies.

Doubly labelled water Doubly labelled water (DLW) is the “gold standard” technique that

is used to assess total EE (Ndahimana and Kim 2017). This method uses the stable isotopes of

water to assess EE, water flux, and body composition. It follows the exponential disappearance
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of the oxygen (18O) and hydrogen (2H) stable isotopes in body water after initial labelling of

the body water pool. 18O is lost from the human body as both CO2 and H2O, in contrast to 2H

that is lost in the form of water. Therefore, the loss difference between them is the production

of CO2 during that period (Westerterp 2009; Buchowski 2014). Even though this method is

currently the gold standard, it has several disadvantages. First, it is an expensive technique and

unsuitable for large-scale studies. Using this method, the EE is only estimated and therefore a

distinction between the EE of PA and basal metabolic rate, as well as diet-induced EE is not

possible (Butler et al. 2004; Vanhees et al. 2005). In addition, it does not provide information

about PA over timescales of days or weeks (Hills et al. 2014).

Pedometry Pedometers are electromechanical or electronic devices that are commonly used

to count the number of steps taken throughout a day. An up and down movement occurs when

a human is walking. Typically, within a pedometer, a lever arm is stimulated to oscillate by

the person’s steps. Each oscillation occurs when a step is taken and there is corresponding

movement at the hip; therefore the pedometer counts the steps taken during human walking

(Wise and Hongu 2014). In the clinical setting, pedometers can be used to improve or support

the daily activities of patients (Yang and Hsu 2010; Broderick et al. 2014). To achieve good

results, the step count needs to be accurate so that any targeted interventions can be calibrated

to an individual. Despite this, some important parameters of PA cannot be measured from a

pedometer because of the way it works. For example, activity intensity, duration of individual

bouts of PA and sedentary time cannot be measured. The pedometer provides an output

in steps, which means that EE estimates will be inaccurate (Yang and Hsu 2010; Broderick

et al. 2014; Trost and O’Neil 2014). This might be because small steps expend less energy

than big steps, but both are considered equal by a pedometer. Furthermore, at slower speeds,

the pedometer’s accuracy is reduced (Broderick et al. 2014) because most of the (pedometer)

algorithms are based on thresholds that were developed in a healthy population that walk

normally, and at a normal pace. For example, the amplitude of vertical acceleration is reduced

at slower speeds, hence the threshold may not be representative to count accurately each step

(Ehrler et al. 2016).

Accelerometry In terms of human movement, acceleration data can reflect the frequency and

intensity of motion, since acceleration is directly proportional to external force when the mea-

sured mass is constant. Additionally, several parameters such as vibration frequency, rotation,
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and tilt can be derived from an acceleration signal. Tilt sensing can be used to identify differ-

ent body postures of the wearer. These sensors have become practical and useful in wearable

devices to assess PA since they have smaller size with lower power consumption, and therefore

they have been used widely (Yang and Hsu 2010). They can be used for human activity recog-

nition (HAR), for estimating EE (Hills et al. 2014; Sazonov et al. 2014; Santos-Lozano et al.

2017) and for detecting falls (Castillo et al. 2014). Due to the features offered by accelerometry,

this approach has become one of the most popular choices to use for measuring PA objectively.

One of the most important features of the accelerometer approach is the ability to provide

information about the four dimensions of PA; frequency, intensity, time and type (FITT).

Raw accelerometry - limitation Even though accelerometers are currently one of the best options

to measure PA in real-life, they still have limitations (Atallah et al. 2011; Gjoreski et al. 2016).

The sensor location affects the accuracy of the recorded signal. The most common sensor

mounting locations are wrist, ankle, chest, waist and hip. They can be directly attached to

the skin, clipped to clothing, or they can be carried in pockets. Theoretically, the sensor

might be placed slightly differently each time it is attached by the wearer, hence producing

slightly different outcomes. The main drawback of accelerometers is that they might not provide

sufficiently detailed information or accurately classify different intensity activities on their own.

Other sensors, such as gyroscopes, microphones and electrocardiogram (ECG) sensors, along

with accelerometers can be integrated to provide more informed results (Atallah et al. 2010).

Accelerometers embedded in wearables - limitations Commercially available wearables often use

proprietary algorithms to measure PA, which creates some limitations. The first is that the

underlying algorithms are usually not available to either researchers or consumers (only the

resulting PA). This means that results estimated by devices from different manufacturers cannot

be easily compared or validated (Mancuso et al. 2014). The second problem is that even

when open source algorithms are used, many algorithms are targeted towards a specific sub

population, and do not work well in other groups (Backhouse et al. 2013; Mancuso et al. 2014).

Therefore, the algorithms might be less accurate for someone with a different walking pattern

and slower pace than the usual. It is important to be able to measure these activities as

well, since most of the primary ADLs are of low intensity (Pate et al. 2008; Calabró et al.

2014). Another issue of accelerometers is that they only provide EE or activity counts based on

intensity count thresholds. These counts are used to represent a sum of acceleration, which was
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counted as an activity having exceeded a threshold. The sum of acceleration values represent

an acceleration into an epoch, which is a fixed recording interval. Thus the data typically

describes general PA levels, rather than specific types of activities (Lipperts et al. 2017). Table

2.2 summarises the advantages and disadvantages for each method.

Table 2.2: Advantages and disadvantages of physical activity assessment methods.

Method Advantages Disadvantages References

D
ou

b
ly

la
b

el
le

d
w

at
er

Non-invasive Expensive (Vanhees et al. 2005;

Yang and Hsu 2010;

Strath et al. 2013;

Sylvia et al. 2014; Hills

et al. 2014; Ndahimana

and Kim 2017)

Precise EE results Time-consuming

Accurate EE results No contextual information

Does not quantify FITT

Unsuitable for large-scale

studies

Needs technical expertise

No indication of specific

activites

In
d

ir
ec

t

ca
lo

ri
m

et
ry

Accurate EE results Needs technical expertise (Vanhees et al. 2005)

Precise EE results Expensive (Yang and Hsu 2010;

Strath et al. 2013;

Ndahimana and Kim

2017)

Non-invasice Short time assessment

Limited to lab-setting

D
ir

ec
t

ca
lo

ri
m

et
ry

Accurate metabolic equiv-

alent results

Expensive (Ndahimana and Kim

2017)

Subject confindement for

24+ hours

P
ed

om
et

ry Easy to use Does not quantify FITT
(Vanhees et al. 2005;

Yang and Hsu 2010)
Low cost Influenced by placement

Accurate for running and

moderate walking

Walking or running spe-

cific, no upper movements

Low burden to participant Inaccurate EE results

Continued on next page

12



Chapter 2. Literature review 2.2. Physical activity and current technologies for measuring PA

Table 2.2 – continued from previous page

Method Advantages Disadvantages References

P
ed

o
m

et
ry

Small size Proprietary algorithms (Butte et al. 2012;

Strath et al. 2013;

Sylvia et al. 2014; Hills

et al. 2014; Trost and

O’Neil 2014;

Ndahimana and Kim

2017)

Portable

Non-invasive

Lightweight

Large-scale application

Motivation tool

Suitable in free-living

A
cc

el
er

om
et

ry

FITT information Needs technical expertise (Culhane et al. 2005;

Vanhees et al. 2005;

Westerterp 2009; Yang

and Hsu 2010; Butte

et al. 2012; Strath

et al. 2013; Sylvia et al.

2014; Hills et al. 2014)

Concurrent measure of

movement

Inter- and intra-monitor

variability

Captures large amount of

data

Thresholds influence mea-

surements of PA intensity

EE results Proprietary algorithms

Activity counts (intensity) Influenced by location

Cost-effective Influenced by attachment

method

Long-term monitoring Influenced by external vi-

brational artefact

(Trost and O’Neil 2014;

Schrack et al. 2016;

Ndahimana and Kim

2017)

Suitable in free-living No contextual information

Step count

Small size

Wireless

Non-invasive

Lightweight

Portable

Low burden to participant

S
el

f-
re

p
o
rt

Low cost Recall (Vanhees et al. 2005)

Accurate for intense activ-

ities

Inaccurate for light/mod-

erate intensity activities

(Westerterp 2009)

Continued on next page

13



2.2. Physical activity and current technologies for measuring PA Chapter 2. Literature review

Table 2.2 – continued from previous page

Method Advantages Disadvantages References

Ease of administration High burden on partici-

pants (diary)

(Yang and Hsu 2010;

Strath et al. 2013;

Sylvia et al. 2014; Hills

et al. 2014; Bassett

et al. 2015; Ndahimana

and Kim 2017)

S
el

f-
re

p
or

t

Determining discrete cate-

gories of activity level

Subjective interpretation

Simple to use Low reliability and validity

Capture contextual infor-

mation

Need to be population and

culture specific

Large-scale application Less robust in assessing EE

2.2.1.5 Summary

Increasing PA offers many benefits for people with chronic conditions. To help develop strategies

to improve PA in this population and monitor progress, it is important to be able to accurately

measure the activity of patients over time and in the real world. This would help to manage

the diseases more effectively, to monitor progress of chronic diseases and to promote healthy

behaviours in populations of people at increased risk of negative effects associated with physical

inactivity (Tao et al. 2012; Lipstein et al. 2016).

Subjective measures have been traditionally used to assess PA since they are inexpensive and

can be easily administered in large groups (Mynarski et al. 2012; Broderick et al. 2014). Most

common subjective methods depend on the memory of the participant, and on subjective in-

terpretation (Taraldsen et al. 2012; Mynarski et al. 2012; Miller et al. 2013; Broderick et al.

2014).

Objective techniques provide more accurate measurements. Of these techniques, accelerometers

are most commonly used to assess PA. The reason for that is their ability to automatically,

continuously and for long term period to measure PA of participants in both free-living and

lab-based environments. All four PA dimensions can be measured using accelerometers (Yang

and Hsu 2010). Therefore, the next section will explore accelerometers in more detail. For

example: a) the different components of the acceleration; b) the underlying mechanism of the

accelerometer; c) the morphology of the acceleration signal while in motion and rest; and d)

the variability of the signal while walking.
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2.3 Accelerometry

2.3.1 Definition

The definition of acceleration is the rate of change in velocity over a given time. An accelerom-

eter is a motion sensor that measures accelerations of a body along a sensitive axis (Hills et al.

2014). Acceleration is measured in either gravitational units (g) or SI units (m/s2) (Hills et al.

2014). It can measure acceleration in up to three orthogonal axes (Mathie et al. 2004), that are

sometimes called vertical, anterior-posterior, and medio-lateral (Godfrey et al. 2008; Tao et al.

2012).

The output signal from an accelerometer represents the overall acceleration and/or deceleration

of the body on which the sensor is attached (Strath et al. 2013). The signal is composed of

three main components; gravity, movement and noise (Hees et al. 2013). The first component is

associated with gravitational acceleration, the second component is associated with the move-

ment of the subject and the third component is associated with external vibrations acted on

the body and from the movement of soft tissue (Mathie et al. 2004).

When the accelerometer is static, the resultant signal is entirely due to gravity. This means

that the total acceleration measured is 1g. The gravity component can be used to identify the

orientation of the accelerometer. When the accelerometer is moving, a change in the output

acceleration signal is detected. The changes in the signal are influenced by the intensity of the

motion of the accelerometer. When the movement is more intense, the resulting accelerations

are greater and a bigger change in the signal is detected (Gjoreski and Gams 2011). This can

be seen in Figures 2.1 and 2.2 which represent the activities under both normal and simulated-

pathological conditions respectively.
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Figure 2.1: Vertical acceleration signal collected from the wrist representing the following daily
activities under normal condition: lying, sitting, standing, stand-to-sit, slow walk, normal walk,
fast walk, ascending stairs and descending stairs

Figure 2.2: Vertical acceleration signal collected from the wrist representing the following daily
activities under simulated-pathological condition: lying, sitting, standing, stand-to-sit, slow
walk, normal walk, fast walk, ascending stairs and descending stairs

2.3.2 Accelerometer system function

There are three main types of accelerometers; piezoelectric, piezo-resistive and capacitive (Shany

et al. 2012). Although the accelerometers are built based on different manufacturing techniques

and designs, they all use the same underlying basis, which is a mass-spring system (Mathie
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et al. 2004). In other words, accelerometers work based on Newton’s 2nd law and Hooke’s law

(Kavanagh and Menz 2008).

Newtons 2nd law:

F = m× v1 − v0
t1 − t0

= m× α (2.1)

Hooke’s law:

F = k × x (2.2)

where m is mass, v is velocity, t is time, α is acceleration, k is the spring’s stiffness and x is

distance.

The mass-spring system reacts when a compressive force is applied. This reaction produces a

proportional force to the initial force acted on the system. Based on that principle, acceleration

can be calculated according to the system’s displacement when mass and spring constant are

known (Gomes 2014).

One common type of accelerometer is the capacitive, which is composed of microstructures that

are built into a polysilicon surface (Lingesan and Rajesh 2018). The sensor contains differential

capacitors that comprised with fixed independent plates, and plates attached on the moving

mass. When the sensor moves, the mass generates a reaction force that is applied to the springs.

As shown in Figure 2.3, the springs are attached at the anchor of the system. The accelerometer

sensor obeys the mass-spring system, described previously. Hence, it has been validated that the

deformation of the spring is linear with acceleration (Jarchi et al. 2018). Due to the reaction

force while the sensor is moving, an electrical output signal is produced by the differential

capacitors. The signal is proportional to the magnitude of the acceleration acting on the sensor

(Kavanagh and Menz 2008).
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Figure 2.3: Representation of a general capacitive accelerometer

2.3.3 Acceleration signal morphology

Tri-axial accelerometers are used in wearables. This means that they can be placed near or

on several body locations, such as wrist, ankle, thigh, waist, pockets, etc. These particular

locations, that are associated with wearables, are used because they have common characteristics

in both women and men: a large continuous surface, and low flexibility and movement (Gemperle

et al. 1998; Yang and Hsu 2010; Mancuso et al. 2014). The location is often chosen depending

on the patients’ condition and their requirements (Mancuso et al. 2014). For example, wearables

are often worn on the wrist to maximise patient convenience. However, accelerometers worn

on the upper part of the human body tend to slightly underestimate PA in comparison to the

wearables that are worn on the lower part of the human body, ankle, and shoe (Mancuso et al.

2014; Walker et al. 2016). In addition, patients might have some physical impairments as a

result of the illness, surgeries, or therapies that restrict their movement in the limb that they

have to wear the monitor (Walker et al. 2016). Hence, the accelerometer output is influenced

by its position and orientation, the posture of the wearer and the activity performed (Godfrey

et al. 2008).

2.3.3.1 Static activities

As mentioned above, when the accelerometer is static, the acceleration value should be zero.

However, the accelerometer is affected by gravity. Hence, if the accelerometer is placed so that

its vertical dimension is perpendicular to the ground, the measured acceleration value will be

1g. Due to noise, the acceleration will not be exactly 1g (Figure 2.4). Figure 2.4 demonstrates

the three-dimensional (3D) acceleration while standing, where x is the vertical dimension, y
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is medio-lateral dimension (back-forth) and z is antero-posterior dimension (right-left). The

vertical dimension (up-down) is affected by gravity, therefore it is the furthest from zero. The

medio-lateral dimension is almost zero because there is no motion in this plane. And the antero-

posterior dimension is slightly off from zero because it might not be aligned with ground.

Figure 2.4: Vertical (x), medio-lateral (y) and antero-posterior (z) acceleration signals repre-
senting standing activity

2.3.3.2 Dynamic activities

Gait is characterised as a series of alternating rhythmical movements of legs, arms and trunk,

where a forward body movement is created (Anwary et al. 2018). Human walking can be

represented as a gait cycle, which is composed of two consecutive steps (Cola et al. 2017).

Walking is a repetitive process of multiple gait cycles (Tao et al. 2012), and can be derived from

anterior-posterior and vertical accelerations. These two directions are responsible for most of

the total power of the signal (Butte et al. 2012). In terms of acceleration signal, each gait cycle

can be observed as a series of deflections away from the baseline (gravitational) value. These

deflections are represented by maximum peak values (Anwary et al. 2018) and reflect the arm

and leg movement during walking. The peaks are created because of the foot contact on the

ground at each step (Cola et al. 2017).

As the foot contacts the ground, an impact is created and transmitted to the sensor using the

human body as a medium. The acceleration signal has greater magnitude and intensity when

the accelerometer is attached on the foot in comparison to the signal created when the sensor

is attached on the wrist. The reason for this is because the accelerometer is farther from the

foot (Cola et al. 2016). Additionally, the magnitude of the deflections of the acceleration signal,

representing two consecutive steps, is influenced by the side of the body where the sensor is
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attached. Higher acceleration values are recorded for the steps that were made with the leg

closer to the accelerometer. In terms of the wrist accelerometer, the acceleration magnitude is

also influenced from the arm swing, which might reduce the amplitude of the acceleration (Cola

et al. 2017).

A gait cycle is composed of eight phases; heel strike, loading response, mid-stance, terminal

stance, pre-swing, toe-off, mid-swing and terminal swing as shown in Figure 2.5. This cycle

represents the behaviour of the legs during walking. In terms of the arms movement, they

swing out of phase with the legs. Hence, while walking, the right side of the pelvis, the right

leg, the left arm and the left side of the shoulder girdle move forward at the same time (Whittle

2007).

Figure 2.5: Phases of gait cycle

The walking acceleration signal may be divided into different sections. When a step is made

using the leg that is on the same site with the sensor, the acceleration recorded is higher. The

following are the sections of the acceleration signal derived from the wrist location, as shown in

Figure 2.6:

• Forward valley: a deflection away from the baseline caused by the arm’s direction, which

is perpendicular to the ground and tends to move forward

• Forward peak: a deflection away from the baseline caused by the arm’s direction, which

is beyond the user’s hip

• Stance-point: a deflection away from the baseline caused by the arm’s direction, which is

perpendicular to the ground and tends to move forward
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• Backward peak: a deflection away from the baseline caused by the arm’s direction, which

is behind the user’s hip

Figure 2.6: Acceleration signal of a single gait cycle with important points

2.3.4 Walking variability

There is intra- and inter-variability of gait between humans while walking. This means that

each walking step varies in length, time, and width between steps from the same individual

(intra-) and between individuals (inter-) (Collins and Kuo 2013). In terms of the gait cycle,

this translates in variations of amplitude, period and pattern in the acceleration signal.

Several factors might be responsible for walking variability. For example, the nervous system,

the structure of the physical body and the floor surface which is often not completely flat. The

conscious choice of walking speed also leads to variability of walking. Humans can do several

things while walking, for example carrying objects or having their hands in pockets, therefore

their speed is influenced by additional activities they perform (Collins and Kuo 2013).

Walking variability exists in both “normal” and “pathological” gaits. Regarding the former,

a more consistent walking pattern is visible. Regarding the latter, the walking pattern might

become less visible and with greater amount of noise (Kirtley 2006).
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2.4 Human activity recognition

Human activity recognition (HAR) is an area of research that is used to “read” motions and

gestures of the human body. For instance, standing, walking, running, texting, etc. Sensors,

like accelerometers, heart-rate monitors, and global positioning systems (GPS) are used on and

around the subject’s body to identify any activity performed (Ann and Theng 2014). HAR

provides useful information about the behaviour of the user, such as if the user is active or not.

Devices are then used to assist the user proactively while carrying out their tasks (Bulling et al.

2014). Generally, the area of activity recognition has become more popular since wearables and

smartphones can be used to recognise activities. HAR is used in healthcare research for two

main reasons: 1) to assist patients with chronic diseases and 2) to support diagnosis of patients

by detecting anomalous behaviours or tracking health conditions (Bulling et al. 2014; Banos

et al. 2014).

2.4.1 HAR challenges

Though HAR is commonly used by researchers, several challenges remain (Bulling et al. 2014).

The first challenge is to ensure robust placement of sensors to maximise effective activity recog-

nition and step counting. Some sensors are sensitive to orientation and position. This might be

an issue, since it is not possible to always place the sensor at the exact same position (Avci et al.

2010; Atallah et al. 2011; Ann and Theng 2014). However, a device that is located on the wrist

can be expected to be consistently worn with the same orientation with respect to the arm of

the user. Therefore, accelerations from the local coordinate system of the 3D accelerometer can

be used for gait analysis (Cola et al. 2016). Another challenge is human variation (Avci et al.

2010). Like walking, other activities may be performed differently by each individual, or even

within the same individual from time to time. This can be classified as intra-class variability

(Bulling et al. 2014). A similar problem is inter-class similarity, in which different activities

may have similar characteristics that make them difficult to differentiate (Bulling et al. 2014).

2.4.2 Activity recognition chain

The activity recognition chain (ARC) is a framework that is used to design and evaluate HAR

systems. Specifically, it is a sequence of pattern recognition, signal processing and ML tech-

niques. It consists of six elements: data acquisition, data pre-processing, data segmentation,
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feature extraction and selection, training and classification, and performance evaluation (Bulling

et al. 2014).

Figure 2.7 demonstrates the ARC process, which was adopted for the analysis of this thesis.

From left to right, a set of N sources, in our case accelerometer sensors, delivers raw acceleration

signals. The pre-processing part consists of several sub-parts, such as labelling the data, filtering

to reduce noise and calculation of other measures derived from the collected acceleration data.

The next step is to segment the signals into windows of given length to capture the dynamics

of the signals. Subsequently, several features are calculated for each window using a feature-

extraction process. In terms of features, time- and frequency-domain functions are often used.

When all features are calculated, a feature vector is formed and it is used as an input to the

classifier (Banos et al. 2013).

Figure 2.7: Activity recognition chain process (Banos et al. 2014)

2.4.2.1 Data acquisition

The first step to create a robust activity recognition system is to design and develop a process

to collect comprehensive data about the target group. These data can take several forms,

attaching sensors on different body locations of the participants and/or positioning sensors in
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the environment (lab or home) to measure participants’ movements. In addition to sensor data,

demographic characteristics and sensor device specifications ought to be acquired (Saez et al.

2016).

Accelerometers might have up to three axes, e.g. 1D, 2D and 3D. This means that a sensor

with three axes provides data from three different directions. For example, an accelerometer

can record 3D acceleration in x, y and z direction. In general, the output of the sensors can be

described as:

Ni = (di1, di2, di3, . . . , dit), for i = 1, . . . , n (2.3)

where n denotes the number of sensors, and dij the multiple values at a time t. The sampled

data is recorded at regular intervals by the sensors. The result is to provide a multivariate

time series. Sometimes the sampling rates of different sensor types are different, therefore

synchronising across multimodal sensor data is an important step before performing any other

action.

2.4.2.2 Data pre-processing

After successfully collecting data, the data is pre-processed to extract useful information. Often,

the raw signal recorded by the sensors contains artefacts from aquisition, noise, missing samples

or invalid data. Therefore, this stage is required to remove any artefacts, to synchronise and

to prepare the captured signals for the next stage. Signal pre-processing is critical since it is

essential to preserve signal characteristics in terms of the activity data. The processed data

should retain the important information of the data, but with no artefacts.

Depending on the type of data, different pre-processing methods are used. The reduction of

noise and artefacts is often carried out using different filters. Filters that might be used for this

purpose are low-pass Butterworth and median filter (Hassan et al. 2018). The low pass filter

blocks high frequencies, and passes low frequencies up to a specified cut-off frequency threshold.

A median filter is often used to smooth the data between different windows (Wang et al. 2011).

Normalisation is a common method used to pre-process acceleration signals (Bulling et al. 2014).

It is used to scale heterogeneous data into “new” comparable data. At this stage any missing

values are estimated, which is a hard problem to resolve. For very short pieces of missing data
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a 3-point median filter might be used to average the previous and the next values of the missing

value (Saez et al. 2016). However, there are other more complex ways to fill in missing data

when bigger chunks are missing, such as imputation with k-nearest neighbour or C4.5 decision

tree (Batista and Monard 2003). Additionally, labelling the data is an important pre-processing

step since the labels are used for the ML algorithms and also for removing unwanted data.

Finally, in some cases, the data recorded by the sensors, such as acceleration, can be used

to calculate other types of signal, for instance velocity and jerk signals, using mathematical

equations. Usually, this is done since there is no access to sensors that can directly measure

these attributes.

2.4.2.3 Data segmentation

The sensor signals are divided into smaller data sections, called windows, using different seg-

mentation techniques. Ideally, each window is short enough so that only one type of activity

occurs during the period (Preece et al. 2009; Banos et al. 2014; Bulling et al. 2014). A window

is defined by its start and its end time within the signal’s time series. Several features are

calculated for each window, and then they are used for the characterisation of the collected

signal. After this step, algorithms are developed to classify the dataset. The inputs for these

algorithms are the extracted features. Segmentation techniques can be separated in three dif-

ferent categories, sliding windows, event-defined windows and activity-defined windows (Preece

et al. 2009; Banos et al. 2014). In a sliding window approach, the signal is separated into fixed

size windows, with or without overlap windows. The event-defined window approach locates

different events that are then used to segment the data. The final approach, activity-defined,

separates the data when detecting variations in activity (Banos et al. 2014). Segmentation is

performed to examine short sections of the time series signal. For instance, this is useful when

the time series may contain multiple different activities, and you want to be able to work out

when each activity happened (Bulling et al. 2014).

This process might sound straightforward and easy to perform, but it is a complicated task in

practice. Activities performed by humans are diverse and complex. One activity can be executed

with different approaches which can lead to ambiguity in the manual labelling of the activity

(Bulling et al. 2014). Moreover, activities are carried out continuously and simultaneously. This

results in signals where the activities are not clearly separated in time and makes it difficult

25



2.4. Human activity recognition Chapter 2. Literature review

to isolate them. Another issue that arises is the definition of each activity. Since activities do

not necessarily have start and end borderlines, an activity might be performed in two or more

different ways, which makes it difficult to use a particular signal to characterise one activity.

For example, an eating activity might start with reaching or holding the cutlery (Bulling et al.

2014).

2.4.2.4 Feature extraction and selection

Signals are reduced into features. Features are sets of numbers that have been derived from the

time- or frequency-domain to describe the raw signal (data) in different forms. The features

can then be used as input to ML algorithms. Selection of the right features is important

as well because they provide different signal characteristics. Incorrect feature selection may

lead to incorrect classification of activities (Lara et al. 2012). It is often necessary to simplify

analysis of a highly complex signal. Further analysis is conducted on the features (signal’s

characteristics), rather than on the raw acceleration signal; therefore, the selection of relevant

features is important (Ignatov 2018). A “good” feature needs intra-class reliability of an activity

and to be robust between different people. In doing so, instances of the same activity will be

closely clustered in the feature space.

A wide range of features for accelerometer data have been identified from the literature (Gjoreski

et al. 2016; Hassan et al. 2018). The features may be classified as time-domain features,

frequency-domain features, or other features (Lara and Labrador 2013). Some of the most

common features are shown in Table 2.3.

Table 2.3: Common features used in the activity recognition literature.

Domain Methods References

Time

Mean
Standard deviation (Suto et al. 2016)
Variance (Li et al. 2018)
Interquartile range (Waltenegus 1999)
Entropy (Nayak and Panigrahi 2011)
Kurtosis (Gupta and Dallas 2014)
Time between peaks
Maximum peak amplitude

Frequency
Spectral energy (Nayak and Panigrahi 2011; Suto et al. 2016)
Discrete cosine transform (Li et al. 2018)

Often, the time-domain features represent statistical measures, such as mean, standard de-
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viation, variance, etc. (Preece et al. 2009). On the other hand, frequency-domain features

are derived by transforming the time series data. The reason for exploring the signal in both

time- and frequency-domain is to identify different characteristics of the features. For example,

time-domain analysis describes how the signal changes over time. Frequency-domain analysis

describes how the energy of the signal is distributed in different frequencies. There are different

methods to transform the signal from the time-domain to the frequency-domain. The methods

are identified based on which category the signal of interest falls into. In general the signals can

be either: a) continuous or discrete, and b) periodic or non-periodic (Smith 1999). Therefore,

four categories are formed, 1) periodic & continuous, 2) non-periodic & continuous, 3) periodic

& discrete, and 4) non-periodic & discrete. Depending in which category the signal is into, the

appropriate methods might be used to transform the signal to the frequency-domain. For exam-

ple, Fourier series methods are used for the periodic & continuous category, Fourier Transform

methods are used for non-periodic & continuous. Discrete Fourier Transform (DFT) methods

are used for periodic & discrete, and lastly Discrete Time Fourier Transform methods are used

for non-periodic & discrete (Smith 1999). Since the signal of interest is the acceleration while

performing activities that provide an almost periodic signal, the desired category is periodic &

discrete. The static activities, sitting, standing, and lying, produce an almost flat acceleration

signal. The same methods could be used however, because the frequency of the signal could

still be extracted using this method. This means that DFT methods are of interest (Mertins

1999). All the different DFT methods are based on similar mathematics, therefore the Fast

Fourier Transform (FFT) is often used since it is computationally efficient. FFT uses the divide

and conquer algorithm to compute the DFT, hence it is faster than the original DFT. The

FFT calculates the coefficients that produce the frequency components of the signal in terms

of amplitude and phase of the signal (Preece et al. 2009).

Features related to spatio-temporal gait parameters, such as time between peaks or maximum

peak, are often used to develop step counters (Kang et al. 2018).

2.4.2.5 Training and classification

When the features have been extracted, the next step is to train an algorithm on the labelled

data to predict an outcome (e.g. typically an activity). For accelerometers, algorithms are

typically used to classify the type and intensity of activities performed. Machine learning

algorithms in conjunction with the advancements of inertial measurement unit (IMU) sensors
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has made HAR using these techniques an increasingly popular research area. Data scientists

use sensory data for analysis, and then developers use the data to develop smart-watches and

mobile applications (Ogbuabor and La 2018).

In statistics and ML, classification is a problem in which we try to identify to which set of classes

a new data is part of, based on a training dataset whose classes are known. These problems

are solved using supervised learning algorithms. An algorithm that performs classification is

known as a classifier. Several supervised learning algorithms are used for classification problems.

Throughout the literature, several ML algorithms have been used for activity classification, as

shown in Table 2.4.

Table 2.4: Machine Learning algorithms used for activity classification in the literature.

Algorithms References

k-Nearest Neighbour (Saez et al. 2016; Gjoreski et al. 2016; Ponce
et al. 2016)

Gaussian naive Bayes (Saez et al. 2016; Gjoreski et al. 2016; Ponce
et al. 2016; Cleland et al. 2013)

Linear discriminant analysis (Saez et al. 2016)

Stochastic gradient descent (Saez et al. 2016)

Support vector machine (Saez et al. 2016; Ponce et al. 2016; Hassan
et al. 2018; Abdull Sukor et al. 2018; Gjoreski
et al. 2016; Strath et al. 2015; Cleland et al.
2013)

Decision tree (Saez et al. 2016; Ponce et al. 2016; Chern-
bumroong et al. 2011; Abdull Sukor et al.
2018; Gjoreski et al. 2016; Cleland et al. 2013)

Random forest (Saez et al. 2016; Ponce et al. 2016; Gjoreski
et al. 2016; Sasaki et al. 2016)

Mixture discriminant analysis (Ponce et al. 2016)

Artificial neural network (ANN) e.g. Multi-
layer Percepetron (MLP)

(Ponce et al. 2016; Hassan et al. 2018; Chern-
bumroong et al. 2011; Abdull Sukor et al.
2018; Cleland et al. 2013; Montoye et al.
2016)

Convolutional neural network (Jang et al. 2018; Ignatov 2018)

Each method has a set of parameters that can be used to tune the model. Depending on the

parameters chosen, the model might be under- or over-fitted. When under-fitting occurs, the

model cannot capture the underlying pattern of the data and the performance of the algorithm

is poor. When over-fitting occurs, the model captures the noise of the data, which means that

the algorithm fits the data well and the performance is good. However, when new unseen data

is tested, the performance will be poor because it fits very well the trained data. To avoid
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that, the data is separated into training, validation and test sets. These sets are used to avoid

over-fitting because an amount of data is used to train the model, a different subset of data is

used to validate the model, and different data again is used to test the model. This helps to test

whether the developed algorithm is accurate or not using the parameters already set (Bulling

et al. 2014; Saez et al. 2016; Korjus et al. 2016).Additionally, there are more strategies to limit

the impact of overfitting. For example, it is important to train the algorithm with relevant

and clean data. This ensures that the algorithm would identify general patterns that better

represent the signals. Another strategy that can be used to avoid overfitting is to stop the

training process of the algorithm early. This works because after a certain number of iterations,

the algorithm stops being generalised and it starts to overfit the data (Kelleher et al. 2015). This

can be identified by evaluating the model on the training dataset and then on a test dataset. If

the performance of the training dataset is much better in comparison to the test dataset, then

the model might be overfitted.

The outputs of the ML algorithms are predictions and these predictions are not 100% accurate,

therefore performance metrics are used to determine to what extent the ML algorithms provide

true results. Several performance metrics are available, such as confusion matrices, accuracy,

sensitivity (or recall), specificity, precision, and receiver operating characteristic curves. Each

metric provides different outcomes, therefore depending on the need, the most appropriate

metrics can be used (Bulling et al. 2014).

A confusion matrix, as shown in Figure 2.8, is used to find the accuracy and correctness of

the ML algorithm. True positives (TP), false positives (FP), true negatives (TN), and false

negatives (FN) are used in different calculations to calculate other performance metrics.
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Figure 2.8: Confusion matrix

Accuracy is the number of correct predictions, positives and negatives, over all the predictions

made by the model (Orphanidou and Wong 2017).

Accuracy =
TP + TN

TP + FP + TN + FN
(2.4)

Sensitivity, or recall, measures the proportion between the true positives and the sum of true

positives and false negatives. For example, the percentage of walking activity which is correctly

identified as walking activity (Orphanidou and Wong 2017).

Sensitivity/Recall =
TP

TP + FN
(2.5)

Specificity measures the proportion of true negatives that have been correctly identified as

such. For example, the percentage of good quality signals which have been correctly classified

as acceptable (Orphanidou and Wong 2017).

Specificity =
TN

TN + FP
(2.6)

Precision measures the proportion between true positives and all the positives. For example,

the percentage of good quality signals which have been classified as acceptable (Orphanidou

and Wong 2017).

Precision =
TP

TP + FP
(2.7)
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Receiver operating characteristic curves are graphs that represent graphically the trade-offs

between the specificities and sensitivities of the models (Orphanidou and Wong 2017).

2.4.3 Review of activity recognition

To perform activity recognition, it is essential to have available data first. This can be done

either through primary data collection or by using a publicly available dataset. For the former,

the research team recruits participants to collect their data while performing activities in the

laboratory or free-living environment. For the latter, researchers have already collected raw

signal data from participants, and made them publicly available to other researchers. Some

of the publicly available datasets are: PAMAP2, JSI, FoS, Opportunity, WISDM, UCI and

MHEALTH. Most of the data collected in the cases mentioned in Table 2.5, represent the healthy

population, therefore there is a need to conduct studies that represent the patient population

with physical impairments. These datasets were not considered for use in this thesis because of

two main reasons: a) the number of participants was not large enough for the analysis of the

pilot study, b) the datasets did not include variable walking speeds, which was a key feature in

the hypothesis explored in this thesis.

Table 2.5: Information about datasets available online. Number of participants, activities
performed and location of the sensors used.

Dataset # of participants Activities Sensor location

PAMAP2

(Saez et al.

2016; Arif

et al. 2017;

Chowdhury

et al. 2018)

9 Lying, Sitting, Standing still, Iron-

ing, Vacuuming, Ascending stairs,

Descending stairs, Walking out-

side, Nordic walking, Cycling, Run-

ning/jogging, Jumping rope, Play-

ing soccer, Car driving, Watching

TV, Folding laundry, Working on

computer

Wrist(D), Chest,

Ankle(D)

Continued on next page
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Table 2.5 – continued from previous page

Dataset # of participants Activities Sensor location

FoS

(Gjoreski

et al. 2016)

10 Cycling, Walking, Standing, Ly-

ing, Sitting, Running, On all fours,

Kneeling, Bending, Transition

Chest, Thigh, Ankle,

Wrist(R)

Opportunity

(Gjoreski

et al. 2016)

4 Standing, Sitting, Lying, Walking Wrist(D),Wrist(ND)

JSI

(Gjoreski

et al. 2016)

5 Cycling, Walking, Standing, Lying,

Sitting, Kneeling, Bending, Others

Chest, Waist,

Thigh(R & L),

Ankle(R & L), Up-

per arm(R & L),

Wrist(R & L)

WISDM

(Lee and

Kwan 2018;

Ignatov

2018)

36 Walking, Jogging, Ascending stairs,

Descending stairs, Sitting, Standing

Smartphone

UCI (Igna-

tov 2018)

30 Standing, Sitting, Lying, Walking,

Ascending stairs, Descending stairs

Waist (smartphone)

MHEALTH

(Chowd-

hury et al.

2018)

10 Standing still, Sitting and relaxing,

Lying, Walking, Climbing stairs,

Waist forward bending, Frontal ele-

vation of arms, Knees bending, Cy-

cling, Jogging, Running, Jumping

front and back

Wrist, Chest, Ankle

Most studies which collected data directly from participants had asked them to perform activ-

ities described in Table 2.5 above. The most common activities performed were: lying, sitting,

standing, walking, ascending and descending stairs. The next most commonly performed ac-

tivities were running, cycling and transition activities whereby participants transition from one

activity to another, such as stand-to-sit.
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As previously discussed, the location of the sensor plays an important role. Several studies

used multiple sensor locations to identify which provides the best results in terms of activity

recognition. Generally, the locations that were examined were: wrist, ankle, chest, waist, upper

arm, thigh, hip and ear. The general outcome from most the studies was that activities are

classified with better results if the activity monitor is placed near the body region performing

the activity of interest. For instance, Arif and colleagues examined three locations, wrist, ankle

and chest (Arif et al. 2017). For the walking activity, as expected, locating the sensor on the

ankle resulted in the best outcomes, then chest and finally the wrist. For a complex ADL such

as vacuum, cleaning, mounting the sensor on the wrist achieved more accurate results, followed

by chest, while the poorest was the ankle.

A critical step for the ARC process is feature extraction. A feature is a measurable characteristic

that is derived from the raw signal to provide better information about the signal of interest.

Many of the articles calculated several features in the time- and frequency-domains, as shown

in the Table 2.6.

Table 2.6: Features used for activity recognition using machine learning algorithms.

Time-domain Frequency-domain

Mean Interquartile range Mean
Median Pearson correlation Median
Variance Auto-regression coefficients Entropy
Max Signal magnitude area Energy
Min Signal vector magnitude Mean energy
10th,25th,75th,90th percentile Harmonic mean Max
Standard deviation Number of peaks Spectral centroid
Root mean square Number of troughs Skewness
Average distance between
peaks and troughs

Difference in magnitude be-
tween max and min peaks

Wavelet coefficients

Skewness Zero-crossings
Kurtosis Autocorrelation
Time interval between local
peaks

In a few cases, where Convolutional Neural Networks (CNNs) were used, the researchers did

not extract any features but used instead the raw acceleration signal (Jang et al. 2018; Ignatov

2018). In some other cases MLP was used which is one of the simplest Neural Network models.

No complex deep learning models were used since they require a large amount of data in order

to be used successfully (Jang et al. 2018). In the Attal study, two cases were examined as inputs
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in the classifiers (Attal et al. 2015). In the first case, the input in the classifier was the raw

acceleration signal, and in the second case, the input was a matrix of features. The performance

metrics, such as accuracy, F1-score, precision and recall, achieved up to 4% better results when

the input of the classifier was the features matrix rather than raw signal.

It is important to find the most appropriate features as input after their extraction because

some of the features might not be informative. The features can be reduced by several methods,

however one common method used is Principal Component Analysis (PCA) (Ponce et al. 2016;

Hassan et al. 2018; Abdull Sukor et al. 2018). Other methods used were: Pearson’s correlation

(Gjoreski et al. 2016), sequential forward floating selection (Andreu-Perez et al. 2017) and

wavelet transform (Arif et al. 2017).

The next step after feature extraction and selection is to train the ML algorithms. Mannini

et al., Ponce et al., and Saez et al. trained more than ten different ML algorithms to examine

which algorithms performed better for classifying activities (Mannini and Sabatini 2010; Ponce

et al. 2016; Saez et al. 2016). Some of the approaches focused on identifying the best location

to place the accelerometer to get the most accurate results. Other authors wanted to check

which algorithm had the best performance for activity recognition and in some cases they used

the data from all the locations together (Mannini and Sabatini 2010; Ponce et al. 2016; Saez

et al. 2016). The results of the ML algorithms are influenced by several factors; a) the number

of sensor locations used in the training dataset (Bao and Intille 2004; Cleland et al. 2013), b)

the features used (Chernbumroong et al. 2011; Andreu-Perez et al. 2017), c) whether a feature

reduction technique is used (Abdull Sukor et al. 2018), d) the validation technique (Ponce et al.

2016), e) the size of the training dataset (Saez et al. 2016) and f) the relation between the sensor

location and the activities performed (Bao and Intille 2004; Cleland et al. 2013; Strath et al.

2015). Feature reduction techniques are often used to reduce the dimensions of the dataset, in

order to make the data more significant and less sparse for the ML algorithms.

For instance, Saez et al., Arif et al., and Chowdhury et al. used the PAMAP2 dataset to

perform activity classification (Saez et al. 2016; Arif et al. 2017; Chowdhury et al. 2018). The

PAMAP2 dataset contained data from three sensor locations, nine subjects and 17 activities.

Arif and colleagues developed one ML algorithm, a rotation forest, to classify all 17 activities

(Arif et al. 2017). The wrist mounting location slightly outperformed the other two locations

by achieving an F1-score of 93.1%. The chest location had the second highest F1-score of 92.3%
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and ankle achieved a 92.2% F1-score. This paper also reported how the algorithm might perform

when data from all three locations was combined. The results showed that the combination of

data achieved much better outcomes, by achieving a 98.1% F1-score. The other two articles,

only investigated 12 activities instead of all 17. The activities explored were: lying, sitting,

standing still, ironing, vacuuming, ascending stairs, descending stairs, walking outside, Nordic

walking, cycling, running/jogging and jumping rope. The two sets of results were in agreement

that better performance was achieved when more than one location is used to perform activity

classification (Chowdhury et al. 2018; Arif et al. 2017). For example, higher F1-score, such as

90.86%, was achieved when data from the three locations was used. Individually, the F1-scores

achieved were 80.86%, 81.00%, 84.72% for wrist, chest and ankle locations respectively. In

the Chowdhury study, ankle outperformed the other two locations. One of the reasons might

be that when all 17 activities were used, the majority of the activities included were upper

body oriented, but when the activities were reduced to 12 they were lower body oriented.

Saez and colleagues demonstrated F1-scores from dataset that included all the locations (Saez

et al. 2016). F1-scores between 91-96% were achieved to classify the same 12 activities that

Chowdhury classified (Chowdhury et al. 2018).

Table 2.7 demonstrates the results of several studies that used ML algorithms to classify activ-

ities of daily livng.
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2.4.4 Review of condition classification

In previous sections, we mentioned that current commercial devices can be less accurate for

people with chronic conditions where their gait is affected. This is because commercial devices

tend to be targeted towards large scale deployments which are based on an average user and

furthermore, the accuracy does not need to be as high as it does for research devices. Addition-

ally, the majority of the commercial devices focus on the healthy population, and there is not

any evidence that they are actively developed with patient data. In this section, articles that

performed activity classification by training their algorithms with one population, for example

healthy, and tested the algorithm with a completely different population, for example patients

with rheumatoid arthritis (RA), are discussed. The results from the majority of the articles

suggested that the algorithms trained with data that was very similar to the test data yielded

better performance. Lonini and colleagues developed five different classification models, which

were grouped in two categories; global models and personal models (Lonini et al. 2017). The

participants were healthy volunteers and a group of patients that used a wearable device (Acti-

graph) on their waist while wearing either an existing control or the novel knee assistive device.

The aim of this study was to test the accuracy of the wearable device for people with disabilities

while wearing an assistive device. Table 2.8 demonstrates the five classification models in more

detail.

Table 2.8: Explanation of the five classification models, healthy, impairment specific, device
specific, patient specific, patient & device specific, used by (Lonini et al. 2017).

Name of classification model Training dataset Test dataset

Global models

Healthy Healthy (no device) Patient (novel device)
Impairment specific Patient (control device) Patient (novel device)

Device specific Patient (novel device) Patient (novel device)

Personal models

Patient specific Patient (control device) Patient (novel device)
Patient & device specific Patient (novel device) Patient (novel device)

The healthy model trained on healthy participants achieved 53%, which was the lowest balanced

accuracy among all the models. The second lowest balanced accuracy was achieved by the

impairment specific model and it was 55%. Even though the training and test datasets were

collected from the patient groups, the training dataset was from the patients who wore the

control device. And the test dataset included data from patients who wore the novel device.
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Among all the models, the patient & device specific model achieved the highest accuracy scores

(76%). This was due to the fact that the training and test datasets included similar data from

a single patient who wore the novel device. The other two models, device specific and patient

specific achieved the third (61%) and second (66%) highest accuracy. The results suggested that

a greater accuracy was achieved when the model was person-specific rather than group-specific.

Healthy participants and RA patients were recruited for a study conducted by (Andreu-Perez et

al. 2017). One ML algorithm, Dichotomous Mapped Forest, with two different feature reduction

techniques, 1) deep learning mapping and 2) metric learning mapping, were tested. Additionally,

two scenarios were tested, the first was to train the algorithm with data from RA patients and

test it with unseen data from RA patients. The second scenario was to train the algorithm

with data from healthy participants and test it with unseen data from RA patients. Similar

results to Lonini study were identified. The algorithm of the first scenario achieved higher

accuracy scores than the algorithm of the second scenario. Other studies, such as Mannini and

Ignatov, demonstrated the same behaviour as Lonini and Andreu-Perez studies, however they

used different types of datasets from the ones already discussed (Mannini et al. 2016; Mannini

et al. 2017; Ignatov 2018; Lonini et al. 2017; Andreu-Perez et al. 2017). Mannini and colleagues

in 2016 compared healthy elderly, post-stroke and Huntington’s disease patients (Mannini et al.

2016). Also, Mannini and colleagues in 2017 trained the algorithms with data from healthy

adults and tested the algorithm with data from healthy youths (Mannini et al. 2017). Finally,

the Ignatov study used two different public datasets derived from healthy participants, WISDM

and UCI HAR (Ignatov 2018). Both datasets achieved high performance > 90% when the test

set was a subsection of the associated original dataset. However, when the test set was from

the other dataset, the performance dropped 83%. This suggested that several characteristics of

the data collection, such as type of sensors, participants, lab-setting, might influence the results

even if the data is collected from healthy participants. In order to reduce the likelihood that

these factors influence the final outcomes, universal guidelines could be created and followed by

the researchers to achieve better results. However, developing these would be beyond the remit

of this thesis.

2.4.5 Review of step count literature

Most of the commercial- and consumer-grade devices for counting steps during walking use

“black-box” algorithms that cannot be replicated independently. This section reviews findings
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and gaps in the literature related to the step count concept. The findings discussed in this

section are related to: a) participants, b) algorithms, c) sensor device and location, d) activities

and e) results. Each section is discussed in detail below.

Most of the articles reviewed have targeted the healthy population, therefore there is much less

literature and data related to people with chronic diseases or walking impairments. Some of

the articles reviewed recruited: impaired elderly in-patients (Marschollek et al. 2008), stroke

patients (Fulk et al. 2014; Klassen et al. 2016), patients with traumatic brain injury (Fulk et

al. 2014), patients who underwent total joint arthroplasty (Lipperts et al. 2017), RA patients

(Larkin et al. 2016), multiple sclerosis patients (Motl et al. 2011), patients with polymyalgia

rheumatica (Chandrasekar et al. 2018), patients with lumbar fusion surgery (Gilmore et al.

2020) and participants with walking impairments (Treacy et al. 2017). Furthermore, Ummels

and colleagues recruited patients with at least one of the following diseases: cancer, osteoarthri-

tis, chronic pain, chronic obstructive pulmonary disease (Capela et al. 2015b), cardio-vascular

diseases (Ummels et al. 2018). Additionally, patients with orthopaedic pathologies, such as

lower limb osteoarthritis and cruciate ligament injury, as well as patients with neurological dis-

eases, such as radiation induced leukoencephalopathy, Parkinson’s disease (Lamont et al. 2018),

hemispheric stroke and toxic peripheral neuropathy were recruited by (Oudre et al. 2018).

Many of the articles which examined patient groups used commercial- and consumer-grade

monitors to test how well they perform in terms of counting the number of steps. However,

Marschollek and colleagues tested four available algorithms used in the literature using data in

free-living from healthy and impaired participants (Marschollek et al. 2008). The step detection

algorithms used were pan-Tompkins, dual-axis, wolf and autocorrelation. The results suggested

that the algorithms yielded greater error for the impaired participants in comparison to the

healthy participants. Additionally, Capela study developed a proprietary algorithm, which was

based on adaptive locking period and adaptive signal shape template (Capela et al. 2015b). The

algorithm was tested in 15 healthy participants during a 6-minute walk test, and it achieved

accuracy greater than 99.4% in all participants. Another template-based matching algorithm

was developed by Oudre and colleagues to count the number of steps of group of patients (Oudre

et al. 2018). This suggested that in general there is a need to test commercial devices in a wider

range of patient groups, and also that there is a need to develop step count algorithms that

target specific patient groups, since each disease affects differently the movement of patients.

43



2.4. Human activity recognition Chapter 2. Literature review

The device and its location used for step count played an important role in terms of how well the

device performed in a number of studies. The majority of the commercial- and consumer-grade

devices were located mostly on the wrist, hip and/or waist (Fortune et al. 2014; Fulk et al. 2014;

Storm et al. 2015; Klassen et al. 2016; Larkin et al. 2016; Chu et al. 2017; Genovese et al. 2017;

Feng et al. 2017; Treacy et al. 2017; Chow et al. 2017; Alinia et al. 2017; Chandrasekar et al.

2018; Tophøj et al. 2018; Lamont et al. 2018; Wong et al. 2018; Toth et al. 2018; Bunn et al.

2018; Ummels et al. 2018; Bunn et al. 2019; Gilmore et al. 2020; Montes et al. 2020). From

those articles, only Fortune and Genovese studies have compared commercial devices with their

own step count algorithm (Fortune et al. 2014; Genovese et al. 2017). The remaining articles

only compared the commercial- and consumer-grade devices in terms of how well they perform

to measure the number of steps. Moreover, Huang et al. developed their own algorithm, but

the algorithm was integrated in a smartphone device rather than in a wearable device (Huang

et al. 2012). In most of the reviewed articles that developed their own step count algorithm,

they used a smartphone device (Mikov et al. 2013; Chandel et al. 2014; Seo et al. 2015; Zeng

et al. 2015; Capela et al. 2015b; Lee et al. 2015; Gu et al. 2017; Thanh et al. 2017; Dirican and

Aksoy 2017; Ao et al. 2018; Kang et al. 2018; Rodŕıguez et al. 2018; Pham et al. 2018).

Based on these findings, it has been identified that it is desirable to develop step count algorithms

that can be used for people with walking impairments and for slow walking speeds. Additionally,

it would be beneficial if the algorithms were publicly available in order to help other researchers

to strengthen the literature and to develop high performance algorithms. Lastly, the wrist has

become one of the top options for wearables, hence it might be beneficial to appropriately value

that specific location and develop accurate algorithms. Since, the wrist is one of the most

user-friendly and unobtrusive wearables, as well as acceptable location (Cola et al. 2017).

The most common activity performed while calculating the number of steps was walking. Addi-

tionally, ascending stairs and descending stairs were also examined. It is essential to have step

count algorithms that can accurately measure the number of steps undertaken during these

activities. These activities are some of the most common locomotion activities undertaken

throughout the day for people with chronic conditions and walking impairments. Moreover,

each of these activities can be further categorised into different speeds. The most obvious ex-

ample is walking with slow, normal or fast speeds. Even though not all of the articles have

examined the different speeds for each activity, it is very important to do so (Motl et al. 2011;
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Mikov et al. 2013; Klassen et al. 2016; Ho et al. 2016; Cho et al. 2016; Beevi et al. 2016; Chow

et al. 2017; Feng et al. 2017; Alinia et al. 2017; Genovese et al. 2017; Wong et al. 2018; Tophøj

et al. 2018; Lamont et al. 2018; Pham et al. 2018; Toth et al. 2018; Rhudy and Mahoney 2018).

The reason for this is because the algorithms of the commercial-grade devices are developed

based on healthy population data. Therefore, to count a step within the device, the acceleration

value should pass a threshold, which is based on healthy data (Walker et al. 2016). Often, the

elderly, people with walking impairments and patients with chronic conditions walk slower in

comparison to the healthy population (Mancuso et al. 2014) with the resulting accelerations

far smaller than those seen in the healthy population. This can be confirmed from the results

of the articles that examined several walking speeds. It is demonstrated that walking at slow

speed yielded the greatest error when counting the number of steps (Motl et al. 2011; Beevi

et al. 2016; Feng et al. 2017; Pham et al. 2018).

An observation made regarding step count algorithms related to the performance evaluation of

those algorithms. For example, when ML algorithms are used, they are usually validated using

universal performance metrics as the ones already described in section 2.4.2.5 and which are:

accuracy, recall, precision, F1-score, etc. It is essential to have such performance metrics for

validating the step count algorithms. In the majority of studies reviewed, the algorithms were

validated with several metrics, such as: intraclass correlation (ICC[2,1]), mean percentage error,

accuracy, mean absolute percentage error and root mean square error. Even though there was

not a common metric to measure the accuracy of the step count algorithms, the general outcome

of the results was similar in the majority of the articles. The general outcome was that in the

studies that compared the same device or algorithm for healthy and patient groups, the accuracy

scores of the patient groups were lower in comparison to the healthy group (Marschollek et al.

2008; Motl et al. 2011; Larkin et al. 2016; Lipperts et al. 2017; Ummels et al. 2018; Gilmore et al.

2020). For example, the Lipperts study compared the error created from a device attached on

the thigh of healthy participants and orthopaedic patients while walking and climbing up and

down the stairs (Lipperts et al. 2017). The results suggested that the mean percentage error

was always higher for the patient group in comparison to the healthy group. For instance, the

errors for the healthy group were 1.7%, 6.4% and 5.4% for walking, ascending and descending

stairs respectively. For the patient group, the errors were 3.4%, 6.9% and 8.2% for walking,

ascending and descending stairs respectively. Additionally, it has also been observed, in studies

which examined several commercial- and consumer-grade devices, that the location, walking
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speed and devices plays an important role in the accuracy of the step count results (Chow et al.

2017; Bunn et al. 2019).

2.4.6 Generation of synthetic signal

In sections 2.4.3 and 2.4.5, we have seen that there is a limited number of available datasets

online for both healthy and patient populations. Additionally, there are several challenges to

collect data, especially during the pandemic. For instance, the researchers encounter multiple

funding, bureaucratic and regulatory challenges. To address these issues, a possible option is

to generate synthetic data. This concept is used to artificially create data rather than actually

collecting the data. This is done using different types of algorithms to create test data for

model validation, as well as for new tools and products. Additionally, synthetic data can also

be used in Artificial Intelligence (AI) model training. This method provides several benefits, for

example: a) the data is easily accessible; b) the method is cost-effective; c) the data is available

quickly; d) the privacy of patients is protected; e) the data can be used as a benchmark while

comparing different methods; and f) the data can be used to supplement real data (Wang et al.

2019).

Since there is limited available data that represents the activities of interest as they have been

collected from an accelerometer, three different methods are discussed in this section that can

be potentially used to generate walking synthetic data. The methods are: 1) coupled differential

equations, 2) Generative Adversarial Networks (GANs) and 3) the pendulum approach.

The first approach was developed by McSharry and colleagues to generate synthetic ECG signals

(McSharry et al. 2003). This method has since been used by other authors to generate different

types of synthetic signals, such as phonocardiogram (Almasi et al. 2011), force during running

(Racic and Morin 2014), jumping (Racic and Pavic 2010a) and walking (Racic and Brownjohn

2012). This method has not previously been used yet to generate acceleration signals. The basic

idea of this approach is to use three dynamic coupled equations to represent the morphology of

the desired signal. The signals represented by this approach are all periodic or near-periodic.

Consequently, by using the coupled equations, the morphology of the signal for one period is

described and this period is repeated the chosen amount of times.

The second approach, GANs, is a deep-learning approach that is mainly used to generate

synthetic data. It uses two neural networks, generative model and discriminative model, to
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generate new, synthetic signals that can be classified as real data (Goodfellow et al. 2014).

The two models operate against each other, hence it is described as an adversarial process.

Therefore, the generative model, as the name suggests, generates new data by capturing the

distribution of data. The discriminator model then evaluates the probability that the new data

came from the generative model or the training dataset which includes real data. The generator

is updated until the discriminator cannot tell the difference between real and generated data.

Alzantot and Hassouni studies used the GANs approach to generate sensory data and both used

publicly available datasets as their training datasets (Alzantot et al. 2017; Hassouni et al. 2018).

The former study used Human Activity Recognition using a smartphone data set, and the latter

used the WISDM dataset. Both datasets contained 3D accelerometer data from six activities,

walking, walking upstairs, walking downstairs, sitting, standing and lying, all performed by

healthy participants. The Human Activity Recognition dataset also contained 3D gyroscope

data.

The third and final approach is based on the pendulum system, which can be used mathe-

matically to model the human arm configuration. The mathematical approach is based on the

Lagrange equation which describes a triple pendulum system (Al-zu et al. 2012; Agarana and

Akinlabi 2018). This method separated the human arm into three segments, upper arm, lower

arm and palm. To successfully use this method, the length, mass and position of the three

arm segments should be known. This mathematical model is used to calculate the angular

displacement, period and frequency of the pendulum.

Table 2.9 describes the advantages and disadvantages of the three aforementioned approaches.

Table 2.9: Advantages and disadvantages of three approaches to generate synthetic data.

Approach Advantage Disadvantage

Coupled differential
equations

Can be used in multiple
scenarios

Has not been developed yet
for acceleration data

GANs High accuracy Requires large dataset and
real dataset

Pendulum system Simple method Requires information about
human body segments, Final
result is not acceleration

A recent study, by Alharbi and colleagues, developed a model that generated several types

of human activity sensor data using a Wasserstein GAN method. For the study two real
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datasets were used for the generation of the synthetic dataset, Sussex-Hawei Locomotion and

Smoking Activities Dataset. In order to test whether the synthetic datasets were similar to

the originals, two deep learning classifiers were used, convolutional neural network and long

short-term memory. Two models were developed for each algorithm, one model was trained

with the original dataset and tested with the synthetic dataset, and vice versa. An F1-score

was used to evaluate the performance of the classification, and scores between 0.59 and 0.99

were achieved (Alharbi et al. 2020). The results of this study suggest that it is possible to

develop representative synthetic datasets.

Synthetic data might be a useful alternative for real data, however its use still faces some

challenges. A few of the major challenges identified are: a) the requirement for collection of

realistic datasets in order to generate synthetic data, b) the degree to which realistic data

represents a ground truth, particularly in relation to including the unreliability and uncertainty

of sensors, c) the acceptance of the synthetic data from the potential users, d) the time and

effort to build a representative model.

2.5 Summary and aims

Physical activity (PA) has been identified as essential for our health and well-being. Wearables

are tools that can be attached on the human body in various locations in order to measure PA

objectively. The wrist is one of the most common and popular locations used to attach the

wearable device. These devices contain several sensors for different usages. In order to measure

PA objectively, the accelerometer sensor is the most essential. By collecting acceleration data,

an effective approach to measure PA is using ML algorithms to identify whether the user is active

or sedentary, or to even identify the specific activities that the user performed. Step count is an

objective measurement that can be used to inform clinicians about the overall activity of their

patients. This literature review has shown the differing performance of available algorithms in

people with impaired gait, compared to healthy populations. Regardless of the metric used to

quantify PA, it is essential that algorithms are developed and trained using data from the target

population. For example, if the intended users are patients with RA, the algorithm should be

trained with data collected from patients with RA rather than a healthy population.

Although studies regarding activity classification have been conducted by many authors, there

are still some problems that need to be explored. For example, limited studies were conducted
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to classify ADLs from people with walking impairments and slow pace. The majority of studies

explored the healthy population. Additionally, only a few studies have analysed the classification

between different sub-population groups. Hence, to fill these literature gaps, this thesis explores

whether the classification of daily activities between two different groups can be achieved with

high performance. Then the next step is to explore whether each group might need a population-

specific ML algorithm to achieve high performance.

It was also observed that the majority of the step count algorithms were developed to work

in healthy populations. Therefore, these algorithms might not be very representative for any

other sub-population group, such as elderly, people with walking impairments. In order to

understand and address this problem, an adaptive algorithm to different sub-population groups

was developed.

If this is achieved, then the wearable device can be used to firstly understand whether the

person who wears it is healthy or patient. The next step, according to the outcome of the first

classification, is to classify the activities that the user performed using the population-specific

ML algorithm. The last step is to count the number of steps for the appropriate walking speed.

To achieve this, it is essential to have available a large dataset that can be used to train the ML

algorithms, and also to be used as a good representation of the desired sub-population group

while developing a novel step count algorithm. The data collection is time-consuming, and it is

important to ensure that the data is secured. Due to this, there are not many datasets available

online that use acceleration for daily activities, and the majority of these datasets represent the

people from the healthy population. There are a few methods in the existing research that can

be used to generate realistic synthetic data, however this problem is still insufficiently explored

especially for accelerometer signals that represent activities such as walking. Therefore, to fill

this gap, an algorithm was developed to examine whether it is possible to generate synthetic

walking acceleration signals. This will benefit the research community and the people who need

data in order to develop and/or analyse algorithms.

The following chapters will present the approaches taken in order to fill the literature gaps and

to answer the proposed research questions.

49



2.5. Summary and aims Chapter 2. Literature review

2.5.1 Research questions

1. Is a wrist mounted activity monitor suitable for condition classification and activity recog-

nition? (Chapter 3)

2. Can we automatically identify whether a patient is moving normally? (Chapter 3)

3. Can we automatically identify different types of physical activity in healthy participants

in normal and simulated-pathological conditions? (Chapter 3)

4. Can we accurately measure step count in healthy participants in normal and simulated-

pathological gaits? (Chapter 4 & 5)

5. Can we accurately generate synthetic acceleration data that represent normal and relevant

atypical walking patterns? (Chapter 6)
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Chapter 3

Using machine learning for activity

and condition classification

3.1 Introduction

Chapter 3 describes a pilot study that was carried out with healthy participants. The purposes

of the study were: a) to create a baseline for the ML algorithms based on healthy participants

and b) to test step count algorithms from the literature on healthy participants. This study

was an essential first step in confirming whether the differences in gait between healthy and

functionally compromised persons were sufficiently pronounced to develop tuneable algorithms.

3.2 Methodology

A prospective pilot study was conducted with healthy participants recruited at Chapel Allerton

Hospital. Participants performed a range of ADLs under normal and simulated-pathological

conditions. We used simulated-pathological condition, since recruiting actual patients was con-

sidered infeasible and impractical, especially given the exploratory nature of the pilot work.

Participants wore two accelerometer-based devices to measure their acceleration while perform-

ing the activities.

The study was reviewed and approved by the School of Medicine Ethics Committee (Ref #:

MREC16-172). Each participant provided written informed consent before participating in the

study.
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3.2.1 Study design

The research questions, mentioned in section 2.5.1, were answered using the acceleration data

collected from healthy participants.

For each participant the same approach was followed to collect the accelerometer data. The

data collection was performed at a single visit for each participant.

3.2.2 Sampling plan

3.2.2.1 Sample size

For this pilot study, a sample of 30 healthy participants, of 18+ years of age, was recruited based

on published guidance for pilot studies which indicate that 30 participants are appropriate for a

pilot study (Julious 2005). In comparison to other databases, which were mentioned in Table 2.5,

the database collected for this thesis had recruited larger number of volunteers. Additionally,

the volunteers specifically emulated the movement of people with a compromised gait.

3.2.2.2 Inclusion/exclusion criteria

Participants were considered eligible for inclusion if they could walk freely without pain for

two minutes. All participants were healthy, without any musculoskeletal condition or any other

condition which would have affected their gait.

3.2.2.3 Recruitment process

Participants were recruited via email and word of mouth from the staff and students of the Leeds

Institute of Rheumatic and Musculoskeletal Medicine, the Leeds Institute of Health Sciences

and the Institute of Medical and Biological Engineering.

3.2.2.4 Data collection

Data was collected at the Gait Lab of the NIHR Leeds Biomedical Research Centre based at

Chapel Allerton Hospital, Leeds, UK. Each potential participant was asked to come for a single

visit at the hospital where they were screened prior to providing written informed consent.

Before collecting the accelerometer data, participant demographics were collected via interview.

The details collected were: age, sex, height, weight, dominant hand and dominant leg. Clear
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instructions for the data collection process were given verbally and in writing (see Appendix

C).

3.2.2.5 Data acquisition

Activities were captured using two MOX accelerometers (Maastricht Instruments, Maastricht,

The Netherlands). The accelerometers were initialised using the IDEEQ software (Maastricht

Instruments, Maastricht, The Netherlands) before attaching them on the participants. The

acceleration data is sampled by a 12 bit analog to digital converter at the rate of 100 Hz. It

is then stored in a raw, non-filtered format in the units of gravity (G’s). This data is stored

directly into an embedded SD memory card in the MOX sensor. The data can be transferred

via a USB connection to a personal computer with the dedicated MOX software. Devices were

placed on the: non-dominant wrist of the participant because in real life there is a greater

chance to perform extra activities with your dominant hand, and on the dominant ankle of

the participant. Both monitors were attached using elasticated straps. Figures 3.1 and 3.2

demonstrate the position of the device and the device itself respectively.

Figure 3.1: Two activity monitors placed on the
wrist and ankle of the healthy participant

Figure 3.2: MOX accelerometer

It is important to mention that commercial devices have been used in research for activity

classification of healthy individuals. However, it is already known from previous studies that

step count results are much less accurate in people with reduced mobility. Additionally, prior to

any analysis, it was decided by the research team that the product used would need to make the

raw acclerometry data available. The raw signal was essential for the development of machine

learning algorithms, as well as the step count algorithms. By using the raw signal, the research
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team would have full signal information, where any processing technique can be implemented.

Also, the MOX device had the potential to integrate the algorithms developed, which means

that the algorithms can be used directly when the device is worn. Since the commercial devices

did not allow raw data output or algorithm integration, they were excluded in the early scoping.

Participants were instructed verbally by command on how to perform the activities prior to

attaching the accelerometers, and this was reinforced while they performed the activities. The

nine pre-determined activities were: (1) lie down, (2) sit, (3) stand, (4) stand-to-sit, (5) slow

walk, (6) normal walk, (7) fast walk, (8) stair ascent and (9) stair descent.

A camera was used to video record the participants while performing the activities which then

provided a gold standard during subsequent analysis. This reference standard enabled retro-

spective labelling of the accelerometer data, to define the start and end of each activity, as well

as the number of steps.

Participants were first instructed to perform a single jump prior to starting the activity se-

quence. The jump provided a recognisable peak in the signals that could be used to synchronise

the accelerometer signal with the gold standard video recording. After performing the jump,

participants performed the nine activities sequentially. After the end of the activity sequence,

the participants were asked to jump again to provide a clear signal at the end of the activity

sequence.

Each set of activities was performed twice, under normal and simulated-pathological conditions.

To simulate pathological gait, participants were asked to repeat the series of activities via a slow,

short-step, shuffling gait mimicking that of someone impaired by a condition such as severe RA.

A shuffling gait is defined as when the foot is moving forward at the time of initial contact or

during mid-swing, with the foot either flat or at heel strike, usually accompanied by shortened

steps, reduced arm swing and forward flexed posture (Whittle 2007).

A description and a video of the shuffling gait was provided to the participants prior to data

collection (see Appendix C). Participants were free to try the simulated pathological gait before

the monitors started collecting data. At the end of each set of activities the data was analysed

and then saved using IDEEQ software to provide a proprietary format “.bin” file. The file was

observed, to ensure that all three axes were collected, when the participant completed each set

of activities. Additionally, the researcher was observing the movement of each participant while
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they were performing the activities to assess visually the quality of the simulated-pathological

signals. The limitations of the collecting simulated-pathological signal were discussed in detail

in sections 3.4 and 7. Figure 3.3 demonstrates the three main characteristics of the pathological

gait.

Figure 3.3: Characteristics of a patient with shuffling gait

3.2.3 Data analysis

The data analysis followed in this chapter is based on the Activity-Recognition-Chain process

(ARC). Generally, it is used as a generic framework to design and evaluate activity recognition

systems. As discussed in chapter 2, ARC is a series of techniques, such as signal processing,

pattern recognition, and machine learning. It consists of six steps: (1) data acquisition, (2)

data pre-processing, (3) data segmentation, (4) feature extraction and selection, (5) training

and classification and (6) performance evaluation.

This process was used to analyse the accelerometer data, and develop machine learning models

to answer the first three research questions (see secction 2.5.1), which are related to:

• Location of the monitor (wrist and ankle)

– Condition classification using the dataset that includes all the activities

– Activity classification using only the general classes (type) of activities

• Condition classification

– the dataset that includes all the activities

– the sub-dataset that includes the dynamic activities

– the sub-datasets that includes the dynamic activities individually
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• Activity classification

– Healthy training set vs healthy test set

∗ Activity type

∗ Activity task

– Simulated-pathological training set vs simulated-pathological test set

∗ Activity type

∗ Activity task

– Healthy training set vs simulated-pathological test set

∗ Activity type

∗ Activity task

Owing to the broad applicability of ARC process, some of the ARC steps have been also em-

ployed to assist the process for answering the last two research questions. This was done in order

to prepare the input data that would be used for answering the questions. Figure 3.4 shows

analytically the steps of the ARC process followed and used for answering all the research

questions.
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Figure 3.4: Flowchart describing the flow of each chapter in the PhD

3.2.3.1 Data pre-processing

Data extraction The binary files from the accelerometer were imported to MATLAB (MAT-

LAB R2017a) and saved as text files. The reason for saving the files through MATLAB was

that the proprietary script developed by Maastricht Instruments was written in MATLAB. The

text files were then imported into PythonTM (v3.6) for analysis. The extracted text files con-
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tained three columns of acceleration data, representing acceleration along the three principal

axes. We derived five types of discrete signals from the tri-axial accelerometer data: (i) dy-

namic accelerations, (ii) total magnitude (M), (iii) jerk, (iv) angular velocity and (v) inclination

angles.

Dynamic acceleration was calculated by averaging the readings, and then subtracting the corre-

sponding average value from the raw acceleration signal. This was done for all three directions.

dynamic accel (x, t) = accel(x, t)− sum for all in t accel(x, t)/n (3.1)

Total magnitude was calculated using the magnitude formula used for 3D vectors. It combines

all three directions, therefore it is not affected by the orientation of the device.

total magnitude (M, t) =
√
acc2x + acc2y + acc2z (3.2)

Jerk is the rate of change of acceleration. It was calculated using the collected acceleration

signal and its sampling time on each direction. Jerk is created when an object accelerates so

rapidly, and hence the acceleration is also increasing.

jerk(x, t) =
accx(t+T ) − accx(t)

T
(3.3)

where T is the sampling period.

Angular velocity was identified by calculating the angle between the acceleration vectors in the

current and the previous point. The accelerometer registers its data at equal time intervals,

therefore the angle between the vectors provides the angular velocity. This signal refers to how

fast an object rotates relative to another point.

cos(i, i+ 1) =
xixi+1 + yiyi+1 + zizi+1√

x2i + y2i + z2i + x2i+1 + y2i+1 + z2i+1

(3.4)

Inclination angle was calculated for each direction. It is used to measure the tilt of the ac-

celerometer in all three directions. Figure 3.5 demonstrates the inclination angle of the three
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directions.

φx = arccos
acc2x
acct

(3.5)

Figure 3.5: Inclination angles of x, y and z directions of the accelerometer

Data labelling The raw acceleration signal was manually labelled, with each condition and

activity identified, and labelled based on the graphs and on the time of the gold standard video.

The reason for doing this manually was because no automated algorithm had yet been built to

automatically label the signal with the correct activities. Figure 3.6 demonstrates a labelled

acceleration signal.

Figure 3.6: Acceleration signal showing nine activities of daily living

The signal was classified by activity-types, activity-tasks and conditions. The first group rep-

resented general types of activities, such as static, transition, and dynamic. The second group

represented the precise activities or tasks, such as lying, sitting, standing, stand-to-sit, walking

slowly, walking normally, walking fast, stair ascent and stair descent as demonstrated in Figure

3.7.
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Figure 3.7: Relation between activity types and activity tasks performed

The last group represented the condition under which the activity had been performed, i.e.

either the normal condition or simulated-pathological condition. Table 3.1 demonstrates the

labels used to represent each category.

Table 3.1: Manual labels given for each classification.

Condition classification Activity type classification Activity task classification

Normal 0 Static 1 Lying 1
Simulated-pathological 1 Transition 2 Sitting 2

Dynamic 3 Standing 3
Stand-to-sit 4
Slow walk 5

Normal walk 6
Fast walk 7

Stair ascent 8
Stair descent 9

Data filtering A low-pass Butterworth filter was used to filter the acceleration data of this

pilot study. This filter has a flat amplitude response within the pass-band, which means that

it is ripple-free as demonstrated in Figure 3.8. Equation 3.6 is the definition of a Butterworth
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filter in terms of the magnitude of amplitude response:

|H(jω)| = 1√
1 + ( ωωc )2n

(3.6)

where ωc is the filter cut-off frequency and n is the filter order.

Figure 3.8: Response of Butterworth filter of four different orders

The cut-off frequency and order parameters were set to optimise the filter. We applied a sixth-

order Butterworth filter with a cut-off frequency of 3 Hz for all the groups. The chosen cut-off

frequency was fixed for all the activities and both groups to have a consistency in the filtering

method. In general, the human movement has a frequency between 0-20 Hz (Wang et al. 2011).

Walking has the greatest frequency among the activities performed in this study, hence its

frequency was chosen to be the threshold for the cut-off frequency. This was done in order to

ensure that no important signal characteristics were lost after the filtering process. Therefore,

walking has a frequency between 0.6-2 Hz, and by applying the Nyquist theorem a minimum

cut-off frequency of 4 Hz it is suggested. Hence, a credible cut-off at 6Hz was selected. Therefore

by applying firstly 6 Hz as cut-off frequency, the data was checked visually to make sure no

important information, such as activity peaks, were missing from the filtered signal, as well as

to ensure that the noise in data was reduced. After the visual inspection, the cut-off frequency

was chosen as 3 Hz to reduce the extra noise that looked like small peaks attached on the bigger

peaks.
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Figure 3.9 represents the acceleration signal at its raw and filtered formats.

Figure 3.9: Raw and filtered vertical acceleration signal representing all nine activities

3.2.3.2 Data segmentation

The acceleration data was split into a series of short time windows, in which the signal may be

approximated as stationary. A signal is characterised stationary when the its frequency does

not change with respect to time. We used windows of 200 samples (with 50 samples overlap),

corresponding to a time period of 2 seconds (Banos et al. 2014). Figure 3.10 demonstrates the

schematic of this technique.

Figure 3.10: Schematic of overlap windowing technique

3.2.3.3 Feature extraction, scaling and selection

From the acceleration time series in each window, we extracted a set of 120 summary features

to represent the acceleration (x, y, z, M), jerk (x, y, z, M), angular velocity (v) and inclination
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angle (x, y, z) signals. M is the total magnitude of the 3D acceleration. Table 3.2 demonstrates

all 120 features.

Table 3.2: Features used for activity and condition classification.

Time-domain Frequency-domain

Mean acc (x-y-z-M) Std acc (x-y-z-M) Energy acc (x-y-z-M)
Median acc (x-y-z-M) Skewness acc (x-y-z-M) Max frequency 1 acc (x-y-z-M)
Kurtosis acc (x-y-z-M) IQR acc (x-y-z-M) Max frequency 2 acc (x-y-z-M)

RMS acc (x-y-z-M) Median A acc (x-y-z-M) Mean frequency acc (x-y-z-M)
MPSD acc (x-y-z-M) Entropy acc (x-y-z-M)
Mean jerk (x-y-z-M) Std jerk (x-y-z-M) Energy jerk (x-y-z-M)

Median jerk (x-y-z-M) Skewness jerk (x-y-z-M) Max frequency 1 jerk (x-y-z-M)
Kurtosis jerk (x-y-z-M) IQR jerk (x-y-z-M) Max frequency 2 jerk (x-y-z-M)

RMS jerk (x-y-z-M) Median A jerk (x-y-z-M) Mean frequency jerk (x-y-z-M)
MPSD jerk (x-y-z-M) Entropy jerk (x-y-z-M)

Mean ang.velocity Std ang.velocity
Mean inc.angle (x-y-z) Std inc.angle (x-y-z)

Extracted features might vary in terms of units, range and magnitudes, thus those with high

magnitudes will stand out more than features with low magnitudes. Figure 3.11 demonstrates

a matrix of the features created.

Figure 3.11: Feature matrix where each row represents one window for each participant, and
each column represents a feature calculated.

To limit this, features were scaled using Min-Max, and then fed into principal component

analysis (PCA), a dimensionality reduction technique (see Figure 3.12) which acts by performing
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a linear data mapping to a space with lower dimensions where the variance of the data at

low dimensional space is maximised. The data fed into PCA was a matrix with 120 columns

representing the features and the rows represented the signal segmented into smaller windows for

each participant. This was done prior to the cross-validation and therefore the PCA technique

was applied to the whole dataset. In order to perform PCA, the PCA function from sickit-learn

was used. Additionally, Min-Max was applied to the same data format as that described for

PCA.

Figure 3.12: Dimensionality reduction and principal component analysis

Figure 3.13 demonstrates a matrix of the principal components created.

Figure 3.13: Principal component analysis matrix where each row represents one window for
each participant, and each column represents a principal component calculated.
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A reduced number of linear combinations of these features were selected using PCA. A 95%

threshold was set on the explained variance. The principal components represent the same

amount of information as the original features, meaning that it is possible to restore the original

features from the transformed principal components. In addition, the total variance remains

the same, although it is distributed differently than in the original case. The first principal

component explains the most variance among the new principal components, and also the most

variance a singular principal component can explain. In general, the first principal component

explains the most variance out of all principal components, and the last principal component

explains the least variance out of all principal components. By reducing the dimensionality of

the feature set, we limited the risk of over-fitting subsequent classification models. The PCA

feature set was then used as input to a selection of ML classifiers.

3.2.3.4 Training and classification

Four scenarios were conducted to answer the first three research questions. The scenarios were:

1. algorithm trained on combined normal and simulated-pathological data; tested on com-

bined normal and simulated-pathological data (condition classification)

2. algorithm trained on normal data; tested on normal data (activity classification)

3. algorithm trained on simulated-pathological data; tested on simulated-pathological data

(activity classification)

4. algorithm trained on normal data; tested on simulated-pathological data (activity classi-

fication).

For this study, these specific classification models were chosen to detect human activity: Mul-

tilayer Perceptron Neural Network (NN), Random Forest (RF), k-Nearest Neighbour (kNN),

Gaussian Näıve Bayes (GB) and Support Vector Machine (SVM) (Preece et al. 2009; Saez et al.

2016).

Artificial neural networks There are several types of NNs. In this thesis, we consider only

the simplest type, the multilayer perceptron (MLP). There are two perceptron types, single

layer and multilayer. A single perceptron can be used only for linearly separable data. MLP,

also known as a feedforward NN, can deal with non-linearly separable data. This means that

a set of linear classifiers could model a non-linear model, and this is done by using additional
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layers that allow combination of the linear classifiers from the first layers to create a non-linear

decision boundary.

A single perceptron is a NN unit that consists of (i) weights, w, and bias, b, (ii) a combination

function and (iii) an activation function. Specifically, the perceptron accepts several input

variables, such as x1, x2 and so on, as demonstrated in Figure 3.14. These n inputs, x, are then

multiplied with the weights and the net sum of all these multiplications is calculated (equation

3.7).

y = (

n∑
i=1

wixi + b) (3.7)

Then, an activation function checks whether the net sum exceeds a certain threshold. Based on

this decision, an appropriate output is resulted.

y =


1 if φ(w · x+ b) > 0

0 if φ(w · x+ b) ≤ 0

(3.8)

where w is a vector of weights, b is the bias, x is a vector of input variables and φ is the activation

function.

Figure 3.14: Diagram of a perceptron

Figure 3.15 demonstrates an artificial neural network. MLP has similar structure with a single

layer perceptron with one or more hidden layers. Hidden layers are layers between the input

and the output layers that allow the neural network to classify non-linearly separable data.

An MLP algorithm performs three steps when training the model. At the beginning, when the

model is initiated, the weights and bias are set at random. The optimum weights and bias are

learned from the data set. Subsequently, the steps followed are: 1) forward pass, 2) calculate
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error and 3) backward pass. In the first step, the output of the model is calculated, which is

the predicted value. In the second step, the error between the predicted and the true values is

calculated using the loss function. Lastly, the error value is back-propagated using gradient and

the weights of the model and the bias are updated to different values that aim to minimise the

error. In the first phase, the non-linear activation function (φ) is used to describe the relationship

between inputs and outputs in a non-linear way. The weights and bias keep changing in the

training process until the output is accurately classified. The error in the output is back-

propagated and weights updated to minimize the error. For this thesis, the ReLU activation

function was used because the neurons tend to show good convergence performance. In terms of

the solver algorithm that updates the weights, adam was used because it works well on datasets

with one thousand or more training samples, as suggested by the sickit-learn documentation. To

ensure convergence as much as possible, at each step the weights are changed in the direction of

the gradient of the error, with respect to that weight. This process is stochastic gradient descent

and is guaranteed to converge to a local minimum. Global convergence is not guaranteed, i.e.

we can never be sure that we have the best solution, only a good solution.

Figure 3.15: Diagram of a neural network

Random forest The RF algorithm is a type of parallel ensemble method. Ensemble methods

are a set of techniques that combines multiple ML algorithms into one predictive model. This is

done either to decrease bias (boosting), variance (bagging), or improve predictions (stacking).

RF is an ensemble of decision trees, which means that RF builds several decision trees and
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combines them by a voting process to get a more stable and accurate prediction. RF falls in

the family of bagging algorithms.

In this section, decision trees are described since they are the basis of the RF algorithm. A

decision tree is a tree where nodes represent features, branches represent decisions, and leaves

represent the outcomes as shown in Figure 3.16. The main idea is that the dataset is separated

into smaller chunks of data based on the features until all the data points have a final label.

Figure 3.16: Decision tree learning

Trees can be built using different algorithms, such as CART (Classification and Regression

Trees). This algorithm works with Gini impurity, which is used to decide the optimal split from

the root node, and the subsequent splits. The CART algorithm was used because it does not

require to compute a logarithmic function and it is not computationally intensive.

Gini = 1−
c∑
i=1

p2i (3.9)

Where pi is the probability of class i in a node. Gini impurity measures the quality of the split

to select the best possible split from a root node and subsequent splits. A gini impurity of zero

is the lowest and best possible impurity. It is achieved when all data points have the same label.

RF produces a great amount of decision trees, however it changes the way the trees are built

up. Instead of selecting the question and the threshold that maximally reduces the impurity,

a randomness of sampling the training data, in this case the features, is added to the process,

which is called bagging. And then, the information from all the trees is combined, and the most

common answer is selected as the final label.

k-nearest neighbour kNN algorithm is a non-parametric algorithm, which means that the

structure of the model is solely determined from the data. The algorithm stores any available
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data and then classifies any new data using a majority vote of its k neighbours. The class

that the new point is classified to is the most common among the k neighbours measured by

a distance function. Several distance functions are available, such as Euclidean, Minkowski,

Hamming, Manhattan, etc. Euclidean and Manhattan distances are demonstrated in Figure

3.17. For this pilot study, the default scikit-learn distance metric was used which is the Euclidean

(d2) distance.

d2(X,Y ) =

√√√√ k∑
i=1

(xi − yi)2 (3.10)

where xi and yi are the coordinates of the points, such as A and B as shown in figure 3.17 that

demonstrates two common distance metrics, the Euclidean and the Manhattan.

Figure 3.17: Example of Euclidean and Manhattan distances between two points A and B

Gaussian naive bayes This classifier is a probabilistic model that is used for classification

problems, and it is based on Bayes theorem. By using this theorem, we can find the probability

of y happening, given that X has occurred. y is the hypothesis and X is the evidence. It is

assumed that features are independent, so that one particular feature does not affect the other.

Bayes theorem is written as:

P (y|X) =
P (X|y)P (y)

P (X)
(3.11)

For this problem class probabilities and conditional probabilities are used. Variable X represent

the features, which can be mapped to mean, standard deviation, energy, etc.

X = (x1, x2, x3, . . . , xn) (3.12)

Variable y represents the target class, for example the activity performed (e.g. slow walk).
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When we substitute for X, and expand using the chain rule we get,

P (y|x1, . . . , xn) =
P (x1|y)P (x2|y) . . . P (xn|y)P (y)

P (x1)P (x2) . . . P (xn)
(3.13)

For all the dataset, the denominator remains static, and therefore it is removed.

P (y|x1, . . . , xn) ∝ P (y)Πn
i=1P (xi|y) (3.14)

In multiclass classification problems,the aim is to find the class with the maximum probability:

y = argmaxyP (y)Πn
i=1P (xi|y) (3.15)

Gaussian Näıve Bayes model uses all the above, and it assumes that the dataset associated with

each label follows a Gaussian distribution.

Support vector machine The main idea of the SVM algorithm is that it finds a hyperplane

that optimally divides the dataset into two classes by maximising the separation between the

two classes. Support vectors are the data points that are nearest to the hyperplane. In the case

that these points are removed, the position of the hyperplane will change. Therefore, they can

be considered as the critical points of a dataset.

Figure 3.18 demonstrates a classification problem between two features using SVM.

Figure 3.18: Support vector machine for classification using a single hyperplane

The example above is a two feature classification problem. In this case, the hyperplane can be

represented as a line that linearly separates data points. For classification with n features, an

n-1 dimensional hyperplane is required. For example, for a 2D (feature) space, hyperplane is
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1D, which is a line. For a 3D space, hyperplane is 2D, which is a plane. The hyperplane can

be written as:

β0 + β1 · x1 + β2 · x2 + · · ·+ βn · xn = 0 (3.16)

if a new data point satisfies: β0 +
−→
β · −→x = 0, it lies on the hyperplane

β0 +
−→
β · −→x < 0, it lies above the hyperplane

β0 +
−→
β · −→x > 0, it lies below the hyperplane

Using only this relation, we cannot find the
−→
β components and β0, which are important to

calculate the equation of the hyperplane. To find the equation, Maximal Margin Hyperplane

(MMH) was used. This hyperplane is the farthest from any training data point, and hence it is

the “optimal” as demonstrated in Figure 3.19. To find the MMH, the first step is to calculate

the perpendicular distance for each training data point for a given separating hyperplane. The

smallest perpendicular distance to a training data point from the hyperplane is called the

margin. The MMH is the hyperplane where the margin is the largest.

Figure 3.19: Support vector machine for classification using optimal hyperplane and maximum
margin

The ideal case is that the data is perfectly separable. However, in real-world problems this is

not the case. Therefore, the idea of soft margin classifier, is introduced. This classifier allows

some of the data points to be on the incorrect side of the hyperplane, hence it provides a soft

margin. For non-linear problems the kernel-trick is used (Boser et al. 1992). The kernel trick

is used to transform the data into a higher-dimensional feature space in which the data are

linearly separable as shown in Figure 3.20. In this problem, a radial kernel is often used which
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is written as:

K(−→xi ,−→xk) = exp(−γ
p∑
j=1

(xij − xkj)2) (3.17)

Figure 3.20: Support vector machine: Kernel trick

Cross-validation methodology

For the first three scenarios, a 10-fold cross-validation (CV) was used to evaluate the models.

This procedure is called k-fold CV, where k represents the number of groups a given dataset

is to be split into. Figure 3.21 demonstrates an example of a 5-fold CV. For this example,

the dataset was randomly shuffled and split into five groups. Each group was separated into

different training and test sets. Using the CV method, overfitting is avoided because it uses the

available training data to generate several mini train-test splits. This is used to test the model

with unseen data several times. All the available data was used to make predictions, and the

CV method can also be used for hyper-parameter tuning, which is explained in section 3.3.1.1.

In this project, stratified k-fold CV was used. Stratification is the process of rearranging the

data as to ensure each fold is a good representative of the whole.
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Figure 3.21: Schematic of 5-folds cross-validation

In total, five types of supervised ML algorithms were used in this thesis for condition and

activity classification; back-propagation NN, RF, SVM, kNN, GB. These ML algorithms have

been commonly used for clinical classification problems (Cleland et al. 2013; Erdaş et al. 2016;

Wu et al. 2008). For scenario 1, an SVM classifier was used because this algorithm is useful

for non-linear binary classifications, by being able to identify an optimal hyperplane using the

kernel trick. For scenarios 2 and 3, all five previously mentioned algorithms were used to identify

which one provides the best classification of the activities. Lastly, for scenario 4 only SVM and

kNN algorithms were used since they were the best algorithms for activity-type and activity-

task classifications respectively. Regarding CV, it was used in all scenarios except scenario 4.

The reason for that is because in scenario 4 the training data was completely different from

the test data. For example, the training data represented the healthy group, and the test

data represented the simulated-pathological group. To perform the ML algorithms, scikit-learn

library written in Python was used (Pedregosa et al. 2011).The following Table 3.3 demonstrates

the ML algorithms used, and for which scenarios CV technique was used.
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Table 3.3: Information about each scenario.

Condition classification Activity classification
Scenario 1 Scenario 2 Scenario 3 Scenario 4

N+S/N+S N/N S/S N/S

Cross-Validation X X X
kNN X X X
NN X X
RF X X

SVM X X X X
GB X X

Scenario 1: Condition classification The SVM algorithm was used for the binary condition

classification. Normal and simulated-pathological activities were classified into two groups.

The data collected from each group was analysed similarly. Following that, all features from

both groups were scaled, and PCA technique was performed. The principal components and

labels [0, 1] were imported in the SVM algorithm. The algorithm was trained using data from

both conditions and tested using unseen data from both normal and simulated-pathological

conditions (Figure 3.22).

Figure 3.22: Schematic of training and test datasets of scenario 1

The results showed whether new data could be correctly classified as either normal or simulated-

pathological.

This binary classification was implemented twice, separately for both wrist and ankle accelerom-

eter data. The classification outcomes for each location were compared to identify which of the

two locations provided better results for the condition classification. The location with the best

results was intended to be used for further analysis.

Scenarios 2, 3 & 4: Activity classification Activity classification was performed using

all five ML algorithms, NN, RF, SVM, kNN and GB. Each ML algorithm was assessed on
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its ability to classify both activity type and activity task. For scenario 2 and scenario 3, the

classifiers were trained and tested with data from the same group. However, for scenario 4, the

classifier was trained with normal data and tested with the simulated-pathological data. This

was demonstrated in Figure 3.23.

Figure 3.23: Schematic of training and test datasets of scenarios 2, 3 and 4

The theory behind each ML algorithm differs, hence each algorithm works according to its own

parameters. The parameters should be selected carefully in order to build a successful classifier

that results in high performance, and also avoids over- and under-fitting. To do this, hyper-

parameter tuning was used to aid in the selection of the best parameters for each algorithm. Grid

search, a hyper-parameter optimisation technique, was used to complete the hyper-parameter

tuning process. This means that all the combinations of the different parameters are tested, and

the performance of each combination is calculated. Then, the parameters that produced the

best performance, for example high accuracy, are selected. The results of the hyper-parameter

tuning performed for this thesis will be presented in the following sections.

Table 3.4 shows the parameters for each algorithm that were tuned in order to find their optimal

value.

Table 3.4: Parameters tuned for each machine learning algorithm.

Machine learning algorithm Parameter(s)

k-Nearest Neighbour Number of neighbours (k)
Distance measure

Neural Network Number of layers and neurons per layer
Random Forest Trees

Minimum number of samples to split internal node
Support Vector Machine Regularisation parameter (C )

Gamma

Each algorithm has several parameters that can be tuned, however the above were selected

as they are in principle the most important ones. Table 3.5 includes the definition of each
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parameter and how it influences the classifier.

Table 3.5: Definition and influence of each parameter tuned for the machine learning algorithms.

Parameter(s) Definition Influence

k-Nearest Neighbour

Nearest neighbours The number of nearest points
taking into consideration to
make a prediction for a new
data point

The model is too complex
when a single neighbour is
used. It becomes simpler
when more neighbours are
considered

Distance metric The distance function used to
provide a relationship metric
between each element in the
dataset

Neural Network

Neurons (and hidden layers) The computational unit that
have weighted input signals
and produce an output using
an activation function

The greater number of neu-
rons (and hidden layers), the
smoother the decision bound-
ary would be

Random Forest

Trees The number of decision trees
used

The larger the number of
trees used, the better the
model will be

Minimum samples to split in-
ternal node

The minimum number of
classes required to split the
internal node of a decision
tree

It stops the creation of the
tree early, hence avoids over-
fitting

Support Vector Machine

Regularisation parameter
(C )

The strength of regularisa-
tion, which is used to limit
the importance of each point

The model is restricted with
small C value. Increas-
ing C allows the misclassified
points to have a stronger in-
fluence on the model, and the
decision boundary bends to
correctly classify them

Gamma The amount of curvature of
the decision boundary. It
is used only with Gaussian
RBF kernel

The decision boundary varies
slowly with small gamma
value, hence yielding a model
of low complexity. Increasing
gamma, the model becomes
more complex

3.2.3.5 Performance evaluation

Classification performance metrics were used to evaluate the performance of each classifier.

The metrics used for this study were: (i) accuracy (training and test sets), (ii) F1-score, (iii)

precision, (iv) recall, and (v) confusion matrix. Scenarios 1, 2 and 3 used CV, hence the results
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reported are the mean and confidence intervals (CIs). CIs represent a range of values that the

true parameter can be among those values with an associated confidence level. In this case,

95% CIs were used.

3.3 Results

Participants′ ages range from 22 to 66 years (32.7±12.7) with 14 identified as female, 16 identi-

fied as male. Their height range from 1.60 to 1.90 meters (171.5±7.1) and weight range from 49

to 105 kilograms (69.2±13.6). In terms of the dominant hand, the right hand is dominant for

29 participants and the left hand is dominant for one participant. In terms of the dominant leg,

the right leg is dominant for 25 participants and the left leg is dominant for five participants.

In this section, two analyses are presented. Analysis 1 is performed to identify the best sensor

location (wrist or ankle). Analysis 2 is an in-depth analysis for the best location identified in

analysis 1. Table 3.6 describes in detail the two analyses.

Table 3.6: Information about the two analyses presented in results section.

Scenario Analysis 1 (wrist or ankle) Analysis 2 (wrist)

Whole set
Dynamic subset
Slow walk subset

Scenario 1 Whole set Normal walk subset
Fast walk subset

Stair ascent subset
Stair descent subset

Scenario 2
activity-type classification

using SVM
activity-type classification

using SVM, NN, RF, kNN and GB
activity-task classification

using SVM, NN, RF, kNN and GB

Scenario 3
activity-type classification

using SVM
activity-type classification

using SVM, NN, RF, kNN and GB
activity-task classification

using SVM, NN, RF, kNN and GB

Scenario 4
activity-type classification

using SVM
activity-task classification

using kNN

The following three figures, 3.24, 3.25 and 3.26, demonstrate the range of the three acceleration

axes.
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Figure 3.24: Histogram plots for static activities of healthy and simulated-pathological acceler-
ation

Figure 3.25: Histogram plots for transition activity of healthy and simulated-pathological ac-
celeration
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Figure 3.26: Histogram plots for dynamic activities of healthy and simulated-pathological ac-
celeration

The following figures, 3.27, 3.28 and 3.29, demonstrate the mean and standard deviation of the

features calculated based on the data of all volunteers.

Figure 3.27: Scaled features before applying principal component analysis
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Figure 3.28: Scaled features before applying principal component analysis

Figure 3.29: Scaled features before applying principal component analysis

3.3.1 Analysis 1: Identify the best location (wrist or ankle)

3.3.1.1 Scenario 1: Condition classification using the whole dataset that includes

all the activities

Principal component analysis The number of principal components selected was based on

a threshold of 95% of explained variance of the new derived principal components. Figure 3.30

demonstrates the number of components needed to explain variance for each location performing

a binary classification. Data recorded from wrist and ankle locations needed 28 and 22 principal

components respectively. These results suggested that data from the wrist location had greater

variability than data from the ankle.
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Figure 3.30: Number of components required for 95% explained variance for normal against
simulated-pathological conditions in both wrist and ankle locations

The following two Tables 3.7, 3.8 demonstrate the top five features that most influenced the

first three principal components. In the wrist location, the first principal component had a

strong association with features that represent the total acceleration magnitude. The second

component had a strong association with the entropy and standard deviation features of different

acceleration axes. The third component had an association with features from the acceleration

in y-axis and the mean angle of z-axis. The ankle location results differed in that the first

component had a strong association with three features from the total acceleration magnitude

and the RMS of y- and x-axis of acceleration. The second component had an association with

the acceleration entropy in all directions, and the standard deviation of the angular velocity.

The third component had associations with several acceleration features in the z-axis and x-axis.

Table 3.7: Top three principal components with the top five features for wrist location for
condition classification.

PC1 PC2 PC3

Acc: Mean (M) Acc: Entropy (M) Acc: Max F (y)
Acc: Median (M) Acc: Entropy (x) Angle: Mean (z)
Acc: Max F (M) Acc: Std (M) Acc: RMS (y)
Acc: RMS (M) Acc: Entropy (z) Acc: Mean (y)
Acc: Max 2nd F (M) Acc: Std (z) Acc: Max 2nd F (y)
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Table 3.8: Top three principal components with the top five features for ankle location for
condition classification.

PC1 PC2 PC3

Acc: Median (M) Acc: Entropy (M) Acc: Max F (z)
Acc: RMS (y) Acc: Entropy (y) Acc: RMS (z)
Acc: Max F (M) Acc: Entropy (z) Acc: Median (x)
Acc: RMS (x) Acc: Entropy (x) Acc: Mean (x)
Acc: Mean (M) Ang. vel: Std Acc: Max 2nd F (z)

Hyper-parameter tuning Hyper-parameter tuning was performed by checking all the possible

combinations among the values presented in Table 3.9. This step was performed in order to

build a model that will be able to generalise to new data.

Table 3.9: Gamma and C parameters of support vector machine used for hyperparameter tuning
for condition classification.

Parameters

Gamma 0.01 0.1 1 10
C 0.01 0.1 1 10

Figures 3.31 and 3.32 were used to aid in the decision of the optimal parameters to build a model

that is able to generalise. This means that the model is able to make accurate predictions on

unseen data. There is a trade-off of model complexity against training and test accuracy. If

the model is simple, there is a chance that it will under-fit data, if the model is too complex

then there is a chance for over-fitting data, hence it is crucial to find the “sweet spot”. The

following figures demonstrate the results from the Grid search. For the specific cross-validation,

K was equal to 10, hence there are 10 small upward triangles to demonstrate the result of

each subset. Additionally, the empty downward triangle represents the mean accuracy of the

10 K-folds. This is done for both training (blue) and test (grey) sets. Based on the results

from both figures, the optimal parameters found were gamma equals to 1 and C equals to 10.

The reason for selecting these parameters is because the accuracy of the training dataset was

not 100%, but instead it was 96.5% and 93.5% for the wrist and ankle locations respectively.

Additionally, the accuracies of the test dataset were 94.9% and 92.6% for the wrist and ankle

locations respectively, which are slightly lower than the accuracy of the training dataset. For

these reasons, there is high possibility that we might have avoided the problem of under- and

over-fitting.
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Figure 3.31: Hyperparameter tuning results of support vector machine for condition classifica-
tion using all activities for wrist location using 10 K-fold CV

Figure 3.32: Hyperparameter tuning results of support vector machine for condition classifica-
tion using all activities for ankle location using 10 K-fold CV
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Performance evaluation Table 3.10 demonstrates all performance metrics regarding the nor-

mal and simulated-pathological groups with the accelerometer worn at the wrist and ankle

location. Across both locations, the classifier algorithm correctly classified the conditions (nor-

mal and simulated-pathological) with an accuracy of more than 92.5%. High degrees of recall

(avoiding false negatives) and precision (limiting false positives) scores were obtained for both

locations. A high F1-score (balance between recall and precision) was noted as well, since it is

calculated based on precision and recall scores.

Table 3.10: Results for condition classification for both wrist and ankle locations [Mean (95%
CI)].

Performance metrics Wrist Ankle

Accuracy (test set) 0.949 (0.949-0.950) 0.926 (0.925-0.927)
Accuracy (training set) 0.965 (0.965-0.965) 0.935 (0.935-0.936)
F1-score 0.942 (0.941-0.942) 0.915 (0.914-0.916)
Precision 0.943 (0.942-0.944) 0.922 (0.921-0.923)
Recall 0.940 (0.940-0.941) 0.909 (0.908-0.910)

3.3.1.2 Scenarios 2 and 3: Activity-type classification

Activity type clasification was performed to classify the general types of activities, such as

static, transition, and dynamic.

Principal component analysis A threshold of 95% of explained variance was used to identify

the number of principal components. For this case, each individual group was of interest, since

activity classification was performed for each group separately. The groups were: a) normal –

wrist, b) simulated-pathological – wrist, c) normal – ankle, d) simulated-pathological – ankle.

The required number of principal components were 25, 30, 17 and 26 for groups normal – wrist,

simulated-pathological – wrist, normal – ankle and simulated-pathological – ankle respectively.

The results are demonstrated in Figure 3.33. These results suggest that data that represented

the simulated-pathological groups was more varied than the associated data from the normal

groups.
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Figure 3.33: Number of components required for 95% explained variance for activity classifica-
tion of normal condition and simulated-pathological condition in both wrist and ankle locations

Again, the following four Tables 3.11, 3.12, 3.13, 3.14 demonstrate the top five features that

formed the first three principal components. In this case, the components were used to reduce

the number of features to classify the activities for each group individually. The first two

principal components, of the normal group with the wrist-worn device, had a strong association

with the total acceleration magnitude. The third component had a strong association with

features from the y-axis acceleration. On the contrary, the first component of the normal group

with ankle-worn device had a significant association with features from the jerk signal in x-axis.

The second component had a strong association with the first maximum frequency and RMS

of acceleration in y- and x-axis. The third component had an association with the acceleration

signal in z-axis with features from frequency-domain.

Table 3.11: Top three principal components with the top five features for wrist location for
activity classification under normal condition.

PC1 PC2 PC3

Acc: Median (M) Acc: RMS (M) Acc: Max F (y)
Acc: Mean (M) Acc: RMS (x) Acc: Mean (y)
Acc: Max F (x) Acc: Mean (M) Acc: RMS (y)
Acc: Max F (M) Acc: Mean F (M) Acc: Median (y)
Acc: RMS (M) Acc: Median (M) Angle: Mean (z)
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Table 3.12: Top three principal components with the top five features for ankle location for
activity classification under normal condition.

PC1 PC2 PC3

Jerk: Mean F (x) Acc: Max F (y) Acc: Max F (z)
Jerk: STD (x) Acc: Max F (x) Acc: RMS (z)
Jerk: RMS (x) Acc: Median (M) Acc: Max 2nd F (z)
Jerk: Max 2nd F (x) Acc: RMS F (y) Acc: Mean F (z)
Jerk: Max F (x) Acc: RMS (x) Acc: Mean (x)

The first principal component of the simulated-pathological group with the wrist-worn device,

had a strong association with the total acceleration magnitude. Similar results were observed

for this location in the normal group. The second component had a large association with fea-

tures such as standard deviation and entropy from the acceleration signal. The third component

had a strong association with features from the y-axis acceleration. The first component of the

simulated-pathological group with ankle-worn device also had a large association with total ac-

celeration magnitude features. The second component had a large association with acceleration

mean frequency in y- and M-axis, as well as features such as standard deviation and RMS of

the jerk signal. The third component had a strong association with the acceleration signal in

z- and x-axis.

Table 3.13: Top three principal components with the top five features for wrist location for
activity classification under simulated-pathological condition.

PC1 PC2 PC3

Acc: Mean (M) Acc: Entropy (M) Acc: Max F (y)
Acc: Median (M) Acc: Std (y) Acc: RMS (y)
Acc: Max F (M) Acc: Entropy (x) Acc: Max 2nd F (y)
Acc: RMS (M) Acc: Std (z) Angle: Mean (z)
Acc: Max F (z) Acc: Std (M) Acc: Mean (y)

Table 3.14: Top three principal components with the top five features for ankle location for
activity classification under simulated-pathological condition.

PC1 PC2 PC3

Acc: Median (M) Acc: Mean F (y) Acc: Median (x)
Acc: Max F (M) Acc: Std (M) Acc: Mean (x)
Acc: Mean (M) Jerk: Std (y) Acc: Max F (z)
Acc: Max F (y) Jerk: RMS F (y) Acc: RMS (z)
Acc: RMS (M) Acc: Mean F (M) Acc: Max 2nd F (z)
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Hyper-parameter tuning The same approach was used to find the optimal parameters for

each mounting location group for the activity classification. Based on the results from both

figures, the optimal parameters found were gamma equals to 1 and C equals to 10.

Figure 3.34: Hyperparameter tuning results of support vector machine for activity classification
under normal condition for both wrist and ankle locations using 10 K-fold CV
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Figure 3.35: Hyperparameter tuning results of support vector machine for activity classification
under simulated-pathological condition for both wrist and ankle locations using 10 K-fold CV

Performance evaluation For the scope of this thesis, activity recognition was one of the most

important aspects. Tables 3.15 and 3.16 demonstrate the results generated from the activity-

type recognition of the four groups individually (normal – wrist, simulated-pathological – wrist,

normal – ankle, simulated-pathological – ankle). In section 3.2.3.4, four algorithmic scenarios

were described and scenario 2 and 3 were applied for the normal and simulated-pathological

conditions respectively.

The following performance metrics represent the results from both locations of the normal

group. Both locations achieved very high performance in all the tested metrics (> 97%). The

performance metrics from the ankle location were slightly better than the metrics of the wrist

location, with differences between 0.003 and 0.008.

88



Chapter 3. Using machine learning for activity and condition classification 3.3. Results

Table 3.15: Results for activity classification under normal condition for both wrist and ankle
locations [Mean (95% CI)].

Performance metrics Wrist Ankle

Accuracy (test set) 0.984 (0.983-0.984) 0.987 (0.987-0.988)
Accuracy (training set) 0.989 (0.989-0.989) 0.989 (0.989-0. 989)
F1-score 0.971 (0.970-0.973) 0.979 (0.978-0. 979)
Precision 0.971 (0.970-0.973) 0.978 (0.977-0.978)
Recall 0.971 (0.969-0.973) 0.979 (0.978-0.981)

A similar pattern of results was observed for both locations for the simulated-pathological group.

The performance of both locations was very good overall, although the scores were slightly lower

than seen in the normal group. The ankle location again provided slightly superior scores than

those obtained from the wrist location with differences between 0.014 and 0.018.

Table 3.16: Results for activity classification under simulated-pathological condition for both
wrist and ankle locations [Mean (95% CI)].

Performance metrics Wrist Ankle

Accuracy (test set) 0.967 (0.966-0.968) 0.981 (0.980-0.982)
Accuracy (training set) 0.982 (0.982-0.982) 0.987 (0.987-0.987)
F1-score 0.958 (0.957-0.959) 0.971 (0.970-0.972)
Precision 0.964 (0.963-0.965) 0.972 (0.970-0.973)
Recall 0.952 (0.951-0.954) 0.970 (0.969-0.971)

The ankle location performed slightly better than the wrist in all performance metrics. While

the ankle was slightly better however, the performance at both locations was high (>95%)

enough that either could potentially be used for activity recognition in any of the groups, and

condition classification.

This was an important finding because previous discussions with patients through patient and

public involvement (PPI) work indicated that patients had a strong preference for a wrist

worn device rather than ankle worn (See appendix A). As performance was similar between

locations, but patients would only wear one device in the real world scenario, it was decided to

focus subsequent analysis on the data from wrist worn devices.
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3.3.2 Analysis 2: In-depth analysis for wrist location

3.3.2.1 Scenario 1: Condition classification

Principal component analysis The number of essential principal components was calculated

for the dataset including all the activities, the sub-dataset including only the dynamic activities,

and the sub-dataset for each individual dynamic activity. As already mentioned, a threshold

of 95% of explained variance was used to derive the new principal components. Table 3.17

demonstrates the number of essential principal components.

Table 3.17: Number of components required for 95% explained variance for activity classification
under normal condition in different activity datasets.

Dataset Principal components

Whole 28
Dynamic 24
Slow walk 34
Normal walk 31
Fast walk 30
Stair ascent 33
Stair descent 32

Hyper-parameter tuning The range of hyper-parameters for the whole dataset and dynamic

sub-dataset was slightly different from the individual activity sub-datasets. The difference was

that C and gamma were up to two instead of ten. This is because the results were poor when

C=10 and gamma=10, therefore smaller values were used instead. Figures 3.36 to 3.41 display

the results from the hyper-parameter tuning of the SVM algorithm.

CV was used to calculate the results, for the whole set and the dynamic subset the data was

split into 10-folds. This means that the dataset was separated into ten smaller groups. However,

for the individual activity subsets, the data was split into 5-folds since the amount of data was

small.
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Figure 3.36: Hyperparameter tuning results
of SVM for condition classification using dy-
namic activities for wrist location using 10
K-fold CV

Figure 3.37: Hyperparameter tuning results
of SVM for condition classification using slow
walk activity for wrist location using 5 K-fold
CV

Figure 3.38: Hyperparameter tuning results
of SVM for condition classification using nor-
mal walk activity for wrist location using 5
K-fold CV

Figure 3.39: Hyperparameter tuning results
of SVM for condition classification using fast
walk activity for wrist location using 5 K-fold
CV

Figure 3.40: Hyperparameter tuning results
of SVM for condition classification using as-
cending stairs activity for wrist location using
5 K-fold CV

Figure 3.41: Hyperparameter tuning results
of SVM for condition classification using de-
scending stairs activity for wrist location us-
ing 5 K-fold CV

Table 3.18 demonstrates the required parameters for all the cases examined.
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Table 3.18: Best gamma and C parameters for support vector machine for condition classifica-
tion of different activity datasets.

Dataset Gamma C

Whole 1 10
Dynamic 1 10
Slow walk 1 2
Normal walk 1 1
Fast walk 0.1 2
Stair ascent 1 1
Stair descent 0.1 1

Performance metrics

Whole set Table 3.10 demonstrates the results for the condition classification of the wrist-worn

device including all nine activities. The classifier was fed with features representing all nine

activities into multiple windows of two seconds. Stratified (shuffled) CV was used to ensure

that the training and test sets have the same proportion of the feature of interest as in the

original dataset. The shuffling of data was used to mix the dataset, however this might be a

problem if data from the same participant exists in the train fold as well as the test fold. This

might be an issue since the model might not be generalisable. As already mentioned, the SVM

classifier achieved high performance scores in order to differentiate the activities performed from

the two conditions using the whole dataset of activities. The classifier achieved an accuracy

score of 94.9% and an F1-score of 94.2%.

A confusion matrix is a useful way to visually represent the results from the classification. The

values on the main diagonal of the confusion matrix represent the correct classifications, while

other values show how many samples of one class were misclassified as another class.

Figure 3.42 demonstrates the classification results of the wrist location. The SVM algorithm was

confused by predicting the normal condition as simulated-pathological condition for 684/8099

times. The algorithm also misclassified the simulated-pathological condition as normal condition

for 595/17125 times. The individual precision and recall scores between the two conditions

were very close. However, the simulated-pathological condition had greater precision and recall

scores compared to the normal condition. The precision scores of the normal and simulated-

pathological conditions were 0.926 and 0.960 respectively and the recall scores of the normal

and simulated-pathological conditions were 0.916 and 0.965.
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Figure 3.42: Confusion matrix for condition classification of the dataset including all nine
activities

Dynamic subset Table 3.19 demonstrates the results for the condition classification of the wrist-

worn device, however using only the activities from the dynamic category. The classifier achieved

slightly higher performance scores using only the dynamic activities instead of all the activities.

Accuracy and F1-score were achieved as 96.7% and 94.3% respectively.

Table 3.19: Results for condition classification of the dataset including dynamic activities [Mean
(95% CI)].

Performance metrics Dynamic subset

Accuracy (test set) 0.967 (0.966-0.968)
Accuracy (training set) 0.977 (0.977-0. 977)
F1-score 0.943 (0.942-0.945)
Precision 0.961 (0.959-0.962)
Recall 0.928 (0.926-0.930)

The SVM algorithm misclassified the normal condition as simulated-pathological condition for

291/2184 times as shown in Figure 3.43. Additionally, the algorithm misclassified the simulated-

pathological condition as normal condition for 93/9399 times. The individual precision and

recall scores of the simulated-pathological condition had greater precision and recall scores from

the normal condition. The precision scores of the normal and simulated-pathological conditions

were 0.952 and 0.970 respectively and the recall scores of the normal and simulated-pathological

conditions were 0.866 and 0.990.

93



3.3. Results Chapter 3. Using machine learning for activity and condition classification

Figure 3.43: Confusion matrix for condition classification of the dataset including dynamic
activities

Individual dynamic subsets For this case, each individual activity within the dynamic category

was tested individually. This was done to understand whether a specific task is better or worse

at differentiating the two conditions. The results in Table 3.20 demonstrate that all the dynamic

activities performed well.

Table 3.20: Results for condition classification of the dataset for individual dynamic activities
[Mean (95% CI)].

Performance
metrics

Slow walk Normal walk Fast walk Stair ascent Stair descent

Accuracy (test
set)

0.984 0.994 0.981 0.984 0.991
(0.983-0.985) (0.993-0.996) (0.977-0.986) (0.981-0.998) (0.990-0.992)

Accuracy
(training set)

0.993 0.998 0.986 0.997 0.998
(0.992-0.993) (0.998-0.999) (0.986-0.987) (0.996-0.997) (0.997-0.998)

F1-score
0.974 0.989 0.958 0.968 0.991
(0.972-0.976) (0.986-0.992) (0.948-0.967) (0.961-0.976) (0.990-0.992)

Precision
0.979 0.990 0.970 0.982 0.991
(0.977-0.981) (0.987-0.994) (0.958-0.982) (0.974-0.989) (0.990-0.992)

Recall
0.969 0.988 0.947 0.956 0.991
(0.965-0.974) (0.984-0.991) (0.937-0.957) (0.948-0.964) (0.990-0.992)

The following Figures 3.44 to 3.48 depicts the confusion matrix for each of the five individual

activities. In all cases, the algorithm misclassified more times the normal condition compared

to the simulated-pathological condition than vice versa. Moreover, there were higher individual

precision and recall scores in the simulated-pathological (0.987, 0.993) condition than the normal

condition (0.970, 0.946).
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Figure 3.44: Confusion matrix for condi-
tion classification of the dataset for slow
walk activity

Figure 3.45: Confusion matrix for condi-
tion classification of the dataset for normal
walk activity

Figure 3.46: Confusion matrix for condi-
tion classification of the dataset for fast
walk activity

Figure 3.47: Confusion matrix for condi-
tion classification of the dataset for ascend-
ing stairs activity

Figure 3.48: Confusion matrix for condi-
tion classification of the dataset for de-
scending stairs activity
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3.3.2.2 Scenarios 2, 3 and 4: Activity classification

Hyper-parameter tuning Often, the model can suffer from under- or over-fitting and there-

fore, a CV technique was used to reduce the likelihood this occurring. This was achieved by

visualising the accuracy of both training and test datasets. The model is likely to be under-

fitted when the accuracy of both training and test sets are both low. On the other hand, the

model is likely to be over-fitted when the accuracy of the training set is much larger than the

accuracy of the test set. Therefore, the overall performance of each algorithm was taken into

consideration in order to identify the optimal hyper-parameters.

Five different ML algorithms were trained to perform activity classification on normal and

simulated-pathological conditions. However, hyper-parameter tuning was performed only on

four of those algorithms, kNN, NN, RF and SVM because with the GB algorithm there were

no parameters to test. This is because the only parameter that the GB algorithm accepts is the

number of classes of probabilities. However, if this is set manually, the classes are not adjusted

based on the data.

The following eight figures demonstrate the change of accuracy score according to the parameters

used for each ML algorithm. Each figure shows the accuracy achieved when using the training set

and the test set. Additionally, each combined figure features two graphs, the top graph describes

the activity-type classification, and the bottom graph describes the activity-task classification.

The results show that the accuracy of the training set was always better than the accuracy of

the test set. Additionally, activity-type classification showed better outcomes of accuracy than

for specific activity-task classification.

k-Nearest Neighbour For the kNN classifier, the number of neighbours and the distance met-

ric were of high importance and therefore, for the hyper-parameter tuning, these two parameters

were considered.

Overall, the accuracy achieved by the test set was higher (> 98% for activity-type and >

96% for activity-task) when the number of neighbours was low. This suggested that with low

number of neighbours, the data was over-fitted. On the other hand, the accuracy of the test

and the training sets dropped when the number of neighbours was high. This suggested that

the data was under-fitted. Hence, for all four cases (see Figures 3.49 and 3.50), four neighbours

and Euclidean distance were chosen as the optimal parameters. The reason for choosing four
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neighbours was that the range of CV accuracy of test set was not very close to the CV accuracy

of the training set. For example, for the activity type of the normal group, the CV accuracy of

the test set when k = 5 was close to the accuracies of the test set.

Figure 3.49: Hyperparameter tuning re-
sults of k-Nearest Neighbour for activity
classification under normal condition using
10 K-fold CV. The parameters chosen were:
neighbours=4 and distance=2 for both ac-
tivity type and task

Figure 3.50: Hyperparameter tuning re-
sults of k-Nearest Neighbour for activity
classification under simulated-pathological
condition using 10 K-fold CV The param-
eters chosen were: neighbours=4 and dis-
tance=2 for both activity type and task

Neural Network For the NN classifier, the only parameter tuned was the size of hidden layers.

Only one hidden layer was chosen, and the number of neurons selected was the parameter

altered. A general trend was demonstrated for all four cases as shown in Figures 3.51 and 3.52.

For the training set, the accuracy increased as the number of neurons increased. For the test

set, the accuracy remained steady as the number of neurons increased. This suggests that at

that point the model started to become overfitted because the accuracy of the test set was not

increasing, which means the model had completed using the training set.

Considering the activity types in normal group, 35 neurons were selected as the optimal value

because of the range of CV accuracy of the test set and the fact that training and test set

accuracies did not overlap. For the activity task, 60 neurons were chosen as the optimal value

because the accuracy of the test set was similar to most of the other results, however the

range of the CV accuracy of the test set was small. Also the CV accuracy of the test set did not

overlap with any CV accuracy of the training set. Regarding the activity types of the simulated-

pathological group, 55 neurons were selected. The test set accuracy was steady between 40 and

80 neurons. The accuracy of the training set though was increasing, hence 55 neurons was
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chosen as the optimal value. Another reason for this choice was the range of the CV accuracy

of the test set with 55 neurons showing the smallest range. For similar reasons, 75 neurons was

selected as the optimal parameter for activity task classification in the simulated-pathological

group.

Figure 3.51: Hyperparameter tuning re-
sults of Neural Network for activity classifi-
cation under normal condition using 10 K-
fold CV. The parameters chosen were: neu-
rons=35 for activity type and neurons=60
for activity task

Figure 3.52: Hyperparameter tuning re-
sults of Neural Network for activity classi-
fication under simulated-pathological con-
dition using 10 K-fold CV. The parameters
chosen were: neurons=55 and neurons=75
for activity task

Random forest The number of trees and the value of minimum sample split were two of the

most important parameters when tuning the RF classifier. The following Figures 3.53 and 3.54

demonstrate the changes of the accuracy according to the two parameters.

Considering all four cases, there was a general trend towards increasing accuracy with increasing

numbers of trees. Considering the minimum sample split parameter, the accuracy slightly

dropped when the number of min sample split increased.

When the number of trees was five or more, the data started to become over-fitted and so in all

cases, four trees and 12 min sample split were selected. The test set and training set accuracy

was still high with these two parameters as demonstrated in Figures 3.53 and 3.54, but not the

highest in order to avoid over-fit.
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Figure 3.53: Hyperparameter tuning re-
sults of Random Forest for activity clas-
sification under normal condition using 10
K-fold CV. The parameters chosen were:
trees=4 and minimum sample split=12 for
both activity type and task

Figure 3.54: Hyperparameter tuning re-
sults of Random Forest for activity classi-
fication under simulated-pathological con-
dition using 10 K-fold CV. The parameters
chosen were: trees=4 and minimum sample
split=12 for both activity type and task

Support Vector Machine Gamma and C parameters were used to perform hyper-parameter

tuning for the SVM classifier.

The following Figure 3.55 and 3.56 demonstrate the more varied results. Considering the normal

group, the optimal parameters chosen were C and gamma equal to one. Most of the results,

when C was equal to 0.01 and 0.1, suggested that the data was under-fitted because the accuracy

was low (< 60%) in comparison to the other results, and the training and test set accuracies

were equal. The chosen parameter once again was selected because both training and test sets

showed high accuracies (> 96%), but not the highest of training set. A similar pattern was

followed in the simulated-pathological group, however the optimal parameters chosen were C

equals to 10 and gamma equals to 1.
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Figure 3.55: Hyperparameter tuning re-
sults of Support Vector Machine for ac-
tivity classification under normal condition
using 10 K-fold CV. The parameters chosen
were: C=1 and gamma=1 and C=1 and
gamma=1 for activity task

Figure 3.56: Hyperparameter tuning re-
sults of Support Vector Machine for
activity classification under simulated-
pathological condition using 10 K-fold CV.
The parameters chosen were: C=10 and
gamma=1 for activity type and C=10 and
gamma=1 for activity task

Table 3.21 demonstrates all the chosen hyper-parameters for all groups.

Table 3.21: Best parameters for activity classification under normal and simulated-pathological
conditions.

Normal Simulated-pathological

Activity type Activity task Activity type Activity task
kNN (neighbours, distance) 4, 2 4, 2 4, 2 4, 2
NN (neurons) 35 60 55 75
RF (trees, min sample split) 4, 12 4, 12 4, 12 4, 12
SVM (C, gamma) 1, 1 1, 1 10, 1 10, 1

Performance metrics The third research question was related to whether it was possible to

identify the different types and tasks of physical activity in normal and simulated-pathological

conditions. Five Machine Learning algorithms, NN, RF, kNN, GB and SVM were trained to

classify the activities. This section demonstrates the results for each activity classification group

when the monitor was attached to participant’s wrist. The performance metrics of accuracy,

F1-score, precision and recall are presented and the confusion matrix of the selected algorithm

is also presented in each case.

Scenario 2: Normal training set Vs Normal test set
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Activity type Overall, all algorithms, except GB, demonstrated excellent performance. They

reached accuracies between 0.953 and 0.984. Additionally, the other three performance metrics

also showed high performance, which was above 0.919.

Table 3.22: Results for activity type classification under normal condition using five machine
learning algorithms [Mean (95% CI)].

Performance
metrics

kNN NN RF SVM GB

Accuracy (test
set)

0.983 0.983 0.953 0.984 0.897
(0.982-0.983) (0.982-0.983) (0.952-0.954) (0.983-0.984) (0.896-0.898)

Accuracy
(training set)

0.991 0.992 0.986 0.989 0.898
(0.991-0.991) (0.991-0.992) (0.985-0.986) (0.989-0.989) (0.898-0.898)

F1-score
0.970 0.971 0.920 0.971 0.846
(0.969-0.971) (0.969-0.973) (0.918-0.922) (0.970-0.973) (0.844-0.848)

Precision
0.970 0.969 0.917 0.971 0.843
(0.969-0.972) (0.968-0.970) (0.915-0.917) (0.970-0.973) (0.840-0.845)

Recall
0.970 0.970 0.919 0.971 0.850
(0.969-0.972) (0.969-0.972) (0.917-0.922) (0.969-0.973) (0.848-0.852)

Based on its slightly better performance than kNN and NN, the SVM algorithm was explored

further in a confusion matrix. The Figure 3.57 below demonstrates that the algorithm misclas-

sified by predicting static and dynamic activities as transition activity, sit-to-stand, for 23/4845

and 34/2230 times respectively. The greatest misclassification though was when transition activ-

ity was predicted as dynamic 54/1018 times. Static activity had the highest recall and precision

values among the activity types, achieving scores of 0.994 and 0.997 respectively. The worst

performance, among the activity types, was obtained by the transition activity with 0.935 and

0.944 values for recall and precision respectively. Sit-to-stand was the only transition activity

as demonstrated in Figure 3.7.
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Figure 3.57: Confusion matrix for ac-
tivity type classification under normal
condition using support vector ma-
chine Figure 3.58: Confusion matrix for activity task

classification under normal condition using k-
Nearest Neighbour

Activity task For classification of specific activity tasks, the overall performance of kNN was

excellent in comparison to the other four algorithms. The NN and SVM algorithms had high

accuracy scores but the scores for the other performance metrics were poorer. GB showed the

worst overall performance for the activity task classification.

Table 3.23: Results for activity task classification under normal condition using five machine
learning algorithms [Mean (95% CI)].

Performance
metrics

kNN NN RF SVM GB

Accuracy (test
set)

0.943 0.926 0.873 0.926 0.749
(0.941-0.944) (0.924-0.927) (0.871-0.875) (0.925-0.928) (0.746-0.751)

Accuracy
(training set)

0.967 0.951 0.956 0.943 0.754
(0.966-0.967) (0.951-0.952) (0.956-0.957) (0.943-0.944) (0.754-0.754)

F1-score
0.904 0.871 0.871 0.863 0.651
(0.902-0.906) (0.868-0.874) (0.868-0.874) (0.860-0.866) (0.647-0.655)

Precision
0.911 0.871 0.797 0.874 0.675
(0.909-0.913) (0.868-0.874) (0.792-0.802) (0.871-0.877) (0.671-0.679)

Recall
0.901 0.861 0.781 0.858 0.655
(0.899-0.903) (0.858-0.864) (0.778-0.784) (0.855-0.861) (0.651-0.658)

Again using the best performing algorithm, this time kNN, a confusion matrix was developed.

The classification of specific activity tasks was more challenging than the classification of broader

activity types. This was demonstrated with the results of the confusion matrix in Figure 3.58
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above. In general, misclassification occured among tasks that were part of the same activity

type. For example, regarding dynamic activities, normal walk was predicted 62/459, 7/459 and

9/459 times as slow walk, fast walk and upstairs. Another example considering static activities,

sitting was confused as lying and standing 11/1490 and 16/1490 times respectively. Activities

such as lying, sitting, standing, stand-to-sit and slow walk achieved individual recall scores

above 0.933, with lying achieving the highest recall score of 0.996. The other four activities

achieved recall scores between 0.764 and 0.893, with fast walk having the worst performance.

In terms of the precision score, lying, sitting, standing, stand-to-sit and stair descent achieved

scores greater than 0.940. Normal walk obtained the worst precision score of 0.798.

Scenario 3: Simulated-pathological training set Vs Simulated-pathological test set

Activity type Similar to activity type classification, the SVM algorithm showed the best

overall performance of the five algorithms. kNN and NN algorithms had slightly worse perfor-

mance than the SVM, hence SVM was selected for the misclassification analysis.

Table 3.24: Results for activity type classification under simulated-pathological condition using
five machine learning algorithms [Mean (95% CI)].

Performance
metrics

kNN NN RF SVM GB

Accuracy (test
set)

0.960 0.957 0.921 0.967 0.834
(0.959-0.961) (0.956-0.958) (0.920-0.923) (0.966-0.968) (0.832-0.836)

Accuracy
(training set)

0.979 0.975 0.972 0.982 0.834
(0.979-0.979) (0.974-0.975) (0.972-0.972) (0.982-0.982) (0.834-0.834)

F1-score
0.948 0.948 0.892 0.958 0.799
(0.948-0.949) (0.947-0.949) (0.890-0.894) (0.957-0.959) (0.796-0.801)

Precision
0.954 0.952 0.904 0.964 0.793
(0.953-0.955) (0.951-0.954) (0.901-0.906) (0.963-0.965) (0.791-0.796)

Recall
0.944 0.943 0.889 0.952 0.806
(0.943-0.945) (0.941-0.945) (0.887-0.890) (0.951-0.954) (0.804-0.808)

Scenario 3 yielded more misclassifications than Scenario 2. The greatest number of misclassi-

fications made by the SVM algorithm was due to prediction of transition activity as dynamic

activity 204/2746 times as demonstrated in Figure 3.59. This was the greatest misclassification

in the activity type classification of the normal group as well. Dynamic activity had the highest

individual recall score of 0.984, and transition activity had the lowest recall score of 0.900. In

terms of the individual precision scores, the range was between 0.948 and 0.974, achieved by

transition and static activities respectively.
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Figure 3.59: Confusion matrix for
activity type classification under
simulated-pathological condition
using support vector machine Figure 3.60: Confusion matrix for activity task

classification under simulated-pathological con-
dition using k-Nearest Neighbour

Activity task The classification of activity tasks for the simulated-pathological groups showed

decreased overall performance in comparison to the results for activity type. kNN and SVM

had similar performance, with kNN having slightly better performance metrics.

Table 3.25: Results for activity task classification under simulated-pathological condition using
five machine learning algorithms [Mean (95% CI)].

Performance
metrics

kNN NN RF SVM GB

Accuracy (test
set)

0.845 0.770 0.689 0.838 0.516
(0.843-0.846) (0.767-0.772) (0.687-0.691) (0.836-0.840) (0.514-0.518)

Accuracy
(training set)

0.915 0.816 0.896 0.897 0.519
(0.915-0.915) (0.815-0.817) (0.895-0.896) (0.896-0.897) (0.519-0.520)

F1-score
0.846 0.772 0.687 0.839 0.510
(0.844-0.848) (0.770-0.774) (0.685-0.689) (0.836-0.841) (0.508-0.512)

Precision
0.855 0.777 0.692 0.846 0.551
(0.853-0.857) (0.776-0.778) (0.690-0.694) (0.844-0.848) (0.548-0.553)

Recall
0.840 0.773 0.684 0.834 0.518
(0.838-0.842) (0.771-0.776) (0.681-0.686) (0.832-0.837) (0.516-0.520)

There were many misclassifications among the different activity tasks, however the larger

amount of misclassifications was occured among the tasks that were part of the same activ-

ity type. Overall, static activities, such as lying, sitting and standing, had the three highest

recall scores respectively as shown in Figure 3.60. They achieved recall scores greater than
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0.924. Stand-to-sit activity achieved a recall score of 0.891, which was highest than any of the

scores of any of the dynamic activities. Fast walk obtained the least recall score with a value of

0.680. Considering individual precision scores, lying had the greatest score once again, which

was 0.985. Sitting and stand-to-sit activities achieved high scores as well, obtaining values of

0.980 and 0.916 respectively. Standing, upstairs and downstairs activities achieved individual

prediction scores between 0.860 and 0.899. The worst performance in terms of prediction was

obtained by normal walk activity which was 0.675.

Scenario 4: Normal training set Vs Simulated-pathological test set

For this particular scenario, there was no need to use CV because the training and test sets were

completely different. Additionally, this suggests that there was minimal risk for overfitting the

data, since the model was trained and tested with two different datasets. In this investigation

the SVM and kNN algorithms were trained with normal dataset and tested with the simulated-

pathological dataset. The reason for testing only the SVM algorithm and kNN algorithm for

activity-type and activity-task respectively was because they had been previously shown to

consistently outperform the other approaches. Since these algorithms had the best performance

when the training and test data were from the same group, it was assumed that they will

continue have the best performance in comparison to the other algorithms because now the

data would be from a completely different group. Additionally, in this scenario the features

calculated were reduced to principal components. This was done in the same way with both

scenarios 2 and 3, where the 120 features are calculated, scaled and then used as an input in

the principal component analysis function. This step was done prior the usage of a classifier.

Activity type The SVM algorithm had shown excellent overall performance for the activity

type classification when the algorithm was both trained with normal dataset and tested with

a normal dataset. The performance metrics obtained were: 0.984, 0.971, 0.971, and 0.971

for accuracy, F1-score, precision and recall respectively. The performance dropped when the

normal data set was used to train the algorithm for use with the simulated-pathological data

as demonstrated in Table 3.26.
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Table 3.26: Results for activity type classification using normal data as training set and
simulated-pathological data as test set.

Performance metrics SVM

Accuracy (test set) 0.528
F1-score 0.535
Precision 0.638
Recall 0.528

Even though the overall performance of this algorithm was poor, some of the individual recall

and precision scores were reasonably high. This is demonstrated in Figure 3.61. For example,

the individual recall score of the static activity was 0.969 and the individual precision score of

the dynamic activity was 0.793.

Figure 3.61: Confusion matrix for ac-
tivity type classification using normal
data as training set and simulated-
pathological data as test set Figure 3.62: Confusion matrix for activity task

classification using normal data as training set
and simulated-pathological data as test set

Activity task For the classification of activity tasks, kNN algorithm demonstrates the best

performance when the algorithm was trained with normal dataset. Hence, the same algorithm

was used for this case. When the normal data set was used to train the algorithm for use with

the simulated-pathological data however, the kNN algorithm had the worst performance among

all the algorithms tested in this chapter. Table 3.27 demonstrates the performance of the kNN

algorithm.

106



Chapter 3. Using machine learning for activity and condition classification 3.4. Discussion

Table 3.27: Results for activity task classification using normal data as training set and
simulated-pathological data as test set.

Performance metrics kNN

Accuracy (test set) 0.313
F1-score 0.274
Precision 0.270
Recall 0.313

The confusion matrix in Figure 3.62 showed that many of the activity tasks were misclassified

by the algorithm. In the majority of the cases, the numbers of false predictions were even larger

than the number of correct predictions. For example, normal walk activity was predicted as

stand-to-sit and slow walk activities 714/1909 and 686/1909 times respectively. Normal activity

was correctly predicted as its true class only 215/1909 times. Almost all dynamic activities

and stand-to-sit activity showed similar pattern for their results. In terms of the individual

precision and recall scores, the lying activity showed the best results, which were 0.975 and

0.687 respectively. The second highest recall score was achieved by standing activity, and the

second highest precision score was achieved by sitting activity. All the other activities yielded

recall and precision scores between 0.001 and 0.441. The stairs descent activity achieved the

worst scores of all activities.

3.4 Discussion

This chapter presents the analysis of data from both wrist and ankle worn activity monitors in

volunteers in both their usual normal and simulated pathological states. The results presented

here answer the first three research questions posed in section 2.5.1; 1) Can we identify whether

locating a wrist mounted activity monitor is suitable for condition classification and activity

recognition? 2) Can we automatically identify if a patient is moving normally? and 3) Can we

automatically identify different types of physical activity in healthy participants under normal

and simulated-pathological conditions? These questions provided an answer for two classifica-

tion cases; whether the wrist-worn device was able to differentiate the two different conditions,

and whether successful activity classification was performed individually in each case.

Earlier studies have tested either both locations or at least one of the two. In general, studies

in the literature have used multiple accelerometers attached at several different body locations.
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Although this might be beneficial for the researcher, attaching accelerometers in real-time on

multiple locations on the user is inefficient and can be inconvenient for him or her. Most studies

that attached accelerometers on both wrist and ankle, demonstrated that devices attached to

the ankle achieved better outcomes of accuracy than those worn on the wrist (Bao and Intille

2004; Mannini et al. 2013; Gjoreski et al. 2016). One study showed that wrist mounting achieved

better results than the ankle (Sasaki et al. 2016) although this might be because the activities

tested were more upper limb focussed.

Our data demonstrated slightly better results for the wrist location for the binary condition

classification when compared to the ankle location. However, our data demonstrated slightly

better results for the ankle location for the multi-class classification than the results from

the wrist. The differences were not large (max difference: 1.8%) and both were considered

acceptable and, based on patient preferences elicited during our stakeholder engagement work,

the wrist location was selected for the remaining analysis in this thesis.

Previous researchers have developed classifiers to differentiate healthy population from patient

population with pathological gaits. ML algorithms such as NN, SVM and kNN were used

for the differentiation. For example, Mannini and colleagues differentiated the gaits of people

with Huntington’s disease, post-stroke condition and healthy elderly (Mannini et al. 2016). As

expected the results suggested that each gait can be classified with high accuracy since they

produce different acceleration signals.

The results presented in this chapter are consistent with previously published studies, in that

the algorithms successfully differentiated between the normal and pathological gaits. There are

however, a number of differences from previous studies. One difference was the use of more than

one type of sensors, for example some studies used both accelerometer and gyroscope sensors

on the participants while performing the activities. In this chapter, only accelerometer sensors

were used because the MOX device used contained only accelerometer sensor. Another difference

between the work described in this chapter and other studies was that the pathological gait was

simulated by healthy participants. This was not the case for many of the literature studies (Del

Rosario et al. 2014; Capela et al. 2015a; Lonini et al. 2016), however there were a few recent

studies that also recruited healthy volunteers to simulate pathological gaits (Cola et al. 2015;

Esfahani and Nussbaum 2019). The approach of collecting simulated pathological gait provides

the opportunity to prepare and make any improvements in the experimental protocol ahead of
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collecting data from actual patients. While real-world patient data is the gold standard it si not

always possible to obtain, for example during a pandemic. Furthermore patients who are usually

by definition, frailer and in more pain, carry an extra ethical imperative to ensure that any data

collected from patients is useful and there may be circumstances in which synthetic data carries

less ethical burden. It is also faster to collect data and modify collection processes in this

way as it removes the need to deal with the complexity of clinical settings and patient-related

governance.

In terms of differentiating the conditions, other measures such as ground reaction force, pressure

and planar motion, as well as motion analysis were used (Alaqtash et al. 2011; Pogorelc et al.

2012; Zeng et al. 2016; Esfahani and Nussbaum 2019). These measures are all lab-based and

they are not representative of real-life data.

For the purpose of this thesis, a machine learning, SVM algorithm was used to perform the

binary classification between normal and simulated-pathological conditions. The classifier was

able to differentiate the gait patterns between the two conditions successfully. Detection of all

activities displayed high levels of accuracy, achieving greater than 96.8%. The results of the other

performance metrics, F1-score, precision and recall, showed some minor differences between

the activities. Recall had slightly lower values than precision values (1.2% max difference),

meaning that there were more false-negatives than false-positives. False-negative means that

an activity, for instance slow walk, was predicted as a different activity like normal walk. This

was observed in all the individual activities and dynamic set of the wrist location. The SVM

algorithm is a popular algorithm used in literature to differentiate multi-class problems because

of its properties that enables to differentiate data in more than one plane. The reason for that is

because of its kernel property that turns the model into non-linear and enables the classification

of non-linear problems. In comparison to results from literature, our algorithm showed excellent

performance. The literature results ranged from 80.96% (Chowdhury et al. 2018) to 96% (Sasaki

et al. 2016).

In general, the results suggested that the acceleration signal had differences when the physical

activities were performed under the two conditions. The reason for that was because the move-

ment was different when someone was performing an activity under normal and pathological

conditions. For instance, people with Rheumatoid Arthritis (RA) have limited joint motion,

therefore their arm swings in lower range in comparison to healthy people (Weiss et al. 2008).
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Additionally, people with RA might have reduced movement in the lower limbs due to pain

(Weiss et al. 2008). Regarding the work occurring at specific joints, it was suggested that the

most noticeable difference between healthy people and RA patients is the reduced work at the

ankle (Weiss et al. 2008). This might be due to the reduced internal plantar-flexor moments.

This can be associated with reduced walking speed in the plantar-flexor muscle group. Since the

arms swing out of phase with the legs (Whittle 2007), when the leg movement becomes slower

the arms swing becomes slower as well with a reduced range of motion. Additionally, lower

intensity activities are not measured easily hence they are not detected. This might be because

of their arrhythmic and intermittent nature (Calabró et al. 2014). RA patients move slower

because of the pain and stiffness associated with the condition resulting in lower accelerations.

Earlier studies have assessed the physical activity classification of healthy population. However,

few studies have assessed explicitly whether algorithms trained on data from healthy populations

were suitable for pathological populations. Those that have made this comparison conclude,

like us, that large differences between groups means that algorithms will perform better when

trained for specific target groups (Del Rosario et al. 2014; Capela et al. 2015a; Lonini et al.

2016).

Several studies performed activity classification in healthy populations using ML classifiers and

a small number have used a similar pattern of activity task classification as was performed in

this chapter. Activity type describes the activities that were classified in general groups, and

activity task describes the activities that were classified specifically. Machine learning classifiers,

such as SVM (Mannini and Sabatini 2010; Zhang et al. 2012; Mannini et al. 2013; Cleland

et al. 2013; Sasaki et al. 2016; Saez et al. 2016; Gjoreski et al. 2016), RF (Sasaki et al. 2016;

John et al. 2013; Sasaki et al. 2016; Saez et al. 2016; Gjoreski et al. 2016; Lee and Kwan 2018;

Twomey et al. 2018), kNN (Bao and Intille 2004; Mannini and Sabatini 2010; Saez et al.

2016; Gjoreski et al. 2016), NN (Mannini and Sabatini 2010; Zhang et al. 2012; Cleland et al.

2013; Twomey et al. 2018) and GB (Bao and Intille 2004; Mannini and Sabatini 2010; Atallah

et al. 2011; Zhang et al. 2012; Cleland et al. 2013; Saez et al. 2016; Gjoreski et al. 2016) have

been used for physical activity classification. All of these studies tested the algorithms on a

healthy population only, and hence high levels of accuracy were achieved (>90%). On the other

hand, some other studies have developed algorithms using healthy data and tested whether

they could be applied accurately to pathological populations. Most studies using this approach
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showed that algorithms trained with data from the healthy population cannot be applied to

pathological populations (Del Rosario et al. 2014; Capela et al. 2015a; Lonini et al. 2016).

These studies identified a need for population-specific models, or even patient-specific models

to classify physical activities in pathological populations. ML approach has the potential to

develop models specific to the data that is given to train the algorithm. Therefore, in general,

there is a need to collect large amounts of data from a specific population and develop the

appropriate models.

One aspect of the pilot study was to act as a baseline for developing activity classifiers for the

healthy population. These classifiers will be further updated to suit the pathological population

with walking impairments. Before refining them for the pathological population, classifiers need

to be validated. Overall this chapter’s findings for the healthy population were in accordance

with findings reported by (Montoye et al. 2016; Abdull Sukor et al. 2018). The main difference

between the conclusions of this chapter and the studies in the state of the art section, is the

application to classification of the simulated-pathological gait. The methods used were similar

to those described in the state of the art.

Within this chapter, several algorithms have been developed for each group. There were four

scenarios for how those algorithms were used, as demonstrated in Table 3.3. For scenario 2

and 3, 10-fold CV was used, hence the mean of the 10-folds was presented for the performance

evaluation measures. This was because the training and test sets were taken from the same

dataset, while for scenario 4, the training and test sets were completely different as the former

was the normal dataset and the latter was the simulated dataset. It is important to mention

that the training set always showed higher accuracy than the test set because the model better

fitted to the data that it has trained with rather than to unseen data. Additionally, activity

type classification had better performance than activity task classification because the classes

of activity types were more distinct than the classes of activity tasks.

In all cases the normal group achieved higher levels of accuracy than the simulated-pathological

group. The difference in mean accuracy is likely due to the fact that volunteers were asked to

make significant changes to their motions under simulated-pathological conditions. Although

we attempted to train participants to replicate compromised motion, we could not be certain

that their movements accurately reflected real pathological motion. Indeed, participants may

have interpreted the instructions on how to mimic the pathological activities slightly differently.
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This means that the accuracies reported can only be considered a reasonable initial estimate

of the performance of ML algorithms on real patients. Even though this is the case, the signal

might not completely represent the nuances of specific pathological gait patterns. In the real

world each patient might have slightly different movement even within a disease group and there

may be systematic differences between disease types. The data used in this chapter did however

share the fundamental characteristics of low velocities and low accelerations. Clinicians did not

record or review the signals because of the exploratory nature of the study.

Additionally, the algorithms predicting the broader activity types achieved better performance

metrics compared to the algorithms predicting specific activity tasks. This might be because the

behaviour of the accelerometer data did not differ excessively between a few individual activity

tasks. For example, the acceleration signals for normal and fast walk shared similarities which

makes it more difficult to classify activity tasks accurately. This was demonstrated in the

confusion matrices, where there were more false-negatives and false-positives when classifying

activity tasks than activity types. One of the reasons for that is because of the small amount of

data collected. When larger amount of data is collected from more participants, the signals from

each activity will be more distinct. This is because more data will enable better differentiation

among similar activities.

Another potential limitation in this study is the potential for human error in labelling the

activities. Even though there was a gold standard video, the activity labelling was completed

manually and is potentially subject to human error. To minimise this risk, thorough steps were

taken such as using slow-motion analysis, replaying analysis and triple counting each walk.

This study has several strengths. First, 30 healthy volunteers have been recruited to collect

data, where these volunteers performed the activities under two conditions. This could equate

to the collection of data from 60 volunteers overall. In comparison to datasets available online,

the number of participants recruited for this study were much greater. For example, only

WISDM and UCI datasets recruited 36 and 30 participants respectively. The other datasets,

such as PAMAP2, MHEALTH, FoS, Opportunity and JSI recruited participants between four

and ten participants. Second, this study has examined two potential locations for the activity

monitors. The locations were used to answer two important questions; 1) whether the algorithm

at the specific location can differentiate if the volunteer is performing the activities under

normal condition or simulated-pathological condition. This is important because in the proposed
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system for this thesis, the activity monitor will accomodate algorithms for both healthy and

pathological populations. Therefore it is quite important to differentiate successfully the two

conditions. And 2) whether the algorithm at the specific location can differentiate successfully

the activities performed by the participants in each condition. Again, this is very important

since the clinicians would like to get a correct perspective about the physical activity levels

of their patients. The results suggested that the wrist location can be used to answer both

questions with accuracy greater than 84.5%. The wrist location was the preferred choice for

a group of people with RA, as shown in appendix A. Therefore, this study demonstrated that

wrist location can be used for pathological populations since it is their preferred choice and it

provides excellent results.

3.5 Summary

In this study, five machine learning algorithms were used to classify nine ADLs. Activities

were performed by healthy volunteers in both normal and simulated-pathological conditions.

The volunteers had activity monitors attached on their wrist and on their ankle. Two sets of

classification were performed, condition and activity. The former was about the differentiation

between the normal and the simulated-pathological conditions. The latter was about the clas-

sification of the different activities performed. The activities were classified into two groups,

general activity type and specific activity task. This chapter answered the first three research

questions posed in section 2.5.1. In terms of the first question, the results suggested that the

wrist and ankle locations provided similar outcomes, therefore only wrist was used for further

analysis. This is justified because not only did the wrist provide adequately good results, but

it was also the only acceptable choice for the patients (see appendix A). Regarding the second

question, an SVM classifier was used to identify whether the volunteer was performing the ac-

tivities under normal or simulated-pathological conditions. Successfully, the algorithm was able

to do that with excellent performance. The third question was related to the activity classifica-

tion. The majority of the algorithms performed well when the training and test sets both came

from the same population. Conversely, when the algorithms were trained with normal data and

tested with simulated-pathological data, as would usually occur in the real-world with current

consumer devices, the accuracy demonstrated was poor. When the ML algorithm was trained

with a simulated-pathological dataset and subsequently tested using a simulated-pathological
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dataset the accuracy improved to levels more comparable to the normal against normal con-

ditions. It may therefore be possible to develop more accurate and clinically useful activity

classification algorithms based on the accelerometer gait signals of individual people or specific

sub-populations such as disease groups. Therefore, these algorithms could be further used by

clinicians to evaluate the daily activity performance of chronic condition patients with walking

impairments.
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Chapter 4

Step count testing using algorithms

from the literature

4.1 Introduction

In the previous chapter, activity-type and activity-task classifications were performed for the

normal and simulated-pathological groups. SVM and kNN classifiers achieved the top per-

formance for activity-type and activity-task classifications respectively. The SVM algorithm

yielded accuracy scores of 98.4% and 96.7% for the normal and simulated-pathological groups

respectively. The kNN algorithm achieved 94.3% and 84.5% accuracy scores for the normal and

simulated-pathological groups respectively.

Step count is important since it is one of the useful available measures that indicates, overall,

how physically active a person is (Sylvia et al. 2014). After reviewing several studies from

the literature, four step count algorithms were implemented and compared in this chapter.

These four algorithms were chosen because each algorithm used a different approach for step

recognition, and also because they were the most descriptive to implement according to the

information provided in the original paper. These algorithms were categorised into four groups

based on the main methods that they used for step recognition. The categories were: (1)

peak detection, (2) thresholding (frequency-domain), (3) thresholding (time-domain) and (4)

template matching. One algorithm from each category was implemented and tested with the

data previously collected in the pilot study. It is important to note that some algorithms tested

use a combination of these methods.
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Figure 4.3 below demonstrates in detail the structure of the two analyses performed in this

chapter. The two analyses followed the same process to obtain the results, however they used

different parts of the acceleration signal. Analysis A used all acceleration signals that had

been manually labelled (true) by the researcher according to the video. This means that this

analysis was done without any activity classification. Analysis B used the acceleration signal

that had been automatically labelled (predicted) using the ML algorithms. For the activity-

type classification an SVM algorithm was used, where the signal was classified as either static,

transition, or dynamic activities. For the activity-task classification a kNN algorithm was

used, where the individual tasks were identified (e.g. slow walk, normal walk). The reason for

performing both analyses was to identify sources of potential errors. For example, if a greater

error was calculated when using predicted activity labels, it would likely mean that the activity

recognition step was partly responsible for that. On the other hand, if a greater error was

calculated using true activity labels, it would likely mean that the step count algorithm had

counted false positives and false negatives that matched with the original results. Lastly, if

the results were similar for both true and predicted activity labels, it would mean that due to

high accuracy of activity classification, the reconstructed signal was very similar to the original

signal.

As shown in Figure 4.3, three different cases were tested. For case 1, all nine activities were

included. For cases 2 and 3, the acceleration signals that did not corresponded to walking

activities were filtered out using an activity type, and activity task approach described above.

This process aimed to reduce the number of false positive steps. For the case 2, as walking

is a dynamic activity, any signal corresponding to static or transition activities was excluded.

Finally, for case 3, the individual dynamic tasks were identified (e.g. slow walk, normal walk),

and any signals that corresponded to a list of pre-defined dynamic tasks were included. Activity-

types and activity-tasks can be seen in (Figure 3.7). Figures 4.1 and 4.2 demonstrate the input

acceleration signal of step count analysis A and step count analysis B.
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Figure 4.1: Normal walking acceleration signal used as input in the four step count algorithms
under normal condition. The signal is based on true activity labels.

Figure 4.2: Normal walking acceleration signal used as input in the four step count algorithms
under normal condition. The signal is based on predicted activity labels using machine learning
algorithm.

The reason why these three approaches were tested was to see how the activity recognition

step affects the results. As already shown in the results of the previous chapter, activity-type

recognition produced better classification results than activity-task recognition. Therefore, this

chapter also aimed to check how general and specific activity recognition might influence the

results of the step count. Additionally, with the use of activity classification prior step count,
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the need of having thresholds to identify each individual dynamic activity was avoided.

Figure 4.3: Diagram showing step count analysis using algorithms from literature

4.2 Methodology

As described in the literature review section 2.3.3, a peak in the acceleration signal is created

when the foot touches the ground (Bui et al. 2018; Moe-Nilssen and Helbostad 2004; Pham

et al. 2017; Sejdic et al. 2016), and walking is a repetitive process (Ao et al. 2018).

Four algorithms, corresponding to the four main categories of step-count algorithm, were se-

lected from the literature. Each algorithm was re-implemented as faithfully as possible. For each

of the participants in the pilot dataset the number of steps was estimated, and then compared

to the actual number (according to video).

4.2.1 Algorithm 1: Peak detection

Peak detection is one of the most common algorithms (see Figure 4.4) that is used to identify

peaks in a signal. In this instance, the peaks identified can be interpreted as the number of

steps taken by the participant.
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Figure 4.4: Input and output of peak detection algorithm

In the Palshikar study a peak detection algorithm was designed based on a peak function (S )

that calculates the overall average difference in amplitude from a selected point (xi) and its k

preceding succedding neighbours (Palshikar 2009). This concept is demonstrated in Figure 4.5

for k=3.

Figure 4.5: Right and left neighbours of a selected peak (xi)

The peak function (S) is based on the moving average concept.

S(k, i, x, T ) =
xi−xi−1+xi−xi−2+···+xi−xi−k

k +
xi−xi+1+xi−xi+2+···+xi−xi+k

k

2
(4.1)

where T is a univariate uniformly sampled time series; xi is a given ith acceleration point in T ;

k is the number of neighbours.

The peak function (S) can be used to find local peaks in T since it produces positive values for

local peaks.

P = {S(xi) > 0} (4.2)

P contains all the local peaks identified using the S function. The next step was to find the

significant peaks of the signal. This was done by removing local peaks which were “small” in

global context.

P ′ = {(S(xi) > 0) & (S(xi) > (m+ h× std))} (4.3)

where h defines the significance of a peak detection (1 < h ≤ 3); m is the mean of all positive

values; std is the standard deviation of all positive values.

P ′ contains all the significant peaks. The final step was to retain only one peak within distance
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k inside P ′.

if |j − i| ≤ k, remove the smaller value of{xi, xj} (4.4)

4.2.2 Algorithm 2: Time-domain and thresholding

Thresholding algorithms use a threshold to identify the number of steps. The following algo-

rithm developed by Thanh and colleagues used one threshold (Thanh et al. 2017). The first step

of the algorithm was to identify peaks using a peak detection algorithm with minimum (index)

distance of 11 discrete points between the peaks. The original authors used MATLAB function

“findpeaks”, however for this study “scipy.signal.find peaks” python function was used. These

two functions shared the same goal, and they used similar parameters to achieve this. The only

possible difference might be the underlying algorithm used by the two functions, however they

both use the same conceptual approach of comparing neighbouring values to locate local max-

ima. The threshold was set as 0.1g, which is equal to 0.981 m/s2 resting gravity acceleration.

This threshold was used to ensure that the participant is moving and not resting in a static

state. Another value was set, which was identified experimentally. The value was 0.01g and

it was calculated based on the experimental testing performed by (Thanh et al. 2017). This

value was used to avoid the effects of vibration in gravity acceleration in steady state. Figure

4.6 demonstrates the signal with the peaks identified and the threshold used for the algorithm.

Additionally, Figure 4.7 demonstrates a flowchart describing the algorithm.

Figure 4.6: Acceleration normal walk signal using Thresholding (T-domain) algorithm
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Figure 4.7: Flowchart of thresholding (time-domain) algorithm

4.2.3 Algorithm 3: Frequency-domain and thresholding

This algorithm used the frequency-domain instead of the time-domain. Generally, the Fourier

transform can be used to decompose a signal into its constituent sinusoidal functions, as it is

assumed that all signals are the sum of simple sinusoids (cosine and sine). In digital signal

processing, signals are discrete-time signals for which both time and amplitude have discrete

values. Acceleration signals are discrete, and thus fast Fourier Transform (FFT) algorithm was

applied, which computed the discrete Fourier Transform (DFT) of a signal.

Additionally, the frequency of the acceleration signal changed over time, because the signal

represented nine different activities. Each activity constituted from different frequencies. By

applying the FFT over the entire data, the results do not reveal true transitions in the frequency

domain. To overcome this problem, the acceleration data was split into several segments, called

windows. The idea behind this method is that short windows can be considered stationary, and
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thus reveal the spectral content of a single activity.

Sliding window technique was used to segment the data in the frequency domain. However,

this method might produce some issues, for example spectral leakage. To reduce the spectral

leakage, a Hamming window was used rather than a square window. The Hamming window

has a sinusoidal shape and it is often used to cancel the nearest side lobe.

The step count algorithm was performed in the frequency-domain, using multiple thresholds

which were defined from the authors (Dirican and Aksoy 2017). To use the FFT effectively,

the signal is required to be periodic and in this case, the dynamic activities performed by the

participants were indeed appropriately periodic. This produced the frequency content of the

activities in each window. Each window should include enough data to show the periodicity of

the acceleration signal. By including this conversion, the number of steps can be determined,

since windows with no periodicity have no distinct peak. Figure 4.8 demonstrates the FFT

transforms (real and imaginary parts) along with the thresholds used. As demonstrated in the

flowchart (Figure 4.9), the thresholds of the imaginary parts were updated if the statement set

was true. Since the FFT signal was separated into windows, each participant yielded multiple

windows. Each window was used to calculate the number of steps performed by the participant

in two seconds, which was done by counting the peaks in the area of interest (window).

Figure 4.8: FFT transforms of the acceleration normal walk signal using Thresholding (F-
domain) algorithm
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Figure 4.9: Flowchart of thresholding (frequency-domain) algorithm

4.2.4 Algorithm 4: Template-matching

This algorithm used a very different approach, ignoring any peaks, in comparison to the other

algorithms implemented above. The concept behind this algorithm is based on the template-

matching approach using correlation and dynamic time warping barycenter averaging (DBA)

technique.

For algorithm 4, a template was developed for each participant based on his/her walking ac-

celeration signal. Each template represented a step during walking activity. The aim was to

123



4.2. Methodology Chapter 4. Step count testing using algorithms from the literature

develop a measure that detects the template that best matches the reference acceleration signal.

(Micó-Amigo et al. 2016) followed several steps as shown in Figure 4.10.

Figure 4.10: Flowchart of template-matching algorithm

4.2.4.1 Dynamic time warping (DTW)

DTW is an algorithm that is used to measure similarity between two sequences (signals) by

identifying their optimal alignment. This can be done by identifying flexible similarities in time

dimension (x-axis) by aligning the elements inside both sequences. This means that a non-linear

alignment is produced, which allows similar shapes to match even though the sequences might

be out of phase. Throughout this section let Q =< q1, . . . , qT > and P =< p1, . . . , pT >, and

let δ and D be a distance between elements of the sequences (Petitjean et al. 2011).

An n-by-m grid is formed by arranging the two sequences as shown in Figure 4.11. Each point

on the grid is associated to an alignment between elements of the two sequences. The elements

are aligned by a warping path in order to minimise the distance between them as demonstrated

in Figure 4.12 (Bemdt and Clifford 1994). Several warping paths are defined, but once the

best one is identified, a similarity score, which describes the fit between the two sequences,

is calculated. The similarity score quantifies the fit degree by compressing or stretching the
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sequences with respect to time.

The cost of the optimal alignment is computed recursively by:

D(Qi, Pj) = δ(qi, pj) + min


D(Qi−1, Pj−1)

D(Qi, Pj−1)

D(Qi−1, Pj)

(4.5)

The overall similarity score is calculated by:

D(Q|Q|, P|P |) = D(QT , PT ) (4.6)

Figure 4.11: Warping path

Figure 4.12: Dynamic time warping

4.2.4.2 DTW-barycentre averaging (DBA)

The DBA technique is a global averaging method developed by (Petitjean et al. 2011). It is an

iterative algorithm where DTW is used to align the sequences to be averaged with an evolving

average. Throughout this section let S = S1, . . . , SN be the set of N sequences from which

we would like to compute an average sequence A, where A =< a1, . . . , aT >. Additionally, let

A′ =< a′1, . . . , a
′
T > be the update of A since the average is updated.

The initial average sequence A is chosen randomly from the S dataset, which contains N se-

quences. After that, the DBA method becomes deterministic. In order to calculate the final
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average sequence, the same process is repeated. For this process the DTW similarity is calcu-

lated between the temporary average sequence and each individual sequence Si, and the path

is saved. Using the saved paths, a new average A’ is constructed. Each element of the A’

sequence is updated as the barycentre of the elements associated to it during the previous step.

A′t = barycentre(assoc(At)) where barycentre{X1, . . . , Xα} =
X1 + · · ·+Xα

α
(4.7)

Where α is the total number of sequences used.

The assoc function can link each element of the average sequence to one or more elements of

the sequences of S. The benefits of DBA method are the preservation of:

1. the shape of the sequences

2. the magnitude of the peaks/troughs on the y-axis

3. the timing of those peaks/troughs on the x-axis

Figure 4.13 demonstrates several sequences and their average, which was calculated using DBA

method.

Figure 4.13: Averaging dynamic time warping

The first stage of this algorithm was to select the walking activities from the entire signal. Since

activity classification has been performed, the activities of interest, and therefore sections of
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accelerometer signal, were already selected. Again, the dynamic activities were selected, which

included level-walking at slow, normal and fast speeds, as well as stair ascent and descent. This

signal was defined as the segmented signal.

For the second stage, an autocorrelation function was used to calculate the template length.

(Moe-Nilssen and Helbostad 2004) suggested that a cyclic signal produces autocorrelation co-

efficients with peak values that are equal to the signal’s periodicity.

Figure 4.14: Unbiased autocorrelation plot of normal walk

Figure 4.14 demonstrates the autocorrelation coefficient sequence from the acceleration signal

during walking. There are two dominant peaks, D1 and D2, which are equivalent to one step

and one stride respectively. Additionally, n represents the samples per step, and in our case

the length of the template. This is because the template represents one step. The signal was

firstly normalised and since it is an autocorrelation function, the same signal is used for both

normalisations. The reason for using two normalisations was to compress the signal in the

y-axis, and the autocorrelation signal to be between -1 and 1.

normalisation1 =
signal −mean(signal)

std(signal)× length(signal)
(4.8)

normalisation2 =
signal −mean(signal)

std(signal)
(4.9)

Then, the function “numpy.correlate” from the numpy library in python was used to calculate

the autocorrelation coefficients. The autocorrelation coefficient sequence was produced similarly

to Figure 4.14 above. Using the function “scipy.signal.find peaks” from the scipy library in

python, the first peak (D1) was identified. Based on that finding, n was found as well, which
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corresponded to the template length.

The third step in the process was to develop the template signal. The original authors separated

this step into further sub-steps. The first of these sub-steps was to identify a low limit and a

high limit based on the segmented signal and the template length.

low limit = 115% template length samples (from the start of the segmented signal) (4.10)

high limit = 115% template length samples (before the end of the segmented signal) (4.11)

The “scipy.signal.find peaks” function was then used to find peaks in the segmented signal

between the low and high limits. The peaks needed to be at least 40% template length samples

apart from each other. The next step was to define a start and an end section around the

identified peaks.

start section = 5% template length samples (before the peak) (4.12)

end section = 100% template length samples (after the peak) (4.13)

These new sections were then used to develop a new average signal using dynamic time warping.

In particular, “dtw barycenter averaging” function was used to average all the signals (Petitjean

et al. 2011). This function is explained in detail in section 4.2.4.2. The basic idea is that the

average of several signals was calculated using dynamic time warping.

The fourth step performed was associated with developing the resegmented signal. The reseg-

mented signal was an extension of the segmented signal using the raw acceleration signal and

the template length. The segmented signal was extended by template length samples and twice

template length samples to the left and right respectively. This was done to ensure that no

information was lost.

The final step was to match the template signal with the resegmented signal in order to detect

the steps performed by the participants. To do this, the resegmented signal was separated

into different windows of similar length to the template length. For example, <resegmented
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signalw1,. . . , resegmented signalwn >. Then, a signal representing the standard deviation of the

difference between each resegmented window and the template signal was calculated and called

SD difference signal.

SD difference signal = std(template signal − resegmentedwi) (4.14)

Additionally, a signal with the correlation coefficients between each resegmented window and

the template signal was also calculated.

tmp cor coef signal = corcoef(template signal, resegmentedwi) (4.15)

This signal was multiplied with the ratio of ranges of the template signal and the resegmented

signal to calculate correlation signal. The coefficient signal was calculated as the ratio between

the normalised correlation signal and the normalised SD difference signal. The last step, count-

ing the number of steps, was to find the peaks at the coefficient signal that are at least 60%

template length samples apart from each other.

4.2.5 Data analysis

Root mean square error (RMSE) was calculated to measure the difference between the predicted

and the true number of steps (recorded from video). RMSE is the standard deviation of the

prediction errors, otherwise known as the residual. The residual measures how far the data

points are from the regression line. A RMSE closer to zero indicates less error. This measure

it is used because it can point out large errors, which in our case is important to identify such

errors and avoid them. However, this means that it might be more sensitive to the presence of

false data. Additionally, another downside of this method is that it cannot be used to identify

either missed steps or over-counted steps. Therefore, in chapter 5 another measures are used to

identify whether the algorithm missed or over-counted any steps.

4.3 Results

The following results firstly indicate whether algorithms already published in the literature work

effectively. Secondly, it allows us to explore how the algorithms work, so that the most useful
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aspects might be identified to help develop new, better performing, algorithms.

Additionally, we aimed to explore how the results of the step count algorithms were affected

when activity classification algorithms were applied as a preprocessing step. In other words,

the true activity labels were used to check the results of the step count algorithms without

applying any ML activity classification algorithms. As the next step, the predicted activity

labels were used to check the results of the step count algorithms after applying the ML activity

classification algorithm.

In terms of the activities used, three cases were examined. The first case used the acceleration

signal that includes all nine collected activities, the second case used the acceleration signal

that includes all the dynamic activities, and the third case used the acceleration signal of each

dynamic activity individually.

4.3.1 Normal group

4.3.1.1 True activity labels

Table 4.1: Results of step count algorithms for dynamic and individual activities under normal
condition using true activity labels.

Activities Algorithms

Peak detection Thresholding
(F-domain)

Thresholding
(T-domain)

Template-
matching

Case 1: All
9.92 45.51 30.98 226.36
(9.45,10.36) (44.59,46.41) (30.23,31.70) (222.21,230.44)

Case 2:
Dynamic

30.31 8.58 33.93 20.02
(29.91,30.72) (8.15,8.99) (33.44,34.41) (18.08,21.78)

Case 3: Slow
walk

2.81 6.61 9.10 8.99
(2.7,2.92) (6.34,6.86) (8.76,9.43) (8.34,9.59)

Case 3:
Normal walk

4.03 4.09 6.75 1.35
(3.91,4.16) (3.93,4.23) (6.67,6.84) (1.28,1.42)

Case 3: Fast
walk

5.07 5.85 5.82 1.74
(4.98,5.16) (5.74,5.96) (5.76,5.88) (1.63,1.84)

Case 3: Stair
ascent

4.55 5.37 6.37 1.90
(4.41,4.69) (5.21,5.52) (6.31,6.42) (1.76,2.03)

Case 3: Stair
descent

5.16 6.36 6.81 1.11
(4.98,5.32) (6.23,6.48) (6.73,6.89) (1.08,1.15)

Table 4.1 shows that the template-matching algorithm achieved superior results in comparison

to the other three algorithms for normal walk, fast walk, upstairs and downstairs activities. It

is worth mentioning that the template-matching algorithm had such a large error in case 1,
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since the template created was not representative. This is because in case 1 the signal used

includes all nine activities, each activity might has slightly different template. This means that

the template created will not be representative for the nine activities, therefore this leads to

the large error. Thresholding (frequency-domain) results were substantially better than the

other algorithms for dynamic activities. Peak detection results were better than the other three

algorithms for slow walk activity. The thresholding (time-domain) approach yielded the greatest

error in almost all activities, except fast walk.

4.3.1.2 Predicted activity labels

Table 4.2: Results of step count algorithms for dynamic and individual activities under normal
condition using predicted activity labels.

Activities Algorithms

Peak detection Thresholding
(F-domain)

Thresholding
(T-domain)

Template-
matching

Case 1: All
10.22 42.53 31.60 227.41
(9.69,10.72) (41.60,43.44) (30.87,32.32) (221.43,233.24)

Case 2:
Dynamic

31.99 8.61 35.06 20.25
(31.53,32.45) (8.18,9.02) (34.54,35.57) (17.67,22.54)

Case 3: Slow
walk

2.68 10.65 8.22 19.81
(2.58,2.79) (10.15,11.12) (7.89,8.54) (18.19,21.31)

Case 3:
Normal walk

4.23 3.95 6.05 2.67
(4.06,4.39) (3.73,4.15) (5.80,5.93) (2.33,2.56)

Case 3: Fast
walk

5.50 5.71 5.87 2.45
(5.40,5.59) (5.59,5.84) (5.76,5.88) (1.63,1.84)

Case 3: Stair
ascent

6.17 6.84 7.47 3.63
(6.01,6.32) (6.64,7.03) (7.36,7.58) (3.50,3.75)

Case 3: Stair
descent

6.42 7.98 7.89 3.19
(6.25,6.58) (7.83,8.13) (7.80,7.97) (3.00,3.36)

The step count algorithms after activity classification followed a similar pattern of results to

those obtained using true activity labels as shown in Table 4.2. However, the majority of the

algorithms performed worse in comparison to the true activity label results.
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4.3.2 Simulated-pathological group

4.3.2.1 True activity labels

Table 4.3: Results of step count algorithms for dynamic and individual activities under
simulated-pathological condition using true activity labels.

Activities Algorithms

Peak detection Thresholding
(F-domain)

Thresholding
(T-domain)

Template-
matching

Case 1: All
50.13 202.37 102.39 486.62
(46.54,53.48) (197.85,206.80) (99.54,105.17) (460.04,511.83)

Case 2:
Dynamic

42.93 135.91 90.72 296.83
(41.13,44.65) (131.84,139.85) (87.39,93.94) (276.75,315.65)

Case 3: Slow
walk

20.80 27.68 32.87 84.07
(18.41,22.94) (26.55,28.78) (31.7,34.01) (76.36,91.14)

Case 3:
Normal walk

15.94 23.13 25.94 50.87
(13.76,17.87) (21.98,24.22) (24.95,26.89) (47.03,54.45)

Case 3: Fast
walk

12.64 15.81 15.81 43.02
(11.79,13.44) (14.74,16.8) (14.74,16.8) (38.56,47.06)

Case 3: Stair
ascent

10.01 38.06 8.75 42.12
(9.43,10.55) (37.03,39.07) (8.44,9.06) (39.18,44.88)

Case 3: Stair
descent

9.07 34.63 10.46 59.22
(8.27,9.80) (33.62,35.61) (9.99,10.91) (56.15,62.13)

For the simulated-pathological group, the RMSE results differed from the results obtained in

the normal group. Table 4.3 shows that the peak detection algorithm achieved better results

compared to the other algorithms for all the activities except upstairs walking. The upstairs

walking activity achieved the best outcome when using the thresholding (time-domain) algo-

rithm. The template-matching algorithm showed the poorest performance in all activities, which

is in contrast with the results from the normal group. This might result due to the shape of the

acceleration signal. The signal collected for the simulated-pathological group was less periodic

and with greater noise in comparison to the signal of the normal group. These parameters might

have prevented the creation of a representative template that would enable the identification of

a correct step for all the volunteers thus achieving very poor results.
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4.3.2.2 Predicted activity labels

Table 4.4: Results of step count algorithms for dynamic and individual activities under
simulated-pathological condition using predicted activity labels.

Activities Algorithms

Peak detection Thresholding
(F-domain)

Thresholding
(T-domain)

Template-
matching

Case 1: All
50.31 198.96 102.09 500.13
(46.65,53.73) (197.45,203.36) (99.24,104.86) (473.90,525.06)

Case 2:
Dynamic

42.19 142.46 91.23 322.89
(40.45,43.86) (138.46,146.35) (87.93,94.41) (298.15,345.86)

Case 3: Slow
walk

23.72 46.84 32.33 97.64
(21.75,25.55) (45.06,48.55) (31.17,33.44) (92.64,102.39)

Case 3:
Normal walk

14.15 26.28 25.77 59.77
(12.61,15.54) (24.76,27.71) (24.8,26.71) (56.43,62.93)

Case 3: Fast
walk

9.57 16.82 22.36 24.79
(9.17,9.95) (15.84,17.74) (21.52,23.17) (22.89,26.56)

Case 3: Stair
ascent

7.60 33.77 8.20 43.87
(7.13,8.03) (32.92,34.6) (7.94,8.45) (40.87,46.67)

Case 3: Stair
descent

6.24 31.27 10.41 47.57
(5.67,6.77) (30.39,32.12) (10.0,10.8) (45.57,49.48)

In this instance, the peak detection algorithm outperformed all the other algorithms for all the

activities. Similarly to the normal group, the majority of the algorithms performed worse in

comparison to the true activity label results.

4.4 Discussion

This chapter presents the step count analysis of data collected from wrist-worn accelerometers in

volunteers performing activities under normal and simulated-pathological conditions using four

existing literature algorithms. The results presented here answer the fourth research question

posed in section 2.5.1; Can we accurately measure step count in healthy participants under

normal and simulated-pathological gaits?

Earlier studies have attempted step count using several algorithms including those used here.

One of the main problems identified in the literature has been that wearables provide less

accurate results at slower walking speeds. This has consistently been reported for different

wearable locations as well as different devices. Commercial and research-based devices attached

on the wrist, hip, waist and ankle, improve in accuracy at faster speeds (Cho et al. 2016; Chow

et al. 2017; Feng et al. 2017; Klassen et al. 2016; Motl et al. 2011; Stansfield et al. 2015). The

133



4.4. Discussion Chapter 4. Step count testing using algorithms from the literature

results of this thesis showed similar results to the literature. However, there are few studies that

examine how comparator step count algorithms work with different walking speeds and stairs.

This thesis showed that for each activity creating person-specific and activity-specific algorithms

achieves better results especially in simulated pathological situations. Additionally, the same

behaviour has been observed for IMUs attached on the wrist and ankle, and smartphones placed

inside trouser pocket, jacket pocket, bags or held in the user’s hand(s) (Mikov et al. 2013; Pham

et al. 2018; Rhudy and Mahoney 2018). A similar pattern of results was obtained here. The

results of most of the step count algorithms in both groups, normal and simulated-pathological,

showed worse performance when volunteers walked at a slower speed. This was observed in

all algorithms for the simulated-pathological group, and all of the algorithms for slow walking

except peak detection in the normal group.

Earlier studies have also shown that the step count accuracy differed in different clinical groups.

For example, studies comparing the same step count algorithms in a healthy population and

in patient population (neurological, orthopaedic, multiple sclerosis, impaired mobility), have

demonstrated that some algorithms had greater accuracy for the healthy group in comparison

to the patient group (Marschollek et al. 2008; Motl et al. 2011; Oudre et al. 2018). Overall,

these findings are in accordance with findings reported in this chapter in which less error was

observed in the normal group in comparison to the simulated-pathological group. As mentioned

previously in chapter 3, the main difference between the conclusions of this chapter and to the

studies in the state of the art, is the use of the simulated-pathological gait.

Previous studies have also shown that different algorithms result in different outcomes when

using different datasets and activities. Various authors developed their own algorithms for step

count and compared their results with other state of the art algorithms (Ao et al. 2018; Cho

et al. 2016; Godfrey et al. 2016; Gu et al. 2017; Marschollek et al. 2008; Rodŕıguez et al. 2018).

Other studies also developed their own algorithm and compared their results with the results

from wearables and/or smartphones (Cho et al. 2016; Gu et al. 2017; Rodŕıguez et al. 2018). A

similar conclusion was reached here, where the four algorithms demonstrated different results,

especially in the simulated-pathological group.

Based on our results, all step count algorithms demonstrated high levels of RMSE (8.58 -

500.13) for case 1 (all activities) and case 2 (dynamic activities) in both normal and simulated-

pathological groups. The amplitude and time period of the acceleration data differ among the
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different tasks. Therefore, the thresholds set in the algorithms for the dynamic activity were

not representative for all the individual tasks, which in turn led to the large RMSE in both

groups. Additionally, since case 1 included all the performed activities, more false positives

were counted, hence there was a large RMSE in both groups. Due to this increased RMSE, case

1 and case 2 will be excluded from further comparisons. For any future studies that it might

be required to use the algorithms in cases 1 and 2, it is suggested to use a window technique

in order to identify smaller periods of activities that might include just one activity in each

window. Depending on the content of each window, the appropriate thresholds of the step

count algorithm could be used.

Regarding the normal group, the template-matching algorithm yielded the smallest RMSE,

followed by peak detection, thresholding (frequency-domain), and lastly thresholding (time-

domain) (as demonstrated in Table 4.1. The template-matching algorithm used autocorrelation

function to identify step length. The function produces a cyclic signal with autocorrelation co-

efficients that are peaks equal to the periodicity of the signal. The signal in that case represents

a walking activity, which produces a cyclic signal. Hence, the results from the autocorrelation

function suggest that the horizontal length up to the first dominant peak represent one step

(Moe-Nilssen and Helbostad 2004). This is demonstrated in Figure 4.14. Periods of maximum

match between a patient-specific averaged template and corresponding acceleration signal were

searched to count the number of steps. Since the acceleration signal for walking was periodic,

the algorithm produced results with a high level of accuracy.

Upper limb movement occurs naturally during gait. The lower limb swing and upper arm

swing appear to move alternatively (Cola et al. 2016; Koo and Lee 2016). The accelerometer

was attached on the wrist and while the arm was swinging in a repetitive process, a peak was

created, therefore the peak detection algorithm identified most of the walking peaks correctly,

and had the smallest (2.81) RMSE for slow walking activity.

The thresholding (frequency-domain) algorithm had similar results compared to the peak de-

tection algorithm. This algorithm used the acceleration signal in the frequency-domain rather

than the time-domain. A possible reason for the higher RMSE created for this algorithm might

be the thresholds that were used. Some of those thresholds were based on the dataset used to

develop this algorithm and hence they might not work well for our dataset. The reason for that

is because their threshold was obtained based on a few participants, which might not result in
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representative thresholds for the general healthy population. In general, for all four tested step

count algorithms for all the activities, the thresholds used were similar to the thresholds used

in the original paper so as to re-implement the same algorithm described in the original paper.

However, in some cases the thresholds from the original papers would not work for the data

being analysed in this thesis, and in these cases the algorithms were adapted in order to work

with the collected data. Additionally, the algorithm was created for normal walking, however

this chapter studied different walking speeds, as well as stair climbing.

The worst algorithm in all activities was the thresholding (time-domain). Similarly to the

thresholding (frequency-domain) algorithm, the peak detection parameters and thresholds used

might not be representative of the dataset used in this study and therefore a larger error

occurred.

Exploring the performance of those algorithms using the data from the simulated-pathological

group, it is important to note again that the recruited participants attempted to replicate the

compromised motion, hence we cannot be certain that their movements accurately reflect the

movements in real-world pathological gaits. They were instructed to generally move slower in

comparison to the normal condition and this also meant that they had reduced arm swing.

Since the accelerometer was attached on the wrist, this affected the amplitude, time period and

periodicity of the signal. All the algorithms produced very poor results under these conditions.

Peak detection produced the best results for all activities, except stairs ascent. Thresholding

(time-domain) produced the least error for stairs ascent activity. Contrary to the results from

the normal group, the worst performance for the simulated-pathological group was obtained

from the template-matching algorithm. This might be because the template generated for each

participant of the simulated-pathological group was not representative enough. Hence, it might

be beneficial to build algorithms to generate better walking step templates.

In all four algorithms, except thresholding (frequency-domain), stair related activities showed

the least error for the simulated-pathological group. The reason for this may be due to the

systematic movement associated with walking up and down stairs. Additionally, stair climbing

might produce more distinct peaks than level-walking, hence better step detection.

The four tested algorithms were not suitable for a group of people with walking impairments and

reduced arm swing. Additionally, the acceleration signal was not periodic in each participant,

although this might be because participants were simulating the pathology and their simulation
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may have varied across each step.

Based on the outcomes from the normal group, the majority of the state of the art algorithms

might be suitable for the healthy population, however there is a need for step count algorithms

that perform well in patient populations with impaired walking. The following chapter will

investigate an approach that provides better results for counting the number of steps in both

healthy and patient populations.

The results of the step count algorithms, when true activity labels and predicted activity labels

were used, followed a similar pattern for almost all algorithmic approaches. As expected, the

results from the predicted labels showed slightly worse performance than the results from the

true labels, even though the activity classification results achieved similar accuracies.

This study had a few limitations. First, the tested algorithms were developed based on the

description given in the literature and while they were built to the best of our knowledge, there

may have been minor variations not described in the underpinning papers. Additionally, some

were built using different software so the functions used might slightly differ for each software

package, therefore affecting the results.

There are many different algorithms that can be used to calculate step count, however in this

study only four were used and there is a possibility that if different algorithms were used, the

results might be better or worse. Even though four algorithms were used, these algorithms

covered most of the key step count algorithmic categories.

The approach utilised suffered from the limitation that the data collected was in a laboratory

setting which maximised the amount of steps that each participant was able to undertake in a

straight line. A similar study should be replicated in free-living settings while conducting other

activities of daily living.

The results presented in this study were calculated based on four existing literature algorithms.

The majority of the algorithms showed good results for the normal group, however the results

from the simulated-pathological group were not as good. This creates an opportunity for the

development of a better step count algorithm that could provide exceptional results for both

normal and simulated-pathological groups.
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4.5 Summary

In this study, we used four state-of-the-art step count algorithms to measure the number of

steps undertaken by the participants. Walking activities were performed under normal and

simulated-pathological conditions. The results of this chapter are used to answer the fourth

research question posed in section 2.5.1. The majority of the algorithms performed well for the

normal condition, probably due to the periodicity of the acceleration signal. On the other hand,

all the algorithms performed poorly in counting specific steps for the simulated-pathological

condition. Therefore, this confirmed the need to develop more accurate and clinically useful

step count algorithms for the population with impaired gait. Additionally, since the results from

the step count algorithms were affected from the activity classification results, it is essential to

develop population-specific or patient-specific activity classification algorithms.
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Chapter 5

Development and validation of a

new step count algorithm

5.1 Introduction

In chapter four, four step count algorithms from literature were implemented and tested using

the acceleration data from the pilot study. The main outcome from the chapter was that step

count algorithms that might work well in a healthy population might not be suitable for a

pathological population. Hence, there is a need to develop population-specific algorithms that

will result in better outcomes for their associated population.

This chapter describes the development of a new step count algorithm based on template-

matching using DTW. The algorithm was inspired by the step count algorithms described in

the previous chapter. The reason for selecting these two methods was because they both use

the acceleration signal, not just its peaks. Additionally, DTW is a similarity algorithm that

could be used to calculate the similarity of two signals that are out of phase. This is very useful

for the walking activities because humans might walk with a similar pattern but with different

speeds. This algorithm enables calculation of the number of steps even if the template is not

identical to the recorded acceleration signal. The aim of developing a new algorithm was to

enable more accurate step count predictions mainly in people with walking impairments. The

algorithm developed in this chapter is for the wrist location.
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5.2 Methodology

5.2.1 Algorithm development

The template-matching using DTW algorithm was developed to automatically detect the num-

ber of steps undertaken, solely from wrist acceleration signals.

Studies in the literature used different methods to calculate a template representing one step or

one gait cycle. Manually annotated templates was one of the methods, where the researchers

have annotated the acceleration signals manually to represent a single step or one gait cycle

(Mantilla et al. 2017; Oudre et al. 2018). Another technique used is identifying the peaks of the

acceleration signal using local maximum and local minimum between a certain distance (index).

Based on the identification of the peaks, a template is generated by averaging the sequences

identified (Ailisto et al. 2005). Lastly, another technique used for the template generation is

clustering acceleration windows using K-means to identify the most representative length for

the template. Then, for each of the clusters a reference signal and its length are calculated.

All the acceleration windows are temporally realigned using DTW to have similar length to the

reference signal. The final step is to average all the realigned signals to create the template

(Mantilla et al. 2017). The average can be calculated using different methods such as Euclidean

distance, cross-correlation and DTW (Xu et al. 2017).

The algorithm was inspired by several authors (Kaptein et al. 2014; Micó-Amigo et al. 2016; Xu

et al. 2017), but mainly by (Micó-Amigo et al. 2016), who created a personalised template of

a walking period. The new template-matching using DTW devised here differs in two respects;

1) peaks and troughs are used to calculate the template length of a single step instead of just

peaks, 2) DTW is used to identify the number of steps instead of correlation measures. The

algorithm which was created by (Micó-Amigo et al. 2016) is referred in the text as “template-

matching” algorithm. All computation was done using python and the source code is available

in a github repository https://github.com/ValeriaF22/Thesis-Project. Additionally, the

DTW algorithm used was applied using the dtw function from the tslearn library.

The main idea of the algorithm is to create a template for a single step using the acceleration

(vertical component only), and then this template will be used against the acceleration signal.

If the template matches with a section of the acceleration signal, it will be assumed that this

section is a step. The final outcome is the total number of steps.
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The flowchart, shown in Figure 5.1 below, demonstrates the overall algorithm.

Figure 5.1: Flowchart of template-matching using dynamic time warping algorithm

Unlike many standard step count algorithms, which only consider the number of peaks in a

cyclical signal, the main idea behind the template-matching using DTW algorithm is to use a

template that models the overall shape of the acceleration signal.

5.2.1.1 Template length calculation

Initially, the acceleration signal was filtered once again to reduce any other noise with a 4th order

Butterworth filter and a 2 Hz cut-off frequency. After this, the following steps are performed:

1. Obtain the unbiased autocorrelation signal of the input signal as shown in Figure 5.2.

Aunbiased =
1

N − |m|

N−|m|∑
i=1

xixi+m (5.1)

Where xi is a time series, N is the total number of time series used and m is a lag

parameter.

2. Find the peaks of the autocorrelation signal.

3. Calculate the index (distance) difference between the first two peaks of the autocorrelation

signal.
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Figure 5.2: Unbiased autocorrelation signal of normal walking with peaks and troughs

4. Calculate an adaptive threshold that will be used for the minimal horizontal index (dis-

tance) in samples between neighbouring peaks. The adaptive threshold depends on: the

index difference calculated in step 3 and a constant identified experimentally using the

data collected. The constant depends on the activity performed and its associated condi-

tion (normal or simulated-pathological). Table 5.1 below shows the different values of the

constant, which were computed via trial and error. These thresholds might need to be

updated when larger dataset is used. However, the ideal scenario is to have personalised

step count algorithms, which means that every person would have his/her own thresholds.

Table 5.1: Constant used to calculate adaptive threshold for each individual dynamic activity.

Normal Simulated-pathological

Slow walk 0.65 0.95
Normal walk 0.10 0.90
Fast walk 0.10 0.75
Upstairs 0.10 1.30
Downstairs 0.10 1.30

5. Find the peaks of the original acceleration signal using the adaptive threshold calculated

in step 4 which is used for the minimum distance between neighbouring peaks.
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Figure 5.3: Acceleration signal of normal walking with peaks and troughs

6. Calculate the index difference between each consecutive pair of peaks identified in step 5.

peak index difference = peak indexi+1 − peak indexi (5.2)

7. Calculate the mean index difference of all the pairs of peaks calculated in step 6.

mean peak index difference = mean(peak index difference) (5.3)

8. Repeat steps 3-7 for troughs.

9. Calculate the template length as the mean of the mean index difference of peaks and

the mean index different of troughs. The index difference of peaks and troughs for each

participant is represented by two arrays. Subsequently, the mean of each array is calculated

and the mean of the two means is calculated as a final result.

template length = mean(mean peak index difference + mean trough index difference)

(5.4)
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5.2.1.2 Template signal generation

Original acceleration signal and template length are the inputs in this calculation and the

following steps were followed:

1. Segment the acceleration signal, using a sliding window technique without overlapping,

into windows of exactly the same length to the template length.

2. Generate a template (average) signal representing one step using the windows created in

the previous step. The template signal is generated using DBA method as demonstrated

in Figure 4.13

5.2.1.3 Template-matching to calculate number of steps undertaken

Template signal and acceleration windows are the inputs in this calculation. The DTW tech-

nique was used to calculate the similarity between the template signal and each segmented

window for each participant. This technique was developed to solve any difficulties identified

when analysing pattern similarity for time-series data. It is used to evaluate the similarity

between two time-series data that might vary in non-linear time-series data and time frames

(Lee 2019).

1. Calculate a similarity score between template length and each segmented acceleration

window using DTW.

2. Calculate an adaptive threshold that will be used as a threshold for the similarity score.

The adaptive threshold depends on the maximum and minimum similarity scores identified

for each participant, and a constant identified experimentally using the data collected. The

constant depends on the activity performed and its associated condition. Table 5.2 below

shows the different values of the constant.

Table 5.2: Constant used to calculate adaptive DTW threshold for each individual dynamic
activity.

Normal Simulated-pathological

Slow walk 0.90 0.90
Normal walk 0.90 0.40
Fast walk 0.90 0.40
Upstairs 0.90 0.00
Downstairs 0.90 0.00
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mid range similarity score =
max(similarity score) + min(similarity score)

2
(5.5)

DTW threshold = mid range similarity score+ (mid range similarity score× constant)

(5.6)

3. A step is counted if the similarity score is below the DTW threshold

5.2.2 Data analysis

The analysis was conducted to compare the template-matching using DTW algorithm with

multiple different methods from the literature to check which method performs best (refer to

chapter 4). The comparisons of these methods were made for both normal and simulated-

pathological walking activities. The true number of steps was measured from the gold standard

video. This was compared with the predicted number of steps generated from the step count

algorithms mentioned above. Both the predicted and true number of steps were calculated for

each activity separately. The same steps are followed with the analysis of chapter 4, however in

this chapter the analysis is more advanced.

The percentage error between the predicted and true number of steps was first visualised as a

box plot. A box plot displays the data distribution as the first and third quartiles, minimum,

maximum and median. Also, a box plot shows any outliers of the data, how data is grouped and

skewed. This method was used to enable the visualisation of a simple measure, the percentage

error. The box plot was used because it could show the step differences for each algorithm, and

thus understand which step-count algorithms produce consistent errors or not.

RMSE was calculated to measure the difference between predicted and true number of steps

per activity. It is the standard deviation of the prediction errors, which represent the vertical

distance between the regression line and the data point. The residuals measure how far the

data points are from the regression line. An RMSE closer to zero indicates minimum error.

The main reason for choosing this particular measure to evaluate the accuracy of the step count

algorithms was because it penalises large errors. This is important in this case because we

would like to avoid large errors.
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The results were also assessed using a modified version of Bland-Altman analysis. This first

involved creating the plot to visually inspect the agreement among the predicted and true

number of steps. The Bland-Altman plot is a scatter plot, in which Y axis demonstrates

the difference between the two paired measurements and the X axis shows the average of these

measures (Giavarina 2015). In our case, the X axis shows the true number of steps instead of the

average of the two methods (Giavarina 2015; Sasko et al. 2018). Additionally, in terms of limits

of agreement (LOA), V-shaped 95% LOA were used because the bias was not proportional to the

number of steps (Hans 2015). The LOA represent the range where most differences between the

measurements of the two methods, gold standard and algorithm, will lie. They are calculated

based on the mean and standard deviation of the differences between the measurements (Bland

and Altman 1999). This type of plot is useful to illustrate the agreement between two methods.

5.3 Results

5.3.1 Normal condition

The performance of the step count algorithms was examined on a set of healthy volunteers,

while performing the activities under normal conditions.

5.3.1.1 Root mean square error

The template-matching using DTW algorithm yielded better results than the other algorithms

for both slow and normal walk activities. However, the results of the template-matching using

DTW algorithm were close to the results of the template-matching without DTW algorithm

for all the activities (normal walk, fast walk, ascent and descent stairs) except the slow walk.

The results of the other three algorithms, peak detection, thresholding (frequency-domain) and

thresholding (time-domain) were worse than the template-matching using DTW algorithm. In

terms of activities, normal walk yielded the least error in almost all the step count algorithms.

Table 5.3 demonstrates the RMSE between the true and predicted number of steps along with

the lower and upper confidence intervals. It is important to note that the lower the RMSE the

better the model fit. In other words, the algorithm had predicted well the number of steps.
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Table 5.3: Results of step count algorithms for individual dynamic activities under normal
condition using true activity labels.

Activities Algorithms

Peak
detection

Thresholding
(F-domain)

Thresholding
(T-domain)

Template-
matching

Template-
matching
using DTW

Slow walk
2.81 6.61 9.10 8.99 1.65
(2.70, 2.92) (6.34,6.86) (8.76,9.43) (8.34,9.59) (1.31,1.71)

Normal walk
4.03 4.09 6.75 1.35 1.31
(3.91,4.16) (3.93,4.23) (6.67,6.84) (1.28,1.42) (0.88,1.01)

Fast walk
5.07 5.85 5.82 1.74 2.33
(4.98,5.16) (5.74,5.96) (5.76,5.88) (1.63,1.84) (2.25,2.45)

Stair ascent
4.55 5.37 6.37 1.90 2.24
(4.41,4.69) (5.21,5.52) (6.31,6.42) (1.76,2.03) (1.87,2.1)

Stair descent
5.16 6.36 6.81 1.11 2.69
(4.98,5.32) (6.23,6.48) (6.73,6.89) (1.08,1.15) (2.40,2.74)

Average 4.32 5.66 6.97 3.02 1.88

5.3.1.2 Performance by activity

Slow walk Figure 5.4 shows that, for slow walking, the most accurate algorithm was the new

algorithm developed in this chapter, template-matching using DTW. Despite using similar meth-

ods, the performance of template-matching without DTW was highly variable in comparison to

the template-matching using DTW algorithm.

Figure 5.4: Percentage error between true and predicted number of steps using box plots for
slow walk activity under normal condition

For the template-matching using DTW algorithm, the bias estimated was -0.31, which is close

to zero as shown in Figure 5.5. No change in bias was observed with increasing number of
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steps. The 95% LOA in this range were -3.23 and 2.61. This compares favourably with the

other algorithms, in which the minimum LOA ranged from -6.16 to 3.20 and the maximum

LOA ranged from -9.15 to 19.57.

Figure 5.5: Difference between true and predicted number of steps using modified Bland-Altman
plots for slow walk activity under normal condition

Normal walk Figure 5.6 demonstrates that, for normal walking, the two most accurate algo-

rithms were the template-matching using DTW and template-matching. Template-matching

using the DTW algorithm performed better than the template-matching without using DTW.

For the template-matching using DTW algorithm, the majority of the participants had zero er-

ror between the predicted and true number of steps. On the other hand, the template-matching

without DTW algorithm overestimated the number of steps in the majority of the participants.
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Figure 5.6: Percentage error between true and predicted number of steps using box plots for
normal walk activity under normal condition

For normal walking, the template-matching using DTW and the template-matching algorithms,

showed similar performance (Figure 5.7). However, template-matching using DTW performed

better since the bias was smaller, and the range of LOA was also smaller. The bias estimated

was -0.28, which is close to zero. The LOA in this range were -2.05 and 1.50. Regarding the

template-matching algorithm, the bias estimated was 0.66 and the LOA ranged between -1.66

and 2.97. All the other algorithms showed greater error, where the minimum LOA ranged from

8.91 to -4.40 and the maximum LOA ranged from -8.12 to 1.63.
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Figure 5.7: Difference between true and predicted number of steps using modified Bland-Altman
plots for normal walk activity under normal condition

Fast walk Figure 5.8 shows that for fast walking, the most accurate algorithm was the template-

matching. Even though utilising similar methods, the performance of the template-matching

using DTW algorithm was more variable than the template-matching without DTW algorithm.

Figure 5.8: Percentage error between true and predicted number of steps using box plots for
fast walk activity under normal condition

For fast walking, the template-matching algorithm had the smallest bias, which was -0.34. For

the template-matching using DTW algorithm, the bias estimated was -1.72. Considering the
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LOA, the two template-matching algorithms and the thresholding (frequency-domain) algorithm

had similar and greatest ranges of LOA. Among the three, template-matching using DTW had

the smallest range of LOA, which ranged from -4.85 to 1.40. The other two algorithms had

smaller range of LOA. The LOA of peak detection ranged from -7.49 to -2.31 and the LOA of

thresholding (time-domain) ranged from -7.44 to -4.08 as demonstrated in Figure 5.9.

Figure 5.9: Difference between true and predicted number of steps using modified Bland-Altman
plots for fast walk activity under normal condition

Ascending stairs Figure 5.10 demonstrates that, for stair ascent, the two most accurate algo-

rithms were the template-matching using DTW and template-matching. The former algorithm

performed better than the latter algorithm. The results are similar to the normal walk, where

the majority of the participants for the template-matching using DTW had zero error between

the predicted and true number of steps. On the other hand, the latter algorithm overesti-

mated the number of steps in the majority of the participants. Despite employing similar

techniques, the template-matching using DTW has slightly greater percentage error variance

than the template-matching algorithm.
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Figure 5.10: Percentage error between true and predicted number of steps using box plots for
ascending stairs activity under normal condition

For stair ascent, the template-matching using DTW and the template-matching algorithms,

showed similar performance. For the former, the bias estimated was -0.93 and the LOA ranged

from -4.38 to 2.52. For the latter, the bias estimated was 0.72 and the LOA ranged from -2.72

to 4.17. The LOA of the thresholding (time-domain) had the smallest range among all the

algorithms, which were between -7.95 and -4.6. The other two algorithms had larger range of

LOA as shown in Figure 5.11. The LOA of peak detection ranged from -8.66 to 1.00 and the

LOA of thresholding (frequency-domain) ranged from -9.31 to -0.41.
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Figure 5.11: Difference between true and predicted number of steps using modified Bland-
Altman plots for ascending stairs activity under normal condition

Descending stairs Similarly to fast walking, Figure 5.12 demonstrates that, for stair descent,

template-matching was the most accurate algorithm. Even though utilising similar methods, the

performance of the template-matching using DTW algorithm was more variable the template-

matching algorithm.

Figure 5.12: Percentage error between true and predicted number of steps using box plots for
descending stairs activity under normal condition

For stair descent, the template-matching algorithm had the smallest bias, which was 0.62, and
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the smallest range of LOA, which were between -1.19 and 2.43. For the template-matching using

DTW algorithm, the bias estimated was -1.45, which was the second smallest. However, this

algorithm had the third largest range of LOA among the other algorithms. The LOA ranged

from -5.62 to 2.72. Among the other three algorithms, the LOA of thresholding (time-domain)

ranged from -8.84 to -4.61. This was the second smallest range among all the five algorithms.

The other two algorithms had larger range of LOA. The LOA of peak detection ranged from

-9.56 to 0.66 and the LOA of thresholding (frequency-domain) ranged from -10.82 to -0.84 as

demonstrated in Figure 5.13.

Figure 5.13: Difference between true and predicted number of steps using modified Bland-
Altman plots for descending stairs activity under normal condition

5.3.2 Simulated-pathological condition

After examining the algorithms on the healthy volunteers under normal conditions, the per-

formance of the algorithms was examined on a set of healthy volunteers while performing the

activities under simulated-pathological conditions.

5.3.2.1 Root mean square error

The template-matching using DTW algorithm had better results than all the other algorithms

in all the activities. However, for the slow walking results, the template-matching using DTW
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algorithm had similar RMSE with peak detection algorithm. The results of the thresholding

(frequency-domain) and template-matching algorithms had great difference from the results

of the template-matching using DTW algorithm. Table 5.4 demonstrates the RMSE between

the true and predicted number of steps along with the lower and upper confidence intervals.

Contrarily to the results of the healthy volunteers under normal condition, the RMSE was

greater in this case. This means that the algorithm did not predict the number of steps as well

as the normal condition.

Table 5.4: Results of step count algorithms for individual dynamic activities under simulated-
pathological condition using true activity labels.

Activities Algorithms

Peak
detection

Thresholding
(F-domain)

Thresholding
(T-domain)

Template-
matching

Template-
matching
using DTW

Slow walk
20.80 27.68 32.87 84.07 20.67
(18.41,22.94) (26.55,28.78) (31.7,34.01) (76.36,91.14) (19.08,22.15)

Normal walk
15.94 23.13 25.94 50.87 13.96
(13.76,17.87) (21.98,24.22) (24.95,26.89) (47.03,54.45) (13.23,14.66)

Fast walk
12.64 15.81 15.81 43.02 9.25
(11.79,13.44) (14.74,16.8) (14.74,16.8) (38.56,47.06) (8.73,9.74)

stair ascent
10.01 38.06 8.75 42.12 8.89
(9.43,10.55) (37.03,39.07) (8.44,9.06) (39.18,44.88) (5.53,6.42)

stair descent
9.07 34.63 10.46 59.22 7.74
(8.27,9.80) (33.62,35.61) (9.99,10.91) (56.15,62.13) (7.17,8.28)

Average 13.69 27.86 34.82 55.86 11.52

5.3.2.2 Performance by activity

In the following graphs, the range of error detected was much larger for the simulated-pathological

group in comparison to the healthy group under normal conditions.

Slow walk Figure 5.14 demonstrates that, for slow walking, peak detection algorithm had

the greatest accuracy. The second most accurate algorithm is the template-matching using

DTW. Even though the two template-matching algorithms use similar methods to calculate

the number of steps, the template-matching had greater variability than the template-matching

using DTW. Additionally, it can be seen that there is one outlier with very large error for the

template-matching algorithm.
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Figure 5.14: Percentage error between true and predicted number of steps using box plots for
slow walk activity under simulated-pathological condition

The template-matching using DTW and peak detection algorithms showed similar performance

as demonstrated in Figure 5.15. For the former, the bias estimated was 1.79 and the LOA ranged

from -38.57 to 42.16. For the latter, the bias estimated was 1.28 and the LOA ranged from

-39.42 to 41.97. The LOA of the thresholding (time-domain) had the smallest range among

all the algorithms, which were between -70.21 and 27.10. The template-matching algorithm

showed the worse performance at slow walking. The LOA of this method ranged from -64.90

to 178.35. The bias of template-matching was 56.72, and it increases as the number of walking

steps increases.
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Figure 5.15: Difference between true and predicted number of steps using modified Bland-
Altman plots for slow walk activity under simulated-pathological condition

Normal walk Similarly to slow walking, the same pattern of results was observed for normal

walking as well (Figure 5.16). The peak detection algorithm had the least percentage error. The

second most accurate algorithm was the template-matching using DTW. Once again, despite

the fact that the two template-matching algorithms employed similar methods to calculate the

number of steps, the template-matching demonstrated greater error than the template-matching

using DTW. Additionally, it can be seen that there was one outlier with very large error for the

template-matching algorithm.
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Figure 5.16: Percentage error between true and predicted number of steps using box plots for
normal walk activity under simulated-pathological condition

For normal walking, the template-matching using DTW algorithm had the second smallest bias,

which was -3.90, and the smallest range for the LOA, which was between -30.17 to 22.38. For

the peak detection algorithm, the bias estimated was -1.45, which was the smallest among all

the algorithms as shown in Figure 5.17. Additionally, this algorithm had the third smallest

range of LOA among the other algorithms. The LOA ranged from -32.87 to 29.22. Among

the other three algorithms, the LOA of thresholding (time-domain) ranged from -51.36 to 9.98.

This was the second smallest range among all the five algorithms. The other two algorithms

had larger range of LOA. The LOA of thresholding (frequency-domain) ranged from -22.09 to

50.09 and the LOA of template-matching ranged from -46.40 to 109.71.
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Figure 5.17: Difference between true and predicted number of steps using modified Bland-
Altman plots for normal walk activity under simulated-pathological condition

Fast walk In the case of fast walking, the template-matching using DTW algorithm had the

smallest percentage error as demonstrated in Figure 5.18. Despite using similar methods, the

performance of template-matching was very variable in comparison to the template-matching

using DTW algorithm.

Figure 5.18: Percentage error between true and predicted number of steps using box plots for
fast walk activity under simulated-pathological condition

For the template-matching using DTW algorithm, the bias estimated was -0.14, which is close
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to zero. No change in bias was observed with increasing number of steps. However, the LOA

ranged from -18.27 to 17.99. Even though, large LOA were observed for the template-matching

using DTW algorithm (Figure 5.19), this compares favourably with all of the other algorithms,

in which the minimum LOA ranged from -27.79 to 17.30 and the maximum LOA ranged from

-51.20 to 94.51.

Figure 5.19: Difference between true and predicted number of steps using modified Bland-
Altman plots for fast walk activity under simulated-pathological condition

Ascending stairs Similar to fast walking, Figure 5.20 shows that for stair ascent, the greatest

accuracy was achieved by the template-matching using DTW algorithm.
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Figure 5.20: Percentage error between true and predicted number of steps using box plots for
ascending stairs activity under simulated-pathological condition

Again, the template-matching using DTW algorithm showed the best overall performance as

shown in Figure 5.21. The bias estimated was -0.97 and the LOA ranged from -12.56 to 10.63.

The template-matching algorithm showed the poorest performance in terms of the LOA. Simi-

larly to all the aforementioned activities, the LOA of this method was large and it ranged from

-23.81 to 86.50.

Figure 5.21: Difference between true and predicted number of steps using modified Bland-
Altman plots for ascending stairs activity under simulated-pathological condition
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Descending stairs Figure 5.22 demonstrates that, for stair descent, the two most accurate

algorithms were the peak detection and template-matching using DTW. Again, the template-

matching algorithm showed greater variability than template-matching using DTW.

Figure 5.22: Percentage error between true and predicted number of steps using box plots for
descending stairs activity under simulated-pathological condition

The template-matching using DTW algorithm showed the best overall performance. The bias

estimated was 0.28 and the LOA ranged from -14.89 to 15.44. The range of LOA of the peak

detection was similar to the template-matching using DTW algorithm, which was between -

10.21 and 19.87. The template-matching algorithm showed the worse performance in terms of

both bias and LOA as demonstrated in Figure 5.23. The estimated bias was 49.93 and the LOA

ranged from -12.46 to 112.32.
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Figure 5.23: Difference between true and predicted number of steps using modified Bland-
Altman plots for descending stairs activity under simulated-pathological condition

5.3.3 Testing the Template-matching DTW algorithm in an external public

dataset

In order to further validate the ability of the template-matching using DTW algorithm, it was

tested using the Oxford-Step-Counter external dataset 1. This dataset includes only two sub-

jects, for each subject the raw acceleration signal is included along with the true number of

steps performed from each volunteer. The reason for using this dataset, even though only two

subjects were available, is the fact that it was the only dataset that included the true number

of steps. The dataset is available at: https://github.com/Oxford-step-counter/DataSet/

tree/master/validation. This data set was collected using a Samsung S6 smartphone in six

different positions: 1) hand, 2) front pocket, 3) back pocket, 4) neck pouch, 5) bag, and 6)

armband. However, for the purpose of this thesis, only the data obtained from the hand and

armband locations were used. (Pham et al. 2018) have also previously tested their algorithm

on the Oxford-Step-Counter dataset and comparative results are presented below in Table 5.5.

Pham et al developed a step count algorithm that used peak detection along with four features:

minimal peak distance, minimal peak prominence, dynamic thresholding, and vibration elim-

1https://github.com/Oxford-step-counter/DataSet/tree/master/validation
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ination. The template-matching using DTW algorithm mainly overestimated the number of

steps and the algorithm developed by (Pham et al. 2018) underestimated the number of steps.

Using the template-matching using DTW algorithm, the greatest difference between true and

predicted number of steps was found to be four steps. Conversely, eight steps was the greatest

difference between true and predicted number of steps while using the algorithm developed by

Pham et al (Pham et al. 2018).

Table 5.5: Number of steps calculated using template-matching DTW and (Pham et al. 2018)
algorithms using the Oxford-step-counter dataset.

Positions User True steps Template-matching using DTW Peak detection & four features

Hand 1 326 328 323
Hand 2 340 344 332

Armband 1 335 338 335
Armband 2 343 341 335

5.4 Discussion

This chapter presents the step count analysis of data collected from wrist-worn accelerometers

in volunteers performing walking activities under normal and simulated-pathological conditions.

The results presented here answer the fourth research question posed in section 2.5.1; can we

accurately measure step count in healthy participants under normal and simulated-pathological

gaits?

Previous researchers used a variety of approaches and methods to study the accuracy of counting

the number of steps (Rhudy and Mahoney 2018; Bui et al. 2018; Ao et al. 2018; Bunn et al.

2019). The main differences among these studies were: (a) type of device; (b) location of

device; (c) population examined; (d) activities performed; (e) variation in walking speed; and

(f) algorithms used for analysis. Three main type of devices were used throughout the literature;

smartphone, IMUs and wearables. These devices were attached on different locations throughout

the body in both healthy and patient populations. However, most of the literature focuses on

the healthy population rather than patients. The most frequently used locations were: wrist,

thigh, ankle/foot, chest, waist and/or pockets. The main finding from the literature was the

need for better step count algorithms to be employed in (a) people with slow walking activity;

(b) functionally compomised patient populations; and (c) when devices were worn on the wrist.

The template-matching using DTW algorithm was tested using data representing both normal
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and simulated-pathological conditions. The results agreed with the literature as the accuracy

of the step count algorithm was higher (RMSE: 1.88) in the normal data, in comparison to

data from the simulated-pathological gait (RMSE: 11.52). This could be seen from the aver-

age RMSE results calculated for the template-matching using DTW algorithm. The average

RMSE for the normal and the simulated-pathological error was 1.88 and 11.52 respectively.

The template-matching using DTW algorithm was compared with four step count algorithms

from the literature and these four algorithms represented a wide variety of possible techniques.

In both the normal and simulated-pathological states, the new template-matching using DTW

algorithm achieved the smallest average RMSE in comparison to the four existing algorithms

reported in the literature.

This difference might be due to the fact that some of the existing algorithms were developed

for devices in different locations, and they were targeted at different populations. Additionally,

their initial goal was calculating the step length, and in order to do that, it was essential to

calculate the number of steps first although this might not have been their first main aim.

The template-matching using DTW algorithm was tested for slow, normal, and fast walking

activities, as well as for stair ascent and descent, the latter two activities were not well reported

in the literature. When participants walked normally, the template-matching using DTW al-

gorithm showed low RMSE (< 2.69) in all the tested activities, including the slow walk, stairs

ascent, and stairs descent activities. Similarly, in the results from the simulated-pathological

condition, the template-matching using DTW algorithm demonstrated better results for all the

activities. Conversely, this algorithm produced a larger RMSE in the slow and normal walking

activities. Even though in most of the activities the template-matching using DTW algorithm

achieved the smallest RMSE when compared with the four literature algorithms, the error was

still greater than the errors calculated for the normal condition group. The difference of the

results between the two groups might be due to several reasons. In general, the acceleration

signal recorded from the normal condition group is periodic since walking process is a rhythmic

movement (Menz et al. 2003; Yan et al. 2020). On the other hand, the acceleration signal

recorded from the pathological condition group (in this case simulated-pathological) is less reg-

ular and contains greater noise. It becomes harder to calculate the number of steps using an

irregular signal rather than a periodic signal. Additionally, the variability of the walking signal

has an important role especially for the simulated-pathological condition. Healthy participants
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performed activities under their normal routine and also under a pathological condition. In

their attempt to perform the activities under pathological conditions, the variability of their

gait was much greater. Bland-Altman plots showed the range of LOA for the normal condition

was much smaller than the range of LOA of the simulated-pathological condition. This sug-

gested that the acceleration signal was irregular in most simulated-pathological cases, therefore

the autocorrelation method did not perform as well as under the normal condition.

In terms of the activities associated with the normal condition group, the template-matching us-

ing DTW algorithm and most of the algorithms developed and tested in the literature performed

exceptionally well. Under the simulated-pathological conditions though, the results from litera-

ture and the template-matching using DTW algorithm were not as accurate as the results from

the normal condition. Even though this was the case, the results of the template-matching using

DTW algorithm demonstrated better performance than the other four algorithms generally.

The template-matching using DTW algorithm showed excellent performance using the data

from the normal condition, and it also showed improved performance over existing algorithms

when using the data from the simulated-pathological condition. This is very encouraging as it

enables more accurate step count data to be provided to clinicians for their patients who suffer

with chronic diseases.

Finally, the template-matching using DTW algorithm was also tested with the Oxford Step

Counter dataset. The reason for that was to validate the algorithm using an unseen external

data set. For the purposes of this study, only data from hand and arm were used to validate

the proposed algorithm since it was developed according to the wrist location. This location

is one of the most popular locations used by the users. The percentage error between the true

number of steps and the predicted number of steps was ±1%. This suggested that the template-

matching using DTW algorithm showed excellent performance using unseen data representing

a normal walking condition.

There are some potential limitations associated with the algorithms derived from the litera-

ture. The four existing algorithms were recreated by the researcher using python. While these

were created as faithfully as possible by the researcher, most of the algorithms were originally

developed in different programming languages. Since each language has its own functions, the

functions used in python might differ from the ones used for the original algorithm, which might

affect the overall performance of the algorithm. Additionally, the existing algorithms were de-
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veloped for different device locations, populations, and activities. For example, Thanh et al and

Dirican et al developed their algorithm for normal walking and running in a healthy population,

and the device was attached on the waist of the participants (Thanh et al. 2017; Dirican and

Aksoy 2017). Also, Mico-Amigo and colleagues developed an algorithm to mainly detect steps

from devices attached on the lower back and on the heel for the healthy elderly population

(Micó-Amigo et al. 2016). Lastly, Palshikar et al developed a simple peak detection algorithm

that it was used to detect peaks in different types of signals (Palshikar 2009).

Another limitation was associated with the simulated data which was collected to represent

the pathological condition. The variation of the acceleration signal is reflected better among

different volunteers (inter-variability) than among different trials of the same volunteer (intra-

variability) (Racic and Pavic 2010b; Ponce et al. 2016). However, in this study for some

cases, especially under simulated-pathological conditions, there is large variability in the walking

activity in each participant. For example, each step undertaken to complete the slow walk

activity might differ among each other in terms of step length and step width even though the

participant was the same (Whittle 2007).

One more limitation is associated with the performance metrics used to evaluate the existing

step count algorithms in the literature. There is no consistent metric used to measure the

accuracy of such algorithms, hence each research team selected the most appropriate metric for

their study. However, it becomes difficult to compare the results from different studies since

several metrics have been used.

Lastly, the template-matching using DTW step count algorithm used a constant value, which

was derived experimentally, when calculating the distance between the peaks. Depending on

the activity performed and the group, an appropriate value was selected. It would be good in

the future to improve this feature of the algorithm. Instead of using the activity to select the

value, data from the specific participant should be used instead. This means that the step count

algorithm will automatically be participant-specific.

This study has some strengths, including the use of a range of step count algorithms that

enabled us to explore in depth the advantages and disadvantages of each algorithm. Another

strength of this study is the number of participants recruited. As reported in chapter 3, the

majority of the studies that tested step count algorithms previously recruited fewer participants

than the current study. This suggested that the results for this study are more generalisable.
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A third strength for this study was the combination of two powerful techniques, DTW and

DBA. These techniques have not been used before for creating a step count algorithm. The

performance of the novel algorithm developed for this study proved much better for both normal

and simulated-pathological conditions in comparison to the four existing literature algorithms.

Finally, the algorithm developed for this study is suitable not only for normal speed walking,

but for various walking speeds and for climbing stairs. The majority of the existing studies

in the literature tested the step count algorithms for normal walking, and some studies tested

various walking speeds. However, only a few studies tested a step count algorithm in more

challenging activities such as climbing stairs.

5.5 Summary

In this study, template-matching using DTW step count algorithm was compared with four

existing algorithms found in the literature. The four algorithms were selected because they

covered a wide range of different step count category algorithms. The data used to test the

algorithms was collected from the pilot study presented in chapter 3. The participants performed

several activities under normal and simulated-pathological conditions. Again, the results of this

chapter are used to answer the fourth research question posed in section 2.5.1. The template-

matching using DTW algorithm demonstrated excellent accuracy when using the data from

the normal condition group for slow and normal walking speeds. Regarding fast walk, stair

ascent and stair descent, the results were good enough and close to the results of the template-

matching algorithm. Although results of the template-matching using DTW algorithm in the

simulated-pathological group were not as good as seen in the normal condition group, the new

algorithm still showed the best overall performance in the simulated-pathological condition

group. These results suggest that it may be possible to develop better step count algorithms

for more compromised patient populations, which in turn would mean that clinicians will get

more accurate and representative results.
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Chapter 6

A mathematical model to generate

synthetic acceleration signals

6.1 Introduction

The original plan had been to collect accelerometer data from patients, however due to COVID-

19 an alternative approach was developed and this chapter is the result. In this chapter the

development of a mathematical model is described. The model was inspired by a dynamic

model for electrocardiogram (ECG) signal introduced by (McSharry et al. 2003). The original

model is based on ECG morphology and is capable of generating realistic synthetic signals that

describe the rhythm and electrical activity of the heart. For the current study a similar dynamic

model for generating acceleration walking signals was developed. Development of such a model

will enable researchers to generate multiple synthetic signals that simulate acceleration signals

from activity monitors from healthy and impaired gaits. This should be useful for developing

new gait accelerometer analysis strategies, as collection of real data from patients with impaired

gait is laborious in terms of time and effort. A synthetic data approach would also facilitate

data sharing since there will be no information privacy concerns, making it easier to access data

(Wang et al. 2019). The models developed represented the acceleration signal of walking with

normal speed for both normal and simulated-pathological conditions. The generated synthetic

signals were then used as a test dataset for condition classification, while the training dataset

was based on the original data collected in the pilot study described in chapter 3.
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6.2 Methodology

6.2.1 Mathematical description

In 2003, McSharry and colleagues proposed a dynamic model for generating realistic synthetic

ECG signal in order to assess different biomedical signal processing techniques (McSharry et al.

2003). These techniques were used to compute statistical variables from the ECG signal. The

model was developed using a set of state-space equations that generates a 3D trajectory in a 3D

state-space with coordinates (x, y, z) as shown in Figure 6.1. The ECG signal is described by

the z-direction since it has one dimension, and the other two directions are used to control the

period of the ECG signal. The foundation of this model was used to develop our dynamic model

for generating realistic synthetic walking acceleration signals. The generated signal represented

the vertical direction of the acceleration against time. The reason for generating the vertical

direction is because it is the most informative direction in terms of walking. This is due to the

up and down movement of the person while walking as shown in Figure 2.6 in the literature

review.

Figure 6.1: 3D trajectory in 3D state using a set of state equations

The model consists of a circular limit cycle of unit radius in the (x, y) plane around which the

trajectory is pushed up and down as it approaches the four distinct areas in the acceleration as

shown in Figure 6.1. Quasi-periodicity, the property of a system that displays irregular period-
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icity, of the acceleration is reflected by the movement of the trajectory around the attracting

limit cycle. The dynamical equations of motion are given by a set of three ordinary differential

equations in Cartesian coordinates:

ẋ = αx− ωy (6.1)

ẏ = αy + ωx (6.2)

ż = −
n∑
i=1

ai ×∆θi × exp(−
∆θ2i
2c2i

)− (z) (6.3)

Definitions:

α = 1−
√
x2 + y2

∆θi = (θ − θi)mod2π

θ = tan−1(y, x) with− π ≥ tan−1(y, x) ≥ π

n = number of areas of interest

ω is the angular velocity of the trajectory as it moves around the limit cycle

a = amplitude

c is the standard deviation that controls the width of a Gaussian distribution curve

Considering the system equations in turn, equations (6.1) and (6.2) describe a periodic oscillat-

ing (i.e. repeating) signal. In this scenario, the oscillator is used to generate the circular motion

of the unit circle (Stefanovska et al. 2001).

Equation (6.3) represents a sum of Gaussian functions. The reason for using Gaussian function

is due to its symmetric “bell curve” shape at the centre, where half of the values are to the

left and the other half are to the right. Each curve represents the area of interest for the

acceleration signal (Clifford 2006). Walking acceleration signals are represented by consecutive,

broadly symmetrical peaks and troughs, hence the Gaussian function was used. The Gaussian

function includes three parameters that can be used to describe the curves individually; 1) the
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Figure 6.2: Characteristics of normal distribution

amplitude of the curve, 2) the centre position of the curve and 3) the standard deviation that

controls the width of the “bell” as demonstrated in Figure 6.2.

These parameters can also be seen in equation (6.3) as a, ∆θ and c respectively. As discussed

in section 2.3.3 of the literature review, there are four areas of interest, therefore four Gaussian

functions were used.

A Gaussian function has the form:

f(x) = αe
(x−∆θ)2

2c2 (6.4)

To model variation between gait cycles, white Gaussian noise is added to the amplitude of the

signal by generating random samples from a normal distribution with zero mean and standard

deviation. It is important to mention that the white noise was added only to the simulated-

pathological gaits because the gait cycles had greater variability among them. Hence, Table 6.1

demonstrates the parameters used for the generation of white Gaussian noise.

Table 6.1: Gaussian noise parameters used for normal and simulated-pathological conditions.

Parameters Normal Simulated-pathological

Mean 0 0
Standard deviation 0 0.05-0.30
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6.2.2 Model parameter estimation

An algorithm was developed in python to generate a synthetic acceleration walking signal with

similar characteristics to a real signal. Figure 6.3 demonstrates the steps that were followed to

produce the synthetic signal.

Figure 6.3: Flowchart describing the process of generating a synthetic acceleration signal
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Initially, a subset of the data from chapter 5 that only contained periods of dynamic activities

was created, in which participants were walking normally and simulated-pathologically with

a normal walking speed. Based on the original acceleration signal, three parameters were

calculated: 1) the entire length of the walking signal, 2) the maximum acceleration value of the

signal, and 3) the minimum acceleration value of the signal.

Figure 6.4: Characteristics of the parameters measured in the original acceleration signal

After this, a template was produced representing one gait cycle using the dynamic time warping

barycentre averaging method proposed in chapter 5. Another two parameters were calculated,

which are associated with the template; 1) initial acceleration value and 2) the entire length of

the template, were also calculated as demonstrated in Figure 6.5.

Figure 6.5: Characteristics of the parameters measured in the single gait cycle template accel-
eration signal
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Next, curve fitting was performed on the template signal in order to calculate the three essential

parameters that are used in equation (6.3). These parameters are: 1) the amplitude, 2) the

position of the centre of the peak, and 3) the standard deviation that controls the width of the

peak. In order to calculate these parameters, the first step is to set appropriate initial conditions

to perform the curve fitting. If no initial conditions are set, the parameter optimisation settles

in local minima, leading to a poor template match. Hence, to avoid this problem, the initial

estimate should place each Gaussian at roughly the right location and then the optimisation can

find the exact location. The initial conditions were estimated visually based on the amplitude

and position of the peaks of the gait cycle template. For the curve fitting, equations (6.1)-(6.3)

were used to fit the gait cycle template model.

When the parameters, amplitude, centre position of the peak and standard deviation that con-

trols the width of the peak were calculated, they were used to numerically integrate equations

(6.1)-(6.3) using a 4th order Runge-Kutta method. In order to create a similar acceleration

signal to the original, some of the parameters associated with the template and original ac-

celeration signals were also used. For example, the initial amplitude acceleration value of the

template was used as initial condition, which is essential to enable the integration. Additionally,

the three parameters associated with the original acceleration signal were also used in order to

generate a synthetic signal that is similar with the original signal in terms of maximum and

minimum acceleration value, as well as the length of the signal.

Table 6.2 demonstrates the parameters calculated from the Gaussian function.
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Table 6.2: Gaussian function parameters for normal and simulated-pathological conditions.

Index(i) Peak 1 Peak 2 Peak 3 Peak 4

Healthy

Participant A
αi -8.1085 -6.0593 -11.1617 -3.4723
θi 36.2864 -118.9687 87.3911 183.1252
ci 0.5303 1.0831 0.5909 0.8357

Participant B
αi 1.0227 -6.8367 3.5758 4.6952
θi 32.22 4.6672 96.9272 114.0162
ci 3.3918 0.7658 0.1592 -0.1266

Participant C
αi 8.2461 10.7214 5.1627 4.9345
θi 21.2639 67.3084 109.5181 246.471
ci 0.4658 -0.4913 0.3502 -0.6197

Simulated-pathological

Participant A
αi 0.4236 0.2936 1.2551 0.4934
θi -41.1673 180.194 98.2208 191.8672
ci 0.6617 2.77 -0.0007 0.6781

Participant B
αi 4.1021 1.3508 0.9692 4.2263
θi -49.8088 106.1262 150.0181 110.2147
ci 0.5865 -0.0004 1.7954 0.3665

Participant C
αi 0.1100 0.2127 0.1792 0.4171
θi -62.186 -3.214 174.6702 192.1822
ci 1.3449 0.5569 2.1935 0.3793

The output signal, after the integration, was then smoothed using Savitzky–Golay filter to

increase the data precision by keeping the tendency of the signal.

Figure 6.6: Graphs demonstrating the difference between a raw and a filtered signal
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The last step was the validation of the synthetic signal against the original signal. The particular

step was described in the following section.

6.2.3 Validation of the models

The synthetic signals generated using the mathematical system were validated against the orig-

inal acceleration signals. Different validation types were performed to ensure the validity of

the synthetic signals; 1) visual, 2) percentage difference of signal metrics 3) DTW similarity, 4)

machine learning classification and 5) step count.

6.2.3.1 Visual

For visual inspection, the original signal and the generated synthetic signal were overlaid in a

graph to compare them visually as shown in Figure 6.8 for normal and Figure 6.11 for simulated-

pathological conditions. The visual comparison helped to check whether the synthetic signal

had similar morphology to the original signal.

6.2.3.2 Performance metrics

Five signal metrics: 1) mean, 2) standard deviation, 3) kurtosis, 4) energy and 5) dominant

frequency were calculated for both synthetic and original signals. The percentage error for each

metric was then calculated. These five metrics were calculated because they provide a range of

signal characteristics that can be used to compare the synthetic signal with the original one.

Table 6.3: Signal metrics used to compare the original and synthetic acceleration signals.

Features Definition

Time− domain
Mean The average value of an entire signal
Standard deviation The variability of a signal from the mean
Kurtosis The distribution shape of a signal relative to Gaussian distribution

Frequency − domain
Energy The strength of a signal
Dominant frequency The highest magnitude of the sinusoidal component

6.2.3.3 DTW similarity

DTW was used to quantify the similarity between the original and synthetic signals. This

method enabled checking of the similarity of the signals even though they might be out of
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phase, but following the same underlying pattern. In terms of the DTW similarity score, the

closer it is to zero, the more the signals were considered to match. Additionally, a range of DTW

similarity scores were also demonstrated among different signals in order to have a reference

point.

6.2.3.4 Machine learning condition classification

An Activity-Recognition-Chain (ARC) process was followed to complete this section. The

data used in for the condition classification was the acceleration signal in x-direction, which

represented the vertical axis of the accelerometer. The labels “0” and “1” represented normal

and simulated-pathological conditions respectively. This validation method was performed to

check whether the classification performance is similar on the synthetic and real data.

Following the ARC process, the acceleration signals were segmented into different windows. For

each window, 14 features (see Table 6.4) were calculated and then scaled. The next step was to

perform PCA for feature reduction, in order to generalise the model.

Table 6.4: Features used for the machine learning classification for both original and synthetic
acceleration signals.

Time-domain Frequency-domain

Mean (x) Standard deviation (x) Energy (x)
Median (x) Skewness (x) Max frequency 1(x)
Kurtosis (x) Interquartile range (x) Max frequency 2(x)

Root mean square (x) Median absolute (x) Mean frequency (x)
Mean power spectral density (x) Entropy (x)

For the last step, which was the actual classification, a Support Vector Machine algorithm was

used. The training data was based on the original acceleration signals. The test data was

represented by the synthetic acceleration signals and the scenario conducted for the condition

classification was:

• algorithm trained on original combined normal and simulated-pathological datasets; tested

on synthetic combined normal and simulated-pathological datasets

6.2.3.5 Step count

For the step count validation, synthetic signals of similar length to their associated original

signal were generated. The calculated number of steps based on the original dataset using the
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algorithm in chapter 5 is known. Therefore, the algorithm was used to also calculate the number

of steps measured using the synthetic signals. The calculated number of steps from the synthetic

dataset was compared to the calculated number of steps from the original dataset by calculating

their difference in terms of number of steps. If the difference was low, it suggested that the

signals were almost identical. Hence, calculating a similar value for the predicted number of

steps.

6.3 Results

The particular participants analysed were selected since they represent most of the data of

normal walking activity in the normal and the simulated-pathological conditions.

6.3.1 Validation

6.3.1.1 Normal condition

Figure 6.7 demonstrated the results from the dynamic model parameter optimisation. The data

used was the averaged gait cycle calculated for each participant. The fitted line was essential

to calculate the parameters for the areas of interest. For participant C, the fitting had matched

the data with great precision. For both participants A and B, the fitting was of high precision,

however at two points the fitting was not as smooth as the gait cycle data. The similarity

between the template and the fitting was calculated using the DTW technique. The results

were: 0.051, 0.077 and 0.028 for participants A, B and C respectively. The closer the result is

to zero, the highest the matching is between the template and the fitting.

Figure 6.7: Example of Gaussian fitting for a gait cycle during normal walking under normal
condition (Participants A, B and C)
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Regarding the visual validation, all three synthetic signals seemed to follow the underlying

pattern of their original signal as demonstrated in Figure 6.8. However, the synthetic signals

were slightly out of phase with the original signal. DTW was used to examine the similarity of

the compared signals even though they might be out of phase. The calculated DTW score for

participants A, B and C were 1.031, 0.830 and 1.414 respectively.

Figure 6.8: Comparison of normal walking original and synthetic acceleration signals under
normal condition (Participants A, B and C)

In order to check whether the DTW similarity scores were acceptable, the original and synthetic

data from the other two participants was compared and a range of DTW similarity score was

therefore developed. This range contained poor similarity scores, since the signals tested were

from a different participant, and hence did not match well. Figure 6.9 demonstrate the results
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for the comparisons and table 6.5 shows the DTW similarity scores.

Table 6.5: Results of DTW similarity between original and synthetic acceleration signals under
normal condition.

Participants DTW similarity

Original Synthetic

A B 4.254
A C 1.752
B C 3.350
B A 3.952
C A 1.838
C B 2.904

Figure 6.9: Comparison of normal walking original and synthetic acceleration signals under
normal condition between two participants

The DTW similarity scores were smaller when the original and synthetic signals were from the

same participant (< 1.414) rather than when comparing signals from different participants (>

1.838), meaning that the signals match quite well.

The following results represented the percentage difference between the synthetic and original
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signals. As the DTW score also suggested, the synthetic signal based on participant B had

the lowest percentage difference for almost all measurements among the three participants as

demonstrated in table 6.6.

Table 6.6: Percentage difference of signal metrics to compare original and synthetic acceleration
signals under normal condition.

Percentage difference (%) Participant A Participant B Participant C

Mean 8 2 14
Standard deviation 3 4 9
Kurtosis -5 -14 -15
Energy 12 8 20
Dominant frequency 19 4 15

6.3.1.2 Simulated-pathological condition

Similarly to the normal condition, curve fitting was performed at the averaged gait cycle for

the simulated-pathological condition. From Figure 6.10 below, it was demonstrated that the

averaged gait cycle of the simulated-pathological condition exhibited greater complexity than

the results from the normal condition. The similarity between the template and the fitting was

calculated using the DTW technique. The results were: 0.036, 0.233 and 0.002 for participants

A, B and C respectively.

Figure 6.10: Example of Gaussian fitting for a gait cycle during normal walking under simulated-
pathological condition (Participants A, B and C)

The synthetic signals of the simulated-pathological condition followed the underlying pattern

of their original signal. The underlying pattern was based on the template created. The

acceleration signals that fall in the simulated-pathological condition were more complex in
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terms of morphology than the signals of the normal condition. Additionally, they did not have

very consistent pattern between steps. However, it could be seen in Figure 6.11 that they match

at some occasions. The signals were also out of phase with DTW scores 1.615, 1.222 and 0.794

for participants A, B and C respectively.

Figure 6.11: Comparison of normal walking original and synthetic acceleration signals under
simulated-pathological condition (Participants A, B and C)

Similar to what was done with the data from the normal group, in order to check whether the

DTW similarity scores were acceptable for the simulated-pathological group, the original and

synthetic data from the other two participants was compared. Figure 6.12 demonstrates the

results for the comparisons and Table 6.7 shows the DTW similarity scores.

183



6.3. Results Chapter 6. A mathematical model to generate synthetic acceleration signals

Table 6.7: Results of DTW similarity between original and synthetic acceleration signals under
simulated-pathological condition.

Participants DTW similarity

Original Synthetic

A B 2.037
A C 9.522
B C 10.677
B A 1.662
C A 10.269
C B 10.599

Figure 6.12: Comparison of normal walking original and synthetic acceleration signals under
simulated-pathological condition between two participants

Similar to the normal group, the results of the DTW similarity scores seem to match well for

participants A, B and C.

From the visual comparison and the DTW scores, participant C demonstrated greater matching

between the original and synthetic signals in comparison to participants A and B. However,

based solely on the percentage differences for each participant, participant B had the best
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performance. Participants A and C had large percentage difference for energy and kurtosis

respectively.

Table 6.8: Percentage difference of signal metrics to compare original and synthetic acceleration
signals under simulated-pathological condition.

Percentage difference (%) Participant A Participant B Participant C

Mean 5 1 10
Standard deviation 9 4 10
Kurtosis -24 -6 129
Energy 32 26 26
Dominant frequency 9 4 12

6.3.1.3 Condition classification

An SVM classifier was used to classify the two conditions. The algorithm was trained from

the original (real) data collected for the pilot study which includes both normal and simulated-

pathological conditions, and the test data used was the synthetic (unseen) signals generated for

both normal and simulated-pathological conditions. The model was trained using the features

shown in Table 6.4. This classification was performed to check whether the data from each

condition can be differentiated. High performance scores were achieved for this classification,

with the precision score to be the highest as demonstrated in table 6.9.

Table 6.9: Performance metrics of condition classification to classify normal and simulated-
pathological conditions accurately.

Performance metrics Support Vector Machine

Accuracy 0.704
F1-score 0.740
Precision 0.802
Recall 0.704

6.3.1.4 Step count

Another way to test the generated acceleration signals was to use the new step count algorithm

developed in chapter 5. If the generated synthetic signals are similar to the original signals,

the algorithm should provide similar answers for the predicted number of steps of the original

and synthetic datasets. The results for the normal group agree with all the validation results

of this condition. On the other hand, the results for the simulated-pathological group exhibited

greater variation in the results as demonstrated in table 6.10. This might be because the
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generated signals of the simulated-pathological group did not match completely with the signals

of the original dataset. Hence, a difference of 5 to 20 steps was observed between the original

(predicted) signal and the synthetic (predicted) signal.

Table 6.10: Results for counting the number of steps using Template-matching using DTW
algorithm.

Normal Simulated-pathological
Case A Case B Case C Case A Case B Case C

Original (predicted) signal 10 13 12 31 24 51
Synthetic (predicted) signal 10 14 12 44 19 31

6.4 Discussion

This chapter presents the results exploring the generation of synthetic acceleration data rep-

resenting normal and pathological gaits. The results presented here answer the final research

question posed in section 2.5.1; Can we accurately generate synthetic acceleration data that

represent normal and atypical walking patterns?

Earlier studies used three different approaches to generate synthetic data. The three approaches

were: (1) mathematical model using coupled equations (McSharry et al. 2003; Santaniello et al.

2006; Almasi et al. 2011; Racic and Morin 2014), (2) mathematical model using Lagrange ap-

proach (Al-zu et al. 2012; Agarana and Akinlabi 2018) and (3) Generative Adversarial Networks

(GANs) (Alzantot et al. 2017; Hassouni et al. 2018). From these approaches, only the third

approach was used to generate acceleration signal that represented daily activities, such as walk-

ing, sitting, standing, etc. For this chapter, the first method was used to generate the synthetic

acceleration signals due to the fact that the second method is based on kinematics and hence did

not provide acceleration information, and the third method required a large amount of data to

enable the appropriate generation of synthetic signals. Additionally, the first method has been

used to generate different types of signals, for example ECG, phonocardiogram, jumping signals.

This means that the method is flexible enough to be applied to several situations and generate

the required signal. Also, until the current study this method has not been used to generate

acceleration signals from walking. The majority of studies noted above have used only a visual

comparison to check the match of the synthetic signals with the original signals. Hassouni and

colleagues used the GANs approach to generate acceleration signal of walking, jogging, stand-

ing, sitting, stair ascent and stair descent and an accuracy score of 97.33% was reported for
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classifying these activities (Hassouni et al. 2018). The second approach, Lagrange approach,

was used to generate synthetic data to model the arm movement, however, the synthetic data

was angular velocity and angular displacement (Al-zu et al. 2012; Agarana and Akinlabi 2018).

For the current study, the acceleration signal was of interest rather than angular velocity and

angular displacement.

There was no definitive way to test for validity of the model developed, as there was no gold

standard. The following steps were taken however: (1) visual assessment and comparison with

real-world data, and (2) checking whether the simulated gaits (normal and pathological) were

correctly classified by the classifier trained on real data.

The data demonstrated that the signals associated with the normal population achieved better

performance scores in terms of matching with the original data in comparison to the signals

associated with the simulated-pathological population. This might be due to the fact that

simulated-pathological signals had greater noise than the signals from the normal population.

In general, it is simpler to generate periodic signals than signals with random peaks due to

greater noise. Based on the results, DTW score showed that the original signals were similar

to the synthetic data in terms of their overall pattern. The synthetic signals might followed

a similar but out of phase pattern with the original signals. This is mostly supported from

the five performance metrics which have a percentage difference up to 20% and 129% for the

normal and simulated-pathological groups respectively. The synthetic signals were also tested

using condition classification, and a similar scenario was tested as the one mentioned in chapter

3. The condition classification achieved scores around 74%, and the reason might be that the

selected normal and simulated-pathological signals had some differences among them, which

means that the classifier could not differentiate the signals of the two conditions with excellent

accuracy. The signals were also tested using the step count algorithm. The predicted number

of steps using the original and the synthetic signals should be the same if the two signals match

because the same step count algorithm is used for both. If the predicted number of steps of

the original and synthetic signals did not match, this means that the two signals were different.

For the normal group, participant B had one step difference from the results from the predicted

original and synthetic signals. Additionally, participants A and C found the exact number of

steps in both signals. Unfortunately, that was not the situation for the simulated-pathological

group. Cases A, B and C had -13, 5 and 20 steps difference from the results of the two signals.
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This suggested that the approach for generating the synthetic signal worked well for the normal

group, but it needs some refinement for the simulated-pathological group.

A limitation observed was that the model might be basic since the overall shape of the signal was

taken into consideration in order to create the template for a single gait cycle. This means that

some irregularities of the template signal, especially for the simulated-pathological group, were

not generated since they were lost, for example where an average of all the walking cycles for the

normal walking was calculated. The model could generate acceleration signals for the normal

group well, but was not able to generate the acceleration signals for the simulated-pathological

group with similar precision. This might be because the signals of the simulated-pathological

group had greater variability. Hence, a more complex model might be essential to be developed

to ensure better pathological synthetic signals are developed. This model will consider greater

variation of parameters that will enable the generation of signals with more irregularities.

This chapter has some strengths as well. The acceleration walking signals have been generated

because there is a need for more acceleration data. There is not enough publicly available

data from wrist accelerometers, and especially from pathological populations. This method

enables us to generate synthetic acceleration signals from activity monitors for both healthy

and pathological populations. Additionally, it is a quite simple but powerful technique, which

can be applied to different dynamic activities, such as slow and fast walk, and climbing stairs

where only the variables used will change, while the underlying mathematical approach will

be the same. Lastly, this method was new for the particular sector, however the results were

promising for the generation of acceleration signals more widely.

6.5 Summary

In this chapter, several synthetic acceleration walking signals were generated using three cou-

pled equations. This is beneficial for the research community since there is limited availability

of public datasets that includes accelerometer data collected from the wrist. The results of this

chapter were used to answer the fifth question posed in section 2.5.1. This method can be used

to generate walking signals for people who walk normally but is not so accurate for people with

walking impairments. It is based on the morphology of the signal, therefore several walking

speeds can be generated as well. The results are positive and promising for the accurate gener-

ation of signals for normal gaits, however, the algorithm needs refinement in order to generate
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representative signals for simulated-pathological gaits as well. The source code of the algorithm

is available in a github repository https://github.com/ValeriaF22/Thesis-Project.
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Chapter 7

Discussion & Conclusion

This work aimed to create and develop novel algorithms that could be integrated into wear-

able devices with the ambition of successfully monitoring the activity of people with chronic

conditions. After reviewing the literature, it was noted that there was insufficient research

for activity classification and step count algorithms which target the patient population with

different pathologies, especially walking impairments.

Specifically, this thesis aimed to: 1) develop tuneable algorithms to more accurately measure

physical activity in people with walking impairments and 2) generate synthetic acceleration

walking signals that represent normal and atypical gait patterns, to be used as a potential

dataset.

To achieve these objectives, a pilot study was initially developed using healthy individuals to

investigate whether, under normal and abnormal conditions, (1) the proposed data collection

method would be suitable for real patients; (2) machine learning methods could identify indi-

vidual activities; (3) machine learning methods could be used to classify normal and abnormal

walking; (4) accelerometer signals could be processed to accurately estimate number of steps.

In this study, 30 healthy volunteers were recruited and asked to perform nine different activ-

ities in a laboratory setting while wearing a wrist- and an ankle-worn accelerometer. They

performed the activities as normal, and then repeated them while emulating a pathological gait

(simulated-pathological).

In this study two accelerometers were attached on each participant, one on the wrist and

another one on the ankle. These two locations are very popular since 1) the wrist location
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can be used for many applications, and they can provide vital information quickly without

developing any extra burden to the user (Al-Eidan et al. 2018), 2) the ankle location is often

used to solve problems related to gait. To answer the first objective of the study which was

related to the wear site, both quantitative and qualitative approaches were performed. The

qualitative approach involved interviewing stakeholders, for example clinicians and patients

(see Appendix A). It is important to understand the needs of the stakeholders since they will be

the end users (clinicians and patients). It is essential to develop algorithms that are useful and

helpful to them. The quantitative approach was a preliminary study using machine learning

algorithms to study a few cases for both condition and activity classifications at both wear sites.

Condition classification is used to distinguish between different groups of people, such as normal

and simulated-pathological. Activity-type and -task classifications are used to distinguish three

general types of physical activity and nine specific tasks of physical activity respectively. The

outcomes of the “Patient and Public Involvement discussions” suggested that patients are willing

to wear an activity monitor only on their wrist, and they did not want to wear the device on

their ankle. Hence, the quantitative study was performed to check objectively which wear site

is the best for the classifications. The results suggested that the wrist mounted location can

be used to differentiate the user’s condition i.e. healthy or (simulated) pathological condition.

After identifying the condition of the user, the most appropriate algorithms could be used

depending on the condition to ensure best performance. Additionally, the results related to

activity recognition showed acceptable performance for both normal and simulated-pathological

conditions and this was observed for the wrist and ankle locations. Due to these outcomes and

also the results of the patient interviews from the stakeholder analysis, the wrist location was

used for subsequent detailed analysis.

The detailed analysis of the wrist location to inform condition classification was used to answer

the second objective of this study, which was related to the performance of machine learning

algorithms in identifying whether a patient is moving normally. The outcomes suggested that

the two conditions, normal and simulated-pathological, could be classified with high accuracy.

This might be because of the differences in the morphology of the accelerometer signals for each

condition. For example, the participants tended to walk slower under the simulated-pathological

condition in comparison to the normal condition. Therefore, the signals will differ in terms of

their amplitude and period, and this might influence the values of the features calculated. Two

distinct clusters of features might be created and the two conditions would be discriminated
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with high accuracy (Mannini et al. 2016). This might be a step towards personalised healthcare,

since it will enable the development of algorithms that could target solely the group of interest.

The detailed analysis of the wrist location about activity classification was used to answer

the third objective of this study, which was related to the performance of machine learning

algorithms in identifying different activities under normal and simulated-pathological conditions.

In general, the outcomes suggested that machine learning methods for activity classification

were more accurate for the healthy group than for the simulated-pathological group. For the

activity-type classification, the difference between the two results of the normal and simulated-

pathological conditions was low (1.7%). This suggested that activity-type classification can be

used to distinguish different states of physical activity, such as static and dynamic. According

to the clinicians stakeholders distinguishing between sedentary and active states is of great

importance, therefore this will be used as a feature of the desired system. Additionally, these

results confirmed that it is not only possible to develop algorithms targeting a specific group

of people, but also better classifications can be achieved. As demonstrated in chapter 3, the

results were improved when the algorithm was trained and tested with similar data. Based on

the activity-type classification results, it is assumed that clinicians will be able to distinguish

objectively whether their patients were mainly active or sedentary throughout a long period of

time. This will enable the clinicians to understand how much effective their treatment was, how

to continue the treatment plan and advise better the patients on what to do regarding their

physical activity.

For the activity-task classification, the difference between the two results of the normal and

simulated-pathological conditions was higher (9.8%) than the results of activity-type classifi-

cation (1.7%). This is because it becomes harder to correctly classify each individual activity.

For example, there are three walking activities (slow, normal, fast) that share similar sig-

nal shape but differ in some signal characteristics. This might become even harder when the

person-to-person variability is considered. The activity-task classification of the normal condi-

tion achieved higher (0.943%) performance than the classification of the simulated-pathological

condition (0.845). As demonstrated in chapter 4 , to achieve better step count results is im-

portant to be able to classify each individual activity. Therefore, the step count results will

be negatively influenced if the activity-task classification is not accurate enough. This suggests

there is a need for improvement for activity-task classification, especially for the pathological
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conditions. Some of the improvements could be to collect greater amount of data since the

machine learning algorithms are dependent on the amount of input data. Additionally, a more

complex machine learning algorithm will be developed in order to achieve better outcomes. For

example, if a Neural Network algorithm is used, instead of having just one layer more layers

would be used. In this study, only one layer was used because of the amount of data.

In machine learning a key to high performance is data. For example, the nature of data, the

amount of data and the calculation of the appropriate features to maximise the discrimination

of those features. From the above examples it was demonstrated that 1) the normal group

achieved higher performance than the simulated-pathological group in terms of activity-type

and -task classifications, 2) in both groups activity-type classification achieved better scores

than the activity-task classification. One of the reasons, for the normal group to achieve better

outcomes than the simulated-pathological group, might be the combination of the acceleration

signal with the calculation of the features. For example, the features representing the normal

group might had greater differences among them, hence better performance was achieved. On

the other hand, the features of the simulated-pathological group were closer together in some

cases, and this might have confused the algorithm to make the wrong prediction. To address

that, greater amount of data is essential. A similar reason might be responsible for the better

performance of activity-type classification in comparison to activity-task classification. As men-

tioned previously, the three walking activities will have features very similar to each other since

the shape of the signal is similar. Additionally, the variability of each person was considered

since supervised machine learning algorithms were used. In other words, the slow walk of one

person might be similar to the normal walk of another person. The supervised machine learning

algorithm uses the labels set to each chunk of data to calculate the accuracy and other perfor-

mance metrics. Therefore, the value of the feature might be similar, however the label might

be different. This might cause a confusion to the algorithm, and hence reduced performance is

achieved.

Of the five machine learning algorithms used for the activity classification, three were markedly

better. In all cases, the top three classifiers were Support Vector Machine, k-Nearest Neighbour

and Neural Network. Gaussian Näıve Bayes always had the worst performance, and Random

Forest always had the second worse performance. This was true when the algorithms were

trained on healthy data and tested on healthy data and when they were trained on simulated-
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pathological data and tested on simulated-pathological data. Regarding the Gaussian Näıve

Bayes, the reason for the poorer performance of this classifier might be due to the nature of

the dataset. Gaussian Näıve Bayes is named after the Gaussian distributions that represent

the dataset in the training dataset. Therefore, if our dataset does not follow the Gaussian

distributions, this means that the classifier will not perform at its best performance. The

Gaussian Naive Bayes algorithm was used as a baseline algorithm since no alterations were

made in its parameters. In general, based on how each algorithm works and the type of data

used, some machine learning algorithms are more suitable than the others. Therefore, this study

suggested that k-Nearest Neighbour, Support Vector Machine and Neural Network are suitable

for condition and activity classifications using accelerometer data.

The classification of specific tasks was useful in the context of step count, which is also considered

to be an important physical activity metric (Bassett et al. 2017). This is because steps are

objective, and they can easily be translated from scientific results into simple outcomes that lay

audience could understand. Additionally, steps can also be used to distinguish whether someone

is active or not, since being active might mean greater amount of steps (Bassett et al. 2017). In

this context, activity classification enables to filter out irrelevant data before trying to calculate

steps. This was taken into consideration, and hence tested in chapter 4. In this chapter, the

signal processing and machine learning methods showed that they could be used to estimate

step count for normal and simulated-abnormal gait at a range of walking speeds, but that step

count estimates were poor for abnormal gait.

Multiple existing approaches were investigated to estimate step count from accelerometer data.

Many algorithms work by firstly identifying gait period using a threshold. Following this,

methods such as peak detection or template-matching are often applied to count the number of

steps. Four standard approaches from the literature were compared against a new step count

algorithm (Palshikar 2009; Thanh et al. 2017; Dirican and Aksoy 2017; Micó-Amigo et al. 2016).

The results from the four standard approaches suggested that they achieved better performance

for the normal condition rather than the simulated-pathological condition. This has to do with

the nature of the acceleration signals. For example, the signals for both conditions are dynamic,

however the signals of the healthy group are simple and mainly periodic. The signals of the

simulated-pathological group are more complex and mainly periodic, however some participants

performed more sporadic movements. This was demonstrated by the results of the confusion
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matrices in chapter 3 where there were larger errors in the simulated-pathological condition

in comparison to the normal condition. Additionally, it was also demonstrated in chapter 5

because the template representing a single step was more representative of the signal in normal

condition in comparison to the simulated-pathological condition. The template was created

based on the periodicity of the acceleration signal since autocorrelation was used. The shape

and characteristics of the signal enables the calculation of step count results with higher accuracy

for the normal condition. It becomes harder to discriminate the correct number of steps when

the acceleration signal is irregular. Therefore, it might be beneficial to develop algorithms

that are tailored to specific group of people, hence the algorithm can be developed with greater

complexity and with specific parameters. Then, people with walking impairments can count the

steps undertaken with higher accuracy, which enables clinicians to take better decisions about

their patients. Additionally, although the results in general were acceptable for the normal

condition, most of the algorithms did not do so well for the slow walking activity.

Based on these findings, chapter 5 introduced a new step count method, template-matching

using Dynamic Time Warping. This outperformed the other four existing algorithms in most

scenarios, including normal and simulated-pathological gait. This might be because the idea

behind the new algorithm is to calculate the number of steps based on the shape of the accel-

eration signal rather than solely from the peaks of the signal. Another reason for the improved

results might be that the new algorithm took into consideration not only the peaks but the

combination of both peaks and troughs of the signal. This was decided because it became ap-

parent when the signals were visually inspected that in most of the cases the peaks and troughs

were almost identical. Therefore the combination of peaks and troughs provided better results

in comparison to the use of only the peaks. Hence, it was decided to consider both peaks and

troughs in order to have a more accurate average outcome regarding the length of the step. The

new algorithm is a step forward towards the development of an improved algorithm that could

be potentially used to count the number of steps of people with walking impairments.

The template-matching using Dynamic Time Warping did particularly well for slow walking

(normal condition), where most algorithms performed poorly. One of the reasons for the good

performance of the proposed algorithm for slow walking might be that an adaptive threshold

was used to take into account the estimated walking speed. This is of great importance since

the amplitude of the signal plays a key role in creating a representative template for a walking
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step. The value of the amplitude varies among different activities, therefore a threshold that

can be adapted based on each activity could possibly benefit the outcome of the algorithm. This

feature enables to get results of high performance, not only for people with the average walking

speed, but also for people who might walk slower than the average. Additionally, the walking

speed of each individual might vary, therefore if someone tends to walk with varied speed, the

results could still be accurate.

The initial plan for this thesis involved validating the algorithms developed in chapters 3, 4 and 5

for a new cohort of data from patients with pathological gait. However, it became apparent that

collecting real-world data from patients was going to be problematic because of the challenges

in conducting research on patients, especially during the COVID-19 pandemic.

Instead, methods for producing synthetic data were investigated. Systems for generating syn-

thetic data offer many advantages. Firstly, it is often time-saving and cost-effective to generate

synthetic data rather than collect real data, especially in the healthcare sector. This is because

the health data is sensitive and hence requires a time-consuming process until the collection of

data. Another benefit of generating synthetic data is associated with the privacy of the data

(Wang et al. 2019). When using synthetic data there is no issue of disclosing private data since

no confidential data is exposed publicly (Park et al. 2013), as only the essential statistical in-

formation are represented. This means that the data can be used by many researchers in order

to conduct their own research.

A mathematical model was developed to generate synthetic acceleration walking signals. The

model used three coupled differential equations to represent a three-dimensional space around

a circle of unit radius in a two-dimensional plane. Using this approach a one-dimensional signal

was derived in order to mimic the walking acceleration signals collected from the pilot study.

The shape and size of the one-dimensional signal were represented by the sum of Gaussian

exponentials. Put simply, each Gaussian distribution has a single peak, therefore four Gaussian

distributions were used to emulate the walking pattern. The alternative approaches identified

from the literature were not applicable for the scope of this thesis. For example, the pendulum

system required external information for every participant and also the ultimate result was

not acceleration. Therefore this was not a sufficient solution. Additionally, the Generative

adversarial networks approach seemed an effective method because the existing data is used

to create a greater amount of that data with some differences. This approach was not used
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because it is required to have a large amount of data in order to successfully develop realistic

synthetic data.

The periodic signals from normal gait were replicated relatively successfully. Real-world simulated-

pathological gait tended to be much less regular, with variability in the amplitude of the peaks

for each gait cycle. This variation was not well accounted for in the model, so the resulting

generated signals were qualitatively different to the original signal from which the morphology

was based. This means that we might need to increase the complexity of our mathematical

model to ensure that signals with higher complexity could be generated successfully as well.

This can be achieved by including a feature that could add a degree of irregularity to match

the irregularity of the real world signals.

Even though synthetic data offers many benefits, it has some limitations. While it can mimic

many properties of the original data, the current model was not able to emulate real world data

completely accurately. This is because often the models identify the general pattern (average) in

the original data, hence sometimes the authenticity of the data might be lost. This can be solved

by identifying second order patterns, where a better average representative could be developed.

In general, the quality of the synthetic data is based on the quality of the original data, therefore

it is important to be considered for any future work. However, a range of parameters will be

provided in this thesis to generate the synthetic signals without the need of developing the

whole model. Finally, a general drawback of the synthetic data is the acceptability to the user

because of perceived concerns over validity or representation of the real-world signal. The best

way to ease concerns is by validating the model with a large number of cases. Additionally, the

potential users of the synthetic dataset could be identified and then asked different questions

regarding the acceptability of the model. The researcher would try to develop a model that

covers the needs of the potential users. In terms of the technical performance of the simulated-

pathological signal, the developed synthetic pathological signals should be validated with real

pathological data.

7.1 Study limitations

Most of the limitations for each chapter have been discussed in the above section, however

there are some limitations that influence the results of all the chapters in general. These are

associated mainly with the data collected. The data was collected from 30 healthy volunteers.
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Even though this sample might be enough for a technical pilot study (Julious 2005), it is not

large enough to be considered representative of the real-world. For example, in UK more than

400000 people suffer from Rheumatoid Arthritis. Based on the study conducted by (Israel 1992),

the results showed that for more than a 100000 size of population, the sample size should be

1111, 400, 204 and 100 for precision of ±3%, ±5%, ±7% and ±10%. Therefore, to collect data

from a sufficient number of participants, more than 100 participants would ideally be recruited.

Additionally, each volunteer performed the nine activities twice, once under the normal condi-

tion and once under the simulated-pathological condition. This means that it was not possible

to explore repeatability of data from the same volunteer for a specific condition. For example,

if each volunteer had performed the activities two or three times for each condition, the intra-

subject variability of the results could have been tested. Understanding intra-subject variability

would be useful for developing refined personalised algorithms to have a more general overview

of how a volunteer performs the activities.

Another limitation is that volunteers performed the activities in a structured way in a labo-

ratory setting which limited the possibility of performing the activities as in real-life. Again,

the structured laboratory setting and the structured method are not ideal for performing the

activities, in which a single activity was performed at a time, obviously does not accurately

reflect real-life.

Lastly, and probably most importantly, healthy volunteers were asked to emulate patients with

walking impairments. Even though the data collected under simulated-pathological conditions

differs from the data under normal conditions, it is not truly representative of the real patient

population. However, the data were collected under controlled conditions and had the essential

characteristics to develop the desired algorithms. For example, participants performed the

activities with a slow shuffling gait. This data can be the basis for future refinement, since this

PhD was about providing an engineering solution, not to provide clinical data. The engineering

solution in this case can be considered as a proof of concept of a potential future engineering

solution to a known clinical problem. This might be another limitation, however for future

plan a prototype would be built to test the models developed. . The prototype would include

components such as ideal signal capture, training data, field test data and recessing approaches

(e.g. on board or online). The prototype was not part of this thesis.
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7.2 Generalisability & implications for further research

As mentioned previously, the data collection was undertaken in a laboratory setting and it is

likely that real-world performance would be poorer (Chowdhury et al. 2017). In a real-life en-

vironment, sometimes the activities are performed simultaneously and with greater complexity.

For example, the arms and legs swing during walking activity, however someone might talk on

the phone and hence one of the arms may not be swinging providing confounding inputs (Bui

et al. 2018). Additionally, the data that represents the physical activity of the user for a certain

period of time is likely more messy in comparison to the data collected in a laboratory (Dutta

et al. 2018). This is because the user performs several activities throughout the day, and these

activities are not performed in sequence.

Device use is also important, for instance the user might take off the device and then forget to

wear it again (Kosmadopoulos et al. 2016). For example, if the device is not waterproof, the

user may take it off before he/she takes a shower and then might forget to put the device again,

hence information about the user’s physical activity is lost. Electronic devices will need to be

charged and when this is being done, information about physical activity is not collected during

the charging the period. Again the users may forget to replace the device after charging or they

might forget to charge their device, and therefore data will be lost (Rodgers et al. 2019).

For future research, raw accelerometry could be potentially used, however to do this a large

dataset is essential as input in the deep learning algorithms. This is because these algorithms

require large datasets in order to work successfully. Common machine learning algorithms take

features as inputs instead of raw signals.

Since activity monitoring is an interesting and exciting topic for future work, a number of

recommendations for future research are given.

The first relates to acquisition of underlying data, specifically to collect data from: 1) larger

groups of healthy participants, 2) real patients with a range of different conditions and severity

of walking impairments, and 3) activities conducted in a real-life environment.

On a more technical level, another aspect for future research to explore is associated with the

step count algorithm developed for this thesis, template-matching using Dynamic Time Warp-

ing. The algorithm works well for the normal condition, and it works better than the existing

algorithms from the literature for the simulated-pathological condition as well. However, there
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is room for improvement when considering pathological gaits. The algorithm could be updated

to account better for variability and refined to be person-specific. This could be achieved by

first looking at how the algorithm can be completely automated in terms of the thresholds

used. Currently, a constant which was identified for each specific activity through trial and

error is used to calculate the threshold. The threshold can be considered partly-adaptive since

the constant is multiplied with a parameter (peak distance) identified from the acceleration

signal of each participant separately. For future work, it is suggested to have a completely

automated threshold that could be identified solely from the input signal, resulting in no hu-

man input requirement. In case the volunteer performs different walking speeds, the algorithm

should be able to adapt its essential thresholds according how each volunteer walked. Based on

the results from the simulated-pathological condition, it is demonstrated that person-specific

thresholds are required. This is because the simulated-pathological data were more variable and

hence the adaptable thresholds for each activity were not representative for all 30 volunteers.

For example, a constant was calculated based on the experimental results for each activity, and

then an adaptable threshold was calculated for each volunteer. However, the constant given for

each activity might differ from person to person, hence this constant could also be refined to

be adaptable based on the data from each person. The variability of the simulated-pathological

signals might be due to the fact that healthy people simulated the activities. This might result

in the creation of inconsistent gait cycles, although inconsistency in gait is a hallmark of many

disordered gait patterns (Esser et al. 2011; Del Din et al. 2019; Yamada et al. 2012).

In terms of the personalised healthcare, it may be useful to build an application to demonstrate

the outputs to both clinicians and patients. For example clinicians could have access to data

that shows the activity of the patient during a whole year. This could be of great help because

clinicians will have a better understanding of how much active their patient was, and that means

their decisions will be patient-specific and better informed. Step count is another important

objective measure for the clinicians to understand how active their patient has been. It can

be also used to identify the state of each patient in relation to other health variables. Also,

steps can be used as a common metric among all clinicians, and hence the results can be used

by any type of doctor (Bassett et al. 2017). Additionally, the patients might be able to access

their data at any time, and hence take a decision about their behaviour associated with their

disease and treatment. For instance, an RA patient could check his/her activity level through

the app, if the activity level is low the patient has the chance to try to increase the activity
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level at the desired daily goal. This can also be done by the number of steps taken daily and

steps can also be used as a motivational tool. Also, the app might automatically send reminders

and guidance to the patients about their activity levels. Additionally, wearables are available

with many different types of sensors, such as accelerometer, magnetometer, gyroscope, global

positioning system, pressure sensor etc. In a future study, multiple types of sensors could be

used simultaneously to achieve better results in terms of activity monitoring. For example, a

global positioning system could be used to locate the subject, and this might be used as another

parameter in identifying the activity performed.

Further research on synthetic signal generation for pathological gaits is warranted. The method

used for generating synthetic signals is not new, however it is new in the gait analysis field and

this method has not been used before to generate walking acceleration signals. For the normal

condition group, the method had worked well because of the nature and morphology of the

signals as aforementioned. For the simulated-pathological group, the results could be improved

by building a more complex model that includes the irregularity of the signals representing

impaired gaits. For future work, it might be essential to study in more detail the irregular-

ities of the signal formed by different pathological conditions. When this is understood, it

might be possible to use mathematical functions to represent those irregularities accurately.

Algorithms based on original data from real patients with a range of conditions will allow con-

struction of more representative models especially when combined with refined models. High

quality synthetic signal generation will potentially open many potential doors since data can be

acquired/generated faster and without any ethical constraints.

7.3 Summary

Currently, most existing activity monitoring apps perform poorly for those with significantly ab-

normal gait. This study has provided the first steps to address this, and has provided a series of

advances in understanding the technology that will provide a platform for future developments.

This project confirmed that wrist location is both preferable to patients and a technically

viable option for developing algorithms for activity classification, condition classification and

step count. For the activity classification, an accuracy score of 0.984 was reached. For the

condition classification, an accuracy score of 0.949 was reached. For the step count, an average

error for all the activities was 1.88, where the largest was 6.97 for the normal condition. Also,
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an average error of 11.52 was calculated, where the largest error was 55.86 for the simulated-

pathological condition. Using this location, the algorithm could differentiate the state of the

user, healthy or pathological. This is an important feature because it might be used to track the

progress of a patient (Trost and O’Neil 2014; Durstine et al. 2013; Pedersen and Saltin 2015).

Then, using the appropriate algorithms the activities can be classified with high accuracy in

both normal and pathological states, yielding accuracies of as 0.984 and 0.967 respectively. This

means that clinicians can be informed about the activity of their patients without having to

rely on their patients’ memory (Trost and O’Neil 2014). With respect to the activity of the

patients, clinicians should get also results with greater accuracy about the number of steps that

each patient has performed even when the person is severely compromised.

There remains work to do in terms of algorithm development, since there is a need for develop-

ment of person-specific algorithms, which will enable personalised healthcare, hence achieving

better results for the patient. This project showed that possibilities exist in the realm of per-

sonalised healthcare. For example, the step count algorithm template-matching using Dynamic

Time Warping showed that by using the morphology of each signal individually an algorithm

has the potential to produce results with high accuracy, since the root mean square error was

between 1.31 and 2.69. However, for the pathological gaits especially, the algorithm will need

to have greater complexity and consider more parameters in order to yield accurate results. In

comparison to the existing algorithms from the literature, the template-matching using Dynamic

Time Warping achieved better results for both normal and simulated-pathological conditions,

which demonstrates that this approach has the potential to be successful for the patient popu-

lation as well.

The development of person-specific algorithms would enable more accurate measures of activity

and step count to be collected. Therefore, remote monitoring can become a more standard way

of measuring the physical activity of patients.
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Appendix A

Stakeholder analysis

A.1 Introduction

The stakeholder analysis was led by the candidate with the help of the NIHR Leeds Biomedical

Research Centre’s Patient and Public Involvement team who provided a venue and practical

support to the sessions.

A stakeholder is defined as “any group or individual who can effect or is affected by the achieve-

ment of the project’s objective” (Freeman 1984). There are many benefits when seeing health

interventions from different angles. Firstly, it is important to understand the perspective of

a key decision maker. This will increase the chance of successfully implementing the project.

Secondly, knowing the concerns and expectations of the end users will increase the possibility

of having a successful product. Additionally, understanding multiple stakeholder perspectives

provides the chance to refine interventions and think of more innovative ideas to meet the widest

range of stakeholders needs. It is also possible to influence key stakeholders by knowing their

needs. Lastly, key stakeholders share their views and this might improve the quality and change

the way of thinking about a specific intervention (Hyder et al. 2010).

The main reason for conducting a stakeholder analysis for this project is to ensure understanding

of the user requirements, in terms of the characteristics of the ideal activity monitoring device

and platform. This section describes the process followed and the outcomes identified.
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A.2 Methodology

The stakeholder analysis follows a set of steps that any individual, organisation, or company

should follow, but each step can be executed with different methods. There are two basic steps

that are ubiquitous; firstly to identify the stakeholders and their interest in the project, secondly

to assess the importance and influence of each stakeholder (Jones 1976; Jepsen and Eskerod

2009).

Even though stakeholder analysis has been used widely, there is no agreed systematic approach

to identify and analyse stakeholders (Bryson 2004). Some techniques are widely employed in

stakeholder analysis (Ingen 2010; Schmeer 1999; Bryson 2004; Haleem 2008; Jepsen and Eskerod

2009) and a selection of these techniques, particularly those used for public/patient engagement

are described below:

A.2.1 Identifying stakeholders

The most relevant stakeholders for the particular project are patients, physiotherapists/clini-

cians, engineers and scientists. Table A.1 illustrates the characteristics of the stakeholders in

the current study.

A.2.1.1 Power versus interest matrix

This method is used to categorise the stakeholders and also to prioritise them (Bryson 2004).

A power Vs interest diagram consists of x- and y-axes. The x-axis represents the power of

stakeholders and the y-axis represents the interest of stakeholders over the project.

A.2.1.2 Stakeholder influence diagram

A power/influence matrix is developed to keep the project focus on the important stakeholders

(Bryson 2004). Similarly to power Vs interest diagram, an influence diagram consists of x- and

y-axes. In this case, y-axis represents the power of the stakeholders. And x-axis represents

the influence of the stakeholders. These terms might seem very similar, however influence is

voluntary, while power is forced.
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A.2.1.3 Bases of power - directions of interest diagrams

The particular diagram identifies the “powers” of each stakeholder that can influence the project

and their interests (Bryson 2004). This enables the team to identify any common interest

between the stakeholders. A diagram for each of the main stakeholders is developed with the

stakeholder’s name written in the middle of the diagram. The bases of power are written below

the stakeholder box with arrows pointing towards it. Lastly, the directions of interest are written

above the stakeholder box with arrows from the box pointing towards the interests’ box.

A.2.1.4 Stakeholder support versus opposition grids

This two-by-two matrix identifies the support, opposition and importance of each stakeholder

about the device (Bryson 2004). The x-axis represents the power of the stakeholders. The

y-axis represents the opposition and support of the stakeholders. The top row of the matrix is

about the stakeholders who support the project and the bottom row is about the stakeholders

who resist the project.

A.2.2 Interview and questionnaires

Hypotheses have been developed using different stakeholder analysis techniques targeting the

needs of patients and clinicians. The interviews and questionnaires were used to identify their

real perspective on different aspects about the wearable device.

Open-ended questions and questionnaires were developed for each stakeholder. The questions

were reviewed by the research team three times until finalising the questions. Since the stake-

holder analysis was performed to understand what the ideal device will look like, questions were

mostly related to features, specifications and appearance of the device.

Patients and clinicians were contacted via email. For the patients, a focus group of people with

RA was convened by the PPI manager of NIHR Leeds Biomedical Research Centre at Chapel

Allerton Hospital.

A.2.2.1 Patients

A.2.2.1.1 Interview questions The first step in developing the exploration questions was

to understand the reason for meeting with the patients. Based on the reason identified, several

questions were prepared in advance by the research team. Often, focus group meetings last
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for up to two hours. Therefore, this time duration was considered to identify an appropriate

number of questions to have for the first part of the meeting, the discussion. Nine exploratory

questions were designed for the RA PPI group discussion. The questions covered the following

areas: (1) the wearability of the device, (2) the interaction of patients with the device, and (3)

the captured information of the device.

A.2.2.1.2 Questionnaire A similar process was followed to develop the questions of the

questionnaire. The only difference between the questions on the questionnaire and those in the

discussion, were that the majority of those in the questionnaire were closed-ended questions. The

choices of each answer were based on different literature findings. The patients’ questionnaire

included 8 closed-ended questions and 2 open-ended questions (see appendix C).

A.2.2.1.3 PPI group session A brief introduction will be given to the participants about

the project. Then, the exploration questions will be followed to start discussing with the

patients. The reason for asking the open-ended questions first was to give the opportunity to

patients to think with their own opinion, instead of being influenced by the questionnaire’s

choices. And to ensure that everyone understood the project and that they did not have any

misunderstanding. Then, the questionnaires were given to the participants to fill them. The

researcher was there to supervise the patients if they required any help for completing the

questionnaire.

A.2.2.2 Clinicians

A.2.2.2.1 Interview questions A similar process was followed to develop the exploration

questions for the clinicians. Many different questions have been written down, and the research

team revised them three times to finalise the questions. Since clinicians have tight schedules,

four exploratory questions were selected for the discussion part of the session. In this case, the

questions covered technical aspects of the wearables that might influence the clinicians.

A.2.2.2.2 Questionnaire A similar process was followed to develop the questions in the

questionnaire in order to understand clinicians’ perspective. However, several closed-ended

questions were written, and the least important were removed. Finally, seven closed-ended

questions and two open-ended questions constituted the final questionnaire. In contrast to the

questions developed for the discussion, the questions in the questionnaire covered aspects related
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to: (1) wearability, (2) interaction, (3) captured information, and (4) clinical information related

to PA.

A second questionnaire was developed after the session with the PPI group. The reason for

developing a second questionnaire was for the clinicians to rank patients’ answers that were

given during the discussion. Four closed-ended questions were developed covering the captured

information, comfort, appearance, and features of the device.

A.2.2.2.3 One-to-one meetings The meetings with clinicians were one-on-one instead of a

group meeting. The main reason for that was their busy schedules, therefore it was not practical

to arrange a group discussion. At the beginning of each meeting, a summary of the project was

given to clinicians. Then, the interview questions were asked to start a conversation with each

clinician. The reason for starting with the exploration questions first was similar to the reason

given for patients. Clinicians might be influenced from the choices of the questionnaires, and

this was not the ideal case. Following that, the first questionnaire was given to the clinicians

for completion. The questionnaire 1 was about clinicians’ perspective for the wearable devices.

Then, the questionnaire 2 was given which was the ranking of patients’ answers.

A.3 Results

A.3.1 Identifying stakeholders

A priority list of stakeholders has been developed in a table to prioritise the stakeholders (see

Table A.1). The list includes information about the number of interviewees and the reason

and/or relation to the project. Additionally whether the stakeholder is internal or external to

the project (Schmeer 1999).
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Table A.1: General information on priority stakeholders to be interviewed.

Sector Subsector
Internal/
External

Interviees Relation to project

Patients
(End user
A)

People with RA,
related to patients
with RA and walking
impairments

External 9 Identify: 1) the charac-
teristics of device that
meets their needs as a
wearer, 2) the extra in-
formation they require
the device to provide

Doctors
/ Physios
(End user
B)

Rheumatologists,
Physiotherapists,
Podiatrists

External 3 Identify the most im-
portant information
that the device should
capture

A.3.1.1 Power versus interest matrix

Clinicians and patients have high interest and power towards the project. Figure A.1 demon-

strates the identified position of stakeholders. Clinicians have high interest because they will

improve their decision making regarding their treatment plans. Additionally, clinicians have

high power because if they decide not to use the system then the project might fail. On the

other hand, patients have high interest as well since this project might positively impact their

treatment. Another reason explaining their high power is that if patients decide not to use the

device, then the project might fail.

Figure A.1: Power Vs Interest Matrix
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A.3.1.2 Stakeholder influence diagram

It has been prioritised that patients and clinicians were the most important stakeholders for

this context. A power/influence matrix is developed to help to keep the project focus on the

important stakeholders (Bryson 2004). Since patients and clinicians have high power over the

project, they can significantly influence it. For example, they can influence the outcomes of the

project through the stakeholder analysis. The research team had identified gaps in the literature

in relation to wearable technology in RA patients. However, patients and clinicians might

suggest different opinions from their perspective which have not been identified in literature.

These opinions can inform the end product.

Figure A.2: Power Vs Influence Matrix

A.3.2 Creating ideas for strategic interventions

A.3.2.1 Bases of power - directions of interest diagrams

Two diagrams have been developed, one for each of the two most important stakeholder, PPI

and clinicians. Regarding the PPI group, the reasons that have power were: (1) they are the

end users, (2) the usability of the device, (3) they are experts for their condition and needs,

and (4) the wearability of the device. Clinicians were end users as well, they used the outcomes

from the device. Therefore, clinicians’ power can be described as: (1) end users, (2) they have

the medical knowledge about the patients’ condition, and (3) the usability of the information
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captured. These two groups shared similar interests. For example, they both care about the

information that will be captured from the device. Additionally, they both have an investment

in the features offered by the device. Patients were more interested about the comfort and

appearance of the device. Clinicians were interested to enhance their decision by having extra

information for the PA of the patients, which will be more accurate than questionnaires and

discussion with patients on a single visit twice a year.

Figure A.3: Bases of power – Directions of interest Diagram - PPI Group

Figure A.4: Bases of power – Directions of interest Diagram - Clinicians
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A.3.3 Techniques for proposal development review and adoption

A.3.3.1 Stakeholder support versus opposition grids

All stakeholders fall in the support category. Clinicians and patients are strong supporters since

both might be influenced positively from the outcome of the project.

Figure A.5: Support Vs Opposition Matrix

A.3.4 Interview and questionnaires

A.3.4.1 PPI group

A.3.4.1.1 Interview Patients expressed several thoughts about their ideal wearable. All

of their answers have been categorised in the three categories, (1) wearability, (2) interaction,

and (3) captured information as demonstrated in Table A.2 . Even though each question was

categorised in one of these sections, the answers of the patients were related to a mixture of

these categories.

211



A.3. Results Chapter A. Stakeholder analysis

Table A.2: Patients’ interview answers.

Wearability Interaction Captured information

Design Features Steps
Comfortable Provide feedback Activity duration
Accessible Working/Recording/Battery

light
Activity intensity

Compatible with patients Audio options Activity types
Robust Be identifiable easily Timing of activities e.g.

morning
Waterproof Motivation tool Pain level
Slip-on strap Linked to mobile Heart rate
Magnetic strap Battery life (once a week) Blood pressure
Clip-on device Data download (once a week) Seasonal information
Colour options Set goals
Thin Digital
Not medical look Design
Watch Buttons (usage)
Light (weight) Simplicity (usage)
Material (not sensitive to skin) Instructions/Communication
Small (size) Clear instructions (usage)
Placement Contact details available
Neck Clear benefits
Not inflamed positions Charging instructions
No ankle Alert signal

A.3.4.1.2 Questionnaire Of the nine patients who contributed to the interviews, eight

provided further feedback on the questionnaire. Based on the answers of the first questionnaire

question, six of the participants were positive about using an activity monitor, one was negative,

and the other one was ambivalent. Additionally, six of the participants had a smartphone, and

two did not have a smartphone.

One of the questions was regarding the preferred placement of the device. Participants had the

chance to select more than one placement. All respondents selected wrist, one selected waist as

well, and another two selected chest as well as wrist. One of the options was ankle placement

since is the most common and accurate location for step counting (Fortune et al. 2015), however,

none of the participants selected this option. During the discussion, they strongly agreed that

ankle placement is not suitable for them, which is mostly due to their joint involvement which

makes it difficult to bend to apply and interact with a device at ankle level.

Regarding questions about the minimum number of days between battery charges, and also

between days to download the data, the results were very informative. Five participants selected
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that the minimum number of days to charge the device and download the data is between seven

to nine days. Two selected four to six days to download the data, and three selected four to six

days to charge the device. One of the participants selected two boxes, 4-6 and 7-9 for charging

the device and for downloading the data.

Regarding the features that the accompanying software application might potentially offer, all

participants selected to be notified in terms of their activity levels and to record their daily

activity performance. Six of the participants also wished the application to record level of pain

and feelings.

Participants ranked their perception of the importance of the different types of information,

with “1” being the most important, and “7” being the least important. Seven options were

provided, 1) active Vs sedentary, 2) number of steps, 3) walking, 4) sitting, 5) standing, 6) sit-

to-stand, and 7) time spent on each activity daily. Some of the participants ranked more than

one option with “1” or other number. Table A.3 demonstrates which activities were selected.

The most important activities selected were the number of steps, walking, and time spent on

each activity daily.

Table A.3: Information to be captured (1 – most important; 7 – least important).

Rank 1 2 3 4 5 6 7

Active Vs Sedentary 0 2 0 3 0 1 2
Number of steps 3 2 1 0 1 0 1
Walking 3 3 0 1 0 1 0
Sitting 0 0 2 3 2 0 1
Standing 0 1 2 1 0 4 0
Sit-to-stand 0 0 2 0 4 0 2
Time spent on each activity daily 3 1 2 0 0 1 1

The most important specification for the device as ranked by half of the participants was to be

comfortable. Additionally, the appearance was quite important to them, hence they suggested

that they prefer the device to not look like a medical device. Attachment and accessibility were

also important. Table A.4 shows how participants ranked the specifications of the device.
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Table A.4: Device specification (1 – most important; 5 – least important).

Rank 1 2 3 4 5

Comfort 4 2 1 0 0
Discreteness 0 0 0 4 3
Appearance 2 0 2 1 2
Accessibility 1 2 2 2 0
Attachment 1 3 2 0 1

A.3.4.2 Clinicians

A.3.4.2.1 Interview Similarly to PPI group, the interview answers given by the clinicians

have been categorised in the following categories: wearability, interaction, and captured infor-

mation.

Table A.5: Clinician’s interview answers.

Wearability Interaction Captured information

Robust Download data
automatically

Feelings Overall activity level

Easy to put
on/off

Set goals Struggling activities Steps

Placement
options

Simple to use Track progress based on inter-
ventions, medications, disease
activity

Walking speed

Waterproof Download data
fast

Comparison system - patient A
Vs patients RA Vs Norms

How much they do in
one go

A.3.4.2.2 Questionnaire The following results are based on three clinician’s perspective.

Questionnaire 1 is about the clinicians’ perspective for the device. Questionnaire 2 is about clin-

icians’ perspective about patients’ interview answers. Similarly to the patients’ questionnaires,

“1” is the most important, and the higher number (6 or 7 or 8) is the least important.

A.3.4.2.2.1 Questionnaire 1 Two of the clinicians selected that seven to nine was the

minimum acceptable number of days to charge the battery of the wearable and to download the

recorded data. And one of the clinicians selected that one to three was the minimum acceptable

number of days to charge the battery of the wearable and to download the recorded data.

Regarding the placement of the device, wrist and ankle were the preferred locations. Moreover,

clinicians mentioned that they measure the physical activity of their patients subjectively using

questionnaires. The records were stored on paper, electronically in a document format or
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electronically in a platform. Additionally, the clinicians indicated that an appropriate cost for

the device should be between £0-100. Lastly, the clinicians were asked whether they believe that

this project might benefit them. They suggested that this project will aid to: (1) understand

the areas of difficulty that the patient suffers from and the impact of different interventions,

(2) provide accurate feedback to the patients about their activity, and (3) predict and prevent

injuries since they often occur after a period of inactivity.

Table A.6: Information to capture (1 – most important; 7 – least important).

Rank 1 2 3 4 5 6 7

Active Vs Sedentary 3 0 0 0 0 0 0
Number of steps 0 1 1 1 0 0 0
Walking 0 0 1 1 0 1 0
Sitting 0 0 0 0 1 0 2
Standing 0 0 0 0 1 1 1
Sit-to-stand 0 0 0 1 1 1 0
Time spent on each activity daily 0 2 1 0 0 0 0

Table A.7: Activity monitor features (1 – most important; 7 – least important).

Rank 1 2 3 4 5 6 7

Screen 1 0 1 1 0 0 0
Water resistant 1 1 0 0 0 0 1
Sleep tracking 0 0 0 1 1 0 1
Heart rate monitor 0 0 0 1 2 0 0
Temperature sensor 0 0 0 0 0 2 1
USB connection 0 1 1 0 0 1 0
Bluetooth 1 1 1 0 0 0 0

Table A.8: Information to capture (1 – most important; 6 – least important).

Rank 1 2 3 4 5 6

Pain 0 2 0 0 1 0
Heart rate 0 0 1 0 2 0
Steps 0 0 0 2 0 1
Blood pressure 0 0 0 1 0 2
Activity duration 2 0 1 0 0 0
Activity intensity 1 1 1 0 0 0
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Table A.9: Comfortability (1 – most important; 6 – least important).

Rank 1 2 3 4 5 6

Slip on wrist 1 0 0 2 0 0
Round the neck 0 0 3 0 0 0
Clip-on device 1 1 0 0 0 1
Location that it is not inflamed 0 1 0 1 1 0
Thin that can be worn a bit higher of the wrist 1 1 0 0 0 1
Materials that are not sensitive to the skin 0 0 0 0 2 1

Table A.10: Appearance (1 – most important; 7 – least important).

Rank 1 2 3 4 5 6 7

Something that does not look medical device 0 0 2 1 0 0 0
Colour options 0 0 0 0 0 1 2
Watch 0 1 1 1 0 0 0
Light (weight) 2 1 0 0 0 0 0
Material 0 0 0 0 1 1 1
Light (working/battery/recording) 1 1 0 0 0 1 0
Audio 0 0 0 2 1 0 0

Table A.11: Offered features (1 – most important; 8 – least important).

Rank 1 2 3 4 5 6 7 8

Waterproof 0 0 0 1 1 0 0 1
Setting goals 0 2 1 0 0 0 0 0
Motivation tool 0 1 2 0 0 0 0 0
Daily feedback 1 0 0 1 1 0 0 0
Audio 0 0 0 0 1 1 1 0
Digital 1 0 0 0 0 1 1 0
Alert signal 1 0 0 1 0 0 0 1
Identifiable 0 0 0 0 0 1 1 1

A.3.4.2.2.2 Questionnaire 2

A.4 Discussion

A.4.1 Stakeholder analysis techniques

A.4.1.1 Identifying stakeholders

Patients and clinicians are the most important stakeholders since their opinion might influence

the features of the end product and the lifetime of the project.
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It is important to understand the perspective of patients because they are the end users of the

device. There is no point in developing a device that it is unacceptable or useless to the patients.

Understanding the perspective of clinicians is equally important. This is because clinicians are

end users of the output of the device. It is important to ensure that the information that

clinicians get is usable and useful to them.

A.4.1.2 Power versus interest matrix

As already mentioned, patients and clinicians have the power to undermine the project if their

involvement is not prioritised. This is the reason that they have high power at the power

Vs interest matrix. Similarly, clinicians and patients have great interest in the project. The

extra information that clinicians will get, it might help them in their decision-making. And if

clinicians take better decisions, then more effective treatment plans will be given to patients.

Additionally, through the device, patients might be motivated to be more active.

A.4.1.3 Stakeholder influence diagram

As already demonstrated, patients and clinicians have high power and influence. Both groups

have the power to fail the project by not agreeing to take part. But also, they can both influence

positively the project by suggesting different ideas from their perspective. The research team

will be able to develop a system that covers the needs of both groups, and therefore the usage

of the system will be effective towards clinicians and patients.

A.4.1.4 Bases of power - directions of interest diagrams

The research team has hypothesised that the “PPI group” and “clinicians” share common

powers and interests. The shared powers of these two groups are that both will be end users,

and the usability of each user will be important. If the majority of each group does not use the

device/application, then the project might fail. Patients also have the power of being experts

regarding their condition and needs. Clinicians though have the medical knowledge about the

condition of the patients. Therefore, they know what type of information is important to know

for enhancing the treatment of patients. Clinicians also have the power to use or ignore this

extra information that has been provided to them.

Additionally, the two groups share similar interests, such as information to capture and the

offered features of the device/application. Since patients will be using the device, their first
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interest might be about the information that wearable will capture and offer to them. Clinicians

might be interested about the offered features of the device since these features might influence

the captured and offered information. Moreover, they might be interested to enhance their

decision-making on patients’ treatment. This will be done using the extra available information,

which will be accurately recorded.

A.4.1.5 Stakeholder support versus opposition grids

Both stakeholders are supporters for this project. Clinicians and patients are strong supporters,

because both groups will be positively influenced through this project.

A.4.2 Interview and questionnaires

A.4.2.1 PPI Group

A.4.2.1.1 Interview The WHO suggested that the FITT principle can be used to monitor

how active you are (Verlaan et al. 2015). Patients have included three of the four aspects of

this principle in the information that they like the device to capture. Intensity, type and time

have been mentioned, and frequency not.

They also suggested that the time of the day and the season is important to them. This

is because their pain, fatigue, and stiffness levers are changing based on these two factors

(Rojkovich and Gibson, 1998; Feldthusen et al., 2016). There is also data to show PA varies by

season and weather changes (Tucker and Gilliland 2007).

Patients would also like to know their blood pressure. At the moment, no such sensor has

been developed for this purpose. This makes it difficult for the research team to implement

this idea. Regarding the heart rate sensor, other studies have combine accelerometers with

heart rate sensors. Their findings demonstrated positive results, therefore this suggestion will

be considered.

Moreover, patients have asked to record their pain level. Even though there is no sensor available

to record pain, this project might provide patients a device or an application to track their pain.

This might be useful for both patients and clinicians.

In terms of the features of the device, patients suggested several ideas that already exist in the

market. For example, setting goals, used as a motivation tool, the device to be digital, be able
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to connect with smartphones and have audio options.

They suggested also that they would like the device to have lights showing when it is working,

recording, and charging. This is because they are not familiar with technology. Additionally,

the device should have a feature that makes easy to identify if lost.

RA patients experience joint problems, therefore many have reduced dexterity. They suggested

any buttons on the device should be simple to use. Additionally, the devices might fall several

times and hence it has to be robust. Several things that patients expressed about the device

did not come to my attention in the literature. First of all they were all unwilling to wear the

activity monitor on their ankle. They prefer wrist location, with a slip-on or magnetic strap

instead of buckle. Additionally, the device should be thin and light weight in order to be placed

a bit higher than the wrist.

These were the most important findings from the discussion with patients. Some of their

suggestions are applicable, but some others are difficult to implement. However, all answers

will be carefully considered.

A.4.2.1.2 Questionnaire Patients agreed that seven to nine days is a sensible number of

days to download or transfer data. However, charging the device every seven to nine days will

be difficult. This is because the device will be used continuously throughout the day, and most

devices in the market can be left uncharged for maximum three/four days. Although it is a

challenging problem, when the algorithms will be developed the battery life of the device will

be carefully considered. The ideal scenario is to produce algorithms of low power consumption

and increased battery life.

Comfort was the device specification most highly ranked by patients. They also expressed that

appearance is quite important to them. In the early stage of the project, appearance might be

ignored since the aim of the project is to develop a device that works accurately. Appearance

can be modified at the end stage of the project based on patients’ ideas and needs.

A.4.2.2 Clinicians

A.4.2.2.1 Interview Equally important was to understand clinicians’ perspective and iden-

tify any similarities or differences between clinicians and patients’ views. The comparison system

would give the opportunity to clinicians to compare the PA of the individual patient with the
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average PA of a group of patients. Each group will consist of subgroups with their own average

values based on age and gender. This will help them to understand whether a treatment that

they provided is working or not. Additionally, the system will be able to compare the individual

patient with norms. Since clinicians try to help patients to have a “normal life”, the system will

help them to compare patients with norms. The clinician suggested the device to be position

independent. This is to give patients the opportunity to place the device in their ideal position,

and hence clinicians will still get the desired PA information. Additionally, the suggestion of

having a system that can measure the quality of the exercise of each patient would be valuable.

For example, being able to identify the quality of walking activity of a patient with walking

impairments.

A.4.2.2.2 Questionnaire Two of the clinicians selected seven-to-nine days and one clin-

ician selected one-to-three for downloading data and charging the device and also noted that

wrist and ankle were their preferred location for wearing the device.

The clinicians validated literature in terms of how they measure PA. They do not measure PA

objectively, but subjectively through patients’ reported activity. Therefore, currently clinicians

do not have an accurate overview of the PA of the patients.

The top three answers for the most important information to capture were: 1) how active or

sedentary the patients were, 2) the time spent on each different activity daily and 3) the number

of steps. These factors will inform clinicians about the PA of patients. The benefits of being

active are well known, however patients still tend to be inactive. This is because they might

experience pain, joint stiffness, and/or fatigue. When clinicians have an overall overview of the

PA of patients, they can advise them what they should do to become more active, and vice

versa.

Questionnaire 2 was given to the clinician to rank the patients’ answers with a clinical view.

This is done to prioritise the importance of the patients’ answers. In terms of the captured

information, excluding PA tracking, measuring activity duration was the most important. Clin-

icians ranked as least important blood pressure. If this is the case at the end of the stakeholder

analysis, then this sensor will not be considered. Moreover, clinicians agreed that the device

should be thin, light and be worn as slip-on. It will be easier for the patients to wear the device,

and it will be more comfortable. The device is preferred to have a watch look rather than a
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medical device appearance, and also have a light that shows to the wearer whether the device

is working or not. Lastly, the top ranked features from the clinicians were the device to be used

as a motivational tool and to set goals. This will help the patients while they are using the

device, and also to keep using the device.

A.5 Summary

Stakeholder analysis has helped understand the end users perspectives and needs in order to

develop a usable device. Several stakeholder techniques have been followed prior the meeting

with the stakeholders. This was essential to identify the key stakeholders, and how they could

be approached. Additionally, several interview questions and questionnaires regarding each

stakeholder have been developed.

The three most important findings from the stakeholder analysis until now are:

1. Active Vs sedentary, step counts, and time spent on each activity is clinically important

2. Patients will not wear a monitor on their ankle

3. Clinicians would benefit from a system that compares a RA patient, with a RA group and

norms
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Interview questions for clinicians: 

 

1. What information would be useful for you to know regarding the physical activity of the patients? 

 

2. What technical specifications would you like the wearable device to have? 

 

3. How do you think a wearable device should be in order to be usable for a clinician? 

 

4. What would be an appropriate amount to buy such a wearable device?  

 



Stakeholder analysis interview questions  

Clinicians (RA focused) / Physiotherapists 

Please tick and complete where appropriate 

A. Rheumatoid arthritis related questions 

1. How often do RA patients visit the hospital for a check-up/medical appointment in a year? 

1 2 >5 >10 

    

2. Which activities do the patients commonly carry out in their everyday life?   

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

3. What is the most common range of age that suffers from the RA disease/condition?  

<10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 >81 

         

B. Technology related questions 

4. Do you currently use any technologies in your work area?  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

5. Do you currently use any technology in your medical appointments to measure PA? If yes, 

please state. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

6. How do you currently store the patients’ record?  

On paper Electronically – in a document format Electronically – Platform 

   

7. Which of these monitors do you believe is the most suitable for the RA patients and why? 

(Valeria will provide monitor information to the clinicians)  

A B C D E F G H I 

         

C. General questions 

8. Have you heard something similar to this project?  

Yes No 

  

9. Do you believe that this project can benefit you? If yes, please explain. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

 

 



Stakeholder analysis interview questions  

Clinicians’ perspective on PPI group views 

1. Information to capture. Please rank your preferences (1-6,[1:most important, 6:least important]) 

Measure 

pain 

Measure 

heart rate 

Measure 

steps 

Measure blood 

pressure 

Measure activity 

duration 

Measure activity 

intensity 

      

2. Comfortability. Please rank your preferences (1-6,[1:most important, 6:least important])  

Slip on  Round the 

neck 

Clip-on 

device 

Location that it 

is not inflamed 

Thin that can be 

worn a bit higher of 

the wrist 

Materials that are 

not sensitive to the 

skin 

      

3. Appearance. Please rank your preferences (1-7,[1:most important, 7:least important]) 

Something that does 

not look medical 

device 

Colour 

options 

Watch Light 

(weight) 

Material 

made of 

Light 

(working/battery

/recording) 

Audio 

       

4. Offered features. Please rank your preferences (1-8,[1:most important, 8:least important]) 

Waterproof Setting 

goals 

Motivation 

tool 

Daily 

feedback 

Audio Digital Alert 

signal 

Identifiable 

        

 



Interview questions for PPI group: 

 

1. How can we make sure that this device will be used by people with RA? 

 

2. What would be useful/helpful for you this device to capture? 

 

3. What do you think of this idea? 

 

4. In terms of comfortability, do you have something in mind? 

 

5. In terms of appearance, do you have something in mind?  

 

6. What features do you expect the device to offer?  

 

7. What is the minimum number of days that you would like to charge your device?  

 

8. Do you mind if you need to download the data every seven days? 

 

9. Is there any reason that you would not wear such a device? If yes, please explain.  

 



Stakeholder analysis interview questions  

Patients’ perspective on physical activity monitors 

1. Would you use an activity monitor?  

Yes  No 

  

2. Do you have a smartphone? 

Yes  No  

  

3. Where would you prefer to wear the activity monitor? 

Wrist Waist Hip Ankle Chest 

     

Other suggestions:  

________________________________________________________________________________

________________________________________________________________________________ 

4. What aspects of the appearance of the monitor would affect your willingness to wear it?  

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

5. Which specification is the most important to you? Please rank your preferences (1:most important)  

Comfort Discreteness Appearance Accessibility Attachment  

     

Other suggestions:  

________________________________________________________________________________

________________________________________________________________________________ 

6. What would be the minimum acceptable number of days between battery charges?  

1-3 4-6 7-9 10-12 13-15 16-18 19-21 22-24 25< 

         

7. What would be the minimum acceptable number of days between data downloads? 

1-3 4-6 7-9 10-12 13-15 16-18 19-21 22-24 25< 

         

8. What information you would like the activity monitor to capture? Please rank your preferences 

(1:most important) 

Active Vs 

Sedentary 

Periods 

Number 

of steps 

Walking Sitting Standing Sit-to-stand 

transitions 

Time spent on each 

activity daily 

       

Other suggestions:  

________________________________________________________________________________

________________________________________________________________________________ 

9. What features would you like an associated mobile app to include?  

Notifications in terms of the 

activity level 

Record level 

of pain 

Record 

feelings 

Record daily 

activities 

    

Other suggestions:  

________________________________________________________________________________

________________________________________________________________________________ 

10. How do you believe that activity monitoring might benefit you? 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 
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Activity description document  

Stand in a relaxed position whilst the researcher attaches activity monitors to the wrist and ankle – 

elastic straps/bands will be used to keep in place the monitors 

Jump at the start and end point of the selection of activities (Jump at the start (before lying down) and 

at the end (after stairs) of the activities) 

You will perform a predetermined selection of activities of daily living – healthy (normal) 

You will perform a predetermined selection of activities of daily living – simulated patient (abnormal)  

- Normal Vs Abnormal (shuffling gait)  

- Shuffling gait: A gait in which the foot is moving forward at the time of initial contact or during 

mid-swing, with the foot either flat or at heel strike, usually accompanied by shortened steps, 

reduced arm swing and forward flexed posture. 

 

 

- Activities are carried out continuously, not in isolation.  

o Lying down (30 seconds) 

o Sitting (30 seconds) 

o Standing (30 seconds) 

o Sit-to-Stand (5 times) 

o Slow walking (0.4-0.5 m/s) - (self-paced) 

o Normal (self-paced) walking 

o Brisk walking (0.8 m/s) - (self-paced) 

o Stairs (ascending/descending – 12 steps)  
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Abstract— Wearable devices offer a possible solution for 

acquiring objective measurements of physical activity. Most 

current algorithms are derived using data from healthy 

volunteers. It is unclear whether such algorithms are suitable in 

specific clinical scenarios, such as when an individual has altered 

gait. We hypothesized that algorithms trained on healthy 

population will result in less accurate results when tested in 

individuals with altered gait. We further hypothesized that 

algorithms trained on simulated-pathological gait would prove 

better at classifying abnormal activity. 

We studied healthy volunteers to assess whether activity 

classification accuracy differed for those with healthy and 

simulated-pathological conditions. Healthy participants (n=30) 

were recruited from the University of Leeds to perform nine pre-

defined activities under healthy and simulated-pathological 

conditions. Activities were captured using a wrist-worn MOX 

accelerometer (Maastricht Instruments, NL). Data were 

analyzed based on the Activity-Recognition-Chain process. We 

trained a Neural-Network, Random-Forests, k-Nearest-

Neighbors (k-NN), Support-Vector-Machines (SVM) and Naive 

Bayes models to classify activity. Algorithms were trained four 

times; once with ‘healthy’ data, and once with ‘simulated-

pathological data’ for each of activity-type and activity-task 

classification. 

In activity-type instances, the SVM provided the best results; the 

accuracy was 98.4% when the algorithm was trained and then 

tested with unseen data from the same group of healthy 

individuals. Accuracy dropped to 52.8% when tested on 

simulated-pathological data.  When the model was retrained 

with simulated-pathological data, prediction accuracy for the 

corresponding test set was 96.7%. Algorithms developed on 

healthy data are less accurate for pathological conditions. When 

evaluating pathological conditions, classifier algorithms 

developed using data from a target sub-population can restore 

accuracy to above 95%.  

 

Clinical Relevance— This method remotely establishes health-

related data of objective outcome measures of activities of daily 

living.  

I. INTRODUCTION 

Physical activity (PA) significantly influences people’s 
health and well-being, and helps prevent and delay onset of 
several chronic non-communicable diseases [1]. Several 
methods have been used previously to measure levels of 
activity in people. Such methods include large and expensive 
laboratory systems [2], and inexpensive, but time-consuming, 
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subjective measures such as questionnaires, surveys and 
diaries [3].  

Recent advances in commercial wearable technology has 
led to multiple devices that can enable PA to be assessed 
objectively. Of these, the accelerometer is commonly used for 
quantifying activity intensity and counting the number of steps 
[4]. Accelerometers are inexpensive, easy to use and long-
lasting. However, common algorithms, including those used in 
consumer devices, are designed to be accurate for an 
archetypal healthy user and so may not be representative of 
subgroups such as those with chronic diseases that affect gait 
[5], [6]. Research to date has used accelerometers to classify 
activities and number of steps in moderately healthy patient 
populations [7], [8]. 

Our aim was to carry out a proof of concept study to 
investigate the performance of activity recognition algorithms 
using accelerometer data when trained on healthy individuals, 
but tested under healthy as well as unusual (simulated-
pathological) gait conditions. We used a simulated-
pathological condition, since recruiting actual patients was 
considered infeasible and impractical, especially given the 
exploratory nature of the current work. 

We hypothesized that automated algorithms trained to 
identify types of physical activities in healthy participants 
would perform less well on participants when simulating a 
pathological gait. 

II. METHODS 

A. Recruitment process 

Participants were recruited via email and word of mouth 
from the staff and students of the University of Leeds. 
Participants were considered eligible for inclusion if they 
could walk freely without pain for two minutes. All 
participants were healthy, without any musculoskeletal 
condition or any condition affecting their gait. Participants 18+ 
years of age were recruited and, all participants gave informed 
written consent. Local ethical approval was provided by the 
University of Leeds (Ref #: MREC16-172). 

B. Data acquisition 

1) Data Sources 
Each participant wore a MOX tri-axial accelerometer 

(Maastricht Instruments, Maastricht, NL) (dimensions: 
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35×35×10mm, weight: 11g). The 
device was held in place on the non-
dominant wrist by an elasticated strap. 
The accelerometer had a measurement 
range of ±8g and a sampling frequency 
of 100 Hz. Recorded signals were 
stored locally on the accelerometer’s 
internal memory (2GB) as a binary file 
that was downloaded upon the 
completion of each participant trial. 

Our gold standard was a video recording of each participant. 
We used slow motion playback of videos to label the 
accelerometer data with the number of steps and to define the 
start and end time of each activity. This was cross-verified by 
an independent observer three times. The camera followed at 
approximately 2m from the participants. 

2) Experimental protocol and set-up 
Before attaching the activity monitor, participants were 

instructed that they would be performing nine activities: lie 
down, sit, stand, stand-to-sit, slow walk, normal walk, fast 
walk, walk upstairs, walk downstairs. Upon monitor 
attachment, the participant was asked to jump once to facilitate 
alignment of the video and accelerometer. After the jump, the 
participant performed the nine activities sequentially, and was 
reminded of each task. Participants were asked to jump once 
again after activities had been completed. 

Each set of activities were performed twice, once under 
healthy conditions, and once under simulated-pathological 
conditions. For the simulated-pathological conditions, 
participants were asked to repeat the series of activities using 
a shuffling gait and to perform the activities more slowly. A 
shuffling gait was defined as when the foot is moving forward 
at the time of initial contact or during mid-swing, with the foot 
either flat or at heel strike, usually accompanied by shortened 
steps, reduced arm swing and forward flexed posture [9]. Such 
gait is a common marker of diseases such as severe rheumatoid 
arthritis and stroke. A written description, figure and video of 
shuffling gait was given to the participants prior to data 
collection. Participants were free to practice before data 
acquisition began. 

C. Data processing  

1) Data extraction  
The binary files from the accelerometer were imported into 

Python™ (v3.6) for analysis. The extracted text files contained 
three columns of acceleration data, representing acceleration 
along the three principal axes. 

To reduce the impact of high frequency random noise 
generated during data capture (caused, for instance, by muscle 
contraction), the accelerometer signal was filtered using a 6th 
order Butterworth filter with a 3Hz cutoff. The frequency of 
human activity is between 0-20 Hz and almost all of the signal 
energy is contained below 3 Hz  [10]–[12].  

We then derived five continuous signals from the 3-axis 
accelerometer data: dynamic accelerations, total magnitude, 
jerk, angular velocity and inclination angles. 

Dynamic accelerations were calculated by averaging the 
readings on each direction, and then subtracting the 

corresponding average value from the raw acceleration signal. 
Total magnitude was calculated as: 

𝑎𝑐𝑐 = √𝑥2 + 𝑦2 + 𝑧2 

Jerk is the rate of change of acceleration. A first order 
approximation was estimated from the acceleration signal as: 

𝑗𝑒𝑟𝑘 = (𝑎𝑐𝑐𝑡+𝑇 − 𝑎𝑐𝑐𝑡)/𝑇 

Where T is the sampling period. Angular velocity was 
identified by calculating the angle between the acceleration 
vectors in the current and the previous point. The 
accelerometer registers the data at equal time intervals. 
Therefore the angle between the vectors provides the angular 
velocity: 

cos(𝑖, 𝑖 + 1)  =   
(𝑥𝑖𝑥𝑖+1 + 𝑦𝑖𝑦𝑖+1 + 𝑧𝑖𝑧𝑖+1)

(√𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 × √𝑥𝑖+1

2 + 𝑦𝑖+1
2 + 𝑧𝑖+1

2 )
  

Inclination angle was calculated for each direction. 

𝜙𝑥 = arccos (𝑥2 𝑎𝑐𝑐⁄ ) 

The continuous data were split into a series of short time 
windows, in which the signal may be approximated as 
stationary. We used windows of 200 samples, corresponding 
to a time period of 2 seconds, exceeding the Nyquist limit 
required to detect slower gait and within the range of window 
lengths proposed in prior research [13]. 

Each window was manually labelled with a specific 
activity task and assigned to one of three broader activity 
types (static, dynamic, transition) using the video gold 
standard. Each activity task corresponded to an activity type. 
Dynamic activity tasks were slow walk, normal walk, fast 
walk, ascending and descending stairs. Static activity tasks 
were lying, sitting, standing. The transition activity type 
comprised the stand-to-sit task only.  

2) Feature extraction and selection 

From the acceleration time series in each window, we 
extracted a set of 120 summary features to represent the 
acceleration (x, y, z, t), jerk (x, y, z, t), angular velocity and 
inclination angle (x, y, z) signals. The features derived were 
time-domain (mean, standard deviation, kurtosis, skewness, 
root mean square, interquartile range, power spectral density) 
and frequency-domain (energy, max frequency, max 2nd 
frequency, mean frequency, entropy). A reduced number of 
linear combinations of these features were selected using 
principal component analysis (PCA). A cut-off total 
explained variance of 0.95 was set on the explained variance. 
By reducing the dimensionality of the feature set, we limited 
the risk of overfitting subsequent classification models. The 
features were reduced to 25 and 30 principal components for 
healthy and simulated-pathological groups respectively. 

Figure 2: Accelerometer 

location and axis 

orientation  
Figure 1: Time-series acceleration signal 
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The PCA feature set was then used as input to a selection 
of five machine learning classifiers: back-propagation Neural 
Networks (NN), Random Forests (RF), Support Vector 
Machines (SVM), k-Nearest Neighbours (kNN), and Naive 
Bayes (GB). These classifiers have been commonly used for 
clinical classification problems [14]–[16]. The parameters 
used for each algorithm are shown in table 1. 

Each classifier was assessed on its ability to classify both 
activity type and activity task. We conducted three 
algorithmic scenarios: 

1. trained on healthy data; tested on healthy data (H/H) 
2. trained on simulated-pathological data; tested on 

simulated-pathological data (S/S) 
3. trained on healthy data; tested on simulated-

pathological data (H/S). 

Performance was assessed using accuracy [14]. For 
scenarios (1) and (2), performance was estimated using 10-
fold cross validation, and we report the mean performance. 
For scenario (3) all relevant data were used for training and 
testing. 

III. RESULTS 

The mean age of participants was 32.7 years (s.d 12.7). Of 
the 30 participants, 14 identified as female. Their mean height 
was 171.5 cm (s.d 7.1) and their mean weight was 69.2 kg (s.d 
13.6). 

The highest level of accuracy for activity classification was 
achieved using SVM and k-NN in activity-type and activity-
task groups respectively (Table 2). All ML approaches 
demonstrated higher accuracies for the broader activity-type 
identification than for specific activity-task identification. The 
SVM and k-NN classifiers achieved an accuracy of 98.4% and 
94.3% for activity-type and activity-task identification 
respectively in classifiers trained on healthy data (H/H). When 
these classifiers were applied to simulated-pathological data 
(H/S), to replicate real world use of wearable accelerometers, 
accuracy fell between 31.3%-52.8%. Training the algorithms 
using simulated pathological data and then identifying 
simulated pathological activities (S/S) improved the accuracy 
to 96.7% and 84.5% for activity-type and activity-task 
identification respectively. 

Confusion matrices are performance measurements which 
were developed to visualize accuracy and other metrics 
(figures 3-4). Figure 3 shows that static, stand-to-sit and slow 
walk activities achieved high individual recall scores, with 
lying achieving the highest recall score as 0.996. Fast walk 
obtained the worst recall performance, which was 0.796. In 
terms of the precision score, static, stand-to-sit and downstairs 
activities achieved scores greater than 0.940. Normal walk 
obtained the worst precision score which was 0.798. Figure 4 
demonstrates that static activities had the three greatest recall 

scores, while lying, sitting and stand-to-sit had the three 
highest precision scores. 

IV. DISCUSSION 

Earlier studies have attempted activity recognition using 
machine learning classifiers similar to those used here. In 
healthy volunteers, results were similar. All classifiers that 
were tested, except Naïve Bayes, had accuracies ranging from 
68% to 98% [7], [14], [17]–[21]. Naïve Bayes  provided poorer 
results than the other algorithms [14], [17]–[20].  

Our results demonstrated high levels of accuracy when the 
classifier was trained and tested with data from a similar group. 
However, when the tested data (simulated-pathological) 
differed from the training data (healthy), the accuracy dropped 
dramatically.  

The difference in mean accuracy is likely due to the fact 
that volunteers were asked to make significant changes to their 
motions under simulated-pathological conditions. Although 
we attempted to train participants to replicate compromised 
motion, we could not be certain that their movements 
accurately reflected real pathological motion. Indeed, 
participants may have interpreted the instructions on how to 
mimic the pathological activities slightly differently. This 
means that the accuracies reported can only be considered a 
reasonable initial estimate of the performance of ML 
algorithms on real patients.  

Previous studies have assessed whether algorithms trained 
on data from healthy populations were suitable for 
pathological populations. They conclude, like us, that large 
differences between groups means that algorithms should be 
trained for specific target groups [22]–[24]. 

One potential limitation is that we have reported accuracies 
as our overall performance metric. It is well known that 
accuracy can be a poor metric of overall performance in the 
presence of unbalanced data. 

 

Table 1: Machine learning (ML) algorithm parameters 

Parameters Activity type Activity task 

H/H S/S H/H S/S 

k-NN (K neighbors) 4 4 4 4 

NN (neurons) 35 55 60 75 

RF (trees, min_samples_split*) 4, 12 4, 12 4, 12 4, 12 

SVM (C, gamma) 1, 1 10, 1 1, 1 10, 1 
* minimum number of data required to split an internal node 

 

Table 2: Machine learning algorithm evaluation (accuracy) 

ML algorithms 

Group (Train/Test) 

H/H S/S H/S 

Activity type: Static, Dynamic, Transition 

NN 0.983( 0.982-0.983) 0.957 (0.956-0.958)  

RF 0.953 (0.952-0.954) 0.921 (0.920-0.923)  

k-NN 0.983 (0.982-0.983) 0.960 (0.959-0.961)  

GB 0.897 (0.896-0.898) 0.834 (0.832-0.836)  

SVM 0.984 (0.983-0.984) 0.967 (0.966-0.968) 0.528 

 Activity task: Specific activities 

NN 0.926 (0.924-0.927) 0.770 (0.767-0.772)   

RF 0.873 (0.871-0.875) 0.689 (0.687-0.691)   

k-NN 0.943 (0.941-0.944) 0.845 (0.843-0.846) 0.313 

GB 0.749 (0.746-0.751) 0.516 (0.514-0.518)   

SVM 0.926 (0.925-0.928) 0.838 (0.836-0.840)   

 

 
Figure 3: Confusion matrix of H/H group for tasks of activity 
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This problem was of lower concern here, in which quantity of 
each of activity was similar. Reporting the accuracy also 
allowed direct comparison to other work, and exact 
classifications are shown in table 2.  

Another limitation in this study is human error for labeling 

the activities. Even though there was a gold standard video, 

the activity labeling was completed manually and subject to 

human error. However, the authors ensured thorough steps 

were taken to minimize this by using slow motion analysis, 

replaying analysis and triple counting each activity set. 

One aspect of the study was to act as a baseline for 

developing activity classifiers for the healthy population. 

These classifiers will be further updated to suit the 

pathological population with walking impairments, and used 

by clinicians to evaluate the daily activity performance of 

chronic condition patients. Clinicians will be able to have a 

more informed view about the activity of their patients, hence 

provide them with better and patient-specific treatment plans 

and medications. 

Additionally, a range of different accelerometer devices 

could be used, and their results compared to check the 

accuracy of the devices and the wider utility of the ML 

approach.  

V. CONCLUSION 

In this study, we used five machine learning algorithms to 

classify nine daily living activities. Activities were performed 

by healthy and simulated-pathological conditions. 

Furthermore, activities were classified into two groups, 

general activity type and specific activity task. The SVM and 

k-NN classifiers outperformed all other algorithms in activity-

type and activity-task classifications respectively. All 

algorithms performed well when the training and test sets both 

came from the same population. Conversely, when the 

algorithms were trained with healthy data and tested with 

simulated-pathological data, as would usually occur in the 

real-world, the accuracy demonstrated was poor. It may 

therefore be possible to develop more accurate and clinically 

useful activity classification algorithms based on a person’s 

or a sub-population’s accelerometer gait signal. 

REFERENCES 

[1] S. M. Phillips, L. Cadmus-Bertram, D. Rosenberg, M. P. Buman, 

and B. M. Lynch, “Wearable technology and physical activity in 
chronic disease: opportunities and challenges,” Am. J. Prev. Med., 

vol. 54, no. 1, pp. 144–150, 2017. 

[2] S. J. Strath et al., “Guide to the assessment of physical activity: 

Clinical and research applications,” Circulation, vol. 128, no. 20, 
pp. 2259–2279, 2013. 

[3] J. M. Broderick, J. Ryan, D. M. O. Donnell, and J. Hussey, “A 

guide to assessing physical activity using accelerometry in cancer 
patients,” Support Care Cancer, vol. 22, no. 4, pp. 1121–1130, 

2014. 

[4] R. K. Walker, A. M. Hickey, and P. S. Freedson, “Advantages 
and limitations of wearable activity trackers: Considerations for 

patients and clinicians,” Clin. J. Oncol. Nurs., 2016. 

[5] M. R. Backhouse, E. M. A. Hensor, D. White, A. Keenan, P. S. 
Helliwell, and A. C. Redmond, “Concurrent validation of activity 

monitors in patients with rheumatoid arthritis,” Clin. Biomech., 

vol. 28, no. 4, pp. 473–479, 2013. 
[6] P. J. Mancuso, M. Thompson, M. Tietze, S. Kelk, and G. Roux, 

“Can patient use of daily activity monitors change nurse 

practitioner practice?,” J. Nurse Pract., vol. 10, no. 10, pp. 787–
793, 2014. 

[7] A. Mannini, S. S. Intille, M. Rosenberger, A. M. Sabatini, and W. 

Haskell, “Activity recognition using a single accelerometer placed 
at the wrist or ankle,” Med Sci Sport. Exerc, vol. 45, no. 11, pp. 

2193–2203, 2013. 

[8] X. Kang, B. Huang, and G. Qi, “A novel walking detection and 
step counting algorithm using unconstrained smartphones,” 

Sensors, vol. 18, no. 1, pp. 297–311, 2018. 

[9] B. Salzman, “Gait and balance disorders in older adults,” Am. 
Fam. Physician, vol. 82, no. 1, pp. 61–68, 2010. 

[10] W. Z. Wang, B. Y. Huang, and L. Wang, “Analysis of filtering 
methods for 3D acceleration signals in body sensor network,” Int. 

Symp. Bioelectron. Bioinforma., pp. 263–266, 2011. 

[11] M. Merryn, “Monitoring and interpreting human movement 
patterns using a triaxial accelerometer,” 2003. 

[12] E. K. Antonsson and R. W. Mann, “The frequency content of 

gait,” J. Biomech., vol. 18, no. 1, pp. 39–47, 1985. 
[13] O. Banos, J.-M. Galvez, M. Damas, H. Pomares, and I. Rojas, 

“Window size impact in human activity recognition,” Sensors, 

vol. 14, no. 4, pp. 6474–6499, 2014. 
[14] I. Cleland et al., “Optimal placement of accelerometers for the 

detection of everyday activities,” Sensors (Basel)., vol. 13, no. 7, 

pp. 9183–9200, 2013. 

[15] B. Erdaş, I. Atasoy, K. Açici, and H. Oǧul, “Integrating features 

for accelerometer-based activity recognition,” Procedia Comput. 

Sci., vol. 58, pp. 522–527, 2016. 
[16] X. Wu et al., “Top 10 algorithms in data mining,” Knowl. Inf. 

Syst., vol. 14, no. 1, pp. 1–37, 2008. 

[17] A. Mannini and A. M. Sabatini, “Machine learning methods for 
classifying human physical activity from on-body 

accelerometers,” Sensors, vol. 10, no. 2, pp. 1154–1175, 2010. 

[18] Y. Saez, A. Baldominos, and P. Isasi, “A comparison study of 
classifier algorithms for cross-person physical activity 

recognition,” Sensors, vol. 17, no. 1, pp. 66–91, 2017. 

[19] M. Gjoreski, H. Gjoreski, M. Luštrek, and M. Gams, “How 
accurately can your wrist device recognize daily activities and 

detect falls?,” Sensors (Switzerland), vol. 16, no. 6, pp. 800–820, 

2016. 
[20] S. Zhang, A. V Rowlands, P. Murray, and T. L. Hurst, “Physical 

activity classification using the GENEA wrist-worn 

accelerometer,” Med. Sci. Sport. Exerc., vol. 44, no. 4, pp. 742–

748, 2012. 

[21] K. Lee and M. P. Kwan, “Physical activity classification in free-

living conditions using smartphone accelerometer data and 
exploration of predicted results,” Comput. Environ. Urban Syst., 

vol. 67, pp. 124–131, 2018. 

[22] L. Lonini, A. Gupta, K. Kording, and A. Jayaraman, “Activity 
recognition in patients with lower limb impairments: Do we need 

training data from each patient?,” Eng. Med. Biol. Soc., pp. 3265–

3268, 2016. 
[23] N. A. Capela, E. D. Lemaire, and N. Baddour, “Feature selection 

for wearable smartphone-based human activity recognition with 

able bodied, elderly, and stroke patients,” PLoS One, vol. 10, no. 
4, pp. 1–18, 2015. 

[24] M. B. Del Rosario et al., “A comparison of activity classification 

in younger and older cohorts using a smartphone,” Physiol. 
Meas., vol. 35, no. 11, pp. 2269–2286, 2014. 

 
Figure 4: Confusion matrix of S/S group for tasks of activity 
 

4607



References

Abdull Sukor, A. S., Zakaria, A., and Abdul Rahim, N. (2018). “Activity recognition using

accelerometer sensor and machine learning classifiers”. In: 2018 IEEE 14th International

Colloquium on Signal Processing & Its Applications (CSPA), pp. 233–238. doi: 10.1109/

CSPA.2018.8368718.

Agarana, M C. and Akinlabi, E T. (2018). “Mathematical modelling and analysis of human

arm as a triple pendulum system using Euler - Lagragian model”. In: IOP Conference Series:

Materials Science and Engineering 413, p. 012010. issn: 1757899X. doi: 10.1088/1757-

899X/413/1/012010.

Ailisto, H J., Lindholm, M., Mantyjarvi, J., Vildjiounaite, E., and Makela, S. (2005). “Identifying

people from gait pattern with accelerometers”. In: Proceedings of SPIE - The International

Society for Optical Engineering March, p. 7. issn: 0277786X. doi: 10.1117/12.603331. url:

http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.

603331.

Al-Eidan, R M., Al-Khalifa, H., and Al-Salman, A. (2018). “A review of wrist-worn wearable:

sensors, models, and challenges”. In: Journal of Sensors 2018. issn: 16877268. doi: 10.1155/

2018/5853917.

Al-zu, L A., Al-tamimi, A A., Al-momani, T D., Alkarala, A J., and Alzawahreh, M A. (2012).

“Modeling and simulating human arm movement using a 2 dimensional 3 segments coupled

pendulum System”. In: International Conference on Biomedical Engineering (ICBE 2012)

71, pp. 1372–1377.

235

https://doi.org/10.1109/CSPA.2018.8368718
https://doi.org/10.1109/CSPA.2018.8368718
https://doi.org/10.1088/1757-899X/413/1/012010
https://doi.org/10.1088/1757-899X/413/1/012010
https://doi.org/10.1117/12.603331
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.603331
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.603331
https://doi.org/10.1155/2018/5853917
https://doi.org/10.1155/2018/5853917


REFERENCES REFERENCES

Alaqtash, M., Sarkodie-Gyan, T., Yu, H., Fuentes, O, Brower, R., and Abdelgawad, A. (2011).

“Automatic classification of pathological gait patterns using ground reaction forces and ma-

chine learning algorithms”. In: Annu Int Conf IEEE Eng Med Biol Soc 2011, pp. 453–457.

doi: 10.1109/IEMBS.2011.6090063.

Alharbi, F., Ouarbya, L., and Ward, J A. (2020). “Synthetic sensor data for human activity

recognition”. In: Proceedings of the International Joint Conference on Neural Networks. doi:

10.1109/IJCNN48605.2020.9206624.

Alinia, P., Cain, C., Fallahzadeh, R., Shahrokni, A., Cook, D., and Ghasemzadeh, H. (2017).

“How accurate is your activity tracker? A comparative study of step counts in low-intensity

physical activities”. In: JMIR Mhealth Uhealth 5.8, e106. doi: 10.2196/mhealth.6321.

Almasi, A., Shamsollahi, M., and Senhadji, L. (2011). “A dynamical model for generating syn-

thetic Phonocardiogram signals”. In: Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society 2011, pp. 5686–5689. doi: 10.1109/IEMBS.2011.

6091376.

Alzantot, M., Chakraborty, S., and Srivastava, M. (2017). “SenseGen: a deep learning archi-

tecture for synthetic sensor data generation”. In: 2017 IEEE International Conference on

Pervasive Computing and Communications Workshops, PerCom Workshops 2017, pp. 188–

193. doi: 10.1109/PERCOMW.2017.7917555.

Andreu-Perez, J., Garcia-Gancedo, L., McKinnell, J., Van der Drift, A., Powell, A., Hamy, V.,

Keller, T., and Yang, G. (2017). “Developing fine-grained actigraphies for rheumatoid arthritis

patients from a single accelerometer using machine learning”. In: Sensors (Switzerland) 17.9,

p. 2113. doi: 10.3390/s17092113.

Ann, O. and Theng, L. (2014). “Human activity recognition: a review”. In: 2014 IEEE Interna-

tional Conference on Control System, Computing and Engineering (ICCSCE 2014), pp. 389–

393. doi: 10.1109/ICCSCE.2014.7072750.

Anwary, A., Yu, H., and Vassallo, M. (2018). “An automatic gait feature extraction method

for identifying gait asymmetry using wearable sensors”. In: Sensors (Basel) 18.2, p. 676. doi:

10.3390/s18020676.

236

https://doi.org/10.1109/IEMBS.2011.6090063
https://doi.org/10.1109/IJCNN48605.2020.9206624
https://doi.org/10.2196/mhealth.6321
https://doi.org/10.1109/IEMBS.2011.6091376
https://doi.org/10.1109/IEMBS.2011.6091376
https://doi.org/10.1109/PERCOMW.2017.7917555
https://doi.org/10.3390/s17092113
https://doi.org/10.1109/ICCSCE.2014.7072750
https://doi.org/10.3390/s18020676


REFERENCES REFERENCES

Ao, B., Wang, Y., Liu, H., Li, D., Song, L., and Li, J. (2018). “Context impacts in accelerometer-

based walk detection and step counting”. In: Sensors (Basel, Switzerland) 18.11, p. 3604. doi:

10.3390/s18113604.

Arif, M., Kattan, A, and Ahamed, S I. (2017). “Classification of physical activities using wear-

able sensors”. In: Intelligent Automation and Soft Computing 23.1, pp. 21–30. doi: 10.1080/

10798587.2015.1118275.

Atallah, L., Lo, B., King, R., and Yang, G. (2010). “Sensor placement for activity detection

using wearable accelerometers”. In: 2010 International Conference on Body Sensor Networks,

pp. 24–29. doi: 10.1109/BSN.2010.23.

Atallah, L., Lo, B., King, R., and Yang, G Z. (2011). “Sensor positioning for activity recognition

using wearable accelerometers”. In: IEEE Transactions on Biomedical Circuits and Systems

5.4, pp. 320–329. doi: 10.1109/TBCAS.2011.2160540.

Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., and Amirat, Y.

(2015). “Physical human activity recognition using wearable sensors”. In: Sensors 15.12,

pp. 31314–31338. doi: 10.3390/s151229858.

Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., and Havinga, P. (2010). “Activity

recognition using inertial sensing for healthcare, wellbeing and sports applications: a survey”.

In: 23th International Conference on Architecture of Computing Systems 2010, pp. 1–10. doi:

10.1007/978-3-319-13105-4_17.

Backhouse, M R., Hensor, E M A., White, D., Keenan, A., Helliwell, P S., and Redmond, A C.

(2013). “Concurrent validation of activity monitors in patients with rheumatoid arthritis”.

In: Clinical Biomechanics (Bristol, Avon) 28.4, pp. 473–479. doi: 10.1016/j.clinbiomech.

2013.02.009.

Baig, M M., GholamHosseini, H., Moqeem, A A., Mirza, F., and Lindén, M. (2017). “A system-

atic review of wearable patient monitoring systems – current challenges and opportunities for

clinical adoption”. In: Journal of Medical Systems 41.7, pp. 1–27. doi: 10.1007/s10916-

017-0760-1.

237

https://doi.org/10.3390/s18113604
https://doi.org/10.1080/10798587.2015.1118275
https://doi.org/10.1080/10798587.2015.1118275
https://doi.org/10.1109/BSN.2010.23
https://doi.org/10.1109/TBCAS.2011.2160540
https://doi.org/10.3390/s151229858
https://doi.org/10.1007/978-3-319-13105-4_17
https://doi.org/10.1016/j.clinbiomech.2013.02.009
https://doi.org/10.1016/j.clinbiomech.2013.02.009
https://doi.org/10.1007/s10916-017-0760-1
https://doi.org/10.1007/s10916-017-0760-1


REFERENCES REFERENCES

Banos, O., Damas, M., Pomares, H., Rojas, F., Delgado-Marquez, B., and Valenzuela, O. (2013).

“Human activity recognition based on a sensor weighting hierarchical classifier”. In: Soft

Computing 17, pp. 333–343. doi: 10.1007/s00500-012-0896-3.

Banos, O., Galvez, J., Damas, M., Pomares, H., and Rojas, I. (2014). “Window size impact

in human activity recognition”. In: Sensors (Basel, Switzerland) 14.4, pp. 6474–6499. doi:

10.3390/s140406474.

Bao, L. and Intille, S S. (2004). “Activity recognition from user-annotated acceleration data”.

In: Pervasive Computing, pp. 1–17. doi: 10.1007/978-3-540-24646-6_1.

Bassett, D R., Toth, L P., LaMunion, S R., and Crouter, S E. (2017). “Step counting: a review

of measurement considerations and health-related applications”. In: Sports Medicine 47.7,

pp. 1303–1315. doi: 10.1007/s40279-016-0663-1.

Bassett, D R., Troiano, R P., Mcclain, J J., and Wolff, D L. (2015). “Accelerometer-based

physical activity: total volume per day and standardized measures”. In: Medicine and Science

in Sports and Exercise 47.4, pp. 833–838. doi: 10.1249/MSS.0000000000000468.

Batista, G E A P A. and Monard, M C. (2003). “An analysis of four missing data treatment

methods for supervised learning”. In: Applied Artificial Intelligence 17.5-6, pp. 519–533. doi:

10.1080/713827181.

Beevi, F H A., Miranda, J., Pedersen, C F., and Wagner, S. (2016). “An evaluation of commercial

pedometers for monitoring slow walking speed populations”. In: Telemed J E Health 22.5,

pp. 441–449. doi: 10.1089/tmj.2015.0120.

Bemdt, D J. and Clifford, J. (1994). “Using dynamic time warping to find patterns in time

series”. In: AAAIWS’94: Proceedings of the 3rd International Conference on Knowledge Dis-

covery and Data Mining, pp. 359–370.

BHF (2017). Physical inactivity and sedentary behaviour report 2017. Tech. rep., p. 10. url:

https://www.bhf.org.uk/publications/statistics/physical-inactivity-report-

2017.

238

https://doi.org/10.1007/s00500-012-0896-3
https://doi.org/10.3390/s140406474
https://doi.org/10.1007/978-3-540-24646-6_1
https://doi.org/10.1007/s40279-016-0663-1
https://doi.org/10.1249/MSS.0000000000000468
https://doi.org/10.1080/713827181
https://doi.org/10.1089/tmj.2015.0120
https://www.bhf.org.uk/publications/statistics/physical-inactivity-report-2017
https://www.bhf.org.uk/publications/statistics/physical-inactivity-report-2017


REFERENCES REFERENCES

Bland, J M. and Altman, D G. (1999). “Measuring agreement in method comparison studies”.

In: Stat Methods Med Res 8.2, pp. 135–160. doi: 10.1177/096228029900800204.

Booth, F W., Roberts, C K., and Laye, M J. (2012). “Lack of exercise is a major cause of chronic

diseases”. In: Comprehensive Physiology 2.2, pp. 1143–1211. doi: 10.1002/cphy.c110025.

Boser, B E., Guyon, I M., and Vapnik, V N. (1992). “A training algorithm for optimal margin

classifiers”. In: COLT ’92: Proceedings of the fifth annual workshop on Computational learning

theory, pp. 144–152. doi: 10.1145/130385.130401.

Broderick, J M., Ryan, J., Donnell, D M O., and Hussey, J. (2014). “A guide to assessing physical

activity using accelerometry in cancer patients”. In: Support Care Cancer 22.4, pp. 1121–1130.

doi: 10.1007/s00520-013-2102-2.

Bryson, J M. (2004). “What to do when Stakeholders matter”. In: Public Management Review

6.1, pp. 21–53. doi: 10.1080/14719030410001675722.

Buchowski, M S. (2014). “Doubly labeled water is a validated and verified reference standard

in nutrition research”. In: Journal of nutrition 144.5, pp. 573–574. doi: 10.3945/jn.114.

191361.

Bui, D T., Nguyen, N D., and Jeong, G M. (2018). “A robust step detection algorithm and

walking distance estimation based on daily wrist activity recognition using a smart band”.

In: Sensors (Basel) 18.7, p. 2034. doi: 10.3390/s18072034.

Bulling, A., Blanke, U., and Schiele, B. (2014). “A tutorial on human activity recognition using

body-worn inertial sensors”. In: ACM Computing Surveys (CSUR) 33, pp. 1–33. doi: http:

//dx.doi.org/10.1145/2499621.

Bunn, J A., Jones, C., Oliviera, A, and Webster, M J. (2019). “Assessment of step accuracy

using the consumer technology association standard”. In: Journal of Sports Sciences 37.3,

pp. 244–248. doi: 10.1080/02640414.2018.1491941.

Bunn, J A., Navalta, J W., Fountaine, C J., and Reece, J D. (2018). “Current state of commercial

wearable technology in physical activity monitoring 2015-2017”. In: International Journal of

Exercise Science 11.7, pp. 503–515. url: http://www.intjexersci.com.

239

https://doi.org/10.1177/096228029900800204
https://doi.org/10.1002/cphy.c110025
https://doi.org/10.1145/130385.130401
https://doi.org/10.1007/s00520-013-2102-2
https://doi.org/10.1080/14719030410001675722
https://doi.org/10.3945/jn.114.191361
https://doi.org/10.3945/jn.114.191361
https://doi.org/10.3390/s18072034
https://doi.org/http://dx.doi.org/10.1145/2499621
https://doi.org/http://dx.doi.org/10.1145/2499621
https://doi.org/10.1080/02640414.2018.1491941
http://www.intjexersci.com


REFERENCES REFERENCES

Butler, P J., Green, J A., Boyd, I L., and Speakman, J R. (2004). “Measuring meatabolic

rate in the fiels: the pros and cons of the doubly labeled water and heart rate methods”. In:

Functional Ecology 18.2, pp. 168–183. doi: 10.1111/j.0269-8463.2004.00821.x.

Butte, N F., Ekelund, U., and Westerterp, K R. (2012). “Assessing physical activity using

wearable monitors: measures of physical activity”. In: Medicine and Science in Sports and

Exercise 44.1 SUPPL 1, S5–12. doi: 10.1249/MSS.0b013e3182399c0e.
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Gjoreski, M., Gjoreski, H., Luštrek, M., and Gams, M. (2016). “How accurately can your wrist

device recognize daily activities and detect falls?” In: Sensors (Basel) 16.6, p. 800. doi:

10.3390/s16060800.
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Pogorelc, B., Bosnić, Z., and Gams, M. (2012). “Automatic recognition of gait-related health

problems in the elderly using machine learning”. In: Multimed Tools Appl 58, pp. 333–354.

doi: 10.1007/s11042-011-0786-1.

Ponce, H., Miralles-Pechuán, L., and Mart́ınez-Villaseñor, M. (2016). “A flexible approach for

human activity recognition using artificial hydrocarbon networks”. In: Sensors 16.11, p. 1715.

doi: 10.3390/s16111715.

Preece, S J., Goulermas, J Y., Kenney, L P J., Howard, D., Meijer, K., and Crompton, R. (2009).

“Activity identification using body-mounted sensors—a review of classification techniques”.

In: Physiological Measurement 30.4, R1–33. doi: 10.1088/0967-3334/30/4/R01.

Racic, V. and Brownjohn, J M W. (2012). “Mathematical modelling of random narrow band

lateral excitation of footbridges due to pedestrians walking”. In: Computers and Structures

90-91, pp. 116–130. doi: 10.1016/j.compstruc.2011.10.002.

Racic, V. and Morin, J B. (2014). “Data-driven modelling of vertical dynamic excitation of

bridges induced by people running”. In: Mechanical Systems and Signal Processing 43.1-2,

pp. 153–170. doi: 10.1016/j.ymssp.2013.10.006.

Racic, V. and Pavic, A. (2010a). “Mathematical model to generate near-periodic human jumping

force signals”. In: Mechanical Systems and Signal Processing 24.1, pp. 138–152. doi: 10.1016/

j.ymssp.2009.07.001.

– (2010b). “Stochastic approach to modelling of near-periodic jumping loads”. In: Mechanical

Systems and Signal Processing 24.8, pp. 3037–3059. doi: 10.1016/j.ymssp.2010.05.019.

Rhudy, M B. and Mahoney, J M. (2018). “A comprehensive comparison of simple step counting

techniques using wrist- and ankle-mounted accelerometer and gyroscope signals”. In: J Med

Eng Technol 42.3, pp. 236–243. doi: 10.1080/03091902.2018.1470692.

255

https://doi.org/10.1016/j.amepre.2017.08.015
https://doi.org/10.1007/s11042-011-0786-1
https://doi.org/10.3390/s16111715
https://doi.org/10.1088/0967-3334/30/4/R01
https://doi.org/10.1016/j.compstruc.2011.10.002
https://doi.org/10.1016/j.ymssp.2013.10.006
https://doi.org/10.1016/j.ymssp.2009.07.001
https://doi.org/10.1016/j.ymssp.2009.07.001
https://doi.org/10.1016/j.ymssp.2010.05.019
https://doi.org/10.1080/03091902.2018.1470692


REFERENCES REFERENCES

Rodgers, M M., Alon, G., Pai, V M., and Conroy, R S. (2019). “Wearable technologies for

active living and rehabilitation: current research challenges and future opportunities”. In:

Journal of Rehabilitation and Assistive Technologies Engineering 6, p. 205566831983960. doi:

10.1177/2055668319839607.
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