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Digital health technologies and machine learning augment
patient reported outcomes to remotely characterise rheumatoid
arthritis
Andrew P. Creagh 1,2✉, Valentin Hamy3, Hang Yuan 2,4, Gert Mertes 1,2,4, Ryan Tomlinson5, Wen-Hung Chen5, Rachel Williams5,
Christopher Llop6, Christopher Yee6, Mei Sheng Duh6, Aiden Doherty 2,4,7, Luis Garcia-Gancedo 3,7 and David A. Clifton1,7

Digital measures of health status captured during daily life could greatly augment current in-clinic assessments for rheumatoid
arthritis (RA), to enable better assessment of disease progression and impact. This work presents results from weaRAble-PRO, a
14-day observational study, which aimed to investigate how digital health technologies (DHT), such as smartphones and wearables,
could augment patient reported outcomes (PRO) to determine RA status and severity in a study of 30 moderate-to-severe RA
patients, compared to 30 matched healthy controls (HC). Sensor-based measures of health status, mobility, dexterity, fatigue, and
other RA specific symptoms were extracted from daily iPhone guided tests (GT), as well as actigraphy and heart rate sensor data,
which was passively recorded from patients’ Apple smartwatch continuously over the study duration. We subsequently developed
a machine learning (ML) framework to distinguish RA status and to estimate RA severity. It was found that daily wearable sensor-
outcomes robustly distinguished RA from HC participants (F1, 0.807). Furthermore, by day 7 of the study (half-way), a sufficient
volume of data had been collected to reliably capture the characteristics of RA participants. In addition, we observed that the
detection of RA severity levels could be improved by augmenting standard patient reported outcomes with sensor-based features
(F1, 0.833) in comparison to using PRO assessments alone (F1, 0.759), and that the combination of modalities could reliability
measure continuous RA severity, as determined by the clinician-assessed RAPID-3 score at baseline (r2, 0.692; RMSE, 1.33). The
ability to measure the impact of the disease during daily life—through objective and remote digital outcomes—paves the way
forward to enable the development of more patient-centric and personalised measurements for use in RA clinical trials.
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INTRODUCTION
Rheumatoid arthritis (RA) patients follow subtle and unpredictable
disease courses, patient-to-patient, with a progressive decline in
physical function and quality of life and over time—often leading
to disability and difficulty to perform many tasks of daily life1. RA
symptoms include joint pain or tenderness, joint swelling,
morning stiffness, reduction in joint range of movement (ROM),
muscle pain, and fatigue1. Currently, the gold-standard methods
to measure the impact of RA on daily life rely on infrequent clinical
visits that may often occur every 3–4 months, with assessments
depending on a combination of subjective clinician-determined
scores2 and patient-reported outcomes3. These have inherent
limitations, however, in that they can be subjective and are prone
to recall bias4,5. As such, there is a need to objectively measure the
impact of RA on daily life6, remotely over a continuous period,
rather than restricting assessments to only intermittent physician
visits. In recent years, consumer-grade mobile applications (app.)
and wearable devices have shown promise to objectively measure
participants’ symptoms during daily life7; these digital health
technologies (DHT) tools8 have shown to increase study engage-
ment, improve patient convenience, streamline collection of
PROs9, and potentially generate more frequent and accurate data
that can characterise disease10. DHT have been shown to measure
RA symptoms and functions, such as range of motion (ROM) and
gait-specific metrics during prescribed “active” assessments11,12.

Other studies have shown how “passive” wearable actigraphy
sensor-outcome measurements capture differences in RA physical
activity (PA) in daily life, compared to healthy controls (HC)13, as
well as to detect flaring of RA symptoms14.
However, there remains a lack of sufficient evidence for how

DHT can provide objective insights into the impact of therapies for
RA, despite progress made in other disease areas15–22. Particularly,
the benefit of sensor-outcomes generated from prescribed active
assessments compared with passive monitoring has not yet been
explored together. While digitised patient-reported outcomes
(PROs) enable a patient the ability to regularly record their
“subjective” experience of disease activity in remote settings23, it
remains unclear how “objective” sensor-outcomes could provide
additional insights that can augment PROs to better characterise
the impact of RA on daily life. As part of this characterisation, the
sensitivity of DHT to measure RA symptoms, such as the volume of
remote data required and the number of sensor-outcome
measurements needed, will also need to be determined. Finally,
the application of DHT sensor-outcomes to monitor RA during
daily life remains yet to be validated against standard in-clinic
administered assessments of RA impact24.
In this study, we therefore aimed to investigate how active and

passive sensor-based measurements should be combined using
machine learning (ML) to distinguish RA status from healthy
controls, to augment traditional patient self-reported outcome
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(PRO) data, and to estimate standard in-clinic assessments of RA
severity. Our work offers the first comprehensive evaluation of
how sensor data captured during daily life can characterise RA
status and severity, which represents an important first step
towards the development of more sensitive and patient-centric
measurements for use in RA clinical trials and real-world studies.
In order to investigate the objectives of this study, we

performed the following set of analysis and experiments. We first
illustrate the variety of sensor-based measurements that can be
extracted from daily prescribed (active) smartphone-based assess-
ments and (passive) smartwatch-based activity monitoring in an
RA cohort. In this, we evaluate how smartwatch-based daily
physical activity patterns can be remotely estimated using our
bespoke deep convolutional neural (DCNN), pre-trained using
multi-task self-supervised learning (SSL) on a large-scale open-
source cohort. We next assess the ability of our sensor-based
measurements to identify RA status from healthy controls and to
distinguish RA severity levels. As part of our analysis, we also
explore the volume of days and number of sensor-outcomes
required to remotely distinguish RA status. Finally, we investigated
the power of active and passive sensor-outcomes to augment
routinely collected patient self-reported outcome (PRO) data to
estimate RA severity—as measured by standard in-clinic assess-
ments of RA, such as the RAPID-325.

RESULTS
The GSK weaRAble-PRO study (GSK212295) was a 14-day
observational study which investigated how DHT tools could
objectively measure the impact of RA on participants’ daily lives.
Digital wearable devices—a wrist-worn Apple Watch for passive
monitoring and an iPhone, integrated with a bespoke mobile app.
which prescribed daily guided assessments—collected high-
frequency, objective sensor data in 30 RA patients and 30
matched Healthy Controls (HCs). Figure 1 provides an illustrative
overview of the objectives of this study. Sensor-based measures of

physical function, mobility, dexterity, and other RA specific
symptoms were extracted from daily prescribed (active) iPhone
guided tests using a combination of bespoke algorithms and
proprietary algorithms developed by Apple ResearchKit, for
instance, a wrist-range of motion exercise, a walking assessment,
a nine-hole peg test, as well as two pose transition-based mobility
exercises, lie-to-stand (LTS) and sit-to-stand (STS). In addition,
continuous (passive) actigraphy was recorded from participants’
Apple smartwatch over the study duration in order to characterise
daily activity patterns and sleep. In order to illustrate the various
characteristics of RA we are interested in assessing, we have
grouped measurements in Fig. 1 into four domains: physical
function, daytime activity, daily living, and sleep; denoting
particular types of measurements which may attribute to each
domain. Note: this manuscript details a sub-study of weaRAble-
PRO; trial design, feasibility, participant adherence, and other
primary related study outcomes are reported in Hamy et al.26. Two
RA participants withdrew immediately after enroling in the study.
Data from these participants were not collected, leaving 28 RA
participants, 28 matched HCs, and 2 unmatched HCs for a total of
58 participant

Assessing smartwatch-based daily physical activity patterns
The daily physical activity of RA participants and healthy controls
were estimated with a deep convolutional neural network (DCNN)
that was first pre-trained on 100,000 participants in the publicly
available UK Biobank, following a multi-task self-supervised
learning (SSL) methodology27, which was subsequently fine-
tuned on the free-living Capture-24 dataset28 of < 150 participants
to determine broad activity patterns of interest {sleep, sedentary,
light physical activity, moderate-to-vigorous physical activity
(MVPA)}29,30 and fine-grained activity prediction labels {sleep,
sitting/standing, mixed, vehicle, walking, bicycling}28. In this study,
we build upon our previous work by adding a temporal
dependency to the “DCNN (SSL)” through a hidden markov model
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Fig. 1 Illustration detailing the objectives of this study. The weaRAble-PRO 14-day trial aimed to investigate how digital health technologies
(DHT)—a wrist-worn Apple smartwatch and an iPhone device, with bespoke mobile apps.—could augment patient reported outcomes (PRO)
to characterise the impact of rheumatoid arthritis (RA) during the daily life of 30 moderate-to-severe RA patients, compared to 30 matched
healthy controls (HC). We explore the ability of machine learning (ML) models to (1) estimate categorical RA outcomes, such as identifying RA
participants from healthy controls and (2) estimate continuous RA outcomes, such as RA severity, using a combination of PRO and sensor-
outcomes.
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(HMM), which was appended to obtain a more accurate sequence
of predicted activities over the continuous study period. It was
found that the “DCNN (SSL) + HMM” improved broad activity
estimation in Capture-24 (κ, 0.862 ± 0.088; F1, 0.815 ± 0.103) as
compared to a baseline random forest (RF) + HMM approach (κ,
0.813 ± 0.108; F1, 0.775 ± 0.117)28. Next, the fine-tuned “DCNN
(SSL) + HMM” model transformed the raw Apple smartwatch
sensor data in weaRAble-PRO to determine participants’ daily
activity patterns over the 14-day study period, for example, the
time spent walking, the frequency of exercise, the length and
quality of sleep, and other RA-specific measures, such as morning
stiffness. Activity predictions were qualitatively evaluated over the
entire RA and HC study population and demonstrated face validity
(see Supplementary Figs. 1 and 2 for additional details).

Analysis of sensor-outcomes to distinguish RA status and
severity levels
The raw smartphone and smartwatch data recorded during the
(active) guided test exercises, and passively during the partici-
pants’ daily life, respectively, were summarised as sensor-outcome
features. Univariate analysis demonstrated that a total of 153
(93%) sensor-based features (passive, n= 131 (94%); active, n= 22
(88%)) displayed significantly different medians (after post-hoc
correction for multiple comparisons) between HC and RA severity
groups (Kruskal-Wallis H test, p < 0.05). A further 47 (34%) passive
features, compared to 6 (24%) active features, were also

significantly different (Mann-Whitney U test, p < 0.05) between
healthy and RA participants. Figure 2 compares the (fortnightly)
average feature distributions between healthy controls (HC), RA
(moderate) and RA (severe) participants for a selection of
examples of passively collected smartwatch features (Fig. 2a–c)
and active guided test sensor features (Fig. 2d–f) and a selection
of patient self-reported outcomes recorded on the smartphone
application (Fig. 2g–i).
In order to explore the ability of many wearable sensor-

outcomes to distinguish symptoms of RA from otherwise healthy
individuals, and therefore measure the impact of RA during daily
life, we devised a number of multivariate classification-based
experiments. First, we investigated the performance of regularised
logistic regression (LR) to differentiate RA participants from
healthy controls using both passively collected activity monitoring
features and guided test exercise features. Comparing model
performance between sources (Fig. 3a), passive activity
monitoring-based sensor features better distinguished RA partici-
pants using fortnightly averaged features (F1, 0.786) versus active
(guided test) features (F1, 0.778). It was found that 12 subjects
were misclassified using active-only models and 12 for passive-
only, with just 4/12 (33%) of the same subjects incorrectly
identified by both sources, 3 of which were the same HC
participants. Combining active and passive wearable sensor
features yielded in the highest performing models to distinguish
RA participants overall, for example, using fortnightly averaged
features from both sources (F1, 0.807) (for further expansion of

Fig. 2 Ability of individual sensor-outcomes to distinguish between RA status and RA severity levels. Comparison of the average feature
distributions per participants, between healthy controls (HC), RA (moderate) and RA (severe) groups for: a–c selection of passively collected
smartwatch features; d–f selection of guided test collected smartphone features; and g–i selection of patient self-reported outcomes recorded
on the smartphone application. For all examples shown, medians were significantly different between HC and RA groups: One-way ANOVA
determined from the Kruskal-Wallis H-test, p < 0.001. deg degrees, HAQ-DI Health Assessment Questionnaire-Disability Index, min minutes, mg
mili-gravity acceleration units, MVPA moderate-to-vigorous physical activity, RASIQ GSK RA symptom and impact questionnaire, sed
sedentary, sec seconds.
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results, see Supplementary Table 4). It should also be noted that
linear logistic regression was found to perform comparatively to
non-linear ensembles of decision trees, a Random Forest (RF)
model and Extreme Gradient Boosted Trees (XGB)—as such this
work subsequently opted to explore simple linear models for
further analysis (see Supplementary Table 5).
This study next investigated the ability of multiple sensor-based

outcomes to augment PRO data in order to stratify RA severity
levels. In weaRAble-PRO, participants were denoted as having
moderate or severe RA based on baseline clinician-assessed
RAPID-3 scores. Following similar procedure to RA identification,
LR regularised models were investigated in order to distinguish RA
(mod) and RA (sev) as binary classification tasks using fortnightly
averaged study data. The benefit of incorporating additional
sensor-based outcomes to patient (self-) reported outcomes is
presented in Fig. 3b (expanded in Supplementary Table 6). It was
observed that the linear combination of PRO assessments could
accurately stratify RA symptom severity (F1, 0.759). The fusion of
PRO data and sensor-based outcomes improved RA severity level
estimation further with the addition of active (F1, 0.750) or passive
(F1, 0.786) sources. Finally, the amalgamation of PRO outcomes
with both active and passive sensor-based outcomes resulted in
the most accurate RA severity level estimation (F1, 0.833)—an
improvement of 10% compared to PRO outcomes alone (Fig. 3b).
For additional information on the selected PRO + sensor-
outcomes, we refer the reader to Supplementary Table 3.

Estimating the volume of days and number of sensor-
outcomes required to remotely distinguish RA status
In weaRAble-PRO, participants performed daily guided test
exercises—resulting in daily sensor features—and continuously

recorded Apple Watch sensor data were summarised as daily
activity monitoring-based features, over the 14-day study period.
In this work, we aimed to determine the minimal number of days
of sensor data required build a stable and robust estimate of
disease status in RA participants compared to HC over the 14-day
study period. Figure 4a represents an experiment exploring the
(observation-wise) out-of-sample RA classification performance as
a function of varying the number of non-contiguous days of data
that are averaged per participant. Evaluated over 500 randomly
sampled permutations of non-contiguous days, results (median +
IQR) indicated that RA prediction stabilised once more than 7 non-
contiguous days of data were used per participant. Furthermore,
we found that averaging daily feature values over weekly and
fortnightly periods improved model performance. However, it was
observed that model performance using weekly-averaged features
was often similar to fortnightly averaged (we also refer the reader
to Supplementary Table 4).
To investigate feature consistency and reproducibility, the intra-

class correlation coefficient (ICC) for each feature was evaluated
over the study duration (14 days). ICCs were calculated for each
feature using n= [2, 3,…, 14] days of data per participant,
individually for HC and RA participants. Higher ICC’s suggest a
high degree of similarity on the performance of each task over the
course of the study, and lower coefficients mean that participants
tended to perform the task differently each day of the study. ICC’s
for HCs ranged from 0.582 to 0.854, while those for RA participants
ranged from 0.424 to 0.897. Figure 4b depicts the median + inter-
quartile range (IQR) of ICC values for the LR-elastic net retained
active + passive features. Intra-rater reliability analyses suggest
that feature reliability stabilises to good (ICC=0.75–0.9) and

active 

passive

PRO

active 

passive

(a) (b)

Fig. 3 Ability of combined sensor-outcomes to distinguish between RA status and RA severity levels. Comparison of a RA identification
(RA vs. HC) performance and b RA severity level estimation (RA (mod) vs RA (sev)), using patient reported outcomes (PRO) and combined PRO
(list icon), active (smartphone icon), and passive (smartwatch icon) sensor-based outcomes in the weaRAble-PRO study. auroc area under the
receiver operator curve, κ Cohen’s Kappa statistic, F1 macro-F1 score.

(a) (b)

Fig. 4 The number of days of sensor-data required to remotely characterise RA impact. Comparison of a the minimal amount of days of
data needed distinguish RA status, as measured by the F1 score across 5-fold cross validation (CV), between active (smartphone icon), passive
(smartwatch icon), and combined (smartphone & smartwatch icons) feature sources; b the feature (test-retest) reliability, as measured by the
intraclass correlation coefficient (ICC), between RA participants and HC across the study duration (14 days); F1 scores and ICCs suggest that
model performance and feature reliability stabilises once more than 7 days of data are used per participant.
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excellent (ICC > 0.9) once more than 7 contiguous days of data
were used per participant.
In order to evaluate the number of sensor-outcomes required to

remotely distinguish RA status, we compared various feature
regularisation techniques, lasso (ℓ1), ridge (ℓ2), elastic-net (ℓ1+ℓ2),
and sparse-group lasso, using fortnightly (i.e., study duration)
averaged features. It was found that introducing sparsity through
regularisation improved classification performance. In addition,
active and passively recorded sensor-based features could be
grouped into domains, based on the guided test they were
extracted from, or the perceived functional domain of daily activity
they were assumed to assess. Introducing group-wise sparsity with
the sparse-group lasso (SG-lasso), regularising on the number of
groups (i.e., the feature domains) and the coefficients within each
group, resulted in the highest RA participant identification
performance (F1, 0.807), compared to lasso (ℓ1, F1, 0.772), ridge
(ℓ2, F1, 0.792), and elastic net (ℓ1+ℓ2, F1, 0.792) regularisation (for
expansion of results, see Supplementary Table 5). The features and
groups selected by each regularisation technique are illustrated in
Fig. 5, represented as the mean LR coefficient value w over CV per
each feature and feature domain (coefficient values have been
normalised between 0 and 1 to benefit comparison between
models). Examining the feature sparsity of elastic-net (ℓ1+ ℓ2) (Fig.
5a), it was observed that features from multiple domains were
selected. In contrast, the SG-lasso, as shown in Fig. 5b, selected
mostly passive activity-based smartwatch features—TVDA with
some morning stiffness measures—to distinguish RA status. Group
sparsity penalised simultaneously selecting from multiple feature
domains, where within group-sparsity regularised the feature
coefficient values within the selected domains. Using fewer domains
and less features, the SG-lasso was able achieve similar performance
to LR elastic-net, even marginally improving performance (F1, 0.807).
For further details on the features extracted, and selected, we refer
the reader to the Supplementary Methods.

Estimating in-clinic RA severity scores from PRO and sensor-
based outcomes
Rheumatoid arthritis severity levels were denoted by a clinician
administered RAPID-3 assessment25 at baseline in the weaRAble-
PRO study. The RAPID-3—a “rapid” and easy to administer
questionnaire—is also validated against more exhaustive assess-
ments for RA, such as the disease activity score 28 (DAS28) and
clinical disease activity index (CDAI) in clinical trials and clinical
care25. In this work, we aimed to establish how the combination of

PRO and sensor-based outcomes could stratify continuous RAPID-
3 RA severity. Note: HC subjects were assigned a RAPID-3 score of
zero at baseline. Through multivariate modelling, using LR elastic-
net, it was determined that PRO and sensor-based features could
accurately estimate RAPID-3 scores to within 1 point (r2, 0.69; MAE,
0.94; RMSE, 1.33), an improvement compared to using PRO
measures alone (r2, 0.63; MAE, 1.16; RMSE, 1.45). The association
between actual and PRO + sensor-outcome estimated RAPID-3
scores was found to be good-to-excellent (r > 0.75), Pearson’s
r= 0.60, p < 0.001; Spearman’s ρ= 0.83, p < 0.001.
Participants in weaRAble-PRO were also administered a twice-

daily interactive Joint Pain Map (JMAP) questionnaire on their
iPhone11, in order to more precisely record and localise perceived
pain. Participant model-estimated RAPID-3 scores were further
interpreted through detailed inspection of the daily smartphone-
based patient-reported joint pain map (JMAP) total scores—an
external validation measure, which was not included as a predictor
in the model—as expanded in Fig. 6. The JMAP score, defined as the
sum of all individual joint pain scores per recording, was intended as
a coarse measure to holistically capture participants’ overall level of
perceived pain, in addition to validated PRO assessments. Higher
JMAP scores indicate higher levels of pain experienced. It was
observed that RAPID-3 estimations were reliable and robust, in that
they faithfully characterised RA participant’s perceived level of
symptoms, through the JMAP. For example, in Fig. 6, the RA (sev.)
participant with consistently the largest reported degree of pain
across the 14-day study exhibited the highest actual RAPID-3 score
(6.7), which was closely estimated by the model at 7.1. JMAP scores
further enabled additional explanation of model performance,
especially with respect to RAPID-3 estimations that were not
reflective of actual RAPID-3 scores. For instance, the RA (mod)
participant with the lowest estimated RAPID-3 score (0.2) actually
reported zero pain experienced over the 14-day study duration,
despite a RAPID-3 assignment of 3.7 at baseline. Non-zero estimated
RAPID-3 scores for some HC could also often be contextualised, due
to these participants frequently self-reporting low-levels of pain in
their JMAP (i.e., non-zero JMAP entries) over the study period,
despite being healthy. As such, it was determined that PRO and
sensor-based RAPID-3 estimates could reliably reflect participant’s
RA symptoms over the study.

DISCUSSION
Our findings in the weaRAble-PRO study demonstrate how digital
health technology (DHT) captured sensor-outcomes, recorded
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Fig. 5 The number of sensor-outcomes required to remotely distinguish RA status. Comparison of features selected between regularised
logistic regression (LR) models for: a elastic-net (F1, 0.79) and b SG-lasso (F1, 0.81). The SG-lasso promotes group-wise sparsity (i.e., regularising
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performance to LR elastic-net, while selecting a fewer number of domains and features. Feature importance, denoted as the mean LR
coefficient value (w) over cross-validation, are illustrated by colour intensity. Feature domains: AF activity fragmentation, DEM demographics,
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total volume of daytime activity, WLK walking assessment, WRT wrist assessment.
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from smartphone-based active tests, and continuously collected
passive smartwatch-based monitoring, could characterise mean-
ingful aspects of rheumatoid arthritis (RA) impairment and
physical function impacting daily life. Remotely collected wearable
sensor-outcomes could distinguish RA status from healthy
controls—demonstrating further improved performance when
combining the sensor-data from both devices—and how objec-
tive sensor-outcomes could augment patient (self-) reported
outcomes to remotely estimate RA severity. Furthermore, by the
half-way point of the weaRAble-PRO study (day 7), a sufficient
volume of data had already been collected to reliably distinguish
the characteristics of RA participants. This work provides the first
comprehensive evaluation how remote and objective digital
sensor-outcomes enrich our ability to understand the impact of
RA on daily life between clinical visits.
In this work, we detailed how raw data collected from

smartphone and smartwatch sensors can be transformed into
sensor-based outcomes that are reflective of disease status. In
concurrence with previous studies, many remotely collected
smartphone sensor-outcomes distinguished RA participants and
RA severity levels. For example, it was observed that joint ROM
features differentiated HC and RA groups—a similar finding to our
previous work12—and that RA participants were less mobile,
taking longer to move between positions (as measured during the
lie-to-stand exercise)—as previously shown by Andreu-Perez et
al.31. Continuously collected smartwatch sensor data, known as
passive monitoring, allowed the measurement of aspects of RA
daily life, such as physical activity, sleep, and other RA specific
symptoms, such as morning stiffness, or night-time restlessness. In
this study we trained an activity recognition model on the free-
living capture-24 dataset to estimate daily activity patterns in the
wearable-pro population. Leveraging the latest advances in self-
supervised learning (SSL) allowed our model to be pre-trained on
100,000 participants with 700,000 days of diverse, unlabelled
wearable sensor data in the uk biobank27, which combined with
HMM temporal smoothing, significantly improved activity predic-
tion compared to our previous established RF-HMM based
methods28,30. Our SSL DCNN+HMM model enabled a more robust
and fine-grained estimation of daily activity patterns beyond
traditional acceleration magnitude levels13,14, which we proposed
could allow a richer characterisation of PA and sleep in RA activity
monitoring revealed distinct differences distinguishing RA status,
for example the daily percent of the day in moderate-to-vigorous

physical activity, and similar features, were significantly lower in
the RA population compared to healthy controls—a similar
finding by Prioreschi et al.13, and an observation people with RA
regularly self-report 32. Other specific RA symptom measurements,
like morning stiffness or disrupted sleep, were evident in certain
RA participants. For example, the mean acceleration value > 30
[mins] after wake-up were lower in RA—also a similar finding to
Keogh et al.33—or that the number of movement episodes during
night-time sleep distinguished some specific RA participants. We
also observed that after collecting 7 days of sensor-data in the
weaRAble-PRO study, a sufficient volume of data had already been
recorded to reliably distinguish RA participants from a healthy
population; participant feature reliability (as measured ICC values)
stabilised at good-to-excellent levels, maximal identification
performance of RA participants plateaued, and that there was
no additional benefit to averaging over a fortnight’s worth of data
versus a week. Therefore it is recommended that considering at
least one week’s worth of sensor data is collected, it might be
more beneficial to gather less data from a greater number of
participants, rather than greater duration of sensor data from the
same participants.
Our work is the first study to combine active smartphone and

passive wearable measurements to distinguish RA status and
measure variations in RA severity. While models trained on only
passive features tended to marginally outperform models trained
solely on active guided test features, combining both active +
passive features led to the best performance in RA identification
for all models investigated. Interestingly, it was found that
different subjects were misclassified by active versus passive
models. For example, 12 subjects were misclassified using active-
only models and 12 for passive-only, with just 4/12 (33%) of the
same subjects incorrectly identified by both sources, 3 of which
were the same HC participants. In addition, further experiments
with the LR-SG-lasso determined that only activity monitoring
domain features were mainly needed in order to distinguish RA
participants from health controls. This indicates that we some-
times do not need to prescribe all guided test assessments, or to
parse all activity feature domains, but that a small number of
prescribed assessments can be sufficient to characterise RA status.
For example, including only the lie-to-stand assessment rather
than also prescribing the similar, and highly correlated, sit-to-
stand assessment in future studies; or removing the prescribed
walking assessment (shown to have little predictive value in the

Fig. 6 The ability of remote PRO + sensor-outcomes to estimate in-clinic determined RA severity scores. Scatter plot of baseline RAPID-3
scores y versus predicted ŷ scores per subject, using elastic net with PRO + sensor-outcomes, over cross-validation (CV). Participant model-
estimated RAPID-3 scores can be further interpreted through detailed inspection of the daily smartphone-based patient-reported joint pain
map (JMAP) total scores—which was not included as a predictor in the model. Higher JMAP scores indicate higher levels of pain experienced.
Additional interpretability, through the JMAP, demonstrated that PRO + sensor-based outcome estimation of the RAPID-3 could reliably
reflect patient’s perceived daily RA symptoms. Note: Baseline JMAP total scores, recorded on the same day as the baseline RAPID-3, are
denoted in grey; the JMAP y-axis scale is the same among all subplots. HC subjects were assigned a RAPID-3 score of zero at baseline. A black
line represents perfect predictions (r2, 0.692; MAE, 0.938; RMSE, 1.333).

A.P. Creagh et al.

6

npj Digital Medicine (2024)    33 Published in partnership with Seoul National University Bundang Hospital



weaRAble-PRO study), and using passive daily life walking
predictions generated from the activity recognition model instead,
which could reduce patient burden. Finally, we also found that
combining patient-reported outcomes (PRO) and objective sensor-
outcomes could better capture RAPID-3-based RA severity at
baseline than PROs alone; most estimated RAPID-3 scores
correctly stratified participants across severity levels from healthy
to moderate to severe RA, suggesting that sufficient information
to characterise RA disease severity could be reflected in the
remote monitoring outcomes derived in the 14-day weaRAble-
PRO study. To the best of the authors knowledge, this offers the
first evaluation and insight how remote monitoring outcomes in
daily life can estimate in-clinic administered assessments of RA
impact.
There are a number of limitations that must be considered in

the weaRAble-PRO study. Despite rich individual level measure-
ments, the study recruited a relatively small sample size (HC,
n= 30; RA, n= 30). As such, a degree of variability and uncertainty
existed in constructing cross-validated models to distinguish RA
participants, RA severity levels, or estimate the in-clinic RAPID-3
assessment. Extrapolation of results aimed at generalising RA is
therefore not possible without the availability of larger cohorts
and further external validation. In addition, this study only
recruited RA patients with moderate-to-severe levels of disease
activity; future studies should also aim to characterise patients
with lower levels of disease activity or those in remission. There
were also limitations associated with modelling a clinician-
administered assessment, or clinical labels formulated from in-
clinic assessments. For instance, the RAPID-3 was assessed at
baseline, with participants recalling the prior week, yet the PRO
and sensor-based features were calculated as averages over
subsequent 14-day trial period from baseline. As such, the
baseline RAPID-3 may not have precisely reflected the partici-
pant’s disease status recorded earlier, due to the underlying
mutability and heterogeneity of RA symptoms over short periods
of time. The subjectivity of PRO predictors should also considered,
for instance, pain or perceived quality of sleep is relative, and
some healthy participants recorded experiencing pain or affected
sleep in PRO questionnaires. As a result, some PRO values
influenced HC RAPID-3 predictions greater than zero, i.e.,
indicating the presence of RA symptoms—albeit non-zero
estimated RAPID-3 predictions for HCs were generally low ( < 2).
The weaRAble-PRO study typifies how continuously collected

patient self-reported and sensor-based outcomes may more
closely reflect participant perceived and experienced symptoms
that impact daily life. While in-clinic assessments are considered
the gold-standard means of assessing disease severity in RA, it is
clear that remotely collected, continuous, patient-centric measure-
ments generated from PRO and sensor-based outcomes offer
promising insights that can undoubtedly augment in-clinic
assessments for RA. We believe that our work—the first
comprehensive evaluation how remote sensor data can augment
traditional PRO measures to estimate clinician-determined RA
severity—helps informs future DHT study design to better
characterise the impact of RA on daily life, ultimately to expand
the use of DHT to develop more sensitive, and patient-centric,
endpoints in RA clinical trials and real-world studies.

METHODS
Dataset
Remotely collected smartphone and smartwatch sensor data was
obtained from the GSK study title: Novel Digital Technologies for
the Assessment of Objective Measures and Patient Reported
Outcomes in Rheumatoid Arthritis Patients: A Pilot Study Using a
Wrist-Worn Device and Bespoke Mobile App. (212295, weaRAble-
PRO)26. This observational study followed 30 participants

diagnosed with moderate-to-severe RA and 30 matched HCs over
14 days. The population demographics, in-clinic, and relevant
patient self-reported outcomes, as assessed at baseline, are
reported in Table 1. RA participants were denoted as displaying
moderate disability, RA (mod), or severe disability, RA (sev), as
determined by their baseline RAPID-3 score. Note: Two RA
participants withdrew immediately after enroling in the study.
Data from these participants were not collected, leaving 28 RA
participants, 28 matched HCs, and 2 unmatched HCs for a total of
58 participants. All study information, informed consent, study
questions and instructions for conducting the guided tests were
first drafted in the form of a survey instrument. The survey
instrument was then programmed into the mobile app. All
documentation including the study protocol, any amendments,
and informed consent procedures, were reviewed and approved
by Reliant Medical Group’s IRB. All participants provided written
informed consent before any study procedures were undertaken.
The study was conducted in accordance with the International
Committee for Harmonisation principles of Good Clinical Practice
and the Declaration of Helsinki. We refer the reader to Hamy
et al.26 for further study details. In addition, participant require-
ment and data collection are outlined in the accompanying
Supplementary Methods material.

Sensor-based data collection. The Apple Watch and iPhone were
used to collect high frequency raw sensor data from predefined,
(active) guided tests on a daily basis. Participants were prescribed
daily to perform five iPhone-based assessments: WRT, a wrist
range of motion (ROM) exercise12; WLK, a 30-second walking
exercise12; PEG, a digital 9-hole peg test34; STS, a sit-to-stand
transition exercise31,35; and LTS, a lie-to-stand transition exer-
cise31,35. A brief overview of the guided tests prescribed in
weaRAble-PRO are presented in Supplementary Table 8. In
addition, the Apple Watch was used to continuously collect
background sensor data (denoted passive data), as the

Table 1. Population demographics, in-clinic, and selected patient self-
reported outcomes, as assessed at baseline, where the
mean ± standard deviation across the population is reported.

HCa RA (mod)b RA (sev)c p1

(n= 28) (n= 13) (n= 15)

Demographics

Age, years 58.4 ± 9.9 56.9 ± 11.4 60.4 ± 7.1 0.33

Female, n (%) 25 (89%) 11 (84%) 14 (93%) 0.92

BMI 25.8 ± 4.6 31.1 ± 5.9 31.7 ± 8.6 0.96

In-clinic Outcome(s)

RAPID-3 0 ± 0 3.2 ± 0.7 5.3 ± 1.1 < 0.001

Patient Reported Outcome(s)

HAQ-DI 0 ± 0 0.63 ± 0.36 1.03 ± 0.42 < 0.01

RASIQ-pain 3.1 ± 6.7 32.1 ± 20.8 56.2 ± 11.6 < 0.01

RASIQ-stiffness 5.9 ± 9.5 33.9 ± 18.9 51.6 ± 10.2 < 0.05

RASIQ-impact 47.3 ± 5.0 53.9 ± 5.1 50.8 ± 7.6 0.33

FACIT 49.2 ± 2.9 38.9 ± 4.3 31.9 ± 7.6 < 0.05

PROMIS-sleep 49.6 ± 2.8 52.7 ± 4.2 52.4 ± 4.3 0.83

PROMIS-pain 42.2 ± 4.8 54.2 ± 7.29 58.8 ± 4.6 0.09

JMAP total pain2 0.20 ± 0.5 13.5 ± 13.9 18.8 ± 13.7 0.23

1p, p-value calculated from Mann Whitney U-test comparing severe vs.
moderate RA participants;
2Note: self-reported JMAP is not a validated PRO in RA;
aMatched HC to RA participants only;
bRA participants with baseline RAPID-3: 6.1–12.
cRA participants with baseline RAPID-3: > 12;
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participants went about their daily activities. Participants were
asked to maintain a charge on both the Apple Watch and the
iPhone, so that interruptions to monitoring and data transfer were
kept to a minimum. Since night-time activity was also monitored,
while participants were asleep, it was requested that charging
should be done during the day, in a way that fit the participants’
schedules (e.g., charging in the morning while getting ready for
the day). For more details on the activity monitoring features, see
Supplementary Table 9.

Patient-reported outcomes. Patient-reported outcomes (PRO),
most often self-report questionnaires, were administered to assess
disease activity, symptoms, and health status and quality of life
from the patients’ perspective36,37. The weaRAble-PRO study
administered a selection of validated PRO measures for RA in
complement to bespoke digital PRO assessments—that are
validated in clinical trials, where the questions, response options,
and the general approach to assessment were standardised for all
participants. PROs were recorded on days 1, 7, and 14 of data
collection. The PRO assessments administered to participants are
outlined in Supplementary Table 7.

Smartwatch-based estimation of daily life patterns
In order to generate unobtrusive measures characterising physical
activity and sleep in RA participants during daily life, the raw Apple
Watch actigraphy (i.e., accelerometer) sensor data was transformed
through a human activity recognition (HAR) sensor processing and
deep convolutional neural network (DCNN) pipeline. Figure 7
illustrates how a deep convolutional neural network (DCNN) can
transform raw Apple smartwatch sensor data to estimate a
participant’s daily activity patterns in the weaRAble-PRO study using
self-supervised learning (SSL). The construction of this pipeline yielded
unobtrusively measured summary features of physical activity and
sleep for RA participants, computed daily during normal life.
A deep convolutional neural network (DCNN) with a ResNet-V2

architecture was first pre-trained following a multi-task self-
supervised learning (SSL) methodology on 100,000 participants,
each participant contributing 7 days yielding roughly 700,000
person days of data, in the open-source UK biobank27. The SSL
pre-trained model was then fine-tuned to perform activity
recognition as a downstream task in the Capture-24 dataset.
The Capture-24 study is a manually labelled, free-living dataset

—that is reflective of real-world environments—and is available
for training an activity recognition model to be applied to the
weaRAble-PRO study. In Capture-24, actigraphy data was collected
for 24-h from 132 healthy volunteer participants with a Axivity AX3
wrist-worn device as they went their normal day. Activity labels
provided by photographs automatically captured roughly every
30 seconds by a wearable camera for each participant. Capture-24
was labelled with 213 activity labels, standardised from the
compendium of physical activities29. Activity labels were then
summarised into a small number of free-living behaviour labels,
defining activity classes in Capture-24.
There are two major labelling conventions used within Capture-

24 that the model was trained to predict, defined as broad activity:
{sleep, sedentary, light physical activity, moderate-to-vigorous
physical activity (MVPA)}29,30; and fine-grained activity: {sleep,
sitting/standing, mixed, vehicle, walking, bicycling}28.
HAR model predictions are essentially independent—meaning

that the sequence of activities over each 30 s epoch incorporates
no temporal information epoch-to-epoch, for instance how the
previous epoch prediction affects the current, or next, activity
prediction. In order to add temporal dependency to the “DCNN
(SSL)” model, a Hidden Markov Model (HMM) was implemented in
a post-processing step to obtain a more accurate sequence of
predicted activities over the continuous 14-day data collection
period as per Willetts, et al.28.

This Capture-24 fine-tuned “DCNN (SSL) + HMM” model was
then implemented to estimate daily activities in weaRAble-PRO
study data. For additional information of the HAR deep network,
SSL, and other related information, we refer the reader to our
previous work27. Further results relating to the “DCNN (SSL)”
models are outlined in the Supplementary Table 1. The sensor
processing pipeline developed for the Apple Watch in the
weaRAble-PRO study is outlined in Supplementary Fig. 5 and
within the accompanying Supplementary Methods.

Extraction of sensor-based outcomes
Wearable sensor-based features were derived from the smartphone
during the active guided tasks and passively from the smartwatch
during daily life. “Active” features, extracted from smartphone
sensor-based measurements during the prescribed guided tests,
aimed to capture specific aspects of RA physical function, related to
pain, dexterity, mobility and fatigue12. In addition “passive” features
were extracted from smartwatch sensor-based measurements,
collected continuously in the background over the 14-day period.
Daily activity predictions from the ML SSL model were summarised
into general features measuring activity levels, period, duration and
type of activity, as well as sleep detection and sleeping patterns.
Furthermore, devised under the guidance of Rheumatologists,
additional activity monitoring features specifically aimed at char-
acterising well-known RA symptoms were also developed, such as
morning stiffness and night-time restlessness.
The Supplementary Methods also detail algorithms used to

extract active and passive features in the weaRAble-PRO study. For
a full list of extracted sensor-based features in weaRAble-PRO, we
refer the reader to Supplementary Table 9.

Statistical analysis
Univariate testing. Pair-wise differences groups between groups,
for example HC vs. RA, or RA (mod) vs. RA (sev) were analysed for
the equality in population median using the non-parametric
Mann-Whitney U test (MWUT)38–40. One-way analysis of variance
(ANOVA) tests were also used to assess differences between
medians of multiple groups, for example HC vs. RA (mod) vs. RA
(sev) were assessed using the Kruskal-Wallis (KWt) test by ranks41.
The Brown-Forsythe (BF) test by (absolute deviation) of medians
was used to investigate if various groups of data have been drawn
with equal variances42.

Correlation analysis. Correlation analysis was utilised to deter-
mine the association or dependence between sets of random
variables, such as the dependence between features, or to assess a
features’ clinical utility by measuring the association to an
established clinical metric. This study investigated the (linear)
Pearson’s r correlation and the (non-linear) Spearman’s Rho ρ
correlation between features, between features and PROs, and
between clinical assessments to determine levels of association.
The strengths of the correlations were classified as good-to-
excellent (r > 0.75), moderate-to-good (r= 0.50–0.75), fair
(r= 0.25–0.49) or no correlation (r < 0.25)43.

Feature reliability. Intra-rater (i.e., test-retest) reliability was deter-
mined using intra-class correlation coefficient (ICC) values44, which
were used to assess the degree of similarity between repeated
features over the course of the study for each patient. In this work,
the ICC(3, k) was calculated45–which considers the two-way random
average measures with k repeated measurements—for the 14-day
session across subjects, where the raters k are the study days.
Reliability was categorised as either poor (ICC < 0.5), moderate
(ICC=0.5–0.75), good (ICC=0.75–0.9), or excellent (ICC > 0.9)46.

Correcting for multiple hypothesis testing. Multiple hypothesis
testing was performed due to the large volume of features by
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Fig. 7 Self-supervised learning pipeline. Continuous (passive) actigraphy was recorded from patients' Apple smartwatch over the study
duration. Deep convolutional neural networks (DCNN) were pre-trained on 700,000 person days in the publicly available UK Biobank using
self-supervised learning—and fine-tuned with the Capture-24 dataset—to estimate participant’s daily activity patterns in the weaRAble-PRO
study. Physical activity (PA) metrics of daily-life, for example, the time spent walking, the frequency of exercise, or the length and quality of
sleep were investigated as markers to characterise symptoms of disease in people with RA compared to HC.
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controlling the false discovery rate (FDR) at level α using the
linear step-up procedure introduced by Benjamini and
Hochberg (BH)47,48.

Machine-learning estimation of RA status and severity
This work explored how state-of-the art machine learning (ML)
models characterise the impact of RA during the daily life of
participants in the 14-day weaRAble-PRO study. Multivariate model-
ling aimed to explore the ability of active, passive, and PRO measures
to (1) distinguish RA participants from healthy controls (HC), and (2) to
estimate RA disease severity: between RA participants with moderate
symptoms (RA mod) and severe symptoms (RA sev) as binary
classification tasks. Expansions of this analysis subsequently investi-
gated how the in-clinic RAPID-3 assessment, a continuous measure of
RA severity, could be estimated from the combination of PRO and
sensor-based outcomes.

Overview of models. This analysis compared both linear and non-
linear ML models to transform PRO and sensor-based outcomes to
capture RA status and severity. Regularised linear regression (LR)
models, with combinations of ℓ1 and ℓ2 priors, such as LR-lasso
(ℓ1), LR-ridge (ℓ2), and LR-elastic-net (ℓ1 +ℓ2) were compared to
yield predictive, yet sparse model solutions49. Further regularisa-
tion extensions were also investigated using the sparse-group
lasso (SG-lasso)—an extension of the lasso that promotes both
group sparsity and within group parameter-wise (ℓ2) sparsity,
through a group lasso penalty and the lasso penalty—which aims
to yield a sparse set of groups and also a sparse set of covariates in
each selected group50,51.
Linear regression regularised models were also compared to

decision tree (DT) based non-linear models, for instance the off-
the-shelf Random Forest (RF)52 and Extreme Gradient Boosted
Trees (XGB)53. Both LR- and DT-based models can intrinsically
perform regression or classification depending on the task
required. In the LR case, classification is denoted as logistic
regression (though a logit-link function). NOTE: in this analysis LR
can refer to both linear regression for continuous outputs or
logistic regression for classification outputs. In the DT case, the
mean prediction of the individual trees creates a continuous
output for regression. For further details on the models employed
in this study, we refer the reader to the Supplementary Methods.

Model evaluation. To determine the generalisability of our models,
a stratified subject-wise k-fold cross-validation (CV) was employed.
This consisted of randomly partitioning the dataset into k=5 folds,
which was stratified with equal class proportions where possible.
Participant data remained independent between training, validation,
and testing splits. One set was denoted the training set (in-sample),
and the remaining 20% of the dataset was then denoted testing set
(out-of-sample) on which predictions were made.

Feature-wise and prediction-wise aggregation. In this work, we
experimented with feature-wise and prediction-wise aggregation.
In feature-wise aggregation, features were computed either as:
daily feature values over the 14-day study period; the average
daily feature value over a 7-day period (weekly); the average daily
feature value over a 14-day period (fortnightly). Predictions could
then be evaluated for each day (denoted observation-wise) or
aggregated over all days through majority voting each individual
prediction per subject (denoted subject-wise). For example, daily
and weekly averaged features result in daily, or weekly predictions
(i.e., observation-wise), which were summarised into subject-wise
outcomes by majority voting over the repeated predictions.

Evaluation metrics. Multi-class classification metrics were
reported as the observation-wise median and interquartile (IQR)
range over one CV, as well as the subject-wise outcome for that CV,

using: auroc, area under the receiver operating characteristic
curve; k, Cohen’s kappa statistic54,55; F1, F1-score. The coefficient of
determination, r2, the mean absolute error (MAE), and root-mean
squared error (RMSE) were used to evaluate modelling the
(continuous) in-clinic RAPID-3 scores56.
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