311 research outputs found

    Bezier Curves and Surfaces with Shape Parameter and Developable Surface Fitting to Point Clouds

    Get PDF
    本文针对以下三个方面的问题,作了一定的研究,得到了有意义的结果。 针对经典的Bezier曲线曲面在控制顶点给定,曲线曲面形状就唯一固定,缺乏进一步调整曲线曲面形状的能力这一情况,本文给出了一种带形状参数的Bezier曲线曲面。这种带形状参数的Bezier曲线曲面保留了经典Bezier曲线曲面的优良性质,并可以通过形状参数的取值变化来进一步调整曲线曲面的形状。形状参数具有直观明确的几何意义。 在参考文献[1]中给出了一种带n个形状参数的贝齐尔曲线以及带3n(n+1)/2个形状参数的三角贝齐尔曲面。在[1]中只给出了一些基本性质,本文进行了更深入的研究,得到了一些更深刻的性质,并给出证明。 ...This paper is arranged in the following three parts. When the control points are given, the shape of classical Bezier curve or surface is uniquely decided. For remedying this cases, the generalized Bezier curve and surface with shape parameter are given, which not only hold the excellent properties of classical Bezier curve or surface, but also can changing the shape of the curve or surf...学位:理学硕士院系专业:数学科学学院信息与计算数学系_计算数学学号:1912008115273

    Smooth quasi-developable surfaces bounded by smooth curves

    Full text link
    Computing a quasi-developable strip surface bounded by design curves finds wide industrial applications. Existing methods compute discrete surfaces composed of developable lines connecting sampling points on input curves which are not adequate for generating smooth quasi-developable surfaces. We propose the first method which is capable of exploring the full solution space of continuous input curves to compute a smooth quasi-developable ruled surface with as large developability as possible. The resulting surface is exactly bounded by the input smooth curves and is guaranteed to have no self-intersections. The main contribution is a variational approach to compute a continuous mapping of parameters of input curves by minimizing a function evaluating surface developability. Moreover, we also present an algorithm to represent a resulting surface as a B-spline surface when input curves are B-spline curves.Comment: 18 page

    Developability Approximation for Neural Implicits through Rank Minimization

    Full text link
    Developability refers to the process of creating a surface without any tearing or shearing from a two-dimensional plane. It finds practical applications in the fabrication industry. An essential characteristic of a developable 3D surface is its zero Gaussian curvature, which means that either one or both of the principal curvatures are zero. This paper introduces a method for reconstructing an approximate developable surface from a neural implicit surface. The central idea of our method involves incorporating a regularization term that operates on the second-order derivatives of the neural implicits, effectively promoting zero Gaussian curvature. Implicit surfaces offer the advantage of smoother deformation with infinite resolution, overcoming the high polygonal constraints of state-of-the-art methods using discrete representations. We draw inspiration from the properties of surface curvature and employ rank minimization techniques derived from compressed sensing. Experimental results on both developable and non-developable surfaces, including those affected by noise, validate the generalizability of our method

    Robotic manipulation of cloth: mechanical modeling and perception

    Get PDF
    (Eng) In this work we study various mathematical problems arising from the robotic manipulation of cloth. First, we develop a locking-free continuous model for the physical simulation of inextensible textiles. We present a novel 'finite element' discretization of our inextensibility constraints which results in a unified treatment of triangle and quadrilateral meshings of the cloth. Next, we explain how to incorporate contacts, self-collisions and friction into the equations of motion, so that frictional forces and inextensibility and collision constraints may be integrated implicitly and without any decoupling. We develop an efficient 'active-set' solver tailored to our non-linear problem which takes into account past active constraints to accelerate the resolution of unresolved contacts and moreover can be initialized from any non-necessarily feasible point. Then, we embark ourselves in the empirical validation of the developed model. We record in a laboratory setting --with depth cameras and motion capture systems-- the motions of seven types of textiles (including e.g. cotton, denim and polyester) of various sizes and at different speeds and end up with more than 80 recordings. The scenarios considered are all dynamic and involve rapid shaking and twisting of the textiles, collisions with frictional objects and even strong hits with a long stick. We then, compare the recorded textiles with the simulations given by our inextensible model, and find that on average the mean error is of the order of 1 cm even for the largest sizes (DIN A2) and the most challenging scenarios. Furthermore, we also tackle other problems relevant to robotic cloth manipulation, such as cloth perception and classification of its states. We present a reconstruction algorithm based on Morse theory that proceeds directly from a point-cloud to obtain a cellular decomposition of a surface with or without boundary: the results are a piecewise parametrization of the cloth surface as a union of Morse cells. From the cellular decomposition the topology of the surface can be then deduced immediately. Finally, we study the configuration space of a piece of cloth: since the original state of a piece of cloth is flat, the set of possible states under the inextensible assumption is the set of developable surfaces isometric to a fixed one. We prove that a generic simple, closed, piecewise regular curve in space can be the boundary of only finitely many developable surfaces with nonvanishing mean curvature. Inspired on this result we introduce the dGLI cloth coordinates, a low-dimensional representation of the state of a piece of cloth based on a directional derivative of the Gauss Linking Integral. These coordinates --computed from the position of the cloth's boundary-- allow to distinguish key qualitative changes in folding sequences.(Esp) En este trabajo estudiamos varios problemas matemáticos relacionados con la manipulación robótica de textiles. En primer lugar, desarrollamos un modelo continuo libre de 'locking' para la simulación física de textiles inextensibles. Presentamos una novedosa discretización usando 'elementos finitos' de nuestras restricciones de inextensibilidad resultando en un tratamiento unificado de mallados triangulares y cuadrangulares de la tela. A continuación, explicamos cómo incorporar contactos, autocolisiones y fricción en las ecuaciones de movimiento, de modo que las fuerzas de fricción y las restricciones de inextensibilidad y colisiones puedan integrarse implícitamente y sin ningún desacoplamiento. Desarrollamos un 'solver' de tipo 'conjunto-activo' adaptado a nuestro problema no lineal que tiene en cuenta las restricciones activas pasadas para acelerar la resolución de los contactos no resueltos y, además, puede inicializarse desde cualquier punto no necesariamente factible. Posteriormente, nos embarcamos en la validación empírica del modelo desarrollado. Grabamos en un entorno de laboratorio -con cámaras de profundidad y sistemas de captura de movimiento- los movimientos de siete tipos de textiles (entre los que se incluyen, por ejemplo, algodón, tela vaquera y poliéster) de varios tamaños y a diferentes velocidades, terminando con más de 80 grabaciones. Los escenarios considerados son todos dinámicos e implican sacudidas y torsiones rápidas de los textiles, colisiones con obstáculos e incluso golpes con una varilla cilíndrica. Finalmente, comparamos las grabaciones con las simulaciones dadas por nuestro modelo inextensible, y encontramos que, de media, el error es del orden de 1 cm incluso para las telas más grandes (DIN A2) y los escenarios más complicados. Además, también abordamos otros problemas relevantes para la manipulación robótica de telas, como son la percepción y la clasificación de sus estados. Presentamos un algoritmo de reconstrucción basado en la teoría de Morse que procede directamente de una nube de puntos para obtener una descomposición celular de una superficie con o sin borde: los resultados son una parametrización a trozos de la superficie de la tela como una unión de celdas de Morse. A partir de la descomposición celular puede deducirse inmediatamente la topología de la superficie. Por último, estudiamos el espacio de configuración de un trozo de tela: dado que el estado original de la tela es plano, el conjunto de estados posibles bajo la hipótesis de inextensibilidad es el conjunto de superficies desarrollables isométricas a una fija. Demostramos que una curva genérica simple, cerrada y regular a trozos en el espacio puede ser el borde de un número finito de superficies desarrollables con curvatura media no nula. Inspirándonos en este resultado, introducimos las coordenadas dGLI, una representación de dimensión baja del estado de un pedazo de tela basada en una derivada direccional de la integral de enlazamiento de Gauss. Estas coordenadas -calculadas a partir de la posición del borde de la tela- permiten distinguir cambios cualitativos clave en distintas secuencias de plegado.Postprint (published version

    Robotic manipulation of cloth: mechanical modeling and perception

    Get PDF
    (Eng) In this work we study various mathematical problems arising from the robotic manipulation of cloth. First, we develop a locking-free continuous model for the physical simulation of inextensible textiles. We present a novel 'finite element' discretization of our inextensibility constraints which results in a unified treatment of triangle and quadrilateral meshings of the cloth. Next, we explain how to incorporate contacts, self-collisions and friction into the equations of motion, so that frictional forces and inextensibility and collision constraints may be integrated implicitly and without any decoupling. We develop an efficient 'active-set' solver tailored to our non-linear problem which takes into account past active constraints to accelerate the resolution of unresolved contacts and moreover can be initialized from any non-necessarily feasible point. Then, we embark ourselves in the empirical validation of the developed model. We record in a laboratory setting --with depth cameras and motion capture systems-- the motions of seven types of textiles (including e.g. cotton, denim and polyester) of various sizes and at different speeds and end up with more than 80 recordings. The scenarios considered are all dynamic and involve rapid shaking and twisting of the textiles, collisions with frictional objects and even strong hits with a long stick. We then, compare the recorded textiles with the simulations given by our inextensible model, and find that on average the mean error is of the order of 1 cm even for the largest sizes (DIN A2) and the most challenging scenarios. Furthermore, we also tackle other problems relevant to robotic cloth manipulation, such as cloth perception and classification of its states. We present a reconstruction algorithm based on Morse theory that proceeds directly from a point-cloud to obtain a cellular decomposition of a surface with or without boundary: the results are a piecewise parametrization of the cloth surface as a union of Morse cells. From the cellular decomposition the topology of the surface can be then deduced immediately. Finally, we study the configuration space of a piece of cloth: since the original state of a piece of cloth is flat, the set of possible states under the inextensible assumption is the set of developable surfaces isometric to a fixed one. We prove that a generic simple, closed, piecewise regular curve in space can be the boundary of only finitely many developable surfaces with nonvanishing mean curvature. Inspired on this result we introduce the dGLI cloth coordinates, a low-dimensional representation of the state of a piece of cloth based on a directional derivative of the Gauss Linking Integral. These coordinates --computed from the position of the cloth's boundary-- allow to distinguish key qualitative changes in folding sequences.(Esp) En este trabajo estudiamos varios problemas matemáticos relacionados con la manipulación robótica de textiles. En primer lugar, desarrollamos un modelo continuo libre de 'locking' para la simulación física de textiles inextensibles. Presentamos una novedosa discretización usando 'elementos finitos' de nuestras restricciones de inextensibilidad resultando en un tratamiento unificado de mallados triangulares y cuadrangulares de la tela. A continuación, explicamos cómo incorporar contactos, autocolisiones y fricción en las ecuaciones de movimiento, de modo que las fuerzas de fricción y las restricciones de inextensibilidad y colisiones puedan integrarse implícitamente y sin ningún desacoplamiento. Desarrollamos un 'solver' de tipo 'conjunto-activo' adaptado a nuestro problema no lineal que tiene en cuenta las restricciones activas pasadas para acelerar la resolución de los contactos no resueltos y, además, puede inicializarse desde cualquier punto no necesariamente factible. Posteriormente, nos embarcamos en la validación empírica del modelo desarrollado. Grabamos en un entorno de laboratorio -con cámaras de profundidad y sistemas de captura de movimiento- los movimientos de siete tipos de textiles (entre los que se incluyen, por ejemplo, algodón, tela vaquera y poliéster) de varios tamaños y a diferentes velocidades, terminando con más de 80 grabaciones. Los escenarios considerados son todos dinámicos e implican sacudidas y torsiones rápidas de los textiles, colisiones con obstáculos e incluso golpes con una varilla cilíndrica. Finalmente, comparamos las grabaciones con las simulaciones dadas por nuestro modelo inextensible, y encontramos que, de media, el error es del orden de 1 cm incluso para las telas más grandes (DIN A2) y los escenarios más complicados. Además, también abordamos otros problemas relevantes para la manipulación robótica de telas, como son la percepción y la clasificación de sus estados. Presentamos un algoritmo de reconstrucción basado en la teoría de Morse que procede directamente de una nube de puntos para obtener una descomposición celular de una superficie con o sin borde: los resultados son una parametrización a trozos de la superficie de la tela como una unión de celdas de Morse. A partir de la descomposición celular puede deducirse inmediatamente la topología de la superficie. Por último, estudiamos el espacio de configuración de un trozo de tela: dado que el estado original de la tela es plano, el conjunto de estados posibles bajo la hipótesis de inextensibilidad es el conjunto de superficies desarrollables isométricas a una fija. Demostramos que una curva genérica simple, cerrada y regular a trozos en el espacio puede ser el borde de un número finito de superficies desarrollables con curvatura media no nula. Inspirándonos en este resultado, introducimos las coordenadas dGLI, una representación de dimensión baja del estado de un pedazo de tela basada en una derivada direccional de la integral de enlazamiento de Gauss. Estas coordenadas -calculadas a partir de la posición del borde de la tela- permiten distinguir cambios cualitativos clave en distintas secuencias de plegado

    Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces

    Get PDF
    We introduce an algorithm to remesh triangle meshes representing developable surfaces to planar quad dominant meshes. The output of our algorithm consists of planar quadrilateral (PQ) strips that are aligned to principal curvature directions and closely approximate the curved parts of the input developable, and planar polygons representing the flat parts of the input. Developable PQ-strip meshes are useful in many areas of shape modeling, thanks to the simplicity of fabrication from flat sheet material. Unfortunately, they are difficult to model due to their restrictive combinatorics and locking issues. Other representations of developable surfaces, such as arbitrary triangle or quad meshes, are more suitable for interactive freeform modeling, but generally have non-planar faces or are not aligned to principal curvatures. Our method leverages the modeling flexibility of non-ruling based representations of developable surfaces, while still obtaining developable, curvature aligned PQ-strip meshes. Our algorithm optimizes for a scalar function on the input mesh, such that its level sets are extrinsically straight and align well to the locally estimated ruling directions. The condition that guarantees straight level sets is nonlinear of high order and numerically difficult to enforce in a straightforward manner. We devise an alternating optimization method that makes our problem tractable and practical to compute. Our method works automatically on any developable input, including multiple patches and curved folds, without explicit domain decomposition. We demonstrate the effectiveness of our approach on a variety of developable surfaces and show how our remeshing can be used alongside handle based interactive freeform modeling of developable shapes

    Automatic fitting of conical envelopes to free-form surfaces for flank CNC machining

    Get PDF
    We propose a new algorithm to detect patches of free-form surfaces that can be well approximated by envelopes of a rotational cone under a rigid body motion. These conical envelopes are a preferable choice from the manufacturing point of view as they are, by-definition, manufacturable by computer numerically controlled (CNC) machining using the efficient flank (peripheral) method with standard conical tools. Our geometric approach exploits multi-valued vector fields that consist of vectors in which the point-surface distance changes linearly. Integrating such vector fields gives rise to a family of integral curves, and, among them, linear segments that further serve as conical axes are quickly extracted. The lines that additionally admit tangential motion of the associated cone along the reference geometry form a set of candidate lines that are sequentially clustered and ordered to initialize motions of a rigid truncated cone. We validate our method by applying it on synthetic examples with exact envelopes, recovering correctly the exact solutions, and by testing it on several benchmark industrial datasets, detecting manufacturable conical envelope patches within fine tolerances
    corecore