
R O B O T I C M A N I P U L AT I O N O F C L O T H
Mechanical Modeling and Perception

franco coltraro

Doctoral Programme in Applied Mathematics
Facultat de Matemàtiques i Estadística
Universitat Politècnica de Catalunya

supervisors:
Jaume Amorós

Maria Alberich-Carramiñana
February 2023

Franco Coltraro: Robotic Manipulation of Cloth, Mechanical Modeling
and Perception, © February 2023

A thesis submitted to the Universitat Politècnica de Catalunya for the
degree of Doctor of Philosophy

doctoral programme:
Applied Mathematics

location:
Institut de Robòtica i Informàtica Industrial, CSIC-UPC
Barcelona, Spain

funding:
This project was developed in the context of the project CLOTHILDE
(”CLOTH manIpulation Learning from DEmonstrations”) which has
received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program
(grant agreement No. 741930) and was also supported by the Spanish
State Research Agency through the María de Maeztu Seal of Excellence
to IRI (MDM-2016-0656).

supervisors:
Jaume Amorós
Maria Alberich-Carramiñana

A mi Nonna.

A B S T R A C T

In this work, we study various mathematical problems arising from
the robotic manipulation of cloth. First, we develop a locking-free
continuous model for the physical simulation of inextensible textiles.
We present a novel finite element discretization of our inextensibility
constraints which results in a unified treatment of triangle and quadri-
lateral meshings of the cloth. Next, we explain how to incorporate
contacts, self-collisions and friction into the equations of motion, so
that frictional forces and inextensibility and collision constraints may
be integrated implicitly and without any decoupling. We develop an
efficient active-set solver tailored to our non-linear problem which
takes into account past active constraints to accelerate the resolution
of unresolved contacts and moreover can be initialized from any non-
necessarily feasible point. Then, we embark ourselves on the empirical
validation of the developed model. We record in a laboratory setting
–with depth cameras and motion capture systems– the motions of
seven types of textiles (including e.g. cotton, denim and polyester)
of various sizes and at different speeds and end up with more than
80 recordings. The scenarios considered are all dynamic and involve
rapid shaking and twisting of the textiles, collisions with frictional
objects and even strong hits with a long stick. We then, compare the
recorded textiles with the simulations given by our inextensible model
and find that on average the mean error is of the order of 1 cm even
for the largest sizes (DIN A2) and the most challenging scenarios.

Furthermore, we also tackle other relevant problems to robotic cloth
manipulation such as cloth perception and classification of its states.
We present a reconstruction algorithm based on Morse theory that
proceeds directly from a point-cloud to obtain a cellular decomposi-
tion of a surface with or without boundary: the results are a piecewise
parametrization of the cloth surface as a union of Morse cells. From
the cellular decomposition, the topology of the surface can be then
deduced immediately. Finally, we study the configuration space of a
piece of cloth: since the original state of a piece of cloth is flat, the
set of possible states under the inextensible assumption is the set of
developable surfaces isometric to a fixed one. We prove that a generic
simple, closed, piecewise regular curve in space can be the boundary
of only finitely many developable surfaces with nonvanishing mean
curvature. Inspired by this result we introduce the dGLI cloth coordi-
nates, a low-dimensional representation of the state of a piece of cloth
based on a directional derivative of the Gauss Linking Integral. These
coordinates –computed from the position of the cloth’s boundary–
allow us to distinguish key qualitative changes in folding sequences.

v

R E S U M E N

En este trabajo estudiamos varios problemas matemáticos relacionados
con la manipulación robótica de textiles. En primer lugar, desarro-
llamos un modelo continuo libre de locking para la simulación física
de textiles inextensibles. Presentamos una novedosa discretización
usando elementos finitos de nuestras restricciones de inextensibilidad
resultando en un tratamiento unificado de mallados triangulares y cua-
drangulares de la tela. A continuación, explicamos cómo incorporar
contactos, autocolisiones y fricción en las ecuaciones de movimiento,
de modo que las fuerzas de fricción y las restricciones de inextensi-
bilidad y colisiones puedan integrarse implícitamente y sin ningún
desacoplamiento. Desarrollamos un solver de tipo conjunto-activo adap-
tado a nuestro problema no lineal que tiene en cuenta las restricciones
activas pasadas para acelerar la resolución de nuevos contactos y,
además, puede inicializarse desde cualquier punto no necesariamente
factible. Posteriormente, nos embarcamos en la validación empírica
del modelo desarrollado. Grabamos en un entorno de laboratorio -con
cámaras de profundidad y sistemas de captura de movimiento- los
movimientos de siete tipos de textiles (entre los que se incluyen, por
ejemplo, algodón, tela vaquera y poliéster) de varios tamaños y a
diferentes velocidades, terminando con más de 80 grabaciones. Los
escenarios considerados son todos dinámicos e implican sacudidas y
torsiones rápidas de los textiles, colisiones con obstáculos e incluso
golpes con una varilla cilíndrica. Finalmente, comparamos las graba-
ciones con las simulaciones dadas por nuestro modelo inextensible, y
encontramos que, de media, el error es del orden de 1 cm incluso para
las telas más grandes (DIN A2) y los escenarios más complicados.

Además, también abordamos otros problemas relevantes para la
manipulación robótica de telas, como son la percepción y la clasifi-
cación de sus estados. Presentamos un algoritmo de reconstrucción
basado en la teoría de Morse que partiendo directamente de una nube
de puntos obtiene una descomposición celular de una superficie con
o sin borde: los resultados son una parametrización a trozos de la
superficie de la tela como una unión de celdas de Morse. A partir de la
descomposición celular puede deducirse inmediatamente la topología
de la superficie. Por último, estudiamos el espacio de configuración
de un trozo de tela: dado que el estado original de la tela es plano,
el conjunto de estados posibles bajo la hipótesis de inextensibilidad
es el conjunto de superficies desarrollables isométricas a una fija. De-
mostramos que una curva genérica simple, cerrada y regular a trozos
en el espacio puede ser el borde de un número finito de superficies
desarrollables con curvatura media no nula. Inspirándonos en este

vii

resultado, introducimos las coordenadas dGLI, una representación
de dimensión baja del estado de un pedazo de tela basada en una
derivada direccional de la integral de enlazamiento de Gauss. Estas
coordenadas -calculadas a partir de la posición del borde de la tela-
permiten distinguir cambios cualitativos clave en distintas secuencias
de plegado.

viii

A G R A D E C I M I E N T O S

A mis tutores Jaume y Maria por hacer de guías en lo académico y
muchas veces en lo personal en este largo camino.

A Amanda por su apoyo emocional.

A mis padres y hermano por su amor incondicional.

A mis amigos de Barcelona y Madrid por sus palabras de ánimo
cuando más las necesitaba.

A mis estudiantes de TFG y TFM por todo lo que aprendimos juntos.

Al personal del IRI y en especial al Grupo de Percepción y Manipulación
por ayudarme, especialmente en mis peleas con el WAM.

A todos ellos,

Gracias.

ix

C O N T E N T S

1 Introduction 1

1.1 Motivation 3

1.2 Contributions 6

1.3 Organization 7

1.3.1 Chapter 2: inextensibility modeling 7

1.3.2 Chapter 3: collisions for inextensible cloth 7

1.3.3 Chapter 4: experimental validation 8

1.3.4 Chapter 5: surface reconstruction via Morse the-
ory 10

1.3.5 Chapter 6: developable surfaces 10

1.3.6 Chapter 7: semantic classification of cloth states 11

1.4 Videos 11

1.5 Notation 11

i Modeling cloth
2 Inextensible cloth model 15

2.1 Related work 15

2.2 Inextensibility modeling 17

2.2.1 Equations of inextensibility 18

2.3 Discretization of the cloth with FEM 19

2.4 Constraint function enforcing inextensibility 21

2.4.1 Constraints for boundary curves 21

2.4.2 Weighted Galerkin residual method 21

2.4.3 Efficient computation of the coefficients of the
metric 23

2.4.4 Constraints evaluation 23

2.4.5 Practical implementation 24

2.4.6 Shearing Energy 25

2.5 Equations of motion of the cloth 26

2.5.1 Modeling of aerodynamics through virtual mass
27

2.6 Discretization of the equations of motion 28

2.6.1 Fast projection algorithm 28

2.7 Evaluation and results 29

2.7.1 Locking test 29

2.7.2 Cusick’s test 30

2.7.3 Tank-top simulation 32

3 Cloth collisions 35

3.1 Related Work 35

3.2 Modeling of contacts and friction 38

3.3 Self-collisions 39

3.3.1 Detection of self-collisions 40

xi

xii contents

3.3.2 Constraint definition for self-collisions 41

3.3.3 Proximity constraints and cloth thickness 42

3.4 Numerical integration of the system 43

3.4.1 Addition of self-collision constraints 44

3.5 Efficient solution of the quadratic problems 45

3.5.1 Factorization of the matrix system 47

3.5.2 Updates of the Cholesky decomposition 48

3.5.3 Detailed algorithm for collisions 50

3.5.4 Similarities and differences with common active-
set methods 51

3.6 Evaluation and Results 51

3.6.1 Frictional cylinder: https://youtu.be/_nh-ejH
cJAg 52

3.6.2 Rotating sphere: https://youtu.be/-XS3pKpo

VbA 52

3.6.3 Collision with a sharp obstacle: https://youtu.
be/z7l_O_nSfrM 54

3.6.4 Folding sequence of short pants: https://yout
u.be/2gdnjUICb0g 56

4 Experimental validation 59

4.1 WAM-arm experiments 61

4.1.1 Camera data 61

4.1.2 Parameter fitting 63

4.1.3 Sensitivity analysis 65

4.1.4 Comparison with other models 66

4.1.5 Discussion of the results 68

4.2 Aerodynamics study 70

4.2.1 Movements and textiles 72

4.2.2 Parameter fitting 73

4.2.3 A priori forecast of α and δ 75

4.2.4 Discussion of the results 77

4.3 Validation of collisions 77

4.3.1 Tablecloth scenario 78

4.3.2 Hitting scenario 80

4.3.3 Discussion of results 84

ii Reconstructing garments
5 Surface reconstruction via Morse Theory 87

5.1 Related work 87

5.2 Morse theory for manifolds 88

5.2.1 Morse theory for surfaces without boundary 89

5.2.2 Morse theory for surfaces with boundary 90

5.3 Extension to point-clouds 94

5.4 Practical implementation 96

5.4.1 Neighbors identification 96

5.4.2 Tangent space estimation 97

https://youtu.be/_nh-ejHcJAg
https://youtu.be/_nh-ejHcJAg
https://youtu.be/-XS3pKpoVbA
https://youtu.be/-XS3pKpoVbA
https://youtu.be/z7l_O_nSfrM
https://youtu.be/z7l_O_nSfrM
https://youtu.be/2gdnjUICb0g
https://youtu.be/2gdnjUICb0g

contents xiii

5.4.3 Boundary recognition 97

5.4.4 Reconstruction of curves 98

5.4.5 Morse function and flows 99

5.4.6 Hyperplane sections and computation of critical
values 99

5.4.7 Identification of Morse cells 103

5.4.8 Attachment maps of the Morse cells 105

5.4.9 Parametrization of the 2-cells 108

5.4.10 Results 109

iii Classifying cloth states
6 Developable Surfaces 119

6.1 The space of developable surfaces 119

6.2 The boundary of developable surfaces 122

7 Semantic Classification of Cloth States 125

7.1 Related work 125

7.2 Preliminaries 127

7.3 Derivation of the Cloth Coordinates 129

7.3.1 GLI of two segments 129

7.3.2 Directional derivative of the GLI 130

7.3.3 Practical computation of dGLI 131

7.3.4 Definition of the dGLI Cloth Coordinates 132

7.4 Results 133

7.4.1 Analysis of folding sequences 134

7.4.2 Confusion matrix of the full data-base 135

7.4.3 Comparison with other shape representations 136

7.4.4 Real images classification 138

7.4.5 Discussion of the results 140

8 Conclusions 143

8.1 Further work 146

iv Appendix
a Appendix 153

a.1 Tables 153

a.2 Figures 155

Bibliography 157

L I S T O F F I G U R E S

Figure 1.1 Various deformation states that a shirt can present:
crumpled, extended, hanging, etc. Image adapted
from [61]. 1

Figure 1.2 Comparison at 4 time instants of the fast shak-
ing by a WAM robot of DIN A3 felt (right) ver-
sus its simulation with the inextensible model
(left). The mean absolute error is 0.39 cm. 2

Figure 1.3 Final frame of a draping simulation: when all
edges in a triangular mesh are forced to main-
tain their length the cloth faces a spurious re-
sistance to bending. 3

Figure 1.4 Four frames comparing the recorded hitting of
A2 polyester (left) with its inextensible simu-
lation (right); its average error being 1.44 cm.
On the right, we show a full plot (vertically)
of the absolute error and with yellow lines, we
highlight the moments in which the stick is in
contact with the cloth. 9

Figure 2.1 Isometric deformation of a surface: in both
surfaces, the length of the depicted (geodesic)
curve is the same. Image adapted from https:

//solitaryroad.com/c334.html. 18

Figure 2.2 Bilinear parametrization of one of the elements
of a quadrangulated surface (shorts). 20

Figure 2.3 In order to have an isometry between the times
t0 and t f , we impose the preservation of the
first fundamental form at the central node 5,
we constraint the length of the boundary edges
1⃗2, 2⃗3, . . . , 7⃗4, 4⃗1 and we enforce Fk(t0) = Fk(t f)

at the corners k ∈ {1, 3, 7, 9}. 22

Figure 2.4 Different meshes used for the locking test. The
triangular meshes (left) are irregular whereas
the quadrilateral ones (right) are uniform. 29

Figure 2.5 Four different meshes used for the experiment:
the red ones are made of triangles and the blue
ones of quadrilaterals. From left to right the
number of nodes is: 472, 941, 529, 900. On the
bottom of each cloth, we display the euclidean
position of the free corner. 30

Figure 2.6 Photo of a circular cloth draping on top of a
circular table. Image taken from [42]. 31

xiv

https://solitaryroad.com/c334.html
https://solitaryroad.com/c334.html

list of figures xv

Figure 2.7 After the cloth has draped on top of the table,
the drape coefficient is calculated as the ratio
between the area of the plane projection of the
cloth C, divided by the area of the flat ring A
of width 6cm. Image adapted from [42]. 31

Figure 2.8 Simulation of Cusick’s test with the inextensible
model and a mesh of 768 nodes. From left to
right we vary the stiffness of the cloth and get
respectively DCs of 26.1%, 54.9%, 77.2%. They
correspond to peach-skin polyester (low stiff-
ness), imitation wool (medium) and tussore cot-
ton (high). 32

Figure 2.9 Computation of the drape coefficient (DC) for
3 stiffness values (low, medium and high) and
24 different meshes of cloth from 250 to 1300
nodes. The three mean values for the computed
DCs are 23.2%, 52.4%, 77.3%. 32

Figure 2.10 Simulation with the inextensible model of the
shaking of a triangulated tank-top. At each
time instant (t = 1.1s, 1.75s, 2.5s, 3.5s) we plot
the area error with sign (2.26) of each individual
triangle. 33

Figure 2.11 Plot of the time-dependent errors: total area
(2.23), mean element (2.24) and dispersion (2.25).
Note how the errors increase during the com-
plex parts of the simulation (from t = 0.5s to
t = 3s) and decrease afterward. 34

Figure 3.1 If the moving triangles were not intersecting
before, then there exists a time in which the
edges ab and a′b′ were co-planar. 40

Figure 3.2 Final frame (t = 2 seconds) of 3 separate simu-
lations of the fall of a sheet of cloth on top of
an off-center cylinder. All the physical parame-
ters are kept constant but friction, which varies
among µ ∈ {0.2, 0.4, 0.55}. 52

Figure 3.3 Final frame (t = 2.5 seconds) of 2 different sim-
ulations of the collision of a sheet of cloth with a
frictional sphere and the floor. One second after
the textile has fallen, the sphere performs half
a rotation along the z-axis during one second.
All the physical parameters are kept constant
but in the top image, a small amount of shear-
ing is allowed while in the bottom one, all the
inextensibility constraints are enforced. 53

xvi list of figures

Figure 3.4 Simulated final frame of cloth’s collision with a
collection of needle-like obstacles seen from 3

different angles. The cusps must be taken into
account separately from the rest of the surface
and are treated with the same algorithm we
treat self-collisions. 55

Figure 3.5 Trajectory of the controlled nodes for the dy-
namic folding of shorts. 56

Figure 3.6 Simulated sequence of the dynamical folding
of a pair of shorts. The first part of the mo-
tion (frames two and three) is performed fast
enough so that the shorts lay partially flat on
top of the table after a lowering phase (frame
four). The final fold is completed by dropping
the top two corners on top of the leg loops
(frames five and six). 57

Figure 4.1 In the picture we can see all the fabrics (size A3)
used in the experiments. From left to right we
have: paper, polyester, light cotton, felt, wool,
denim and stiff cotton. 60

Figure 4.2 Experimental setup for the recording of the
motion of the real textiles. On the left, the
depth camera. On the right, the robotic arm
with an affixed hanger. 61

Figure 4.3 Point-cloud obtained using a depth camera
(bottom) and RGB image (top). Note that the
camera only gets the depth of the objects visible
to it, all the rest (e.g. the robot behind the cloth)
is occluded. 62

Figure 4.4 Quadrilateral meshing (left) of one of the frames
of the filtered and de-noised point-cloud (right).
Each quadrilateral is divided into triangles for
plotting purposes. 63

Figure 4.5 Comparison at four time instants of the recorded
fast motion of paper (right) versus its simu-
lation with the inextensible model (left) with
δ = 0.37 and α = 2.49. The mean absolute error
is 0.41 cm. 64

Figure 4.6 Mean of the absolute error (4.3) for the fast
motion of paper using different values of the
parameters of the model (damping α and vir-
tual mass δ). In red we highlight the error with
the optimal value of the parameters. 65

list of figures xvii

Figure 4.7 Comparison at 4 time instants of the fast mo-
tion of light cotton (right) versus its simulation
with the inextensible model (left) with δ = 0.52
and α = 2.69. The mean absolute error is 0.31
cm. 66

Figure 4.8 Comparison of the fast motion of light cotton
between the inextensible and the other 3 mod-
els’ errors (bottom curves) and dispersions (top
curves), with respect to the recorded motion
(using a 9× 9 meshing). The mean absolute er-
ror for the inextensible model is 0.31cm. 67

Figure 4.9 Comparison at 4 time instants of the slow mo-
tion of wool (right) versus its simulation with
the inextensible model (left) with δ = 0.47 and
α = 1.19. The mean absolute error is 0.37
cm. 68

Figure 4.10 Absolute error (bottom curves) and dispersion
(top curves) of the position of the simulated
textile vs. the recorded motion (with the depth-
camera and WAM robot) for the slow move-
ment (top) and the fast one (bottom) using the
inextensible model. 69

Figure 4.11 Reflective markers attached to the denim sam-
ple (encircled in red). The markers are very
small, with a diameter of 3 mm and a weight
of 0.013 g. We use 20 reflective markers when
the size of the textile is A2 and 12 when it is
A3. 70

Figure 4.12 Setup used to record the motion of the textiles:
5 cameras surround the scene so that every
marker (highlighted in red in the photo) is vis-
ible to at least 2 cameras at the same time. This
ensures that the system can be certain of the 3D
position of the marker. 71

Figure 4.13 Shaking motion sequence (left to right): the
cloth is shaken back and forwards. 72

Figure 4.14 Twisting motion sequence (left to right): the
cloth is rotated with respect to the z-axis back
and forth several times. 72

Figure 4.15 Surface plot of the error function ē(δ, α) for
the fast shaking motion of A2 wool (left) and
a close-up near the detected minimum (right).
Notice the presence of noise in the close-up. 74

xviii list of figures

Figure 4.16 Three frames comparing the recorded fast twist-
ing of A2 polyester (left) with its inextensible
simulation (right). The error at the three de-
picted frames from left to right is 1.82, 1.73 and
1.36 cm respectively; being the average error of
the whole simulation 1.15 cm. 75

Figure 4.17 Three frames comparing the recorded fast shak-
ing of A2 denim (left) with its inextensible sim-
ulation (right). The error at the three depicted
frames from left to right is 0.63, 0.92 and 1.001

cm respectively; being the average error of the
whole simulation 0.84 cm. 75

Figure 4.18 Putting a tablecloth motion sequence (right to
left): the cloth starts suspended and is after-
wards laid dynamically (only partially) onto
the table. 78

Figure 4.19 Three frames comparing the recorded table-
cloth low friction scenario of A2 wool (left)
with its inextensible simulation (right). The er-
ror at the three depicted frames from right to
left is 0.80, 1.17 and 0.76 cm respectively; being
the average error of the whole simulation 0.58

cm. 79

Figure 4.20 Sensitivity analysis for high friction case, i.e.
we vary the value of µ and compute the abso-
lute error (4.3) for the four A2 fabrics. In red
we encircle the error found with the optimal
parameter of µ. 79

Figure 4.21 Long-stick hits sequence (left to right): the cloth
is held by its two upper corners and then is
hit repeatedly with a long stick. The hits are
aimed at different locations with varied inten-
sities. 80

Figure 4.22 Long-stick (with a length of 75 cm and a di-
ameter of 1.5 cm) used to hit the textiles. Two
markers are put at both ends of the stick to
record its trajectory. 81

Figure 4.23 Four frames comparing the recorded hitting of
A2 stiff-cotton (left) with its inextensible sim-
ulation (right); being its average error 1.07 cm.
On the right, we show a full plot (vertically)
of the absolute error and with yellow lines, we
highlight the moments in which the stick is in
contact with the cloth. 83

Figure 5.1 Critical points of the Morse-Smale function
f (x, y, z) = z on an example surface. 88

list of figures xix

Figure 5.2 Three types of critical points (from top to bot-
tom: minima, saddles and maxima) and their
Morse data for surfaces without boundary. 90

Figure 5.3 Four types of critical points located at the bound-
ary and their tangential and normal Morse
data. 92

Figure 5.4 Change in level set when crossing a critical
value in a surface (left) and point cloud (right):
note the change in neighbors among the 4 marked
points after the flow. 95

Figure 5.5 Typical problems associated to k-nearest neigh-
bors (left) and Voronoi neighbors (right). On
the left, the majority of the closest points to v
are clustered at one side of it. On the right,
vertices that are too far apart from each other
have a neighboring cell. 96

Figure 5.6 In principle, a boundary point can be identi-
fied easily because after projecting it and its
neighbors on the tangent plane, they cluster in
a semi-space of R2 (left panel). Nevertheless,
this is not always the case for every boundary
point (middle panel). To overcome this, we de-
clare a point as a boundary point when none
of the plane projections of its neighbors enclose
the point (right panel). 98

Figure 5.7 Intersection of the oriented graph Gdown with
a plane. Changes in the number of connected
components of the reconstructed curves Γ(c) =
Gdown ∩ Hc ≈ ∪ S1 tell us that we have crossed
critical points. 100

Figure 5.8 Apparition of a maximum when following the
downwards flow: a new connected component
appears. 101

Figure 5.9 Disappearance of a minimum when following
the downwards flow: an existing connected
component disappears. 101

Figure 5.10 Apparition of a saddle point when following
the downwards flow: a connected component
appears or disappears. 101

Figure 5.11 Different generic and local level set transfor-
mations for surfaces without boundary. The
reconstructed curves Γ(c) are homeomorphic
to a disjoint union of S1. 102

xx list of figures

Figure 5.12 Different local level set transformations for all
possible cases involving boundary points. The
reconstructed curves Γ(c) are homeomorphic
to a union of S1 and closed intervals [0, 1]. The
previous cases (interior minima, maxima and
saddles) are not shown again but can also occur.
Saddle points are also drawn, in blue. 103

Figure 5.13 A sampled dumbbell: the black line is the direc-
tion of the height function; local maxima, resp.
minima, are painted red, resp. black; saddle
points are painted blue; their 1–cells are out-
lined in blue. There are two 2-cells: one in dark
red (left) and one in light blue (right). 104

Figure 5.14 Parametrization of a 2-cell (left) using a rectan-
gle D with isometric sides to the boundary of
the 2-cell (right). 108

Figure 5.15 A sampled knotted torus: the black line is the
direction of the height function; local maxima,
resp. minima, are painted red, resp. black; sad-
dle points are painted blue; their 1-cells are out-
lined in blue. On the bottom, we plot the level
set curves highlighting when critical points ap-
pear. 110

Figure 5.16 A sampled vest: the black line is the direc-
tion of the height function; maxima are painted
in red, minima in black; 1-cells corresponding
to boundary minima are outlined in blue and
the boundary curves in black. The two purple
points where the 1-cells meet each other or the
boundary curves are added to the decomposi-
tion. The numbers correspond to the different
formal 1-cells that, when identified (e.g. 7 with
7’), reconstruct the entire surface from 2 pieces
homeomorphic to disks. 112

Figure 5.17 Parametrization by a rectangle of the right-
most 2-cell of Figure 5.16. The bounding 1-cells
are mapped isometrically to a flat rectangle
and then interior points are obtained using the
neighboring relationships of the cloud. The 2-
cell consisting of 27 000 points (shown in red) is
down-sampled interpolating linearly to a cloud
of 900 points (shown in blue). 113

list of figures xxi

Figure 5.18 A 3D-scan of real pants: the black line is the
direction of the height function; maxima are
painted red, minima in black, saddle points
are painted blue; 1-cells are outlined in blue
and the boundary curves in black. The purple
point where the 1-cells meet is added to the
decomposition. On the bottom, we plot the
level-set curves obtained by intersecting the
surface with planes perpendicular to the height
function. 115

Figure 6.1 A smooth simple closed curve (in black) which
is the boundary of two developable surfaces
(indicated in red and blue respectively) 123

Figure 7.1 Folding sequence of a quadrangular cloth with
its associated dGLI cloth coordinates, represented
as upper triangular matrices. Each matrix el-
ement mij is a geometrical value correspond-
ing to the dGLI between the segments i and j
highlighted in red in the corresponding folded
state. Notice how some values of the matrix
change sign when corners are folded or cross
each other. 126

Figure 7.2 The subset of chosen segments is marked in
red. 132

Figure 7.3 Study of the index during 3 folding sequences.
In the left column, we show a representation
of the cloth frames, and in the right column
the confusion matrix of all of them. In red we
highlight the clear class changes that can be
identified. 134

Figure 7.4 Confusion matrix that computes all the dis-
tances between the states shown in the top ta-
ble. 135

Figure 7.5 Synthetic representatives chosen for each class.
When only one is chosen, it is the closest to the
centroid of the class. When a class has more
sparsity, additional representatives are chosen
to represent the subgroups in the class. 139

Figure 7.6 Results of the real image classification using the
data-base presented in Figure 7.4 as reference.
The first column shows the ground truth class
of the images, and at the bottom of every image
the classified class. 140

Figure A.1 Four frames comparing the recorded hitting of
A2 denim (left) with its inextensible simulation
(right); being its average error 0.98 cm. On
the right, we show a full plot (vertically) of
the absolute error and with yellow lines we
highlight the moments in which the stick is in
contact with the cloth. 155

Figure A.2 Four frames comparing the recorded hitting of
A2 wool (left) with its inextensible simulation
(right); being its average error 1.39 cm. On
the right, we show a full plot (vertically) of
the absolute error and with yellow lines we
highlight the moments in which the stick is in
contact with the cloth. 156

L I S T O F TA B L E S

Table 2.1 Physical parameters of the inextensible model
and their meaning. 27

Table 2.2 Distances (cm) between the bottom corner of
the cloths (of dimensions 1m×1m). 30

Table 4.1 Density, sizes and examples of all the materials
used in all the experiments. 60

Table 4.2 Estimated parameters and mean absolute errors
(cm) for the slow and fast oscillatory motions
performed by the WAM robot. 64

Table 4.3 Comparison of the 4 models. The first column
is the mean of the absolute error (4.3) of the
simulated cloth with respect to the recorded
motion. 67

Table 4.4 Average velocities (m · s−1) for the twisting mo-
tion of the A2 textiles. We display the speeds
for the first repetition (with a hanger) and for
the second (with bare hands). 73

Table 4.5 Mean absolute error ē and the mean standard
deviation s̄ with the optimal value of the pa-
rameters averaged over: fabric’s material, size
(A2 or A3), type of movement and speed for
the first repetition of the recordings. 74

Table 4.6 Optimal values of the parameters δk, αk for both
repetition I (with hanger) and II (with bare
hands) obtained by minimizing the function
R. 76

xxii

list of tables xxiii

Table 4.7 Optimal values of the friction coefficients along
with the mean absolute error and spatial stan-
dard deviation for the low and high friction
scenario 78

Table 4.8 Mean absolute error and spatial standard de-
viation with the optimal value of the param-
eters α∗ and δ∗. In the two last columns, we
display the quotient (4.9), for our active-set col-
lision algorithm and a standard interior-point
method. 82

Table 4.9 Comparison of the parameters (δ̂, α̂) obtained
with the aerodynamic formulas (4.10) with the
optimal ones (δ∗, α∗) along with their respective
mean absolute errors. 84

Table 7.1 Comparison between different shape represen-
tations* 137

Table A.1 Summary of results of the aerodynamic study
for the first repetition (with bare hands) of the
experiments. For all the 32 recordings we dis-
play the characteristics of the recording (fabric,
size, motion and speed), and the optimal value
of the fitted parameters along with their as-
sociated absolute error and spatial standard
deviation. 153

Table A.2 Summary of results of the aerodynamic study
for the second repetition (with hanger) of the
experiments. For all the 32 recordings we dis-
play the characteristics of the recording (fabric,
size, motion and speed), and the optimal value
of the fitted parameters along with their as-
sociated absolute error and spatial standard
deviation. 154

1
I N T R O D U C T I O N

Robotic manipulation of cloth in a domestic environment, i.e. not in
its manufacturing plant, is an increasingly relevant problem because
of the ubiquity and versatility of textiles in human lives and activities;
with promising applications ranging from folding clothes to dressing
people with impaired mobility [31, 40]. One of the main challenges
faced is the high variety of deformation states that textiles can present
[100] (see Figure 1.1). In contrast to rigid body manipulations, where
the dynamics of the manipulated object are very well understood [110],
there is not one single model that can be considered best in terms of
describing the dynamics of real textiles [85]. Having a faithful and
easy-to-adjust physical model of cloth behavior is useful for planning
and control strategies in the task of robotic cloth manipulation [26, 71];
as well as for generating the massive data required to train learning
algorithms before their deployment and tuning in the real world [25,
58].

Figure 1.1: Various deformation states that a shirt can present: crumpled,
extended, hanging, etc. Image adapted from [61].

Therefore, automatic manipulation of textiles is being tackled nowa-
days by combining analytical modeling with data-driven learning,
so as to overcome the shortcomings of either individual approach.
Cloth models need to retain the physical properties relevant for dy-
namic manipulation and, to be time-affordable, dispense with other
features such as appealing rendering. The need for a compact, quick-to-
compute model for deformable objects –and textiles, in particular– has

1

2 introduction

been widely acknowledged within the robot manipulation community
[26, 106] and it remains as a key challenge in this field.

Textiles are difficult to model from a material viewpoint. They can
be naturally treated as thin plates or shells, but they show an extreme
dichotomy: they almost do not stretch in tangent directions, but bend
almost freely in the out-of-plane ones. This combination means that
textiles are prone to buckling under the slightest compression. More-
over, they are usually non-isotropic because of their weaved inner
structure, and nonlinear responses to stresses appear very soon [50].
An additional difficulty for the modeling of the motion of cloth in
everyday uses is posed by aerodynamics: most textiles are light, so
they are considerably affected by the resistance of air to their move-
ment. One can try simple drag-and-lift models of this resistance in
the surface of a cloth away from its edges [77], but those edges bend
easily and thus interact with flow turbulences around them in a more
complicated way than a rigid solid, even a vibrating one [104].

Figure 1.2: Comparison at 4 time instants of the fast shaking by a WAM robot
of DIN A3 felt (right) versus its simulation with the inextensible
model (left). The mean absolute error is 0.39 cm.

The first main purpose of this work is to introduce and discuss a
model of the dynamics of cloth intended for its control under robotic
manipulation in a human environment, which means that the textiles
will be subjected to moderate or low stresses [15]. Because of its
control purpose, we sought a model with which simulations of the
motion of cloth could be computed fast, but with a small margin of
error (of the order of 1 cm) in the position of every point of the cloth
when compared to its position in the real cloth subjected to the same
manipulation by the robot (see Figure 1.2, an mean absolute error
under 0.5 cm is obtained fitting only 2 parameters). Thus, the main
aims of this model are shape realism and speed, while dramatic effects
and aesthetic considerations will be disregarded. The achievement

1.1 motivation 3

of computational speed taking advantage of the allowed cm margin
of error, led us to the most basic hypothesis in the model: we will
assume that textiles are inextensible, that is, the surfaces that represent
them only deform isometrically through space, aiming at preserving
not only the area but also both dimensions of each piece of the cloth.
This assumption simplifies the model by removing all considerations
of elasticity in it, at a cost of introducing errors in the mm range in
the position of the cloth under the low stresses at which domestic
robots operate. The inextensibility assumption is relevant because most
garments stretch very little under their own weight [44] and under the
typical tensions of human manipulation [15], making this assumption
quite realistic. Moreover, it simplifies the empirical validation of the
model, reducing drastically the number of parameters to be fitted
since stretching and shearing forces [10, 50] are no longer needed. We
will model inextensibility as a set of constraints, and since they will
be derived from continuous conditions, the resulting model becomes
very stable under different resolutions of the meshed fabric, allowing
its use in coarse-mesh simulations.

Figure 1.3: Final frame of a draping simulation: when all edges in a triangular
mesh are forced to maintain their length the cloth faces a spurious
resistance to bending.

1.1 motivation

Since the publication of the seminal paper [44] a lot of attention has
been given to the simulation of inextensible and quasi-inextensible
textiles. The main difficulty of inextensible cloth simulation is locking,
i.e. the meshed garment becoming very rigid or facing a spurious
resistance to bending (see Figure 1.3). With limited exceptions such
as creasing along straight lines, this is an unavoidable consequence of
applying elasticity or spring models to a triangulated fabric and then
tuning them for full inextensibility: in the inelastic limit, the lengths of
all edges in the mesh become fixed, and often the only deformations
preserving all these lengths are those in which the mesh moves as a
rigid body (see [8] and [89]). One of the underlying reasons of why
this happens is the classical Cauchy rigidity theorem for polytopes,
extended by Gluck [43], who showed that generic closed (i.e. compact

4 introduction

and without boundary) polyhedral surfaces in space are rigid, i.e. they
lock once one fixes the length of their edges. Although this result
does not apply verbatim to cloth meshes (since they usually have a
boundary), we believe that a similar mechanism is responsible for
cloth locking.

To overcome this difficulty, two approaches have been proposed
in literature. In [44] a discrete model is presented where a quad-
mesh discretized cloth is made inextensible in the horizontal and
vertical directions but still elastic diagonally, i.e. allowing shearing
but not stretching. For triangle meshes, [32] uses non-conforming
triangles to impose full inextensibility, albeit sacrificing continuity of
the polyhedral surface at the edges. One may wonder then, why is
another inextensible model necessary? We give several reasons for
this:

1. To our knowledge, all inextensible or quasi-inextensible models
in literature are discrete in nature, i.e. they impose inextensibility
constraining areas, edge lengths, etc. This may create mesh-
related artifices [11] and often impedes convergence as the mesh
is refined [85].

2. The other family of models, which are continuous, are all based
on elasticity theory, with the drawback that, in the inelastic limit
when Poisson’s ratio tends to zero, exhibit locking (see [8] and
[89]).

3. The development of a continuous model that performs well with
coarse meshes is useful, particularly in the context of robotic
manipulation of deformable objects, where speed is of critical
importance.

In this work, we avoid the problem of locking by using an inextensi-
ble cloth model that is continuous and based on differential geometry.
This in turn causes all the edges of the meshed garment not to have
fixed length and allows the cloth to deform freely but at the same
time conserving the total area of the cloth within an error of less than
1% (see Section 2.7.3). Once we have a working inextensible cloth
simulator, a related problem that always arises with inextensibility
simulations is how to conciliate them with collision and friction forces
(i.e. contacts with an obstacle or self-collisions), since both inextensibil-
ity and contact forces are hard constraints that the cloth must satisfy
at the same time (moreover, friction forces depend on the magnitude
of the contact force). In the conclusions of [44], the authors state:

"(...) there is no longer an efficient way to perfectly enforce both ideal
inextensibility and ideal collision handling, since one filter must execute
before the other, and both ideals correspond to sharp constraints. To enforce
both perfectly would require combining them in a single pass, an elegant and

1.1 motivation 5

exciting prospect from the standpoint of theory, but one which is likely to
introduce considerable complexity and convergence challenges."

To our knowledge, the vast majority of models in literature decouple
friction, contacts and strain limiting, with all the possible artifacts that
this could introduce. In this dissertation, we develop a novel active set
solver that can be seen as an extension of the fast projection algorithm
of [44], which incorporates contacts, friction and inextensibility in a
single pass (see Chapter 3).

Cloth perception and classification of its states: in addition to cloth
modeling and simulation, in this memoir, we tackle other problems
relevant to the robotic manipulation of cloth. These are fundamen-
tally perception problems (see [62]), namely, surface reconstruction,
parametrization of developable surfaces and classification of cloth
states.

To succeed in a robotic cloth manipulation, the robot needs to
identify and "understand" the textile it is trying to manipulate. When
an arbitrary and unknown garment is presented before the robot, a
point-sample of it can be obtained through the use of depth-cameras.
Nevertheless, this sample of points will in general have no structure
and is difficult to understand. This is where reconstructing the textile
from the point-cloud (i.e. parametrize it and deduce its topology)
becomes of great importance if one wishes the robot to control (e.g.
fold) the garment [122]. Moreover, from this reconstruction the textile
can be simulated with any cloth model, so that different control
algorithms can be applied (e.g. model predictive control methods). In
this work, we present a reconstruction algorithm that proceeds directly
from a point-cloud to obtain a cellular decomposition of the cloth
surface: a global piecewise parametrization of the surface is found,
with a small number of pieces. From the cellular decomposition, the
topology of the surface can be deduced immediately.

Once we have identified the garment we are trying to manipulate,
we need to understand its configuration space, i.e. the space of its
positions (or states) in the ambient Euclidean space. As already dis-
cussed, the main reason why textile objects are challenging to handle
for robots is because they change shape under contact and motion.
When a robot is faced with the task of e.g. folding a towel in four,
it can very easily and rapidly lose track of the current state of the
cloth. This is where the study of developable surfaces becomes relevant:
since the original state of a piece of cloth is flat, the set of possible
states under the inextensible assumption is the set of developable
surfaces (i.e. Gaussian curvature 0) isometric to a fixed one. Then, to
understand the configuration space of the cloth we only need to study
the space of developable surfaces isometric to the initial state of the
garment. A step in this direction is Theorem 4: we prove that a generic
simple, closed, piecewise regular curve in space can be the boundary

6 introduction

of only finitely many developable surfaces with nonvanishing mean
curvature. This implies that in order to track the motion of a garment
it is not necessary to know the position of all its points, but only those
at the boundaries. Inspired by this result, we present a coordinate
representation of the configuration of a rectangular cloth which is
computed from the position of its border. This representation (which
is invariant by rotations and translations) enables the recognition and
classification of high-level states, allowing us to classify different cloth
configurations into states that we identify as qualitatively different
(e.g. two folded corners vs one folded corner). This opens the door
to performing a more organic robotic control of cloth, where in each
step the robot "knows" the current state of cloth and therefore can act
accordingly.

1.2 contributions

In the following we list, the most important contributions of this thesis:

- A locking-free continuous model for the simulation of inextensible
textiles based on natural geometrical constraints is presented
together with a new and efficient discretization of the model
using the Finite Element Method (FEM). Our approach results
in a unified treatment of triangles and quadrilaterals.

- We develop a novel and efficient active-set solver together with a
new discretization of friction and self-collisions which results
in a non-decoupled implicit resolution of contacts, friction and
inextensibility constraints in a single pass.

- We propose a simple way of accounting for the full aerodynamic
contribution to dynamics in our cloth model, which leads to
an empirical validation under challenging scenarios involving
fast motions, friction and even strong hits with a long stick with
mean errors of the order of 1 cm.

- An algorithm is developed for the reconstruction of smooth surfaces
(with or without boundary) from a point-sample embedded in
an ambient space of any dimension. The results are a piecewise
parametrization of the surface as a union of Morse cells and a
cell complex of small rank determining the surface topology.

- We prove that a generic simple, closed, piecewise regular curve in
space can be the boundary of only finitely many developable
surfaces with nonvanishing mean curvature. This implies that
during a continuous cloth motion, the position of a garment is
determined by the location of its boundary.

- We introduce the dGLI cloth coordinates, a low-dimensional repre-
sentation of the state of a rectangular piece of cloth –based on

1.3 organization 7

the position of its boundary– that allows us to distinguish key
topological changes in folding sequences.

1.3 organization

We now proceed to explain the organization of this memoir chapter
by chapter.

1.3.1 Chapter 2: inextensibility modeling

We explain how to impose the inextensibility conditions (see Equation
2.2) as hard constraints using Lagrange multipliers in Section 2.2. In
order to treat computationally this, we employ finite elements [17] in
the following way: we use them to discretize the Lagrangian of the
mechanical system (see Section 2.4) but not the equations of motion,
obtaining this way as Euler-Lagrange equations an ordinary differential
equation (ODE) system and not a (difficult to integrate, e.g. [111])
partial differential equation (PDE) system. We then discuss practical
aspects of evaluating the inextensibility constraints in Section 2.4.4.
These will be the most technical parts of this chapter and this is due to
the proposed model having aspects that are delicate and original from
a mathematical viewpoint. Particularly important is how to constrain
nodes lying at the boundaries (if not done properly this could lead
to locking), and the parametrization of the surface, in order to allow
arbitrary topologies. After this is done, we discuss how to integrate
numerically the equations of motion (Section 2.6). Bending is modeled
using Willmore’s Energy as described in [12].

We then test the performance of the presented inextensible model in
several challenging scenarios: first, we perform a simple quasi-static
test to show the locking-free nature of our model, along with its
independence with respect to different meshed topologies (Section
2.7.1). We use different triangle and quadrilateral meshings to prove
our point. Second, we show how to simulate Cusick’s test with our
model (Section 2.7.2). With this experiment, we show the stability of
our model when the mesh is refined. Lastly, we present a scenario with
non-trivial cloth topology, where we simulate the motion of a tank-top
and check to what extent our theoretical inextensibility assumptions
are being met in practice, computing several area errors (Section 2.7.3).

1.3.2 Chapter 3: collisions for inextensible cloth

In this chapter, we encounter a ubiquitous problem in cloth simulation:
collision modeling and response. First, we explain how to include
contact forces with the aid of the very natural Signorini’s conditions
(Section 3.2). In that same section, we present a simple model to

8 introduction

account for friction between cloth and possible obstacles (e.g. a table)
and with itself. This is done in a manner that will allow us to consider
later all constraints (inextensibility and contacts) and friction forces at
the same time without any decoupling. In Section 3.3 we explain how
to detect and include self-collision constraints under the framework
presented in Section 3.2. Particularly important for efficiency and to
avoid unwanted oscillations is how to take into account the thickness
of cloth. This is explained in Section 3.3.3. Afterwards, in Section 3.4
a novel numerical discretization is presented in order to integrate
the extended equations of motion. This can be seen as a natural
extension of the fast projection algorithm presented in [44] in order
to include inextensibility, contacts and friction in a single pass. This
discretization leads naturally to a sequence of quadratic problems
with inequality constraints. We explain in detail how to include self-
collision constraints under this scheme. In Section 3.5 we enter the
most mathematical part of the chapter, where we study how to solve
efficiently the sequence of quadratic problems defined before. We
present a novel active-set method tailored to our problem. The main
advantage of this new algorithm will be its ability to start from any
point and not necessarily from a feasible one. Lastly, we discuss how
to implement it efficiently with the use of Cholesky factorizations. A
detailed procedure is laid out in pseudo-code in Algorithm 2.

To close the chapter we present several scenarios that put to a test the
developed collision model. They will be qualitative in nature, i.e. we
only show that our simulator is capable of dealing with them (more
quantitative experiments will be performed in Chapter 4, Section
4.3). We will show that the model of friction is effective in static
(cylinder experiment, Section 3.6.1) and dynamic (rotating sphere
experiment, Section 3.6.2) settings. Next, we show how we can easily
include collisions with sharp needle-like objects in Section 3.6.3. Finally,
we simulate complicated folding sequences of cloth with non-trivial
topologies (a pair of shorts) in Section 3.6.4. The second and the third
experiments are challenging scenarios suggested by [70] as tests that
every robust collision model should be able to pass.

1.3.3 Chapter 4: experimental validation

In Section 4.1 we compare the inextensible model with recorded mo-
tions of real fabrics under different scenarios. First, we show how with
as few as two parameters, we are able to model within an error of
less than 0.5 cm different types of DIN A3 textiles (such as cotton,
wool and felt) under fast and slow shaking movements. To perform
this real-world validation we use a Barret robotic arm together with a
depth camera to record the real motion of garments being shaken at
different velocities. Afterwards, in Section 4.1.3 we perform a sensi-
tivity analysis in order to understand how stable is our model with

1.3 organization 9

respect to the fitted parameters. Finally, the performance of the inex-
tensible model is compared to other popular cloth models (Section
4.1.4).

Figure 1.4: Four frames comparing the recorded hitting of A2 polyester (left)
with its inextensible simulation (right); its average error being 1.44

cm. On the right, we show a full plot (vertically) of the absolute
error and with yellow lines, we highlight the moments in which
the stick is in contact with the cloth.

In the second round of experiments, we perform a more exhaustive
set of recordings than before. We enlarge our database by adding a
new twisting movement and a larger cloth size (DIN A2). The fabrics
are shaken and twisted by a human at two different speeds and are
recorded with a Motion Capture System. We carry out two repetitions
of each motion and at the end have 64 different recordings of about 15

10 introduction

seconds. As before we estimate the optimal values of the two physical
parameters and achieve mean errors of less than 1 cm (see Tables 4.5,
A.1 and A.2), even for the A2 textiles and fast motions. Finally, we
try to understand how the speed and size of the textiles affect their
motion by developing a predictive and a priori formula for the value
of the cloth’s physical parameters (see Section 4.2.3).

To close up the chapter we perform a final set of experiments
where we use again the motion capture system, this time to record
the collision of four (size A2) textiles in two different scenarios. In
one of them, the fabrics are laid dynamically on top of a table in a
putting-a-tablecloth fashion. In the other, they are hit by a long stick
four times at various places and with different strengths (see Figure
1.4). For the first scenario, we find the optimal friction parameter for
both a high and a low friction case and study the stability of the
model with respect to this parameter (see Figure 4.20). For the hitting
experiment, we find again the optimal parameters of the model but
this time we also put to use the predictive formulas found before in
Section 4.2.3 by using them to compute an estimate of the physical
parameters without performing any optimization (see Table 4.9). To
conclude, we check computational times and compare our active-set
solver with a standard interior-point method.

1.3.4 Chapter 5: surface reconstruction via Morse theory

In this chapter, we present an algorithm for the reconstruction of
surfaces from point samples. Our method proceeds directly from the
point-cloud to obtain a cellular decomposition of the surface derived
from a Morse-Smale function (see Section 5.2). After running the
algorithm we obtain a piecewise parametrization of the surface as a
union of a small number of Morse cells, suitable for tasks such as noise-
removal or meshing, and a cell complex of small rank determining the
topology of the manifold (see Section 5.4 for all the implementation
details). We explain how to apply this algorithm to samples of smooth
surfaces with or without boundary, embedded in an ambient space of
any dimension.

1.3.5 Chapter 6: developable surfaces

In this short chapter, we study from a geometric viewpoint devel-
opable surfaces, i.e. smooth surfaces with Gaussian curvature 0. The
original state of a piece of cloth is flat, so the set of possible states
under the inextensible assumption is the set of developable surfaces
isometric to a fixed one. Section 6.1 discusses two candidates to the
role of generalized coordinates in the space of states of a developable
surface under our isometric strain model, and explains their common
limitation from the viewpoint of their application. Section 6.2 proposes

1.4 videos 11

an alternative approach: to track the motion of the surface by follow-
ing its boundary. This is not straightforward because the boundary
does not determine completely the position of the surface, but as we
explain below our Main Theorem 4 establishes the feasibility of this
approach.

1.3.6 Chapter 7: semantic classification of cloth states

In this chapter, we define the dGLI Cloth Coordinates, a low-dimensional
representation of the configuration state of a rectangular cloth piece
that allows us to distinguish topologically different folded states. In
Section 7.3 we introduce the novel concept of the directional derivative
of the GLI (Gauss Linking integral) which allows us to overcome the
main limitation of the GLI in planar settings: it becomes zero and
therefore uninformative. We derive first an expression for the GLI
of two segments, then we prove that we can perturb the segments
slightly to obtain information when they are co-planar. Finally in
Section 7.4, we apply these new coordinates to a data-base of cloth
configurations taken from simulated folding sequences and then we
test experimentally the index on real images of folded clothes.

1.4 videos

Along this work, several videos will be presented in order to illustrate
and show several simulations. All videos (in order or appearance) can
be found in the playlist:

https://youtube.com/playlist?list=PL1XXvX-KsL9puQ79M03K8A

hzCoXxNIVul

1.5 notation

Before we proceed, for reference, we present a list of the most impor-
tant symbols used in this thesis. Moreover, for Part I (the most involved
notationally) we will follow the following notational conventions:

1. Matrices, tensors and vector functions will be denoted by bold
capital letters.

2. Vectors (except for points in R3) will be denoted by bold lower-
case letters.

3. The rest (e.g. scalar parameters, points in R3, scalar functions,
etc.) will be denoted by capital and lower-case italics.

https://youtube.com/playlist?list=PL1XXvX-KsL9puQ79M03K8AhzCoXxNIVul
https://youtube.com/playlist?list=PL1XXvX-KsL9puQ79M03K8AhzCoXxNIVul

12 introduction

list of most important symbols

S Surface used to model the cloth.

Ωe Elements (e.g. triangles) of the discretized surface.

φe(ξ, η) Local parametrization of the element Ωe.

∂ξ φe, ∂η φe Partial derivatives of the parametrizations.

n Number of vertices/nodes of the discrete surface.

pi(t) Coordinates in R3 of the node i of the surface.

Ni Indicator functions, i.e. Ni(pj) = δij.

x(t), y(t), z(t) x-coordinates (resp. y and z) of all the nodes

of the surface in Rn.

φ(t) Position of all nodes together,

i.e. (x(t), y(t), z(t))⊺ ∈ R3n.

Ek, Fk, Gk Coefficients of the metric of the discrete surface

at node k.

C(φ(t)) Constraint function, e.g. Ci(φ(t)) = Ek(t)− Ek(0).

H(φ(t)) ≥ 0 Set of collision constraints.

λ(t), γ(t) Lagrange multipliers associated to the inextensibility

and contact constraints respectively.

TE, TF, TG Tensors used to compute Ek(t), Fk(t), Gk(t).

φ̇(t),φ̈(t) Velocity and acceleration of all nodes.

M, K, D Mass, stiffness and damping matrices.

fµ(φ̇) Friction force.

V(φ̇) Unit relative tangent velocities at the points of contact.

dt > 0 Time step used to discretize the equations

of motion.

φm,φ̇m Position and velocity of the nodes at tm = m · dt.

φm →dt φm+1 Detection of self-collisions between two states.

W ,O Working and observation set of the active-set solver.

QAQ⊺ = LL⊺ Cholesky decomposition of the symmetric

positive definite matrix A.

ϕm Nodes of the meshed recording of real textiles

at tm.

em Time-dependent mean absolute error in cm at tm.

sm Time-dependent spatial standard deviation in cm at tm.

Part I

M O D E L I N G C L O T H

In this first part we deduce the inextensible cloth model:
under the assumption that cloth is a surface that moves
through space whose metric is preserved, we derive novel
inextensibility equations that we later discretize using the
Finite Element Method. We test the new model with scenar-
ios involving mesh independency, cloth’s area preservation
and complex topology simulations.

Then we introduce the problem of collision modeling for
inextensible cloth. We develop a new active-set algorithm
tailored for resolving contacts (including self-collisions),
friction and inextensibility in a single pass without any de-
coupling of contact and inextensibility constraints. We put
to a test the developed collision procedure with scenarios
involving static and dynamic friction, sharp objects and
complex-topology folding sequences.

Finally, we compare the inextensible model developed in
the previous two chapters with collected experimental data
from real textiles. We study how faithfully our model is
capable of reproducing recorded textiles under challenging
scenarios involving fast motions, friction and even strong
hits with a long stick.

2
I N E X T E N S I B L E C L O T H M O D E L

After reviewing the state of the art in Section 2.1, we explain how to
impose the inextensibility conditions (2.2) as hard constraints using
Lagrange multipliers in Section 2.2. We discretize the cloth using the
Finite Element Method (FEM) in Section 2.3 and derive an original
discretization of the inextensibility equations in Section 2.4. There we
discuss practical and computational aspects of evaluating the inex-
tensibility constraints. The system of ordinary differential equations
modeling the dynamics of the cloth is presented in Section 2.5 along
with our physical model of aerodynamics. We discuss how to integrate
numerically the equations of motion in Section 2.6. Finally, in Section
2.7 we test the performance of the presented inextensible model in
several challenging scenarios.

2.1 related work

The mechanic behavior of cloth has been extensively studied from the
engineering and computer graphics viewpoints. The engineering focus
has usually been on cloth manufacture and its mechanical resistance,
using elasticity theory to examine local properties of the material.
The aim in computer graphics has always been the simulation and
representation of cloth motion, using mostly mass-spring models for
speed of computation and paying attention to global problems such as
nontrivial cloth topology and collisions. In both fields, the textiles are
usually modeled as two-dimensional surfaces. Since the pioneering
work of [111] dozens of different models have been proposed for cloth
simulation.

Our approach retakes the original idea of [111]: understanding
cloth’s internal dynamics as the preservation of the first fundamental
form of the surface. For surveys and research problems about cloth
modeling and simulation see [11, 22, 85]. We now review some of the
most popular methods for simulating the internal dynamics of cloth,
noting that there is not a clear-cut separation between some of them.
We deliberately only reference lines of research that model internal dy-
namics of cloth in an essentially different physical manner. Approaches
that develop novel numerical methods to integrate existing physical
models will not be considered.

textile engineering : The modeling of fabrics from a Structural
Mechanics viewpoint has been a topic of interest in Textile Engineering
since the start of the industrial manufacture of cloth. See [50] for a
survey, and completion in many respects, of this theory, or [56] for

15

16 inextensible cloth model

updates. This modeling has been hampered by the complexity of fabric
as a material: it is inhomogeneous, even discontinuous, already at a
relatively sizable scale; highly anisotropic and capable of a nonlinear
response even to relatively modest strains; prone to buckling under
very small compression.

Because of these complexities, investigations of the explicit mathe-
matical expression of the stress-strain relationships of fabrics start
from the elasticity theory of solids, and typically consider fabric as
an elastic thin plate, more rarely as a shell. Ignoring its thickness, the
resulting surface has 6 strain fields that determine its displacement
and deformation, and a 6× 6 symmetric stiffness matrix giving the
constitutive equations that relate stress and strain ([56] p.10). Particu-
lar properties of fabric such as orthotropicity, reduce the number of
stiffness parameters to take into account and lead to simplifications of
this general elastic model (e.g.[50] and [120]), or to the introduction of
nonlinear responses in the model [74].

The development of these models has been based foremost on ex-
perimentation, using procedures such as the Kawabata Evaluation
System (KES) [65], which accurately measures the tensile, shear, pure
bending, compression and friction behavior of a cloth sample under
stresses that are typical in the cloth manufacturing process, in order to
establish the stiffness parameters of the model. The increase in avail-
able computing power has made viable, although not for real-time
computing, sophistications of this basic model to take into account the
fiber structure of yarns and fabrics (see [23] and [60]).

The computational complexity of these models opened the way to the
development of simpler, descriptive models that would later become
of common use in Graphic Computer Science (as we explain bellow),
treating fabrics as a viscoelastic material that can be modeled as a
mass-spring system [88]. While such descriptive models have been
extensively used in fabric simulation, their tenuous connection to
reality has made them of limited use for the industrial handling of
cloth. Here the thin-plate with linear elasticity models prevail.

elastic models : these models, e.g. [34, 99] and [10], derive the
internal forces of the garment from elasticity theory. They are the
practical realization of the textile engineering models previously dis-
cussed, aimed at graphical simulations rather than at the study of
physical properties of cloth. They are all continuous in nature and
have the advantage of being physically based, stable under different
meshing of the garment and convergent when the mesh is refined
[22]. Mostly, they use finite elements to discretize the equations of
motion [17]. They can be expensive to evaluate (especially when using
non-linear elasticity or the co-rotational method, necessary for ensur-
ing rotational invariance [99]) and may exhibit locking of triangular

2.2 inextensibility modeling 17

meshes if elasticity is heavily reduced: see [32] and [63] and more in
general [8] and [89] for a more detailed discussion.

mass-spring systems : these models, e.g. [93] and [21], derive
internal forces from spring-like energies. They are cheap to evaluate
and very intuitive, but less physically sound: they are mesh dependent,
have a lot of (non-physical) parameters to be tuned (see [81] for an
evolutionary algorithm to tune them) and do not show a convergent
behavior when the mesh is refined [85].

constrained dynamics : these models derive internal forces from
explicit conditions that the cloth must satisfy [11]. Most of the methods
use some kind of Lagrange multipliers to impose the constraints. They
mostly differ in what the conditions are and the algorithm used to
impose the constraints. Our method fits in this category. Sometimes
they are used as velocity filters that complement the previous methods.
There are mainly two kinds:

1. Continuous: in this case the constraints are continuous in nature,
e.g. imposing bounds to the strain tensor. Examples of this ap-
proach are [76, 84, 112] and [118]. To our knowledge, all methods
use elasticity theory to some extent, and therefore in the limit,
when elasticity is reduced, face the same problems commented
previously. Our method lies in this category with the important
difference that it does not use elasticity, but differential geometry
of the surface to derive the constraints.

2. Discrete: in this case constraints are discrete in nature, e.g. pre-
serving the length of the edges of the meshed garment or the
area of the elements. They are derived concretely for the mesh at
hand. Examples are [32, 44, 47, 63]. Their main drawback is the
possible lack of convergence of the methods (as opposed to the
continuous case) and the possible introduction of mesh-related
artifacts [76]. Nevertheless, they can be fast and handle better the
inelastic scenario than the elasticity-based continuous models.

others : There are two different recent trends: modeling woven cloth
at the fiber level (e.g. [23] and [6]) as opposed to the macroscopic
level (i.e. as a surface) and considering cloth as a non-Newtonian fluid
using the Material Point Method (MPM) adapted to co-dimensional
elasticity [60]. The first method is computationally very intensive and
the second while being more efficient depicts cloth as very elastic.

2.2 inextensibility modeling

As explained before, our main assumption will be to consider cloth as
a continuous and inextensible two-dimensional surface. Formulating the
model at the continuous level is important because it avoids as much
as possible mesh dependencies: i.e. without changing the physical

18 inextensible cloth model

parameters of the model (e.g. stiffness, damping, etc.) the results are
mostly independent of mesh topology (this will be checked in our
experiments, see Section 2.7.2). This is not the case when using mass-
spring systems [85]. On the other hand, since most cloth materials do
not stretch under their own weight, inextensibility is a very reasonable
approximation for most textiles (specially in a robotics context, where
fine details such as wrinkles are not needed). We will show this by
comparing our model to real-life experimental data (see Chapter 4).
Moreover, this assumption reduces greatly the amount of tuneable
parameters of the model (stretching and their damping forces [10, 50]
are no longer present).

Definition 1 (Inextensibility). A smooth surface is said to be inextensi-
ble if over time its metric is preserved. This is equivalent to requiring,
that at all times the length of any given curve inside the surface
remains constant (see Figure 2.1).

Given a parametrization φ = φ(ξ, η) ∈ R3 of a smooth surface
S ⊂ R3 its metric (first fundamental form) is given by:

dφ⊺ · dφ =

[
⟨φξ , φξ⟩ ⟨φξ , φη⟩
⟨φη , φξ⟩ ⟨φη , φη⟩

]
=

[
E F

F G

]
,

where φξ = ∂ξ φ denotes partial differentiation. The importance of this
2× 2 matrix relies on the fact that it gives a unique way of measuring
angles and distances intrinsically on the surface [19].

Figure 2.1: Isometric deformation of a surface: in both surfaces, the length
of the depicted (geodesic) curve is the same. Image adapted from
https://solitaryroad.com/c334.html.

Definition 2 (Quasi-inextensibility). When the coefficients E and G of
the metric are preserved, but no necessarily F, the surface is said to be
quasi-inextensible. In physical terms, this means that the surface shears
but does not stretch.

2.2.1 Equations of inextensibility

Assume now that S is inextensible and it is moving through space; by
virtue of the previous definition this means that we have a continuum

https://solitaryroad.com/c334.html

2.3 discretization of the cloth with fem 19

of surfaces {St}t≥0 such that S0 = S and for every t > 0 there exists
a (smooth) isometry Ht : S0 → St. We think of the parameter t ≥ 0
as time. If φ is any parametrization of S, then φ(t) = Ht ◦ φ is a
parametrization of St and inextensibility means:

dφ(t)⊺ · dφ(t) = dφ⊺ · dφ for all t ≥ 0. (2.1)

These are 3 independent conditions (depending on time and space):

⟨φξ , φξ⟩(t) = E0, ⟨φξ , φη⟩(t) = F0, ⟨φη , φη⟩(t) = G0 for t ≥ 0. (2.2)

Remark 2.2.1 (Rigidity invariance). Noting that dφ(t) = ∇Ht|φ · dφ,
we can rewrite (2.1) as

dφ⊺ (∇Ht|⊺φ · ∇Ht|φ − I
)
· dφ = 0 (2.3)

where ∇Ht is the Jacobian of Ht and I is the identity 3× 3 matrix.
Therefore if Ht(x) = Ax + b is any rigid transformation of R3, we
must have that A is an orthogonal matrix and hence it preserves the
metric of S as expected. This rigidity invariance is not obtained when
using linear elasticity models, e.g. large rotations can lead to different
elastic restoring forces [99].

Remark 2.2.2 (Relationship to elasticity). In elasticity theory, the
Cauchy-Green strain tensor is defined as: E = 1

2

[
∇Ht|⊺φ · ∇Ht|φ − I

]
.

Note that all deformations that have zero strain are isometric (see
Equation (2.3)), but not all isometries are strain-free (e.g. bending
along a line). This means that imposing (2.3) as a hard constraint (as
we will do) is not equivalent to imposing zero strain deformations
with classical elasticity theory.

2.3 discretization of the cloth with fem

For the rest of this chapter, we will assume that our surface S has
been discretized, i.e., that we have a polyhedron consisting on an
ensemble of quadrilaterals or triangles Ωe for e ∈ {1, . . . , nq} that ap-
proximates our original surface: S ≃ ∪eΩe (see Figure 2.2). For the
sake of clarity, we will assume the use of quadrilaterals, although
everything works the same with triangles. Let us state precisely the
choices in our discretization scheme. Each element will have its own
local parametrization:

φe : Ω0 := [−1, 1]× [−1, 1]→ Ωe; φe(ξ, η) =
4

∑
i=1

pe
i Ni(ξ, η) (2.4)

where the pe
i ∈ Ωe ⊂ R3 are the 4 corners of the quadrilateral and the

functions Ni are called the shape functions:

N1 =
1
4
(1− ξ)(1− η), N2 =

1
4
(1 + ξ)(1− η),

N3 =
1
4
(1 + ξ)(1 + η), N4 =

1
4
(1− ξ)(1 + η)

20 inextensible cloth model

Figure 2.2: Bilinear parametrization of one of the elements of a quadrangu-
lated surface (shorts).

and have the property that Ni(qj) = δij where δij is Kronecker delta
and the qj ∈ R2 are the four corners of Ω0 ordered starting at (−1,−1)
and going counter clockwise. Hence, φe(qi) = pe

i . If the surface is
moving through space, the parametrizations φe = φe(t) depend on
time and this means that pe

i = pe
i (t) vary with time.

Definition 3 (Nodes of the surface). Let us fix a global ordering of the
n vertices of S. We will call them the nodes of the surface: Nodes(S) =
[p1, . . . , pn], where pi = (xi, yi, zi) ∈ R3. Then, we can construct the
vector of positions of the textile for any time t ≥ 0:

φ(t) := (x(t), y(t), z(t))⊺

= (x1(t), . . . , xn(t)|y1(t), . . . , yn(t)|z1(t), . . . , zn(t))⊺ ∈ R3n.

Definition 4 (Indicator functions). We can define global (but non-
smooth) indicator functions Ni : ∪eΩe → R such that Ni(pj) = δij
as follows: given any element Ωe ∋ pi we define Ni|Ωe = Nk where
Nk(φ−1

e (pi)) = 1. Thus, if p = φ(t) ∈ St is any point of the moving
surface, it can be written as

φ(t) =
n

∑
i=1

pi(t) · Ni(p), (2.5)

and therefore ∂ξ φ(t) = ∑n
i=1 pi(t)∂ξNi and ∂η φ(t) = ∑n

i=1 pi(t)∂ηNi.

Remark 2.3.1. Usually with FEM methodologies one parametrizes
a region R ⊂ R2 where the values of a function φ are searched;
however we parametrize each quadrilateral Ωe ⊂ S independently.
Therefore, with this approach, S can have any given topology. Also,

2.4 constraint function enforcing inextensibility 21

since φe(0, 0) = 1
4 ∑4

i=1 pe
i , the average of the nodes of each quadrilat-

eral belongs to the element (even though the quadrilaterals are not flat,
they are bi-linear), so when rendering we can get higher resolution by
adding the middle point.

2.4 constraint function enforcing inextensibility

We will construct a smooth and easy-to-evaluate constraint function

C : Nodes(St) ≃ R3n → Rnc (2.6)

such that it is identically zero when all the nc conditions ensuring
inextensibility are satisfied (see Equation (2.11)). This function must
depend only on the position vector of the nodes φ(t), and on nothing
else.

2.4.1 Constraints for boundary curves

In the case of the isometric motion of a curve γ : [0, 1]→ R3, its metric
has only one coefficient given by ⟨γ′, γ′⟩. If the curve is discretized
into a polygon with vertices {γ(s0), . . . , γ(s f)}, we have that γ′(s) =
γ(sl+1)−γ(sl)

sl+1−sl
at interior points s ∈ [sl , sl+1] of the polygon and hence

preserving its metric is equivalent to preserving the lengths of all its
edges, so for each edge k we add the constraint:

Ck = ||pk1(t)− pk2(t)||
2
R3 − l2

k , (2.7)

where pk1 , pk2 are the two endpoints of edge k and lk > 0 is the length
of the edge at rest. We will apply these constraints to the boundary
curves of our discretized cloth S.

2.4.2 Weighted Galerkin residual method

On the other hand, we now explain how to discretize Equation (2.2) for
constraining interior nodes. Substituting Equation (2.5) in the left-hand
side of the first equation of (2.2) we get:

⟨φξ , φξ⟩(t) =
n

∑
i,j=1
⟨pi(t), pj(t)⟩ · ∂ξNi∂ξNj.

The only problem with the previous equation is that it cannot be
evaluated at the nodes because the derivative of the indicator functions
is not defined there. Nevertheless, if we write:

⟨φξ , φξ⟩(t) =
n

∑
l=1

El(t) · Nl ,

22 inextensible cloth model

where El(t) are the values of the first coefficient of the metric at the
nodes, and then multiply by any indicator function Nk and integrate
over the surface, we obtain:

n

∑
l=1

El(t)
∫

S
NkNldA =

n

∑
i,j=1
⟨pi(t), pj(t)⟩ ·

∫
S
Nk∂ξNi∂ξNjdA, (2.8)

and therefore the coefficients El(t) can be found by pre-multiplying
the right-hand side of (2.8) by the inverse of the mass matrix

Mij =
∫
∪eΩe

NiNjdA. (2.9)

In practical implementations the mass matrix M is substituted by a
diagonal matrix called the lumped mass matrix ML defined as

(ML)ii = ∑
j

Mij. (2.10)

We can imagine this process as collapsing all the mass of the surface
to the nodes [17]. This is very convenient because it allows computing
the inverse of the mass matrix as the multiplication by the reciprocals
of the constants mk := (ML)kk.

Figure 2.3: In order to have an isometry between the times t0 and t f , we
impose the preservation of the first fundamental form at the
central node 5, we constraint the length of the boundary edges
1⃗2, 2⃗3, . . . , 7⃗4, 4⃗1 and we enforce Fk(t0) = Fk(t f) at the corners
k ∈ {1, 3, 7, 9}.

Therefore

Ek(t) =
1

mk

n

∑
i,j=1
⟨pi(t), pj(t)⟩ ·

∫
S
Nk∂ξNi∂ξNjdA. (2.11)

Naturally, similar equations are obtained when discretizing ⟨φη , φη⟩(t)
and ⟨φξ , φη⟩(t):

2.4 constraint function enforcing inextensibility 23

Gk(t) =
1

mk

n

∑
i,j=1
⟨pi(t), pj(t)⟩ ·

∫
S
Nk∂ηNi∂ηNjdA,

Fk(t) =
1

mk

n

∑
i,j=1
⟨pi(t), pj(t)⟩ ·

∫
S
Nk∂ξNi∂ηNjdA.

In summary, to impose constraints (2.2), for every interior node k
and t > 0, we enforce Ek(t) = Ek(0), Fk(t) = Fk(0), Gk(t) = Gk(0)
(see Figure 2.3).

2.4.3 Efficient computation of the coefficients of the metric

We now discuss how to compute the right-hand side of (2.11). Let
Int(S) denote the interior (non-boundary) nodes of S. We can define
three time independent 3-tensors that will allow us to compute the 3
coefficients of the metric of S. First we have TE:

Tkij
E =

1
mk

∫
∪eΩe

Nk∂ξNi∂ξNjdA, (2.12)

where k ∈ Int(S) and i, j ∈ Nodes(S). Similarly, TG is

Tkij
G =

1
mk

∫
∪eΩe

Nk∂ηNi∂ηNjdA, (2.13)

and lastly TF, where k ∈ Int(S) ∪Corners(S), is

Tkij
F = 1

2mk

∫
∪eΩe

Nk(∂ξNi∂ηNj + ∂ηNi∂ξNj)dA. (2.14)

For a pseudo-algorithm for the computation of the 3 tensors, see
Algorithm 1.

Remark 2.4.1 (Symmetry of TF). This choice of the TF tensor is so that
it is symmetric (as the other two tensors) in the i, j indexes and hence
computing the Jacobian of C will be simpler.

Remark 2.4.2 (Treatment of corners). On the other hand, in the pres-
ence of corners special care must be taken in order to avoid shearing
at those points; that is why we include the corner’s indices in the
definition of TF (see Figure 2.3).

2.4.4 Constraints evaluation

This way, evaluating all the nc constraints simultaneously reduces to
computing the dot product matrix P(t) ∈ Rn×n defined by Pij(t) =
⟨pi(t), pj(t)⟩ and then doing a tensor product (see Equation (2.11)):

C(φ(t)) = TE,F,G ⊗ P(t)−C0 (2.15)

24 inextensible cloth model

Algorithm 1 Computation of TE,TF,TG

1: m← #nodes of each element ▷ (m = 3 (triangles) or m = 4 (quads))
2: for element Ωe do
3: φe := ∑4

i=1 pe
i Ni ▷ (parametrization of Ωe)

4: I ← Index(Ωe) ▷ (node’s indices of Ωe e.g. [4, 48, 50, 13])
5: for Gauss point xl and weight wl do
6: El ← φξ(xl) · φξ(xl);
7: Fl ← φξ(xl) · φη(xl);
8: Gl ← φη(xl) · φη(xl);

9: dAl ←
√
|El · Gl − F2

l | · wl ;
10: for k, i, j = 1, . . . , m do
11: tkij

F + = Nk(xl) · ∂ξ Ni(xl) · ∂ξ Nj(xl) · dAl ;

12: tkij
F + = 1

2 Nk(xl) ·
[
∂ξ Ni(xl) · ∂η Nj(xl) + ∂η Ni(xl) · ∂ξ Nj(xl)

]
·

dAl ;
13: tkij

G + = Nk(xl) · ∂η Ni(xl) · ∂η Nj(xl) · dAl ;
14: end for
15: end for
16: for k, i, j = 1, . . . , m do ▷ (global assembly of the tensors)
17: TI(k)I(i)I(j)

E + = 1
mI(k)

tkij
E ;

18: TI(k)I(i)I(j)
F + = 1

mI(k)
tkij

F ;

19: TI(k)I(i)I(j)
G + = 1

mI(k)
tkij
G ;

20: end for
21: end for

where we have grouped the previous tensors in just one TE,F,G =

[TE; TF; TG] ∈ Rnc×n×n, and of course C0 = TE,F,G ⊗ P(0). With this
definition, computing the Jacobian matrix ∇C ∈ Rnc×3n is very easy
(because the tensors are symmetric in the last two indexes):

∇C(φ(t)) = 2 · [TE,F,G ⊗ x(t), TE,F,G ⊗ y(t), TE,F,G ⊗ z(t)] , (2.16)

recall that φ(t) = (x(t), y(t), z(t))⊺ ∈ R3n.

2.4.5 Practical implementation

We now list some considerations to take into account in a practical
implementation of our method:

- As mentioned before, the constraints (2.7) are added to C to impose
that all edges of all boundary curves are preserved. Also, we remark
again that the tensor constraints are only applied for interior nodes,
except in the presence of corners, where we include their indices in
the definition of TF in order to avoid shearing there.
- The tensor TE,F,G needs to be computed only once at the beginning
of the simulation because it is time independent. All the integrals

2.4 constraint function enforcing inextensibility 25

involved are evaluated exactly using standard Gaussian quadratures
(see [17] for details) as shown in Algorithm 1.

- In order to be efficient we first calculate the Jacobian (according to
Equation (2.16)) and then put C(φ) = 1

2∇C(φ) ·φ−C0, so the matrix
P(t) is actually never computed.

- The tensor TE,F,G is highly sparse due to the fact that most products
of the 3 indicator functions (Equation (2.11)) are zero. It is not difficult
to see that it has of the order of ∼ 150n non-zero elements.

2.4.6 Shearing Energy

Although we are assuming that we can model cloth as inextensible
(reasonable for denim, stiff cotton, felt, etc.) in all directions, it is
known that this is not completely true in other cases (silk, light cotton,
wool). Especially relevant for some types of textiles is shearing, i.e.
stretching in the diagonal direction. Nevertheless, we will show in
Chapter 4 that the inextensible assumption is still a very realistic and
accurate assumption. For a smooth surface S parametrized by φ, a
shearing energy can be modeled (see [111]) as

S =
ks

2

∫
S
⟨φξ , φη⟩2dA,

where ks > 0 is a constant that controls the amount of shearing
allowed. With the ideas previously presented, we can discretize this
energy in a very sound and efficient way. Indeed for a discrete surface
S with nodes φ(t), writing

CF(φ(t)) = TF ⊗ P(t)−C0
F ∈ Rn (2.17)

where TF is defined by Equation (2.14), k ∈ {1, . . . , n} and C0
F =

TF ⊗ P(0); we can define the fundamental shearing energy as

S(φ(t)) = ks

2
CF(φ(t))⊺ ·M ·CF(φ(t))

where M is the mass matrix (see Equation 2.9). It is clear that this
shearing energy is invariant under rigid motions (because CF is).
Computing the Jacobian ∇CF ∈ Rn×3n as before (see Equation 2.16),
the resulting force derived from this energy is

Fs(φ(t)) = −∇S(φ(t)) = −ks∇CF(φ(t))⊺ ·M ·CF(φ(t)) ∈ R3n.
(2.18)

The fundamental shearing energy is the discrete version of a contin-
uous energy. This is important because keeping the value ks > 0 fixed,
as the mesh is refined (n→ +∞) we observe a convergent and stable
behavior.

26 inextensible cloth model

Remark 2.4.3. For defining the fundamental shearing energy, ideas
from [10] were used. Nevertheless, their shearing model is very differ-
ent from ours: unlike theirs, we derive the discrete shearing energy
from a continuous integral equation. From a more practical point of
view, they obtain only one condition for every triangle, whereas we
have one for each node. The integration of this new energy must be
performed implicitly (since it is very stiff), and hence we need to
compute the gradient of the force (the Hessian of the energy). As men-
tioned in [10] the full Hessian leads to an indeterminate matrix (which
causes many problems when solving linear systems), and hence it is
approximated by:

∇Fs(φ) = −∇2S(φ) ≃ −ks∇CF(φ)
⊺ ·M · ∇CF(φ).

2.5 equations of motion of the cloth

Finally, we can write down the Lagrangian (kinetic minus potential
energies) of our discretized surface:

L(φ(t),φ̇(t)) = ρ

2
φ̇(t)⊺ ·M · φ̇(t)− ρg⊺ ·M ·φ(t)

− κ

2
φ(t)⊺ ·K ·φ(t)− λ(t)⊺ ·C(φ(t)),

where

1. ρ > 0 is the density of the cloth (assuming homogeneous mass),
M is the augmented mass matrix and g = (0, . . . , 0|0, . . . , 0|g, . . . , g)⊺

where g = 9.8m/s2 is gravity,

2. the stiffness matrix (we are using the isometric bending model
described in [12]) is K = L⊺ML where L is an approximation of
the point-wise Laplacian and κ > 0 is a bending constant,

3. and finally λ(t) are the Lagrange multipliers ensuring inextensi-
bility (at the interior nodes and boundaries) and other possible
positional constraints (e.g. the corners of the textiles to be ma-
nipulated) included.

Thus, we get as Euler-Lagrange equations [110] the following ODE
system: ρMφ̈ = fρ − κKφ−Dφ̇−∇C(φ)⊺λ

C(φ) = 0
(2.19)

where fρ = −ρMg is the force of gravity and we have added Rayleigh
damping: D = αM + βK, where α and β are positive parameters [127].

Notice how our inextensibility assumption reduces greatly the num-
ber of physical parameters of the model (we do not have shearing or

2.5 equations of motion of the cloth 27

stretching parameters and their respective dampings). Nevertheless,
cloth dynamics can be very complicated and there is one important
factor we are not accounting for in the previous equations: air resis-
tance. Although there exist some simplified models [77], aerodynamic
forces on a deformable object (i.e. cloth) submerged in a fluid (i.e. air)
are difficult to model (see [41] and [73]), especially near the boundaries
of cloth, because turbulences appear and the nonrigid response of
cloth to such turbulences is way more unpredictable than that of a
rigid, even vibrating, body (see [104]).

Remark 2.5.1 (Shearing forces). In the case we want to allow some
shearing of the cloth, we simply introduce the force Fs(φ(t)) defined
in Equation (2.18) into the first equation of the ODE system (2.19).
Obviously, in that case, we would have one parameter more ks > 0.
For the rest of this thesis unless explicitly stated (namely in Sections
3.6.2, 3.6.4 and Chapter 7) we assume that no shearing is allowed and
set κs = 0.

parameter meaning

ρ Density (inertial mass)

δ Virtual (gravitational) mass

κ Bending/stiffness

α Damping of slow oscillations

β Damping of fast oscillations

Table 2.1: Physical parameters of the inextensible model and their meaning.

2.5.1 Modeling of aerodynamics through virtual mass

The equivalence principle states that for any object its inertial mass is
equal to its gravitational mass, which means that an object in vacuum
of inertial mass m would fall freely under the action of a force of
magnitude mg, where g is gravity. Nevertheless, experiments show
that in the presence of air, the free-falling velocities depend on the
(shape of the) object at hand. In our experiments, we have found
that aerodynamic effects can be modeled without explicitly including
them by allowing inertial and gravitational masses to be different.
Although this is not true in the physical world, the consideration of
the two masses as virtual in our model allows us to account for all
aerodynamic contributions to cloth dynamics (drag, lift, turbulences
at the boundaries) with great accuracy. Hence, we put fδ = −δMg,
setting δ as a new parameter to be fitted. In Table 2.1 we summarize
the meaning of all the parameters of our model.

28 inextensible cloth model

2.6 discretization of the equations of motion

As usual, we approximate φ(t) and φ̇(t) with {φ0,φ1, . . . } and {φ̇0,φ̇1, . . . },
where φn and φ̇n are the position and velocities of the nodes of the
mesh at time tn = n · dt and dt > 0 is the size of the time step. Using
an implicit Euler scheme to integrate Equations (2.19) we obtain:φn+1 = φn+1

0 −M−1∇C(φn+1)⊺λn+1

C(φn+1) = 0,
(2.20)

where φn+1
0 is the unconstrained step (which depends on φn and φ̇n).

Note that at time tn = n · dt the only unknown in previous equations
is φn+1 (and λn+1).

2.6.1 Fast projection algorithm

Finding φn+1 can be done solving the following constrained optimiza-
tion problem:minφn+1 (φn+1 −φn+1

0)⊺ ·M · (φn+1 −φn+1
0)

s.t. C(φn+1) = 0,
(2.21)

because Equations (2.20) are the critical (stationary) points of the
optimization problem. This is a quadratic program with quadratic
constraints which can be solved with Newton’s method. Nevertheless,
in order to make it computationally tractable in front of difficulties
such as indefinite system matrices, it is approximated by a sequence of
quadratic programs with linear constraints. Write φj+1 = φj + ∆φj+1
and make the approximation C(φj+1) = C(φj + ∆φj+1) ≃ C(φj) +

∇C(φj)∆φj+1, then the sequence is:min∆φj+1
∆φ⊺

j+1 ·M · ∆φj+1

s.t. C(φj) +∇C(φj) · ∆φj+1 = 0,

the initial point being φ0 = φn+1
0 . This is called the fast projection

algorithm [44]. Each of these quadratic programs (which has a diagonal
matrix system M) can be reduced to solving a linear system and we
iterate until the constraints are satisfied to a given relative tolerance
(usually 0.1%). We have found this algorithm very stable and fast for
our purposes.

Remark 2.6.1. In the presence of an obstacle (e.g. a table) given by
an implicit equation H(φ) = 0 with a well-defined outwards normal
∇H(φ), we can model collisions by including new constraints in every
iteration of the fast projection algorithm described earlier, i.e. we solve

2.7 evaluation and results 29

iteratively the following sequence of quadratic programs with linear
equality and inequality constraints:

min∆φj+1
1
2 ∆φ⊺

j+1 ·M · ∆φj+1

C(φj) +∇C(φj)∆φj+1 = 0,

H(φj) +∇H(φj)∆φj+1 ≥ 0,

where we have made the approximation

H(φj+1) = H(φj + ∆φj+1) ≃ H(φj) +∇H(φj)∆φj+1.

A theoretical justification together with an algorithm to solve effi-
ciently the previous quadratic problem will be discussed in detail in
Chapter 3.

2.7 evaluation and results

In this section, we study experimentally several desirable properties
of the inextensible cloth model. The section is organized as follows:
first, we perform a simple quasi-static test to show the locking-free
nature of our model, along with its independence with respect to
different meshed topologies (Section 2.7.1). We use different triangle
and quadrilateral meshings to prove our point. Second, we show how
to simulate Cusick’s test with our model (Section 2.7.2). With this
experiment, we show the stability of our model when the mesh is
refined. Lastly, we present a scenario with non-trivial cloth topology,
where we simulate the motion of a tank-top and check to what extent
our theoretical inextensibility assumptions are being met in practice,
computing several area errors (Section 2.7.3).

2.7.1 Locking test

With this experiment, we intend to show the locking-free nature of our
inextensible model (no shearing is allowed κs = 0), and its stability
with respect to mesh topology. We fix three corners of a flat sheet of
cloth (with added random noise of standard deviation 3mm) of 1m by
1m, and let the fourth corner fall freely.

Figure 2.4: Different meshes used for the locking test. The triangular meshes
(left) are irregular whereas the quadrilateral ones (right) are uni-
form.

30 inextensible cloth model

We use four different meshings of the cloth: two with triangles and
two with quadrilaterals (see Figure 2.4), but we keep the physical
parameters fixed. The visual results of the experiment can be seen
in Figure 2.5. The four textiles fold diagonally without any locking
artifact.

Figure 2.5: Four different meshes used for the experiment: the red ones are
made of triangles and the blue ones of quadrilaterals. From left
to right the number of nodes is: 472, 941, 529, 900. On the bottom
of each cloth, we display the euclidean position of the free corner.

nodes / element 472/△ 941/△ 529/□ 900/□

472/△ 0 2.45 cm 3.16 cm 1.41 cm

941/△ - 0 1.41 cm 2.83 cm

529/□ - - 0 3.74 cm

900/□ - - - 0

Table 2.2: Distances (cm) between the bottom corner of the cloths (of dimen-
sions 1m×1m).

In Table 2.2 we compute the euclidean distance of the bottom corner
of every textile with respect to each other. Note how, doubling the
number of nodes, or changing from irregular triangles to regular
quadrilaterals, does not alter the result within a margin of error of a
few centimeters (recall that the sheets are 1m×1m).

2.7.2 Cusick’s test

This subsection will demonstrate the stability of our model under
refinements of the mesh. We will explain how to simulate Cusick’s
test [56] using our simulator. Cusick’s test consists in letting a circular
cloth of radius 15cm drape on top of an also circular table of radius
9cm (see Figure 2.6) with their centers aligned.

2.7 evaluation and results 31

Figure 2.6: Photo of a circular cloth draping on top of a circular table. Image
taken from [42].

Then, one computes the area of the plane projection of the draped
cloth C and divides it by the area of the flat ring A of width 6cm (see
Figure 2.7).

Figure 2.7: After the cloth has draped on top of the table, the drape coef-
ficient is calculated as the ratio between the area of the plane
projection of the cloth C, divided by the area of the flat ring A of
width 6cm. Image adapted from [42].

This is called the drape coefficient of the cloth:

DC % = 100× C
A

. (2.22)

It is known that this coefficient depends heavily on the stiffness of
the cloth [56]. This can be understood intuitively: a completely rigid
sheet of metal would not bend and would have DC equal to 100%,
whereas a really light material (e.g. silk) has a DC pretty close to 0.
The measurement of this coefficient is not trivial: it usually requires
a dedicated machine (Cusick’s Drape Tester [65]); and variation of
the measured coefficient for the same cloth is common, so several
specimens of the same textile have to be employed and then their DC’s
averaged [42].

Naturally, these complications have caused the creation of alterna-
tive measuring methods using computer simulations (e.g. [38]). In
order to simulate Cusick’s test with our model, we quadrangulate
the ring A of Figure 2.7, we fix in space its inner boundary nodes
and let gravity act (see Figure 2.8). In order to study the dependency
of the DC with respect to mesh resolution, in Figure 2.9 we plot the
DC for three stiffness values κ (low: κ0, medium: 5κ0 and high: 10κ0;
where κ0 = 0.005) and 24 different meshes of the ring A ranging from
250 nodes to 1300. The three mean values for the computed DCs are

32 inextensible cloth model

Figure 2.8: Simulation of Cusick’s test with the inextensible model and a
mesh of 768 nodes. From left to right we vary the stiffness of
the cloth and get respectively DCs of 26.1%, 54.9%, 77.2%. They
correspond to peach-skin polyester (low stiffness), imitation wool
(medium) and tussore cotton (high).

23.2%, 52.4%, 77.3% and they approximately correspond to peach-skin
polyester (low stiffness), imitation wool (medium stiffness) and tussore
cotton (high stiffness) (see the Appendix of [42]: IDs: 38, 37, 22). Figure
2.9 shows that the computation of the DC with our model is very
stable (especially from 700 nodes on), and hence the model has a
robust behavior with respect to mesh resolution. As we already said,
this is very relevant for robotic applications, where the use of coarse
meshes becomes a necessity because of performance constraints.

Figure 2.9: Computation of the drape coefficient (DC) for 3 stiffness values
(low, medium and high) and 24 different meshes of cloth from
250 to 1300 nodes. The three mean values for the computed DCs
are 23.2%, 52.4%, 77.3%.

2.7.3 Tank-top simulation

With this experiment, we aim to show the ability of our model to
simulate complex topologies (e.g. a tank-top shirt, see Figure 2.10 and

2.7 evaluation and results 33

https://youtu.be/DvSWEXdw6Bo) and study different area errors. We
track the variation of area of the garments through time. We think
area is a good measure since it is a physical property of cloth and not
a mesh-dependent metric (e.g. stretching of the edges of the elements).
We compute the area of each element of the discretized cloth using its
local parametrization (2.4).

Figure 2.10: Simulation with the inextensible model of the shaking of a trian-
gulated tank-top. At each time instant (t = 1.1s, 1.75s, 2.5s, 3.5s)
we plot the area error with sign (2.26) of each individual triangle.

We use three area errors:

1. Total area error:

et(t) =
|A(t)− A0|

A0
, (2.23)

where A0 is the total area of the garment at time t = 0 and A(t)
is its area at time t > 0.

2. Mean element error:

em(t) =
1
ne

∑
e

|ae(t)− ae(0)|
ae(0)

, (2.24)

where ae(t) is the area of element Ωe at time t ≥ 0.

3. Dispersion:

da(t) = em(t) + 2

√
Vare

(
|ae(t)− ae(0)|

ae(0)

)
. (2.25)

We simulate the shaking with a hanger of a meshed tank-top with
1676 triangles (see Figure 2.10) during 4.5s. There, we also plot the
area error with sign of each individual triangle for each time instant:

e(t) =
ae(t)− ae(0)

ae(0)
. (2.26)

It is interesting to notice the concentration of error near the bound-
aries of the cloth and at the points where the tank-top makes contact

https://youtu.be/DvSWEXdw6Bo

34 inextensible cloth model

Figure 2.11: Plot of the time-dependent errors: total area (2.23), mean element
(2.24) and dispersion (2.25). Note how the errors increase during
the complex parts of the simulation (from t = 0.5s to t = 3s) and
decrease afterward.

with the moving cylinder. Nevertheless, note that when a triangle is
stretched (color yellow), next to it appears a triangle that contracts
(color blue). This makes the total area error to be very small (see Figure
2.11). Finally in Figure 2.11, we plot the three area errors (2.23),(2.24)
and (2.25). The total area error is very low during all the simulation,
almost zero. The mean area error is higher, but still very low (it peaks
around t = 1.75s, the second frame in Figure 2.10), keeping itself
around 1%. The dispersion error, on the other hand, tells us that if the
distribution of the errors were normal, the error of 95% of the mesh
triangles would be under 7% during all the simulation.

3
C L O T H C O L L I S I O N S

In this chapter, we study the problem of collision detection and re-
sponse tailored for our inextensible cloth model. After reviewing the
state of the art in Section 3.1, we explain how to include contact reac-
tion forces with the aid of the Signorini’s conditions (Section 3.2). In
that section, we also present a simple model to account for friction
between cloth and possible obstacles (e.g. a table) and with itself. In
Section 3.3 we explain how to detect and include self-collision under
the framework presented in Section 3.2. Afterward in Section 3.4 a
novel numerical discretization is presented in order to integrate the
extended equations of motion. This discretization leads naturally to a
sequence of quadratic problems with inequality constraints. In Section
3.5 we study how to solve efficiently the sequence of quadratic prob-
lems defined before. A detailed procedure is laid out in pseudo-code
in Algorithm 2. To close the chapter in Section 3.6 we present several
scenarios that put to the test the developed collision model.

3.1 related work

There is a rich history of research on contact and collisions for cloth
simulation; in the following, we will review what we consider the
most relevant methods, with an emphasis on newer works. We focus
especially on articles that model collisions in physically different man-
ners or use novel numerical algorithms to resolve them (and not so
much in performance, e.g. GPU implementations of existing methods).
Most of these works come from the Computer Graphics (CG) com-
munity and not so much from the Textile Engineering fields. This is
due to the fact that in CG applications a core concern has always been
simulating dressed moving mannequins (e.g. for movies and video
games), whereas for textile engineers the focus has been on measuring
intrinsic fabric properties. There are 3 main types of collision-response
methods:

Penalty-based methods: these include very stiff spring-like forces
of the form k f (ϵ) (where ϵ is the detected penetration depth) into
the dynamical system when a penetration is detected. They are easy
to implement and can work for simple cases, but are not physically
accurate (e.g. they do not conserve momentum during the collision,
see [105]) and introduce a lot of stiffness into the system when k is
large (making it harder to integrate numerically). For example, Provot
[92] is one of the first to propose a penalty-based approach to solve

35

36 cloth collisions

collisions for cloth modeled as a mass-spring system. However, his
method has no theoretical guarantees when there is more than one
simultaneous collision. That is why, when many collisions accumulate
during the same time step, he must resort to a fail-safe consisting
of rigidifying zones of the cloth. On the other hand, he is among
the first to give a formula to detect continuous-time collisions (i.e.
when two moving edges or a node and triangle cross, see Section
3.3). Finally, one of the main theoretical problems with penalty-based
methods is that there is always a fast or strong enough collision where
they fail because the spring force is not strong enough (although
there are sophistications with more guarantees such as [48]). These
types of models have somehow fallen out of fashion in recent times (at
least in the research literature) in favor of constraint-based approaches.

Impulse-based methods: these methods include impulse forces (mostly
based on rigid-body mechanical ideas) which are then used to modify
velocities (and thus positions) instantaneously. They work well for
individual collisions and are fast to compute, but run into problems
for multiple simultaneous collisions. In this line, the work by Bridson
et al. [18] is considered to be by the CG community the first truly
robust method for handling collisions, contact and friction for cloth
simulation. More than a unified physical model, their method consists
of a list of procedures used to get a state of cloth that is collision-free
but not necessarily physically realistic. They first apply penalty forces
as a prevention method and then impulse forces for detected collisions
in continuous time. When there are simultaneous collisions in the
same time step, after a fixed number of iterations they also resort to
rigid impact zones (but with corrected formulas with respect to [92]).
Some alternatives exist to avoid the rigidification or areas of the cloth,
e.g. [115] and [49]. These two methods derive impulse forces for the
case of simultaneous collisions with the aid of constraints that are
being violated by the detected penetrations. Their main problem is
that in order to be efficient they derive the impulses from equality
constraints, and this introduces sticking artifacts into the simulation
(some nodes are forced to stay in contact, when they otherwise would
depart). Moreover, another issue with impulse-based methods is that
since one is modifying positions instantaneously, strain-limiting pro-
cedures must be performed prior to (or after) collision response and
thus constraints such as inextensibility cannot be maintained exactly.

Constraint-based methods: with the increase of computing power in
the last decades these methods have flourished from a research view-
point. Their idea is simple: once a collision is detected, a constraint is
defined (which is being violated because of the collision) and an opti-
mization problem should be solved with all the detected constraints.
Most methods vary mainly in how the optimization problem is solved

3.1 related work 37

and how friction is modeled (going from exact Coloumb models to
linearized ones). These restrictions can be imposed as equalities or
inequalities. As already said, imposing the constraints as equalities
can be very efficient but one runs into sticking artifacts (since some
constraints can pull from others) and thus it is better to consider them
inequalities. This is in turn known as the Signorini-contact model.
Otaduy et al. [87] were among the first to propose a physically sound
constrained dynamics formulation for cloth simulation and contact.
They employ Signorini’s contact model and add to it a linearized
Coulomb’s friction model. The optimization program is stated for-
mally as a linear complementary problem (LCP) and friction and
contacts are afterwards decoupled in order to be solved numerically.

Years later, Li et al. [69] implement exact Coulomb friction for cloth
simulation using adaptive meshes. Their constraint-based solver (re-
leased later as an open-source simulator called ARGUS) is costly to
run but treats contacts (and friction) simultaneously and implicitly.
Recently, Ly et al. [75] have proposed an alternative numerical algo-
rithm based on Projective Dynamics that accelerates by an order of
magnitude results obtained with ARGUS. Its main drawback is that it
inherits the limitations of Projective Dynamics, in particular, the lack
of a simple rule to ensure convergence. One of the main limitations
of all the previous methods is the difficulty of integrating at the same
time strain limiting (e.g. inextensibility) with the collision handling
algorithm. In this line, Li et al. [70] have developed a method that
integrates strain limiting and collisions in a single pass with the ex-
tensive use of barrier functions. They also propose a benchmark set
of challenging tests. Naturally, constraint-based methods also have
some drawbacks: most of the time they need dedicated solvers and
thus can be cumbersome to implement and since several optimization
programs must be solved, they are slower than impulse or penalty-
based methods.

To finish this section we would like to mention a research line, that
although is not a collision model per-se is relevant to the topic:

Untangling methods: these methods have the particularity that they
do not focus on solving new collisions to come but on resolving pre-
existing cloth intersections. They appeared out of practical necessity
(e.g. in the movie industry) since these pre-existing penetrations often
arise when dressed mannequins move in nonphysical or impossible
ways (pinching cloth between extremities that intersect each other). For
example, [9] and [116] give algorithms to untangle cloth in an efficient
manner. More recently, in [121] a method is proposed where new
collisions and pre-existing penetrations are all handled in a unified
manner. The main challenge of these methods is actually a topological
one: in which normal direction one needs to push the intersecting

38 cloth collisions

elements so that the penetration is resolved without knowing a past
intersection-free state?

Overview

The model we will derive in this chapter lies in the category of
constraint-based methods and hence can handle efficiently simul-
taneous collisions. We will solve a quadratic problem with inequality
constraints and therefore we will be employing the physically accu-
rate model of Signorini. In order to do so, we will develop a novel
active-set solver in order to resolve collisions efficiently. Moreover, we
derive a simple friction model that allows us to integrate all forces
and constraints in a simple pass without the need to decouple contact
and friction forces like it has been traditionally done for rigid body
contacts (see [64]). Finally, our method considers strain limiting (inex-
tensibility) and contact at the same time, unlike most current methods.
Our algorithm can be seen as an extension of the fast projection algo-
rithm (see [44] and Section 2.6.1) developed in order to incorporate
contacts, friction and inextensibility in a single pass.

3.2 modeling of contacts and friction

For its application in the real world, we need to include in our model
collisions of the cloth with an object (e.g. a table) and with itself. We
will model this by enforcing a set of constraints H(φ) ≥ 0, which
we assume have a well-defined outwards normal ∇H(φ) (almost
everywhere). Observe that the obstacle could move in time, but we
need to know its position. We can then model collisions by including
new (non-smooth, see [67] and [125]) forces in our dynamical system.
Signorini’s contact model then reads (see [59]):

Mφ̈ = F(φ,φ̇)−∇C(φ)⊺λ +∇H(φ)⊺γ,

C(φ) = 0,

H(φ) ≥ 0, γ ≥ 0, γ⊺ ·H(φ) = 0,

(3.1)

where γ ≥ 0 are new contact Lagrange multipliers and we have
grouped in the force term F(φ,φ̇) damping, gravity, etc. Now the
system is non-smooth, which is why we will need to use a first-order
(implicit) integration scheme [67]. A simple model for friction can be
introduced if we add yet another force of the form:

fµ(φ̇) = −µV(φ̇)⊺β (3.2)

where µ > 0 is a friction constant, β are new multipliers (one for each
contact constraint) satisfying that they belong to the friction’s cone, i.e.
they satisfy component-wise βi ≤ ||∇Hi(φ)

⊺γi||, and V(φ̇) are unit

3.3 self-collisions 39

(relative) tangent velocities at the points of contact, i.e. for the case of
a collision with a static obstacle:

kVi(φ̇) = φ̇− ⟨φ̇, ni⟩ · ni,

where ni =
∇Hi(φ)
||∇Hi(φ)|| and k is a normalization constant. For theoretical

details and more sophisticated models for friction see [1].

Remark 3.2.1. We now list some implicit assumptions we are making
in stating the collision model as Equation (3.1):

1. When H = 0 defines a surface (e.g. a plane or a sphere), the
condition H(φ) ≥ 0 means that for each node of the surface we
impose

Hi(φ) := H(pi(t)) ≥ 0.

This only forces the vertices of the cloth to be outside the obstacle
(but there could be some penetrations of the faces). When the
mesh is fine this is not really a problem, in the case of coarse
meshes, one can add yet another constraint for the middle point
of each face.

2. Signorini’s condition implies that when there is no contact taking
place, i.e. Hi(φ) > 0, then there is no repulsive force acting, i.e.
∇Hi(φ)

⊺γi = 0. Therefore there is also no friction force acting,
i.e. βi = 0.

3. Without any other condition the multipliers β are not uniquely
defined. A common approach is to assume that these multipli-
ers cause maximal dissipation (see [59, 64, 105]). This amounts
to solving a linear program. In practice, we will assume that
βi = ||∇Hi(φ)

⊺γi|| (which is anyways always the case when the
tangent velocity is nonzero).

4. This model assumes that the collision is inelastic (there is no
bouncing). This is a reasonable assumption for cloth; we will
corroborate this in Chapter 4 when we perform the empirical
validation of the collision model.

3.3 self-collisions

We now explain how to define the constraints Hk that account for
modeling self-collisions of the cloth inside the function H(φ) ≥ 0. In
principle we need to integrate numerically the equations of motion and
advance the simulation from φn to φn+1, then check if in the process
self-collisions took place, and in case they did, add new constraints
Hk to the system and repeat the numerical integration. This process
must be repeated until no new collisions are found. In practice this
is costly and thus we will develop a more efficient procedure that

40 cloth collisions

takes advantage of the way we integrate numerically the equations of
motion. For the time being, assume we have both φn and φn+1 (and
their velocities) available to make computations.

3.3.1 Detection of self-collisions

In general, we assume that the cloth is triangulated (in case of a
quadrangulation we can always divide the quads in two); then in case
of collision, there are only two stable (i.e. detectable) possibilities: an
edge-edge collision and a node-face collision. In these two cases, we
have four nodes involved which at some instant of time belong to the
same plane (see Figure 3.1). We must then only check if two co-planar
edges cross or if a point belongs to a triangle. These two problems are
readily solved using barycentric coordinates.

Figure 3.1: If the moving triangles were not intersecting before, then there
exists a time in which the edges ab and a′b′ were co-planar.

Now we describe in more detail the process: in order to save com-
putational time, we only check if a collision has happened for pairs
of edges (or nodes and faces) that at time tn are sufficiently close (and
not for every pair, which would result in combinatorial explosion). To
obtain this list of sufficiently close (up to some tolerance) pairs, there
are several methods: one of the most widely used is the hierarchical
method [92], where the mesh is divided into large regions, which are in
turn also divided in smaller regions, up to a certain number of times
(the number of hierarchies). Then one only checks if two pairs are
sufficiently close when all of the larger regions containing these are
close enough (e.g. by computing the distance between their center of
masses), otherwise, they are discarded. Since our meshes are fairly
coarse we avoid hierarchies (which can be cumbersome to implement)
and compare the center of masses of our pairs in order to detect those
that are candidates for collision.

Next, denoting by x1, x2, x3, x4 the position of the four candidate
nodes at time tn and by v1, v2, v3, v4 their velocities, we must only
check if

3.3 self-collisions 41

det(x̃1 + t · ṽ1, x̃2 + t · ṽ2, x̃3 + t · ṽ3) = 0

where x̃i = xi − x4 and ṽi = vi − v4, since φn+1 = φn + dt · φ̇n+1. This
is a cubic equation a3t3 + a2t2 + a1t + a0 = 0 in t, with coefficients:

a3 = det(ṽ1, ṽ2, ṽ3);

a2 = det(x̃1, ṽ2, ṽ3) + det(ṽ1, x̃2, ṽ3) + det(ṽ1, ṽ2, x̃3);

a1 = det(x̃1, x̃2, ṽ3) + det(x̃1, ṽ2, x̃3) + det(ṽ1, x̃2, x̃3);

a0 = det(x̃1, x̃2, x̃3);

(3.3)

When t≪ dt is small, the solution of the previous equation can be
approximated linearly by − a0

a1
. In any case, if there is a root for some

tc ∈ [0, dt], we must then do two different calculations with the four
co-planar points yi = xi + tc · vi, namely:

1. Edge-edge case: say the endpoints of the first edge are y1, y2

and of the second y3, y4, then we compute the real numbers α, β

where y1 + α(y2 − y1) = y3 + β(y4 − y3) (the intersection of the
two lines defined by the segments) and if they belong to the
interval [0, 1] a collision has occurred.

2. Node-face case: say the node is y4 and the other 3 points are the
corners of the triangle, then we compute the real numbers u, v, w
such that y4 = uy1 + vy2 + wy3 and if they are in the interval
[0, 1] a collision has occurred.

3.3.2 Constraint definition for self-collisions

We now describe the computation of the self-collision constraint Hk. It
will be linear in φ and naturally have slightly different forms depend-
ing on our two cases:

1. Edge-edge case:

Hk(φ) := ⟨πα(x1, x2)− πβ(x3, x4), ν⟩ ≥ 0,

where xi are the four endpoints of the two edges, πα(x1, x2) =

(1− α)x1 + αx2 and πβ(x3, x4) = (1− β)x3 + βx4 are the closest
points between the two segments and ν is the normal vector to
both edges. In general, the values ν, α, β vary with time. We will
nevertheless assume that they are constant during the time-step,
and compute them with the positions of the segments given by
φn+1. The normal vector ν is oriented such that Hk(φ

n) ≥ 0.

2. Node-face case:

Hk(φ) := ⟨x4 − π(x1, x2, x3), ν⟩ ≥ 0,

42 cloth collisions

where x4 is the node, xi are the 3 corners of the triangle, again
π(x1, x2, x3) = ux1 + vx2 + wx3 is the closest point inside the
face to the node and ν is the normal vector to the triangle.
In general, the values ν, u, v, w vary with time. We will again
assume that they are constant in time, and compute them with
the positions given by φn+1. The normal vector ν is oriented such
that Hk(φ

n) ≥ 0.

Remark 3.3.1. Notice that:

1. By construction Hk(φ
n+1) < 0.

2. The constraint Hk is an approximation of the signed distance be-
tween the pairs edge-edge and node-face (only an approximation
since ν and the barycentric coefficients are fixed in time).

3. Since in practice cloth has thickness, say τ0, the constraint we
actually must impose is Hk(φ) ≥ τ0.

3.3.3 Proximity constraints and cloth thickness

Adding the constraints we have just defined is enough to correct all
present self-collisions. Nevertheless, there are two main drawbacks:

1. Efficiency: most cloth collisions can be avoided before they hap-
pen by adding preventive constraints.

2. Vibrations: since we are assuming that the cloth has a thick-
ness τ0 > 0, when we integrate the system again and go from
Hk(φ

n) < 0 to Hk(φ
n+1) ≥ τ0, the change between the position

of the nodes can be too large, and since our cloth is inextensible,
this could create unwanted oscillations.

In order to avoid these two problems, we apply the detection proce-
dure previously explained in 3.3.1 with one small difference: during
the detection phase we move the pairs (edge-edge or face-node) closer,
using their normal vectors and taking into account the thickness of
the cloth, so that pairs that are too close and/or are approaching
each other, are kept at a minimum distance of τ0 before they actually
cross. Since the restrictions we are considering are inequalities, we
can add these to the system because they only affect the dynamics
of cloth in case the constraint will actually get violated. In symbols,
this means that we compute the coefficients (3.3) of the third degree
polynomial using the altered positions given by x̂i = xi ±ωτ0ν, where
ν is the unit normal vector (the cross product for the edge-edge case
and the normal to the triangle for node-face case), ω ≈ 0.5 is what
we will call a proximity parameter and the sign ± is chosen so that the
pairs approach each other. Afterwards the response constraint Hk is
calculated as usual (i.e. the normals and the barycentric coordinates)
with the unaltered positions xi given by φn+1.

3.4 numerical integration of the system 43

Remark 3.3.2. It is usually enough to use the positions x̂i = xi ±ωτ0ν,
where ω ≈ 0.5 to detect all self-collisions, nevertheless some can
sometimes be missed because the nodes have moved too much. In that
case, we enter an iterative process reducing gradually the value of ω

until all are resolved. We will explain this in more detail in Section
3.4.1.

Definition 5. (Self-collision constraints). We will denote by

C = Collisionsω

(
φn →dt φn+1

)
the set of self-collisions constraints that must be imposed from the
state φn to the state φn+1 with proximity parameter 1

2 > ω ≥ 0.

3.4 numerical integration of the system

The friction force and the contact constraints introduced in the previ-
ous section are in general highly non-linear and stiff and thus must be
integrated implicitly (like the inextensibility constraints, see Section
2.6.1). To integrate the system numerically from time tn to tn+1 (i.e.
to advance the simulation from φn to φn+1), we perform as before an
iterative process φj+1 = φj + ∆φj+1 where the initial point is the un-
constrained step φ0 = φn+1

0 (φn,φ̇n) given by an implicit Euler scheme.
Also, we write:

H(φj+1) = H(φj + ∆φj+1) ≃ H(φj) +∇H(φj)∆φj+1,

and similarly

C(φj+1) = C(φj + ∆φj+1) ≃ C(φj) +∇C(φj)∆φj+1,

and then solve iteratively the following sequence of quadratic pro-
grams with linear equality and inequality constraints:

min∆φj+1
1
2 ∆φ⊺

j+1 ·M · ∆φj+1 − ∆φ⊺
j+1 · fµ(φ̇j)

C(φj) +∇C(φj)∆φj+1 = 0,

H(φj) +∇H(φj)∆φj+1 ≥ 0,

(3.4)

where

1. φ̇j+1 =
φj+1−φn

dt is an approximation of φ̇n+1,

2. fµ(φ̇j) = −µV(φ̇j)
⊺∆βj is the friction force at iteration j,

3. V(φ̇j) are the relative unit tangent velocities,

4. (∆β j)i = ||∇Hi(φj)
⊺(∆γj)i|| is the magnitude of the contact

forces at iteration j,

44 cloth collisions

5. and ∆γj ≥ 0 are the multipliers associated to the contact con-
straints.

We iterate until

max |C(φj)| < ϵ0, min H(φj) ≥ −ϵ1, max |∆φj| < ϵ2 (3.5)

for some tolerances ϵ0, ϵ1, ϵ2 > 0. This third condition ensures that
the friction force has stabilized. Note that the critical points of the
previous quadratic problems (3.4) are:

M · ∆φj+1 = −∇C(φj)
⊺∆λj+1 +∇H(φj)

⊺∆γj+1 − µV(φ̇j)
⊺∆βj,

C(φj) +∇C(φj)∆φj+1 = 0,

H(φj) +∇H(φj)∆φj+1 ≥ 0,

∆γj+1 ≥ 0, ∆γ⊺
j+1 ·

[
H(φj) +∇H(φj)∆φj+1

]
= 0,

(∆β j)i = ||∇Hi(φj)
⊺(∆γj)i||.

(3.6)

Remark 3.4.1. In order to integrate friction force we have made the
approximation fµ(φ̇j+1) ≃ fµ(φ̇j). That is, we have dropped the gradi-
ent we would normally have with a first-order approximation (this is
what we also do with the gradient of the constraint forces in the first
equation of (3.6)).

3.4.1 Addition of self-collision constraints

Instead of checking and generating all self-collision constraints only
with the states C = Collisionsω

(
φn →dt φn+1), we take advantage of

the fact that we perform an iteration process. We now explain how
we introduce self-collisions into the sequence of problems (3.4) for
every step. For every iteration j we check for self-collisions (see Sec-
tion 3.3.1) taking into account the thickness of the cloth (Section 3.3.3)
between the states φn and φj and generate the corresponding con-
straints (Section 3.3.2). In symbols this means that all the constraints
Cj = Collisionsω

(
φn →dt φj

)
for j ≥ 0 and ω ≈ 0.5 are added to

the system. In the rare case that the same collision is found in two
different iterations we only keep the constraint defined by the later
iteration. Then, when we find a state φj+1 that satisfies the stopping
criteria (3.5), we check for self-collisions with ω = 0, and in case no
self-collision is detected, we put φn+1 = φj+1. Otherwise, we repeat
the whole iteration process with a smaller value of ω (see Remark
3.3.2).

3.5 efficient solution of the quadratic problems 45

3.5 efficient solution of the quadratic problems

Definition 6 (Active constraint). In a constrained optimization prob-
lem (such as (3.4)), we say that an inequality constraint g(x) ≥ 0 is
active at a feasible point y if g(y) = 0. Note that all equality (in our
case inextensibility) constraints are always active.

In order to solve the sequence of problems (3.4) we could employ
any quadratic problem solver, but we would not be taking advantage
of the structure of our problem. That is, if in one of the iterations j one
of the contact constraints Hi is active (see the previous definition), then
it is likely that it will be active again at the next iteration. Physically,
this means that nodes of the cloth that are in contact with an obstacle
(or among themselves) at some iteration, are likely to remain in contact.
This suggests the use of active-set-methods [86] to solve the quadratic
problems. We will develop a novel active-set algorithm in the following
pages. Although we could use one of the many existing ones, they
always require that one begins with a feasible (albeit not optimal)
solution to the problem. Our method will not have this requirement.

The main idea of active set methods is to find the active set of
constraints at the solution, because then, once known, the program
can be solved by ignoring inactive constraints, and assuming that
all active inequality constraints are equality constraints. Recall that
solving quadratic problems with equality constraints is very cheap
and can be done by solving a linear system (see [44]). This will be
precisely what we will do for every iteration of the sequence (3.4). In
order to find the active set, one splits the constraints in two sets:

The working set, W : these are the constraints believed to be active
(g = 0) and therefore are imposed as equality constraints when
one solves the optimization problem. This can be initialized as
the set consisting only of equality constraints.

The observation set, O: these are the constraints believed to be inactive
(g > 0) and therefore are not imposed as equality constraints.
Since they are not included in the problem one must be careful
that they do not become violated.

Then one proceeds as follows:

1) solve the equality problem defined by the working set;

2) compute the Lagrange multipliers of the working set for the
inequality constraints;

3) send a subset of the constraints with negative Lagrange multi-
pliers to the observation set;

4) if all multipliers are positive, check if all constraints in the obser-
vation set remain feasible;

46 cloth collisions

5) send a subset of the infeasible constraints to the working set;

6) repeat.

Then, if at some iteration we have found an increment ∆φj+1 such
that all contact constraints in the working set have positive Lagrange
multipliers ∆γj+1 ≥ 0 (see Equation (3.6)) and all constraints in the
observation set are not violated, we have found the active set (see
[86]) and we can make the update φj+1 = φj + ∆φj+1. The following
proposition ensures that we do not enter in a never-ending cycle:

Proposition 1 (Entry and exit of constraints). Given the system (with
unknowns ∆φ) M∆φ = ∇H(φ)⊺∆γ,

H(φ) +∇H(φ)∆φ = 0,
(3.7)

and the system (with unknowns ∆φ̃)M∆φ̃ = ∇H−k(φ)⊺∆γ̃,

H−k(φ) +∇H−k(φ)∆φ̃ = 0,
(3.8)

where we have removed the constraint Hk(φ) +∇Hk(φ)∆φ = 0 from
the first system; then it holds that

∆γk · (Hk(φ) +∇Hk(φ)∆φ̃) ≤ 0, (3.9)

where ∆γk are the Lagrange multipliers of the removed constraint k.

Proof. Subtracting the first two equations of the systems, we get:

M(∆φ̃− ∆φ) = ∇H−k(φ)⊺(∆γ̃− ∆γ−k)−∇Hk(φ)
⊺∆γk.

Then, multiplying both sides by (∆φ̃− ∆φ)⊺, we deduce that

0 ≤ (∆φ̃− ∆φ)⊺ ·M · (∆φ̃− ∆φ) = 0− (∆φ̃− ∆φ)⊺ · ∇Hk(φ)
⊺∆γk,

since (∆φ̃− ∆φ)⊺ · ∇H−k(φ)⊺ = H−k(φ)⊺ −H−k(φ)⊺ = 0. Finally, us-
ing that ∇Hk(φ)∆φ = −Hk(φ), and rearranging terms we get

0 ≤ −∆φ̃⊺∇Hk(φ)
⊺∆γk − Hk(φ)∆γk.

From here (3.9) follows easily.

Corollary 1. If a constraint in the working set has a negative La-
grange multiplier, when it is taken out of the system and put in the
observation set, it becomes feasible. Conversely, when a constraint in
the observation set is infeasible and we sent it to the active set, its
associated Lagrange multiplier is positive.

3.5 efficient solution of the quadratic problems 47

Remark 3.5.1. The heuristic that is usually followed to decide which
constraint to remove or to add is: delete from the working set the
constraint with the most negative Lagrange multiplier and add to the
working set the constraint from the observational set that is being
most violated (the most negative one).

To finish this section we study the case of linearly dependent con-
straints. This is relevant since in general, we do not want to introduce
linearly dependent constraints into the system because they give raise
to (near) singular matrices.

Lemma 1. If a constraint G in the observation set can be written as
a linear combination of constraints of the working set, i.e. G(φ) =

∑ αi Hi(φ), then the linearized constraint is feasible G(φ)+∇G(φ)∆φ≥
0.

Proof.

G(φ)+∇G(φ)∆φ = G(φ)+∑ αi∇Hi(φ)∆φ = G(φ)−∑ αi Hi(φ) = 0.

Remark 3.5.2. The previous lemma ensures that in general, we do
not send linearly dependent constraints from the observation set
to the working set. Nevertheless, it is possible to have a degener-
ate case where the constraints are not linearly dependent but their
gradients are. In symbols, this would mean that a constraint in
the observation set satisfies G(φ) + ∇G(φ)∆φ ≤ 0 and moreover
∇G(φ) = ∑ αi∇Hi(φ). What we do then is to introduce G in the work-
ing set while removing the Hi with the greatest αi ̸= 0 in absolute
value. This new working set is linearly independent (otherwise it
would contradict the assumption that the original working set without
G was linearly independent) and the process can continue.

3.5.1 Factorization of the matrix system

Every time that a constraint goes from the working set to the observa-
tion set (or viceversa), i.e. when the index setsW and O are updated,
the Lagrange multipliers must be recomputed, i.e. a linear system
must be solved in order to find the solution of (3.10).

M · ∆φj+1 = −∇C(φj)

⊺∆λj+1 +∇H(φj)
⊺∆γj+1 − µV(φ̇j)

⊺∆βj,

C(φj) +∇C(φj)∆φj+1 = 0,

Hi(φj) +∇Hi(φj)∆φj+1 = 0 for i ∈ W .
(3.10)

In order to ease readability we will include inextensibility con-
straints and the contact constraints of the working set in only one

48 cloth collisions

function denoted by G⊺ = [C⊺, H⊺]. Now, since in general only one
constraint will be entering or exiting at the time, the linear systems
that we have to solve are almost identical with the exception of a few
rows and columns. That is why, the use of factorizations becomes
an important tool to achieve efficiency. The linear system we need to
solve to find the multipliers is:

(
∇G(φj)M

−1∇G(φj)
⊺
)

∆ζ j+1 = −G(φj)−∇G(φj)M
−1fµ(φj),

where ∆ζ⊺j+1 = [∆λ⊺
j+1, ∆γ⊺

j+1]. Hence the system matrix (let us call
it A) is positive definite (since M is positive definite because it is
the mass matrix); therefore we can use Cholesky decomposition [45],
provided our constraints are linearly independent (see again Lemma 1

and Remark 3.5.2). This is a factorization of the form

QAQ⊺ = LL⊺, (3.11)

where L is an invertible lower triangular matrix and Q is an (orthonor-
mal) permutation matrix (this is done in order to take advantage of
sparsity patterns). Solving the linear system in this way reduces to a
couple of triangular substitutions and two matrix multiplications:

A−1 = (Q⊺LL⊺Q)−1 = Q⊺L−1(L⊺)−1Q,

since L and L⊺ are lower and upper triangular, and we can use forward
and backward substitutions (no matrix is actually inverted).

3.5.2 Updates of the Cholesky decomposition

Every time a constraint enters or exits the working set, L (and Q) can
be efficiently updated without recomputing the factorization from
scratch (see, e.g. [28, 102]). In the following, we describe two simple
methods (not necessarily the most efficient) to perform such a task.
When introducing constraints, we will do so, only one at a time,
whereas to remove them we will usually delete all constraints with
negative Lagrange multipliers. Assume first that we want to add a
single contact constraint Hk to the working set. Then the updated
matrices are:

L+ =

[
L 0⃗

l⃗⊺ λ

]
, Q+ =

[
Q 0⃗

0⃗ 1

]
, (3.12)

where l⃗ is found by solving L · l⃗ = Q · ∇H ·M−1 · (∇Hk)
⊺ and

λ =

√
∇Hk ·M−1 · (∇Hk)⊺ − l⃗⊺ · l⃗

This can be easily seen by writing the expanded equations for:

3.5 efficient solution of the quadratic problems 49

Q+A+Q⊺
+ = L+L⊺

+, (3.13)

where

A+ =

[
∇G

∇Hk

]
·M−1 ·

[
∇G

∇Hk

]⊺
. (3.14)

Remark 3.5.3. The case when λ ≤ 0 occurs when we try to introduce
a linearly dependent constraint into the system. We use this as a test
to check if we must interchange constraints between the working and
observation set as explained in Remark 3.5.2.

On the other hand, updating L when taking out an equation is more
complicated since when we remove a row (or a column) from L it
loses its triangular form. There are several methods to accomplish this
update without recomputing everything from scratch, among them:
using low-rank downdates [45], using artificial multipliers to set to
zero the solution’s coordinates corresponding to exiting constraints
or employing Givens’ rotations (also known as Householder trans-
forms, see [102]). Among these three methods, we have found that the
most practical and fastest for vectorized languages such as Python or
MATLAB is the artificial multipliers method, which we now describe.
Assume we have the system:

Ax = b,

where every coordinate k of x is the Lagrange multiplier corresponding
to a constraint Gk. Then, if we want to remove the constraints i1, . . . , in

from the system, we set their values to zero and hence solve the systemAx + S⊺y = b,

Sx = 0⃗,
(3.15)

where Sk · x = xik . This is the case since equations (3.15) are the critical
points of: minz

1
2 z⊺Az− z⊺b

Sz = 0⃗.

Remark 3.5.4. As already mentioned, recomputing from scratch the
full Cholesky factorization is usually not desirable, especially in cases
with very fine meshes. Nevertheless, when the number of variables
is not too high, it can be competitive in the case of the removal
of constraints, since we can delete more than one condition a time
without compromising linear independence (as opposed to the case of
adding constraints, where adding more than one at the time can be
problematic). With this method, the heuristic used is that all constraints
with negative Lagrange multipliers are removed from the working set.

50 cloth collisions

3.5.3 Detailed algorithm for collisions

To finish this section we give a detailed description of the full numeri-
cal algorithm written in pseudo-code in Algorithm 2.

Algorithm 2 Collisions active-set algorithm
Require: φn,φ̇n

1: φ0 ← unconstrained(φn,φ̇n, . . .) ▷ (Implicit Euler integration step)
2: C0 = Collisionsω (φn →dt φ0) ▷ (Self-collision constraints)
3: W ← {i : Gi(φ

n) = 0}, O ← W c ▷ (Working and observation sets)
4: J ← gradient(φ0, C0,W , . . .) ▷ (i.e. ∇Gi : i ∈ W)
5: L← cholesky

(
J ·M−1 · J⊺

)
6: while max |C(φj)| ≥ ϵ0 or min H(φj) ≤ −ϵ1 do
7: [∆λ, ∆γ] = multipliers(φj, L)
8: if min(∆γ) ≥ 0 then
9: ∆φj+1 ← increment(∆λ, ∆γ, J)

10: if Hi(φj) +∇Hi(φj)∆φj+1 ≥ 0 for i ∈ O then
11: φj+1 ← φj + ∆φj+1

12: Cj+1 = Collisionsω

(
φn →dt φj+1

)
, O ← O ∪ Cj+1

13: J ← gradient(φj+1,∪jCj,W , . . .)
14: L← cholesky

(
J ·M−1 · J⊺

)
15: else
16: iin ← indmini∈O(Hi(φj) +∇Hi(φj)∆φj+1)

17: O ← O \ iin, W ←W ∪ iin
18: L← update(L, iin)

19: end if
20: else
21: iout ← indmin(∆γ)

22: O ← O ∪ iout, W ←W \ iout

23: L← update(L, iout)

24: end if
25: end while
26: φn+1 ← φj+1, φ̇n+1 ← φn+1−φn

dt
27: return φn+1,φ̇n+1

Remark 3.5.5. We now make some comments about Algorithm 2:

1 The working set is always initialized at least with the inextensibil-
ity constraints, but we can also add the active contact constraints
from the previous time-step tn−1.

2 We have not explicitly written the friction force, but it obvi-
ously comes up in the computation of the multipliers and the
increment (lines 7 and 9, see Equations (3.10)).

3 Note that after successfully finding the active set (line 10), for the
next step j + 1, we do not change the working setW . Only the

3.6 evaluation and results 51

observation set O is updated with the possible new self-collision
constraints found (line 12).

4 When there is a negative multiplier (line 20), note that we take
out from the system the constraint with the smallest (most neg-
ative) multiplier. Likewise, when one of the constraints in the
observation set must be introduced (line 15), we choose the one
that is being most violated.

3.5.4 Similarities and differences with common active-set methods

Now that we have presented the full algorithm we use to solve the
quadratic problems, we can talk in more detail about how it compares
to standard active-set methods like the one described in [86]. The main
difference was already mentioned: to our knowledge, all active-set
methods require that one begins at a feasible point and then iterates
from there. This has the disadvantage that one must find a feasible
point to begin with, e.g. solving a linear program with equality and
inequality constraints. On the other hand, those classic methods have
the advantage that all the constraints in the observation set are kept
non-violated, and this allows one to take smaller steps towards the
solution when all the multipliers are positive (potentially causing the
algorithm to converge faster). Since we are solving so many relatively
large sparse quadratic problems in a row, we have found that the
requirement of starting at a feasible point is way more expensive than
employing the novel algorithm here presented. This is the case because
lower-rank updates of sparse Cholesky decompositions can be carried
out very efficiently.

3.6 evaluation and results

In this section, we present several experiments that put to the test our
collision model. They will be qualitative in nature, i.e. we only show
that our simulator is capable of dealing with such scenarios. We will
show that our modelization of friction is effective in static (cylinder
experiment, Section 3.6.1) and dynamic (rotating sphere experiment,
Section 3.6.2) settings, that we can easily include collisions with sharp
objects (Section 3.6.3) and that we can simulate complicated folding
sequences of cloth with non-trivial topologies (shorts experiment,
Section 3.6.4). The second and the third experiments, are challenging
scenarios suggested by [70] as benchmarking tests for a robust cloth
collision model. All the videos of the experiments can be visualized
online at https://youtube.com (in each section we will give the
appropriate link for the relevant video). In Chapter 4, Section 4.3 we
will perform several quantitative experiments where we will compare
the collision model with real experimental data.

https://youtube.com

52 cloth collisions

3.6.1 Frictional cylinder: https://youtu.be/_nh-ejHcJAg

This is the most basic of the four experiments: a flat sheet of cloth
falls on top of a frictional cylinder during 2 seconds. In Figure 3.2 we
show the final configuration of the textile for t = 2. All the physical
parameters are kept constant but friction, which varies among µ ∈
{0.2, 0.4, 0.55}. The cylinder is 30 cm off-center (with respect to the
center of mass of the cloth whose measures are 130 cm× 130 cm) and
the textile is slightly rotated (20 degrees with respect to the z-axis).
This means that in the absence of friction (or with a small friction
coefficient), the cloth collides with the cylinder and then falls to the
floor. We show with this scenario that our implementation of friction is
effective and can handle scenarios with persistent contact. In the first

Figure 3.2: Final frame (t = 2 seconds) of 3 separate simulations of the fall of
a sheet of cloth on top of an off-center cylinder. All the physical
parameters are kept constant but friction, which varies among
µ ∈ {0.2, 0.4, 0.55}.

image of Figure 3.2, we have that µ = 0.2 is too small and therefore
the cloth falls onto the floor. In the second image, the friction µ = 0.4
is somehow bigger and the cloth can be seen still in the process of
falling but at a later stage, which shows that the friction forces have
acted and delayed the fall. Finally, in the third image with µ = 0.55,
the friction is high enough so that the sheet lies stably on top of the
cylinder.

3.6.2 Rotating sphere: https://youtu.be/-XS3pKpoVbA

In this second experiment, we simulate the collision of a sheet of cloth
with a frictional sphere and the floor. The cloth measures 190 cm×
190 cm whereas the sphere has a radius of 35 cm. One second after
the textile has fallen, the sphere performs half a rotation along the
z-axis during one second. The discrepancy in size is intentional so that
after the fall the textile is also in contact with the floor and can then
wrap around the sphere. In Figure 3.3 we can see the final frame of
the simulation at t = 2.5 seconds; in the top image a small amount
of shearing is allowed (following the shearing model described in
Section 2.4.6) and in the bottom one all the inextensibility constraints
are enforced. The rest of the parameters are all kept constant.

https://youtu.be/_nh-ejHcJAg
https://youtu.be/-XS3pKpoVbA

3.6 evaluation and results 53

Figure 3.3: Final frame (t = 2.5 seconds) of 2 different simulations of the
collision of a sheet of cloth with a frictional sphere and the floor.
One second after the textile has fallen, the sphere performs half
a rotation along the z-axis during one second. All the physical
parameters are kept constant but in the top image, a small amount
of shearing is allowed while in the bottom one, all the inextensi-
bility constraints are enforced.

In order to simulate properly the dynamical friction between the
cloth and the sphere, we must take into account the speed of the
rotation for the points of the mesh that are in contact with the sphere.
In practice this means that when computing at every iteration j of our
solver the tangent velocities, we must account for a new term:

V(φ̇j) = φ̇j − ⟨φ̇j, n⟩ · n− vsphere,

where n is the outwards normal to the sphere and vsphere is its speed
at the current time step (as before the tangent velocities are afterwards

54 cloth collisions

normalized).

In order to obtain an interesting behavior of the simulation, it is
important to calibrate carefully the interplay between the friction with
the floor and with the sphere. We select µsphere = 0.5 and µ f loor =

0.4, so that the cloth follows the rotation of the sphere but with
considerable resistance from the floor. On the other hand, despite the
fact that the shearing constant ks > 0 was chosen so that the mean area
errors during both simulations are basically the same (1.3431% for the
inextensible vs 1.3520% for the other), we can see clearly in Figure 3.3
that the qualitative behavior is very different, one resembling a stiffer
and heavier material (e.g. a towel or a stiff napkin), whereas the other
seems lighter and smoother.

3.6.3 Collision with a sharp obstacle: https://youtu.be/z7l_O_nSfrM

In this third experiment, we simulate the collision of a piece of cloth
with a collection of needle-like obstacles. They are given by the set of
implicit equations:

H(φ) = c1c2z− sin(c1x) sin(c1y), (3.16)

where we take c1 = 20 and c2 = 0.075 (see Figure 3.4). The interest
of this scenario lies in the fact that it is not enough to impose the
previous equation (3.16) as a hard constraint (like we did with the
sphere and the cylinder); but that we need in addition to take into
account the cusps of the surface. These difficulties are typical for
most physical simulators and they arise when the obstacles we are
simulating present characteristics of lower dimensional objects (e.g. a
really thin cylinder or the cusps in this case). It is easy to see that the
cusps are given by:

x =
2πm± π

2
c1

, y =
2πm± π

2
c1

, z =
1

c1c2
, (3.17)

where m ∈ Z.

Let us denote them by {q1, . . . q f }. Then, for every iteration j of the
solver, similarly like we do with self-collisions, we must check if a
collision occurred during the motion φn →dt φj between these cusps
and the (triangular) faces of our meshed cloth.

This means that for every detected collision, in the next iteration
j + 1 we must add a constraint of the form:

⟨qi − π(x1, x2, x3), ν⟩ ≥ 0,

where qi is the corresponding cusp, xi are the 3 corners of the triangle,
π(x2, x3, x4) = ux1 + vx2 + wx3 is the closest point between the face
and qi, and ν is the normal vector to the triangle.

https://youtu.be/z7l_O_nSfrM

3.6 evaluation and results 55

Figure 3.4: Simulated final frame of cloth’s collision with a collection of
needle-like obstacles seen from 3 different angles. The cusps must
be taken into account separately from the rest of the surface and
are treated with the same algorithm we treat self-collisions.

56 cloth collisions

The values ν, u, v, w are (like in the case for self-collisions) constant
in time, and are computed with the positions given by φj. The normal
vector ν is oriented such that Hi(φ

n) ≥ 0.

Remark 3.6.1. As with self-collisions we consider cloth’s thickness
in practice by imposing Hk(φ) ≥ τ0 > 0. Moreover, as before this
thickness is taken into account in the detection process (see Section
3.3.3).

In Figure 3.4 we can observe the result of the simulation from three
different viewpoints. The cloth lies stably on top of the cusps without
any noticeable artifact. In Chapter 4, we will encounter again sharp
objects when we simulate the hitting of a piece of cloth with a thin
stick.

3.6.4 Folding sequence of short pants: https://youtu.be/2gdnjUICb0g

In this final experiment, we simulate the dynamical folding of a pair
of shorts (the same ones of Figure 2.2) on top of a table. In order to do
so, we control two nodes at the top of the shorts. In this experiment,
we also allow the garment to shear by introducing the force described
in Section 2.4.6.

Figure 3.5: Trajectory of the controlled nodes for the dynamic folding of
shorts.

The first part of the motion is performed fast enough so that the
shorts have sufficient momentum to lay partially flat on top of the
table after lowering them. Finally, the fold is completed by dropping
the top two corners on top of the leg loops. The followed trajectory of
the controlled nodes can be seen in Figure 3.5.

https://youtu.be/2gdnjUICb0g

3.6 evaluation and results 57

Figure 3.6: Simulated sequence of the dynamical folding of a pair of shorts.
The first part of the motion (frames two and three) is performed
fast enough so that the shorts lay partially flat on top of the table
after a lowering phase (frame four). The final fold is completed
by dropping the top two corners on top of the leg loops (frames
five and six).

In Figure 3.6 we depict six frames of the simulation. Notice how
crucial is the well-functioning of the self-collisions algorithm for a
realist outlook of the whole folding sequence.

4
E X P E R I M E N TA L VA L I D AT I O N

The definitive test for a cloth’s model is its comparison to reality. Tex-
tile engineering models are focused on such comparison, to the point
of developing specialized testing equipment. But the object of their
study are local properties of cloth, such as elasticity parameters, which
are tested in static scenarios (e.g. [24, 56, 79, 117]). Other, more recent
lines of research [96, 97] focus on estimating friction coefficients using
non-intrusive video images. To the knowledge of the authors, none of
the models previously mentioned has been able to compare its results
with the motion of cloth dynamically.

In this chapter, we seek to study how faithfully our inextensible
model can reproduce recordings of real textiles under different cir-
cumstances. This chapter is divided in 3 parts:

WAM-shaking experiments (Section 4.1): in this first round of exper-
iments we record the motion of four (size A3) textiles with a depth
camera. The fabrics are shaken by a robotic WAM arm using two sets
of different amplitudes and frequencies. The goal is to assess with how
much accuracy our model is capable of reproducing the dynamics of
the textiles.

Aerodynamics study (Section 4.2): in this second round of experiments
we record the motion of eight (four size A3 and four size A2) textiles
with a Motion Capture System. The fabrics are shaken and twisted by a
human at two different speeds. We carry out two repetitions of each
motion and therefore have 64 different recordings of about 15 seconds.
The goal is to study how the speed and size of the textiles affect their
motion and afterwards develop a predictive and a priori formula for
the value of the cloth’s physical parameters.

Collision’s validation (Section 4.3): in this final set of experiments we
use again motion capture, and record the collision of four (size A2)
textiles. In one of the scenarios, the fabrics are laid dynamically on top
of a table in a putting-a-tablecloth fashion. In the other, they are hit by
a long stick four times at various places and with different strengths.
The goal is to assess the accuracy of the collision and friction model
previously developed and put to use the predictive formulas found
before.

59

60 experimental validation

Cloth’s materials and sizes

For the experiments in this chapter, we employ seven cloth materials
(see Figure 4.1) and two different sizes: A3 (0.297 x 0.420 m with
area 0.1247 m2) and A2 (0.42 x 0.594 m with area 0.2495 m2). Before
performing the experiments they were ironed to remove all consid-
erations of plasticity from the validation process. Not all the textiles
are used in all experiments, in every scenario, we will specify what
materials and sizes are used. In Table 4.1 we can see the density of
all the fabrics and some typical examples of garments made from them.

Figure 4.1: In the picture we can see all the fabrics (size A3) used in the
experiments. From left to right we have: paper, polyester, light
cotton, felt, wool, denim and stiff cotton.

fabric density (kg · m
−2) sizes examples

Paper 0.0802 A3 -

Polyester 0.1042 A3, A2 Silk-like.

Light-cotton 0.1604 A3 Dressing shirt.

Felt 0.1764 A3 -

Wool 0.1804 A3, A2 Formal suit.

Denim 0.3046 A3, A2 Jeans.

Stiff-cotton 0.3046 A3, A2 Sack.

Table 4.1: Density, sizes and examples of all the materials used in all the
experiments.

4.1 wam-arm experiments 61

4.1 wam-arm experiments

A Barret robotic arm together with a depth camera are employed to
record the real motion of garments being shaken at different velocities
(see Figure 4.2). We implement oscillatory motions: a forward and
backward shaking (see Figure 4.5) at two different speeds. Afterwards,
the resulting point-cloud recordings are de-noised, interpolated and
meshed, so that we end up with the spatial trajectory of the vertices
of a polyhedron. In order to keep this first validation manageable, we
focus only on four different size A3 textiles: light cotton, wool, felt
and paper. We use a trivial rectangular topology in order to avoid
occlusions in the point-cloud when using the depth camera to record
the motions. Finally, we find the physical parameters of the model that
best approximate the motion of the polyhedron using a least squares
approximation and a minimization algorithm. We study the evolution
of absolute errors and dispersion measures (i.e. standard deviations)
of the simulated garments versus the real ones for all textiles and
motions. In the following sections, we give more specific details of the
whole recording and comparison process.

Figure 4.2: Experimental setup for the recording of the motion of the real
textiles. On the left, the depth camera. On the right, the robotic
arm with an affixed hanger.

4.1.1 Camera data

As mentioned before, comparison with reality is performed by record-
ing in the laboratory the motion of a piece of cloth when subjected to
exactly the same movements of the robotic arm controlling it as speci-
fied in the simulations with our model. The real motion is captured

62 experimental validation

by a depth camera Kinect XB360-607 (see Figure 4.3). The garment
is a rectangular piece of cloth, with its two upper corners fixed to a
rigid hanger, which is affixed itself to a robotic arm Barrett WAM. To
keep the garment completely in view of the camera, the robot moves it
along the depth axis of the camera (axis x in our reference) following
a curve of equation:

(x(t), y(t), z(t)) = (A cos(2π f t) + c, y0, z0). (4.1)

The two corners of the garment fixed to the robot arm follow the
same oscillation, with different but constant values y1, y2 instead of y0.

Figure 4.3: Point-cloud obtained using a depth camera (bottom) and RGB
image (top). Note that the camera only gets the depth of the
objects visible to it, all the rest (e.g. the robot behind the cloth) is
occluded.

Two motions are recorded: the slow one has A = 0.15m and f =

0.3Hz, while the fast one has A = 0.075m and f = 0.6Hz. Surrounding
objects are filtered using planes for each recorded frame, and outlying
points are detected on the basis of distance and removed. Only gar-
ments with a homogeneous color are tested, so we can remove further
noise through the use of a color filter. After the point-cloud has been
thus filtered, it is meshed using the algorithm described in [55] (see
Figure 4.4). The model that we are validating is continuous, producing

4.1 wam-arm experiments 63

simulations that are very stable under remeshing. Because of this, it
suffices to select as a baseline for all the experiments a coarse 9× 9
mesh.

Figure 4.4: Quadrilateral meshing (left) of one of the frames of the filtered
and de-noised point-cloud (right). Each quadrilateral is divided
into triangles for plotting purposes.

The robotic arm follows the oscillation of Equation (4.1) for 10
seconds. The camera starts recording 1 second before the start, and
finishes 3 seconds after the end of the robotic motion, for a total of
14 seconds of recorded garment motion. The original recording has
its frames at irregular time steps. We replace them through linear
interpolation to obtain the meshed cloth’s position each dt = 0.01
seconds.

4.1.2 Parameter fitting

We will be adjusting only 2 parameters: the damping parameter α and
the (virtual) gravitational mass δ. The other parameters in Table 2.1
are set to 0 except for ρ = 1, since α and δ are the most relevant for
the motions performed in this experimental validation (β and κ affect
mostly the local deformation of the cloth, see [7]). In Section 4.1.1 we
explained how to obtain a sequence of positions of the nodes of the
real cloth {ϕ0, ϕ1, . . . , ϕm}. If we integrate numerically Equation (2.19)
using the same trajectories (4.1) for the two upper corners, we get
a sequence {φ0(δ, α),φ1(δ, α), . . . ,φm(δ, α)} of positions of the nodes
of the simulated cloth (where φ0 = ϕ0) for each value of the two
parameters. Hence, a natural error metric to minimize is:

L(δ, α) =
[m

2]

∑
i=1
||φi(δ, α)−ϕi||2M, (4.2)

where || · ||M is the L2 norm with respect to the matrix M (i.e. ||x||2M =

x⊺ ·M · x), and we only use the first half (7 seconds) of the recorded
frames to perform the fitting. We call this the training window. Finally,
we minimize L using a derivative-free algorithm (the Nelder-Mead
Simplex Method) and find the optimal values of δ, α. The resulting
parameters are shown in Table 4.2.

64 experimental validation

Remark 4.1.1. Notice that for these experiments we have taken ρ = 1
and hence the optimal values of δ, α will not be comparable to those
found in the other next experiments when we use the real values of ρ

of Table 4.1.

We will analyze the evolution of the time-dependent absolute error:

ei(δ, α) =
√
||φi(δ, α)−ϕi||2M. (4.3)

material δs l ow δ f ast α s l ow α f ast ē s l ow ē f ast

Paper 0.32 0.37 1.40 2.49 0.45 cm 0.41 cm

Light-cotton 0.52 0.52 1.29 2.69 0.41 cm 0.31 cm

Felt 0.46 0.61 1.05 2.65 0.39 cm 0.30 cm

Wool 0.47 0.50 1.19 2.52 0.37 cm 0.34 cm

Table 4.2: Estimated parameters and mean absolute errors (cm) for the slow
and fast oscillatory motions performed by the WAM robot.

In the last two columns of Table 4.2 we show the average values of ei
over the testing window (i.e. the last 7 seconds of the motion). Moreover,
for plotting purposes we use two times the standard deviation of the
error at each node j as a dispersion measure:

di(δ, α) = ei(δ, α) + 2
√

Varj∈Nodes(S)

(
||φi

j(δ, α)− ϕi
j||R3

)
. (4.4)

Remark 4.1.2. Notice that the variance is taken along the nodes of the
surface and not on time, hence we are measuring a spatial standard
deviation.

Figure 4.5: Comparison at four time instants of the recorded fast motion of
paper (right) versus its simulation with the inextensible model
(left) with δ = 0.37 and α = 2.49. The mean absolute error is 0.41
cm.

4.1 wam-arm experiments 65

4.1.3 Sensitivity analysis

In order to show how robust our model is when away from the optimal
values found in Table 4.2 we perform a sensitivity analysis. We carry
out 100 different simulations with different values of the parameters
α ≥ 0 and δ > 0 (with an upper limit of two times their optimal
value), and compute the mean of the absolute error (4.3) on the testing
window formed by the last 7 seconds of the movement. The results
for the fast motion of paper (see Figure 4.5) are shown in Figure 4.6.

Figure 4.6: Mean of the absolute error (4.3) for the fast motion of paper using
different values of the parameters of the model (damping α and
virtual mass δ). In red we highlight the error with the optimal
value of the parameters.

First of all, note that for the discrete set of values considered, the
optimal values found are in fact a global minimum. It is interesting
to note that the model is very robust with respect to the virtual mass
δ, and in fact even when δ = 1 (no aerodynamics), there is a value of
α = 2.99 that gives a very low overall error (0.61 cm). Other interesting
limit cases are α = 0 (no damping) and α = 5 (over-damped), but they
give higher errors. Nevertheless, we do not consider δ = 0 (no gravity),
since it is very unrealistic, and that is confirmed in the picture since
the largest errors occur around δ = 0.05.

66 experimental validation

Figure 4.7: Comparison at 4 time instants of the fast motion of light cotton
(right) versus its simulation with the inextensible model (left)
with δ = 0.52 and α = 2.69. The mean absolute error is 0.31 cm.

4.1.4 Comparison with other models

We compare our method with three other models for the fast motion of
cotton (see Figure 4.7). We study the evolution in time of the absolute
error (4.3) and the dispersion error (4.4); the curves are shown in
Figure 4.8. Moreover, we look at 4 different metrics: the mean of the
absolute error (4.3), the maximum of the dispersion error (4.4), the
total simulation time (in seconds) and, when applicable, the mean
number of iterations per step of the fast projection algorithm described
in Section 2.6.1. In Table 4.3 we display the metrics, the first two
only computed over the last 7 seconds of the movement. The models
considered are:

1. Inextensible model: this is our cloth model presented in Chapter
2 (without any shearing).

2. Quasi-inextensible model [44]: this is a discrete model in which
stretching is not allowed because all the edges of the quadran-
gulated cloth are constrained to maintain their length, and only
shearing is permitted by using non-stiff diagonal springs.

3. Continuum-elastic model [10]: this is a very popular elastic
continuous model. Stretching and shearing are both permitted
by using elastic energies instead of constraints.

4. Mass-spring system e.g. [93] and [21]: this is arguably the most
widespread cloth model, used by popular animation and robotics
software such as Blender [14] and MuJoCo [82]. Stretching and
shearing are both allowed by using springs to connect the nodes
of the cloth. There are no constraints.

4.1 wam-arm experiments 67

We fit the relevant parameters of each of the models (shearing,
stretching, damping, etc.) using the same framework applied to find
the optimal parameters of our model (Section 4.1.2). All comparisons
are performed using an Intel Core i7-8700K with 12 cores of 3.70 GHz.

Figure 4.8: Comparison of the fast motion of light cotton between the in-
extensible and the other 3 models’ errors (bottom curves) and
dispersions (top curves), with respect to the recorded motion (us-
ing a 9× 9 meshing). The mean absolute error for the inextensible
model is 0.31cm.

model ē max(d) total time iterations

Inextensible 0.31 cm 2.02 cm 2.10 sec 1.60

Quasi-
inextensible

0.95 cm 8.35 cm 2.20 sec 4.51

Continuum-
elastic

2.46 cm 7.87 cm 1.16 sec -

Mass-springs 3.03 cm 9.07 cm 1.30 sec -

Table 4.3: Comparison of the 4 models. The first column is the mean of
the absolute error (4.3) of the simulated cloth with respect to the
recorded motion.

The first thing to remark is that the inextensible model has overall
the lowest mean absolute error, being 3 times smaller than the quasi-
inextensible one, and almost 10 times smaller than the elastic models
(see Table 4.3). This supports the idea that inextensibility is a very
realistic assumption. Moreover, the dispersion curves in Figure 4.8
tell us even more: in the second half of the motion there are nodes

68 experimental validation

that have absolute errors over 7cm with the other models, whereas
with ours, they are at most 2cm apart from the recorded motion. On
the other hand, the two elastic models have the smallest simulation
times, and this is easily explainable by the fact that they do not have
constraints and hence the numerical integration is simpler. Neverthe-
less, our model simulates 14 seconds of real time in only 2.10, which
implies that we get a speed-up of seven times with respect to real time.
Finally, the inextensible model requires fewer iterations of the fast
projection algorithm than the quasi-inextensible one, but each iteration
is more expensive, so in the end they have similar total simulation
times.

Figure 4.9: Comparison at 4 time instants of the slow motion of wool (right)
versus its simulation with the inextensible model (left) with δ =
0.47 and α = 1.19. The mean absolute error is 0.37 cm.

4.1.5 Discussion of the results

As shown in Figure 4.10, the errors (4.3) for all four textiles and both
motions are very low (its mean is under 5mm, see Table 4.2). For a
visual comparison of the results, see Figures 4.5, 4.7, 4.9 and the video
at https://youtu.be/VIorl_mTW5U. A phenomenon that is noticeable
is the concentration of error (clearly seen in the dispersion curves) at
the beginning of the movement; likely due to the fact that air turbu-
lences are more complicated at this stage. In regards to the parameter
values, we note their discrepancy when comparing the fast and the
slow motions (using the same textile), showing that they actually ac-
count for the aerodynamics of the motion. While this approach is not
standard, note that using only 2 parameters we are able to predict
cloth dynamics accurately.

It is relevant to emphasize that these results are obtained using a
9× 9 mesh (with which our simulations are 7 times faster than real
time) for a piece of cloth of size A3 (29.7× 42cm). Keeping the obtained
optimal parameters, we also computed the error (4.3) for other three

https://youtu.be/VIorl_mTW5U

4.1 wam-arm experiments 69

mesh resolutions 9× 17, 17× 9 and 17× 17, getting respectively 0.37,
0.34 and 0.35cm as the mean of the absolute error (4.3) for the fast
motion of light cotton (see Figure 4.7; with the 9× 9 mesh the error
is 0.31cm). This shows again (see Section 2.7.2) the robustness of the
model with respect to mesh resolution.

Figure 4.10: Absolute error (bottom curves) and dispersion (top curves) of
the position of the simulated textile vs. the recorded motion
(with the depth-camera and WAM robot) for the slow movement
(top) and the fast one (bottom) using the inextensible model.

In the application of our model for robotic manipulation purposes,
it may be necessary to simulate the motion of the garment prior to
any possibility of calibration of its two relevant parameters. In such
cases, estimates of these parameters should be made from a prior
study of the model and the involved fabric. This topic will be the

70 experimental validation

subject of the next section, but we have found that a simple, interim
solution is already accurate within our desired error bounds: as a
prediction of motion regardless of cloth speed one may take as an
estimate of each parameter the arithmetic average of the values of its
calibrations found in Table 4.2 for a comparable fabric. Performing
the simulations of both the slow and fast motions for light cotton
using these a priori estimates instead of calibration yielded 0.51cm
and 0.59cm respectively as the mean of error (4.3) (compared to 0.41cm
and 0.31cm with the optimal parameters). This is in agreement with
the stability of the model with respect to its parameters shown in the
sensitivity analysis previously performed.

4.2 aerodynamics study

This second set of experiments is performed using Motion Capture
Technology. To record the motion of the textiles a system of cameras
detects and tracks reflective markers that are hooked on the cloth (see
Figure 4.11). These markers, with a diameter of 3 mm and a weight
of 0.013 g reflect infrared light, so the cameras are able to follow
their motion through space. We use hardware and software from the
manufacturer NaturalPoint Inc: five Optitrack Flex 13 cameras surround
the scene we wish to record (see Figure 4.12) and afterwards the
recordings are processed with the software Motive. This combination
of software and hardware offers sub-millimeter marker precision, in
most applications less than 0.10 mm according to the manufacturers.

Figure 4.11: Reflective markers attached to the denim sample (encircled in
red). The markers are very small, with a diameter of 3 mm and
a weight of 0.013 g. We use 20 reflective markers when the size
of the textile is A2 and 12 when it is A3.

This technology has been extensively used to track the motion of
rigid and articulated bodies (e.g. human movements by following the
trajectories of all joints). Nevertheless, its use for deformable objects
has been less common since the weight of the markers could affect

4.2 aerodynamics study 71

the dynamics of the object. This does not happen in our case since
the markers we use have a diameter of 3 mm and a weight of 0.013 g,
and therefore account for less than 1% of cloth’s weight even for the
lightest materials.

Figure 4.12: Setup used to record the motion of the textiles: 5 cameras
surround the scene so that every marker (highlighted in red in
the photo) is visible to at least 2 cameras at the same time. This
ensures that the system can be certain of the 3D position of the
marker.

Remark 4.2.1. We now list some practical considerations and charac-
teristics of the system:

1. Since we have 5 cameras surrounding a scene, we can record
more varied and faster movements without losing track of the
textiles, as opposed to just one depth camera.

2. At the beginning of a recording session the cameras are cali-
brated automatically with respect to a user-defined reference
system. We define the plane z = 0 to be either at the floor or at a
table (when we record collisions).

3. The cameras cannot face each other, since this causes blind
spots (areas where the markers become invisible to the cameras).
Reflecting lights (e.g. a window) also cause blind spots, so one
must isolate the recording area as much as possible.

4. The software Motive does an automatic labeling and tracking of
the markers, nevertheless when the movements are too rapid
it loses some of them and creates new labels. Hence, different
labels that correspond the same marker must be afterwards
identified and merged.

5. Inevitably some markers are lost some of the time (especially
with fast or abrupt movements), for instance when the textiles
deform so much that the corners are no longer visible to the
cameras. We have taken care that in our recordings these disap-
pearances only happen for short periods of time.

72 experimental validation

4.2.1 Movements and textiles

For this second set of experiments, we employ the following materials:
polyester, wool, denim and stiff-cotton. Both A2 and A3 sizes are used.
For the A2 textiles we use 20 reflective markers, whereas for the A3

ones 12 are used. In both cases, the makers are placed equidistantly
in order to obtain a faithful representation of the dynamics of the
fabrics. In contrast to the first experiment with the WAM robot, this
time the motions are performed by a human. This introduces way
more uncertainty than before, since every movement has its own
unique variabilities. Therefore every motion was recorded twice on
different days: repetition I with a special hanger (see Figure 4.11) and
repetition II with bare hands (see Figure 4.12). The motions are:

Figure 4.13: Shaking motion sequence (left to right): the cloth is shaken back
and forwards.

1. Shaking: this is similar to the motion performed with WAM
robot, the cloth is shaken back and forwards (see Figure 4.13).

Figure 4.14: Twisting motion sequence (left to right): the cloth is rotated with
respect to the z-axis back and forth several times.

2. Twisting: this is a new motion where the cloth is rotated multiple
times (approximately 30 degrees) with respect to the z-axis (see
Figure 4.14).

Each motion lasts approximately 15 seconds (with a frame every
dt = 0.01 seconds) and is performed at two different speeds: slow and
fast. In Table 4.4 we can see some values of average speeds (m · s−1)
comparing fast and slow motions for the twisting movement of the
A2 textiles.

4.2 aerodynamics study 73

material slow i fast i slow ii fast ii

Polyester 0.081 0.250 0.090 0.247

Wool 0.093 0.228 0.085 0.256

Denim 0.092 0.308 0.090 0.292

Stiff-cotton 0.091 0.218 0.107 0.246

Table 4.4: Average velocities (m · s−1) for the twisting motion of the A2 tex-
tiles. We display the speeds for the first repetition (with a hanger)
and for the second (with bare hands).

We can of course observe some variability but overall the speeds are
maintained pretty consistently.

Remark 4.2.2. Notice that we have two motions at two speeds for four
textiles with two different sizes repeated two times, which makes a
total of 64 recordings.

4.2.2 Parameter fitting

As before we will be adjusting only 2 parameters: the damping pa-
rameter α and the (virtual) gravitational mass δ. The other parameters
in Table 2.1 are set to 0 except for the density ρ, which this time is
set to its corresponding value in Table 4.1. We denote the sequence
of positions (this time given by following the reflective markers) of
the recorded fabric’s nodes by {ϕ0, ϕ1, . . . , ϕm}. Again, we integrate
numerically Equation (2.19) using the recorded trajectories of the
two upper corners (i.e. the two markers placed at the top corners),
and get a simulated sequence {φ0(δ, α),φ1(δ, α), . . . ,φm(δ, α)} (where
φ0 = ϕ0) for each value of the two parameters. For the simulations we
consider a refinement of the initial meshes given by the markers: for
the A3 case we employ a 5× 7 meshing and for the A2 case a 7× 9
one.

As metrics we use again the absolute error (4.3) (only at the recorded
nodes) and the following time-dependent (on i) spatial (on j) standard
deviation:

si(δ, α) =

√
Varj∈Nodes(S)

(
||φi

j(δ, α)− ϕi
j||R3

)
. (4.5)

Remark 4.2.3. As mentioned before some of the markers disappear
for small amounts of time, in those cases, they are simply excluded
from the computation of the errors (no interpolation is performed).

74 experimental validation

repetition i ē s̄

Polyester 0.67 cm 1.09 cm

Wool 0.51 cm 0.97 cm

Denim 0.50 cm 1.00 cm

Stiff-cotton 0.38 cm 0.74 cm

A2 0.71 cm 1.08 cm

A3 0.33 cm 0.83 cm

Shake 0.57 cm 1.01 cm

Twist 0.47 cm 0.89 cm

Slow 0.40 cm 0.80 cm

Fast 0.63 cm 1.11 cm

Global 0.51 cm 0.96 cm

Table 4.5: Mean absolute error ē and the mean standard deviation s̄ with the
optimal value of the parameters averaged over: fabric’s material,
size (A2 or A3), type of movement and speed for the first repetition
of the recordings.

Figure 4.15: Surface plot of the error function ē(δ, α) for the fast shaking mo-
tion of A2 wool (left) and a close-up near the detected minimum
(right). Notice the presence of noise in the close-up.

To find the optimal value of the parameters, we minimize the aver-
age on time of the absolute error (4.3) by performing a sweep search
on the space (δ, α) ∈ [0, ρ]× [0, 4ρ]. The lower and upper limits are
selected based on physical (they have to be positive) and empirical (if
they are too large they drag the cloths too much, as if they were under-
water) considerations. We found this optimization method to be faster
and more robust that the more sophisticated minimization algorithm
used in Section 4.1. This is likely due to the fact that the function we
are trying to minimize is not completely smooth (see Figure 4.15) and
hence has many local minima. The results for all 64 experiments can
be checked in Appendix A. In Table 4.5 we can see the mean absolute
error and the mean standard deviation averaged over: material, size,

4.2 aerodynamics study 75

type of movement and speed for the first repetition of recordings. In
Figure 4.16, 4.17 and the video at https://youtu.be/UWda9cw0uI4, we
can see a visual comparison between the recording and its simulation
with the optimal value of the parameters.

Figure 4.16: Three frames comparing the recorded fast twisting of A2

polyester (left) with its inextensible simulation (right). The error
at the three depicted frames from left to right is 1.82, 1.73 and
1.36 cm respectively; being the average error of the whole simu-
lation 1.15 cm.

From the table, we can deduce that for the inextensible model, the
most challenging material to modelize is polyester. This is somehow to
be expected because of its silk-like properties. On the other hand, the
errors are larger for the bigger textiles, this is again reasonable since
they have double the area. The fast motions have larger errors, this
is likely due to the fact that in that case aerodynamics are harder to
model. Finally, we can see that both the shaking and twisting motions
have comparable errors.

Figure 4.17: Three frames comparing the recorded fast shaking of A2 denim
(left) with its inextensible simulation (right). The error at the
three depicted frames from left to right is 0.63, 0.92 and 1.001

cm respectively; being the average error of the whole simulation
0.84 cm.

4.2.3 A priori forecast of α and δ

As we can see in Tables A.1 and A.2 in Appendix A, the values of α and
δ that minimize the absolute error ē vary substantially with respect
to material, size, speed, etc. We would like to find an a priori formula
that we can use to forecast the value of these parameters without

https://youtu.be/UWda9cw0uI4

76 experimental validation

minimizing ē(α, δ). Apart from intrinsic properties of the textile (the
density ρ and its size), this formula will also depend on the cloth’s
speed. We look then for formulas of the form:

δ = δ0 + δ1S + δ2V + δ3ρ, α = α0 + α1S + α2V + α3ρ, (4.6)

where S is a measure of size and V a measure of velocity. We have
found that for our purposes using as S a normalized area of the cloth
(1 for size A3 and 2 for A2) and as [V] = m2 · s−2 the average (in time
and over all the nodes) of 50% of the highest squared velocities gives
the best results.

Now, in order to find the optimal values of {δk, αk} we minimize
the function given by:

R(δ0, . . . , δ3, α0, . . . , α3) =
1
32

32

∑
m=1

ēm(δ, α), (4.7)

where ēm corresponds to the mean on time of the absolute error (4.3)
of the m-recording of either repetition I or II obtained using the values
α, δ given by Equation (4.6). To minimize this function we employ
again a derivative-free algorithm (the Nelder-Mead Simplex Method).
We denote by R∗ Function (4.7) evaluated at the optimal values of
{δk, αk}. For comparison let E∗ be the mean of the optimal errors
found in the previous section (which will be by definition smaller), i.e.
the mean of the errors displayed in Table A.1 or A.2.

repetition i repetition ii

δ0 -0.0223 -0.0359

δ1 -0.0178 -0.0117

δ2 0.0714 0.0780

δ3 0.7664 0.7890

α0 0.2082 0.2155

α1 -0.1481 -0.1711

α2 1.1804 1.4410

α3 1.7440 1.9387

R∗ 0.578 cm 0.646 cm

E∗ 0.516 cm 0.560 cm

Table 4.6: Optimal values of the parameters δk, αk for both repetition I (with
hanger) and II (with bare hands) obtained by minimizing the
function R.

In Table 4.6 we can see the optimal values of the parameters {δk, αk}
along with the mean absolute errors averaged over all recordings for

4.3 validation of collisions 77

both repetition I (with hanger) and II (with bare hands). Notice that
the error R∗ is comparable to E∗ and hence the fitting is quite accurate.
Moreover, both sets of parameters are estimated independently for
the two repetitions and have very similar values and the same signs,
which shows that they are significant and have a consistent meaning.
In particular, this justifies the introduction of the novel aerodynamic
parameter δ done in Section 2.5.

4.2.4 Discussion of the results

In this second round of experiments, we have performed a more ex-
haustive set of recordings than before. We already knew from Section
4.1 that our model was capable of reproducing faithfully the shaking
motion of A3 textiles, but we have enlarged the set of recordings
by adding a new twisting movement and a larger cloth size (DIN
A2). This has resulted in two sets of 32 recordings (each cloth being
recorded two times on different days: with a special hanger or bare
hands) each lasting approximately 15 seconds. As before we have esti-
mated the optimal values of the physical parameters and the model
has achieved very low mean errors (less than 1 cm) and standard
deviations (see Tables 4.5, A.1 and A.2), even for the A2 textiles and
fast motions. Finally, we have found a predictive formula in order to
obtain a priori estimates for the values of the parameters α and δ of
the model. This formula depends on the density of the textile, its size
and more importantly its speed. The formula was found to produce
parameter’s values which in turn still give rise to very low absolute
errors. In the next section, we will further make use of this a priori
formula and test its accuracy.

4.3 validation of collisions

For this final set of experiments, we will use again the following
materials: polyester, wool, denim and stiff-cotton. We employ ex-
actly the same recording setup described in the previous section (the
motion capture system, Section 4.2). This time only the A2 size is
used (as before with 20 reflective markers placed equidistantly). We
denote the sequence of positions of the recorded fabric’s nodes by
{ϕ0, ϕ1, . . . , ϕm} and the simulated sequence by {φ0,φ1, . . . ,φm}. For
the simulations, we utilize a refined 7× 9 mesh. As error metrics, we
use again the absolute error (4.3) and the spatial standard deviation
(4.5). In order to validate the realism of our collision model, we must
fit this time three parameters: as before α (damping) and δ (virtual
mass); and for the first time µ (friction coefficient). In order to obtain
their optimal value, as usual, we minimize the mean on time of the
absolute error:

78 experimental validation

∑
i

ei(δ, α, µ) = ∑
i

√
||φi(δ, α, µ)−ϕi||2M. (4.8)

The experiments are performed by a human (without any hanger)
and consist of two scenarios:

Figure 4.18: Putting a tablecloth motion sequence (right to left): the cloth
starts suspended and is afterwards laid dynamically (only par-
tially) onto the table.

4.3.1 Tablecloth scenario

The textile starts suspended at about 10 cm of height and is after-
wards laid dynamically (only partially, so that half of the cloth is
still suspended) onto the table (see Figure 4.18). Each motion lasts
approximately 4 seconds (with a frame every dt = 0.01 seconds) and
is performed with two different surfaces as the table, one with low
friction (a raw polished table) and one with high friction (a table with
a tablecloth). The goal here is to estimate the friction coefficient µ

(see Equation (3.6)) for the two different surfaces and to study the
sensitivity of the model with respect to friction.

material µlow ēlow s̄low µhigh ēhigh s̄high

Polyester 0 0.95 cm 1.20 cm 1 0.84 cm 1.03 cm

Wool 0 0.58 cm 0.73 cm 2 0.52 cm 0.75 cm

Stiff-cotton 0 0.60 cm 0.86 cm 2 0.58 cm 0.77 cm

Denim 0 0.77 cm 1.11 cm 1.6 0.61 cm 0.80 cm

Table 4.7: Optimal values of the friction coefficients along with the mean
absolute error and spatial standard deviation for the low and high
friction scenario

In Table 4.7 we can see the optimal values of the friction coefficients
along with their optimal errors and deviations for the low and high

4.3 validation of collisions 79

friction scenarios. The optimal friction coefficients for the low friction
case (raw polished table) were all smaller than 10−3 and that is why
they were rounded up to zero on the table. For a visual comparison of
the results see Figure 4.19 and the video at https://youtu.be/sWJcx
fTwKHE.

Figure 4.19: Three frames comparing the recorded tablecloth low friction
scenario of A2 wool (left) with its inextensible simulation (right).
The error at the three depicted frames from right to left is 0.80,
1.17 and 0.76 cm respectively; being the average error of the
whole simulation 0.58 cm.

In order to understand how friction influences the dynamics of the
textiles we perform a sensitivity analysis for the high friction case, i.e.
we vary the value of µ (keeping all the other parameters fixed), and
compute the mean of the absolute error (4.3). The results can be seen
in the heat-map depicted in Figure 4.20. Notice that in general the
model is quite stable with respect to the optimal friction value.

Figure 4.20: Sensitivity analysis for high friction case, i.e. we vary the value
of µ and compute the absolute error (4.3) for the four A2 fabrics.
In red we encircle the error found with the optimal parameter
of µ.

https://youtu.be/sWJcxfTwKHE
https://youtu.be/sWJcxfTwKHE

80 experimental validation

4.3.2 Hitting scenario

In this final scenario, the fabrics are held suspended in the air (with
the long sides perpendicular to the floor) and hit repeatedly with a
long stick. The hits are aimed at various locations of the cloth with
varied strengths and speeds (see Figure 4.21). In order to simulate
the hits, the stick is subdivided into small edges and we employ a
procedure similar to the one used for self-collisions of the cloth in the
case of an edge-edge collision (see Section 3.3).

Remark 4.3.1. The stick could be represented as a moving cylinder of
small radius, but then we would be forced to use a very fine mesh to
simulate the hits.

Figure 4.21: Long-stick hits sequence (left to right): the cloth is held by its
two upper corners and then is hit repeatedly with a long stick.
The hits are aimed at different locations with varied intensities.

Let us denote by {a1(t), . . . , am(t)} the endpoints of the edges of
the stick. Then, for every iteration j of the iterative process (3.4), as we
do with self-collisions (see Section 3.4.1), we must check if a collision
occurred during the motion between the stick-edges

{a1(tn), . . . , am(tn)} →dt {a1(tn+1), . . . , am(tn+1)}

and the edges of our triangulated cloth φn →dt φj. This means that for
every detected collision, in the next iteration j + 1 of the sequence of
quadratic problems (3.4) we must add a constraint of the form:

H(φj+1) = ⟨πα(a1, a2)− πβ(x1, x2), ν⟩ ≥ 0,

where a1, a2 are the two endpoints of the corresponding edge of
the stick, x1, x2 are likewise the two endpoints of the edge’s cloth,
πα′(a1, a2) = (1− α′)a1 + α′a2 and πβ′(x1, x2) = (1− β′)x3 + β′x4 are
the closest points between the two segments and ν is the normal
vector to both edges. The values ν, α′, β′ are constant in time, and are
computed in the case of the cloth with the positions of the segments
defined by φj and for the stick at time tn+1. The normal vector ν is
oriented such that H(φn) ≥ 0.

4.3 validation of collisions 81

On the other hand, the real long stick has a length of 75 cm and a
diameter of 1.5 cm (see Figure 4.22). Two (rather large, with a diameter
of 1.5 cm) markers are put at both ends of the stick to record its
trajectory.

Figure 4.22: Long-stick (with a length of 75 cm and a diameter of 1.5 cm)
used to hit the textiles. Two markers are put at both ends of the
stick to record its trajectory.

Remark 4.3.2. We consider the stick’s thickness by imposing H(φ) ≥
τ0, where τ0 = 0.75cm is the radius of the stick. Moreover, this thick-
ness is taken into account in the detection process (see Section 3.3.3).

The stick is made of polished plastic and hence we consider friction
between the cloth and the stick to be negligible (moreover, since the
cloth is held firmly by the two upper corners the small amount of
friction that could exist is always overcome by the stick). Each textile is
hit four times with recordings varying between 12 and 18 seconds (as
usual with a frame every dt = 0.01 seconds). On top of fitting as usual
the damping parameter α and the (virtual) gravitational mass δ, the
goal of this scenario is to assess the realism of our collision algorithm
when modeling the hits and put to use the predictive aerodynamic
formula (Section 4.2.3).

Remark 4.3.3. By the nature of this collision experiment, some move-
ments of the textiles are very abrupt and therefore as mentioned before
the markers disappear some of the time. This problem is also present
in the recording of the trajectory of the stick. This is more problematic,
since we need its position at every time to be able to simulate the colli-
sions. We have interpolated the missing positions of the stick linearly.

In this experiment, we also study the performance of the active-
set collision algorithm described in Chapter 3. We compare it with
a standard interior-point algorithm implemented to solve quadratic
problems (see [86]). As before, all comparisons are performed using
an Intel Core i7-8700K with 12 cores of 3.70 GHz. Since the four
recordings have different durations, we compute the quotient

82 experimental validation

q =
Tsim

Trec
, (4.9)

where Trec is the duration of the recording and Tsim is the amount
of time it takes to simulate it. Hence q ≈ 1 would mean that the
simulations work in real-time, q ≈ 0.5 means that they are twice as
fast, etc. In Table 4.8 we can see the value of the absolute error and
standard deviation with the optimal value of the parameters (α∗ and
δ∗ shown in Table 4.9).

material ē s̄ active-set interior-point

Polyester 1.44 cm 2.13 cm 0.456 1.344

Wool 1.39 cm 2.23 cm 0.437 1.298

Denim 0.98 cm 1.86 cm 0.425 1.235

Stiff-cotton 1.07 cm 1.85 cm 0.510 1.576

Table 4.8: Mean absolute error and spatial standard deviation with the op-
timal value of the parameters α∗ and δ∗. In the two last columns,
we display the quotient (4.9), for our active-set collision algorithm
and a standard interior-point method.

For a visual comparison of the results, together with a plot of how
the absolute error varies with time for the four textiles, see Figure 4.23

(stiff-cotton), Figure 1.4 (polyester), Figure A.1 (denim) and Figure A.2
(wool) and the video at https://youtu.be/U7-p_1E09L8. With yellow
lines we highlight the moments in which the stick is in contact with the
cloth (during the simulations). Notice that precisely in those instants is
where more missing data is found. In the figures we see clearly that the
error concentrates after the hit and not during it, showing that the col-
lision model is very realistic but afterwards the aerodynamics become
dominant and the errors increase. Overall the fitting is quite good,
with errors slightly bigger than those found in Section 4.2 for the fast
motions of the A2 size. Finally, our active-set algorithm is found to be
almost 3 times faster than a standard interior-point method, with sim-
ulations still going faster than real time for a 7× 9 mesh (see Table 4.8).

Finally, to finish this section we assess the accuracy of the formulas
found during the aerodynamic experiments shown in Table 4.6; i.e.
we do not perform any optimization and compute the value of the
aerodynamic parameters with the formulas

δ̂ = −0.0223− 0.0178S + 0.0714V + 0.7664ρ, (4.10)

α̂ = +0.2082− 0.1481S + 1.1804V + 1.7440ρ, (4.11)

where, as before, ρ is the density of the cloth, S is a normalized area
measure (in this scenario is always 2), V is the average (in time and

https://youtu.be/U7-p_1E09L8

4.3 validation of collisions 83

over all the nodes) of 50% of the highest squared velocities. We have
used the coefficients of the first repetition in Table 4.6. A comparison
of the value of these estimated parameters (δ̂, α̂) with the optimal ones
(δ∗, α∗) along with their respective absolute errors is displayed in Table
4.9.

Figure 4.23: Four frames comparing the recorded hitting of A2 stiff-cotton
(left) with its inextensible simulation (right); being its average
error 1.07 cm. On the right, we show a full plot (vertically) of the
absolute error and with yellow lines, we highlight the moments
in which the stick is in contact with the cloth.

We can see that in general, the formula gives a very reasonable esti-
mation of the parameters (especially for α), but it always overestimates
δ and this causes the errors ê to be somehow larger. Still the results
are very accurate considering how challenging this scenario is and

84 experimental validation

material δ̂ δ∗ α̂ α∗ ê e∗

Polyester 0.032 0.025 0.26 0.28 1.59 cm 1.44 cm

Wool 0.099 0.078 0.54 0.50 1.96 cm 1.39 cm

Denim 0.198 0.127 0.82 0.67 1.76 cm 0.98 cm

Stiff-cotton 0.203 0.165 0.90 0.89 1.34 cm 1.07 cm

Table 4.9: Comparison of the parameters (δ̂, α̂) obtained with the aerodynamic
formulas (4.10) with the optimal ones (δ∗, α∗) along with their
respective mean absolute errors.

that the parameters are computed with an a priori equation without
any optimization at all.

4.3.3 Discussion of results

With these final experiments, we have validated two different but
related aspects of the collision model: its ability to simulate properly
friction and to model the reaction of cloth to fast and strong hits with
a long stick.

We have found the optimal friction parameters for both a high and
a low friction case (see Table 4.7), with absolute errors still under 1

cm for all DIN A2 textiles. We have shown that the simulations are
very stable with respect to friction by performing again a sensitivity
analysis (see Figure 4.20).

On the other hand, we have been able to model the most challenging
scenario in this work: the cloths were held by its two upper corners and
then were hit repeatedly at different locations with varied intensities
with a stick. The average errors are still of the order of 1 cm (see Table
4.8) and we are able to properly simulate the hits, appearing the biggest
errors not during the hits but just after because of aerodynamic effects
(see Figure 4.23). Finally, we have put to use the a priori aerodynamic
formulas found before (see Equations (4.6) and Table 4.6), by using
them to compute an estimate of the physical parameters without
performing any optimization with very satisfactory results (see Table
4.9). Last but not least, we have checked that the simulations are
still two times faster than real-time (for the hitting scenario and a
simulated mesh of 7× 9 nodes), being our novel active-set solver three
times faster than a standard interior-point method.

Part II

R E C O N S T R U C T I N G G A R M E N T S

In this second part we study the perception problem for
textiles: the identification of their geometry and position
from point-cloud samples, as obtained e.g. with depth
cameras. We present a reconstruction algorithm based on
Morse theory that proceeds directly from a point-cloud
to obtain a cellular decomposition of the cloth surface: a
global piecewise parametrization of the surface is found,
with a small number of pieces (Morse cells). From the
cellular decomposition, the topology of the surface can be
deduced immediately and the point-cloud can be filtered
and/or simplified with topological guarantees.

5
S U R FA C E R E C O N S T R U C T I O N V I A M O R S E T H E O RY

Until now we have not studied in depth the problem of meshing an
arbitrary point-cloud. When we have a rectangular and nearly flat
topologically trivial piece of cloth (as in Chapter 4), this problem does
not pose a great challenge. Arbitrary point-clouds with any topology
however are a different story altogether. We now present an algorithm
for the reconstruction of a surface from a point sample. It proceeds
directly from the point-cloud to obtain a cellular decomposition of the
surface derived via a Morse function. No intermediate triangulation
or local implicit equations are used, saving on computation time and
reconstruction-induced artifices. No a priori knowledge of surface
topology, density or regularity of its point sample is required to run
the algorithm. The results are a piecewise parametrization of the
surface as a union of Morse cells, suitable for tasks such as noise-
filtering or mesh-independent reparametrization, and a cell complex
of small rank determining the surface topology. This algorithm can be
applied to smooth surfaces with or without boundary, embedded in
an ambient space of any dimension.

5.1 related work

Reconstruction of a surface in space from a sample of points on it is
a question to which considerable attention has been devoted in the
areas of Computational Geometry and Computer Graphics (see [30]
for a variety of methods). Our goal is a fast algorithm for topology
identification and parametrization of surfaces with boundary. The
qualities are required for robotic handling of textiles, but are hoped to
make the algorithm fit to study higher dimensional algebraic varieties.

Differential Topology has tackled the piecewise parametrization
problem for manifolds through Morse functions. Applying this idea
directly to the sample point cloud of a surface was suggested by
[39, 126], who propose an algorithm for point clouds with a known,
homogeneous density of sampling. In [20] a Morse decomposition
scheme from point-clouds sampling manifolds without boundary of
any dimension is proposed. All these works, however, stop short of
questions such as cell parametrization or attachment maps, which are
relevant to robotic applications where point-clouds of textiles may
need to be filtered and down-sampled in order to e.g. be simulated.

We report in this work a complete Morse cell decomposition algo-
rithm for surfaces of any topology, with or without boundary, which
can be applied to sample-point clouds without a priori knowledge

87

88 surface reconstruction via morse theory

of sampling density or regularity, or of surface topology. It can be
applied to surfaces in any ambient dimension. We use the gradient
flows of [39, 126] as the starting point, but then detect saddle points
and their Morse cells differently, proposing a new procedure based on
studying the level sections of these flows.

5.2 morse theory for manifolds

Let M be a smooth compact manifold without boundary. A map f :
M→ R is Morse if it is C2, has only finitely many critical points, and at
all of these the Hessian H(f) is nondegenerate. Classical Morse theory
(see [52]) shows that a generic Morse function f induces, through its
gradient flow, two decompositions of the manifold M:

1. As a CW complex (see [83]): Each critical point of f , together
with its unstable manifold for the vector field −∇ f , forms a
cell which is topologically a ball, whose boundary attaches to
lower-dimensional cells (see Figure 5.1). A global piecewise
parametrization of M is achieved, and a Morse-Smale complex,
with the critical points of f as a basis, giving the singular homol-
ogy of M.

Figure 5.1: Critical points of the Morse-Smale function f (x, y, z) = z on an
example surface.

2. As level sets: M is foliated by the level sets f−1(c). For regular
values c these level sets are submanifolds of M with codimension
1, with f−1(c1) ∼= f−1(c2) if no critical value of f lies between
c1 and c2. The transformation of the level set when c crosses a
critical value of f is a surgery (see [52]).

The success of Morse theory comes from the fact that Morse func-
tions, and the Morse-Smale transversality conditions required for the
above analysis, are generic among C2 maps from M to R. For instance,
the height function in a random direction in RN has probability 1

of being a Morse-Smale function. In the following subsection, we
present a summary of Morse theory (as level sets) for surfaces without
boundary with views towards explaining the case with boundary next.

5.2 morse theory for manifolds 89

5.2.1 Morse theory for surfaces without boundary

Let S ⊂ RN be a smooth compact surface without boundary. As before,
a map f : S → R is Morse if it is C2, has only finitely many critical
points (i.e. points p where dp f = ∇ f (p) = 0), and at all of these its
Hessian has rank 2.

Definition 7 (Morse data). For each critical point p ∈ S, the Morse
data are the pair of sets (A(p), B(p)) where

A(p) := B(p) ∩ f−1 ([f (p)− ϵ, f (p) + ϵ]) ,

with B(p) ⊂ RN a closed ball around p of sufficiently small radius,
the value of ϵ > 0 is such that there are not more critical points of f
in f−1 ([f (p)− ϵ, f (p) + ϵ]) and

B(p) := B(p) ∩ f−1 (f (p)− ϵ) .

Notice that B(p) ⊆ ∂A(p).

Let us now denote

f≤c = f−1 ((−∞, c]) , fc = f−1(c).

Then it is well known (see [52]) that as c ∈ R increases two things can
happen:

a If c1 < c2 and there are no critical values of f between them,
then f≤c1 and f≤c2 have the same topology (they are actually
diffeomorphic).

b If there is a critical point p ∈ S such that c1 < f (p) < c2 then f≤c2

is obtained, up to diffeomorphism, from f≤c1 by attaching the
cell A(p) along B(p), i.e. f≤c2 ≃ (f≤c1 ∪ A(p)) / ∼ where the
equivalence relation is given by identifying B(p) ⊆ f≤c1 with
points of ∂A(p) ⊇ B(p).

Now, since H(f) has rank 2 at p, we can only have three types of
critical points (see Figure 5.2) according to their index (number of
negative eigenvalues):

1. Minima: A(p) is homeomorphic to a disk and B(p) = ∅. In this
case, there is no surgery, the cell A(p) just appears. This cell
retracts to a point, the local minimum, which will be a 0-cell in
the Morse-Smale complex.

2. Saddles: A(p) is a quadrilateral (homeomorphic to a disk) and
B(p) consists of two segments. Two opposite sides of ∂A(p) are
identified with B(p) (see Figure 5.2). The attachment of the cell
A(p) along B(p) is homotopy-equivalent to the attachment of a
1-cell, namely the medial axis of A(p) to the middle points of
B(p).

90 surface reconstruction via morse theory

3. Maxima: A(p) = D is homeomorhic to a disk and B(p) = ∂D is
its boundary. The attachment map identifies ∂A(p) with B(p).
This surgery adds a 2-cell to the complex.

Figure 5.2: Three types of critical points (from top to bottom: minima, saddles
and maxima) and their Morse data for surfaces without boundary.

5.2.2 Morse theory for surfaces with boundary

Morse theory also extends to manifolds with boundary [46]. Since
this theory is less well known, in the following we give more details
on how the boundaries affect the cellular decomposition and the
transition between level sets.

Definition 8. We say that a C2 map f : M→ R defined in a manifold
M with boundary ∂M is Morse if

1. it is Morse in the interior of M,

2. its restriction to ∂M, g := f|∂M is also a Morse function,

3. if p ∈ ∂M is a critical point of g then ker(dp f) = {0}.

As in the previous section, we will focus on the case M = S is
a surface. Notice that now we can have critical points of g in the
boundary curves ∂S that are not critical points of f in the whole of S.
Moreover, the third condition of the previous definition ensures that
critical points located at ∂S are not saddle points of f in S. Notice that
minima (resp. maxima) points p of f located at ∂S will satisfy that

5.2 morse theory for manifolds 91

dp f ̸= 0, and thus, they will not be strictly speaking critical points of
f (but they will be of g).

Hence, we will adopt a Whitney stratification dividing the surface
into two strata: the first E1 = ∂S being the boundary and the second
E2 = int(S) the interior. Each stratum will have as before Morse data,
but this time apart from the sets (A(p), B(p)) defined before, which
we will call tangential data, we will have also normal data.

Definition 9 (Tangential and normal data). Let p ∈ S be a critical
point for some stratum Ei of the Morse function f |Ei . Then

1. The tangential Morse data are the pair of sets (AT, BT) defined
as in Definition 7 for f |Ei .

2. The normal Morse data are the sets (AN , BN) given by

AN(p) := N (p) ∩ f−1 ([f (p)− ϵ, f (p) + ϵ]) ,

BN(p) := N (p) ∩ f−1 (f (p)− ϵ) .

whereN (p) = S∩D(p) is called the normal slice at p and D(p) ⊂
RN is a sufficiently small closed disk around p of dimension
N− dim(Ei) transversal to Ei at p and the value of ϵ > 0 is such
that there are no more critical points in f−1[f (p)− ϵ, f (p) + ϵ].

Notice that by construction Ei ∩ D(p) = {p}, and as before BN,T ⊆
∂AN,T.

Remark 5.2.1. When p ∈ int(S) and N = 3 then D(p) is homeomor-
phic to a piece of curve normal to S at p and hence N (p) = {p}.
Therefore (AN , BN) = (p, ∅). It is not hard to see that this is also the
case when N > 3.

We are now ready to state the main theorem of stratified Morse
theory [46] (SMT theorem, pages 6-8).

Theorem 1 (Goresky-MacPherson). As c ∈ R increases two things can
happen:

a If between c1 < c2 there are no critical points of f then f≤c1 and
f≤c2 are diffeomorphic.

b If there is a critical point p ∈ S such that c1 < f (p) < c2 then f≤c2

is obtained from f≤c1 by performing a surgery around p with
Morse data (A, B) diffeomorphic to the topological product

(AN , BN)× (AT, BT) = (AN × AT, AN × BT ∪ BN × AT),

i.e. f≤c2 ≃ (f≤c1 ∪ A) / ∼ where the equivalence relation is given
by identifying B ⊆ f≤c1 with points of ∂A ⊇ B.

92 surface reconstruction via morse theory

Remark 5.2.2. We already established that at interior critical points of
S, we have (AN , BN) = (p, ∅). Therefore in that case the above product
is trivial and the attachment maps are the same ones described earlier.

The new cases occur when p is a critical point of f |∂S lying on ∂S.
Since ∂S is a one-dimensional curve, p ∈ ∂S can only be a maximum
or a minimum. Nevertheless, depending on whether p is also a local
minimum (resp. maximum) of f or just of g = f |∂S, we will have four
different cases (see Figure 5.3). Recall that for minima (and maxima)
points p of f located at ∂S we have that dp f ̸= 0. Nevertheless, in
order not to complicate the discussion semantically we will still call
them critical points since they satisfy dpg = 0.

Remark 5.2.3. We will denote by (■,⊔, | |, _) a quadrangular 2-cell,
all its sides minus the top one, two lateral sides and the bottom side,
respectively.

Figure 5.3: Four types of critical points located at the boundary and their
tangential and normal Morse data.

The four new different critical points that we can have are:

Maxima of f |∂S: In this case, AT is a closed concave piece of curve
(which we denote by ∩) and BT two points, i.e. (AT, BT) = (∩, . .).
We now have two sub-cases:

1. p is also a local maximum of f . Then AN is a closed interval
and BT one point, i.e. (AN , BN) = (| , .). Therefore the
topological product is

(A, B) = (∩, . .)× (| , .) = (■,⊔) ,

5.2 morse theory for manifolds 93

and the three of the sides of ∂A where p is not present are
attached to B. During this surgery, a 1-cell (containing p) is
attached to the boundary and a 2-cell to the interior (closing
a void in the process).

2. p is not a local maximum of f (only of f |∂S). Then AN is
again a closed interval but BT is empty, i.e. (AN , BN) =

(| , ∅). Then the Morse data is

(A, B) = (∩, . .)× (| , ∅) = (■, | |) ,

and the two opposite sides of ∂A where p is not present,
attach to B. This surgery is equivalent to attaching a 1-cell
to the boundary (but no 2-cell is attached to the interior).

Minima of f |∂S: In this case, AT is a closed convex piece of curve
(which we denote by ∪) and BT is empty, i.e. (AT, BT) = (∪, ∅).
We again have two sub-cases:

1. p is also a local minimum of f . Then AN is a closed interval
and BT is empty, i.e. (AN , BN) = (| , ∅). Therefore the
topological product is

(A, B) = (∪, ∅)× (| , ∅) = (■, ∅) .

In this case there is no surgery, the cell A just appears. This
cell retracts to a point, which will be a 0-cell in the cell
complex.

2. p is not a local minimum of f (only of f |∂S). Then AN is
a closed interval and BT is a point, i.e. (AN , BN) = (| , .).
The Morse data is

(A, B) = (∪, ∅)× (| , .) = (■, _) .

and the opposite side of ∂A where p is, attaches to B. This
surgery is equivalent to attaching a 0-cell to the boundary
and a 1-cell to the interior.

We now make a summary of the effect of each critical point on the
cell complex once we have made the appropriate deformation retracts.

1. Interior maximum: attach a 2-cell to the 1-cells or to the boundary
curves.

2. Interior saddle: attach a 1-cell to the 0-cells or to a point of the
boundary.

3. Interior minimum: add a 0-cell (a point) to the skeleton.

4. Local maximum of S located in ∂S: attach a 2-cell to the 1-cells
and attach a 1-cell to a point of the boundary.

94 surface reconstruction via morse theory

5. Boundary maximum (not of S): attach a 1-cell to a point of the
boundary.

6. Local minimum of S located in ∂S: add a 0-cell to the skeleton
(this point will be on the boundary).

7. Boundary minimum (not of S): add a 0-cell (boundary point) to
the skeleton and attach a 1-cell to a local minimum (0-cell) or to
a point of the boundary.

In order to construct the complex, we first add all the 0-cells (all
interior and boundary minima and possibly some boundary points),
then the 1-cells (the boundary curves, the 1-cells corresponding to each
saddle point and the 1-cells joining boundary minima to local minima
or boundary points) and finally we add the 2-cells corresponding to
each local maximum.

5.3 extension to point-clouds

In this section, we outline the main ideas of the reconstruction algo-
rithm for point-clouds. First, we explain the case without boundary
and then with boundary; in the next section, we will give full details
for both cases.

Let X ⊂ RN be a point cloud sampling a compact surface S, possibly
with boundary. Determine the neighbors of each point p in the sample,
e.g. proceeding as outlined in Section 5.4. Choose a unit vector ν ∈ RN

such that the height function f (p) = p · ν has different values in
all points of X, and define the positive gradient (or upwards), resp.
negative gradient (or downwards) flows of f by sending every point p
in the cloud to its neighbor that maximizes the slope of growth of f ,
resp. makes f decrease with the most negative slope. Points where f
cannot grow, resp. decrease, are local maxima, resp. minima of f in X.
The delicate critical points to compute are saddles.

Interpret the downwards flow of f on X as an embedded graph
whose vertices are the points in the cloud and the edges are given by
connecting each point in the cloud to its downwards neighbor. The
intersections of this graph with the hyperplane x · ν = c can be con-
sidered point samples for the level set f−1(c) on the original surface
S, with some noise added by the linear interpolation. This level set
consists of point samples of curves, either closed or with edges in
the boundary of S. These level curves can be reconstructed, e.g. as
explained in Section 5.4, identifying the different components.

Perform these level set intersections at n different levels ci = c0 + i · h
ranging from c0 = min f (X) to cn = max f (X). The number of level
sections n must be selected, the idea is that all surface features (e.g.
saddle points) whose range in height is h or greater will be detected.

5.3 extension to point-clouds 95

In Section 5.4 we will explain how changes in the topology of the
level set correspond to variations in the number or type of curves. For
example, going over a saddle point of f can be tracked by detecting
two pairs of neighbors in different connected components of a level
set which end up in the same connected component of the next level
set after applying the downwards flow (see Figure 5.4).

Figure 5.4: Change in level set when crossing a critical value in a surface
(left) and point cloud (right): note the change in neighbors among
the 4 marked points after the flow.

Following the 4 points in these 2 pairs in the downwards flow, and
their pairing according to closeness, the level at which the pairing
changes marks the position of the saddle point (see Figure 5.4). The
unstable variety of this saddle point for the flow of −∇ f (i.e. the 1-cell
joining the saddle point to local minima) is approximated by taking
the two pairs of neighboring points at the level of f immediately
bellow the saddle point ({B′, D′} and {A′, C′} in the figure), and aver-
aging the downward orbits of each pair (which end up in a minimum,
but not necessarily the same). These computations have a margin of
error O(d), where d is the local variation of height among neighboring
cloud points. Once the saddle points of the height function and their
(un)stable varieties have been found, the piecewise parametrization
for the entire surface without boundary follows: 0-cells are the local
minima, 1-cells have been parametrized at the saddle point detection,
and each 2-cell can be identified from the tree formed in itself by the
upwards flow to its unique maximum. Finally, the boundary relations
given by the downwards flow on the cells give us the Morse-Smale
complex and singular homology of the surface S.

The case of surfaces with boundaries poses several complications
that we will discuss in detail in the next section, but the main aspect to
take into account with respect to 1-cells is that when we have boundary
minima (i.e. a critical point of f |∂S that is a minimum when restricted
to the boundary but not in the whole point-cloud) we must add to the
cellular decomposition of S a 1-cell that joins the boundary minimum
with a local minimum or to a boundary point of the surface. This is

96 surface reconstruction via morse theory

simply obtained by applying the downwards flow repeatedly starting
at the boundary minimum.

5.4 practical implementation

In this section, we give detailed algorithms for all the ideas presented
in the previous section.

5.4.1 Neighbors identification

The first step is the identification of a set of neighbors of each point v
in the cloud X ⊂ RN . There are two classical approaches:

1. k-nearest neighbors (KNN): given a value for k and a point v,
the k nearest points {v1, . . . vk} with respect to the Euclidean
distance are declared as its neighbors. This is quite efficient
to compute but runs into problems when the point-cloud has
irregular densities and k is not big enough, e.g. when all the
closest points to v are clustered at one side of it and do not
enclose the vertex (see Figure 5.5, left).

2. Voronoi-Delaunay neighbors: we perform Voronoi’s cellular de-
composition of the point-cloud and then declare as neighbors of
v the points vi with neighboring cells (i.e. are connected to it by
an edge in the Delaunay triangulation). This has the virtue of
enclosing the vertex v even with irregular densities, but it can
be expensive to compute and produces neighbors which are too
apart from each other (see Figure 5.5, right).

Figure 5.5: Typical problems associated to k-nearest neighbors (left) and
Voronoi neighbors (right). On the left, the majority of the closest
points to v are clustered at one side of it. On the right, vertices
that are too far apart from each other have a neighboring cell.

Therefore we merge these two criteria, and declare two points as
neighbors when (i) each point is among the k-nearest neighbors of
the other and (ii) their Voronoi cells in the decomposition of the
ambient space RN induced by X are adjoining. In order to be efficient
we first choose a k ≈ 12 to compute the k-nearest points and then

5.4 practical implementation 97

only keep as neighbors the vertices that are connected to v in the
Delaunay triangulation of these few points. Finally, the relationship
of neighborhood is made symmetric by reciprocating neighboring
relationships where needed. The neighbors of v will be denoted by
Neigh(v). This produces a (locally non-planar) graph, which gives
an idea of the local structure of X, but which will be in general very
complicated.

Remark 5.4.1 (Pruning of the point-cloud). If the original cloud X
has a very irregular density, it can be wise to discard some points. In
order to do this, several heuristics can be employed, one of them is to
estimate the density at each point (e.g. the reciprocal of the logarithm
of the distance to the closest point) and then discard points whose
density is less than the mean plus a fixed multiple of a standard
deviation. Special care must be taken to avoid removing complete
clusters of points (at least one should be kept).

5.4.2 Tangent space estimation

This task is performed through Principal Component Analysis: if the
point v and all its neighbors Neigh(v) = {v1, . . . vk} were co-planar we
would have that for every i: ⟨v⃗vi, nj⟩ = 0, where nj are all the normal
vectors to the surface (recall that in general we are in RN). Since in
general this will not be the case, we find the nj’s by minimizing the
function ∑j ∑k

i=1⟨v⃗vi, nj⟩2. This is equivalent to finding the regression
plane in the least squares sense, and it can be done efficiently by
means of a singular value decomposition of the matrix with vectors v⃗vi
as rows.

5.4.3 Boundary recognition

Once we have an estimation of the tangent spaces, in principle a
boundary point of the surface can be easily identified because after
orthogonally projecting it and its neighbors on its tangent plane, they
cluster in a semi-space (see the first panel of Figure 5.6). Nevertheless,
this method is difficult to implement robustly (e.g. on points of high
curvature of the boundary curves, see the second panel of Figure 5.6).
In order to obtain a robust detection, the idea will be to declare points
as lying on the boundary only when the projections do not enclose
the point.

In points with high curvature where the tangent plane may not be
perfectly estimated the previous method can give false positives. In
order to overcome this difficulty, we will also project the point and all
its neighbors in the tangent planes estimated for the neighbors. We
will build a graph for every projection and only declare v as boundary
point when none of the graphs enclose v.

98 surface reconstruction via morse theory

Figure 5.6: In principle, a boundary point can be identified easily because
after projecting it and its neighbors on the tangent plane, they
cluster in a semi-space of R2 (left panel). Nevertheless, this is
not always the case for every boundary point (middle panel). To
overcome this, we declare a point as a boundary point when none
of the plane projections of its neighbors enclose the point (right
panel).

Now we proceed to describe our method in detail: let v ∈ X, and
TvS the estimated tangent plane at v. We follow the following steps:

1. Given {v1, . . . vk} the neighbors of v0 = v we project them on
the planes Tvj S for j = 0, . . . k. These projections will be denoted
by π(vi).

2. We create a plane graph Gj with the projected points for every
j = 0, . . . k, where we add an edge between π(vi) and π(vl) only
when vi, vl are themselves neighbors in the cloud and i, l ̸= 0.

3. We declare the vertex v as a boundary point only when none of
the plane graphs Gj enclose π(v) for every projection to Tvj S.

Remark 5.4.2. In point-clouds with irregular densities, the previous
algorithm can still give false positives because of small boundary
holes. In that case, clusters of boundary points with small diameter
(i.e. clusters contained in small balls) are discarded.

5.4.4 Reconstruction of curves

Curve reconstruction from a point-cloud sample is used for bound-
ary parametrization, and later for level set reconstruction when we
intersect the gradient flow graph with level hyperplanes. We employ
a variant of the NN-Crust algorithm described in [30]; which can be
called KNN-Crust: we limit the search of edges to the k-nearest neigh-
bors on the curve, usually with k = 5. The rest of the reconstruction
follows as in [30].

Thus, from now on, we assume that boundary curves of the cloud
(if present) have been reconstructed and parametrized.

5.4 practical implementation 99

5.4.5 Morse function and flows

We define f : X → R as the height function f (v) = ⟨v, ν⟩ where ν

is a fixed unitary direction. We try several ν randomly until all the
{ f (v)}v∈X are different and the number of local maxima of f (the
future number of 2-cells) is small. In the presence of boundaries, we
also choose the direction ν that minimizes the number of critical points
at the boundaries. This keeps the quantity of boundary 1-cells small.

In order to compute the maxima and minima, we define the upward
flow of f as the function Up : X → X such that

Up(v) = argmaxvk∈Neigh(v), f (vk)> f (v)
f (vk)− f (v)
||vk − v|| . (5.1)

Analogously, the downward flow is the function Down : X → X
defined by

Down(v) = argminvk∈Neigh(v), f (vk)< f (v)
f (vk)− f (v)
||vk − v|| . (5.2)

Then, when f (v) > f (vk) for every k ∈ Neigh(v), we have a local
maximum and redefine Up(v) = v. Likewise, when f (v) < f (vk) for
every k ∈ Neigh(v), we have a local minimum and write Down(v) =
v.

Since we have identified and parametrized the boundary curves of
X, we can define the two flows ∂ Down(·) and ∂ Up(·) analogously
(considering that each boundary point has two natural neighbors in
∂X) so that they send boundary points to boundary points. Then we
can easily compute boundary maxima (resp. minima). Notice that in
general these points do not need to be local maxima (resp. minima) of
the full cloud X.

Remark 5.4.3. Notice than in general we do not have the equalities
v = Up(Down(v)) = Down(Up(v)) as we would in the continuous
case.

5.4.6 Hyperplane sections and computation of critical values

Next, we perform n level set intersections at equispaced levels ci =

c0 + i · h ranging from cn = max f (X) to c0 = min f (X) (in the case of
surfaces with boundary it will be better to select levels not necessarily
equispaced as explained in Remark 5.4.4). This means that the we
intersect the oriented graph Gdown, with vertices X and edges given by
Down(·) (i.e. two vertices v, w ∈ X share an edge if w = Down(v)) and
the boundary curves, with the planes Hc = {p ∈ RN : p · ν− c = 0}
(see Figure 5.7). These intersections Γ(c) = Gdown ∩ Hc are plane
point-samples of one-dimensional curves (possibly with boundary,
i.e. intervals) that we can reconstruct and parametrize. Notice that

100 surface reconstruction via morse theory

Figure 5.7: Intersection of the oriented graph Gdown with a plane. Changes in
the number of connected components of the reconstructed curves
Γ(c) = Gdown ∩ Hc ≈ ∪ S1 tell us that we have crossed critical
points.

by construction we can track the correspondence of points between
different levels Γ(ci+1) and Γ(ci) using the flow Down(·). Changes
in the number or topological type of connected components of these
level sets tell us that we have crossed critical points of f . We will study
each possible case separately.

In order to get the correspondence of points between the levels
Γ(ci+1) and Γ(ci) using Down(·), we may need to apply the flow
more than once depending on the size h of the jump between level
sets that we have defined. The explicit correspondence is obtained
as follows: for each node v, we consider the trajectory given by the
sequence vn = Down(vn−1) where v0 = v and then we intersect this
polygonal curve with the planes Hci+1 and Hci respectively.

Remark 5.4.4. When the surface has non-empty boundary we select
level sections that are not necessarily equispaced, so that between
two consecutive critical points of f there is always a regular level set
(without any critical value) in between.

Case without boundary

When the underlying surface S of the point-cloud X has no boundary,
the reconstructed curves Γ(c) are all homeomorphic to the disjoint
union of S1 and hence we can only have 3 cases:

1. Apparition of a maximum: when going down from Γ(ci+1) to Γ(ci)

a new connected component appears (see Figure 5.8). These new
points can not be reached from points of Γ(ci+1) using the flow
Down(·).

2. Disappearance of a minimum: when going down from Γ(ci+1) to
Γ(ci) an existing connected component disappears (see Figure

5.4 practical implementation 101

Figure 5.8: Apparition of a maximum when following the downwards flow:
a new connected component appears.

5.9). These points do not go to points of Γ(ci) using the flow
Down(·).

Figure 5.9: Disappearance of a minimum when following the downwards
flow: an existing connected component disappears.

3. Apparition of a saddle: when going down from Γ(ci+1) to Γ(ci) a
connected component appears or disappears (see Figure 5.10).
Points on any component of Γ(ci+1) have images in every com-
ponent of Γ(ci) using the flow Down(·).

Figure 5.10: Apparition of a saddle point when following the downwards
flow: a connected component appears or disappears.

A summary of the generic (i.e. non-degenerate) level set transfor-
mations that we get locally around each critical point can be seen in
Figure 5.11.

Case with boundary

When the underlying surface S of the point-cloud X has a boundary
∂S, the reconstructed curves Γ(c) are homeomorphic to a union of
S1 and closed intervals [0, 1]. These intervals always join two points

102 surface reconstruction via morse theory

Figure 5.11: Different generic and local level set transformations for surfaces
without boundary. The reconstructed curves Γ(c) are homeo-
morphic to a disjoint union of S1.

of ∂S, introducing a bordism equivalence relation in ∂S ∩ Hc. There-
fore, we have the three previous cases, plus two new ones, since now
we can have minima and maxima at the boundaries. Saddle points
can not be located at the boundaries since that would violate the
third condition of Definition 8 as already explained. We will make a
distinction between (local) minima (resp. maxima) of the whole point-
cloud, and boundary minima (resp. maxima) which are points that
are critical when we restrict f to the boundary curves, but not in the
whole surface. In Figure 5.12 we can see a summary of the generic (i.e.
non-degenerate) level set transformations that we get locally around
each critical point for all possible cases involving boundary points.

We can have the following six cases:

1. Apparition of a local maximum: this is similar as before, when
going down from Γ(ci+1) to Γ(ci) a new connected component
S1 or [0, 1] whose points can not be reached from Γ(ci+1) using
Down(·) appears.

2. Disappearance of a local minimum: similarly as before, when going
down from Γ(ci+1) to Γ(ci) an existing connected component S1

or [0, 1] whose points do not go to Γ(ci) using Down(·) disap-
pears.

3. Apparition of a boundary maximum: when going down from Γ(ci+1)

to Γ(ci) either a S1 splits into a [0, 1] or a [0, 1] opens in two
intervals.

4. Disappearance of a boundary minimum: when going down from
Γ(ci+1) to Γ(ci) either a [0, 1] becomes a S1 or two [0, 1] become
one interval.

5. Apparition of a saddle: this is the most complex case, when going
down from Γ(ci+1) to Γ(ci) a connected component S1 or [0, 1]

5.4 practical implementation 103

Figure 5.12: Different local level set transformations for all possible cases
involving boundary points. The reconstructed curves Γ(c) are
homeomorphic to a union of S1 and closed intervals [0, 1]. The
previous cases (interior minima, maxima and saddles) are not
shown again but can also occur. Saddle points are also drawn,
in blue.

appears or disappears. We can also have a case where the number
of connected components stays the same but in passing from
Γ(ci+1) to Γ(ci) the bordism pairing of boundary points of ∂S
given by the [0, 1] component changes. Points on any component
of Γ(ci+1) have images in every component of Γ(ci) using the
flow Down(·).

5.4.7 Identification of Morse cells

In this section, we explain how to identify all the Morse cells of the
Morse-Smale complex that give us a cellular decomposition of the
surface (see Figure 5.13).

0-cells

They correspond to local minima or to boundary minima of f , we al-
ready found them; they are the fixed points of Down(·) and ∂ Down(·)
respectively.

1-cells

There are three cases that generate the 1-cells of the skeleton:

104 surface reconstruction via morse theory

Figure 5.13: A sampled dumbbell: the black line is the direction of the height
function; local maxima, resp. minima, are painted red, resp.
black; saddle points are painted blue; their 1–cells are outlined
in blue. There are two 2-cells: one in dark red (left) and one in
light blue (right).

1. Boundaries: when S has non-empty boundary, the boundary
curves are also part of the 1-skeleton. We already parametrized
those. Each boundary maximum gives rise to a 1-cell that at-
taches to a 0-cell (point) located at the boundaries.

2. Saddle points: there are one-dimensional curves that go from one
local minimum m1 or boundary point to another (not necessarily
distinct) local minimum m2 or boundary point passing through
the saddle point.

3. Boundary minima: there are 1-cells in the complex not associated
with a saddle point or to boundary curves. In this last case, they
always connect a boundary minimum to a local minimum or
boundary point of the cloud. In order to compute this 1-cell we
simply flow down every boundary minimum using Down(·).

Remark 5.4.5. When 1-cells introduced by saddle points or boundary
minima end at points of the boundary ∂S not previously labeled as
0-cells, we introduce the point where they meet to the 0-skeleton and
divide the 1-cell into two.

Computation of saddles and their 1-cells

We now explain how to compute saddle points and afterwards their
associated 1-cells. Recall that we know when we are in the presence of
a saddle: when going from Γ(ci+1) to Γ(ci) a connected component ap-
pears, disappears or there is a change of bordism pairing of boundary
points. In any case, all points of Γ(ci+1) have images in Γ(ci) using
the flow Down(·). Therefore, there exist four points v1, v2, v3, v4 in
Γ(ci+1) that can be paired by proximity (i.e. are neighbors in the level

5.4 practical implementation 105

set curves) as {v1, v2} and {v3, v4} whose images by Down(vi) = ṽi
are now paired differently as {ṽ1, ṽ3} and {ṽ2, ṽ4}. The saddle point
is approximated by the average:

s =
1
8

(
4

∑
i=1

vi +
4

∑
i=1

ṽi

)
.

One branch of the 1-cell is obtained by taking the average of the
two orbits generated by Down(·) starting from {ṽ1, ṽ3}. The other
branch is approximated in the same manner but starting from and
{ṽ2, ṽ4}. This averaging operation generates new points not previously
in the cloud. All these new points are added to the cloud, declaring
as neighbors of s the 8 points used for its computation, and for each
new point of the branches its two neighbors in the 1-cell plus the
two points that were used for its computation. The flows Down(·)
and Up(·) are simply defined at those points by following the newly
created trajectories down or up (except the saddle points which are
fixed points of both flows). This ensures that this newly defined curve
(the 1-cell) is invariant by both flows.

2-cells

There is one 2-cell for each local maximum of f (recall that boundary
maxima only generate 1-cells, i.e. the boundary curves), we already
found them (they are the fixed points of Up(·)), but we will now
explain how to deduce which points of the cloud correspond to each
2-cell (or each maximum). The idea is simply to flow up every point
v ∈ X by Up(·) and see at which maximum it ends up. In symbols,
this means that we consider the limit of the sequence vn = Up(vn−1)

where v0 = v when n→ +∞ (this limit exists because we have a finite
number of points and maxima are fixed by Up(·)). It can happen that
the sequence {vn}n converges to a saddle s. This can only happen
for points of the 1-cells, but must be corrected for the rest: when a
point v ends at a saddle s but it is not part of the 1-cell, we look at
the neighbors Neigh(v) and see in which maximum they finished.
The most common maximum among the neighbors is selected as the
corrected destination of v. It may be necessary to iterate this procedure
a finite number of times.

5.4.8 Attachment maps of the Morse cells

Now that we have the skeleton of S, i.e. the 0, 1, 2-cells, we encounter
a delicate problem: figuring out the attachment maps between the
cells. We already know how the 1-cells attach to the 0-cells. We now
discuss how 2-cells attach to 1-cells. We must figure out which 1-cells
are the boundary of the 2-cells, in which order, orientation and how
many times they appear: once (when they are part of the boundary of

106 surface reconstruction via morse theory

S or when they attach to a different 2-cell) or twice (when they will be,
formally, two different sides of the 2-cell that are identified, see Figure
5.13). We first discuss the case without boundary.

Smooth case

We first describe the process for the smooth case (without boundary)
and then explain how to adapt it to point-clouds. Notice that the
2-cell corresponding to each maximum m̂, let us call it Dm̂, is the
set of points that converge to m̂ under the flow +∇ f (in Dynamical
System terminology, its stable manifold). The main idea to deduce
how the boundary of Dm̂ attaches to the 1-cells is to choose a simple
closed curve around each maximum and flow it down by −∇ f until
it reaches the 1-cells. To achieve this properly, we must perturb f so
that in a neighborhood of the 1-cells the gradient flow is transversal
(i.e. not parallel) to the 1-cells. This is needed since otherwise the
points of Dm̂ would converge to minima under the downwards flow
−∇ f . In order to obtain this perturbed f̃ we consider an arbitrary
small tubular neighborhood around the 1-cells and a normal vector
field to the 1-cells. These two flows are joined smoothly in the tubular
neighborhood with the aid of a partition of unity (i.e. bump functions,
see [52]).

Discrete case

In the discrete case, we choose a simple (i.e. without self-intersections)
closed curve of neighbors around each maximum (a crown) and flow
it by Down(·) until it reaches the 1-cells. We do this in a way such
that when a point of the curve has neighbors that are in the 1-cell, we
stop following the flow Down(·) and match the point in question to
the point in the 1-cell with results in the most negative downwards
slope. This method would work perfectly if simple closed curves were
preserved by Down(·); since this is not the case, we must repair the
curve every time we flow it down. There are three main situations:

1. Splitting of points: it may happen that two points w1 and w2 were
neighbors but Down(w1) and Down(w2) are not. In that case,
we define the sub-graph of neighbors given by points

{v ∈ X : f (v) ≤ max [f (Down(w1)), f (Down(w2))]},

and compute the shortest path joining Down(w1) to Down(w2)

(taking as the distance of a path, that given by the edges of the
graph).

2. Collapse of points: it may happen that two points w1 and w2 have
the same image Down(w1) = Down(w2). In that case, we simply
delete one of the repeated points from the curve.

5.4 practical implementation 107

3. Creation of spikes: it may happen that one of two neighboring
points w1 and w2 has image Down(w2) = w1. This could happen
to more than one point at a time. In that case, we simply delete
the spiky points (i.e. Down(w2) = w1) in the new curve.

The final problem we face is that the flowing crown may arrive at a
stage where it is stationary by the downward flow but some points of
it have not reached the 1-cells. In that case, we pair each unmatched
point of the crown with the closest (as measured by the edges of the
neighboring relationship of the cloud) point of the 1-cells.

We now have a matching between the initial crown and the 1-cells
(although not a bijection). But this is enough to deduce which 1-cells
are the boundary of Dm̂ (only the 1-cells that are reached), in which
order (this can be deduced since the crown is parametrized), the
orientation (again thanks to the parametrization) and how many times
they appear (once or twice, depending on the matching).

Attachment maps for surfaces with boundaries

When the surface S has a boundary ∂S the boundaries of the 2-cells
are no longer only the 1-cells derived from the saddle points, but also
possibly curves of ∂S. We distinguish several cases depending on the
type of maximum we have:

1. Interior maxima (not belonging to ∂S): as before we flow down
a crown around the maximum until it reaches a point that is
either a neighbor of a boundary point or of a 1-cell. In this way,
we obtain a matching between the boundary of the 2-cell and
the 1-cells and boundary curves of S.

2. Boundary maxima (but not a local maximum of S): they do not
intervene in the attachment maps of 2-cells to 1-cells (although
they give rise to a 1-cell in the boundary).

3. Local maxima (located at ∂S): we consider a semi-crown around
the maximum m̂, meaning that we take an arc of the boundary
centered at m̂ and complete it with neighboring interior nodes
so that we obtain a closed simple curve. Then we flow down
this semi-crown in such a way that the arcs of the boundary
stay in the boundary (we use the restricted flow ∂ Down(·)) and
the interior nodes of the curve flow down normally by Down(·).
As before we flow down the semi-crown until each point of it
reaches a node that is either a neighbor of a boundary point or
of a 1-cell.

For an example of this process in action, see the video at https:
//youtu.be/8cgr54oRf6w.

https://youtu.be/8cgr54oRf6w
https://youtu.be/8cgr54oRf6w

108 surface reconstruction via morse theory

5.4.9 Parametrization of the 2-cells

Once we have each Morse cell and their attachment maps identified,
the last problem we face is how to parametrize the 2-cells, i.e. finding
a flat domain D ⊂ R2 and a map ϕ : D → X, such that each ϕ(D) ⊂ X
corresponds to one of the 2-cells found before (see Figure 5.14). We
will further require D to be a convex polygon and that ∂D is isometric
to ϕ(∂D). Once we have a parametrization of each 2-cell, since they
attach well (their boundaries are the 1-cells), we have a full piece-wise
parametrization of X.

Remark 5.4.6. We may require ∂D to also have the same number of
sides of ϕ(∂D) (i.e. the different 1-cells), their length and their order
(these are known in advance and will be determined by the attach-
ment map of the 2-cell to the 1-cells). In that case, we denote the sides’
lengths by l1, . . . , ld.

In order to find D and ϕ, we follow two steps:

Figure 5.14: Parametrization of a 2-cell (left) using a rectangle D with isomet-
ric sides to the boundary of the 2-cell (right).

1. Obtain a convex polygon D ⊂ R2 whose sides are l1, . . . , ld:
we find the polygon with maximal area and predetermined
sides l1, . . . , ld inscribed in a circumference. To do so, we solve
an optimization problem in order to find the circumference in
question. By a result of Bramagupta [13], this is done by finding
the radius that makes the polygon’s interior angles add up to
2π. Once we have D, we obtain a bijection between ∂D and the
points of the corresponding 1-cells in X.

Alternatively, we can take any convex polygon in the plane
whose boundary ∂D is isometric to the boundary of the 2-cell
(e.g. a rectangle).

2. Obtain a correspondence of interior points of D mapping to the
cloud points in the 2-cell: for each interior point v in the 2-cell we

5.4 practical implementation 109

want to find an interior point x = ϕ−1(v) in D. We assume that
each point pi of D (including ∂D) is a barycentric combination
of its neighbors (as given by the neighboring relationship of the
cloud, see [37]) with Tutte’s weights (all coefficients are equal to

1
|Neigh(v)|). Then we have to solve a linear system with a unique
solution (see [37]), which in turn gives us the coordinates of
interior points of D mapping to the cloud.

Once we have these points, we can extend the parametrization to
the whole interior of D by taking its Delaunay triangulation with the
newly found vertices, and interpolating linearly for the images. Then
we can re-mesh (or even quadrangulate) the polygon D if desired. This
re-meshing allows us to obtain C∞ parametrizations of the surface via
splines, to de-noise the point-sample if needed or to obtain a synthetic
resampling of the point-cloud with better regularity properties.

Remark 5.4.7. As already mentioned, the polygon does not need to
have the same number of sides as the 2-cell, in fact, in order to apply
some de-noising algorithms it is necessary to take the polygon D as a
square or rectangle. Moreover, if the 2-cell is too far from being flat
(e.g. because of high curvature) the algorithm may produce interior
points in D with non-uniform densities and thus it may be better
to subdivide the cell into smaller and flatter pieces and afterwards
parametrize each piece independently. On the other hand, using a
polygon where the sides are mapped isometrically to each of the
bounding 1-cells, has the advantage of allowing the gluing of the re-
sulting parametrizations of the 2-cells into a global piece-wise defined
and continuous parametrization of the entire surface.

5.4.10 Results

In this section, we reconstruct three different surfaces (one without
boundary –a torus– and two with it –a vest and a pair of pants–) which
pose various challenges to the presented algorithm. The first two point-
clouds are synthetic whereas the last one is a real scan of an actual
textile. The three cases are challenging and interesting for different
reasons: the torus is really slim and its embedding describes a (2,3)-
toric knot which causes far away parts of the surface (as measured
by geodesic distance) to be really near each other in euclidean space.
The vest was obtained by cutting out parts of an ellipsoid in order to
obtain a surface with the same topology as an open vest. Therefore, it
has positive Gaussian curvature everywhere and very large boundary
curves. Finally, the pants are a 3D-scan of a real pair of jeans and
thus its point-cloud presents wrinkles, noise and an irregular density
distribution of points.

110 surface reconstruction via morse theory

Figure 5.15: A sampled knotted torus: the black line is the direction of the
height function; local maxima, resp. minima, are painted red,
resp. black; saddle points are painted blue; their 1-cells are
outlined in blue. On the bottom, we plot the level set curves
highlighting when critical points appear.

5.4 practical implementation 111

Knotted torus

Figure 5.15 shows our algorithm applied to a point-sample from a
torus embedded in R3 along a (2,3)-toric knot. The algorithm correctly
detects 2 local maxima, 2 local minima and 4 saddle points for the
height function depicted in the figure. Out of a point cloud of 30 000

points, a decomposition of the surface into 8 Morse cells is found (two
0-cells: the minima, four 1-cells associated to the saddle points and
two 2-cells, one for each maximum). On the bottom of Figure 5.15 we
display the level set curves Γ(c) = Gdown ∩ Hc (see Section 5.4.6). No-
tice that for this point-cloud we have all possible local transformations
of level-set curves for surfaces without boundary (see Figure 5.11).

Ellipsoidal vest

Figure 5.16 shows our algorithm applied to a sample of 36 000 points
from a vest embedded in R3. The cloud was obtained by cutting
out parts of an ellipsoid in order to obtain a surface with the same
topology as an open vest. After detecting and parametrizing the
boundary successfully, the algorithm correctly detects 2 local maxima,
2 boundary maxima, 1 local minimum and 3 boundary minima for the
height function depicted in the figure. All critical points are located at
the boundary. Moreover, two new points (shown in purple) are added
where the 1-cells meet each other or the boundary curves (see Remark
5.4.5).

Then, a decomposition of the surface into 16 Morse cells is found
(five 0-cells, nine 1-cells and two 2-cells). In order to deduce how the
two 2-cells attach and which 1-cells are their boundary we apply the
curve flow explained in Section 5.4.8. This process in action for one of
the 2-cells can be visualized at https://youtu.be/8cgr54oRf6w. Thus,
we deduce how the cells attach with each other (e.g. the 1-cell number
5 appears on both 2-cells and it is precisely one of the curves where
they attach, see Figure 5.16). From this, we recover the entire topology
of the vest.

In Figure 5.17 we show a parametrization by a rectangle of one
of the 2-cells of the vest (the red one on the right in Figure 5.16).
This is done as explained in Section 5.4.9: the bounding 1-cells are
mapped isometrically to a flat rectangle (notice that we consider the
1-cells number 6 and 6’ as different) and then interior points are
obtained using the neighboring relationships of the cloud (taking
care of removing neighbors at opposite sides of the 1-cell number 6).
Finally, the 2-cell consisting of 27 000 points (shown in red in Figure
5.17) is down-sampled using the parametrization and interpolating
linearly to a cloud of 900 points (shown in blue Figure 5.17).

https://youtu.be/8cgr54oRf6w

112 surface reconstruction via morse theory

Figure 5.16: A sampled vest: the black line is the direction of the height
function; maxima are painted in red, minima in black; 1-cells
corresponding to boundary minima are outlined in blue and
the boundary curves in black. The two purple points where the
1-cells meet each other or the boundary curves are added to the
decomposition. The numbers correspond to the different formal
1-cells that, when identified (e.g. 7 with 7’), reconstruct the entire
surface from 2 pieces homeomorphic to disks.

5.4 practical implementation 113

Figure 5.17: Parametrization by a rectangle of the rightmost 2-cell of Figure
5.16. The bounding 1-cells are mapped isometrically to a flat
rectangle and then interior points are obtained using the neigh-
boring relationships of the cloud. The 2-cell consisting of 27 000

points (shown in red) is down-sampled interpolating linearly to
a cloud of 900 points (shown in blue).

3D-scan of pants

Figure 5.18 shows our algorithm applied to a 3D-scan of a pair of
real jeans. The scan was made by a Artec Eva professional handheld
3D scanner while a person was wearing the garment. The 3D scan
is processed with the proprietary software Artec Studio in order to
obtain a point-cloud sample. In order to apply our algorithm and to
reduce irrelevant details and noise, we down-sample the initial cloud
of more than 500 000 points to 11 000 by using a box-grid filter, i.e. an
axis-aligned bounding box is computed for the entire point-cloud and
then divided into grid boxes. Points within each grid box are merged
by averaging their locations.

Still, the cloud has a lot of detail (e.g. wrinkles) that cause the pro-
liferation of critical points and hence of Morse-cells. After computing
for each point its neighbors as explained in Section 5.4.1, we apply a

114 surface reconstruction via morse theory

discrete-curvature filter to the point-cloud. This means that we substitute
each point v for a weighted average of its position and the location of
its neighbors:

h(v) = αv + (1− α)
1

|Neigh(v)| ∑
vi∈Neigh(v)

vi,

where in our case we take α = 0.4. When applied a small number
of times (in our case 8 times) this filter defines a bijection between
the original cloud and the filtered one, which preserves the topology
of the underlying surface. Hence, the decomposition we find for the
filtered case is still valid and topologically accurate for the original
cloud, which is the one shown in Figure 5.18.

The algorithm correctly detects 1 local maximum, 2 boundary max-
ima, 2 local minima, 1 boundary minimum and 1 saddle point for
the height function depicted in Figure 5.18. A decomposition of the
surface into 8 Morse cells is found (three 0-cells: the minima and a
point added because the original 1-cells intersect, six 1-cells associated
to the saddle points, boundary minima and the boundary curves and
one 2-cell, for the local maximum). On the bottom of Figure 5.18 we
display the level set curves Γ(c) = Gdown ∩ Hc (see Section 5.4.6). No-
tice that for this point-cloud we encounter several of the possible local
transformations of level-set curves for surfaces with boundary shown
in Figure 5.12.

5.4 practical implementation 115

Figure 5.18: A 3D-scan of real pants: the black line is the direction of the
height function; maxima are painted red, minima in black, saddle
points are painted blue; 1-cells are outlined in blue and the
boundary curves in black. The purple point where the 1-cells
meet is added to the decomposition. On the bottom, we plot the
level-set curves obtained by intersecting the surface with planes
perpendicular to the height function.

Part III

C L A S S I F Y I N G C L O T H S TAT E S

In this final part we study the configuration space of a piece
of cloth, i.e. the space of all surfaces in Euclidean 3-space
isometric to it. First, we show that under certain conditions
the boundary curve of an inextensible textile determines
completely its position in space. Afterward, we introduce
the dGLI cloth coordinates, a low-dimensional represen-
tation of the state of a rectangular piece of cloth based on
the position of its boundary. These intrinsic coordinates en-
able the recognition and classification of high-level states,
allowing us to classify cloth configurations into states that
we identify as different.

6
D E V E L O PA B L E S U R FA C E S

The original state of a piece of cloth is flat, so the set of possible states
under the inextensible assumption is the set of developable surfaces
isometric to a fixed one, which, using the Morse cellular decompo-
sitions of part II of this work if necessary, we may assume to be a
domain R in the plane. In this chapter, it is proved that a generic
simple, closed, piecewise regular curve in space can be the boundary
of only finitely many developable surfaces with nonvanishing mean
curvature. This implies that during a continuous cloth motion, the po-
sition of a garment is determined by the location of its boundary. The
relevance of this result justifies theoretically our choice of developing
cloth coordinates for semantic classification based only on the position
of the boundary of the cloth (see Chapter 7).

In general, to study theoretically the dynamics of a piece of cloth
with the Lagrangian formalism, we need adapted coordinates on the
set of its states (akin to using an angular coordinate for a pendulum
as opposed to cartesian coordinates). Apart from their theoretical
appeal (see the Helfrich Hamiltonian of membrane dynamics [29]),
such intrinsic, analytic coordinates should allow the formulation of
discretization schemes where the resulting mechanics are more inde-
pendent of how the garment is meshed, more frugal in computation
time, and closer to reality.

Section 6.1 discusses two candidates for the role of generalized co-
ordinates in the space of states of a developable surface, and explains
their common limitation from the viewpoint of their application. Sec-
tion 6.2 proposes an alternative approach: to track the motion of the
surface by following its boundary. This is not straightforward because
the boundary does not determine the position of the surface, but as
we explain below Theorem 4 is a step in this direction.

6.1 the space of developable surfaces

Definition 10. Given a smooth surface S embedded in R3, we say it is
developable if its Gaussian curvature K is 0.

These surfaces are exactly the surfaces that are locally isometric to a
domain in the Euclidean plane R2.

Definition 11. Given a developable surface S, we say it is ruled if
through every point of the surface there is a line that lies inside S.

Developability places a strong constraint on the local structure of
the surface (see [36]):

119

120 developable surfaces

Theorem 2 (structure theorem for developable surfaces). A C3 devel-
opable surface S embedded in R3 has an open subset that is ruled,
with unit normal vector constant along each line of the ruling but
varying in a transverse direction. Every connected component of its
complement is contained in a plane.

This structure can be deduced from the Gauss map of the surface:
Gaussian curvature 0 makes its rank 0 or 1, the latter rank being
reached on an open subset of the surface. The normal vector is locally
constant in the rank 0 subset. The dichotomy in the rank of the Gauss
map, and varied classical notations, motivate:

Definition 12. A developable surface is torsal if the Gauss map has
rank 1 on a dense open subset. Flat patches are connected subsets of a
developable surface with nonempty interior where the Gauss map is
constant, i.e. they are contained in a plane.

The subdivision of a developable surface into torsal and flat patches
is given by the boundary of the vanishing locus of the mean curvature
(the trace of the Gauss map) and is not necessarily simple.

Let us fix a planar domain R ⊂ R2 which is compact, contractible
and has a piecewise C∞ boundary (e.g. a convex polygon). Define S
to be the set of all C3 surfaces in R3 isometric to R. These surfaces
are all developable, and S may be seen as the space of states of an
inextensible (i.e. isometric for the inner distance) deformation of R
in Euclidean space. The space of states S can also be defined as the
set of C2 maps from R to R3 which are isometries with the image. As
such, it is endowed with the compact-open topology derived from the
Euclidean one in R and R3. This topology furnishes valuable tips for
the study of S : the set of surfaces containing flat patches has an empty
interior because there exist arbitrarily small deformations making the
normal vector nonconstant on an open set. Torsal surfaces are stably
torsal if the mean curvature function intersects transversely the zero
function. These surfaces form an open subset U ⊂ S , and suffice for
our practical study of S .

We can try to develop coordinates for the stably torsal state space
U based on the classical structure theorem. First, let us recall how to
identify developable surfaces among the ruled ones:

Proposition 2 (classical, see [19]). A ruled surface parametrized as
ϕ(u, v) = γ(u) + v · w(u), where γ is a regular parametrized curve
and w a vector field over γ, is developable if and only if the 3 vectors
γ′(u), w(u), w′(u) are linearly dependent for all u.

Given a regular C2 curve γ there is a way to obtain systematically
such rulings over γ resulting in regular torsal surfaces:

Proposition 3. Let n be a unit normal C1 vector field over a regular,
C2 curve γ with n′ ̸= 0. Then w = n× n′ defines a torsal surface in

6.1 the space of developable surfaces 121

a neighborhood of γ. Moreover, all regular, torsal rulings over γ are
generated by such w, and only n,−n define the same torsal surface.

Proof. n is normal to γ′ and w by their definitions, and w′ = n× n′′

so at every u the vectors γ′, w, w′ are normal to n. Also, note that
w ̸= 0 because n′ ̸= 0. If ñ is another unit normal vector field such
that ñ× ñ′ = µw for some function µ(u) then note that ñ has to be
normal to both w and γ′, hence a multiple of n. Finally, let us point
out that if w is a nonvanishing tangent vector field over γ defining a
torsal surface around it, then we can select a unit vector field n normal
to γ′, w, w′. The fact that n is normal to w and w′ imply that n′ is also
normal to w, so n× n′ is a multiple of w.

To define coordinates in the space of stably torsal surfaces S isomet-
ric to a fixed bounded domain R, the pairs (γ, n) of Proposition 3 run
into a practical difficulty: the condition that n′ ̸= 0 forces the Gauss
map to have rank 1. If S is a stably torsal surface with mean curvature
H of varying sign, we must subdivide it by the H = 0 curves and
parametrize separately each component of the complement. To follow
a motion of the surface, one has to track the boundary shifts, mergers
and splits of these components.

On the other hand, Ushakov proposes in [113] an alternative, PDE-
based, coordinate scheme viewing developable surfaces as solutions of
the trivial Monge-Ampère equation. From an analytic viewpoint, devel-
opable surfaces can be seen locally, once they have been parametrized
in the form z = z(x, y), as solutions of the so-called trivial Monge-
Ampère partial differential equation, which is indeed the simplest of
Monge-Ampère equations∣∣∣∣∣ zxx zxy

zxy zyy

∣∣∣∣∣ = 0. (6.1)

This is the case since a surface described as the graph of a function
z = z(x, y), has Gaussian curvature:

K =
zxx · zyy − z2

xy(
1 + z2

x + z2
y

)2 .

The PDE (6.1) almost provides a first set of coordinates for the space
of torsal states U . If we have a developable surface S which is stably
torsal, isometric to R, and admits a (non-isometric) parametrization
by orthogonal projection to a plane then S admits a parametrization
of the form z = z(x, y) and we can use

122 developable surfaces

Theorem 3 (Ushakov, [113]). The general solution to the equation (6.1)
containing no flat patches is given in parametric form by

x(u, v) = g(u)− v · f ′(u) (6.2)

y(u, v) = v (6.3)

z(u, v) = u · g(u)−
∫ u

0
g(t)dt + v · { f (u)− u · f ′(u)} (6.4)

where f (u) and g(u) are arbitrary functions such that f ∈ C2, g ∈ C1,
and g′(u) ̸= 0 everywhere.

The functions f , g in Ushakov’s theorem give us a curve γ(u) =

(g(u), 0, u · g(u)−
∫ u

0 g(t)dt) and a vector field w(u) = (− f ′(u), 1, f (u)−
u · f ′(u)) such that the ruled surface ϕ(u, v) = γ(u) + v · w(u) is ac-
tually developable. We could use (f , g) as coordinates for our stably
torsal states, and explore the tangent space of these states as first-order
deformations of the solutions but, unfortunately, the existence of a
parametrization of the form z = z(x, y) can be assured only locally
on a developable surface. Following the motion of the developable
surface typically requires the dynamic subdivision of the original
domain R in order to have such a parametrization, which leads even
more intensely to the problem of tracking boundaries, mergers and
splits of subdomains.

6.2 the boundary of developable surfaces

There is an alternative approach to study theoretically the dynamics
of developable surfaces isometric to a fixed bounded planar domain
R: follow the motion of the boundary ∂R in space, and derive from
this the developable surface that fills it. This leads to:

Question. Given a piecewise smooth simple closed curve γ in R3,
what are the developable surfaces with boundary γ?

The degeneracy nature of the trivial Monge-Ampère equation makes
it fail to have a unique solution for this kind of boundary problem.
Indeed, it is easy to find examples where there is more than one
solution, as shown in Figure 6.1.

Nevertheless, for problems such as the study of cloth dynamics, it
is not necessary for the boundary problem to have a unique solution.
It suffices to know that it will always have a finite set of solutions,
because this solution set is then discrete, with different solutions
separated by a nontrivial jump in any tagging energy, local coordinates,
etc. In such case, once one has a developable ruling with a boundary
γ0 at time t = 0, the evolution γt of the boundary will determine the
analytic continuation of the t = 0 developable ruling, and identify a
unique ruling for every time t. Herein lies the interest of the authors
in

6.2 the boundary of developable surfaces 123

Figure 6.1: A smooth simple closed curve (in black) which is the boundary of
two developable surfaces (indicated in red and blue respectively)

Theorem 4 (Theorem). Let γ be a simple closed curve in R3 which
is piecewise C2, has nonvanishing curvature, its torsion vanishes at
finitely many points, and such that only for finitely many pairs s ̸= s̃
does the tangent line to γ at s pass through γ(s̃). Then, there can
be at most finitely many developable surfaces with boundary γ and
nonzero mean curvature in its interior.

Let us point out that the preconditions that we impose on γ are
generic, i.e. satisfied by a dense open subset of the embeddings of
S1 in R3. The starting idea to prove the theorem is another classical
result, analogous to Proposition 2:

Lemma 2. Let S be a torsal surface with boundary γ, and l ⊂ S a
segment with endpoints P, Q in γ. Then the common tangent plane
to S along l is tangent to γ at both P, Q, i.e. γ′(P) and γ′(Q) are both
contained in the plane.

The proof consists in pointing out that the normal vector to S stays
constant over the segment l, and that γ is tangent to S. Lemma 2

presents developable rulings as arcs of bitangent planes (i.e., tangent
to γ at 2 points). Such planes are given by pairs s ̸= s̃ whose tangent
lines are coplanar:

Proposition 4. Let γ : [0, L] ⊂ R3 be a simple, closed, arc-parametrized
C3 curve. The function

D : [0, L]2 −→ R

(s, s̃) 7−→ det
(
γ(s)− γ(s̃), γ′(s), γ′(s̃)

)
is a Morse function at a neighborhood of its zeros (s, s̃) such that: s ̸= s̃,
γ has nonzero curvature and torsion at both s, s̃, and the tangent line
to γ in each one does not pass through the other point of the curve.

Proof. It is a straightforward computation. With coordinates (s, s̃) we
have that

dD =
(
det

(
γ(s)− γ(s̃), γ′′(s), γ′(s̃)

)
, det

(
γ(s)− γ(s̃), γ′(s), γ′′(s̃)

))

124 developable surfaces

Let (s, s̃) be a zero of D with s ̸= s̃, which is also a critical point of
D. If any of the linear subspaces spanned by γ(s)− γ(s̃), γ′(s̃) and by
γ(s)−γ(s̃), γ′(s) has dimension less than 2, the tangent line to γ at one
of the points γ(s), γ(s̃) contains the other. When both linear subspaces
have dimension 2, the conditions D(s, s̃) = 0, dD(s, s̃) = (0, 0) show
that γ has the same osculating plane to γ at the points γ(s), γ(s̃).
Because of this, the second differential d2D of D is(

κsτs det (γ(s)− γ(s̃), Bs, γ′(s̃)) 0

0 κs̃τs̃ det (γ(s)− γ(s̃), γ′(s), Bs̃)

)

Here κ, τ, B are respectively the curvature, torsion, binormal vector of
the Frenet frame, at the point given by their subindex. The determi-
nants in the diagonal of d2D are nonzero because each consists of a
binormal vector and a basis for the osculating plane at the same point
of the curve.

Proposition 4 has a version for piecewise C3 curves, saying just that
D is Morse under the additional hypothesis that s, s̃ do not correspond
to corner points, at which D has two different definitions. We are now
ready for

Proof of Theorem 4. A torsal developable surface S is foliated by seg-
ments that can only end at the boundary or at points of vanishing
mean curvature. Having ruled out the latter, S is determined by an
arc of bitangent planes B(t), with t ∈ [a, b], such that the curves
s(B(t)), s̃(B(t)) formed by the two points of tangency of B(t) cover γ.

Away from the finite set of horizontal and vertical lines in [0, L]2

where one of the values s, s̃ corresponds to a corner point, point with
vanishing torsion, or point whose tangent line intersects γ again, the
pairs of values s ̸= s̃ for which there exists at all a bitangent plane to
γ through γ(s), γ(s̃) lie by Proposition 4 in the zero set of a Morse
function D from an open subset of [0, L]2 ⊂ R2 to R. The function D
is proper, therefore it is Morse over a suitably small range of values
(−ε, ε), which implies that D0 is a finite union of smooth curves with
transverse intersections in [0, L]2. The arc B(t) is determined by its
tangency points curve

(s(B(t)), s̃(B(t))) ⊂ [0, L]2,

which must lie in the union of D0 and finitely many vertical and
horizontal lines, and cover γ, i.e. γ = s(B) ∪ s̃(B). There are only
finitely many possibilities for that, once we specify a beginning point
for the curves s(B), s̃(B).

7
S E M A N T I C C L A S S I F I C AT I O N O F C L O T H S TAT E S

One of the reasons why robotic manipulation of cloth is a very chal-
lenging task is the infinite-dimensional shape-state space of cloth,
which makes its state estimation very difficult. In this chapter, we
introduce the dGLI Cloth Coordinates, a low finite-dimensional repre-
sentation of the state of a piece of cloth that allows us to efficiently
distinguish key topological changes in a folding sequence. Our repre-
sentation is based on a directional derivative of the well-known Gauss
Linking Integral. The proposed dGLI Cloth Coordinates are shown to
be more accurate in the separation of cloth states than other classic
shape distance methods when applied to a rectangular cloth. In order
to test this representation (and others), we use the full working simu-
lator developed in the previous chapters to generate a full data-base
of folded cloth states.

After reviewing the state of the art in Section 7.1, we present pre-
liminary concepts, such as the Gauss Linking Integral, and explain
its limitations in a planar setting in Section 7.2. Then, in Section 7.3
we introduce the novel concept of the directional derivative of the
GLI which is also applicable in a flat configuration. We derive first
an expression for the GLI of two segments, then we prove that we
can perturb the segments slightly to obtain information when they are
co-planar and we explain how to apply this to a fully meshed cloth.
Finally, in Section 7.4 we apply this new index to a data-base of cloth
configurations of a napkin taken from simulated folding sequences
and then we test experimentally the index on real images of folded
clothes.

7.1 related work

As stated in the introduction, textile objects are important and om-
nipresent in many relevant scenarios of our daily lives, like domestic,
healthcare, or industrial contexts. However, as opposed to rigid objects,
whose pose is fixed with position and orientation, textile objects are
challenging to handle for robots because they change shape under
contact and motion, resulting in an infinite-dimensional configuration
space. This huge dimensional jump makes existing perception and
manipulation methods difficult to apply to textiles. Recent reviews on
cloth manipulation, like [101, 122], agree on the need to find a simpli-
fied representation that enables more powerful learning methods to
solve different problems related to cloth manipulation.

125

126 semantic classification of cloth states

Different representations have been used in the literature of cloth
manipulation, e.g. silhouette representations [80] or contours [31],
assuming the high-level reasoning on cloth states was given. More
modern end-to-end learning approaches use RGB-D images as direct
input [58, 72, 78, 103, 109], but only very simple actions can be defined
due to the limited state representation. In addition, these methods
need large amounts of real or simulated data that are expensive
to obtain and label, as no underlying previous knowledge is used
to understand the geometric relationship between different states.
Therefore, finding a low-dimensional representation of cloth based on
low-level features remains an active open problem, while the high-level
aspect of understanding cloth deformation is still almost unexplored.

Furthermore, to enable reasoning, abstraction and planning, rigid
object manipulation applies object recognition methods in order to link
objects to actions/affordances [16, 119]. Contacts are estimated among
the objects to recognize states such as “on top of", “inside of" [4].
However, when it comes to cloth manipulation, no work has explored
the semantic state identification that could lead to particular actions
depending on the task in mind. For simpler deformable objects like
a box with an articulated lid, the open configuration clearly allows
the action of closing the box or picking something from inside. An
equivalent example for cloth would be to recognize a folded corner
that needs to be either flattened back if the task is to lay it flat on
the table, or picked up if the task is folding. In this context, we wish
to classify the configuration space of a piece of cloth in macro-states
(or just states), where each state is the set of cloth configurations that
can be manipulated in the same way, i.e., that have similar grasping
affordances.

Figure 7.1: Folding sequence of a quadrangular cloth with its associated
dGLI cloth coordinates, represented as upper triangular matrices.
Each matrix element mij is a geometrical value corresponding to
the dGLI between the segments i and j highlighted in red in the
corresponding folded state. Notice how some values of the matrix
change sign when corners are folded or cross each other.

In this work, we present a coordinate representation of the configu-
ration of a rectangular cloth as an upper triangular matrix form (see
Figure 7.1). This representation can be computed with a closed-form

7.2 preliminaries 127

formula from low-level features of the cloth, mainly the position of
its border, and enables the recognition and classification of high-level
states, since we can define a distance between cloth configurations.
That allows us to classify different configurations into states that we
identify as different, meaning that they afford different actions.

Our coordinates are based on a topological index, the Gauss Linking
Integral (GLI). This index has been used in the past for robotic manip-
ulation [57, 91, 107, 108, 124] but can only be applied to 3D curves. For
a pair of almost coplanar curves, as the boundary curves of a folded
garment, the GLI vanishes and it ceases to be informative. In order to
consistently consider 2D curves as well as 3D curves, we introduce in
this work the concept of the directional derivative of the GLI, dGLI,
applied to a pair of curves. The dGLI is symmetric on the curves and
it only depends on the relative position between them. We assign the
dGLI Cloth Coordinates to a state of a garment as follows: first select a
subset of edges (it may contain all of them) from a discretization of
the boundary of the garment; then fix an ordering on these edges and
compute the dGLI between any pair of edges in their spatial position
of the current state of the garment; this gives a symmetric matrix
from which only the upper triangular part is taken in order to avoid
redundancies; the dGLI cloth coordinates of the state are precisely the
entries of this upper triangular matrix (see Figure 7.1).

Our resulting representation can be computed efficiently and is
invariant under isometric movements of the garment (i.e. rotations
and translations), leaving invariant a distinguished direction normal
to a predominant plane in the scene (e.g. a table used as support for
the manipulations).

7.2 preliminaries

Given two non-intersecting 3D-space curves γ1, γ2 parameterized by
x(s) and y(t), respectively, with s, t ∈ I = [0, 1], the Gauss Linking
Integral between them, GLI for short, is

GLI(γ1, γ2) =
1

4π

∫
I

∫
I

(y(t)− x(s)) · (y′(t)× x′(s))
|y(t)− x(s)|3 dtds

or written in a compact way

GLI(γ1, γ2) =
1

4π

∫ ∫
(γ2 − γ1) · [γ′2 × γ′1]

∥γ2 − γ1∥3 . (7.1)

This double integral is invariant under re-parameterizations of the
curves. In the case that both curves γ1 and γ2 are closed and smooth,
their GLI is integer valued (due to the chosen normalization factor 1

4π)
and it is an invariant of the topology of the embedded curves (see [2]).

Historically, the GLI was first introduced by Gauss, presumably
related to his works on magnetism (according to [98]) or on astronomy

128 semantic classification of cloth states

(according to [33]). Considering the GLI(γ, γ) of twice the same non-
self-intersecting smooth curve γ, then the double integral (taking the
domain of integration outside the diagonal of I × I) defines another
geometric invariant of the curve, known as writhe or writhing number of
γ. Despite their resemblance, the GLI and the writhe measure different
quantities: consider a normal vector field v of length ϵ > 0 on γ, and
the curve γv of endpoints of the vector field v, which is embedded
and in one-to-one smooth correspondence with γ for sufficiently small
ϵ. Then the GLI of these two close copies of the same γ differs from
the writhe in GLI(γ, γv) − GLI(γ, γ) equal to the total twist of v.
This result is known as the Călugăreanu-White-Fuller theorem (see
[90]). However, both indexes, GLI and writhe, are non-informative for
planar curves, since they both vanish.

The GLI has been used for many applications after a version of
the above formula for polygonal curves appeared in the context of
DNA protein structures [68], with additional efficient formulations
given in [66], from which we have chosen the following: given a
discretization of the curves into N and M segments, that is, γ1 =

{γPi Pi+1 , i = 1, . . . , N} and γ2 = {γQiQi+1 , i = 1, . . . , M}, where each
segment is parameterized as γAB(s) = A + sA⃗B for s ∈ [0, 1], then the
GLI between both curves is

GLI(γ1, γ2) =
1

4π

N

∑
i=1

M

∑
j=1

GLI(γPi Pi+1 , γQiQi+1) (7.2)

where the GLI between a pair of segments γAB and γCD is computed
as

GLI(γAB, γCD) = arcsin(⃗nAn⃗D) + arcsin(⃗nDn⃗B)

+ arcsin(⃗nBn⃗C) + arcsin(⃗nCn⃗A)
(7.3)

with

n⃗A = ∥A⃗C× A⃗D∥, n⃗B = ∥B⃗D× B⃗C∥,
n⃗C = ∥B⃗C× A⃗C∥, and n⃗D = ∥A⃗D× B⃗D∥.

The above discrete formula was used by Ho [54] to identify and
synthesize animated characters in intertwined positions [53, 54]. In the
context of robotics, the GLI has been applied to representative curves
of the workspace to guide path planning through holes [57, 124], for
guiding caging grasps in [91, 107, 108], and for planning humanoid
robot motions, using the GLI to guide reinforcement learning [123].
In this work, for the first time, we develop a further analysis of the
notion to be able to apply it to planar or almost planar curves, which
opens the door to a wider spectrum of applications.

7.3 derivation of the cloth coordinates 129

7.3 derivation of the cloth coordinates

As we have mentioned above, the GLI of two coplanar curves vanishes;
so for many configurations of robotic interest — configurations where
the cloth is nearly flat on a table, ready to be folded or already folded—
the GLI does not provide much information. Our aim in this section
is therefore to develop a similar index able to distinguish planar
configurations. We shall see that a natural index to consider is in fact
a directional derivative of the GLI, but to arrive at such an index we
must first make a few observations about the GLI when applied to
pairs of segments as in Equation (7.3); since the class of curves we will
be working with computationally are piece-wise linear.

7.3.1 GLI of two segments

Since two segments AB and CD are uniquely defined by the four
endpoints A, B, C, D ∈ R3, the GLI of two segments computed in
Equation (7.3) can be viewed as a function from (R3)4 ≡ R12 to R. To
emphasize that from now on we are considering segments we define
G : R12 → R as

G(A, B, C, D) = GLI(γAB, γCD) =
1

4π

∫ ∫
(γCD − γAB) · [γ′CD × γ′AB]

∥γCD − γAB∥3 .

(7.4)
Note that technically G is not defined in the whole of R12, since

it is not defined when γAB and γCD intersect. Next, we will find a
reformulation for G wherever it is defined.

Notice that the numerator in the integral expression of the GLI of
Equation (7.4) is constant (for any t and s) and equals

(γCD − γAB)·[γ′CD × γ′AB] =

= (A⃗C + tC⃗D− sA⃗B) · [C⃗D× A⃗B] =

= A⃗C · [C⃗D× A⃗B] =

= A⃗C · [(C⃗A + A⃗D)× A⃗B] =

= A⃗C · [A⃗D× A⃗B] = A⃗B · [A⃗C× A⃗D] =

= det(A⃗B, A⃗C, A⃗D)

the signed volume of the tetrahedron ABCD multiplied by 6. By
writing

V(A, B, C, D) = det(A⃗B, A⃗C, A⃗D)

and
I(A, B, C, D) =

1
4π

∫ ∫ 1
∥γCD − γAB∥3 ,

we have
G = V · I . (7.5)

130 semantic classification of cloth states

Now, it is clear that the GLI vanishes when the segments are copla-
nar because V = 0. Being G the product of two differentiable functions
and hence differentiable, it makes sense to consider its directional
derivative.

7.3.2 Directional derivative of the GLI

In this section, we discuss how to perturb G in order to make it
informative in planar settings.

Definition 13 (Directional derivative of G). Let vA, vB, vC, vD ∈ R3 be
arbitrary directions and AB, CD two non-intersecting segments. The
directional derivative of G at the point (A, B, C, D) in the direction of
v = (vA, vB, vC, vD) is defined as the limit

∂vG(A, B, C, D) = lim
ε→0

G((A, B, C, D) + ε(vA, vB, vC, vD))− G(A, B, C, D)

ε
.

Remark 7.3.1. Notice that this limit always exists since we have shown
that G is a differentiable function with respect to A, B, C, D. Moreover,
∂vG can be equivalently written as

lim
ε→0

GLI(γA∗B∗ , γC∗D∗)− GLI(γAB, γCD)

ε
,

where A∗ = A + εvA, B∗ = B + εvB, C∗ = C + εvC, D∗ = D + εvD and
ϵ is sufficiently small so that A∗B∗ and C∗D∗ do not intersect. Also,
from Equation (7.5) and by the product rule

∂vG = ∂v(V)I + V∂v(I),

hence ∂vG = ∂v(V)I when the segments γAB and γCD are coplanar.

Properties of ∂vG. By definition, ∂vG is invariant under translations,
rotations and scalings if v is rotated and scaled accordingly. These
properties are a consequence of the fact that the GLI is invariant under
such transformations. However, for a fixed choice of v, ∂vG will not
be invariant under rotations or scalings in general. For instance, no
fixed choice of v can make ∂vG invariant under scalings, since scaling
by a factor of λ scales I by 1

λ3 and ∇V by λ2, and similarly scales ∇I
by 1

λ4 and V by λ3, resulting in scaling ∇G by 1
λ . Depending on what

this index is used for, one must keep this scaling relationship in mind
or alternatively choose v depending on the segments. However, the
distance we will use to compare different cloth states only depends
on the correlation of values of the coordinates more than on the
magnitude. That is why we can ignore the scaling factor that would
appear when comparing two garments of different sizes (e.g. because
of different meshings).

Choice of v. This is highly task-specific, but given the nature of our
task –classifying planar cloth configurations based on affordances– it

7.3 derivation of the cloth coordinates 131

is natural to perturb the vertices in the direction normal to the table
plane. Making such a choice of v does in fact make ∂vG invariant under
rotations and translations of the XY plane, which is desirable for our
purposes since such movements of a cloth configuration have the same
affordances. Furthermore, to conserve the symmetry ∂vG(A, B, C, D) =

∂vG(C, D, A, B), we must perturb A and C by the same amount and
direction, and the same is the case with B and D. Finally, it is easy to
see that in fact perturbing A and C both by the same amount normal
to the plane yields the same result as perturbing B and D by the same
amount in the opposite direction, so it really only makes sense to
perturb A and C, or B and D, but not both pairs, and doing one or
the other is equivalent except for a sign change. In summary, the most
natural choice of v in our case is

v := (⃗0, e3, 0⃗, e3) (7.6)

(or v = (e3, 0⃗, e3, 0⃗), which is equivalent except for a sign change)
where e3 = (0, 0, 1) is the normal to the plane of the table on which
the cloth lies.

7.3.3 Practical computation of dGLI

We summarize the discussion of the previous section in the following
definition.

Definition 14 (dGLI of two segments). Given two non-intersecting
segments γAB and γCD, we define

dGLI(γAB, γCD) := lim
ε→0

GLI(γAB∗ , γCD∗)− GLI(γAB, γCD)

ε
, (7.7)

where B∗ = B + εe3, D∗ = D + εe3, e3 = (0, 0, 1) and each GLI
function can be computed using Equation (7.3). This index is invari-
ant under rotations and translations of the XY plane and moreover
dGLI(γCD, γAB) = dGLI(γAB, γCD).

Remark 7.3.2. We have analyzed numerically the limit defined in
Equation (7.7), and have found that it is sufficiently stable to be
computed as

dGLI(γAB, γCD) ≊
GLI(γAB∗ , γCD∗)− GLI(γAB, γCD)

ε

for a sufficiently small ε. Since we work with double precision floats
(which allow a precision of around 14-15 decimals), it is known (see
[35]) that when approximating derivatives numerically, one obtains
better results when choosing perturbations that only affect 7 or 8

decimal places, for instance, ε ≈ 10−8. This is the value taken in our
experiments.

132 semantic classification of cloth states

Remark 7.3.3. In practical implementations, we may well be com-
puting the dGLI between segments γAB and γCD that are very close
to intersecting (but not intersecting since the cloth has thickness),
and then dGLI(γAB, γCD) becomes very large. As having such big
quantities can dominate values of metrics and distances in a non-
representative way, in practice we set a maximum value to the dGLI
once it surpasses a fixed threshold.

7.3.4 Definition of the dGLI Cloth Coordinates

Since we are now equipped with a geometric index for pairs of seg-
ments, we are ready to introduce our cloth coordinates, which will
parametrize the shape-state space of a piece of cloth. We assign the
dGLI Cloth Coordinates to a cloth configuration C of a garment as
follows:

Definition 15 (dGLI of a cloth surface C). Given a discretization of
the boundary of the garment surface C as a polygonal curve, select an
ordered subset of edges of it SC = {Si : i = 1, . . . , m}. Then, the dGLI
Cloth Coordinates of configuration C is the upper triangular matrix

dGLI(C) =
(
dGLI(Si, Sj)

)
Si ,Sj∈SC ,i>j. (7.8)

To get an intuitive sense of what these upper triangular matrices
look like for some cloth configurations, see the examples in Figure
7.1. If we were interested in a general direction v, we would take the
dGLIv Cloth Coordinates

dGLIv(C) =
(
∂vG(Si, Sj)

)
Si ,Sj∈SC ,i>j.

Note that the full matrix when taking all the edges of the discretization
is the equivalent rationale to computing the GLI of a polynomial curve
used in [54, 68], where the GLI of all pairs of segments of the curves
where first assembled in what was there called the GLI matrix [54].

Figure 7.2: The subset of chosen segments is marked in red.

Choice of edges. The subset SC of edges chosen in the discretization
depends on the task one wants to carry out; tasks that demand finer
distinctions between configurations of a similar class would require
a greater subset of segments. For our task of classifying the configu-
rations into relatively broad classes, we found experimentally that a

7.4 results 133

good choice of segments is given by the eight segments adjacent to
the corner segments, marked red in Figure 7.2. This is a small subset
that is nevertheless enough to provide an accurate affordance-based
classification of near-to-flat configurations.

The upper triangular matrix in Equation (7.8), sorted as a vector,
is a coordinate system that reduces the infinite dimensionality of the
configuration space of cloth states to a mere m(m−1)

2 dimensional space.
In our case m = 8, so this comes out to 28 dimensions. This reduction
in dimensionality is well-suited and informative enough for practical
purposes, as the validation results in the next section will show.

7.4 results

In this section, we study the ability of the cloth coordinates previously
defined to tell apart different cloth states. First, we analyze 3 folding
sequences (see Figure 7.3). We will show that our representation is
capable of distinguishing different relevant cloth configurations (e.g.
one folded corner vs two folded corners). Then, we will apply our
method to a full data-base with 12 cloth classes (shown in Figure
7.4), and we will compare it to 4 alternative representations, proving
that ours is more capable of differentiating between cloth states. All
data in this section was simulated using the inextensible cloth model
described in Chapter 3. All simulations are performed with a square
cloth of dimensions 1m× 1m and each computational mesh has a
resolution of 400 nodes. A small amount of shearing (see Section 2.4.6)
is allowed in order to facilitate the more complicated foldings. Finally,
we will apply a simple classification method using our representation
to real images of folded cloth states.

In order to compare different cloth configurations, once they are
represented with our cloth coordinates dGLI(C) ∈ R28, it is important
to use a proper distance. Due to the scaling factor that we analyzed
in the previous section, the most suitable distance was the Spearman’s
distance. Given two vectors x, y it is defined as

d(x, y) = 1− ρ(R(x), R(y)), (7.9)

where ρ is the Pearson correlation coefficient, and R(x) is the rank
variable of x (i.e. ordering the coordinates of x from lowest to greatest
and then assigning to each coordinate its position in the ranking).
This distance assesses how well the relationship between two vectors
x, y can be described using any monotonic function (not only a line).
We found this distance to be more sensitive to changes of the cloth
configuration than the euclidean distance. This may be due to the fact
that this distance focuses on the ranking order between coordinates
(with sign) rather than comparing their magnitudes, which is most
relevant in our representation. Note that the Spearman’s distance is

134 semantic classification of cloth states

bounded with values between 0 and 2 and ignores scaling factors
between different clothes.

Figure 7.3: Study of the index during 3 folding sequences. In the left column,
we show a representation of the cloth frames, and in the right
column the confusion matrix of all of them. In red we highlight
the clear class changes that can be identified.

7.4.1 Analysis of folding sequences

The first test compares different cloth states inside a folding sequence.
Given the motion of the cloth {C1, . . . , Cm}, where m is the number of
discrete frames and Ci is the state of the cloth at ti, we compute the con-
fusion matrixMij = d(dGLI(Ci), dGLI(Cj)). The 3 folding sequences,
shown at the left side of Figure 7.3 are: folding two opposite corners,
folding 4 corners inwards, and folding the cloth in half. The results can
be seen on the right side of the figure. Notice how our representation
detects changes during the sequence that are topologically meaningful.
For example, in Seq. 1, folding two opposite corners, at frame 7, there
is a topological change, since a corner changes the orientation from flat

7.4 results 135

to folded, even before it is released. This can be seen in the confusion
matrix (first two blue squares). This is also clear in Seq. 2, where four
corners are folded inwards. Moreover, our method also detects when
edges of the cloth cross (Seq. 1, frame 24, Seq. 3, frame 23). These
changes are also meaningful from the manipulation point of view, as
they afford different possible graspings or actions.

Figure 7.4: Confusion matrix that computes all the distances between the
states shown in the top table.

7.4.2 Confusion matrix of the full data-base

We now analyze a complete data-base consisting of 120 examples
classified in 12 different classes of states, shown in Figure 7.4. Most of
them are self-explanatory. Note that in class 10, the upper left corner
is folded under the cloth (likewise for class 11).

Each class has 10 samples corresponding to the final state of the
cloth during a folding sequence simulation. We manually identified

136 semantic classification of cloth states

samples that we considered to belong to the same state. We want to
emphasize that once we fix an ordering of the corners, our method
distinguishes, for example, between different folded corners and this
does not contradict the rotational invariance previously shown.

Again we compute the confusion matrixMij = d(dGLI(Ci), dGLI(Cj))

where Ck is the kth example of the database. We order the samples,
so that the samples from the same classes are consecutive. This way,
the plot is more easily interpretable. In Figure 7.4 we can see how the
classes group without confusion: i.e. the distance between members of
a class tends to be smaller (color blue) than the distance to examples
outside the class (color yellow).

The confusion matrix shows us interesting insights about our rep-
resentation. For instance, we can see that the two classes 01 and 04

are relatively closer than others. That is because the relative position
of all edges is indeed the same in these classes, resulting in a smaller
distance in our representation. The same phenomenon can be seen
between classes 05 and 12 in some cases, as they are indeed classes
with similarities (in 05 the two corners do not cross, whereas in 12

they do). However, classes 03 and 11, which differ on whether or not
the folding makes one side of the cloth hide its opposite, are perfectly
separated. The borderline cases, that is, the fourth element in class
03 and the first element in class 11 are very similar, but our method
distinguishes them because of the relative geometric position between
edges (i.e. in these two cases, they are flipped). A similar thing occurs
between classes 02 and 10. It is also worth mentioning that some
classes that we have labeled as the same class have clear sub-classes
shown in the confusion matrix. That is the case for classes 05, 07 and
08. These are folded corners with different orientations. It is possible,
using our representation, to induce a partition of the space in order to
separate this type of class into two.

7.4.3 Comparison with other shape representations

In this subsection, we perform a more quantitative comparison of our
state representation with other competing methods in representing
shapes. To evaluate a shape representation, we use the standard Davies-
Bouldin index to measure cluster separation [27]:

DB =
1
n

n

∑
i=1

max
j ̸=i

(
σi + σj

d(ci, cj)

)
(7.10)

where n is the number of classes (e.g. in the data-base it is 12), ci is
the centroid of class i (the average of the coordinates of members of
class i), σi is a dispersion measure computed as the average distance
of all elements in class i to the centroid ci and d(ci, cj) is the distance
between centroids ci and cj. With the given classification in Figure 7.4

7.4 results 137

Table 7.1: Comparison between different shape representations*

database sequence i sequence ii sequence iii

dGLI 0.73 0.27 0.18 0.21

Edges 1.60 0.68 0.77 0.51

Corners 2.49 0.98 1.61 3.14

Fréchet 0.99 0.69 0.76 0.48

Hausdorff 1.45 0.71 0.84 0.49

*Each number is the Davies-Boulding index introduced in Equation
(7.10), that measures cluster separation quality. A smaller value means
a better separation. We mark in bold the smallest values in each
column.

taken as ground truth, we want a representation that gives a small
dispersion inside a class and a high distance between the classes,
resulting in a low index. The representation and distance with the
smallest DB is considered the one that better separates these clusters,
and therefore, the best representation to identify different cloth states.

First, we use two simple cloth representations using similar low-
level features like the ones we used:

(i) Edges: for a given mesh we select the edges shown in Figure 7.2
and compute their pairwise minimal distance, i.e. for each pair
of segments Si and Sj in SC

vij = min
x∈Si ,y∈Sj

||x− y||

This results in a representation vector v = (vij)j>i of length 28

just like those of the dGLI coordinates (notice that unlike the
dGLI, the coordinates of this vector are always non-negative). We
use the Spearman’s distance to compare two different samples.
This representation is invariant under rigid motions of the plane.

(ii) Corners: for a given mesh we compute the pairwise distance
between its 4 corners pk, i.e. vij = ||pi − pj||. These are 6 non-
negative numbers v = (vij)j>i that can be computed for any
rectangular cloth, they are invariant by rigid motions and they
give a trivial representation of the state of the cloth. We also use
Spearman’s distance to compare different samples.

In addition, we compare us with two classic methods to measure the
distance between curves and polygons [5, 114], taking the full discrete
boundary curve of the cloth as the state representation:

138 semantic classification of cloth states

(iii) Fréchet: to compare two different samples we compute the (dis-
crete) Fréchet distance [3] between the curves. Let C1 and C2 be
two continuous spatial curves, and α, β : [0, 1]→ R3 parametriza-
tions of them. Then, the Fréchet distance between the curves is
defined as

dF(C1, C2) = inf
α,β

sup
t∈[0,1]

||α(t)− β(t)||,

where the infimum runs over all possible reparametrizations of
the curves. The previous formula can be efficiently computed
when the curves are polygons [3]. This is a distance that takes
into account the location and ordering of the points along the
curves. Since this distance is not invariant by rigid motions,
special care must be taken to center and align the samples before
comparing them. In order to do so we center the curves at the
origin and perform a rigid alignment by computing the rotation
that minimizes the distance between the curves’ points.

(iv) Hausdorff: to compare two different samples we compute the
(discrete) Hausdorff distance between the boundary curves [51].
This distance can be defined as:

dH(C1, C2) = max

{
sup
x∈C1

d(x, C2), sup
y∈C2

d(C1, y)

}
,,

where as before C1 and C2 are the (piece-wise linear) curves, and
d(·) is the euclidean distance. Informally, two curves are close
in the Hausdorff sense if every point of either curve is close
to some other point of the other one. This distance disregards
the fact that the sets it is comparing are curves and therefore is
expected to be less sensitive than the Fréchet distance. As before,
since this distance is not invariant by rigid motions, we center
and align the samples before comparing them.

In Table 7.1, we display the computation of the DB index for our
dGLI coordinates and the four discussed methods, using as testing
scenarios the full data-base and the 3 folding sequences presented
before (taking as classes those depicted in Figure 7.3). As seen in the
table, our method results in the lowest overall DB in all 4 scenarios,
indicating that our method is the one among those studied that best
represents the different folded states of the cloths.

7.4.4 Real images classification

Once checked that our method was able to represent folded states
of cloth accurately, we implemented a simple classifier of real folded
cloth states to highlight its applicability. In order to do so, synthetic
representative elements of each class in the data-base shown in Figure

7.4 results 139

7.4 are chosen, and we estimate the class of a new real unclassified
sample by choosing its closest representative, using the Spearman’s
distance. As we can see in the confusion matrix in Figure 7.4, some
classes have a bigger dispersion in distance because of the variation in
orientations of the corners. For these classes, we have chosen 3 different
representatives, corresponding to the three different subgroups that
can be clearly seen in the confusion matrix. We show the silhouette of
the representatives chosen for each class in Figure 7.5.

Figure 7.5: Synthetic representatives chosen for each class. When only one
is chosen, it is the closest to the centroid of the class. When a
class has more sparsity, additional representatives are chosen to
represent the subgroups in the class.

The real images are taken from a zenithal position at 52 cm from the
table using a Microsoft Azure Kinect DK 3D camera. A single napkin
is used with 3 colored stickers attached along each edge, close to a
corner and on both sides. We first use color segmentation to detect the
center of each sticker and get the corresponding 3D point from the
depth image. Once all markers are detected, with our combinations of
colors on each edge, we can identify each individual corner of the cloth
(there are four stickers of the same color around each corner), and
its corresponding edge positions, following the same edge selection
as in Figure 7.2. The obtained size of the observed edges is more
than 400 times larger than the edges of the samples of the simulated
data-base, but thanks to the Spearman’s distance used, this does not
affect the distance values when comparing shapes of different sizes.
The table in Figure 7.6 shows the results of the classification. The only
miss-classification is the last image of class 04. However, note that this
is a very extreme case where the cloth is almost flat, and therefore, it
is confused with the flat class 01. This is a reasonable mistake, as this
cloth can be considered flat enough.

140 semantic classification of cloth states

Figure 7.6: Results of the real image classification using the data-base pre-
sented in Figure 7.4 as reference. The first column shows the
ground truth class of the images, and at the bottom of every
image the classified class.

Notice that we can only perceive those textiles with all the stickers
visible, therefore, classes with hidden edges, like for instance classes
from 09 to 12 where the folding is under the cloth are not present in
the real set of samples. However, the classifier still used all 12 classes
of the simulated data-base. This shows that the missing classes don’t
create confusion in the classification process.

7.4.5 Discussion of the results

Our results show we can identify the topologically relevant changes
along folding sequences, just by using a distance between the dGLI
Cloth Coordinates as vectors. This same representation has allowed us
to distinguish 12 different classes generated with the inextensible cloth
simulator. These are promising results towards a low-dimensional

7.4 results 141

representation that can be used for high-level identification of states,
but is still linked to low-level features such as the location of the border,
which are fundamental to executing physical actions. Moreover, the
fact that using our representation we can successfully classify real
configurations of cloth from synthetically generated samples, as seen
in Figure 7.6, shows great promise for applications in planning for
cloth manipulation.

One limitation of our approach is that it assumes that the cloth
boundaries are known. However, perception algorithms are starting
to show solutions to overcome this problem. For instance, in [95]
a method is developed to detect parts of clothes suitable for grasp-
ing. More recently, the deep-learning approach presented in [94] can
identify corners and edges, but does not yet identify the full border.
Our group is working on deep-learning methods to hallucinate the
full border given an image of the cloth. Despite this limitation, our
approach as it stands can be fully used in simulation, for instance, to
automatically label cloth states.

8
C O N C L U S I O N S

Part I: modeling cloth

In this first part of the thesis, we presented a continuous model
for the mechanical simulation of inextensible textiles, i.e. isometric
motion of surfaces subject to the postulates of Classical Mechanics.
Continuity is important because it guarantees that the model is very
stable under different resolutions, allowing coarse meshes to be used
(e.g. in robotic applications) soundly. On the other hand, inextensibility
as implemented permits the conservation of area within an error of
less than 1% without exhibiting locking and moreover, simplifies the
empirical validation of the model, reducing drastically the number
of parameters to be fitted since stretching and shearing forces are no
longer needed. We derived this novel model of inextensibility as a
set of continuous constraints (in fact PDEs) and then applied a non-
trivial Finite Element discretization to these conditions. The model
was shown to be locking-free, independent with respect to different
meshed topologies, stable when the mesh is refined and capable of
dealing with non-trivial cloth topologies (a tank-top). These properties
make our model ideal for planning and control of cloth, manipulated
by robots.

Then, we delved into the problem of modeling collisions, including
the response. We incorporate contacts with an object (using Signorini’s
conditions), self-collisions and Coloumb friction into the equations
of motion. Our collision model considers all constraints (inextensi-
bility and contacts) and friction forces at the same time without any
decoupling. We developed a novel numerical discretization of contact
and friction forces that can be seen as a natural extension of the fast
projection algorithm presented in [44] in order to include inextensibility,
contacts and friction in a single pass. This discretization led naturally
to a sequence of quadratic problems with inequality constraints. We
presented a novel active-set method tailored to our problem which
takes into account past active constraints to accelerate the resolution
of unresolved contacts. The main advantage of this new algorithm
with respect to standard active-set methods is its ability to start from
any point and not necessarily from a feasible one. To close the chapter
we showed that our model of friction is effective in static and dynamic
settings, that collisions with sharp objects can be easily included and
that complex folding sequences of cloth with non-trivial topologies (a
pair of shorts) can be simulated.

143

144 conclusions

Thirdly, we studied how faithfully our inextensible model is able
to reproduce recordings of real textiles under different circumstances.
First, we recorded the motion of four (size A3) textiles with a depth
camera. The fabrics were shaken by a robotic WAM arm using two
sets of different amplitudes and frequencies. The results are accurate:
even with a coarse 9 × 9 mesh, the mean error stays under 5mm
for different textiles and both fast and slow motions. Besides, the
calibration depends only on two physical parameters. Moreover, in
a novel, and remarkably simple way, those two parameters take into
account even the aerodynamic perturbations to motion, which for
cloth are harder to model than for rigid, even vibrating bodies.

We then performed a second more exhaustive set of recordings
than before by adding a new twisting movement and a larger cloth
size (DIN A2). As before we estimated the optimal values of the two
physical parameters and the model achieved very low mean errors
(less than 1 cm) and standard deviations, even for the A2 textiles
and fast motions. Finally, we found a predictive formula in order to
obtain a priori estimates for the values of the parameters α and δ of
the model. This formula depends on the density of the textile, its
size and more importantly its speed. The formula was found to be
coherent between independent recordings of the textiles and moreover,
it produced parameter values that in turn still give rise to very low
absolute errors.

With the third round of experiments, we validated two different but
related aspects of the collision model: its ability to simulate properly
friction and to model the dynamics of fast and strong hits with a long
stick. We were able to model the most challenging scenario in this
thesis: the DIN A2 cloths were held by its two upper corners and then
hit repeatedly at different locations and varied intensities with a stick.
The average errors are still of the order of 1 cm and we were able to
properly simulate the hits, appearing the biggest errors not during
the hits but just after because of aerodynamic effects. The simulations
are two times faster than real-time (for the hitting scenario with a
7× 9 mesh), being our novel active-set solver three times faster than a
standard interior-point method using the same mesh resolution.

Part II: reconstructing surfaces

In this second part, we studied the problem of reconstructing surfaces
from point-clouds. We presented an algorithm that successfully recon-
structs a surface S by finding a Morse cellular decomposition from
a cloud of sampled points. The algorithm can be applied to surfaces
in RN for any ambient dimension N, with or without boundary. We
reconstructed with our method three different surfaces (one without
boundary –a torus– and two with it –a vest and a pair of pants–) which
posed various challenges. For instance, the torus was really slim and its

conclusions 145

embedding described a (2,3)-toric knot which caused far away parts of
the surface (as measured by geodesic distance) to be really near each
other in euclidean space. On the other hand, the pants were obtained
as a 3D-scan of a real pair of jeans and thus its point-cloud presented
wrinkles, noise and an irregular density distribution of points. For all
surfaces, a global piecewise decomposition was found, with a very
small number of pieces in the examples examined. From the cellular
decomposition, the topology of the surface can be deduced immedi-
ately. Moreover, the algorithm is robust: it always produces a surface,
and it captures the topological features of the sampled surface with a
size greater than the average distance between sample points.

Part III: classifying cloth states

In this last part, we studied theoretical properties of developable sur-
faces, i.e. smooth surfaces with Gaussian curvature 0: since the original
state of a piece of cloth is flat, the set of possible states under the inex-
tensible assumption is the set of developable surfaces isometric to a
fixed one. We proved that a generic simple, closed, piecewise regular
curve in space can be the boundary of only finitely many developable
surfaces. For problems such as the study of cloth dynamics, it is not
necessary for the boundary problem to have a unique solution. It suf-
fices to know that it will always have a finite set of solutions, because
this solution set is then discrete, with different solutions separated
by a nontrivial jump in the coordinates of the surface. This implies
that during a continuous cloth motion, the position of a garment is
determined by the location of its boundary and its initial state. The
relevance of this result justifies theoretically our choice of defining
the dGLI cloth coordinates based only on the position of the cloth
boundary.

In the second chapter of this part, we introduced the dGLI Cloth
Coordinates, a representation for cloth configurations based on a direc-
tional derivative of the Gauss Linking Integral that vastly reduces the
dimensionality of the configuration space. This reduced representation
nevertheless preserves enough information about the configurations
to be able to distinguish them based on their grasping affordances
(i.e. how they can be manipulated) using Spearman’s distance. These
coordinates bridge the gap between low-level features of different
cloth configurations, such as the location of corners and edges, to high-
level semantic identification of cloth states (e.g. how they are folded).
Moreover, the fact that using our representation we could success-
fully classify real configurations of cloth from synthetically generated
samples, as seen in Figure 7.6, shows great promise for applications
in planning for cloth manipulation. Furthermore, our representation
allows for different choices of the subset of edges chosen to compute
the coordinates, so that one can fine-tune the representation to the

146 conclusions

specific task at hand to boost results. Lastly, since our method is not
learning-based, it does not require any training data, it is completely
explainable, and it is robust against possible configurations that are
not in the training set.

8.1 further work

Currently, we are working on overcoming occlusions when recording
the motion of the garments. When parts of the cloth are not visible
some of the time, we need to apply an identification scheme to our
laboratory recordings to identify with accuracy these regions when
they appear once again in the limelight. This re-identification scheme,
which must have an error smaller than that of our model (i.e. in the
mm range), is still under development. This would allow the recording
of more complex garments, such as t-shirts. Moreover, the developed
cloth model is expected to be included in a Virtual Reality environment
so that data collection can be made faster and easier.

On the more theoretical side of things, the authors hope to carry
out the program outlined in Chapter 6: to subdivide a developable
surface S in patches according to the sign of its mean curvature, and
follow its motion in a dynamical system by tracking the boundaries
of the patches. This approach is promising because it works with a
1-dimensional set of space coordinates that satisfy few restrictions,
rather than with a 2-dimensional set of space coordinates that are
heavily restricted because of the assumption of isometry.

Future work also concerns an in-depth analysis of the configuration
space defined by our dGLI coordinates. In particular, we would like
to identify a partition of the space that corresponds to a partition
of configurations by grasping affordance, which states are neighbors
in this partition, and what the shortest paths from one state to an-
other are. We look forward to carrying out this study analytically as
well as through learning methods, which we believe will give better
results when the data is enriched and given structure through our
representation.

Finally, we intend to test the reconstruction algorithm with more real
point-clouds of various textiles (i.e. as obtained with a 3D-scanner).
This would allow the creation of a reconstructed data-base of textiles
that could be later simulated with the inextensible model. Furthermore,
we expect to extend the point-cloud reconstruction algorithm for
surfaces to higher dimensional manifolds by iterating the hyperplane
sections, and reconstructing the manifold from lower dimensional
slices. A further extension would be to the study of real algebraic
varieties of any dimension, where point cloud samples can be obtained
from their equations and refined where necessary. This is hoped to
lead our method to detect a Whitney stratification, and the Morse

8.1 further work 147

cellular decomposition after [46] of the variety, by purely numerical
methods.

P U B L I C AT I O N S

Some of the research leading to this thesis has appeared previously in
the following publications.

Journal Articles

• Franco Coltraro, Jaume Amorós, Maria Alberich-Carramiñana
and Carme Torras: An inextensible model for the robotic ma-
nipulation of textiles. Applied Mathematical Modelling, Vol. 101

(2022), pp 832-858. DOI: https://doi.org/10.1016/j.apm.2021
.09.013.

Proceedings

• Maria Alberich-Carramiñana, Jaume Amorós and Franco Coltraro.
Developable surfaces with prescribed boundary. In Extended
Abstracts GEOMVAP 2019, 127-132. Springer-Birkhäuser, 2021.

Under review

• F. Coltraro, J. Fontana, J. Amorós, M. Alberich-Carramiñana, J.
Borràs and C. Torras. A Representation of Cloth States based on
a Derivative of the Gauss Linking Integral. Applied Mathematics
and Computation.

Under preparation

• F. Coltraro, J. Amorós, M. Alberich-Carramiñana and C. Torras.
The isometric strain model for cloth simulation: contacts, friction,
self-collisions, aerodynamics, and experimental validation.

• F. Coltraro, M. Verdaguer, J. Amorós, M. Alberich-Carramiñana
and C. Torras. Morse cell decomposition and parametrization of
surfaces from point-clouds.

Conferences and talks

• Mechanics of inextensible surfaces. Workshop Trobada GEOM-
VAP (Geometry of varieties and Applications Group). Cardona, Spain.
January 23th, 2018.

149

https://doi.org/10.1016/j.apm.2021.09.013
https://doi.org/10.1016/j.apm.2021.09.013

150 conclusions

• Collisions and friction for inextensible cloth simulation. Con-
ference Women in Geometry and Topology (organized by GEOMVAP).
Barcelona, Spain. September 26th, 2019.

• Morse cell decomposition and parametrization of surfaces
from point-clouds. XVII EACA 2022 (Encuentro Álgebra Computa-
cional y Aplicaciones). Castellón, Spain. June 21th, 2022.

• Contacts, friction and self-collisions for inextensible cloth.
XXVII CEDYA 2022 (Congreso de Ecuaciones Diferenciales y Aplica-
ciones). Zaragoza, Spain. July 21th, 2022.

• Experimental validation of an inextensible cloth model. AICA
2022 (Applications to Industry of Computational Algebra). Barcelona,
Spain. November 10th, 2022.

• Mathematical problems related to the robotic manipulation of
cloth. Seminar at Departamento Matemática Aplicada I, Universidad
de Sevilla. Seville, Spain. November 17th, 2022.

Supervision of Bachelor’s and Master’s theses

• Román Arañó Llach, July 2020. Validación del modelo de tela
del proyecto Clothlide mediante la simulación y el cálculo
numérico. Bachelor Thesis. UPC, Escola Tècnica Superior d’Enginyeria
Industrial de Barcelona, Departament de Matemàtiques. (Co-
directed with Jaume Amorós).

• José Maria Julià, February 2022. Primeros pasos en el control
de la tela por simulación isométrica. Master Thesis. UPC, Escola
Tècnica Superior d’Enginyeria Industrial de Barcelona, Departa-
ment de Matemàtiques.

• Julen Antonio Echevarria, April 2022. Manipulació robòtica de
tela: percepció i ajust de model. Bachelor Thesis. UPC, Escola Tèc-
nica Superior d’Enginyeria Industrial de Barcelona, Departament
de Matemàtiques.

Part IV

A P P E N D I X

A
A P P E N D I X

a.1 tables

Table A.1: Summary of results of the aerodynamic study for the first repeti-
tion (with bare hands) of the experiments. For all the 32 recordings
we display the characteristics of the recording (fabric, size, motion
and speed), and the optimal value of the fitted parameters along
with their associated absolute error and spatial standard deviation.

153

154 appendix

Table A.2: Summary of results of the aerodynamic study for the second repe-
tition (with hanger) of the experiments. For all the 32 recordings
we display the characteristics of the recording (fabric, size, motion
and speed), and the optimal value of the fitted parameters along
with their associated absolute error and spatial standard deviation.

A.2 figures 155

a.2 figures

Figure A.1: Four frames comparing the recorded hitting of A2 denim (left)
with its inextensible simulation (right); being its average error
0.98 cm. On the right, we show a full plot (vertically) of the
absolute error and with yellow lines we highlight the moments
in which the stick is in contact with the cloth.

156 appendix

Figure A.2: Four frames comparing the recorded hitting of A2 wool (left)
with its inextensible simulation (right); being its average error
1.39 cm. On the right, we show a full plot (vertically) of the
absolute error and with yellow lines we highlight the moments
in which the stick is in contact with the cloth.

B I B L I O G R A P H Y

[1] Vincent Acary and Bernard Brogliato. Numerical methods for non-
smooth dynamical systems: applications in mechanics and electronics.
Springer Science & Business Media, 2008.

[2] Jürgen Adlinger, Isaac Klapper, and Michael Tabor. “Formulae
for the calculation and estimation of writhe.” In: Journal of Knot
Theory and Its Ramifications 4 (1995), pp. 343–372.

[3] Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and
Micha Sharir. “Computing the discrete Fréchet distance in
subquadratic time.” In: SIAM Journal on Computing 43.2 (2014),
pp. 429–449.

[4] Eren Erdal Aksoy, Alexey Abramov, Johannes Dörr, Kejun
Ning, Babette Dellen, and Florentin Wörgötter. “Learning the
semantics of object–action relations by observation.” In: Inter-
national Journal of Robotics Research 30.10 (2011), pp. 1229–1249.

[5] Helmut Alt and Michael Godau. “Computing the Fréchet dis-
tance between two polygonal curves.” In: International Journal of
Computational Geometry & Applications 5.01n02 (1995), pp. 75–91.

[6] Paola F. Antonietti, Paolo Biscari, Alaleh Tavakoli, Marco Ve-
rani, and Maurizio Vianello. “Theoretical study and numeri-
cal simulation of textiles.” In: Applied Mathematical Modelling
35.6 (2011), pp. 2669–2681. issn: 0307-904X. url: https://www.
sciencedirect.com/science/article/pii/S0307904X10004725.

[7] Román Aranyó Llach. Validación del modelo de tela del proyecto
Clothlide mediante la simulación y el cálculo numérico. Universitat
Politècnica de Catalunya, Degree Thesis, 2020. url: http://
hdl.handle.net/2117/330056.

[8] Ivo Babuška and Manil Suri. “Locking effects in the finite
element approximation of elasticity problems.” In: Numerische
Mathematik 62.1 (1992), pp. 439–463. issn: 0945-3245. url: https:
//doi.org/10.1007/BF01396238.

[9] David Baraff, Andrew P. Witkin, and Michael Kass. “Untan-
gling cloth.” In: ACM SIGGRAPH 2003 Papers (2003).

[10] David Baraff and Andrew Witkin. “Large Steps in Cloth Simu-
lation.” In: Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’98. New York,
NY, USA: ACM, 1998, pp. 43–54. isbn: 0-89791-999-8. url:
http://doi.acm.org/10.1145/280814.280821.

157

https://www.sciencedirect.com/science/article/pii/S0307904X10004725
https://www.sciencedirect.com/science/article/pii/S0307904X10004725
http://hdl.handle.net/2117/330056
http://hdl.handle.net/2117/330056
https://doi.org/10.1007/BF01396238
https://doi.org/10.1007/BF01396238
http://doi.acm.org/10.1145/280814.280821

158 bibliography

[11] Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias
Teschner, and Miles Macklin. “A Survey on Position-Based Sim-
ulation Methods in Computer Graphics.” In: Computer Graphics
Forum 33.6 (2014), pp. 228–251. url: https://onlinelibrary.
wiley.com/doi/abs/10.1111/cgf.12346.

[12] Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin,
and Eitan Grinspun. “A Quadratic Bending Model for Inexten-
sible Surfaces.” In: Proceedings of the Fourth Eurographics Sympo-
sium on Geometry Processing. SGP ’06. Cagliari, Sardinia, Italy:
Eurographics Association, 2006, pp. 227–230. isbn: 3-905673-
36-3. url: http://dl.acm.org/citation.cfm?id=1281957.
1281987.

[13] T.S. Bhanumurthy and T.S.B. Murthy. A Modern Introduction to
Ancient Indian Mathematics. New Age International, 2009. isbn:
9788122426007. url: https://books.google.es/books?id=
VosxlQJjRDAC.

[14] Blender. https://www.blender.org/.

[15] Julia Borràs, Guillem Alenyà, and Carme Torras. “A Grasping-
Centered Analysis for Cloth Manipulation.” In: IEEE Transac-
tions on Robotics 36.3 (2020), pp. 924–936. doi: 10.1109/TRO.
2020.2986921.

[16] C. Bousquet-Jette, S. Achiche, D. Beaini, Y.S. Law-Kam Cio, C.
Leblond-Ménard, and M. Raison. “Fast scene analysis using
vision and artificial intelligence for object prehension by an
assistive robot.” In: Engineering Applications of Artificial Intelli-
gence 63 (2017), pp. 33–44. issn: 0952-1976. url: https://www.
sciencedirect.com/science/article/pii/S0952197617300799.

[17] Dietrich Braess. Finite elements. Theory, fast solvers and applica-
tions in elasticity theory. Berlin: Springer., 2007.

[18] Robert Bridson, Ronald Fedkiw, and John Anderson. “Robust
treatment of collisions, contact and friction for cloth anima-
tion.” In: ACM SIGGRAPH 2005 Courses (2005).

[19] Manfredo P. do Carmo. Differential Geometry of Curves and Sur-
faces. Prentice-Hall, 1976. isbn: 9780132125895.

[20] Frédéric Cazals, Andrea Roth, Charles H. Robert, and Mueller
Christian. “Towards Morse Theory for Point Cloud Data.” In:
Research Report RR-8331, INRIA. (2013), p. 37.

[21] Kwang-Jin Choi and Hyeong-Seok Ko. “Stable but Responsive
Cloth.” In: ACM Transactions on Graphics (TOG) 21.3 (July 2002),
pp. 604–611. issn: 0730-0301. url: http://doi.acm.org/10.
1145/566654.566624.

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12346
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12346
http://dl.acm.org/citation.cfm?id=1281957.1281987
http://dl.acm.org/citation.cfm?id=1281957.1281987
https://books.google.es/books?id=VosxlQJjRDAC
https://books.google.es/books?id=VosxlQJjRDAC
https://www.blender.org/
https://doi.org/10.1109/TRO.2020.2986921
https://doi.org/10.1109/TRO.2020.2986921
https://www.sciencedirect.com/science/article/pii/S0952197617300799
https://www.sciencedirect.com/science/article/pii/S0952197617300799
http://doi.acm.org/10.1145/566654.566624
http://doi.acm.org/10.1145/566654.566624

bibliography 159

[22] Kwang-Jin Choi and Hyeong-Seok Ko. “Research Problems
in Clothing Simulation.” In: Computer-Aided Design 37.6 (May
2005), pp. 585–592. issn: 0010-4485. url: http://dx.doi.org/
10.1016/j.cad.2004.11.002.

[23] Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and Miguel
A. Otaduy. “Yarn-Level Simulation of Woven Cloth.” In: ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia)
33.6 (2014). url: http://www.gmrv.es/Publications/2014/
CLMO14.

[24] David Clyde, Joseph Teran, and Rasmus Tamstorf. “Modeling
and Data-Driven Parameter Estimation for Woven Fabrics.” In:
Proceedings of the ACM SIGGRAPH / Eurographics Symposium on
Computer Animation. SCA ’17. Los Angeles, California: Associa-
tion for Computing Machinery, 2017. isbn: 9781450350914. url:
https://doi.org/10.1145/3099564.3099577.

[25] Adrià Colomé and Carme Torras. Reinforcement Learning of Bi-
manual Robot Skills. Volume 134 of Springer Tracts in Advanced
Robotics. Springer, 2020.

[26] Adrià Colomé and Carme Torras. “Dimensionality Reduction
for Dynamic Movement Primitives and Application to Biman-
ual Manipulation of Clothes.” In: IEEE Transactions on Robotics
34.3 (2018), pp. 602–615. doi: 10.1109/TRO.2018.2808924.

[27] David L. Davies and Donald W. Bouldin. “A Cluster Separation
Measure.” In: IEEE Transactions on Pattern Analysis and Machine
Intelligence PAMI-1.2 (1979), pp. 224–227. doi: 10.1109/TPAMI.
1979.4766909.

[28] Timothy A. Davis and William W. Hager. “Dynamic Supern-
odes in Sparse Cholesky Update/Downdate and Triangular
Solves.” In: ACM Transactions on Mathematical Software 35 (2009),
27:1–27:23.

[29] Markus Deserno. “Fluid lipid membranes: From differential
geometry to curvature stresses.” In: Chemistry and Physics of
Lipids 185 (2015), pp. 11–45.

[30] Tamal K. Dey. Curve and Surface Reconstruction: Algorithms with
Mathematical Analysis. Cambridge Monographs on Applied and
Computational Mathematics, 2006.

[31] Andreas Doumanoglou, Jan Stria, Georgia Peleka, Ioannis Mar-
iolis, Vladimir Petrik, Andreas Kargakos, Libor Wagner, Va-
clav Hlavac, Tae-Kyun Kim, and Sotiris Malassiotis. “Folding
Clothes Autonomously: A Complete Pipeline.” In: IEEE Trans-
actions on Robotics 32.6 (2016), pp. 1461–1478.

http://dx.doi.org/10.1016/j.cad.2004.11.002
http://dx.doi.org/10.1016/j.cad.2004.11.002
http://www.gmrv.es/Publications/2014/CLMO14
http://www.gmrv.es/Publications/2014/CLMO14
https://doi.org/10.1145/3099564.3099577
https://doi.org/10.1109/TRO.2018.2808924
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1109/TPAMI.1979.4766909

160 bibliography

[32] Elliot English and Robert Bridson. “Animating Developable
Surfaces Using Nonconforming Elements.” In: ACM TOG 27.3
(Aug. 2008), 66:1–66:5. issn: 0730-0301. url: http://doi.acm.
org/10.1145/1360612.1360665.

[33] Moritz Epple. “Orbits of Asteroids, a Braid, and the First Link
Invariant.” In: The Mathematical Intelligencer 20 (1998), pp. 45–
52.

[34] Olaf Etzmuss, Michael Keckeisen, and Wolfang Strasser. “A fast
finite element solution for cloth modelling.” In: 11th Pacific Con-
ference on Computer Graphics and Applications, 2003. Proceedings.
2003, pp. 244–251. doi: 10.1109/PCCGA.2003.1238266.

[35] J. Douglas Faires and Richard L. Burden. Numerical Methods,
4th. Cengage Learning, 2012. isbn: 9780495114765.

[36] Gerd Fischer and Jens Piontkowski. Ruled Varieties: An Intro-
duction to Algebraic Differential Geometry. Advanced Lectures in
Mathematics. Vieweg and Teubner Verlag, 2012. isbn: 9783322802170.

[37] Michael S. Floater and Kai Hormann. “Parameterization of
Triangulations and Unorganized Points.” In: Tutorials on Mul-
tiresolution in Geometric Modelling. 2002.

[38] L. Gan, N.G. Ly, and G.P. Steven. “A Study of Fabric Defor-
mation Using Nonlinear Finite Elements.” In: Textile Research
Journal 65.11 (1995), pp. 660–668. url: https://doi.org/10.
1177/004051759506501106.

[39] Jie Gao, Rik Sarkar, and Xianjin Zhu. “Morse-Smale Decom-
position , Cut Locus and Applications in Sensor Networks.”
In: Pre-print (2008). url: https://www.researchgate.net/
publication/228414975_Morse-smale_decomposition_cut_

locus_and_applications_in_wireless_sensor_networks.

[40] Irene Garcia-Camacho et al. “Benchmarking Bimanual Cloth
Manipulation.” In: IEEE Robotics and Automation Letters 5.2
(2020), pp. 1111–1118. doi: 10.1109/LRA.2020.2965891.

[41] Mohammad Ghalandari, Saeed Bornassi, Shahabbodin Shamshir-
band, Amir Mosavi, and Kwok Wing Chau. “Investigation of
submerged structures’ flexibility on sloshing frequency using
a boundary element method and finite element analysis.” In:
Engineering Applications of Computational Fluid Mechanics 13.1
(2019), pp. 519–528. url: https://doi.org/10.1080/19942060.
2019.1619197.

[42] Ayse Gider. An Online Fabric Database to Link Fabric Drape and
End-Use Properties. LSU Master’s Thesis. 3902, 2004. url: https:
//digitalcommons.lsu.edu/gradschool_theses/3902.

http://doi.acm.org/10.1145/1360612.1360665
http://doi.acm.org/10.1145/1360612.1360665
https://doi.org/10.1109/PCCGA.2003.1238266
https://doi.org/10.1177/004051759506501106
https://doi.org/10.1177/004051759506501106
https://www.researchgate.net/publication/228414975_Morse-smale_decomposition_cut_locus_and_applications_in_wireless_sensor_networks
https://www.researchgate.net/publication/228414975_Morse-smale_decomposition_cut_locus_and_applications_in_wireless_sensor_networks
https://www.researchgate.net/publication/228414975_Morse-smale_decomposition_cut_locus_and_applications_in_wireless_sensor_networks
https://doi.org/10.1109/LRA.2020.2965891
https://doi.org/10.1080/19942060.2019.1619197
https://doi.org/10.1080/19942060.2019.1619197
https://digitalcommons.lsu.edu/gradschool_theses/3902
https://digitalcommons.lsu.edu/gradschool_theses/3902

bibliography 161

[43] Herman Gluck. “Almost all simply connected closed surfaces
are rigid.” In: Geometric Topology. Ed. by Leslie Curtis Glaser
and Thomas Benjamin Rushing. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1975, pp. 225–239. isbn: 978-3-540-37412-1.

[44] Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier,
and Eitan Grinspun. “Efficient Simulation of Inextensible Cloth.”
In: vol. 26. 3. New York, NY, USA: ACM SIGGRAPH 2007 Pa-
pers, July 2007. url: http://doi.acm.org/10.1145/1276377.
1276438.

[45] Gene H. Golub. Matrix computations. John Hopkins University
Press, 1983.

[46] Mark Goresky and Robert MacPherson. Stratified morse theory.
Springer Verlag, 1988.

[47] Dongsoo Han. “Area Preserving Strain Limiting.” In: Work-
shop on Virtual Reality Interaction and Physical Simulation. Ed.
by Fabrice Jaillet, Florence Zara, and Gabriel Zachmann. The
Eurographics Association, 2015. isbn: 978-3-905674-98-9. doi:
10.2312/vriphys.20151340.

[48] David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tam-
storf, and Eitan Grinspun. “Asynchronous contact mechanics.”
In: SIGGRAPH 2009. 2009.

[49] David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan
Grinspun. “Robust treatment of simultaneous collisions.” In:
ACM SIGGRAPH 2008 papers (2008).

[50] John Hearle, Percy Grosberg, and Stanley Backer. Structural
mechanics of fibers, yarns, and fabrics. Vol. 1. New York: Wiley-
Interscience, 1969.

[51] Jeff Henrikson. “Completeness and total boundedness of the
Hausdorff metric.” In: MIT Undergraduate Journal of Mathematics
1.69-80 (1999), p. 10.

[52] Morris Hirsch. Differential Topology. Springer Verlag, 1976.

[53] Edmond SL Ho, Taku Komura, Subramanian Ramamoorthy,
and Sethu Vijayakumar. “Controlling humanoid robots in topol-
ogy coordinates.” In: 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE. 2010, pp. 178–182.

[54] Shu Lim Ho. “Topology-based character motion synthesis.”
PhD thesis. University of Edinburgh, 2011.

[55] Kai Hormann and Gunther Greiner. “Quadrilateral remesh-
ing.” In: Proceedings of Vision, Modeling and Visualization. 2000,
pp. 153–162.

[56] Jinlian Hu. Structure and mechanics of woven fabrics. The Textile
Institute and Woodhead Publishing Ltd (UK), 2004.

http://doi.acm.org/10.1145/1276377.1276438
http://doi.acm.org/10.1145/1276377.1276438
https://doi.org/10.2312/vriphys.20151340

162 bibliography

[57] Vladimir Ivan, Dmitry Zarubin, Marc Toussaint, Taku Komura,
and Sethu Vijayakumar. “Topology-based representations for
motion planning and generalization in dynamic environments
with interactions.” In: The International Journal of Robotics Re-
search 32.9-10 (2013), pp. 1151–1163.

[58] Rishabh Jangir, Guillem Alenya, and Carme Torras. “Dynamic
Cloth Manipulation with Deep Reinforcement Learning.” In:
IEEE International Conference on Robotics and Automation (ICRA),
Paris, France (2020), pp. 4630–4636.

[59] Michel Jean. “The non-smooth contact dynamics method.”
In: Computer Methods in Applied Mechanics and Engineering 177

(1999), pp. 235–257.

[60] Chenfanfu Jiang, Theodore Gast, and Joseph Teran. “Anisotropic
Elastoplasticity for Cloth, Knit and Hair Frictional Contact.”
In: ACM Transactions on Graphics 36.4 (July 2017), 152:1–152:14.
issn: 0730-0301. url: http://doi.acm.org/10.1145/3072959.
3073623.

[61] Pablo Jiménez. “Visual grasp point localization, classification
and state recognition in robotic manipulation of cloth: An
overview.” In: Robotics and Autonomous Systems 92 (2017), pp. 107–
125.

[62] Pablo Jimenez. “Learning in autonomous and intelligent sys-
tems: Overview and biases from data sources.” In: Arbor (Madrid)
197.802 (2022), a627: 1–a627: 12. url: http://hdl.handle.net/
2117/361981.

[63] Ning Jin, Wenlong Lu, Zhenglin Geng, and Ronald P. Fedkiw.
“Inequality Cloth.” In: Proceedings of the ACM SIGGRAPH /
Eurographics Symposium on Computer Animation. SCA ’17. Los
Angeles, California: ACM, 2017, 16:1–16:10. isbn: 978-1-4503-
5091-4. url: http://doi.acm.org/10.1145/3099564.3099568.

[64] Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Di-
nesh K. Pai. “Staggered projections for frictional contact in
multibody systems.” In: ACM Transactions on Graphics 27 (2008),
p. 164.

[65] S. Kawabata. The development of the objective measurement of fabric
handle. Kyoto, Textile Machinery Society, Japan: Eurographics
Association, 1982, pp. 31–59.

[66] Konstantin Klenin and Jörg Langowski. “Computation of writhe
in modeling of supercoiled DNA.” In: Biopolymers 54.5 (2000),
pp. 307–317. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/1097-0282%2820001015%2954%3A5%3C307%3A%

3AAID-BIP20%3E3.0.CO%3B2-Y.

[67] Markus Kunze. Non-Smooth Dynamical Systems. Vol. 1744. Springer,
Jan. 2000. isbn: 978-3-540-67993-6. doi: 10.1007/BFb0103852.

http://doi.acm.org/10.1145/3072959.3073623
http://doi.acm.org/10.1145/3072959.3073623
http://hdl.handle.net/2117/361981
http://hdl.handle.net/2117/361981
http://doi.acm.org/10.1145/3099564.3099568
https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-0282%2820001015%2954%3A5%3C307%3A%3AAID-BIP20%3E3.0.CO%3B2-Y
https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-0282%2820001015%2954%3A5%3C307%3A%3AAID-BIP20%3E3.0.CO%3B2-Y
https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-0282%2820001015%2954%3A5%3C307%3A%3AAID-BIP20%3E3.0.CO%3B2-Y
https://doi.org/10.1007/BFb0103852

bibliography 163

[68] Michael Levitt. “Protein folding by restrained energy minimiza-
tion and molecular dynamics.” In: Journal of molecular biology
170.3 (1983), pp. 723–764.

[69] Jie Li, Gilles Daviet, Rahul Narain, Florence Bertails-Descoubes,
Matthew Overby, George E. Brown, and Laurence Boissieux.
“An implicit frictional contact solver for adaptive cloth simula-
tion.” In: ACM Transactions on Graphics (TOG) 37 (2018), pp. 1

–15.

[70] Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. “Codi-
mensional incremental potential contact.” In: ACM Transactions
on Graphics (TOG) 40 (2021), pp. 1 –24.

[71] Yinxiao Li, Yonghao Yue, Danfei Xu, Eitan Grinspun, and Peter
Allen. “Folding Deformable Objects using Predictive Simula-
tion and Trajectory Optimization.” In: Proceedings IEEE/RSJ
International Conference on Intelligent Robots and Systems (Dec.
2015), pp. 6000–6006.

[72] Martina Lippi, Petra Poklukar, Michael C Welle, Anastasiia Var-
ava, Hang Yin, Alessandro Marino, and Danica Kragic. “Latent
Space Roadmap for Visual Action Planning of Deformable and
Rigid Object Manipulation.” In: IEEE/RSJ Int. Conf. on Intel. Rob.
and Syst. 2020, pp. 5619–5626.

[73] Xiang Liu and Lisheng Liu. “An immersed transitional inter-
face finite element method for fluid interacting with rigid/de-
formable solid.” In: Engineering Applications of Computational
Fluid Mechanics 13.1 (2019), pp. 337–358. url: https://doi.
org/10.1080/19942060.2019.1586774.

[74] D. W. Lloyd. “The Analysis of Complex Deformations.” In:
Mechanics of Flexible Fiber Assemblies (1980), pp. 311–342. url:
https://ci.nii.ac.jp/naid/10003779259/en/.

[75] Mickaël Ly, Jean louis Jouve, Laurence Boissieux, and Florence
Bertails-Descoubes. “Projective dynamics with dry frictional
contact.” In: ACM Transactions on Graphics (TOG) 39 (2020), 57:1
–57:8.

[76] Guanghui Ma, Juntao Ye, Jituo Li, and Xiaopeng Zhang. “Anisotropic
Strain Limiting for Quadrilateral and Triangular Cloth Meshes.”
In: Computer Graphics Forum 35 (2015).

[77] Tianlu Mao, Shihong Xia, and Zhaoqi Wang. “Evaluating sim-
plified air force models for cloth simulation.” In: 11th IEEE
International Conference on Computer-Aided Design and Computer
Graphics. 2009, pp. 81–86. doi: 10.1109/CADCG.2009.5246929.

[78] Jan Matas, Stephen James, and Andrew J Davison. “Sim-to-real
reinforcement learning for deformable object manipulation.”
In: Proceedings of Conference on Robotic Learning. 2018.

https://doi.org/10.1080/19942060.2019.1586774
https://doi.org/10.1080/19942060.2019.1586774
https://ci.nii.ac.jp/naid/10003779259/en/
https://doi.org/10.1109/CADCG.2009.5246929

164 bibliography

[79] Eder Miguel, Derek Bradley, Bernhard Thomaszewski, Bernd
Bickel, W. Matusik, Miguel Otaduy, and S. Marschner. “Data-
Driven Estimation of Cloth Simulation Models.” In: Computer
Graphics Forum 31 (May 2012), pp. 519–528. doi: 10.1111/j.
1467-8659.2012.03031.x.

[80] Stephen Miller, Jur Van Den Berg, Mario Fritz, Trevor Darrell,
Ken Goldberg, and Pieter Abbeel. “A geometric approach to
robotic laundry folding.” In: International Journal of Robotics
Research 31.2 (2012), pp. 249–267.

[81] Domen Mongus, B. Repnik, Marjan Mernik, and Borut Alik. “A
Hybrid Evolutionary Algorithm for Tuning a Cloth-simulation
Model.” In: Applied Soft Computing 12.1 (Jan. 2012), pp. 266–273.
issn: 1568-4946. url: http://dx.doi.org/10.1016/j.asoc.
2011.08.047.

[82] MuJoCo (Multi-Joint dynamics with Contact). http://www.mujoco.
org/index.html.

[83] James R. Munkres. Elements of algebraic topology. Addison-Wesley,
1984.

[84] Rahul Narain, Armin Samii, and James F. O’Brien. “Adaptive
Anisotropic Remeshing for Cloth Simulation.” In: ACM Transac-
tions on Graphics 31.6 (Nov. 2012), 152:1–152:10. issn: 0730-0301.
url: http://doi.acm.org/10.1145/2366145.2366171.

[85] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxer-
man, and Mark Carlson. “Physically Based Deformable Models
in Computer Graphics.” In: Computer Graphics Forum 25.4 (2006),
pp. 809–836. url: https://onlinelibrary.wiley.com/doi/
abs/10.1111/j.1467-8659.2006.01000.x.

[86] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
2e. New York, NY, USA: Springer, 2006.

[87] Miguel A. Otaduy, Rasmus Tamstorf, Denis Steinemann, and
Markus H. Gross. “Implicit Contact Handling for Deformable
Objects.” In: Computer Graphics Forum 28 (2009).

[88] S. A. Paipetis. “Mathematical modelling of composites.” In: De-
velopments in Composite Material-2-stress Analysis Holister (1981),
pp. 1–29.

[89] Phillip Joseph Phillips and Mary F. Wheeler. “Overcoming the
problem of locking in linear elasticity and poroelasticity: an
heuristic approach.” In: Computational Geosciences 13.1 (2009),
pp. 5–12. issn: 1573-1499. url: https://doi.org/10.1007/
s10596-008-9114-x.

[90] William F. Pohl. “DNA and differential geometry.” In: The
Mathematical Intelligencer 3 (1980), pp. 20–27.

https://doi.org/10.1111/j.1467-8659.2012.03031.x
https://doi.org/10.1111/j.1467-8659.2012.03031.x
http://dx.doi.org/10.1016/j.asoc.2011.08.047
http://dx.doi.org/10.1016/j.asoc.2011.08.047
http://www.mujoco.org/index.html
http://www.mujoco.org/index.html
http://doi.acm.org/10.1145/2366145.2366171
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2006.01000.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2006.01000.x
https://doi.org/10.1007/s10596-008-9114-x
https://doi.org/10.1007/s10596-008-9114-x

bibliography 165

[91] Florian T Pokorny, Johannes A Stork, and Danica Kragic. “Grasp-
ing objects with holes: A topological approach.” In: 2013 IEEE
international conference on robotics and automation. IEEE. 2013,
pp. 1100–1107.

[92] Xavier Provot. “Collision and self-collision handling in cloth
model dedicated to design garments.” In: Computer Animation
and Simulation. 1997.

[93] Xavier Provot. “Deformation Constraints in a Mass-Spring
Model to Describe Rigid Cloth Behavior.” In: Graphics Interface
23(19) (Sept. 2001).

[94] Jianing Qian, Thomas Weng, Luxin Zhang, Brian Okorn, and
David Held. “Cloth Region Segmentation for Robust Grasp
Selection.” In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2020, pp. 9553–9560.

[95] Arnau Ramisa, Guillem Alenyà, Francesc Moreno-Noguer, and
Carme Torras. “Learning RGB-D descriptors of garment parts
for informed robot grasping.” In: Engineering Applications of
Artificial Intelligence 35 (2014), pp. 246–258. issn: 0952-1976. url:
https://www.sciencedirect.com/science/article/pii/

S095219761400147X.

[96] Abdullah Haroon Rasheed, Victor Romero, Florence Bertails-
Descoubes, Stefanie Wuhrer, Jean-Sébastien Franco, and Ar-
naud Lazarus. “Learning to Measure the Static Friction Co-
efficient in Cloth Contact.” In: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2020), pp. 9909–
9918.

[97] Abdullah Haroon Rasheed, Victor Romero, Florence Bertails-
Descoubes, Stefanie Wuhrer, Jean-Sébastien Franco, and Ar-
naud Lazarus. “A Visual Approach to Measure Cloth-Body and
Cloth-Cloth Friction.” In: IEEE Transactions on Pattern Analysis
and Machine Intelligence PP (2021).

[98] Renzo L. Ricca and Bernardo Nipoti. “Gauss linking number
revisited.” In: Journal of Knot Theory and Its Ramifications 20

(2011), pp. 1325–1343.

[99] Javier Rodriguez-Navarro and Antonio Susin. “Non structured
meshes for Cloth GPU simulation using FEM.” In: Vriphys: 3rd
Workshop in Virtual Reality, Interactions, and Physical Simulation.
Ed. by Cesar Mendoza and Isabel Navazo. The Eurograph-
ics Association, 2006. isbn: 3-905673-61-4. doi: 10.2312/PE/
vriphys/vriphys06/001-007.

[100] José Sanchez, Juan-Antonio Corrales, Belhassen-Chedli Bouz-
garrou, and Youcef Mezouar. “Robotic manipulation and sens-
ing of deformable objects in domestic and industrial applica-

https://www.sciencedirect.com/science/article/pii/S095219761400147X
https://www.sciencedirect.com/science/article/pii/S095219761400147X
https://doi.org/10.2312/PE/vriphys/vriphys06/001-007
https://doi.org/10.2312/PE/vriphys/vriphys06/001-007

166 bibliography

tions: a survey.” In: The International Journal of Robotics Research
37.7 (2018), pp. 688–716. doi: 10.1177/0278364918779698.

[101] Jose Sanchez, Juan-Antonio Corrales, Belhassen-Chedli Bouz-
garrou, and Youcef Mezouar. “Robotic manipulation and sens-
ing of deformable objects in domestic and industrial applica-
tions: a survey.” In: International Journal of Robotic Research 37.7
(2018), pp. 688–716.

[102] Matthias W. Seeger. “Low Rank Updates for the Cholesky
Decomposition.” In: Technical Report (2004). url: https : / /

infoscience.epfl.ch/record/161468.

[103] Daniel Seita, Aditya Ganapathi, Ryan Hoque, Minho Hwang,
Edward Cen, Ajay Kumar Tanwani, Ashwin Balakrishna, Brijen
Thananjeyan, Jeffrey Ichnowski, Nawid Jamali, et al. “Deep
imitation learning of sequential fabric smoothing policies.”
In: IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2020, pp. 9651–9658.

[104] Michael Shelley and Jun Zhang. “Flapping and Bending Bod-
ies Interacting with Fluid Flows.” In: Annual Review of Fluid
Mechanics 43 (Jan. 2011), pp. 449–465. doi: 10.1146/annurev-
fluid-121108-145456.

[105] Breannan Smith, Danny M. Kaufman, Etienne Vouga, Rasmus
Tamstorf, and Eitan Grinspun. “Reflections on simultaneous
impact.” In: ACM Transactions on Graphics (TOG) 31 (2012), pp. 1

–12.

[106] Christian Smith, Yiannis Karayiannidis, Lazaros Nalpantidis,
Xavi Gratal, Peng Qi, Dimos V. Dimarogonas, and Danica
Kragic. “Dual arm manipulation - A survey.” In: Robotics and
Autonomous Systems 60.10 (2012), pp. 1340 –1353. issn: 0921-
8890. doi: https://doi.org/10.1016/j.robot.2012.07.005.

[107] Johannes A Stork, Florian T Pokorny, and Danica Kragic. “A
topology-based object representation for clasping, latching and
hooking.” In: 2013 13th IEEE-RAS International Conference on
Humanoid Robots (Humanoids). IEEE. 2013, pp. 138–145.

[108] Johannes A. Stork, Florian T. Pokorny, and Danica Kragic.
“Integrated motion and clasp planning with virtual linking.”
In: 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2013, pp. 3007–3014.

[109] Daisuke Tanaka, Solvi Arnold, and Kimitoshi Yamazaki. “EMD
Net: An encode–manipulate–decode network for cloth manip-
ulation.” In: IEEE Robotics and Automation Letters 3.3 (2018),
pp. 1771–1778.

[110] John R. Taylor. Classical Mechanics. University Science Books,
2005. isbn: 9781891389221.

https://doi.org/10.1177/0278364918779698
https://infoscience.epfl.ch/record/161468
https://infoscience.epfl.ch/record/161468
https://doi.org/10.1146/annurev-fluid-121108-145456
https://doi.org/10.1146/annurev-fluid-121108-145456
https://doi.org/https://doi.org/10.1016/j.robot.2012.07.005

bibliography 167

[111] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleis-
cher. “Elastically Deformable Models.” In: SIGGRAPH Com-
puter Graphics 21.4 (Aug. 1987), pp. 205–214. issn: 0097-8930.
url: http://doi.acm.org/10.1145/37402.37427.

[112] Bernhard Thomaszewski, Simon Pabst, and Wolfgang Strasser.
“Continuum-based Strain Limiting.” In: Computer Graphics Fo-
rum 28.2 (2009), pp. 569–576. url: https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1467-8659.2009.01397.x.

[113] Vitaly Ushakov. “The explicit general solution of trivial Monge-
Ampère equation.” In: Commentarii Mathematici Helvetici 75

(2000), pp. 125–133.

[114] Remco C Veltkamp and Michiel Hagedoorn. “State of the art
in shape matching.” In: Principles of visual information retrieval
(2001), pp. 87–119.

[115] Pascal Volino and Nadia Magnenat-Thalmann. “Accurate colli-
sion response on polygonal meshes.” In: Proceedings Computer
Animation 2000 (2000), pp. 154–163.

[116] Pascal Volino and Nadia Magnenat-Thalmann. “Resolving sur-
face collisions through intersection contour minimization.” In:
SIGGRAPH 2006. 2006.

[117] Huamin Wang, Ravi Ramamoorthi, and James F. O’Brien. “Data-
Driven Elastic Models for Cloth: Modeling and Measurement.”
In: ACM Transactions on Graphics 30.4 (July 2011). Proceedings
of ACM SIGGRAPH 2011, Vancouver, BC Canada, 71:1–11. url:
http://graphics.berkeley.edu/papers/Wang-DDE-2011-08/.

[118] Zhendong Wang, Tongtong Wang, Min Tang, and Ruofeng
Tong. “Efficient and robust strain limiting and treatment of
simultaneous collisions with semidefinite programming.” In:
Computational Visual Media 2.2 (2016), pp. 119–130. issn: 2096-
0662. url: https://doi.org/10.1007/s41095-016-0042-8.

[119] Florentin Wörgötter, Eren Erdal Aksoy, Norbert Krüger, Justus
Piater, Ales Ude, and Minija Tamosiunaite. “A simple ontology
of manipulation actions based on hand-object relations.” In:
IEEE Transactions on Autonomous Mental Development 5.2 (2013),
pp. 117–134.

[120] Z. Wu, Chikit Au, and Matthew Yuen. “Mechanical properties
of fabric materials for draping simulation.” In: International
Journal of Clothing Science and Technology 15 (Feb. 2003), pp. 56–
68. doi: 10.1108/09556220310461169.

[121] Juntao Ye, Guanghui Ma, Liguo Jiang, Lan Chen, Jituo Li, Gang-
Yu Xiong, Xiaopeng Zhang, and Min Tang. “A Unified Cloth
Untangling Framework Through Discrete Collision Detection.”
In: Computer Graphics Forum 36 (2017).

http://doi.acm.org/10.1145/37402.37427
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01397.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01397.x
http://graphics.berkeley.edu/papers/Wang-DDE-2011-08/
https://doi.org/10.1007/s41095-016-0042-8
https://doi.org/10.1108/09556220310461169

168 bibliography

[122] Hang Yin, Anastasia Varava, and Danica Kragic. “Modeling,
learning, perception, and control methods for deformable ob-
ject manipulation.” In: Science Robotics 6.54 (2021), eabd8803.

[123] Weihao Yuan, Kaiyu Hang, Haoran Song, Danica Kragic, Michael
Y Wang, and Johannes A Stork. “Reinforcement learning in
topology-based representation for human body movement with
whole arm manipulation.” In: 2019 International Conference on
Robotics and Automation (ICRA). IEEE. 2019, pp. 2153–2160.

[124] Dmitry Zarubin, Vladimir Ivan, Marc Toussaint, Taku Komura,
and Sethu Vijayakumar. “Hierarchical motion planning in topo-
logical representations.” In: Proceedings of Robotics: Science and
Systems VIII (2012).

[125] Z. Zhong. Finite Element Procedures for Contact-Impact Problems.
Oxford U.P., 1993.

[126] Xianjin Zhu, Rik Sarkar, and Jie Gao. “Topological Data Pro-
cessing for Distributed Sensor Networks with Morse-Smale
Decomposition.” In: IEEE INFOCOM 2009 (2009), pp. 2911–
2915.

[127] Olgierd C. Zienkiewicz, Robert L. Taylor, and Jizhong Z. Zhu.
The Finite Element Method: Its Basis and Fundamentals, Sixth Edi-
tion. Butterworth-Heinemann, May 2005. isbn: 0750663200.

	Dedication
	Abstract
	Resumen
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Organization
	1.3.1 Chapter 2: inextensibility modeling
	1.3.2 Chapter 3: collisions for inextensible cloth
	1.3.3 Chapter 4: experimental validation
	1.3.4 Chapter 5: surface reconstruction via Morse theory
	1.3.5 Chapter 6: developable surfaces
	1.3.6 Chapter 7: semantic classification of cloth states

	1.4 Videos
	1.5 Notation

	 Modeling cloth
	2 Inextensible cloth model
	2.1 Related work
	2.2 Inextensibility modeling
	2.2.1 Equations of inextensibility

	2.3 Discretization of the cloth with FEM
	2.4 Constraint function enforcing inextensibility
	2.4.1 Constraints for boundary curves
	2.4.2 Weighted Galerkin residual method
	2.4.3 Efficient computation of the coefficients of the metric
	2.4.4 Constraints evaluation
	2.4.5 Practical implementation
	2.4.6 Shearing Energy

	2.5 Equations of motion of the cloth
	2.5.1 Modeling of aerodynamics through virtual mass

	2.6 Discretization of the equations of motion
	2.6.1 Fast projection algorithm

	2.7 Evaluation and results
	2.7.1 Locking test
	2.7.2 Cusick's test
	2.7.3 Tank-top simulation

	3 Cloth collisions
	3.1 Related Work
	3.2 Modeling of contacts and friction
	3.3 Self-collisions
	3.3.1 Detection of self-collisions
	3.3.2 Constraint definition for self-collisions
	3.3.3 Proximity constraints and cloth thickness

	3.4 Numerical integration of the system
	3.4.1 Addition of self-collision constraints

	3.5 Efficient solution of the quadratic problems
	3.5.1 Factorization of the matrix system
	3.5.2 Updates of the Cholesky decomposition
	3.5.3 Detailed algorithm for collisions
	3.5.4 Similarities and differences with common active-set methods

	3.6 Evaluation and Results
	3.6.1 Frictional cylinder: ` `%%%`#`&12_`__~~~ॲ甀攀
	3.6.2 Rotating sphere: ` `%%%`#`&12_`__~~~ॲ甀攀
	3.6.3 Collision with a sharp obstacle: ` `%%%`#`&12_`__~~~ॲ甀攀
	3.6.4 Folding sequence of short pants: ` `%%%`#`&12_`__~~~ॲ甀攀

	4 Experimental validation
	4.1 WAM-arm experiments
	4.1.1 Camera data
	4.1.2 Parameter fitting
	4.1.3 Sensitivity analysis
	4.1.4 Comparison with other models
	4.1.5 Discussion of the results

	4.2 Aerodynamics study
	4.2.1 Movements and textiles
	4.2.2 Parameter fitting
	4.2.3 A priori forecast of and
	4.2.4 Discussion of the results

	4.3 Validation of collisions
	4.3.1 Tablecloth scenario
	4.3.2 Hitting scenario
	4.3.3 Discussion of results

	 Reconstructing garments
	5 Surface reconstruction via Morse Theory
	5.1 Related work
	5.2 Morse theory for manifolds
	5.2.1 Morse theory for surfaces without boundary
	5.2.2 Morse theory for surfaces with boundary

	5.3 Extension to point-clouds
	5.4 Practical implementation
	5.4.1 Neighbors identification
	5.4.2 Tangent space estimation
	5.4.3 Boundary recognition
	5.4.4 Reconstruction of curves
	5.4.5 Morse function and flows
	5.4.6 Hyperplane sections and computation of critical values
	5.4.7 Identification of Morse cells
	5.4.8 Attachment maps of the Morse cells
	5.4.9 Parametrization of the 2-cells
	5.4.10 Results

	 Classifying cloth states
	6 Developable Surfaces
	6.1 The space of developable surfaces
	6.2 The boundary of developable surfaces

	7 Semantic Classification of Cloth States
	7.1 Related work
	7.2 Preliminaries
	7.3 Derivation of the Cloth Coordinates
	7.3.1 GLI of two segments
	7.3.2 Directional derivative of the GLI
	7.3.3 Practical computation of dGLI
	7.3.4 Definition of the dGLI Cloth Coordinates

	7.4 Results
	7.4.1 Analysis of folding sequences
	7.4.2 Confusion matrix of the full data-base
	7.4.3 Comparison with other shape representations
	7.4.4 Real images classification
	7.4.5 Discussion of the results

	8 Conclusions
	8.1 Further work
	Publications

	 Appendix
	A Appendix
	A.1 Tables
	A.2 Figures

	 Bibliography

