254 research outputs found

    Linear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm

    Full text link
    Over the past five decades, k-means has become the clustering algorithm of choice in many application domains primarily due to its simplicity, time/space efficiency, and invariance to the ordering of the data points. Unfortunately, the algorithm's sensitivity to the initial selection of the cluster centers remains to be its most serious drawback. Numerous initialization methods have been proposed to address this drawback. Many of these methods, however, have time complexity superlinear in the number of data points, which makes them impractical for large data sets. On the other hand, linear methods are often random and/or sensitive to the ordering of the data points. These methods are generally unreliable in that the quality of their results is unpredictable. Therefore, it is common practice to perform multiple runs of such methods and take the output of the run that produces the best results. Such a practice, however, greatly increases the computational requirements of the otherwise highly efficient k-means algorithm. In this chapter, we investigate the empirical performance of six linear, deterministic (non-random), and order-invariant k-means initialization methods on a large and diverse collection of data sets from the UCI Machine Learning Repository. The results demonstrate that two relatively unknown hierarchical initialization methods due to Su and Dy outperform the remaining four methods with respect to two objective effectiveness criteria. In addition, a recent method due to Erisoglu et al. performs surprisingly poorly.Comment: 21 pages, 2 figures, 5 tables, Partitional Clustering Algorithms (Springer, 2014). arXiv admin note: substantial text overlap with arXiv:1304.7465, arXiv:1209.196

    VICE: Variational Interpretable Concept Embeddings

    Get PDF
    A central goal in the cognitive sciences is the development of numerical models for mental representations of object concepts. This paper introduces Variational Interpretable Concept Embeddings (VICE), an approximate Bayesian method for embedding object concepts in a vector space using data collected from humans in an odd-one-out triplet task. VICE uses variational inference to obtain sparse, non-negative representations of object concepts with uncertainty estimates for the embedding values. These estimates are used to automatically select the dimensions that best explain the data. We derive a PAC learning bound for VICE that can be used to estimate generalization performance or determine sufficient sample size in experimental design. VICE rivals or outperforms its predecessor, SPoSE, at predicting human behavior in the odd-one-out triplet task. Furthermore, VICE's object representations are more reproducible and consistent across random initializations

    Bayesian plug & play methods for inverse problems in imaging.

    Get PDF
    Thèse de Doctorat de Mathématiques Appliquées (Université de Paris)Tesis de Doctorado en Ingeniería Eléctrica (Universidad de la República)This thesis deals with Bayesian methods for solving ill-posed inverse problems in imaging with learnt image priors. The first part of this thesis (Chapter 3) concentrates on two particular problems, namely joint denoising and decompression and multi-image super-resolution. After an extensive study of the noise statistics for these problem in the transformed (wavelet or Fourier) domain, we derive two novel algorithms to solve this particular inverse problem. One of them is based on a multi-scale self-similarity prior and can be seen as a transform-domain generalization of the celebrated non-local bayes algorithm to the case of non-Gaussian noise. The second one uses a neural-network denoiser to implicitly encode the image prior, and a splitting scheme to incorporate this prior into an optimization algorithm to find a MAP-like estimator. The second part of this thesis concentrates on the Variational AutoEncoder (VAE) model and some of its variants that show its capabilities to explicitly capture the probability distribution of high-dimensional datasets such as images. Based on these VAE models, we propose two ways to incorporate them as priors for general inverse problems in imaging : • The first one (Chapter 4) computes a joint (space-latent) MAP estimator named Joint Posterior Maximization using an Autoencoding Prior (JPMAP). We show theoretical and experimental evidence that the proposed objective function satisfies a weak bi-convexity property which is sufficient to guarantee that our optimization scheme converges to a stationary point. Experimental results also show the higher quality of the solutions obtained by our JPMAP approach with respect to other non-convex MAP approaches which more often get stuck in spurious local optima. • The second one (Chapter 5) develops a Gibbs-like posterior sampling algorithm for the exploration of posterior distributions of inverse problems using multiple chains and a VAE as image prior. We showhowto use those samples to obtain MMSE estimates and their corresponding uncertainty.Cette thèse traite des méthodes bayésiennes pour résoudre des problèmes inverses mal posés en imagerie avec des distributions a priori d’images apprises. La première partie de cette thèse (Chapitre 3) se concentre sur deux problèmes partic-uliers, à savoir le débruitage et la décompression conjoints et la super-résolutionmulti-images. Après une étude approfondie des statistiques de bruit pour ces problèmes dans le domaine transformé (ondelettes ou Fourier), nous dérivons deuxnouveaux algorithmes pour résoudre ce problème inverse particulie. L’un d’euxest basé sur une distributions a priori d’auto-similarité multi-échelle et peut êtrevu comme une généralisation du célèbre algorithme de Non-Local Bayes au cas dubruit non gaussien. Le second utilise un débruiteur de réseau de neurones pourcoder implicitement la distribution a priori, et un schéma de division pour incor-porer cet distribution dans un algorithme d’optimisation pour trouver un estima-teur de type MAP. La deuxième partie de cette thèse se concentre sur le modèle Variational Auto Encoder (VAE) et certaines de ses variantes qui montrent ses capacités à capturer explicitement la distribution de probabilité d’ensembles de données de grande dimension tels que les images. Sur la base de ces modèles VAE, nous proposons deuxmanières de les incorporer comme distribution a priori pour les problèmes inverses généraux en imagerie: •Le premier (Chapitre 4) calcule un estimateur MAP conjoint (espace-latent) nommé Joint Posterior Maximization using an Autoencoding Prior (JPMAP). Nous montrons des preuves théoriques et expérimentales que la fonction objectif proposée satisfait une propriété de bi-convexité faible qui est suffisante pour garantir que notre schéma d’optimisation converge vers un pointstationnaire. Les résultats expérimentaux montrent également la meilleurequalité des solutions obtenues par notre approche JPMAP par rapport à d’autresapproches MAP non convexes qui restent le plus souvent bloquées dans desminima locaux. •Le second (Chapitre 5) développe un algorithme d’échantillonnage a poste-riori de type Gibbs pour l’exploration des distributions a posteriori de problèmes inverses utilisant des chaînes multiples et un VAE comme distribution a priori. Nous montrons comment utiliser ces échantillons pour obtenir desestimations MMSE et leur incertitude correspondante.En esta tesis se estudian métodos bayesianos para resolver problemas inversos mal condicionados en imágenes usando distribuciones a priori entrenadas. La primera parte de esta tesis (Capítulo 3) se concentra en dos problemas particulares, a saber, el de eliminación de ruido y descompresión conjuntos, y el de superresolución a partir de múltiples imágenes. Después de un extenso estudio de las estadísticas del ruido para estos problemas en el dominio transformado (wavelet o Fourier),derivamos dos algoritmos nuevos para resolver este problema inverso en particular. Uno de ellos se basa en una distribución a priori de autosimilitud multiescala y puede verse como una generalización al dominio wavelet del célebre algoritmo Non-Local Bayes para el caso de ruido no Gaussiano. El segundo utiliza un algoritmo de eliminación de ruido basado en una red neuronal para codificar implícitamente la distribución a priori de las imágenes y un esquema de relajación para incorporar esta distribución en un algoritmo de optimización y así encontrar un estimador similar al MAP. La segunda parte de esta tesis se concentra en el modelo Variational AutoEncoder (VAE) y algunas de sus variantes que han mostrado capacidad para capturar explícitamente la distribución de probabilidad de conjuntos de datos en alta dimensión como las imágenes. Basándonos en estos modelos VAE, proponemos dos formas de incorporarlos como distribución a priori para problemas inversos genéricos en imágenes : •El primero (Capítulo 4) calcula un estimador MAP conjunto (espacio imagen y latente) llamado Joint Posterior Maximization using an Autoencoding Prior (JPMAP). Mostramos evidencia teórica y experimental de que la función objetivo propuesta satisface una propiedad de biconvexidad débil que es suficiente para garantizar que nuestro esquema de optimización converge a un punto estacionario. Los resultados experimentales también muestran la mayor calidad de las soluciones obtenidas por nuestro enfoque JPMAP con respecto a otros enfoques MAP no convexos que a menudo se atascan en mínimos locales espurios. •El segundo (Capítulo 5) desarrolla un algoritmo de muestreo tipo Gibbs parala exploración de la distribución a posteriori de problemas inversos utilizando múltiples cadenas y un VAE como distribución a priori. Mostramos cómo usar esas muestras para obtener estimaciones de MMSE y su correspondiente incertidumbr

    Comparing Storm Resolving Models and Climates via Unsupervised Machine Learning

    Full text link
    Storm-resolving models (SRMs) have gained widespread interest because of the unprecedented detail with which they resolve the global climate. However, it remains difficult to quantify objective differences in how SRMs resolve complex atmospheric formations. This lack of appropriate tools for comparing model similarities is a problem in many disparate fields that involve simulation tools for complex data. To address this challenge we develop methods to estimate distributional distances based on both nonlinear dimensionality reduction and vector quantization. Our approach automatically learns appropriate notions of similarity from low-dimensional latent data representations that the different models produce. This enables an intercomparison of nine SRMs based on their high-dimensional simulation data and reveals that only six are similar in their representation of atmospheric dynamics. Furthermore, we uncover signatures of the convective response to global warming in a fully unsupervised way. Our study provides a path toward evaluating future high-resolution simulation data more objectively.Comment: 22 pages, 19 figures. Submitted to journal for consideratio

    Cluster validity in clustering methods

    Get PDF

    A Convex Relaxation for Weakly Supervised Classifiers

    Full text link
    This paper introduces a general multi-class approach to weakly supervised classification. Inferring the labels and learning the parameters of the model is usually done jointly through a block-coordinate descent algorithm such as expectation-maximization (EM), which may lead to local minima. To avoid this problem, we propose a cost function based on a convex relaxation of the soft-max loss. We then propose an algorithm specifically designed to efficiently solve the corresponding semidefinite program (SDP). Empirically, our method compares favorably to standard ones on different datasets for multiple instance learning and semi-supervised learning as well as on clustering tasks.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012
    • …
    corecore