167 research outputs found

    Chemoinformatics Research at the University of Sheffield: A History and Citation Analysis

    Get PDF
    This paper reviews the work of the Chemoinformatics Research Group in the Department of Information Studies at the University of Sheffield, focusing particularly on the work carried out in the period 1985-2002. Four major research areas are discussed, these involving the development of methods for: substructure searching in databases of three-dimensional structures, including both rigid and flexible molecules; the representation and searching of the Markush structures that occur in chemical patents; similarity searching in databases of both two-dimensional and three-dimensional structures; and compound selection and the design of combinatorial libraries. An analysis of citations to 321 publications from the Group shows that it attracted a total of 3725 residual citations during the period 1980-2002. These citations appeared in 411 different journals, and involved 910 different citing organizations from 54 different countries, thus demonstrating the widespread impact of the Group's work

    IVSPlat 1.0: an integrated virtual screening platform with a molecular graphical interface

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The virtual screening (VS) of lead compounds using molecular docking and pharmacophore detection is now an important tool in drug discovery. VS tasks typically require a combination of several software tools and a molecular graphics system. Thus, the integration of all the requisite tools in a single operating environment could reduce the complexity of running VS experiments. However, only a few freely available integrated software platforms have been developed.</p> <p>Results</p> <p>A free open-source platform, IVSPlat 1.0, was developed in this study for the management and automation of VS tasks. We integrated several VS-related programs into a molecular graphics system to provide a comprehensive platform for the solution of VS tasks based on molecular docking, pharmacophore detection, and a combination of both methods. This tool can be used to visualize intermediate and final results of the VS execution, while also providing a clustering tool for the analysis of VS results. A case study was conducted to demonstrate the applicability of this platform.</p> <p>Conclusions</p> <p>IVSPlat 1.0 provides a plug-in-based solution for the management, automation, and visualization of VS tasks. IVSPlat 1.0 is an open framework that allows the integration of extra software to extend its functionality and modified versions can be freely distributed. The open source code and documentation are available at <url>http://kyc.nenu.edu.cn/IVSPlat/.</url></p

    Flexible molecular alignment: an industrial case study on quantum algorithmic techniques

    Get PDF
    Dissertação de mestrado em Engenharia FísicaFlexible molecular alignment is a complex and challenging problem in the area of Medic inal Chemistry. The current approach to this problem does not test all possible alignments, but makes a previous analysis of all the variables and chooses the ones with potentially greater impact in the posterior alignment. This procedure can lead to wrong ”best align ments” since not every data is considered. Quantum computation, due to its natural parallelism, may improve algorithmic solutions for this kind of problems because it may test and/or simulate all possible solutions in an execution cycle. As a case study proposed by BIAL and in collaboration with IBM, the main goal of this dissertation was to study and create quantum algorithms able to refactor the problem of molecular alignment in the new setting of quantum computation. Additionally, the comparison between both classical and quantum solutions was defined as a subsequent goal. During this dissertation and due to its complexity, in order to produce a practical solu tion to this problem, we resorted to a manageable number of conformations per molecule, revisited the classical solution and elaborated a corresponding quantum algorithm. Such algorithm was then tested in both a quantum simulator and a real device. Despite the privileged collaboration with IBM, the quantum simulations were not pro duced in viable time, making them impractical for industry applications. Nonetheless, tak ing in consideration the current point of development of quantum hardware, the suggested solutions still has potential for the future.O alinhamento de moléculas flexíveis é um problema complexo na área de Química Medicinal, onde, mesmo hoje em dia, é um desafio encontrar uma solução. A atual abordagem para este problema não testa todos os possíveis alinhamentos. Em vez disso, realiza uma análise prévia de todas as variáveis e escolhe aquelas com maior potencial de impacto no posterior alinhamento. Este procedimento pode levar a falsos “melhores alinhamentos” visto que nem todos os dados são considerados. A computação quântica, devido ao seu natural paralelismo, pode melhorar as soluções algorítmicas deste tipo de problemas visto que poderá testar e/ou simular todas as possíveis soluções num ciclo de execução. Partindo de um caso de estudo proposto pela BIAL, e em colaboração com a IBM, o objetivo principal desta dissertação foi estudar e criar algoritmos quânticos capazes reformular no contexto de computação quântica o problema de alinhamento de moléculas. Adicionalmente, e como objetivo subsequente, foi prevista a comparação entre os algoritmos clássicos e quânticos. Durante esta dissertação e devido à sua complexidade, de modo a produzir uma solução prática para este problema, foi utilizado um número tratável de conformações por molécula, revisitada a solução clássica e desenvolvido um algoritmo quântico correspondente. Tal algoritmo foi depois testado tanto num simulador quântico como num dispositivo real. Apesar da colaboração privilegiada com a IBM, as simulações quânticas não foram produzidas em tempo viável, tornando-as impraticáveis para aplicações industriais. Não obstante, tendo em consideração o ponto atual de desenvolvimento dos dispositivos quânticos, as soluções propostas terão potencial para o futuro

    Identification of New Inhibitors with Potential Antitumor Activity from Polypeptide Structures via Hierarchical Virtual Screening

    Get PDF
    We gratefully acknowledge the support provided by the Graduate Program in Pharmaceutical Innovation—Federal University of Amapá, Laboratory of Modeling and Computational Chemistry—Federal University of Amapá (UNIFAP-Macapá-Brazil), Computational Laboratory of Pharmaceutical Chemistry—University of Sao Paulo (USP-Ribeirão Preto-Brazil) and Department of Pharmaceutical and Organic Chemistry—Institute of Biosanitary Research ibs.GRANADA—University of Granada (UGR-Granada-Spain) for computational and financial support.Leukemias are neoplasms that affect hematopoietic cells, which are developed by genetic alterations (mutations) that lead to the loss of proliferation control mechanisms (maturation and/or cell death). The α4β1 integrin receptor is a therapeutic target for inflammation, autoimmune diseases and lymphoid tumors. This study was carried out to search through the antagonists-based virtual screening for α4β1 receptor. Initially, seventeen (17) structures were selected (based on the inhibitory activity values, IC50) and the structure with the best value was chosen as the pivot. The pharmacophoric pattern was determined from the online PharmaGist server and resulted in a model of score value equal to 97.940 with 15 pharmacophoric characteristics that were statistically evaluated via Pearson correlations, principal component analysis (PCA) and hierarchical clustering analysis (HCA). A refined model generated four pharmacophoric hypotheses totaling 1.478 structures set of Zinc_database. After, the pharmacokinetic, toxicological and biological activity predictions were realized comparing with pivot structure that resulted in five (ZINC72088291, ZINC68842860, ZINC14365931, ZINC09588345 and ZINC91247798) structures with optimal in silico predictions. Therefore, future studies are needed to confirm antitumor potential activity of molecules selected this work with in vitro and in vivo assays

    Structure- and Ligand-Based Design of Novel Antimicrobial Agents

    Get PDF
    The use of computer based techniques in the design of novel therapeutic agents is a rapidly emerging field. Although the drug-design techniques utilized by Computational Medicinal Chemists vary greatly, they can roughly be classified into structure-based and ligand-based approaches. Structure-based methods utilize a solved structure of the design target, protein or DNA, usually obtained by X-ray or NMR methods to design or improve compounds with activity against the target. Ligand-based methods use active compounds with known affinity for a target that may yet be unresolved. These methods include Pharmacophore-based searching for novel active compounds or Quantitative Structure-Activity Relationship (QSAR) studies. The research presented here utilized both structure and ligand-based methods against two bacterial targets: Bacillus anthracis and Mycobacterium tuberculosis. The first part of this thesis details our efforts to design novel inhibitors of the enzyme dihydropteroate synthase from B. anthracis using crystal structures with known inhibitors bound. The second part describes a QSAR study that was performed using a series of novel nitrofuranyl compounds with known, whole-cell, inhibitory activity against M. tuberculosis. Dihydropteroate synthase (DHPS) catalyzes the addition of p-amino benzoic acid (pABA) to dihydropterin pyrophosphate (DHPP) to form pteroic acid as a key step in bacterial folate biosynthesis. It is the traditional target of the sulfonamide class of antibiotics. Unfortunately, bacterial resistance and adverse effects have limited the clinical utility of the sulfonamide antibiotics. Although six bacterial crystal structures are available, the flexible loop regions that enclose pABA during binding and contain key sulfonamide resistance sites have yet to be visualized in their functional conformation. To gain a new understanding of the structural basis of sulfonamide resistance, the molecular mechanism of DHPS action, and to generate a screening structure for high-throughput virtual screening, molecular dynamics simulations were applied to model the conformations of the unresolved loops in the active site. Several series of molecular dynamics simulations were designed and performed utilizing enzyme substrates and inhibitors, a transition state analog, and a pterin-sulfamethoxazole adduct. The positions of key mutation sites conserved across several bacterial species were closely monitored during these analyses. These residues were shown to interact closely with the sulfonamide binding site. The simulations helped us gain new understanding of the positions of the flexible loops during inhibitor binding that has allowed the development of a DHPS structural model that could be used for high-through put virtual screening (HTVS). Additionally, insights gained on the location and possible function of key mutation sites on the flexible loops will facilitate the design of new, potent inhibitors of DHPS that can bypass resistance mutations that render sulfonamides inactive. Prior to performing high-throughput virtual screening, the docking and scoring functions to be used were validated using established techniques against the B. anthracis DHPS target. In this validation study, five commonly used docking programs, FlexX, Surflex, Glide, GOLD, and DOCK, as well as nine scoring functions, were evaluated for their utility in virtual screening against the novel pterin binding site. Their performance in ligand docking and virtual screening against this target was examined by their ability to reproduce a known inhibitor conformation and to correctly detect known active compounds seeded into three separate decoy sets. Enrichment was demonstrated by calculated enrichment factors at 1% and Receiver Operating Characteristic (ROC) curves. The effectiveness of post-docking relaxation prior to rescoring and consensus scoring were also evaluated. Of the docking and scoring functions evaluated, Surflex with SurflexScore and Glide with GlideScore performed best overall for virtual screening against the DHPS target. The next phase of the DHPS structure-based drug design project involved high-throughput virtual screening against the DHPS structural model previously developed and docking methodology validated against this target. Two general virtual screening methods were employed. First, large, virtual libraries were pre-filtered by 3D pharmacophore and modified Rule-of-Three fragment constraints. Nearly 5 million compounds from the ZINC databases were screened generating 3,104 unique, fragment-like hits that were subsequently docked and ranked by score. Second, fragment docking without pharmacophore filtering was performed on almost 285,000 fragment-like compounds obtained from databases of commercial vendors. Hits from both virtual screens with high predicted affinity for the pterin binding pocket, as determined by docking score, were selected for in vitro testing. Activity and structure-activity relationship of the active fragment compounds have been developed. Several compounds with micromolar activity were identified and taken to crystallographic trials. Finally, in our ligand-based research into M. tuberculosis active agents, a series of nitrofuranylamide and related aromatic compounds displaying potent activity was investigated utilizing 3-Dimensional Quantitative Structure-Activity Relationship (3D-QSAR) techniques. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods were used to produce 3D-QSAR models that correlated the Minimum Inhibitory Concentration (MIC) values against M. tuberculosis with the molecular structures of the active compounds. A training set of 95 active compounds was used to develop the models, which were then evaluated by a series of internal and external cross-validation techniques. A test set of 15 compounds was used for the external validation. Different alignment and ionization rules were investigated as well as the effect of global molecular descriptors including lipophilicity (cLogP, LogD), Polar Surface Area (PSA), and steric bulk (CMR), on model predictivity. Models with greater than 70% predictive ability, as determined by external validation and high internal validity (cross validated r2 \u3e .5) were developed. Incorporation of lipophilicity descriptors into the models had negligible effects on model predictivity. The models developed will be used to predict the activity of proposed new structures and advance the development of next generation nitrofuranyl and related nitroaromatic anti-tuberculosis agents
    • …
    corecore