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ABSTRACT 
 
 

The use of computer based techniques in the design of novel therapeutic agents 
is a rapidly emerging field.  Although the drug-design techniques utilized by 
Computational Medicinal Chemists vary greatly, they can roughly be classified into 
structure-based and ligand-based approaches.  Structure-based methods utilize a 
solved structure of the design target, protein or DNA, usually obtained by X-ray or NMR 
methods to design or improve compounds with activity against the target.  Ligand-based 
methods use active compounds with known affinity for a target that may yet be 
unresolved.  These methods include Pharmacophore-based searching for novel active 
compounds or Quantitative Structure-Activity Relationship (QSAR) studies.  The 
research presented here utilized both structure and ligand-based methods against two 
bacterial targets: Bacillus anthracis and Mycobacterium tuberculosis.  The first part of 
this thesis details our efforts to design novel inhibitors of the enzyme dihydropteroate 
synthase from B. anthracis using crystal structures with known inhibitors bound.  The 
second part describes a QSAR study that was performed using a series of novel 
nitrofuranyl compounds with known, whole-cell, inhibitory activity against M. 
tuberculosis. 

 
Dihydropteroate synthase (DHPS) catalyzes the addition of p-amino benzoic acid 

(pABA) to dihydropterin pyrophosphate (DHPP) to form pteroic acid as a key step in 
bacterial folate biosynthesis.  It is the traditional target of the sulfonamide class of 
antibiotics.  Unfortunately, bacterial resistance and adverse effects have limited the 
clinical utility of the sulfonamide antibiotics.  Although six bacterial crystal structures are 
available, the flexible loop regions that enclose pABA during binding and contain key 
sulfonamide resistance sites have yet to be visualized in their functional conformation.  
To gain a new understanding of the structural basis of sulfonamide resistance, the 
molecular mechanism of DHPS action, and to generate a screening structure for high-
throughput virtual screening, molecular dynamics simulations were applied to model the 
conformations of the unresolved loops in the active site.  Several series of molecular 
dynamics simulations were designed and performed utilizing enzyme substrates and 
inhibitors, a transition state analog, and a pterin-sulfamethoxazole adduct.  The positions 
of key mutation sites conserved across several bacterial species were closely monitored 
during these analyses.  These residues were shown to interact closely with the 
sulfonamide binding site.  The simulations helped us gain new understanding of the 
positions of the flexible loops during inhibitor binding that has allowed the development 
of a DHPS structural model that could be used for high-through put virtual screening 
(HTVS).  Additionally, insights gained on the location and possible function of key 
mutation sites on the flexible loops will facilitate the design of new, potent inhibitors of 
DHPS that can bypass resistance mutations that render sulfonamides inactive. 

 
Prior to performing high-throughput virtual screening, the docking and scoring 

functions to be used were validated using established techniques against the B. 
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anthracis DHPS target.  In this validation study, five commonly used docking programs, 
FlexX, Surflex, Glide, GOLD, and DOCK, as well as nine scoring functions, were 
evaluated for their utility in virtual screening against the novel pterin binding site.  Their 
performance in ligand docking and virtual screening against this target was examined by 
their ability to reproduce a known inhibitor conformation and to correctly detect known 
active compounds seeded into three separate decoy sets.   Enrichment was 
demonstrated by calculated enrichment factors at 1% and Receiver Operating 
Characteristic (ROC) curves.  The effectiveness of post-docking relaxation prior to 
rescoring and consensus scoring were also evaluated.  Of the docking and scoring 
functions evaluated, Surflex with SurflexScore and Glide with GlideScore performed best 
overall for virtual screening against the DHPS target. 

 
The next phase of the DHPS structure-based drug design project involved high-

throughput virtual screening against the DHPS structural model previously developed 
and docking methodology validated against this target.  Two general virtual screening 
methods were employed.  First, large, virtual libraries were pre-filtered by 3D 
pharmacophore and modified Rule-of-Three fragment constraints.  Nearly 5 million 
compounds from the ZINC databases were screened generating 3,104 unique, 
fragment-like hits that were subsequently docked and ranked by score.  Second, 
fragment docking without pharmacophore filtering was performed on almost 285,000 
fragment-like compounds obtained from databases of commercial vendors.  Hits from 
both virtual screens with high predicted affinity for the pterin binding pocket, as 
determined by docking score, were selected for in vitro testing.   Activity and structure-
activity relationship of the active fragment compounds have been developed.  Several 
compounds with micromolar activity were identified and taken to crystallographic trials. 

 
Finally, in our ligand-based research into M. tuberculosis active agents, a series 

of nitrofuranylamide and related aromatic compounds displaying potent activity was 
investigated utilizing 3-Dimensional Quantitative Structure-Activity Relationship (3D-
QSAR) techniques.  Comparative Molecular Field Analysis (CoMFA) and Comparative 
Molecular Similarity Indices Analysis (CoMSIA) methods were used to produce 3D-
QSAR models that correlated the Minimum Inhibitory Concentration (MIC) values 
against M. tuberculosis with the molecular structures of the active compounds.  A 
training set of 95 active compounds was used to develop the models, which were then 
evaluated by a series of internal and external cross-validation techniques.  A test set of 
15 compounds was used for the external validation.  Different alignment and ionization 
rules were investigated as well as the effect of global molecular descriptors including 
lipophilicity (cLogP, LogD), Polar Surface Area (PSA), and steric bulk (CMR), on model 
predictivity.  Models with greater than 70% predictive ability, as determined by external 
validation and high internal validity (cross validated r2 > .5) were developed.  
Incorporation of lipophilicity descriptors into the models had negligible effects on model 
predictivity.  The models developed will be used to predict the activity of proposed new 
structures and advance the development of next generation nitrofuranyl and related 
nitroaromatic anti-tuberculosis agents.  
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CHAPTER 1. INTRODUCTION 

1.1 Computer-Aided Drug Design and Molecular Modeling 

The role of computers in the design of novel therapeutic agents has a long 
history.   As early as the 1960’s computers were being used to visualize drug-target 
interactions.  In fact, the origin of the use of computers for molecular graphics and 
modeling in drug discovery has been traced to Project MAC (Multiple Access Computer) 
at MIT in 1963.1  By the early to mid 1970’s, x-ray crystal structures of biological drug 
targets were being visualized and the insights gained employed in lead optimization.  
Over the last several decades, the exponential increase in computing power, technology, 
and the number of solved target structures using high-throughput X-ray, NMR, and 
homology modeling methods has resulted in a dramatic rise in the use of computers in 
many aspects of drug design.  Computational techniques including quantum mechanical 
calculations, molecular mechanics operations, molecular simulations, graphical 
visualization, cheminformatics, molecular docking and quantitative structure-activity 
relationship studies are all being used with increasing frequency and success in the 
discovery and development of clinical drug candidates.  These methods are being 
applied in almost every area of drug design, from hit identification and lead modification 
to metabolism, distribution and toxicology predictions.  Table 1.1 lists several 
representative examples of clinical drugs for which computational techniques played a  

Table 1.1. Examples of Clinical Drugs Developed Using Computer-Aided Methods 

 
Compound 
 

 
Target 

 
Therapeutic Use

 
Company 

 
Approved 

Captopril Angiotensin 
Converting Enzyme 

Hypertension Par Pharma 1982 

Saquinavir HIV Protease1 HIV Infection Roche 1995 
Donepezil Acetylcholinesterase Alzheimer’s Eisai 1996 
Nelfinavir HIV Protease1 HIV Infection Pfizer 1997 
Dorzolamide Carbonic Anydrase Glaucoma Merck 1998 
Amprenavir HIV Protease1 HIV Infection GlaxoSmithKline 1999 
Zanamivir Neuraminidase Influenza GlaxoSmithKline 1999 
Oseltamivir Neuraminidase Influenza Roche  
Lopinavir HIV Protease1 HIV Infection Abbott 2000 
Imatinib bcr-abl Kinase Leukemia Novartis 2003 
Erlotinib EGFR Kinase Cancers OSI Pharma 2004 
Ximelogatran Thrombin Anticoagulant AstraZeneca 20042

Raltegravir HIV Integrase HIV Infection Merck 2007 
 
1. Nearly all of the 10 marketed HIV protease inhibitors were developed using Structure-Based 
Computational Techniques. 
2. Ximelogatran was only approved in Europe and subsequently withdrawn for high incidence of liver 
toxicity. 
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large role in their development.  The compounds listed in the table were discovered 
and/or developed using a variety of the techniques listed above.  Captopril, for example,  
was developed using rational drug design techniques where a homology model of the 
drug target, angiotensin converting enzyme (ACE), was built using the available x-ray 
structure of carboxypeptidase A, whose active site was hypothesized to be similar to 
ACE.2,3  The HIV protease inhibitors and the neuraminidase inhibitors, used for HIV and 
influenza infections, respectively, were discovered (and are still being discovered) using 
molecular modeling and visualization techniques that utilize the solved x-ray crystal 
structures of their respective target enzymes.4,5  The newly developed HIV integrase 
inhibitor, raltegravir, was discovered using a type of virtual screening known as 
pharmacophore searching, which will be discussed below.6  Ligand-based 3D-QSAR 
methods were applied in the discovery efforts that led to the development of donepezil 
as a potent inhibitor of acetylcholinesterase for the treatment of Alzheimer’s disease.7  
Finally, the kinase inhibitors imatinib and erlotinib were identified using molecular 
docking as the lead identification tool.8,9  In addition to currently marketed agents, there 
are a large number of drug candidates in clinical trials that have been or are being 
investigated using computational methods; including muscarinic antagonists, 
somatostatin and growth hormone analogs, urotensin II antagonists, and other GPCR 
binding agents.10  It is obvious that computational methods can make a large 
contribution to drug discovery efforts, and that as computational power continues to 
increase and technology advances, the role of computers in drug discovery will also 
continue to expand.  Although there are a number of ways that computers can aid drug-
design projects (as described above), the work discussed herein utilized two main 
computational approaches which will be described below: virtual screening and 
molecular simulations. 

1.2 Virtual Screening for Lead Identification 

Virtual screening (VS), as it applies to drug discovery, can be defined as the use 
of computational methods to discover novel compounds with activity against biological 
targets.  It is primarily employed as a lead identification technique and has gained 
considerable acceptance in recent years.  This compares with the traditional lead 
identification method of high-throughput screening (HTS), where test compounds are 
physically screened against the biological target at a standard concentration, usually 10 
μM, using a specialized enzyme or receptor assay.  Virtual screening has been shown to 
be a complementary tool to HTS.11  It has several advantages over HTS as a lead 
identification method: First, the number of compounds that can be screened within a 
reasonable amount of time is much greater than HTS, on the order of 1015 versus 106 
compounds with HTS.  Second, because only those compounds with predicted activity 
against the biological target are actually tested in vitro, the cost of performing a virtual 
screen is considerably less than that associated with HTS.  Third, compounds can be 
built into virtual libraries for screening that have not yet been synthesized, saving the 
considerable time and expense of building a screening library for high-throughput 
screening.  Finally, because VS yields a the smaller number of compounds that are 
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actually tested in vitro, the hit rates from virtual screening can be 2 to 3 orders of 
magnitude greater than those normally seen with HTS.11  Virtual screening is not without 
its disadvantages, however.12   It is considered an information rich method and in many 
cases requires structural knowledge of the target or some existing knowledge of active 
compounds, neither of which may be available.  Although steadily improving in predictive 
ability, speed, and accuracy, the computational algorithms employed in virtual screening 
are still limited by inaccurate activity predictions.  Additionally, virtual screening requires 
expert users to work with the programs and algorithms as well as to build and maintain 
the virtual compound libraries that are to be screened.  Finally, in some cases the ‘hit’ 
compounds from virtual screening may not be synthetically feasible.  Although HTS has 
advantages over VS in the areas listed above, it also is not without its disadvantages, 
including high cost, lower number of compounds that can be screened and lack of 
structural binding information for ‘hit’ compounds.  Additionally, high-throughput screens 
can be troubled by frequent-hitting, false positive compounds that must be identified and 
eliminated.13,14  Interestingly, studies comparing HTS and VS side by side have shown 
that although VS can be expected to produce higher hit rates, the hits produced are 
often different that those confirmed hits from the corresponding high-throughput 
screens.11,15  This may imply that rather than acting as competing methods of lead 
identification, high-throughput screening and virtual screening should be considered 
complementary methods and used together to identify and test promising leads. 

 
Although there are numerous methods for performing a virtual screen, they can 

be roughly classified into two main types: ligand-based approaches which do not utilize 
the structure of the biological target in screening, and docking-based approaches, which 
utilize the structure of the biological target, usually obtained by NMR or x-ray methods, 
and a variety of molecular docking algorithms and scoring functions.  Hybrid approaches 
which combine aspects from ligand-based and docking-based methods are also 
frequently employed in virtual screening studies. 

1.2.1 Ligand-Based Approaches 

Ligand-based approaches typically utilize knowledge of a set of compounds with 
known activity against the biological target.  These approaches are frequently employed 
in the absence of structural information on the target in question and in addition to lead 
identification, can also be used as a lead modification strategy.  The key concept in 
ligand based approaches is that compounds that are structurally similar or have similar 
structural components to the known active compounds are more likely to have activity 
themselves.   A variety of ligand-based screening methods have been developed that 
are being used with increasing frequency, such as substructure searching, similarity 
searching, pharmacophore searching, clustering methods, and finally QSAR and 3D-
QSAR methods.  Each of these methods is similar in that they utilize the structural 
features of known active compounds, but they differ in their computational requirements, 
search algorithm, and the features of the hits compounds they return.  Interestingly, 
several of the methods discussed below have been successfully used in ‘lead-hopping’ 



4 
 

or ‘scaffold-hopping’ studies, which reflect the ability of ligand-based approaches to 
identify lead compounds outside the structural class of the known active compounds 
upon which the screen was based.16-22  The methods listed above can also be classified 
by whether they employ 2-dimensional (2D) or 3-dimensional (3D) methods for 
searching the virtual compound databases.  2D methods utilize the chemical structure of 
the active compounds, whereas 3D methods incorporate the 3-dimensional shape of the 
active compounds in addition to the chemical structure and/or structural features.  3D 
methods make assumptions as to the binding conformation of the known active 
compounds. 

 
Substructure searching is a relatively simple screening method that performs a 

search of a compound database to match a specified structural feature, i.e. functional 
group, ring system, etc.  Typically, in compound databases, the structural features are 
represented by searchable bitstrings, or binary representations.  Two types of bitstrings 
are commonly used, structural keys and hashed fingerprints.  In a structural key, every 
position in the bitstring represents a particular structure.  The structural key utilizes a 
fragment dictionary and assigns a 0 if the structure is absent from the compound and a 1 
if the structure is present.  Structural keys are easily and quickly searched but require 
the added structure library and recalculation of bitstrings when compounds are added to 
the compound database with new structures.  A hashed fingerprint bitstring does not use 
a fragment dictionary; instead an algorithm is employed to assign bits to specify given 
structural patterns in a compound.  All possible linear paths of atom connectivity are 
calculated up to a predefined number of atoms (typically 8) and bits are assigned to 
represent each path.  Each pattern may require several bits to be represented.  For 
example glyceraldehyde, shown in Figure 1.1, contains the following paths of length 4: 
O-C-C-O, O-C-C-C, O-C-C=O, and C-C-C=O.  Each pattern (or path) would be assigned 
a unique, searchable set of bits which are each set to a value of 1.  A given compound 
can be represented by bitstrings of up to several thousand bits after all atom paths have 
been calculated. 

 
While substructure searching is a useful and quick method of searching a 

compound library for 2D features, it does not take into account 3-dimensional 
conformations of the compounds or physicochemical properties of the atoms or 
functional groups being searched.  Pharmacophore searching can be considered a 
special type of 3D substructure searching that in addition to the 3D conformations, can 
also take into account functional group features such as polarity, hydrogen bond 
potential, aromaticity, and hydrophobicity.  An added advantage to pharmacophore 

 

 

Figure 1.1. Glyceraldehyde with Hydrogens Suppressed 
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searching is that, unlike 2D substructure searching, this method can identify lead 
compounds that are structurally dissimilar to those already known, a process known as 
‘scaffold-hopping’ or ‘lead-hopping’.  In pharmacophore searching, a set of features 
common to the known active compounds is identified and used for the search criteria.  A 
3D pharmacophore search can include structural fingerprints, 3D spatial constraints and 
‘macros’ which define the physicochemical properties for substructures (H-bond donor or 
acceptor, hydrophobic, etc.).  Figure 1.2 shows an example of a defined 3D 
pharmacophore search using a DHPS product analog.  Three key features have been 
defined: an aromatic center, a hydrogen bond acceptor, and a hydrogen bond donor 
atom.  In order to match these criteria, a searched compound must not only contain the 
three features specified, but also in the correct 3D alignment.  In addition to searching 
3D space, some advanced search algorithms are even able to modify torsional angles of 
compounds being searched to test whether the compound can adopt the specified 
pharmacophore alignment, a process commonly called flexible searching.  It is also 
common to use constraints to limit the number of compounds being searched and 
reduce computational expense.  Constraints can include simple drug-like criteria such as 
Lipinski or Veber rules for molecular weight, numbers of rotatable bonds, and other key 
features.23,24  They can also incorporate known structural information of the biological 
target’s active site, if any is known, in the form of exclusion spheres or a molecular 
surface, both of which create barriers the compounds being searched are not permitted 
to encroach. 
 

Similarity searching is another popular method of identifying compounds with 
similar structural features to the known active compounds.  It differs from substructure 
searching and pharmacophore searching in that there is no precise query that the 
molecule being searched can match. This search technique involves calculating and 
comparing similarity coefficients between the known active compound and the 
compounds being screened.  The similarity coefficients can be based upon any number 
of molecular descriptors.  The compounds which score the highest in the similarity 
search are considered the hit compounds and theoretically would be tested for biological 
activity.  Some common molecular descriptors that have been used in similarity 
searches include molecular weight; hashed fingerprints and structural keys; counts of 
atoms, rings, or other features; octanol/water partition coefficient; molar refractivity; 
molecular connectivity (χ) indices; shape (κ) indices; electrotopological indices; atom 
pairs and topological torsions; dipole moment; molecular volume, surface area, or polar 
surface area; quantum chemical descriptors (HOMO, LUMO, energies, etc.); partial 
atomic charge and polarizability; pharmacophore keys; and geometric atom pairs, 
torsions, and angles.25  After the appropriate molecular descriptors have been calculated 
for the compounds of interest, similarity coefficients are calculated to make the 
comparison.  These coefficients can be calculated using one of several different 
methods, with probably the most common being the Dice coefficient, the Cosine 
coefficient, and the Tanimoto coeffiecient.25  The Tanimoto coefficient is commonly used 
for binary data (structural keys, fingerprints, etc.) and the formula is given below in  
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Figure 1.2. A Ligand-Based 3D Pharmacophore Search 
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Equations 1.1 and 1.2 for continuous variables and binary variables, respectively.  
Similarity can be calculated based on 2D as well as 3D descriptors.  Similarity 
measurements using 2D descriptors will generally associate molecules with similar 
substructures, while those using 3D descriptors are able to account for 3D 
pharmacophore and molecular recognition and binding.  The advantage of using 3D 
descriptors, therefore, is the increased potential for locating active compounds with 
unique scaffolds. 
 ∑∑ ∑ ∑  Equation 1.1

 

 Equation 1.2

 
Occasionally it may be desirable to select a set of diverse compounds from a 

library for screening.  This is often done in order to decrease the number of compounds 
being tested while still sampling the maximum diversity of the screening library.  In this 
case, a method known as cluster analysis or clustering can be very helpful.  Clustering 
utilizes essentially the same methods as similarity searching, with the exception that 
compounds are selected based upon dissimilarity. In a cluster analysis, groups of similar 
compounds (clusters or bins) are created from which representative compounds can be 
selected.  There are a number of clustering methods in popular use today, the most 
common being Jarvis-Patrick clustering and Hierarchical clustering.26,27  Hierarchical 
clustering seems to have outperformed Jarvis-Patrick clustering in terms of predicting 
property values and activity by cluster placement in two recent studies and of the two, is 
the more popular clustering method.28,29  Other methods for selecting dissimilar 
compounds include dissimilarity-based methods and partition-based methods.  Because 
neither of these methods were utilized in the work described here, we will not expand on 
them further. 

 
The last and probably most frequently utilized ligand-based method that will be 

discussed is the quantitative structure-activity relationship, QSAR.  QSAR techniques 
are methods used to correlate physicochemical descriptors from a set of related 
compounds to their known molecular activity or molecular property values.  QSAR 
models can be very useful in predicting the activity of compounds which have not been 
tested in vitro and are frequently used in virtual screening to identify lead compounds as 
well as to prioritize synthetic efforts. The first QSAR studies are usually attributed to 
Hansch and coworkers, who correlated biological activity of a series of compounds with 
their hydrophobic and electrostatic properties.30    There are a variety of descriptors that 
have been used to develop QSAR models, many of which were listed above in the 
similarity searching discussion.  They can range from connectivity and shape descriptors 
to molecular descriptors for lipophilicity (cLogP and LogD)31,32, steric bulk (Molar 
Refractivity, volume)33, and electrostatics (polar surface area, Coulombic charges, dipole 
moments).34   
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In addition to 2D and global molecular descriptors, QSAR models can be built 
using 3-dimensional molecular descriptors.  Most 3D-QSAR models require the 
alignment of the active compounds into a known or theoretical binding conformation.  
There are several different methods that are used for the calculation of 3D descriptors, 
the most common being comparative molecular field analysis (CoMFA)35 and 
comparative molecular similarity indices analysis (CoMSIA).36  CoMFA involves the 
calculation of steric and electrostatic values using charged probe atoms at grid lattice 
points while CoMSIA utilizes 3-D similarity indices.  Other methods used to calculate 3D 
descriptors include comparative molecular moments analysis (CoMMA),37 a molecular 
vibration-based method (EVA),38 weighted holistic invariant molecular indices (WHIM),39 
and hypothetical active site lattice (HASL).40  3D-QSAR methods have an advantage 
over traditional QSAR in that they can provide information regarding the nature of the 
biological target’s active site, in terms of favorable binding regions and characteristics, 
which can be very useful to the drug design efforts. 

 
Once the QSAR descriptors have been calculated, the QSAR equation is derived 

using a regression tool that is applicable to the data being utilized.  The independent 
variables (descriptors) are used to derive the equation that predicts the dependent 
variable (activity or property).  For 2D QSAR models a simple linear regression or 
multiple linear regression (MLR), if there are several independent variables, is usually 
sufficient.  MLR cannot be used for 3D-QSAR models where there the number of 
independent variables greatly exceeds the number of dependent variables (i.e. the 
number of compounds in the training set).  In these cases, one of two methods are 
commonly used, principal components regression (PCR) or partial least squares (PLS).41  
In PCR the independent variables are subjected to a principal components analysis, 
after which a regression is performed using the first (usually 2 or 3) principal 
components.  Validation methods (described below) can help the model developer 
determine the appropriate number of components to use in the final model.  PLS uses 
linear combinations of the independent variables to describe the dependent variable.  A 
sample PLS equation follows: 

    …  Equation 1.3
 
where y is the dependent variable, bm is a calculated coefficient, and 
  

 Equation 1.4
 
The latent variables (or components) in a PLS analysis are the t values, calculated by 
linear combination of the independent variables (x).  PLS is different from PCR in that it 
can explain variations not only in the dependent variables, y, but also variation in the 
independent variables.  The number of latent variables used in the final QSAR model is 
again determined by a variety of validation methods.  Other methods for deriving QSAR 
equations include discriminant analysis, neural networks, and inductive logic 
programming.42,43 
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Once a QSAR model has been built, it must be validated prior to use by a variety 
of internal and external validation methods.  The goodness of fit of the QSAR equation is 
usually given by the multiple correlation coefficient, r2, when deriving the equations.  
Values close to unity are desirable and indicate a high degree of internal validity.  The F 
statistic and Standard Errors of Estimate (SEE) are also commonly used to validate the 
goodness of fit.  Cross-validation methods include the commonly used Leave-One-Out 
(LOO) and Leave-Group-Out (LGO) methods.  In cross-validation, one or more of the 
training compounds (known actives used to derive the QSAR model) are left out during 
model derivation and then the model derived is used to predict the activity of the 
compound or compounds left out.  This process is normally repeated many times and a 
mean q2 (cross-validated r2) value is determined.  The q2 value is a measure of 
goodness of prediction of the QSAR model derived.  Cross-validation is considered in 
internal validation because it used training set compounds to generate the q2 value.  One 
of the most rigorous methods for validating QSAR models is known as external 
validation, or test set validation, where compounds with known activity that were not 
used in creation of the QSAR model are used for activity predictions and r2 values are 
derived from these predictions.  Finally, bootstrapping is a method that can be used to 
obtain confidence intervals for the r2 and SEE values. 

1.2.2 Docking-Based Approaches 

Knowledge of the biological target’s structure, in particular the targeted binding 
site, is most desirable from a drug discovery perspective because direct knowledge of 
ligand binding interactions can be utilized in drug design efforts; a procedure that has 
come to be called ‘Rational Drug Design’ or ‘Structure-Based Drug Design’ (SBDD).  
Target structures are usually obtained by solving an x-ray crystal or NMR structure, 
although homology modeling methods are also sometimes employed.  There are a 
variety of SBDD methods that can be used, the most common being de novo design and 
molecular docking. 

 
De novo design uses the 3-dimensional structure of the target’s active site to 

guide the placement and linking of molecular fragments obtained from fragment 
databases.  There are two general methods of de novo design.  In the first compounds 
are selected based on observed or theoretically favored binding groups determined by 
active site analysis, built and then placed into the active site for binding energy 
calculation.  In the second, the fragments are placed and linked directly in the active site 
using build and grow strategies.  Theoretically, de novo design will yield novel, active 
compounds which are not already present in corporate or commercial databases.   

 
Molecular docking is a specialized form of virtual screening in which compounds 

are placed in the active site using a variety of search algorithms and then binding affinity 
is estimated using one of a number of different types of scoring functions.  Requirements 
for molecular docking include a 3D representation of the active site, a library of 
compounds in a recognized electronic format, and a validated docking algorithm and 
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scoring function.  Following docking and scoring, high scoring compounds are usually 
selected for testing in an in vitro binding assay.  In recent years, molecular docking has 
become a very common method of virtual screening due to the exponential increase in 
searchable 3D structures of biological targets and improvements in computational power 
and technology.  Figure 1.3 shows the dramatic rise in protein structures that are 
available at the Protein Data Bank over the last 20 years.44  In 2007, there were over 
800 articles published relating to molecular docking studies.45  The most common 
docking programs in use today are shown in Figure 1.4.46-65  The percentage of citations 
is shown for the most common programs (over 5 citations), determined by SCOPUS66 
search considering the original references and limited to articles in 2007. 

 
Molecular docking involves two main processes: pose prediction and scoring.  In 

pose prediction a search algorithm determines an optimal conformation and orientation 
for a given compound in the receptor, or active site.  This is followed by scoring to 
determine whether the pose will be accepted or rejected.  Generally, docking algorithms 
use scoring in two ways, the first is for pose selection and often uses a more simplified 
and rapid scoring method.  The second use of scoring is when the final selected poses 
for all the compounds tested are scored for ranking purposes.  This is often performed 
by a more advanced scoring function and may be computationally more intense than the 
pose selection scoring.  Historically, there are two general types of molecular docking: 
rigid body docking, where the compounds are placed into the active site “as is” so to 
speak, normally in a minimum energy conformation; and flexible docking, which test 
multiple conformations of the compounds being docked.  Although flexible docking is 
computationally more expensive, the results generated are much more accurate and this 
method has become the preferred method of performing molecular docking. 

 
There are three main types of flexible ligand docking algorithms that are currently 

is use: systematic docking algorithms, random or stochastic algorithms, and simulation 
methods.67  Table 1.2 gives a breakdown of these search methods and some 
representative examples of programs employing these methods.  Systematic search 
algorithms attempt to explore all the degrees of freedom of the compounds being 
docked, and normally utilize one of three methods: conformational searching, 
fragmentation, or database methods.  In conformational searching, all degrees of 
freedom of the compound being analyzed are explored by systematically modifying 
torsion angles of rotatable bonds in the compound by predefined increments.  This 
method is very computationally expensive and is therefore rarely used.  Fragmentation is 
probably the most popular form of flexible docking.  This method breaks the compound 
being docked into fragments and then joins them in the active site, recreating the ligand 
in an energetically preferred conformation.  This procedure has been called the “place- 
and-join” method.  Alternatively, a ‘core’ fragment can be initially docked and then 
flexible sections added incrementally.  This is called an “incremental construction” 
method.  Database methods are the third type of systematic docking algorithm.  In this 
approach, conformation libraries (or ensembles) are generated for each compound 
being docked and then rigidly docked. 
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Figure 1.3. Yearly Protein Data Bank Content Growth44  
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Figure 1.4. Docking Programs by 2007 Citation  
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Table 1.2. Flexible Docking Methods and Examples 

 
Methods 
 

 
Representative Examples 

 
Systematic Docking Algorithms 

 

Conformational Search  
Fragmentation LUDI,62 FlexX,52 DOCK,49 ADAM,68 Surflex65 
Database Methods FLOG53 

 
Random/Stochastic Algorithms 

 

Monte Carlo Methods ProDock,69 ICM,59 MCDOCK,70 QXP64 
Genetic (Evolutionary) 
Algorithms 

GOLD,57 AutoDock,46 DIVALI,71 DARWIN48 

Tabu Searching PRO_LEADS63 
 
Simulation (Deterministic) Algorithms 

 

Molecular Dynamics Amber,72 CHARMM,73 NAMD,74 GROMACS75 
Minimization Techniques Fletcher-Reeves, Newton-Raphson, Marquardt
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 Random or stochastic search algorithms generate random ligand conformations 
(or random conformational changes), which are then docked and scored and accepted 
or rejected based upon predefined criteria.  Random methods have an advantage over 
deterministic methods in that energy barriers can be bypassed, which can allow for a 
more complete search of conformational space.  The three most popular random 
methods are Monte Carlo methods, Genetic Algorithms, and Tabu Searching.  The 
criterion for accepting or rejecting poses generated in the Monte Carlo method is based 
on a Boltzmann probability function.  Genetic algorithms utilize evolutionary techniques 
to generate successive “generations” of compound poses.  Ligand conformations and 
orientations are defined by a set of variables (genes) and genetic operations perform a 
series of mutations, crossovers, and migrations to generate new generations which are 
accepted or rejected based upon a predefined fitness function.  Successive generations 
are optimized until a final generation is determined.  Tabu search methods force the 
search algorithm in new directions by imposing restrictions that prevent searching areas 
of conformational space that have already been explored.  The acceptance or rejection 
of new poses generated is determined by RMSD calculations with a library of poses 
already generated. 
 
 The last main type of flexible docking is the simulation methods, which include 
molecular dynamics and minimization techniques.  Molecular Dynamics (MD) methods 
work by integrating Newton’s laws of motion to produce a trajectory that simulates how 
the system in question, in this case a ligand bound into an active site of a target 
biomolecule, behave over time.  Dynamics methods can be very computationally 
expensive, but they have an advantage over many of the methods discussed above in 
that protein flexibility and induced fit can be taken into account.  Molecular Dynamics will 
be discussed in detail below as it applies to simulating protein movements and dynamic 
structure.  When MD is applied to molecular docking, typically the target macromolecule, 
with the possible exception of active site residues and flexible loops near the active site, 
is held rigid to minimize the computational expense.   
 

The last type of search algorithm that will be discussed is energy minimization.  
These technique involve modifying the structure of the ligand bound in the active site to 
minimize the binding energy, as calculated by a variety of methods including direct 
searches (simplex), gradient (steepest descent), conjugate-gradient, second-derivative, 
and least squares methods.76  Minimization can typically find local energy minima very 
well, but are not able to overcome barriers to locate global minima.  These techniques 
also have difficulty in cases, not so uncommon, that the ligand binds to the active site in 
a high energy state.  Minimization techniques are rarely uses as stand-alone docking 
methods, but they are often incorporated with other search methods in multi-step 
docking algorithms, for example the program Glide, which utilizes Monte Carlo and 
Minimization methods.56 
 

Once poses are selected, scoring functions are utilized to rank the compounds 
by their predicted affinity for the target site.  Table 1.3 lists several of the common types  
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Table 1.3. Scoring Methods and Examples 

 
Methods 
 

 
Representative Examples 

Force-Field Based Functions D-Score,77 G-Score,77 GoldScore,78 AutoDock 3.046 

Empirical Scoring Functions LUDI,79 F-Score,52 ChemScore,80 Fresno81 

Knowledge-Based Functions PMF-Score,82 DrugScore,83 SMoG-Score84 

Consensus Functions Cscore,85 X-Cscore86 

Solvation-Based Functions HYDREN,87 GB/SA,88 SEED,89 ZAP,90 PB/SA91 

 
 
of scoring functions utilized in molecular docking, along with some representative 
examples of each type.  Scoring functions can be generally classified into three main 
types: force-field based, empirical, and knowledge-based.  Additionally, consensus 
scoring which involves combinations of scores from different functions and solvation 
scoring which, as the name implies, takes solvation/desolvation into account when 
generating a score. 

 
Force fields (which are also called molecular mechanics) can be considered 

functions which calculate the energy of a system as a function of atomic positions.  
Force fields ignore electronic effects and typically contain bonded terms for bond 
stretching, angle bending, and torsion rotation and non-bonded terms for van der Waals 
and electrostatic interactions.  Force fields and their energy terms will be described in 
more detail in the molecular simulations section below.  Force field based scoring 
functions typically generate a score based upon two calculated energy values: the 
internal energy of the ligand and the interaction energy between the ligand and the 
receptor.  Traditionally, force fields ignore entropic and solvation effects, which can be 
considered a limitation. 

 
Empirical scoring functions are designed and trained using experimental binding 

energies that have been calculated from known ligand-receptor complexes.  They can 
consist of a variety of energy terms which use coefficients determined by regression 
analysis of the training set binding energies.  An advantage of empirical scoring 
functions is their ease of low computational requirement.  Disadvantages include the 
requirement on a experimental training set and the non-transferability of the energy 
terms due to the parameterization process.  Knowledge-based scoring functions are 
designed to reproduce experimental binding conformations, in contrast to empirical 
functions which are trained to reproduce binding energies.  They generally use simple 
atomic interaction-pair potentials which are based on their frequency of occurrence in 
the training set ligand-receptor complexes used.   
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As mentioned above, consensus scoring combines information from several 
scoring functions to generate a consensus score.85,92  The use of consensus scoring can 
theoretically compensate for errors in a single scoring function and improve the 
likelihood of identifying a correct pose.  The disadvantage to consensus scoring is that 
systematic scoring errors can be compounded when scoring functions are correlated 
and this can lead to amplification of error rather than error compensation. 
 
 Many advanced scoring functions include terms that can take into account 
entropic and solvation/desolvation effects, both of which have been traditionally ignored 
in early generation scoring functions.  Penalty functions that take into account the 
number of rotatable bonds in a compound being docked are a simple means of taking 
into account entropic effects.  For example, the ChemScore function contains an explicit 
energy term for rotational energy that is intended to, in part, account for entropic effects.  
The effects of solvation can be accounted for in several different ways, with varying 
degrees of computational intensity.93  One method that is used in force field scoring 
functions is the modification of the dielectric constant in the electrostatic energy term to 
account for the effects of solvation.  Additional H-bonding terms can also be used to 
account for donor-water and acceptor-water effects.  Buried polar and ligand desolvation 
energy terms have been used with success in some in empirical scoring functions, for 
example Fresno.81  A more computationally expensive method is the use of a 
generalized-Born/surface area (GB/SA) approach, which has been successfully 
employed with the DOCK program.88  Finally, a very rigorous and very computationally 
expensive method, Poisson-Boltzmann surface area (PB/SA) solvation scoring, has 
been reported.93 
 
 As previously mentioned, most of the search algorithms (docking programs) 
discussed above treat the receptor into which the compounds are being docked as a 
rigid body.  This is one of the caveats of molecular docking studies; they do not take 
induced fit of the macromolecule into account.  Although they are usually more 
computationally intense, there are a number of approaches that have been utilized in 
recent year to account, in some manner, for protein flexibility in docking including: 
molecular dynamics, Monte Carlo methods, rotamer libraries, protein ensembles, and 
soft receptor modeling.  With the molecular dynamics and Monte Carlo methods, flexible 
regions of the protein can be defined for the docking runs.  Unfortunately the time 
needed to dock a ligand will increase exponentially as the amount of flexible region is 
expanded, up to several days in some cases of fully flexible targets.94  Alternatively, 
using rotamer libraries for side chains can represent some protein flexibility and induced 
fit, usually in the active site, and is less time-consuming.95  This method, however, does 
not account for large protein movements.  Another method is the use of an ensemble of 
protein conformations, calculated by a variety of methods, into each of which is docked 
the compounds in the screening library.  This multiplies the docking time required by the 
number of protein conformations in the ensemble but is significantly less time consuming 
than the more rigorous dynamics and Monte Carlo methods.  FlexE, derived from the 
FlexX docking program, is a popular ensemble method.51  Finally, the soft receptor 
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modeling technique combines different protein conformations into one “weighted 
average” that is used for ligand docking.96,97  This typically leads to enlargement of the 
active site as mutually exclusive binding areas are simultaneously considered, which can 
be considered a disadvantage.  Additionally, soft receptor modeling, like rotamer 
libraries, cannot account for large scale protein movements. 
 
 Although we have separated virtual screening into ligand-based and docking-
based methods, it should be noted that large scale virtual screening projects can 
incorporate aspects of both.  For example, in order to decrease the time required to 
screen a large library of compounds, ligand-based methods such as pharmacophore 
searching can be utilized as filters prior to high-throughput docking.  Alternatively, ligand-
based methods can be used to post-process docking output in order to decrease the 
number of compounds requiring in vitro testing.  An example would be applying 
clustering methods to docking output to select a diverse set of compounds for testing.  
An example of such a hybrid virtual screening workflow is shown in Figure 1.5.  Virtual 
screening steps are listed with descriptions that include the computational intensity at 
each step as well as the number of screening compounds that can be handled at each 
stage in a reasonable amount of time; in this case the entire procedure can be 
completed in approximately one to two weeks for a screening library that initially 
numbers in the millions. 

1.2.3 Compound Selection for Virtual Screening 

The discussion on virtual screening is not complete without mention of selection 
processing of compounds prior to screening.  The creation of a virtual screening library 
is a multistep process that must take into account many factors including the nature of 
the screening target, the desired physicochemical properties of the screening library, the 
time available for virtual screening, and even the type of experimental assay that will be 
used to test hit compounds.98  The steps involved and considerations necessary at each 
step are described below. 

 
The first step is identifying the compounds to be placed in the virtual screening 

library.  Typically corporate or commercial libraries are screened, but the compounds 
can also be created in silico using a variety of virtual library enumeration protocols.  
Usually, one starts with 2D structural files, sdf or SMILES formats are most common.  
Once the compound files are obtained they must be analyzed and cleaned.  Compounds 
represented in salt forms must be corrected and the salts removed, this is commonly 
known as desalting and a variety of algorithms are available to accomplish this.  Filters 
can be applied at this step as well to remove unwanted compounds containing such 
features as reactive functional groups, unstable or hydrolizable groups, and cytotoxic 
groups.  Figure 1.6 shows several examples of such undesirable compounds.  
Additionally, broken or incomplete structures as well as structures containing metals are 
often removed at this step.  Finally, depending on the nature of the desired screening 
library, methods can be applied to filter the screening library for diversity or to build a  
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Figure 1.5. A Docking-Based Virtual Screening Workflow 
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Figure 1.6. Characteristic Undesirable Functional Groups in Virtual Screening 
Compounds 

Modified with permission from Rishton, G. M. Reactive compounds and in vitro false 
positives in HTS. Drug Discov Today 1997, 2, 382-384.13 
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focused library retaining only compounds similar to known actives or containing key 
pharmacophoric features.  Screening libraries can also be filtered using lead-like or 
drug-like filters including molecular weight, rotatable bond counts, ring counts, halogen 
counts, and h-bond donor and acceptor counts. 

 
The next step is the generation of 3-dimensional structures from the 2D structural 

files.  There are a variety of tools available to the molecular modeler for the generation of 
3D structures from 2D structure files.54,99,100  The two most common programs are 
Concord and Corina.101,102  At this step the modeler must make choices regarding 
generating multiple conformations per compound, generating conformations for multiple 
tautomeric states, expanding compounds to account for chiral centers and taking into 
account protonation/deprotonation at specific pH ranges.  These decisions will be based 
on the type of virtual screen that is to be performed as well as the computational 
resources available to the modeler.  Depending on the detail of the 3D library that is 
desired, this step can result in an exponential explosion in the number of screening 
compounds in the virtual screening library. 

 
Following 3D structure generation, the last step is normally loading partial atomic 

charges on the compounds.  The size of the library will normally determine the type of 
charge calculation method that the modeler will choose to accomplish the procedure.  
The most accurate method would be to use quantum mechanical methods for charge 
calculation, unfortunately this very computationally expensive and is usually too time-
consuming, even for small libraries.  For smaller screening libraries, semi-empirical 
methods such as the PM3 method available in the MOPAC suite would be the most 
accurate; however this method can also be time consuming taking several seconds to 
minutes for a compound, depending on the size and complexity of the compound.103  A 
variety of rules-based methods calculate charges based upon atom types, bonding and 
free valences and are very quick and easily implemented for very large virtual screening 
libraries.  The disadvantage being that they do not utilize electronic calculations for 
calculating the atomic charges and for compounds with complex electronic systems (pi 
delocalization, internal h-bonding, strong electron donating or withdrawing functional 
groups), the atomic charges generated can be less than reliable.  Some commonly used 
rules-based charge calculation methods are Del Re charges,104 Gasteiger/Marsili 
charges,105 Hϋckel charges,106 Pullman charges,107 and MMFF charges.108  Once the 
libraries have been generated and the charges loaded, they are typically saved in a 
commonly used molecular file format for virtual screening, usually 3D sdf or multi-mol2 
files. 
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1.3 Molecular Simulation Methods 

1.3.1 Introduction to Simulation Methods 

Molecular simulations are a way to visualize a system by generating successive 
configurations of the system.  There are several advantages of using simulation methods 
in drug discovery and design.  Biological systems, for example proteins, can be 
simulated under special conditions such as solvated and at different temperatures and 
pressures and with different substrates bound into the active site.  This is beneficial in 
that, while techniques such as x-ray crystallography can generate a snapshot of a 
protein (or other macromolecule), the positions of mobile elements, such as flexible 
loops, may remain unclear.  It is possible to visualize these mobile elements with 
simulations.  Additionally, x-ray crystallography and NMR methods are often employed 
under non-physiological conditions (temperature, pressure, pH, solvent, etc.), which can 
affect their results in unpredictable ways.  Simulations methods, although time 
consuming and computationally expensive, can provide information to the molecular 
modeler about how a biological system behaves over a certain time period, under 
physiological conditions. 

 
There are two main types of simulation methods that will be discussed here: 

Molecular Dynamics (MD) and Monte Carlo (MC) simulations.  With MD, the 
configurations are produced by integrating Newton’s laws of motion, resulting in a 
trajectory that specifies how the system behaves with time.  In this “deterministic” 
method, any future configuration of the system can be predicted from its current state by 
calculating energy and velocity for the atoms in a system using very small time steps, 
usually on the order of femtoseconds.  The forces on the atoms are used with their 
current positions and velocities to predict new positions and velocities for the next time 
step.  Over a given time period, a “trajectory” is generated that describes how the 
system being studied changes over time.  Time averages for thermodynamic properties 
such as internal energy, heat capacity, pressure, and temperature can be calculated.  

 
Monte Carlo simulations differ from dynamics in that the configurations are 

generated using a random approach where each configuration depends only upon the 
previous one.  Special algorithms based upon Boltzmann statistics and random number 
generators are utilized to determine whether each new configuration generated is 
“accepted” or “rejected”. The Monte Carlo procedure is as follows: a new configuration is 
generated by randomly moving atoms or residues and then calculating the energy of the 
new configuration using a potential energy function.  If the energy of the new 
configuration is lower than the previous, the new configuration is accepted.  If the energy 
is higher than the previous then the ‘Boltzmann Factor’ of the energy difference is 
calculated using the following equation: 

    ⁄  Equation 1.5



22 
 

where  is the energy of the system calculated by the potential energy function, kB is 
the Boltzmann Constant, and T is the temperature.  The calculated Boltzmann factor is 
then compared to a random number generated between 0 and 1 and if it is higher, the 
configuration is accepted, if it is lower, the configuration is rejected.  In the case of 
rejections, the original configuration is then used again to generate a new configuration.  
The use of Boltzmann statistics with a given potential energy function ensures that 
configurations with lower energies are generated more frequently than higher energy 
configurations.  The result is an ensemble of configurations for which desired property 
averages or positional averages can be calculated. 
 

There are several key differences between dynamics methods and Monte Carlo 
methods which should be pointed out.  First, as mentioned above, dynamics are a 
deterministic method which can provide information about a system which is time-
dependent.  Because Monte Carlo methods are random, there is no temporal 
relationship between the configurations generated.  Second, MD methods include a 
kinetic energy component when calculating the total system energy, where in MC 
methods; the total system energy is calculated from a potential energy function.  Finally, 
MC methods have the ability to sample higher energy configurations which may play a 
role in structure and function, but are harder to reach using MD methods.  Because 
Monte Carlo methods were not employed in the studies discussed herein, we will limit 
our discussion below to MD approaches and practical considerations. 

1.3.2 Molecular Force Fields and Parameterization 

Molecular force fields, or molecular mechanics, are the backbone of molecular 
dynamics simulations.  Force fields, which were mentioned above in the docking-based 
virtual screening section, are energy functions which are used to calculate energies of 
molecular systems based only upon the atomic positions and do not take into account 
electronic effects like quantum mechanics and semi-empirical methods.  Because of this, 
force fields cannot be used to describe molecular properties that depend upon electron 
distribution, such as chemical reactions.  Force fields describe the energy of a system 
using a series of energy terms that can be generally classified as internal (bonded) 
terms and external (non-bonded) terms.  The energy of the system is the sum of all the 
internal and external terms calculated for all atoms, bonds, and interactions in a given 
system.  Typical bonded energy terms in a simple force field include bond length (or 
bond stretching), angle bending, and torsional rotation, while the non-bonded terms 
include energy terms to describe electrostatic and van der Waals interactions, usually a 
Coulomb potential term and a Lennard-Jones potential term, respectively.  The 
functional form for such a simple force field is given by the following equation: 
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Equation 1.6

 
where the bonding term and the angle term are harmonic potentials that increase in 
energy as the bond length, , and angle length, , vary from their reference values, ,   

and , .  The torsional term describes how the energy changes as the torsion angle 

changes;  is the measured torsion angle,  is the multiplicity (number of minimum 
energy points as the torsion angle rotates through 360°) and  is the phase factor which 
determines where the torsion angle passes through its minimum value.  The force 
constants,   and  in these terms are specially derived (parameterized) so that the 
force field is able to reproduce known experimental energy or property values when it is 
being trained or designed.  The last term is the non-bonded energy term which includes 
the 12-6 Lennard-Jones potential for calculating van der Waals interactions and a 
Coulomb potential for calculating electrostatic interactions.   
 

Equation 1.6 is an example of a simplified force field with the minimum necessary 
terms to calculate the energy of a system.  As mentioned in the scoring section above 
force fields can include additional terms to describe special types of energetic 
contributions such as aromatic or pi stacking, H-bonding, solvation/desolvation, and 
rotatable bond restrictions.  Additionally, some advanced force fields can contain ‘cross 
terms’ which account for coupling between different energy components, such as bond 
stretching with angle bending, and stretching and bending with torsional changes.  Force 
fields can be categorized as either Class 1, 2, or 3 depending on the energy terms they 
incorporate and the complexity of those terms.  Simple force fields which contain only 
harmonic terms and do not contain cross terms (such as the example shown in equation 
1.6) are called Class 1 force fields.  Class 2 force fields may include anharmonic terms 
(Morse potentials or cubic and quartic energy term expansions) as well as cross terms 
while Class 3 force fields take into account chemical effects such as hyperconjugation, 
polarization, and electronegativity.  Table 1.4 lists examples of several commonly used 
force fields in small molecule and biomolecular modeling.  Obviously, as the complexity 
of the force field increases, so does the time required to complete energy calculations for 
a system.  For the purposes of molecular simulations, Class 1 force fields are typically 
utilized due their speed when compared to Class 2 and Class 3 force fields.  Class 2 and 
Class 3 force fields are generally used only for performing calculations on small 
molecules. 
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Table 1.4. Types and Examples of Commonly Used Molecular Mechanics Force 
Fields 

 
Type of Force Field 
 

 
Representative Examples 

Class 1 (Classical) Amber,109,110 CHARMM,111 OPLS,112,113 
GROMOS,114  

Class 2 (2nd Generation) CFF,115 MMFF,108 MM2/MM3116-118 

Class 3 (3rd Generation) MM4119,120 

 
 
An important part of force field modeling is the assignment of the atom type.  In 

quantum mechanical calculations, the atomic number, spin multiplicity, and overall 
charge of the nuclei present must be provided as input in order to obtain meaningful 
results.  Although force fields don’t require electronic information on the system under 
analysis, some information is still necessary on the types and number of atoms present.  
Atom types can provide the force fields with information regarding element, 
hybridization, ionization, and valence.  Atom types can be very general or very specific, 
depending on the nature and purpose of the force field.  Table 1.5 gives some examples 
of atom types with their descriptions from a general force field, the Tripos FF, and the 
Amber7 FF.  The table lists all carbon, nitrogen, and oxygen atom types for the Tripos 
FF and only carbon atom types for Amber FF.  It is readily apparent that the Tripos FF is  
much less specific than the Amber FF with respect to the number of atom types 
necessary to describe a system.  This is because the Tripos FF is considered a general 
purpose FF that can be used to describe a wide variety of molecular types, usually small 
molecules, while the Amber FF has been designed and parameterized to specifically 
deal with large biopolymers composed of amino acids or nucleic acids (i.e. proteins and 
DNA). 

 
Atom types play a key role in parameterization of force fields as each force field 

parameter, as in the force constants described above, is expressed in terms of atom 
types.  For example, in the example given above, there would be reference bond 
lengths, angles and torsions with corresponding force constants for each combination or 
set of atom types, two atom types for bonds, three for angles, and 4 for torsions.  
Parameterization is the process of developing the reference values and force constants 
for a given force field.  This can be a time consuming process, but it is very important as 
the overall performance of the force field is dependent on the quality of its parameters.  
Parameterization can be considered a two step process, the first is to identify and define 
the reference values for each atom type defined in the force field and the second is the 
assignment of the force constants to be used.  Reference values are usually obtained in 
one of two ways, from experimental data or from quantum mechanical calculations.   



25 
 

Table 1.5. Example Atom Types from Tripos and Amber Force Fields 

 
Tripos FF 
 

 
Description 

 
Amber7 FF 

 
Description 

C.3 sp3 carbon C any carbonyl sp2 C 
C.2 sp2 carbon C* sp2 aromatic C in 5-membered ring 
C.1 sp carbon CA any aromatic sp2 C 
C.ar aromatic carbon CB sp2 aromatic C at junction between 

5- and 6-memberd rings 
N.3 sp3 nitrogen CC sp2 aromatic C in 5-membered ring 

with 1 substituent and next to an N 
N.2 sp2 nitrogen CD sp2 C atom in C=CD-CD=C 
N.1 sp nitrogen CK sp2 aromatic C in 5-membered ring 

between N and N-R 
N.ar aromatic nitrogen CM any sp2 C, double-bonded 
N.pl3 trigonal planar 

nitrogen 
CN sp2 aromatic junction C between 5- 

and 6-membered rings, bonded to 
CH and NH 

N.am amide nitrogen CQ sp2 C in 6-membered ring lone pair 
Ns 

N.4 sp3 positively 
charged nitrogen 

CR sp2 aromatic C in 5-membered ring 
between 2 Ns 

O.3 sp3 oxygen CT any sp3 C 
O.2 sp2 oxygen CV sp2 aromatic C in 5-membered ring 

between 2 a C and lone pair N 
O.co2 oxygen in 

carboxylate 
CW sp2 aromatic C in 5-membered ring 

bonded to a C and an N-H 
O.spc oxygen in SPC 

water model 
CY nitrile C 

O.t3p Oxygen in TIP3P 
water model 

CZ sp C 
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Once the reference values are obtained, the force constants are usually developed by 
“fitting” the force field to experimental data, which can be thermodynamic properties of a 
system, known binding energies, or other properties obtained from quantum mechanical 
calculations.  This involves stepwise modification of the force field parameters give  
progressively better fits to the data being used.  Thus, parameterization is an iterative 
process.  Fortunately, most of the available commercial or academic force fields have 
been well parameterized for use against the systems they were developed.  However, in 
some cases the molecular modeler will have to develop and add parameters for 
compounds, atom types, bond types, etc. that are not explicitly described in the force 
field being used. 

1.3.3 Molecular Dynamics Approaches and Practical Considerations 

Setting up and running a molecular dynamics simulation is a complicated 
process which requires many considerations, such as the initial configuration of the 
system being studied, choice of force field and dynamics integration method, time length 
of the simulation and time steps, type of ensemble and energy calculations, boundary 
conditions, and solvation.  Each consideration can influence the outcome of the 
simulation as well as the computational expense and time requirements.   

 
The initial configuration of the system is usually obtained from experimental data, 

theoretical models, or a combination of both.  For example, for a protein simulation, the 
structure of the protein may have been obtained from x-ray crystallography, NMR, or 
homology modeling.  Atom types for the force field being used must be defined and 
parameters developed if necessary.  Partial atomic charges are loaded using one of the 
methods described above.  Finally, the systems are frequently minimized prior to running 
dynamics to eliminate high energy interactions such as steric clash. 

 
The force field (see above discussion) and the integration method are chosen 

based upon the nature of the system, i.e. small molecule, DNA, protein, etc., and the 
information desired from the simulation.  Another consideration is how well the dynamics 
program to be used can be parallelized.  Parallelization is very important as large 
biomolecular simulations must be run across multiple processors or on “clusters” 
in order to be completed within a reasonable amount of time.  Molecular Dynamics 
packages available for commercial or academic use frequently incorporate their own 
force field which has already been parameterized by the developers.  Some commonly 
used dynamics packages that include their own force fields are Amber, CHARMM, and 
GROMACS.72,73,75  There are also a number of packages available for academic uses 
that utilize other developed force fields.  For example, LAMPPS121 is compatible with the 
CHARMM, AMBER, OPLS, and GROMOS force fields; NAMD74 can be used with 
CHARMM, AMBER, and OPLS; and GROMACS75 can be used with its native force field 
GROMOS, CHARMM, or AMBER.  There are a variety of integration methods currently 
employed by dynamics software packages, including the Verlet algorithm,122 the ‘leap-
frog’ algorithm,123 the velocity Verlet method,124 and Beeman’s algorithm.124  Factors that 
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must be considered when choosing an integration method include computational effort 
required, length of time steps required, energy conservation, and the ability of the 
methods to deal with the ensemble method being used.  The most widely employed 
integration methods employed today are Verlet and velocity Verlet methods.  The Amber 
package employed in the Molecular Dynamics studies described in the next chapter 
uses the velocity Verlet integration method by default. 

 
Once the initial configuration of the system has been defined and the force field 

and integration method (software package) selected, decisions must be made as to the 
length of time and the time steps that will be required for the simulation.  The length of 
time will be determined by the nature of the system being studied, the process being 
studied, and the computational resources available to the modeler.  Currently, the time 
length limitation for dynamics simulation is on the order of tens to hundreds of 
nanoseconds, although microsecond simulations for smaller systems have been 
reported.  For example, protein folding, which occurs on a millisecond time scale, is not 
currently observable using molecular dynamics methods, but small scale loop 
movements and ligand binding can theoretically be observed on the nanosecond or low 
microsecond time scales.  The calculation time steps are another key consideration and 
will depend on the integration method being used, the system studied, and the 
computational resources available.  Obviously, the smaller the time step chosen, the 
more computational expensive will be the simulation and the resulting time required to 
complete the simulation will increase.  A standard recommendation is that the time step 
chosen should be one-tenth the time of the shortest motion being studied.  In 
biomolecular systems this is usually the C-H bond vibration which occurs on a 10fs time 
scale, thus 1fs time steps would typically be chosen.  If C-H bonds are held constrained 
during the simulation using a method known as the SHAKE algorithm, then this time step 
can be doubled to 2fs.125 

 
The next consideration is the type of ensemble to be studied and the types of 

energy calculations that will be used.  Molecular dynamics are traditionally performed 
using the NVE or microcanonical ensemble, which holds constant the number of 
particles (N), the volume (V) and the energy (E).  Monte Carlo methods traditionally 
utilize the NVT or canonical ensemble (constant N, V, and temperature, T).  When 
studying biomolecular systems, however, it is more practical to use the NTP, or 
isothermal-isobaric ensemble, which holds constant the number of particles (N), the 
temperature (T), and the pressure (P).  This simulates physiological conditions more 
closely than the other types of ensembles.  Probably the most time consuming part of a 
molecular dynamics simulation is the calculation of long range interactions and there are 
a variety of methods for handling this.  The use of distance cutoffs for energy 
calculations is one popular way to address this problem.  Cutoffs present a problem with 
certain types long-range interactions, such as charge-charge interactions which can still 
significantly contribute to the energy of the system beyond the standard cutoffs used in 
most dynamics simulations.  Special methods have been developed to address this 
problem, including the Ewald summation, the reaction field method, and the cell multiple 
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method.  The Ewald summation method is probably the most popular, and a version 
known as Particle-Mesh Ewald (PME) is currently deployed in the Amber simulations 
package.126 

 
Finally, boundary conditions and choice of solvation methods must be decided 

upon.  Because interactions at the boundaries of the system being studied (i.e. vacuum, 
wall, etc.) can influence the energy calculations, the boundaries must be defined or 
taken into account in some manner.  For biomolecular simulations, the most common 
way to do this is to employ periodic boundary conditions.  Periodic boundaries involve 
placing the system in a cell, typically a cubic box or other geometric shape, and then 
surrounding the cell with mirror cells containing replicas of the system (26 cells for a 
cubic box).  The interactions energies can then be calculated across cell boundaries 
overcoming the boundary effect and essentially enabling the simulation of a much larger 
system.  If a particle leaves one side of the cell, it subsequently enters from the other 
side; this keeps the number of particles in the system being studied constant.  One 
caveat that must be mentioned here is that the cell size chosen must be large enough so 
that the actual biomolecule being studied does not “see” itself and affect its own energy 
calculations.  Usually, it is desirable only for solvent molecules to cross the periodic 
boundary.   

 
This brings us to the final consideration, the choice of solvation method.  There 

are currently three different ways to take into account solvation: the first is to simulate 
the system in vacuo using only a distance dependent dielectric screening term in the 
force field to simulate the solvent screening effects on electrostatic charge calculations.  
This method is the least rigorous, eliminates the need for periodic boundary conditions, 
and is the fastest in terms of computational expense; however it is also the least reliable 
and should be reserved only for simulations where solvent effects are not expected to 
play a key role.  The second method is to model solvation in a dynamics simulation is 
known as ‘implicit solvation’, or continuum solvation.  This method uses special energy 
terms in the force field to represent the solvent as a continuous medium.  Two commonly 
used algorithms are used to approximate the solvent electrostatic effects: the Poisson-
Boltzmann equation, and the Generalized Born model, which is a linear approximation of 
the Poisson-Boltzmann equation that is less computationally expensive.  Both of these 
equations are often combined with a hydrophobic solvent accessible surface area (SA) 
term.  Implicit solvation models, while more reliable than in simple dielectric terms, still 
have limitations.  Entropic effects are not accounted for in these models, which can be a 
major factor in loop movements, ligand binding, and protein folding.  The effect of 
solvent viscosity on the motion of solutes is also not accounted for when using implicit 
models, although in some cases this can be desirable.  Finally, although H-bonding can 
be generally accounted for with implicit solvation algorithms, the directionality of H-bonds 
cannot.  The final solvation method is known as explicit solvation.  In this method the 
solvent molecules are explicitly treated by surrounding the solute or biomolecule by 
solvent molecules.  This method is the most accurate but also the most computationally 
expensive as all energy calculations must now include the many solvent molecules, 
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typically on the order of 50,000 or more, needed to solvate the biomolecule.  For 
biomolecular simulations, there are several water models that have been designed for 
use, the most commonly used is the TIP3P water model, a 3-site model where the water 
is represented by a molecule with 3 interaction sites and a rigid shape.127  4, 5 and 6 site 
models have been developed but they increase the computational expense of the 
simulation and are rarely used except for simulations modeling water dynamics. 

 
Once the molecular dynamics methods have been determined and the system 

has been set up, the simulation can be run.  A typical dynamics simulation of a 
biomolecular system under explicit solvation is a multi-step process.  An initial solvent 
minimization is required, where the solvent is minimized while the solute is held under 
constraint. This is followed by a solvent dynamics step, where the solvent (and any 
counter ions added to balance the solute charge) are allowed to equilibrate; typically 10 
to 100ps are sufficient.  The next step would be allowing the entire system to minimize 
while slowly loosening the constraints on the solute, or biomolecule.  This is followed by 
the dynamics simulation itself which occurs in two phases, an equilibrium phase and a 
production phase.  The equilibrium phase brings the system to equilibrium from the 
starting configuration, often while raising the temperature slowly to the desired 
simulation temperature.  Equilibration is reached when the calculated average 
temperature, pressure, and energies have stabilized.  Finally, the production phase of 
the simulation can begin, where the system is allowed to fully evolve for the desired time 
period.  Typically only data obtained from the production phase is used to calculate the 
desired properties. 

1.4 Contemporary Structure-Based Drug Design 

Over the last decade, a number of new drug design techniques have emerged 
that are gaining wide acceptance in industry and academia.  This section will introduce 
several contemporary design techniques that can be incorporated into a structure-based 
drug design program, discuss methods involved with these techniques and examples of 
their successful application.  The focus of this section will be fragment-based drug 
design with a brief introduction to click chemistry, tethering and dynamic combinatorial 
diversity. 

1.4.1 Principles of Fragment-Based Drug Design 

In 1997, Lipinski et al. proposed the “Rule of Fives” for drug-likeness, solubility 
and oral bioavailability.23  The model proposed that an ideal oral drug candidate should 
have a molecular weight of no more than 500 Daltons, no more than 5 hydrogen bond 
donors and 10 hydrogen bond acceptors, and a ClogP no greater than 5.  This model 
was readily adopted by both the pharmaceutical industry and academia and is 
commonly used to filter corporate libraries and large compound collections prior to high-
throughput screening.  In fact, many drug companies have fashioned their corporate 
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libraries to be in compliance with the Rule of Fives. However, a study published in 1999 
by Teague, et al. which examined the lead compounds for a large number of 
commercially available drugs demonstrated that the molecular weight, logP, rotatable 
bonds, and hydrogen bond donor and acceptor counts were significantly lower than the 
final marketed compounds.128  They concluded that the lead optimization process almost 
always leads to more complex compounds, and advanced the concept of lead-likeness 
versus drug-likeness.  The authors went on to propose that screening programs should 
focus on lead-like or fragment compounds rather than drug-like compounds.   

 
Since that time, many other studies have been performed investigating the 

concept of fragment-based screening, and many groups have reported the discovery of 
novel compounds with low nanomolar potency utilizing this methodology.129  There are 
now definite criteria for defining lead-like or fragment compounds, the most commonly 
used being Congreve’s “Rule of Three” which states that most fragment hits have a 
molecular weight of ≤ 300, ≤ 3 hydrogen bond acceptors, ≤ 3 hydrogen bond donors, 
and have a ClogP of ≤3.  Additionally, the rotatable bond count should be ≤ 3 and the 
polar surface area should be ≤ 60 Å.128,130 

 
There are several advantages to screening fragments over drug-like compounds, 

the most notable being the likelihood that the lead optimization process will result in a 
drug-like compound which has a greater chance of having good oral bioavailability and 
favorable ADME properties.  Compare this with the drug-like screening process, where 
the optimization of a drug-like hit, which again is most likely to increase molecular size 
and complexity, could very possibly result in a compound falling outside the desirable 
range of physicochemical properties for an oral drug candidate.  Additionally, because 
fragments-based methods have the potential to sample higher chemical diversity, a 
much smaller number of compounds are generally needed for fragment-based 
screening, usually on the order of hundreds to a few thousand.  This concept is best 
explained using an example.  Two fragment libraries each containing 1000 fragments 
would contain 1,000,000 compounds when combined using a single linker.  Screening 
this number of compounds would be a significant undertaking.  However, if one were to 
test the fragments first, then take the 5 most active from each set and combine them in a 
similar manner, the result would be only 2025 compounds that required testing (1000 
fragments + 1000 fragments +25 linked compounds), a significantly easier undertaking, 
while still covering the same chemical space.  The advantage of fragment screening is 
obvious when compared to a standard high-throughput screen that would involve 
hundreds of thousands to millions of compounds. 

 
Another advantage is that fragment-based screening can lead to higher hit rates. 

This is because compounds of lower complexity have a greater chance of matching the 
target receptor site.131  As the complexity of the compounds being screened increases, 
the probability of binding (hit rate) decreases.  Finally, dealing with fragments rather than 
larger, drug-like compounds, is advantageous from a technical perspective in that data 
management, compound acquisition, and synthesis are all simplified. 
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1.4.2 Fragment-Based Drug Design Methods 

As previously discussed, during the lead optimization process, a fragment hit of 
low potency can be developed into a drug-like compound of very high potency.  There 
are several optimization techniques which have been used with success that deserve 
special mention: fragment evolution, fragment linking, and fragment self-assembly.  In 
fragment evolution, additional functional groups are added to the fragment hit to optimize 
binding and increase potency. This process is generally guided by X-ray or NMR 
structural information.  One requirement to using this optimization procedure is that the 
original hit fragment must act as an ‘anchor’ and not alter its binding position during the 
evolution process.  This method is most useful for smaller active sites that can afford 
multiple fragment binding sites. 

 
If the targets active site can accommodate multiple fragment binding sites, then 

the fragment linking optimization method can be employed.  Fragment linking involves 
the addition of a linking group (which may or may not form receptor site binding 
interactions of its own) to join two fragment hits that bind into two separate sites on the 
target receptor.  This linking frequently results in compounds whose potency is much 
greater than that of the two starting fragments, mostly due to entropic considerations. 
The key point here is that the expected free energy of binding of the linked molecule is 
greater than the sum of the binding energy of the two individual fragments.  This is 
because with the two separate fragments, there are two entropic penalties to binding, 
whereas only one with the linked compound.  One important consideration when using 
the fragment linking method is that the two fragments must remain in their original 
binding positions after being linked.  This factor can determine the choice of linking 
group to be used. 

 
Fragment self-assembly involves the use of chemically reactive fragments that 

are able to bind into the active site and react with each other, forming a larger inhibitor.  
The active site acts as a template for the reactive compounds, aligning them for their 
reaction and filtering out fragments not able to match the active site characteristics.132  
This is an example of “click chemistry” as it applies to fragment-based design.   

1.4.3 Fragment Activity and Binding Analysis 

Fragment-based screening is not without its disadvantages.  Because of the 
lower molecular weight and complexity of the fragment compounds, they are expected to 
be less potent than a drug-like compound. This means that specialized screening 
methods need to be employed to identify hit compounds.  Several methods have been 
used with success, including high concentration screening,133 X-ray crystallographic 
screening,134  NMR screening135, affinity detection by mass spectrometry136, surface 
plasmon resonance137, and isothermal titration calorimetry (ITC).138  It should be noted 
that although the fragment hits typically show a much lower potency, often high 
micromolar to low millimolar, in terms of binding efficiency (binding affinity normalized by 



32 
 

molecular weight or heavy atom count), they are often on par with or exceed the 
efficiency of drug like compounds.139  Binding efficiency is a key concept of fragment-
based drug design.  

 
Typical high-throughput screening experiments assay the compounds being 

tested at 10 μM concentration.  In fragment-based drug design, because of the lower 
binding affinity of the fragment ‘hit’ compounds, a 10 μM concentration is not sufficient to 
detect activity.  Concentrations up to low millimolar must be used to detect active 
fragments; typical high-concentration fragment screens will use 250 or 500 μM.  This 
presents special problems associated with this high concentration screening.  At higher 
concentrations, solubility of the screening compounds can become an issue and 
compounds can precipitate out of the screening solution which can interfere with assays 
and activity detection.  Therefore, if high-concentration screening is to be used for 
activity detection, it is advisable to build the fragment screening library using only very 
soluble compounds. 

 
With the advent of high-throughput crystallography techniques, x-ray 

crystallography has evolved into a screening technique that can identify fragment 
binding.  Fragment compounds are typically screened by soaking cocktails of 4 to 10 
compounds, which have been selected for optimum diversity, into protein crystals.  
There are several advantages to screening using this method.  First, the binding mode of 
the fragment can be directly visualized, which facilitates the subsequent lead 
optimization process.  Also, multiple binding fragment binding sites can visualized, which 
can facilitate the fragment linking approach to lead optimization.  And finally, unlike 
traditional screening methods, high fragment concentrations are not normally necessary 
when using x-ray crystallography methods.  This method has gained considerable 
acceptance with drug companies in recent years and several have developed 
crystallography platforms for use specifically with fragment screening, including Astex’ 
Pyramid,140 Stuctural GenomiX’ FAST, Plexxikon’s Scaffold-Based Drug Design,141 and 
Abbott’s CrystaLEAD process.134 

 
Nuclear magnetic resonance (NMR) is another sensitive method that can be 

used to detect fragment binding.  There are two general methods that can be employed 
to detect fragment binding: detection by receptor (protein) resonances and detection by 
ligand (fragment) resonances.  When detection is done by observing receptor 
resonances, and initial map or “fingerprint” of the receptor amide or methyl protons is 
obtained in a non-bound state which can then be compared to resonances obtained with 
cocktails of fragments compounds present.  Chemical shifts of 1H-15N or 1H-13C 
resonances in the active site can indicate bound ligands.  It is even possible to localize 
the binding site if sequence-specific resonance assignments are available.  Ligand 
based methods  take advantage of the differences in ligand resonances between bound 
and unbound states and typically use one of two methods: Saturation Transfer 
Difference (STD)142 and WaterLOGSY.143  Receptor and ligand based NMR detection 
methods each have their advantages and disadvantages.  A key advantage to using the 
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receptor-based method over the ligand based method is that high affinity compounds 
can be detected by analyzing the resonance peaks obtained.  Also, because the protein 
has been assigned, it is possible to identify binding to target and non-target sites on the 
protein.  Disadvantages to receptor-based NMR methods include molecular weight 
limitations for the proteins (>30 kDa is typically beyond the practical range for protein 
sequence assignments), requirements for large amounts (milligrams quantities) of 
protein, and long sample stability requirements.  Finally, a key disadvantage of ligand-
based detection methods is that tight-binding ligands can show as false negatives 
because they do not disassociate from the receptor frequently enough to distinguish 
between bound and unbound ligand resonances.  SAR by NMR144 is a specialized 
fragment linking technique that allows for the design of high affinity ligands by linking 
lower affinity fragments that have been detected by 2D NMR methods.  The key to the 
SAR by NMR method is that two separate binding sites and ligands have to be identified 
and linked using fragment linking methods. 

 
The last three methods of binding and activity analysis are mass spectrometry 

(MS), Surface Plasmon Resonance (SPR), and isothermal titration calorimetry (ITC).  
Electrospray ionization is typically used in MS techniques to ionize protein/ligand 
complexes.  Mass identification can then be used to identify fragment binding, even from 
mixtures of fragments.  This can be a sensitive detection method, but relies on the ability 
of the protein/ligand complex to remain together in a gas phase ionized state.  
Disadvantages include the requirements for relatively large quantities of protein and an 
unclear understanding of the effect ligand binding forces between ligand/receptor on 
going from solution to gas phase.  In the SPR detection method, the protein is typically 
immobilized onto the surface of a solid support after which screening compounds are 
introduced.  Binding is detected by analyzing changes in the refractive index at the 
surface caused by co-localization of the ligand and protein.145  This method has 
advantages in that it is possible to measure kinetic binding data and there are no affinity 
limitations.  However, because the protein is immobilized the measurements do not take 
place in solution.  Also, a method of immobilizing the protein in its active state must be 
utilized.  Finally, isothermal titration calorimetry has shown utility in the identification of 
low-affinity compounds in recent fragment-based design studies.138  ITC has been widely 
used to measure the thermodynamic properties of ligand binding by measuring heats of 
association for receptor-ligand complexation at a given temperature as one component 
is titrated into the other for complexes involving high-affinity ligands.  Using this method 
the enthalpy of binding (ΔH°), Gibbs free energy of binding (ΔG°), and the disassociation 
constant (Kd) can be determined.  From these values one can determine the entropy of 
binding (ΔS°), by using the following equation: 

 ∆ ° ∆ ° ∆ ° Equation 1.7
 
One major disadvantage of ITC measurements is that they have been reported to 

be reliable for low-affinity systems, such as fragment-based studies.  However, it has 
recently been suggested that with ITC measurements can accurately predict Kd values 
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for low-affinity ligands (~ mM) using improved sensitivity measurements and carefully 
designed guidelines.146 

1.5 The Design of Antimicrobial Agents: Special Challenges to 
Computer-Aided Drug Design 

The design of pharmaceutical agents with activity against bacterial targets 
presents some unique challenges and opportunities that will be discussed in this section.  
Because bacteria are prokaryotic organisms, there are significant differences in these 
cells when compared to the eukaryotic cells of their mammalian hosts.  The metabolic 
pathways, structural features, and cell components commonly targeted in drug design 
programs are often unique to bacteria.  While this provides an excellent opportunity in 
terms of selectivity and decreased toxicity, there are also special factors that must be 
considered, including distribution to the target, bacterial cell penetration, metabolism, 
elimination, and bacterial resistance.  These factors can play a key role in the design of 
a compound library for screening against bacterial targets. 

1.5.1 Penetration of Cell Wall 

One of the most significant differences between bacterial cells and the cells of 
their human hosts is the presence of a cell wall.  Bacteria can be generally classified by 
their cell wall dye staining characteristics as either Gram positive or Gram negative.  
Gram positive bacteria have a simple cell wall located externally to the bacterial 
cytoplasmic lipid membrane that is primarily composed of a thick layer of peptidoglycan, 
a series of peptide cross-linked polysaccharide chains.  Gram negative bacteria have a 
more complex cell wall that is composed of a thinner peptidoglycan layer which is 
covered by a second lipid membrane which contains channels known as ‘porins’.   Aside 
from their functional purpose of maintaining cell stability and structure, the cell wall can 
present a significant barrier to the penetration of the antibacterial compound in to the 
cell.  Fortunately, the cell wall also presents an attractive antibacterial drug target. 

 
Because of the significant structural differences between Gram positive and 

Gram negative cell walls, the drug compounds that target Gram positive bacteria are 
often very different in terms of structure and physical properties from those that target 
Gram negative bacteria.  Gram positive cell walls do not contain the porin channels that 
are found in Gram negative cells, necessitating the passive diffusion of drug compounds 
targeting these bacteria across the cell wall.  Due to this need for cell wall diffusion, 
gram positive agents are usually more lipophilic than antibacterial compounds that target 
Gram negative bacteria.  Agents targeting Gram negative bacteria typically enter the cell 
by crossing through the porins.  Because of this these compounds are often more 
hydrophilic to increase their solubility and facilitate passage through the porin channel.   
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1.5.2. Special Pharmacokinetic Issues to Consider 

Figure 1.7 shows the cLogP and molecular weight distribution of the most 
common antibacterial drug classes.  Note the low cLogP of the carbapenems and 
aminoglycoside antibiotics, two classes commonly used in the treatment of Gram 
negative infections.  This indicates that these classes are very highly water soluble.  The 
penicillin and macrolide antibacterial classes, both commonly used to treat Gram 
positive infections, are generally distributed into a higher cLogP range, indicating that 
these compounds are much more lipophilic.  Some key general features of antibacterial 
agents can be seen from Figure 1.7 as well.  Unlike drugs for mammalian targets, the 
antibacterial agents generally have a molecular weights and cLogP values that fall 
outside of the normally accepted range for “good” oral drug candidates.23  There are two 
reasons for this, the first is that many of these classes of drugs have been derived from 
natural products, which tends to yield compounds with higher molecular weights.  The 
second reason, as has been discussed above, has to do with the unique cell penetration 
requirements of antibacterial agents.   

 
The trend toward higher molecular weight and decreased lipophilicity seen with 

several of the antibacterial drug classes has resulted in special pharmacokinetic issues  
that must be considered.  First, oral absorption of the classes with very high MW and low 
cLogP is significantly decreased, resulting in many agents that can only be given by the 
intravenous route, such as the carbapenem β-lactams and the aminoglycosides.   The 
route and mechanism of elimination for these compounds is also affected by their 
molecular weight and lipophilicity.  Compounds with high solubility (low cLogP) are 
primarily eliminated by the kidneys without first being metabolized, while compounds 
with low solubility (high cLogP) are primarily metabolized prior to elimination.  The 
distribution of these agents to the target tissue is also affected by their high molecular 
weight and low cLogP.  The combination of poor oral absorption and low distribution for 
several antibacterial drug classes has necessitated the use of large doses, often on the 
gram scale, in order to the required therapeutic concentrations for efficacy. 

1.5.3 Screening Library Design for Antimicrobial Targets 

The issues discussed in the previous section can strongly influence the design of 
a screening library to be used against bacterial targets.  Special consideration must be 
give to the nature of the target as well as the classification and cell wall characteristics of 
the bacteria.  As discussed in section 1.2.3, when building a virtual screening library it is 
often necessary to use filters to focus the screening library so that it contains only 
compounds that fall within “drug-like” or “lead-like” ranges for molecular weight, 
lipophilicity, etc.  These ranges have been defined by Lipinski, Veber, Congreve, and 
others for drugs to be delivered by the oral route.23,24,130  It must be considered, however, 
that the ranges specified in these studies have predominately been defined by marketed 
orally available drugs that interact with human targets.  As mentioned above, the nature 
of the bacterial cell and targets that lie within have resulted in average molecular weights  



36 
 

 

Figure 1.7. Molecular Weight and cLogP Distribution for Common Antibacterial 
Drug Classes 
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that fall above the “drug-like” range of Lipinski, et al, and cLogP values that fall below 
these ranges for the drugs that bind these targets.  Therefore, when creating a drug-like 
library for screening against bacterial targets, it is advisable to use higher molecular 
weight and lower cLogP restrictions.  For example, a molecular weight restriction of 650 
or 700 daltons rather than 500 is not unreasonable.  Similarly, a lead-like library should 
have slightly higher molecular weight restrictions, on the order of 350 or 400 daltons. 

1.5.4 Resistance Development 

The last issue that will be discussed here is bacterial resistance.  It seems that 
almost as soon as a new class of antibacterials reaches the market, bacteria are isolated 
that have become resistant.  Take for example, the drug linezolid (Zyvox®), which was 
approved in the U.S. in April, 2000 for the treatment of resistant staphylococcal 
infections.  The first case of clinical linezolid resistance was reported just two years 
later.147  This is not a new phenomenon; bacteria have been developing resistance to 
antibacterials for as long as we have been designing them, as can be seen from the data 
presented in Table 1.6.   
 

There are several reasons for the rapid emergence of resistance in bacterial 
organisms, the first is evolutionary.  The rapid replication rate of bacteria and the 
selective pressure applied when treated with antibacterial agents result in the selection 
of organisms with resistance to these agents.  Complicating this is the misuse and 
overuse of antibiotics and antibacterials, both in the treatment of human infection and 
use in the environment.  Finally, noncompliance on the part of patient for whom 
antibacterial agents are prescribed also contributes to the rapid emergence of  

Table 1.6. Introduction and Development of Resistance Timeline for Common 
Antibacterial Drug Classes 

 
Antibacterial Class 
 

 
Mechanism of Action 

 
Introduced 

 
Resistancea 

Sulfonamides Inhibit Folate Production 1935 1940 
β-lactams (i.e. penicillins) Inhibit Cell Wall Synthesis 1942 1945 
Aminoglycosides Inhibit Protein Synthesis 1944 1959 
Tetracyclines & Related Inhibit Protein Synthesis 1948 1953 
Macrolides & Related Inhibit Protein Synthesis 1954 1988 
Vancomycin Inhibits Cell Wall Synthesis 1956 1985 
Fluoroquinolones Inhibit DNA Replication 1985 1991 
Streptogramins Inhibit Protein Synthesis 1999 2001 
Oxazolidinones Inhibit Protein Synthesis 2000 2001 
Daptomycin Disrupts Cell Membrane 2003 2004 

 
a. Unless otherwise cited, resistance emergence dates are approximate estimates 
based upon anecdotal reports. 
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resistance.  Bacteria acquire their resistance in one of two ways, either by spontaneous 
genetic mutation, or by transfer of genetic material from one organism to another. 
 

Bacteria have developed a variety of mechanisms to survive exposure to 
antibacterial agents.  Some common mechanisms of bacterial resistance include:  
deactivation of the antibacterial agent by enzymatic modification of the compounds 
structure, decreased permeability of the bacterial cell by altering the cell wall or 
decreasing porin expression, export of the antibacterial agents by efflux pumps before 
they can affect their target, alteration of the target’s active site such that it maintains  
activity but no longer affinity for the antibacterial agent, protection of the target by 
producing biomolecules that interfere with binding, overproduction of the target 
biomolecule or the natural substrate for the target, and finally utilization of alternate 
pathways that bypass the inhibited process or pathway.  Table 1.7 lists the most 
common antibiotic drug classes and the most frequent mechanism of bacterial 
resistance to each class. 

 
A number of mechanisms have been developed that can aid in bypassing the 

resistance mechanisms mentioned above.  In the case of enzymatic inactivation of the 
antibacterial, compounds can be utilized in conjunction with the antibacterial that inhibit 
the deactivating enzyme, allowing the antibacterial agent to produce its effect.  A classic 
example of this case is the use of β-lactamase inhibitors with β-lactam antibiotics.  The 
use of two antibacterial agents that inhibit successive steps in a pathway that is being 
targeted is known as sequential blocking.  The best example of this is the use of the 
antifolate compounds sulfamethoxazole and trimethoprim, the former targeting 
dihydropteroate synthase and the latter dihydrofolate reductase, sequential steps in the 
bacterial folate pathway.  Efflux pump inhibitors are being investigated for use with 
antibacterial classes such as the tetracyclines and fluoroquinolones, for which efflux is a 
major resistance mechanism.  Finally, the use of multiple agents that bind to the same 
target can bypass the altered target resistance mechanism and delay the development 
of bacterial resistance in some cases. 
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Table 1.7. Common Bacterial Resistance Mechanisms Affecting Antibiotic Classes 

 
Resistance Mechanism 
 

 
βLa 

 
AGb 

 
Macc 

 
Sulfd 

 
TCNe 

 
FQf 

 
SGg 

 
GPh 

Enzymatic Inactivation +++ +++ + - + - - - 
Decreased Cell 
Permeability 

+ + ++ - + + + + 

Efflux + + ++ - +++ + - - 
Altered Target Site ++ ++ +++ ++ + +++ +++ +++ 
Protection of Target - - - - ++ + - - 
Overproduction of Target - - - ++ - - - + 
Bypass of Inhibited Process - - - + - - - - 

 
a. β-lactams  +++ Most Common 
b. Aminoglycosides ++           Common 
c. Macrolides 
d. Sulfonamides +   Less Common 
e. Tetracyclines 
f. Fluoroquinolones 
g. Streptogramins 
h. Glycopeptides 
 

Adapted with permission from Opal, S. M. and Medeirus, A. A. Molecular 
Mechanisms of Antibiotic Resistance in Bacteria. In Principles and Practice of 
Infectious Disease, 6th ed.; Mandell, G. L.; Bennett, J. C.; Dolin, R., Eds. 
Elsevier: Philadelphia, 2005; Vol. 1, pp. 253-270.148 
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CHAPTER 2. STRUCTURAL AND MECHANISTIC STUDIES ON 
DIHYDROPTEROATE SYNTHASE 

2.1 Introduction 

This chapter and the following two chapters will discuss our efforts in the design 
of novel molecular agents with activity against the enzyme dihydropteroate synthase.  
Our work toward this goal followed an approach very similar to that shown in Figure 1.5 
in Chapter 1, using a combination of pharmacophore searching and docking using the 
known crystal structures and known inhibitors of the target enzyme.  The target enzyme 
of these studies is from Bacillus anthracis, the causative agent of the disease anthrax, 
and several crystal structures of the B. anthracis DHPS were utilized in this work.  This 
chapter will discuss a series of molecular dynamics simulations that were performed to 
map the positions of two flexible loops from DHPS, which were unclear in our crystal 
structures.  This was done primarily to build a model that could be used for virtual 
screening studies, with additional goals of gaining insight into the structure of the 
transition state and the mechanism of the reaction that DHPS catalyzes.  Chapter 3 
follows this with a discussion of the docking validation studies which were performed to 
select the best docking and scoring algorithms for use in virtual screening against 
DHPS, and finally Chapter 4 discusses the virtual screening studies that were performed 
and presents the results of those studies. 

2.1.1 DHPS: New Approaches for an Old Target 

The rapid emergence of bacterial drug resistance has led to a decrease in the 
clinical utility of virtually all marketed antibacterial agents and an increased interest in the 
design and synthesis of new antibacterial agents with novel targets.  An alternative 
approach to antibacterial drug design is to identify the mechanism of bacterial resistance 
and utilize this knowledge to develop new inhibitors of established bacterial targets. The 
sulfonamide class of antibiotics was one of the first classes of fully synthetic compounds 
successfully used for the treatment of bacterial infections.  Sulfonamides act by 
interrupting the folate biosynthetic pathway in lower organisms by targeting the enzyme 
dihydropteroate synthase, DHPS.  These antibiotics mimic the natural substrate, pABA, 
and act either by competitive inhibition or by the formation of “dead-end” sulfonamide-
pterin products.  The key steps of the bacterial folate pathway are shown in Figure 2.1 
with the antibacterial inhibition steps highlighted.  DHPS catalyzes the addition of pABA 
to 7,8-dihydropterin-pyrophosphate (DHPP), to form 7,8-dihydropteroate, shown below. 

 
Historically, the sulfonamide antibiotics have been used extensively for a variety 

of gram-positive and gram-negative bacterial infections.  Sulfonamides and 
combinations with DHFR inhibitors such as co-trimoxazole, a sulfamethoxazole-
trimethoprim combo, have been used for the treatment of infections by Neisseria,  
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Figure 2.1. Key Steps in the Folate Biosynthetic Pathway of Prokaryotes 

 
Streptococci, Staphylococci, Pneumococci, E. coli, Mycobacterium leprae (leprosy), 
Plasmodium falciparum, and Pneumocystis jiroveci.  However, drug resistance has 
emerged as an important factor that severely limits the clinical use of sulfonamide drugs, 
and resistance mutations in the gene that encodes DHPS, folP, have now been 
characterized in clinical isolates of many pathogenic organisms.  This emerging 
resistance has led to a decrease in the clinical utility of these agents for the treatment of 
several types of infection, such as upper respiratory tract infections and gastrointestinal 
infections.   Previously considered to be a first-line agent, co-trimoxazole has been 
relegated to a 2nd or 3rd line option.   
 

Co-trimoxazole is still considered a first line treatment for uncomplicated urinary 
tract infections and certain types of skin and soft tissue infections, but local resistance 
patterns often preclude its use.  For example, E. coli, the most commonly isolated 
pathogen in urinary tract infections, remains mostly susceptible to co-trimoxazole with a 
resistance rate of 15-20%, however some urban areas have reported rates as high as 
80%.149  While resistance has certainly caused a dramatic decline in the use of 
sulfonamide drugs, it should be noted that several emerging pathogens have shown 
universal susceptibility to co-trimoxazole, lending validity to the further investigation of 
DHPS and DHFR as drug targets.  In fact co-trimoxazole is the recommended agent for 
treatment of community acquired MRSA, which is rapidly reaching epidemic proportions, 
and the 7 known clinical isolates of vancomycin resistant S. aureus (VRSA) were all 
shown to be susceptible as well.150 

 

 



42 
 

2.1.2 A History of Sulfonamide Drug Development 

Figure 2.2 shows a timeline of the key developments and discoveries in the 
history of sulfonamide drug use and development.  The discovery of the sulfonamide 
class of antibacterial agents is credited to Gerhard Domagk, of I. G. Farben Industrie in 
Germany, who was testing the antibacterial properties of several organic dyes.  Domagk 
noted that the agent Prontosil, shown in Figure 2.3, protected mice against streptococcal 
infection.  Interestingly, Prontosil was only effective when injected directly into mice and 
had no antibacterial properties when studied in vitro against streptococcal species.  This 
was not appreciated until 1935, the same year that Prontosil began to see significant 
clinical utilization, when Trefouёl and coworkers were able to show that Prontosil was 
metabolized in the body to sulfanilamide (Figure 2.4), and that sulfanilamide was the 
actual active component.  The success of sulfanilamide in the treatment of various 
streptococcal and staphylococcal infections led to great interest in the development of 
sulfonamides as antibacterial agents and led to the discovery and utilization of a variety 
of sulfonamide agents.  The actual mechanism of bacterial inhibition was not elucidated 
until 1940, when Woods and coworkers showed the competitive action of pABA on the 
effect of the sulfonamides and pABA was subsequently shown to be a key component of 
folic acid, incorporated during bacterial folate synthesis. This proposed mechanism was 
not confirmed until 1969, when Richey and Brown were able to purify DHPS and 
demonstrate the inhibition of DHPS by sulfanilamide. 
 

The picture seemed clear until 1974 when Weisman, Brown, and Bock showed 
that in some types of bacteria, the sulfonamide agents were actually combined with the 
pterin substrate to form “dead-end” products, which they theorized went on to inhibit 
subsequent steps in the folate pathway.  However, in 1979 Roland and coworkers 
showed that a pterin-sulfamethoxazole compound was not able to inhibit DHPS or any 
other enzyme in the bacterial folate biosynthesis pathway.  One possible answer to this 
conundrum was provided by Swedberg, who proposed that the mechanism of inhibition 
of bacterial growth by the sulfonamide agents was actually “enzymatic trapping” of the 
pterin-pyrophosphate substrate in a sulfonamide complex.  Swedberg was able to 
demonstrate a decrease in the effectiveness of these agents when additional pterin-
pyrophosphate was added.   

2.1.3 The DHPS Crystal Structures 

The first crystal structure of DHPS (from E. coli) was not solved until 1997; a full 
36 years after the last sulfonamide agent entered the market.  Since that time, crystal 
structures have been published for six bacterial species (E. coli, S. aureus, M. 
tuberculosis, B. anthracis, T. thermophilus, and S. pneumonia) and one fungal species 
 (S. cerevisiae).151-157  The DHPS enzyme’s overall structure is a (β/α)8 TIM barrel of 
repeating β/α units which create the classic β barrel composed of eight β strands 
surrounded by eight α helices.  The β strands and α helices are connected by eight 
flexible loops which fold over the active site in the center of the barrel.  Figure 2.5 shows  
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1932 Domagk at I.G. Farben observed that Prontosil, an azo dye, protected mice 
against streptococcal infections.  The first patient to be treated was his 
daughter, Hildegarde Domagk.158 

1935 Trefouёl, et al demonstrated that Prontosil is converted to sulfanilamide in 
the body and that sulfanilamide was the active component.159 

1936 Colebrook and Kenny demonstrated the efficacy of Prontosil in the treatment 
of puerperal fever in human beings.160 

1939 Domagk was awarded the Nobel Prize.  President Roosevelt’s son was 
treated with sulfa drugs, overcoming early reservations. 

1940 The isolation of penicillin reduced interest in sulfa drugs, but the emergence 
of penicillin resistance renewed interest after WWII. 

1940 Woods, et al demonstrated competition by para-amino benzoic acid (pABA) 
and the discovery that pABA is part of folic acid pointed to the folate 
pathway as the target of sulfa drugs.161,162 

1961 The last sulfonamide new molecular entity (NME) to be released onto the 
U.S. market (sulfamethoxazole). The mechanism of bacterial folate 
biosynthesis was elucidated by Brown, Weisman and Molnar.163 

1969 Richey and Brown purified dihydropteroate synthase (DHPS) in the folate 
pathway, and potent inhibition by sulfanilamide was demonstrated.164,165 

1974 Wiesman/Brown and Bock demonstrated the incorporation of sulfonamides 
into “dead-end’ sulfo-pterin products in certain bacteria.166,167 

1979 Roland, et al showed that dihydropterin-sulfonamide products do not inhibit 
DHPS or other folate enzymes.  Swedberg theorized that the mechanism of 
growth inhibition by sulfonamides is enzymatic trapping of pterin-
pyrophosphate in a sulfonamide complex.168,169 

1997 First x-ray crystal structure of DHPS published, E. coli.151 

1999 Vinnicombe, et al, demonstrated that the target for sulfonamide inhibition (of 
S. pneumoniae) is the enzyme-DHPP binary complex, rather than the apo 
form of the enzyme.170 

2004 Babaoglu and co-workers solved a crystal structure of B. anthracis DHPS 
with a pterin site inhibitor bound, the basis for the work described here.154 

Figure 2.2. History and Key Insights into Sulfonamide Drug Development and 
Chemotherapy 
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Figure 2.3. Prontosil 

 
 
 
 

 

Figure 2.4. Sulfanilamide 
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Figure 2.5. B. anthracis DHPS Shown with Product and Substrate Analogs 
Overlaid 
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the crystal structure of B. anthracis DHPS with a pteroate product analog and DHPP 
substrate analog overlaid in the active site.  The product analog gives an approximate 
location for the pterin binding site as well as the pABA binding site, while the substrate 
analog shows the approximate position of the diphosphate group.  The active site of 
DHPS can be actually divided into 4 distinct subsites: the pterin binding site, the 
diphosphate binding site, the pABA binding site, and a conserved water binding site, 
each of which is visible in Figure 2.5.  A magnesium cofactor is known to coordinate the 
diphosphate group and several residues, including His256 and Asn27, and is theorized 
to play a role in the catalytic mechanism of DHPS.  The magnesium ion has not been 
observed in any of our B. anthracis crystal structures to date. 

Unfortunately, even with the known structural information, several pieces of the 
puzzle are still missing and the catalytic mechanism of DHPS remains unclear.  The 
flexible loops that fold over the active site during catalysis enclosing pABA and 
completing the pABA binding subsite are unresolved or occupy incorrect positions in 
many of the crystal structures that have been solved.  Two key flexible regions in 
particular, loops 1 and 2, are believed to play a key role in catalysis but are only visible 
in a few of the structures available and even those positions are uncertain or unreliable.  
Additionally, as discussed below, the majority of the mutations known to confer 
resistance to the sulfonamides are found in these two loops.  This missing information 
contributes to our lack of understanding not only of the reaction mechanism, but also the 
mechanism of sulfonamide resistance.  Additionally, the magnesium cofactor mentioned 
above has only been resolved in 2 of the 17 DHPS crystal structures that have been 
published to date, and in once case it was replaced by manganese.  Table 2.1 gives a 
listing of the published DHPS crystal structures by species as well as the presence or 
absence of the key structural features just mentioned for each crystal structure.  In some 
cases, as in our B. anthracis structures, it can be seen that although the position of a 
flexible loop has been solved, it may not be in the transition state or correct binding 
position, and thus does not contribute to our knowledge of the mechanisms in question.   

2.1.4 The DHPS Molecular Mechanism: Current Knowledge 

Although there is still much uncertainty regarding the exact mechanism of the 
reaction catalyzed by DHPS, some information is known and some credible theories 
have been put forth.  In their paper presenting the E. coli DHPS structure, Achari and 
coworkers stated their inability to generate a structure with sulfonamide bound by 
soaking the drug into unliganded DHPS crystals.151  They were only able to generate a 
structure when sulfanilamide was soaked along with dihydropterin and pyrophosphate.  
This result seems to indicate a need for pterin, pyrophosphate, or both to be present in 
order for the sulfonamide (and presumably pABA) to bind.  However, the position of the 
sulfanilamide in their structure has been called into question by the mechanism 
proposed by Baca, et al as well as the pteroate product structure by Babaoglu.154,171  In 
this latter structure, the position of the pteroate gives an indication of a possible  
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Table 2.1. Features of the Known DHPS Crystal Structures 

 
Species 

 
PDB Code 

 
Present in Active Site 
 

 
Loop 1 

 
Loop2 

 
Mg2+ 

 
Notes 

E. coli 1aj0 Sulfanilamide, SO4,  
Pterin Analog 

Artifactual Present Missing 2.0 Å Resolution 

 1aj2 Pterin-PP Analog, SO4 Artifactual Present Missing 2.0 Å Resolution 
 1ajz SO4  Artifactual Present Missing 2.0 Å Apo Structure 

S. aureus 1ad1 Nothing Artifactual Present Missing 2.2 Å Apo Structure 
 1ad4 Pterin-PP Analog Missing Present Mn2+ 2.4 Å Resolution 

M. tuberculosis 1eye Pterin-P Analog Present Missing Present 1.7 Å Resolution 

B. anthracis 1tws SO4 Artifactual Presenta Missing 2.0 Å Apo Structure 
 1tww Pterin-PP Analog, SO4 Artifactual Missing Missing 2.5 Å Resolution 
 1twz Pterin-P Analog, SO4 Artifactual Missing Missing 2.75 Å Resolution 
 1tx0 Pteroate Analog, SO4 Artifactual Missing Missing 2.15 Å Resolution 
 1tx2 MANIC Inhibitor Artifactual Missing Missing 1.83 Å Resolution 

S. cerevisiae 2bmb Pterin-P Analog Artifactual Present Missing 2.3 Å Resolution 

T. thermophilus 2dqw Nothing Missing Missing Missing 1.65 Å Apo Structure 
 2dza pABA Missing Missing Missing 1.90 Å Resolution 
 2dzb Pterin-PP Analog Missing Missing Missing 1.90 Å Resolution 

S. pneumoniae 2vef Nothing Missing Missing Missing 1.80 Å Apo Structure 
 2veg Pterin-P Analog Missing Missing Missing 2.4 Å Resolution 

 
a. In the B. anthracis apo structure, loop 2 extends into the pterin binding site replacing the pterin substrate.
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transition state in which the pABA group occupies a position significantly different from 
the position proposed by Achari, et al. 

 
In their paper describing the S. aureus DHPS structure, Hampele and coworkers 

proposed a random, single-displacement reaction mechanism in which the reaction 
proceeds through a ternary complex of DHPS, DHPP, and pABA.  They proposed a 
random order of addition of substrates based upon their S. aureus Vmax measurements.  
Vinnecombe and Derrick countered this with their theory that the target for sulfonamide 
inhibition of DHPS is actually the enzyme-DHPP binary complex.170  They based this 
theory on their studies of S. pneumoniae and the observation that the pABA substrate 
binding was absolutely dependent on the presence of pyrophosphate in the active site, 
which they believed acted as an analog of the DHPP substrate.  Additionally, they 
showed that the sulfonamides displaced pABA in a competitive manner and, 
interestingly, they also showed that the product of the reaction, dihydropteroate, was 
also able to bind to the DHPS active site. 

 
In their paper presenting the structure of DHPS from M. tuberculosis Baca and 

coworkers proposed a detailed mechanism and transition state geometry based upon 
their observations of the Pterin-monophosphate analog in the pterin subsite and the 
position of the magnesium co-factor.  They proposed a trigonal bipyramidal transition 
state geometry where the C9 carbon of DHPP would develop a partial positive charge 
which would be stabilized by the electron-rich conjugated pterin ring system.  The amino 
group of pABA would attack the carbon position from the opposite side of the 
pyrophosphate, as shown in Figure 2.6.  The pyrophosphate interacts with a His, Asp, 
and Asn residue in addition to the stabilizing effect of the magnesium ion, which 
facilitates the removal of the pyrophosphate during catalysis.  Other key binding residues 
are shown in Figure 2.6.  They went on to propose a possible role for a key serine and 
arginine residue in loop 2 in stabilizing the pyrophosphate during catalysis and 
facilitating pyrophosphoryl transfer.   
 

Babaoglu and coworkers confirmed the position of the pABA compound 
proposed by Baca, et al. in their transition state theory with their product analog crystal 
structure.  Additionally, they confirmed the proposed position of the diphosphate group.  
They proposed that the catalytic mechanism took place in 4 steps.  In its unliganded 
state, a side chain of a key arginine (Arg68 in B. anthracis) in loop 2 occupies the pterin 
binding subsite.  In the first step of catalysis the pterin substrate binds and its terminal 
phosphate group occupies the anion pocket (phosphate subsite).  The magnesium 
cation coordinates the diphosphate group and the Mg2+ binding residues mentioned 
above as loop 2 shifts the arginine residue out of the pterin site.  The second step is the 
formation of the pABA binding subsite by movements of both loop 1 and loop 2.  A key 
part of Babaoglu’s theory is the proposed ionic interaction of Arg68 with the pABA 
substrate, which Babaoglu proposed stabilized the position of pABA.  This is in contrast 
to the arginine position described by Baca, who proposed that the arginine interacted 
with the terminal phosphate of DHPP during catalysis.  The third step would be the  
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Figure 2.6. Proposed DHPS Transition State for M. tuberculosis 

Adapted with permission from Baca, A. M.; Sirawaraporn, R.; Turley, S.; Sirawaraporn, 
W.; Hol, W. G. Crystal structure of Mycobacterium tuberculosis 7,8-dihydropteroate 
synthase in complex with pterin monophosphate: new insight into the enzymatic 
mechanism and sulfa-drug action. J Mol Biol 2000, 302, 1193-212. 
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nucleophilic attack of the pABA nitrogen on the C9 carbon of DHPP and subsequent loss 
of a pyrophosphate (facilitated by the magnesium cation), which they proposed took 
place using an SN2 mechanism, similar to Baca’s transition state theory.  Finally, the 
pteroate and pyrophosphate products are expelled from the active site and loop 2 moves 
back to its position occupying the pterin binding subsite. 

 
There are several questions that have yet to be answered regarding the structure 

of the transition state and the catalytic mechanism of the reaction.  Although key binding 
residues and several residues believed to be involved in catalysis have been proposed, 
none of the structures that have been solved to date have shown the positions of both 
loops 1 and 2 (the location of many of these residues) in their catalytic conformation.  
The position of pABA during the transition state and even the type of nucleophilic attack 
are still points of debate as is the function of the arginine residue in loop 2 during 
catalysis.  Does it bind to the terminal phosphate and facilitate its removal or does it bind 
to the carboxylate of pABA, facilitating the correct alignment of pABA for nucleophilic 
attack?  This remains to be determined.  Additionally, the positions and roles of several 
residues that when mutated confer sulfonamide resistance remain to be determined.  
This last point is discussed further in the following section. 

2.1.5 Sulfonamide Resistance Mechanisms 

Bacterial resistance to sulfonamide drugs can be caused by a variety of the 
mechanisms discussed in section 1.5.4, but predominately resistance is caused by 
chromosomal mutations of the DHPS gene, folP, or by the acquisition by the bacteria of 
plasmids bearing the drug resistant DHPS variants, sul1, sul2 or sul3.  In the first case, 
spontaneous mutations of the folP gene result in a DHPS enzyme that is no longer 
capable of binding to sulfonamide agents, but can still bind to the native substrate pABA, 
albeit usually with decreased efficiency.  In the latter case, bacteria have acquired 
plasmids carrying alternate forms of DHPS which are significantly different from the 
native enzyme, still capable of binding pABA and catalyzing the reaction with DHPP, but 
showing markedly decreased affinity for the sulfonamide agents.  Notably, with the 
plasmid variants, the efficiency of pABA binding is not as impaired as in the 
chromosomally mutated DHPS.   Plasmid-borne resistance has only been characterized 
in Gram-negative enteric bacteria thus far, while chromosomal mutations have been 
characterized in both Gram-positive and Gram-negative bacteria.172,173 

 
Mutations of folP conferring resistance that have been characterized in several 

bacterial species are shown in Table 2.2 along with their corresponding B. anthracis 
positions.  The structural positions of these mutations are highlighted in Figure 2.7, 
which shows B. anthracis DHPS with a known pterin inhibitor bound in the active site.  It 
should be noted from Table 2.2 and Figure 2.7 that the mutation sites predominately fall 
on the flexible loops of the DHPS enzyme with the majority of mutations occurring on 
loops 1 and 2.  Table 2.2 highlights 3 specific mutations that have been observed across 
several species.  In B. anthracis these mutations are Phe33Leu(Ile), Thr67Ala(Ile), and  
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Table 2.2. Sulfonamide Resistance Mutations Observed from Six Organisms 

Orgamisms 
 

Mutaton Observed 
 

 
Corresponding  
B. anthracis Residue 
 

Structure 
 

E. coli Phe28Leu, Ile Phe33 Loop1 
N. meningititis Phe31Leu Phe33 Loop1 
P. carinii Phe23Leu Ser34 Loop1 
M. leprae Thr53Ile, Ala Thr67 Loop2 
P. carinii Thr55Ala Thr67 Loop2 
P. falciparum Ser436Ala, Phe Thr67 Loop2 
P. falciparum Ala437Gly Arg68 Loop2 
S. pneumoniae Arg58-Pro59 duplication Arg68-Pro69 Loop2 
M. leprae Pro55Leu Pro69 Loop2 
P. carinii Pro57Ser Pro69 Loop2 
E. coli Pro64Ser Pro69 Loop2 
S. pneumoniae Arg insertion after Gly60 Gly70 Loop2 
S. pneumoniae Ser61 duplication Phe71 Loop2 
P. carinii His60Asp Ala72 Loop2 
S. pneumoniae Ile66-Glu67 duplication Val74-Ser75 Loop2 
P. carinii Ile111Thr Ile122 Loop4 
P. falciparum Lys540Glu Asn147 Loop5 

N. menignitidis 
Gly194Cys, Ser193-Gly194 
duplic. Gly188 Loop6 

P. falciparum Ala581Gly Ala190 Loop6 
P. falciparum Ala613Ser, Thr Gly224 a7’ 
P. carinii Val248Gly Ile246 a7’ 

 
Point Mutations Conserved Across Species 
Adapted with permission from Baca, et al.153 
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Figure 2.7. B. anthracis Crystal Structure with Known Pterin Site Inhibitor and Key 
Mutation Residues Shown 

MANIC, a known inhibitor of DHPS, is shown here occupying the pterin binding site in a 
high resolution X-ray crystal structure.  Residues that when mutated are associated with 
sulfonamide resistance are shown in yellow.  It should be noted that Phe33 is pushed far 
away from the active site due to a crystal lattice interaction with a neighbouring 
monomer. 
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Pro69Ser(Leu).  Again, all three of these conserved mutations sites fall on either loop 1 
or loop2, whose positions remain unresolved or unclear in most of the crystal structures 
published to date.  Thus, the exact mechanism of these mutations in decreasing the 
binding affinity of the sulfonamide agents has not been determined. 

 
Although the effect of the resistance mutations on the binding of the DHPP 

substrate (and consequently on the binding of pterin site inhibitors) is uncertain, due to 
the location of the mutations on flexible loops that fall near the pABA binding site, it is 
unlikely that they would affect the binding of DHPP or any other compounds with affinity 
for this site. This has direct ramifications on the design of a new class of DHPS inhibitors 
with affinity for the pterin subsite.  Theoretically, agents that inhibit DHPS by binding to 
this subsite would bypass the resistance mechanisms that have rendered sulfonamide 
drugs useless for many types of infections.  Additionally, the highly conserved nature of 
the pterin subsite (see section 4.1.1) indicates a possible requirement for many of the 
pterin subsite residues in catalysis, which may mean that the pterin site would be less 
likely to undergo resistance conferring mutation. 

2.1.6 Molecular Dynamics Simulations: Goals and Objectives 

In order to gain insight into the catalytic mechanism of DHPS and the 
conformation of the flexible loops 1 and 2 during catalysis, we performed several series 
of large scale (2 to 4 nanosecond) molecular dynamics simulations under various 
solvation conditions using the program AMBER v9 from UCSF.72,174  The general goals 
of these simulations were to enable us to visualize the structure of the transition state, 
deduce the catalytic mechanism of the enzyme, and shed light on the mechanisms of 
sulfonamide drug resistance.  The intent is to use the structures and information 
obtained from the dynamics simulations to facilitate our design of transition state analogs 
with strong inhibition of DHPS.  A secondary goal of this project was to develop a 
working model of the DHPS active site, including pABA and DHPP subsites which could 
be used in subsequent virtual screening experiments. 
 

In this study we performed three series of simulations.  The first series of 
simulations were the substrate/product simulations.  This series involved simulations of 
the apo structure; a ternary complex (Michaelis complex) involving the DHPS enzyme, 
DHPP, and pABA; and a binary complex involving the pteroate product analog and the 
DHPS enzyme.  The intent of this series of simulations was to allow us to visualize the 
attack of the nucleophilic nitrogen in pABA on the electrophilic allylic carbon in DHPP 
and the correct orientation of the attacking pABA as it approaches DHPP, with a purpose 
of further aiding our design of transition state inhibitors. 

 
The second series of simulations were the inhibitor complex simulations which 

replaced pABA in the first series with sulfamethoxazole in a ternary complex simulation.  
Additionally, in this series we ran multiple simulations with a sulfamethoxazole-pterin 
(pterin-SMX) hybrid in the active site with either pyrophosphate or sulfate.  The pterin- 
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SMX compound, Figure 2.8, was synthesized in our lab and crystal structures of the 
compound in complex with DHPS has been solved but not published.  The intent of this 
series was to gain insight into the unique interactions of sulfonamide drugs with the 
pABA site and the flexible loops.  Of particular interest are the interactions of loop 
residues with the oxazole ring in sulfamethoxazole, which is very mobile in our crystal 
structures, and the position of Arg68, whose function during the transition state remains 
a matter of debate.  The goal was to identify these interactions and facilitate the 
development of tightly binding transition state analogs with potent inhibition of DHPS.  
Additional insight into the nature of the interaction of the resistance mutation residues 
was sought during these simulations. 

 
The third and final series of simulations were the resistance mutation simulations.  This 
involved the use of both pABA and sulfamethoxazole ternary complexes with DHPS and 
DHPP in conditions similar to series 1 and series 3 except that the residues known to 
cause sulfonamide drug resistance were mutated in these simulations to investigate the 
mechanism by which they confer sulfonamide resistance.  The goal of this final series 
was to shed light on the mechanisms of resistance and will assist us in our structure-
based drug design efforts. 

2.2 Molecular Dynamics Studies: Materials and Methods 

2.2.1 Structure Preparation 

Several different crystal structures were used as starting points for the 
simulations described above.  For the first series of substrate/product simulations, the 
pteroate crystal structure, pdb code 1tx0, was utilized.  The pteroate product analog 
present in the crystal structure was replaced with the pABA and DHPP substrates for 
those simulations, or removed completely for the apo structure simulations.  It was left in 
place for the product simulations.  To prepare the structure for the dynamics simulations 
it was necessary to first generate the initial starting positions for the missing or incorrect 
residues of loops 1 and 2.  This was done by homology modeling the positions of these 
two loops based upon their known positions in the M. tuberculosis and E. coli crystal 

 
 

 

Figure 2.8. Pterin-SMX Hybrid Compound 
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structures.  As discussed above, loop 1 is present in the M. tuberculosis structure while 
loop 2 is present in the E. coli structure.  Both of these loop positions fall near the active 
site and are theorized to be close to their transition state positions.  For loop 1, residues 
Ile25 through Glu41 were replaced with the corresponding sequence from M. 
tuberculosis and mutated to match the B. anthracis sequence.  For loop 2, we modeled 
the positions of residues Gly64 through Val74 on the E. coli loop 2 position.  This placed 
the key Arg68 side chain near the anionic binding pocket and allowed it to make an ionic 
interaction with the sulfate or phosphate substrates. Following this, hydrogens were 
added to the structure and atoms were typed with Amber atom types.  Gasteiger-Huckel 
charges were used for the substrate and product analogs.  A 1000 iteration minimization 
of the hydrogen atoms was followed by a brief 250 iteration minimization of the flexible 
loops only to eliminate any steric clash occurring after loop placement.  It should be 
noted that a key active site water was retained in the active site in all dynamics 
simulations.  At this point the structure was ready to take into the simulations phase.  
Series 3 simulations involving the resistance mutations utilized the same structure, the 
pteroate analog was replaced with the sulfamethoxazole, pABA, and DHPP structures 
and the resistance site in question was mutated using the Biopolymer tool of Sybyl. 

 
Simulations involving the sulfamethoxazole-pterin hybrid compound used the 

pterin-smx crystal structures that had been solved in our previous studies (unpublished 
data).  Two different pterin-smx crystal structures were utilized in these studies.  The first 
structure, like the 1tx0 structure discussed above, was missing much of loop 2, including 
the position of the key Arg68 residue, and loop 1 was in the incorrect position seen with 
our previous structures.  This structure was prepared in a similar manner as the 1tx0 
structure described above.  The position of the oxazole ring of the sulfamethoxazole 
hybrid was not clear in the this crystal structure and it appeared to be able to rotate to an 
“up” position, tucked between loops 6 and 7, and a “down” in which it is solvent exposed 
and closer to loops 1 and 2, shown in Figure 2.9, right and left.  In the first several 
simulations that involved the pterin-smx hybrid, the position of the oxazole ring was in 
the “down” position in the starting structure and the Arg68 side chain occupied the E. coli 
position placing it near the phosphate or sulfate group in the anionic subsite (Figure 2.9, 
left).  During the course of these dynamics simulations a new pterin-smx crystal structure 
became available that contained more detail regarding the position of the oxazole 
system as well as more residues in loop 2, including the position of the Arg68 side chain.  
The remainder of the simulations utilized this starting position (Figure 2.9, right).  Only 3 
residues from loop 2 were missing from this new pterin-smx crystal structure (Pro69 to 
Phe71), and they were easily placed and minimized.  Importantly, the Arg68 side chain 
in the newer structure was visualized and appeared to be interacting with the negatively 
charged sulfonamide group of the pterin-smx ligand.  It should be noted, however, that 
there was no phosphate or sulfate bound in the anionic pocket of this new structure, 
which may have influenced the position of the Arg68 side chain. 
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Figure 2.9. Two Starting Positions for the Pterin-SMX Dynamics Simulations 

2.2.2 Force Field and Parameterization 

All simulations performed in this study utilized the Amber 2003 force field.175  
Parameters for the standard protein residues in the simulations were generated using 
the Leap program available in the Amber v9 suite of programs.  These parameters have 
been tested and validated by the Amber developers.  It was necessary to develop and 
load parameters for the non-standard residues in our simulations, including pABA, 
DHPP, sulfamethoxazole, pterin-smx, pterin-pABA, sulfate, and pyrophosphate.  The 
parameters for the Na+ and Mg2+ cations were already available in the Leap program.  
Parameters for the non-standard residues were generated using the Antechamber 
program and the General Amber Force Field (GAFF) of Amber v9.176,177 
 
 Antechamber and the GAFF were specifically designed to develop parameters 
for organic molecules that are compatible with the traditional Amber force fields and that 
can be utilized in biomolecular dynamics simulations.  Similar to the Amber FF03 (used 
to load protein parameters), the GAFF uses a simple harmonic function for bonds and 
angles (see the discussion in Chapter 1 on force field implementation).   However, GAFF 
is much more general than FF03 and covers significantly more organic chemical space.  
It currently consists of 33 basic and 22 special atom types.  The HF/6-31G*, RESP, or 
AM1-BCC charge methods can be used with the GAFF.  In our studies, we used input 
.mol2 files for each non-standard residue and the AM1-BCC charge method (due to 
speed and efficiency).  Antechamber typed the atoms and bonds, calculated the total 
number of electrons and net charge, and generated a parameter file for each compound 
that could be used with the Leap program when developing parameters for the entire 
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system.  Parameters not specifically defined in the GAFF for our non-standard residues 
were loaded by antechamber based on analogy to similar parameters (after close 
inspection by the modeler).  Appendix A contains the parameter files for each non-
standard residue 

2.2.3 Simulation Methods 

A variety of simulation methods were utilized in these studies for each series of 
simulations.  In addition to varying the duration of the simulation, we investigated the 
effects of implicit versus explicit solvation, presence or absence of cationic cofactor, and 
presence or absence of the anionic sulfate or phosphate groups.  Table 2.3 gives a 
complete list of every simulation and the simulation design for each series of 
simulations.   

 
The following general procedure was used to set up a dynamics simulation:  

First, the program Leap was used to load the parameters for the non-standard residues 
that had been previously generated as well as all the standard residues in the protein.  
As mentioned previously, we utilized the Amber 2003 FF for all simulations performed in 
these studies.  The next step was to balance the charge of the system by adding Na+ 
counter-ions.  This was done using Leap for all simulations, both implicit and explicitly 
solvated.  In the case of implicit simulations, the topology and parameter files were then 
generated.  In explicitly solvated simulations, the Leap program was used to generate a 
10 Å octahedral solvent box around the system using the TIP3 water model.127  
Topology and parameter files were then saved for these systems. 

 
The Amber module Sander was used to run all minimizations and molecular 

dynamics simulations.  The general procedure for implicitly solvated simulations involved 
performing a 500 iteration minimization of the system prior to starting the dynamics run 
(250 iterations using the steepest descent method, followed by 250 iterations using the 
conjugate gradient method).  A non-bonded cutoff of 16 angstroms was used for long 
range electrostatic interaction calculations in all cases, and the Hawkins, Cramer, 
Truhlar pairwise generalized Born solvation model was utilized for all implicit 
simulations.178  The dynamics simulations that followed were allowed to evolve from 2 to 
4 nanoseconds, depending on the simulation.  The Langevin thermostat was used to 
maintain the temperature of the system at 300°K.  SHAKE bond length constraints were 
applied to the bonds involving hydrogen to allow a 2 femtosecond simulation time 
step.125  Periodic boundary conditions were not necessary for implicitly solvated 
systems. 
 

The general procedure for explicitly solvated systems involved an initial 1000 
iteration (500 steepest descent, 500 conjugate gradient) minimization of the solvent 
holding the protein constrained, followed by a 2500 iteration (1000 steepest descent, 
1500 conjugate gradient) of the entire system.  Non-bonded energy cutoffs of 
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Table 2.3. DHPS Molecular Simulations Design Summary 

 
Series- 
Number 

 
PDBa 

 
Active Site 

 
Duration 

 
Solvationb 

 
Co-
factor 
Cationc 

 

 
Anionic 
Groupd 

1-2 1tx0 None (Apo 
Structure) 

4 ns Explicit None None 

1-5 1tx0 pABA, DHPP 4 ns Implicit Na+ DHPP 
1-14 1tx0 pteroate product 4 ns Explicit Mg2+ SO4 
1-16 1tx0 pteroate product 4 ns Explicit None None 
2-1a n/p pterin-SMX 2 ns Implicit Mg2+ SO4 
2-1b n/p pterin-SMX 2 ns Implicit none none 
2-1c n/p pterin-SMX 2 ns Explicit Mg2+ SO4 
2-4 n/p pterin-SMX 3.6 ns Explicit none SO4 
2-6 1tx0 SMX, DHPP 4 ns Implicit Na+ none 
2-13 n/p pterin-SMX 4 ns Explicit Mg2+ SO4 
2-15 n/p pterin-SMX 4 ns Explicit Mg2+ none 
2-17 n/p pterin-SMX 

(oxazole ring in, 
Arg68 down) 

4 ns Explicit Mg2+ PPi 

2-18 n/p pterin-SMX 
(oxazole ring 
out, Arg68 up) 

4 ns Explicit Mg2+ PPi 

3-3 n/p pterin-SMX, 
F33L 

4 ns Explicit none SO4 

3-7 1tx0 pABA, DHPP, 
F33L 

4 ns Implicit Na+ DHPP 

3-8 1tx0 SMX, DHPP, 
F33L 

4 ns Implicit Na+ DHPP 

3-9 1tx0 pABA, DHPP, 
T67A 

4 ns Implicit Na+ DHPP 

3-10 1tx0 SMX, DHPP, 
T67A 

4 ns Implicit Na+ DHPP 

3-11 1tx0 pABA, DHPP, 
P69S 

4 ns Implicit Na+ DHPP 

3-12 1tx0 SMX, DHPP, 
P69S 

4 ns Implicit Na+ DHPP 

 
a. The published pdb code used is indicated when relevant.  Non-published, internal 

crystal structures are indicated by n/p. 
b. Explicit solvation used the TIP3 water model in all cases; implicit solvation utilized a 

Generalized-Born Surface Area Model. 
c. The Na+ cation was placed into the anionic site during the charge neutralization step 

of protein and left in place during simulations.  Mg2+ atoms, when used, were 
positioned based upon the 1eye M. tuberculosis crystal structure. 

d. When DHPP or another pterin-diphosphate analog was simulated in the active site, 
the diphosphate chain occupied the anionic binding subsite. 
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10 angstroms were used in all minimization and dynamics steps involving explicitly 
solvated systems.  Periodic boundary conditions were applied during the minimization 
steps to maintain a constant volume.  The Particle Mesh Ewald (PME) summation 
method was used to calculate long range electrostatic energies in both minimization and 
dynamics steps for explicitly solvated systems.  The minimization steps were followed by 
a 20 picosecond dynamics simulation which kept weak restraints on the protein while the 
solvent was allowed to evolve.  During this step the temperature was slowly raised from 
0 to 300°K using the Langevin thermostat.  A constant volume was maintained during 
this step using the periodic boundary condition.  The following step is the full dynamics 
evolution phase, usually between 2 and 4 nanoseconds in durations.  During this step all 
restraints were removed from the protein and the system was allowed to fully evolve.  
The temperature was held at 300°K and the pressure was maintained at 1 atomsphere 
using isotropic position scaling of the periodic boundary.  The SHAKE algorithm was 
employed in all explicitly solvated dynamics simulations to allow for 2 femtosecond time 
steps. 

 
All dynamics simulations were carried out in parallel using the Linux Cluster at 

the Hartwell Center of St. Jude Children’s Research Hospital.  Amber simulations scaled 
most efficiently to sixteen processors, and this was typically used for a molecular 
dynamics simulations.   Analysis of the completed dynamics simulations was performed 
using the programs VMD and Chimera.179,180 

2.2.4 Molecular Simulations Analysis 

The ptraj analysis tool available in the Amber v9 package was used to perform 
trajectory analysis in these studies.  It should be first noted that full trajectory analysis 
was only performed against models determined to be stable from visual analysis of the 
trajectory.  Simulations in which the ligands or cofactors were expelled (discussed 
below) were not considered stable and trajectory analysis was not performed, although 
observations are made in the discussion regarding key events at specific time points (i.e. 
ligand expulsion). 

 
Kinetic, potential, and total energy plots were calculated to demonstrate 

equilibration and stability of the simulation (see Appendix B).  Additionally, temperature, 
pressure, and density plots were used for further demonstration of model stability (data 
not shown).  Dihedral analyses were performed for 4 key binding and mutation residues: 
Phe33, Thr67, Arg68, and Pro69 (Appendix B).  Dihedral analysis was used to 
determine the degree of conformational sampling for the loop 1 and 2 residues as well 
as the stability of the residues during the portion of the production phase that was used 
to determine average structures. 

 
Average and minimum energy structures were calculated and RMSD plots were 

generated based upon these structures to determine the degree of structural variation 
and model stability (Appendix B).  Average structures discussed below were calculated 
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from the final 1 nanosecond for simulations extending to 4 nanoseconds and the final 
500 picoseconds for simulations extending to 2 nanoseconds.  Minimum energy 
structures were determined from the entire production phase (excluding heating and 
minimization steps).  RMSD values were calculated referenced to the starting structure, 
the average structure, and the minimum energy structure for the entire protein using 
backbone atoms, and for both loop 1 and loop2 using backbone atoms and all atoms 
(Appendix B). 

 
Energy plots, RMSD plots, and dihedral plots determined from dynamics 

simulation 2-17 (the simulation used to determine the active site model used in our 
subsequent studies) can be found in Appendix B.  

2.3 Molecular Dynamics Studies: Results and Discussion 

2.3.1 Substrate/Product Simulations 

The simulations in this series included the DHPS apo structure, a 
pABA/DHPP/DHPS ternary structure, and a pABA-pterin/DHPS binary structure.  The 
first simulation was a 4ns explicitly solvated simulation of the DHPS apo structure.  The 
starting position for this simulation was essentially the 1tx0 structure with loops 1 and 2 
placed as described above, but lacking the pteroate product analog, or any other 
cofactor.  Our anticipation was that during the course of this simulation that the Arg68 
residue would insert into the active site and engage in a pi-stacking interaction with the 
pterin side residue Arg254, as is seen in our apo crystal structure.  However, this was 
not the case.  Instead, Arg254 was observed to fold back upon itself and engage in ionic 
interactions with two Aspartate residues (Asp61 and Asp101) while Arg68 engaged in 
and maintained ionic interactions with Asp35 on loop1.  Figure 2.10 shows the initial 
configuration of these residues in the starting structure (left) and the interactions that are 
seen in the final, average structure (right).  Although it remains to be determined why the 
loop positions of the apo crystal structure weren’t reproduced in this simulation, one 
possible explanation is that the simulation did not contain a ligand in the anionic binding 
subsite, while a sulfate anion was present in this site in the apo crystal structure.  As will 
be discussed below, we have noted in many of our simulations the effect of this 
negatively charged group on stabilizing the loop positions near the active site.  
Additionally, we have observed in our crystal structures that Arg254 engages the sulfate 
(and terminal phosphate of DHPP) in ionic interactions that may stabilize its position in 
the active site as well. 

 
The second simulation of merit in this series was the pABA, DHPP, DHPS 

ternary structure.  This was a 4 nanosecond implicitly solvated simulation.  Of note here 
is the use of a Na+ cation in the Mg2+ site interacting with the diphosphate group of 
simulation prior to ligand expulsion.  The Arg68 residue is engaged in an ionic interaction 
with the α phosphate of DHPP while Pro69 (a known resistance mutation site) 
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Figure 2.10. DHPS Apo Simulation Starting and Final Structure 

 
participates in van der Waals interactions with the pABA substrate.  The Pro69 and 
Lys220 residues facilitate the placement of pABA by forming vdW interactions on both 
duration of the simulation.  In this simulation loop 2 folds completely over the active site 
and engages in interactions with both the pABA and DHPP substrate.  The pABA 
substrate was ejected from its binding site at 3.2 ns into the simulation, but we were able 
to note several key interactions prior to this event and gain a clearer understanding of 
positions of loop 2 during pABA binding.  Figure 2.11 depicts the active site of DHPS 
seen during this simulation with several key interactions highlighted, as determined by 
calculating an average structure from the 500 ps period of the production phase of the 
DHPP.  This cation was placed by Leap during the charge balancing step of structure 
preparation and because of its fortuitous position, was left to occupy the site for the 
sides of the pABA ring.  Thr67 (another resistance mutation site) appears to engage in 
charge-dipole interaction with Lys73 stabilizes possibly helping to stabilize the position of 
loop 2.  Finally, in this simulation we followed Phe33, the third of the conserved 
resistance sites, and did not observe any direct interaction with the pABA substrate at 
any time point. 
 
 The next two simulations in this series were a set of related, explicitly solvated 
simulations of the pteroate product analog lasting 4 nanoseconds.  The only difference 
between the two simulations was the lack of a sulfate anion and magnesium cofactor in 
the second of the two.  The purpose of these simulations was to investigate the 
importance of the anion and cation cofactor in the stabilization of the enzyme-product 
state and the positions of loops 1 and 2.  The differences in these two simulations were 
dramatic.  In the first case (sulfate and cation present) the pteroate product analog 
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Figure 2.11. Key pABA and DHPP Active Site Interactions 
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maintained its position for the full 4 nanosecond simulation.  Arg68 on loop 2 was 
observed to engage in ionic interactions with the terminal carboxylate of the pteroate 
compound for the majority of the simulation.  In the second case (no sulfate or cation), 
the pteroate product analog quickly destabilized in the active site and by .6 nanoseconds 
had begun to be expelled from the active site.  Arg254 folded back upon itself in the 
active site to make ionic interactions with Asp61, similar to what was seen in the apo 
structure simulations.  These results seem to indicate that the position of both loop2 and 
the active site Arg254 are dependent on the presence of a negatively charged group 
(sulfate or phosphate), in the anionic binding subsite.   

2.3.2 Inhibitor Complex Simulations 

The next series of simulations involved complexes with the known sulfonamide 
inhibitor, sulfamethoxazole.  The first simulation that we performed was with the ternary 
sulfamethoxazole, DHPP, DHPS structure, similar to the pABA, DHPP, DHPS ternary 
complex simulation performed in the first series.  Like its corresponding pABA simulation 
in series 1, this simulation utilized a Na+ ion in the anionic site as the cationic cofactor.  
Unlike the corresponding pABA simulation, however, in this simulation the 
sulfamethoxazole was promptly ejected from the active site.   This occurred very quickly, 
by 0.1 ns the sulfamethoxazole was completely removed from the pABA binding site.  
Interestingly, the DHPP substrate remained in the pterin site for the duration of the 
simulation.  The Arg68 side chain formed and maintained ionic interactions with the 
terminal phosphate of DHPP for the entire simulation.  No interactions with any of the 
resistance conferring mutations were noted with the sulfamethoxazole ligand in this 
simulation.  The reason for the prompt ejection of sulfamethoxazole from the pABA 
binding site is unclear as this simulation was set up in exactly the same manner as the 
corresponding pABA simulation from series 1.  Whether this indicates a decreased 
affinity of sulfamethoxazole for the pABA binding site of the pABA substrate remains to 
be determined. 

 
Following this we performed a series of simulations involving the pterin-smx 

hybrid compound that had been developed in our lab (Figure 2.8).  The first set of 
simulations was very similar to the pteroate simulations discussed previously for series 
1.  These simulations involved a 2 nanosecond implicit simulation of the pterin-smx 
compound both with and without the Mg2+ and sulfate bound in the anionic site.  As in 
the corresponding pteroate simulations, the structure lacking magnesium and sulfate in 
the anionic pocket was unable to maintain cohesiveness and the pterin-smx compound 
began to fall out of the active site halfway through the simulation.  Again the Arg254 
folded back to make ionic interactions with Asp101 and Asp61.  The presence of an 
anionic sulfate or phosphate in this subsite seems crucial to stabilizing the Arg254 
residue in its extended form, which appears necessary to keep any pterin substrate in 
the active site.  The structure with the sulfate and magnesium present maintained the 
pterin-smx in the active site for the duration of the simulation.  Arg68 was observed to 
interact with the negatively charged sulfonamide group for nearly the entire simulation.  
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The oxazole ring rotated between the “up” and “down” conformations several times 
during the course of this simulation. 

 
To compare the differences between implicit and explicit solvation and their 

effects on loop and substrate movements, we designed and ran a pterin-smx simulation, 
explicitly solvated, for 2 nanoseconds.  This simulation included both the magnesium 
and sulfate groups in the anionic site and corresponded to the 2 ns implicit simulation 
just discussed.  Two key differences were noted with this simulation.  First, the oxazole 
ring did not move between the two positions as quickly as in the implicit solvation 
simulation.  This is likely due to the effect known as “solvent drag”, where the viscosity of 
the explicit solvent slows small scale movements such as this.  The second interesting 
difference that was noted was that the side chain of Arg68 maintained contact with the 
sulfate group in the anionic pocket for the duration of the simulation, whereas in the 
implicitly solvated simulation, the arginine side chain interacted with the sulfonamide 
group of the pterin-smx hybrid.  Figure 2.12 shows the average positions of the pterin-
smx, sulfate, cation, and close side chains for the implicit simulation (left) and the explicit 
simulation (right).  The reason for the preference of the arginine for the sulfate in the 
explicitly solvated simulation is not readily clear, although the altered conformation of 
Asn27 and the result on the position of the cation is noted and may have played a role in 
the placement of the arginine side chain. 

 
The final set of simulations that were performed using the pterin-smx hybrid was 

a set of 4ns, explicitly solvated simulations with pyrophosphate and magnesium in the 
anionic pocket.  We had two goals with this set of simulations.  First, to more accurately 
simulate the “dead-end” product stage of the DHPS reaction by using the pyrophosphate 
product rather than a sulfate anion in the anionic pocket.  Up to this point, difficulties with 
the parameterization of pyrophosphate had precluded our use of this compound in our 

 

 

Figure 2.12. DHPS Pterin-SMX Final Simulation Structures; Implicit Left, Explicit 
Right 
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simulations, but by strengthening the force constants predicted by the Antechamber 
program, we were able to use pyrophosphate in these simulations.  The second goal 
was to investigate the position of the oxazole ring and the Arg68 side chain.  To this end, 
we utilized the both of the pterin-smx crystal structures that had been solved in our 
group (discussed above in section 2.2.1).  In the first simulation, we utilized the first 
pterin-smx crystal structure that was solved and placed the oxazole in the “down” 
position and the arginine side chain interacting with the pyrophosphate.  In the second 
simulation we utilized the second pterin-smx crystal structure as the starting position, 
with the oxazole ring placed in the “up” position and the arginine side chain interacting 
with the sulfonamide group.  Figure 2.9 shows the starting structure of the active site for 
both these simulations, oxazole “down” on the left and oxazole “up” on the right.  In 
addition to monitoring the positions of the Arg68 side chain and the oxazole, we also 
followed the positions of the three conserved resistance conferring mutation sites, 
Phe33, Pro69, and Thr67, in an attempt to identify any interactions that these residues 
made with the pterin-smx compound that might be disrupted following a mutation and 
decrease the binding affinity of the sulfamethoxazole. 
 
 In the oxazole “down” simulation the pterin-smx compound remained in the active 
site for the duration of the simulation, although large movements and loss of some key 
binding interactions in the pterin subsite were noted midway through the simulation.  
This corresponded with the loss of the pyrophosphate group from the anionic site at 1.8 
ns.  The Arg68 side chain maintained an ionic interaction with the pyrophosphate group 
for the duration of the simulation.  In fact, the Arg68 side chain was observed to almost 
“pull” out the pyrophosphate from the anionic site.  Whether this is the normal 
mechanism for the enzyme’s substrate removal or an artifact from the starting position of 
the simulation remains to be determined.  Phe33 and Thr67 were observed to make 
interactions with the pterin-smx compound and the pyrophosphate, respectively, but 
Pro69 made no observable interaction with the pterin-smx compound during the 
simulation period.  Although not observed in the average structure calculated, Phe33 
was observed to make aromatic stacking interactions with the oxazole ring of the pterin-
smx compound at several points during the production phase of the trajectory and 
seemed to alternate between this position and another stacking interaction with Phe71 in 
loop 2 (seen in our average structure).  The interaction with the oxazole ring may 
contribute to the stabilization of the sulfamethoxazole compound in the pABA site, while 
the interaction with Phe71 possibly contributes to the stabilization of loops 1 and 2 in 
their “active” configurations.  The hydroxyl group of Thr67 made hydrogen bonding 
interactions with the pyrophosphate group and maintained this bond as the 
pyrophosphate left the anionic site.  Figure 2.13 shows the stacking interaction between 
the oxazole ring and the Phe33 side chain that was observed in this simulation.  Also 
visible is the interaction between the pyrophosphate group and Arg68 and Thr67 as it 
leaves the anionic subsite (note this is image was not obtained from the average 
structure). 
 
   



66 
 

 

 

Figure 2.13. Pterin-SMX Down, 4ns Explicit Simulation 

 
The matching simulation was performed starting with the oxazole ring in the up 

position and the arginine side chain interacting with the sulfonamide group of the pterin-
smx compound (shown in Figure 2.9).  In this simulation the pterin-smx compound 
stayed tightly bound to the active site and maintained all key binding interactions for the 
duration of the simulation.  The oxazole ring stayed in the up position tucked between 
loop 6 and loop 7 and was not observed to interact with the Phe33 side chain or any of 
the other conserved resistance mutation residues.  The pyrophosphate group stayed in 
the anionic subsite for the duration of the simulation.  The side chain of Arg68 initially 
formed an ionic interaction with the negatively charged sulfonamide group of the  
pterin-smx, but this was quickly lost as the side chain migrated to interact with loop 1 
residues, particularly Phe33, shown in Figure 2.14 (average structure). 

2.3.3 Resistance Mutation Simulations 

The final series of simulations that were performed in these studies involved 
analyzing the effects of the three key mutations, F33L, T67A, and P69S, that have been 
observed to confer sulfonamide resistance in several bacterial species.  In six 
simulations of 4ns each, under implicit solvation, both pABA and SMX were analyzed in 
their ternary complex with DHPP with one each of the three mutations applied.  In these 
simulations, a Na+ occupied the anionic subsite along with the diphosphate group of 
DHPP.   These simulations were compared with the corresponding native enzyme 
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Figure 2.14. Pterin-SMX Up, 4ns Explicit Simulation 

 
simulations from series 1 and series 2. 

 
The first set of simulations involved the F33L mutation.  In the pABA simulation, 

the pABA compound was quickly expelled from the active site, by 0.2 ns, no interactions 
with Leu33 were noted.  Arg68 made contact with the terminal phosphate of DHPP, 
which remained in the pterin site for the duration of the simulation.  Loop 1 was observed 
to lose its position and fold away from the active site.  By 2 nanoseconds, loop 1 had 
begun to form into a helical structure.  The reason for the quick loss of the pABA group 
down position, the sulfamethoxazole compound stayed in the pABA site for the duration 
of the simulation.  Arg68 alternated contact between the negatively charged sulfonamide 
group and the terminal phosphate of DHPP, at some time points it was able to make a 
bridging interaction between the two groups.  As in the pABA simulation, loop 1 quickly 
folded out of place and the Leu33 side chain was not observed to interact with 
sulfamethoxazole at any time.  The helix formation of loop 1 was not observed in this 
simulation.  Although the reason for the retention of sulfamethoxazole and the quick 
expulsion of the pABA compound are not clear, the effects of the F33L mutation on the 
position of loop 1 over the active site seemed to reinforce our observation from series 2 
that the Phe33 residue plays an important role in the stabilization of loop1 during 
catalysis. 

 
The second set of resistance simulations was the Thr67Ala simulations.  In this 

set of simulations both the pABA and the sulfamethoxazole compounds were 
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immediately expelled from the active site.  No interaction between Ala67 was noted with 
either pABA, sulfamethoxazole, or DHPP in either simulation.  Again, Arg68 made and 
kept an ionic interaction with the diphosphate group and the DHPP compound remained 
in the pterin site for the duration of the simulation.  Interestingly, in this set of 
simulations, loop1 was not observed to withdraw from the active site and kept its 
approximate starting position for the duration of the simulation in both cases.   

 
The final set of simulations was the Pro69Ser mutation.  The results of this set of 

simulations were similar to those seen with the two previous sets.  Both pABA and 
sulfamethoxazole were expelled from the active site early on in the simulations.  Arg68 
and DHPP behaved in the same manner as that seen in the first two sets of resistance 
simulations, and loop 1 maintained its position near the active site.  Ser69 was observed 
to make hydrogen bonds to both the pABA and the sulfonamide compounds during and 
after these compounds were leaving the active site, however the significance of these 
interactions is not clear as they did not involve the binding of either compound in the 
pABA subsite. 

2.4 Summary 

The simulations described in this chapter have contributed, at least in part, to our 
understanding of the binding of both the normal substrates and sulfonamide inhibitors of 
DHPS.  Additionally, we have gained insights into the roles during binding and catalysis 
of several key residues, whose positions were unclear in our crystal structures as well as 
the overall positions of loops 1 and 2 during binding and catalysis.  In particular the role 
and position of Arg68, Phe33, Thr67, and Pro69 were closely followed during these 
simulations.  A summary of our findings follows below. 

 
 Arg68 has been proposed (and observed in 1 of our crystal structures) to make 
ionic contact with the negatively charged carboxylate in pABA or the negatively charged 
sulfonamide group in that class is antibacterials.  The majority of our simulations seemed 
to indicate a preference of the Arg68 side chain for the negatively charged sulfate or 
phosphate in the anionic binding pocket rather than pABA or sulfonamide group.  
Although this may be due in part to the starting position of the arginine group, we noted 
that even when the Arg68 side chain was started in a position where it interacted with 
the sulfonamide group (as in our “oxazole up” pterin-smx simulations), the contact was 
not maintained.  We noted in one simulation that the Arg68 side chain appeared to 
facilitate the removal of the pyrophosphate substrate from the anionic pocket, possibly 
assisted in this by hydrogen bonding interactions made by Thr67. 
 
 Phe33 is a key residue that confers resistance to sulfonamide agents when 
mutated to leucine.  We followed this residue closely in all of our simulations and noted 
an inability of the Phe33 side chain to interact directly with pABA due to distance 
constraints.  However, the aromatic side chain of Phe33 was able to interact with the 
oxazole side chain of sulfamethoxazole when the simulation was started with this group 
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out and down.  We note the presence of an aromatic group at this position in the majority 
of the sulfonamide agents that have been marketed.  It is possible that this interaction 
facilitates sulfonamide binding and that the loss of this interaction upon Phe33 mutation 
decreases the binding affinity of sulfonamide groups for the pABA binding site.  This 
observation can be confirmed by performing activity assessments with a DHPS mutant, 
sulfamethoxazole (or other aromatic side chain containing sulfonamide), and 
sulfanilamide (a sulfonamide drug without an aromatic side chain).  If this theory is 
correct, the Phe33 mutation will lower the activity of sulfamethoxazole, but not affect the 
activity of sulfanilamide.  Another possible explanation for the role of Phe33 is the 
stabilization of loop 1 in a position near the active site during catalysis.  We noted in our 
F33L mutation simulations that loop 1 moved quickly out of position when this residue 
was mutated, but stayed in position otherwise (as long as a pterin substrate and anion 
were present in the active site).  This phenomenon has been observed by another 
group, performing similar studies with S. pneumoniae.181 
 
 Our simulations provided us with some insight into the role and function of Thr67 
in binding, loop position, and resistance.  In the product/substrate simulations Thr67 was 
observed to make a hydrogen bond with Lys73, also in loop 2, and possibly play a role in 
the stabilization of loop 2 during catalysis.  We also noted, in our pterin-smx simulations, 
that the Thr67 made hydrogen bond interactions with the pyrophosphate group as it left 
the anionic pocket, possibly facilitating the removal of this group.  We note that the 
Thr67 side chain is normally not able to interact with the anionic substrate when it 
occupies its normal position in the anionic pocket.  Unfortunately, we did not observe 
any interactions with Ala67 in the T67A mutation simulations that could provide any 
insight into the mechanism of this sulfonamide resistance conferring mutation. 
 
 The Pro69 residue was observed to play a key role in pABA binding during our 
product/substrate simulations by making vdW interactions with one face of the pABA ring 
structure.  Presumably, this interaction is disrupted upon mutation to a serine residue 
such that the sulfonamide agents can no longer bind.  However, our mutations 
simulations with P69S did not reveal the mechanism of this resistance as both 
compounds were expelled from the active site rather quickly. 
 
 In addition to following the residues mentioned above, we were keenly interested 
in the position of the oxazole ring of sulfamethoxazole during binding and performed 
simulations with this group in the two positions we observed in our crystal structures.  
Although, when the oxazole ring was in the “up” position, tucked into a small pocket 
between loops 6 and 7 it was not able to make the Phe33 stacking interaction, we noted 
that this position in the pterin-smx simulations was very stable (more so than the “down” 
position).  Another known resistance mutation may lend credence to the oxazole in this 
position.  In N. meningitides, a glycine to cysteine residue has been shown to confer 
resistance to sulfonamide drugs.  This glycine corresponds to Gly188, which resides in 
the small pocket the oxazole ring fills while in the “up” position.  A mutation to cysteine 
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would presumably block the oxazole ring from occupying this pocket, theoretically 
leading to a decreased affinity of the sulfonamide drugs for the pABA binding site. 
 
 Finally, the role and position of the Arg254 residue and the terminal phosphate of 
DHPP (or sulfate in several of our studies) deserves mention.  This arginine side chain is 
known (and can be seen in our crystal structures) to play a key role in pterin binding.  
Our simulations showed in several cases that the position of the Arg254 side chain was 
dependent on the negatively charged group in the anionic subsite.  An extended position 
was only maintained when the negatively charged group was present.  Additionally, even 
in the presence of a pterin substrate, if the anionic group was absent, the Arg254 side 
chain withdrew from the pterin site and folded back to make ionic interactions at the back 
of the pocket.  The direct result of this was the destabilization of the pterin substrate in 
the pterin subsite.  This seems to imply that the pyrophosphate product leaves the active 
site first (perhaps facilitated by Arg68), followed by the pteroate product after Arg254 
withdraws from the active site.  This observation may have ramification on the design of 
pterin site binding inhibitors of DHPS. 
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CHAPTER 3. MOLECULAR DOCKING VALIDATION STUDIES ON 
DHPS 

3.1 Introduction 

The overall goal of the research presented in Chapters 2, 3 and 4 is the 
discovery of novel compounds with significant binding affinities for the pterin pocket of B. 
anthracis DHPS using virtual screening approaches.  The pterin binding pocket in DHPS 
represents an attractive alternative target for the design of novel antibacterial agents.  
There is a high degree of conservation in the residues that comprise this pocket, and no 
resistance mutations have been documented in or adjacent to this site, as can be seen 
from Figure 3.1.  To date, a variety of DHPS apo- and holo- crystal structures have been 
deposited in the Protein Data Bank from six bacterial species (E. coli, S. aureus, M. 
tuberculosis, B. anthracis, T. thermophilus, and S. pneumonia) as well as one fungal 
species (S. cerevisiae).151-157  However, prior to embarking on a large virtual screening 
project against the pterin site of DHPS, it was necessary to investigate different docking 
and scoring programs and validate their performance.  The work presented in this 
chapter details our extensive docking validation studies against the DHPS pterin site. 

3.1.1 Why Validate? 

Large-scale virtual screening or high-throughput molecular docking (HTD) of in-
house or commercial databases has become a common lead discovery technique in 
drug design.  It has been shown to be a complementary tool to traditional, high-
throughput screening, with hit rates that can be orders of magnitude higher than those 
from the latter.11  In this study, we specifically address the problem of selecting an 
appropriate docking and scoring combination for virtual screening against a specific 
target and accurately rank-ordering the virtual hits for further analysis. A review of the 
literature reveals that there are many docking programs and scoring functions which 
have been investigated in numerous docking validation studies since 2000.182-196  It is 
clear from these studies that, given the large number of docking and scoring functions 
available, and the variability in their performance with different targets, it is crucial to 
perform a docking validation study prior to embarking on any virtual screening 
experiment.184,185,187,192,193,196  Ideally, the identification of the optimal docking and scoring 
combination will decrease the number of false positives and false negatives while 
ensuring optimal hit rates. 

3.1.2 Docking Validation: Current Methods and Metrics 

A number of methods have been reported for validating docking programs and 
scoring functions.197,198  One commonly used method is pose selection whereby docking  
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Figure 3.1. DHPS Structure with Resistance Mutation Sites Highlighted 

Proposed transition state analog shown in active site.  Residues conferring sulfonamide 
resistances are shown in yellow (see Table 2.2).  



73 
 

programs are used to re-dock into the target’s active site a compound with a known 
conformation and orientation, typically from a co-crystal structure.  Programs that are 
able to return poses below a preselected Root Mean Square Deviation (RMSD) value 
from the known conformation (usually 1.5 or 2 Å depending on ligand size) are 
considered to have performed successfully.  Pose selection is then followed by scoring 
and ranking to study which of the available scoring functions most accurately ranks the 
poses with respect to their RMSD values.  

 
Another validation method is to dock a so-called decoy set of inactive, or 

presumed inactive, compounds that has been ‘seeded’ with compounds with known 
activity against the target in question.  After ranking the docked decoy set by score, 
enrichment can be calculated and enrichment plots or Receiver Operating Characteristic 
(ROC) curves plotted.199-201  ROC curves plot the sensitivity (Se) of a given 
docking/scoring combination against specificity (Sp), and Area’s Under the Curve (AUC) 
can be calculated for comparison.  There are two reported advantages of ROC curves 
over enrichment plots; they are independent of the number of actives in the decoy set 
and they include information on sensitivity as well as specificity.198,202  However, the 
former advantage has recently been challenged.203  

3.1.3 DHPS Validation: Research Project Goals 

In this study of the B. anthracis DHPS pterin-binding pocket, five docking 
programs and nine scoring functions were evaluated using pose selection/scoring and 
enrichment studies.  Pose selection and scoring used the 7-amino-3-(1-carboxyethyl)-1-
methyl-pyrimido (4,5-c)-pyridazine-4,5(1H; 6H)-dione (AMPPD) co-crystal structure, 
shown in Figure 3.2, as the source structure.  AMPPD was first described as a pterin-
based DHPS inhibitor by researchers at Burroughs Wellcome Co.204-207  We have been 
able to re-synthesize AMPPD and obtain a 2.3 Å resolution co-crystal structure using B. 
anthracis DHPS.  RMSD calculations were used to determine how well specific 
docking/scoring combinations pose and score the ligand in the pterin site.  Enrichment 
studies were performed using 10 compounds also identified in the Burroughs Wellcome 
efforts, with measured inhibitory activity against E. coli DHPS that are known to bind to 
the pterin-binding site.206,207  These active compounds were seeded into three separate 
decoy sets, each of which has been used in previously reported docking validation 
studies.  Enrichment at 1% and 2%, and ROC curves were used to compare 
docking/scoring combinations, and results across decoy set were also compared. 

 
The work reported here seeks to address eight questions.  (1) How useful is 

simple pose selection and scoring for determining the optimal docking/ scoring 
combinations for use against a specific target?  (2) How do enrichment calculations at 
1% and 2% compare with Areas under ROC curves in evaluating the docking/scoring 
combinations?  (3) How important is decoy set selection?  (4) How do docking failures 
affect results and how should these be accounted for?  (5) How does post-docking 
relaxation affect enrichment results?  (6) Can the use of consensus scoring improve  
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Figure 3.2. 7-amino-3-(1-carboxyethyl)-1-methyl-pyrimido (4,5-c)-pyridazine-4,5(1H; 
6H)-dione, AMPPD 

 
enrichment results? (7) Is it possible to incorporate the known inhibitory activities of the 
seeded active compounds to more accurately distinguish between the docking/scoring 
combinations?  Finally, and most importantly for our project, (8) which is the best 
docking/scoring combination for use in virtual screening against the pterin-binding 
pocket of the B. anthracis DHPS enzyme? 

3.2 Molecular Docking Validation against DHPS: Methods 

3.2.1 Docking Programs and Scoring Functions 

Five docking programs were evaluated in this study, FlexX, DOCK, Glide, GOLD, 
and Surflex. FlexX52 v1.20.1 and Surflex65 v2.0.1 are included in the Sybyl 7.3 molecular 
modelling suite of Tripos, Inc.208  GOLD57 v3.1.1 was obtained from Cambridge 
Crystallographic Data Centre (CCDC)209, Glide56,210 v4.0 is available from Schrodinger, 
Inc.211, and DOCK49,212,213 v6.0 is freely available to academic institutions from the 
University of California, San Francisco.  FlexX, Surflex, and DOCK use incremental 
construction algorithms to select compound poses. GOLD uses a genetic algorithm, and 
Glide is a hybrid method that uses a torsional energy optimization and Monte Carlo 
sampling214 for refinement.  Nine Scoring functions were investigated.  F-Score52, 
Surflex-Score58, ChemScore63, and GlideScore56 are empirical scoring functions, PMF-
Score82 is knowledge-based, and D-Score212, G-Score57, GOLD-Score and Grid-Score 
are force-field scoring functions.  F-Score, D-Score, G-Score, ChemScore, and PMF-
Score are included in the Cscore module of Sybyl 7.3, while Surflex-Score, GOLD-
Score, and GlideScore are the native scoring functions for Surflex, GOLD, and Glide, 
respectively.  F-Score is also the native scoring function for FlexX, and Grid scoring was 
selected for use with the DOCK program. 

3.2.2 DHPS Target Structure 

The crystal structure of AMPPD in complex with B. anthracis DHPS, shown in 
Figure 3.3, was used for all the molecular docking exercises performed in this study.  We  
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Figure 3.3. AMPPD Shown Bound into the Pterin Binding Pocket 

Key hydrogen bonds are indicated by spherical ellipsoids. 
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have determined the structures of B. anthracis DHPS in complex with several ligands 
including pterin site binders and product analogs.154  The AMPPD structure was chosen 
for use in this study for three reasons; it binds solely within the pterin binding pocket and 
does not interact with the adjacent pABA, it has two rotatable bonds which adds an 
additional degree of complexity to the docking problem compared to the rigid pterin site 
binders available to us, and its complex with DHPS is one of the highest resolution 
structures that we have determined.  The structure was prepared using the Biopolymer 
tool of Sybyl 7.3.  Missing residues within mobile loops 1 and 2 were modelled using the 
closely similar E. coli and M. tuberculosis DHPS structures previously reported and 
discussed in section.151,153  Loops 1 and 2 are believed to participate in pABA binding 
and catalysis, but appear to play little or no role in pterin binding to the enzyme.  
Hydrogen atoms were added and AMBER FF99 charges were calculated for the protein.  
A structurally conserved water molecule (WAT1) that interacts with residues Ile187 and 
Gly216 directly adjacent to the pterin site was included as part of the receptor.  A 1000 
iteration minimization of the hydrogen atoms was followed by a 100 ps molecular 
dynamics simulation to refine the positions of the mobile loops 1 and 2.  The simulation 
was performed with the Dynamics tool of Sybyl7.3 using the NTP ensemble, standard 
temperature and pressure, and 2 fs steps.  All residues and ligands with the exception of 
those in loops 1 and 2 were held under tight constraints.  The average structure from the 
last 20 ps of the simulation was calculated, and a 100 iteration minimization was applied 
to the entire structure to obtain the final receptor structure. 

3.2.3 Docking Methodology 

General. For consistency, site description files for all docking programs were 
generated using the AMPPD ligand and an 8 Å spherical radius.  WAT1 was included in 
all docking runs for all programs. FlexX v1.20.1. A receptor description file was built 
using the saved .pdb file.  Ligands were docked as mol2 files and prepared as discussed 
below.  All other parameters accepted default settings for docking runs.  GOLD v3.1.1. 
Default speed settings were accepted for both pose selection and enrichment studies.  
The input structure was the mol2 file with ligand extracted.  WAT1 was set ‘on’ with spin 
orientation enabled, and the set atom types function was ‘on’ for ligand and ‘off’ for the 
protein.  The fitness function was set to GOLD-Score (ChemScore disabled) with default 
input and annealing parameters.  The Genetic Algorithm default settings were accepted 
as population size 100, selection pressure 1.1, number of operations 100,000, number of 
islands 5, niche size 2, migrate 10, mutate 95, and crossover 95.  All other parameters 
accepted the default settings.  Surflex v2.0.1. The SFXC file was built using the mol2  
prepared protein structure.  The protomol was generated using the AMPPD ligand with a 
threshold of 0.50 and bloat set to 0 (default settings).    Ligands were prepared as 
described below and docked as mol2 files.  Cscore calculations were enabled on all 
Surflex docking runs.  All other parameters accepted the default settings.  Glide v4.0.  
The receptor grid was generated using the mol2 file and was based upon the AMPPD 
ligand and an 8 Å enclosing box.  Default values were accepted for van der Waals 
scaling and input partial charges were used.  Standard precision docking was used for  



77 
 

all Glide docking runs, with default settings for all other parameters and no constraints or 
similarity scoring applied.  DOCK v6.0.  The structure and ligand were prepared as 
discussed above and saved as mol2 files.  The molecular surface was generated with 
the dms tool, included in the DOCK v6.0 package, with a default probe radius of 1.4 Å.  
Sphgen was used to generate spheres using the dms output and default settings.  The 
active site was defined using the sphere selector tool and an 8 Å radius about the 
AMPPD ligand, and a corresponding 8 Å grid was generated for scoring using the 
showbox and grid tools.   Flexible ligand docking was utilized with grid scoring as 
primary and secondary scoring and ligand minimization was enabled.  All other docking 
parameters accepted default settings for docking runs. 

3.2.4 Ligand Preparation 

Ligands were prepared for docking using the Sybyl 7.3 Molecular Modelling Suite 
of Tripos, Inc.  3D conformations were generated using Concord 4.0215, hydrogen atoms 
were added and charges were loaded using the Gasteiger and Marsili charge calculation 
method.105  Basic amines were protonated and acidic carboxyl groups were de-
protonated prior to charge calculation.  The AMPPD ligand was minimized with the 
Tripos Force Field  prior to docking using the Powell method with an initial Simplex216 
optimization and 1000 iterations or gradient termination at 0.01 kcal/(mol*A).  Input 
ligand file format was mol2 for all docking programs investigated. 

3.2.5 Pose Selection and Scoring 

The AMPPD compound was prepared for docking as described above.  It was 
then docked into the DHPS active site of the AMPPD co-crystal structure with each 
docking program using the methods described above.  The number of poses returned by 
each docking program was determined by the default settings, and the poses were 
scored using that program’s native scoring function.  Using the five scoring functions 
available in the Cscore module of Sybyl, the poses were scored once again in a process 
that we define as ‘rescoring’.  The rms analysis tool in the GOLD utilities was used to 
calculate non-hydrogen RMSD of the docked and scored poses relative to the crystal 
structure conformation of the AMPPD compound.  We used an RMSD of 1.5 Å as our 
threshold for determining success or failure as opposed to the commonly used 2 Å 
because of the relatively low number of freely rotatable bonds in the AMPPD compound.  
For pose selection, the pose with the lowest RMSD was determined from all poses 
returned by the docking program, regardless of rank.  For scoring utility, the RMSD of 
the best scoring compound was calculated. 

3.2.6 Enrichment Studies 

Decoy Sets. In this study, three compound sets that had been used in previous 
validation studies were chosen as the decoy sets.   The Schrodinger decoy set was used 
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to validate the Glide docking program.56,210  It consists of 1000 drug-like compounds with 
an average molecular weight of 400 D and was downloaded as a 3D SD file from the 
Schrodinger website. The ZINC decoy set of 1000 compounds was used by Pham & 
Jain in a validation study of the Surflex scoring function.217  The Available Chemicals 
Directory (ACD) decoy set of 861 compounds was used by Bissantz and co-workers in a 
large docking/scoring validation study.196   Both the ZINC and ACD decoy sets are 
available in the Sybyl demo material as 3D SLN files.  Active Compounds.  The active 
compounds that were seeded into each of the decoy sets are shown in Figure 3.4.  They 
were chosen from a previously published series of 65 DHPS inhibitors that are known to 
bind to the virtually identical pterin site of  E. coli DHPS.206,207  The compounds were 
chosen to reflect as broad a range of binding affinities and structural differences as 
possible, with the requirement that the activity of the compounds is below an IC50 of 20 
μM.   The compounds were built using the Sketch tool of Sybyl 7.3 and prepared for 
docking as described above.  Rescoring.  The highest scoring pose of each compound 
in the enrichment sets (both active and decoy) was saved for each docking program and 
imported into a Sybyl Molecular Spreadsheet for rescoring using the Cscore functions F- 
Score, ChemScore, PMF-Score, D-Score, and G-Score.  The effect of relaxing the 
compounds in the active site using the Cscore relaxation option was investigating by 
scoring before and after the relaxation.  Additionally, a composite score was calculated 
using the 5 Cscore functions for both the relaxed and unrelaxed scores calculated. 

3.2.7 Statistical Analysis 

We have developed a non parametric statistic, sum of the sum of log rank 
(SSLR), to test whether a scoring function performs better than random ordering and to 
compare the docking performances of two scoring functions. The SSLR statistic 
considers both the ranks of known active compounds relative to the decoy compounds 
and also the orders of the rank indicated by the IC50 values. For a virtual screening 
experiment, assuming a total of m decoy compounds and n active compounds, the 
SSLR statistic is defined as: 
 

 ∑ ∑ log  Equation 3.1
 
where  is the rank of the jth active compound among all N = m+n compounds; n active 

compounds are arranged in the order according to their IC50 values. By default, the 
smaller the IC50 is the more active is the compound; small SSLR favors early detection 
of active compounds.  Test if a scoring function performs better than random 
scoring.  The exact distribution of SSLR under null hypothesis is difficult to derive 
mathematically but can be easily obtained numerically by simulations. The null 
hypothesis assumes that the ranks of the active compounds are assigned completely at 
random. We simulate this random scoring study 1 million times and record all their SSLR 
values. The empirical distribution of the simulated values represents an estimate to the 
exact distribution. We believe that 1 million simulations should be sufficient enough to 
produce a reasonably good estimate. The p value of the test is simply the proportion of 
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Figure 3.4. DHPS Active Compounds Used in Enrichment Studies Shown with 
Activity against E. coli DHPS 
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 the times that the simulated SSLRs are less than the observed SSLR.  Compare the 
performances of two scoring functions.   We have developed a permutation test to 
compare the performance of two scoring functions. Under the null hypothesis that two 
scoring function are equal, i.e. 0, the ranks of the active compounds of 

the two scoring functions are interchangeable. Assuming  and  are ranks of the ith 
active compound for the two scoring functions, the permuted rank is given by: 

 1  Equation 3.2
 
and 
 1  Equation 3.3
 
where   is from Bernoulli distribution with success probability 0.5.  Empirical distribution 
of the difference of SSLR is obtained based on the permuted data and the p value of the 
test is given by the proportion of the times that the permuted differences are greater or 
less than the observed difference, depending on the direction of alternative hypothesis.  
Missing values.  In situations where the docking and scoring combination failed to 
return poses (failed docking), we have penalized the docking/scoring combination by 
giving those compounds with missing scores the worst score returned by that particular 
scoring function for a compound in the decoy set (see our discussion on docking failures 
below). 

3.3 Molecular Docking Validation against DHPS: Results 

3.3.1 Pose Selection and Scoring 

Table 3.1 shows the results of the pose selection and scoring validation trials.  
The number of poses returned by the five individual docking programs is listed in 
parentheses below the docking program name.  The best pose, as determined by lowest 
RMSD, and the rank of that pose by the docking program’s native scoring function is 
given in column 2.  Column 3 lists the RMSD of the top scored pose by the native 
scoring function of each docking program.  Scored poses with an RMSD of less than or 
equal to 1.5 Å are considered to be successful.  Each of the five docking programs 
successfully returned a correct pose, and four of the five native scoring functions ranked 
a correct pose as the highest.  The one exception was the GOLD and Gold-Score 
function combination which ranked a pose with a 3.29 Å RMSD as the highest.  Columns 
4 through 8 in Table 1 give the rescoring results with the Cscore scoring functions; the 
RMSD of the top ranked pose after rescoring is presented together with the rank of that 
pose by the native scoring function in parentheses.   In most cases, the Cscore scoring 
functions were able to rank successful poses, and the failures are shown in red in Table 
3.1.  Three of the scoring functions were not able to rank the FlexX poses, and D-Score  
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Table 3.1. Pose Selection and Scoring Results 

Docking 
Program 

 
Best 
Pose 
(Pose 
Rank) 

 

Native 
Scoring  
Function 

(1st) 

F-Score 
(Pose 
Rank) 

G-Score 
(Pose 
Rank) 

D-Score 
(Pose 
Rank) 

ChemScore 
(Pose 
Rank) 

PMF-
Score 
(Pose 
Rank) 

FlexX 
(30 

Poses) 

0.56 Å  
(3rd) 

1.19 Å  
 

1.19 Å  
(1st) 

1.87 Å  
(10th) 

17.22 Å  
(21st) 

1.87 Å  
(10th) 

1.03 Å 
(2nd) 

Surflex 
(10 

Poses) 

1.48 Å  
(3rd) 

1.49 Å  
 

1.50 Å  
(10th) 

1.50 Å  
(10th) 

1.49 Å  
(6th) 

1.49 Å  
(1st) 

1.48 Å 
(4th) 

Glide 
(30 

Poses) 

0.37 Å 
(10th) 

1.13 Å  0.40 Å 
(11th) 

0.43 Å 
(15th) 

1.13 Å  
(1st) 

0.37 Å  
(10th) 

0.40 Å 
(12th) 

GOLD 
(5 

Poses) 

1.30 Å  
(4th) 

3.29 Å  
 

1.30 Å  
(4th) 

3.37 Å  
(3rd) 

1.30 Å  
(4th) 

1.30 Å  
(4th) 

1.30 Å 
(4th) 

DOCK 
(10 

Poses) 

0.38 Å  
(10th) 

0.85 Å  
 

0.85 Å  
(1st) 

1.00 Å  
(4th) 

0.52 Å  
(10th) 

0.85 Å  
(1st) 

1.00 Å 
(5th) 

 
Non-hydrogen RMSD values are shown; RMSD values less than 1.5 Angstroms are 
considered correct poses, greater than 1.5 Angstroms are considered failed. 
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performed particularly poorly in this respect, ranking a failed docking pose (outside the 
pterin site) as the highest.  However, D Score was able to correctly rank a successful G-
Score and ChemScore were not able to correctly rank poses generated by FlexX, and 
G-Score also failed with the poses generated by GOLD.  Overall, F-Score and PMF-
Score correctly rescored the poses generated by all the docking programs and were the 
best performing functions in this respect.  We also note that the poses returned by the 
Surflex, Glide, and DOCK programs were always successfully scored by both the native 
functions and the Cscore functions.   

3.3.2 Enrichment Studies 

Figures 3.5, 3.6, and 3.7 show the calculated enrichment at 1% for each docking 
program/scoring function combination when used with each of the three decoy sets used 
in this study.  It should be noted that we were not able to complete the GOLD docking of 
the ACD decoy set due to licensing issues, but the ZINC and Schrödinger decoy sets 
were successfully docked by the GOLD docking program.   Enrichment is defined as the 
number of active compounds detected at a given percent of total decoy set by score 
ranked pose.  Enrichment was calculated at 1% and 2% of the total decoy set rather 
than 1% and 2% of compounds successfully docked.  This requires further explanation.  
Table 3.2 displays the number of poses (1 pose per compound) returned by the docking 
programs investigated in this validation study.   It is apparent that some programs were 
able to return more poses than other programs, and this must be taken into account so 
as not to unfairly penalize programs that failed to dock some of the decoy compounds. 
 

Several observations can be made from the data presented in Figures 3.5 to 3.7.  
First, the two force field based functions, D-Score and G-Score, and the empirical 
function ChemScore all performed poorly for each decoy set.  Second, the Glide and 
Surflex docking programs with their native scoring functions performed well (4 or more 
actives detected at 1%) against each of the three decoy sets.  Finally, when used as the 
FlexX native scoring function, F-Score performed poorly against all three decoy sets, but 
when used to rescore for the other four docking programs F-Score returned modest to 
good results.  Most notably, F-Score detected 5 of the 10 active compounds when used 
with DOCK against the ZINC validation set. 

 
Enrichment was also calculated at 2% of the total decoy set docked for 

comparison (see supplementary material).  D-Score, G-Score and ChemScore 
continued to perform poorly.  The scoring functions F-Score and PMF-Score were able 
to detect on average 1 or 2 more active compounds at 2%.  Notably, the top performers 
at 1%, GlideScore and SurflexScore, continued to show excellent results at 2%, 
detecting between 6 and 8 of the 10 active compounds.   

 
When comparing the enrichment results with respect to the choice of decoy set, 

there was a clear difference in performance for the various docking/scoring 
combinations.  Overall, the ZINC decoy set returned the best enrichment results, while  
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Figure 3.5. Enrichment Factors at 1% of Total Validation Set Docked, ZINC Decoy 
Set 
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Figure 3.6. Enrichment Factors at 1% of Total Validation Set Docked, Schrödinger 
Decoy Set 
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Figure 3.7. Enrichment Factors at 1% of Total Validation Set Docked, ACD Decoy 
Set 
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Table 3.2. Number of Compounds Docked by Validation Set 

Docking Tool ACD Schrödinger ZINC 
Full Set 871 1010 1010 
DOCK 749 752 852 
FlexX 811 991 1004 

Surflex 870 1010 1010 
GOLD n/d 1010 991 
Glide 579 607 819 

 
 
the ACD decoy set returned the worst results.  It might be expected that the docking 
programs would have the most difficulty in distinguishing the active compounds from the 
decoy set when they are close in size and lipophilicity, but this trend was not seen in our 
enrichment studies.  The Schrödinger decoy set differed most from the active 
compounds with respect to these two parameters but returned the worst enrichment 
results, while the ZINC and ACD sets, which have the closest parameters, yielded better 
enrichment results. 

3.3.3 Receiver-Operating Characteristic Curves 

Figures 3.8, 3.9 and 3.10 show representative ROC plots for three of the five 
docking programs evaluated in this study (see Appendix C for additional ROC plots).  
The results from the native scoring functions and from rescoring with the five Cscore 
scoring functions are shown.  The calculated areas under the receiver-operating 
characteristic curves (AU-ROC) values for each docking program with its native scoring 
function and the five Cscore functions are given in Table 3.3, and are color coded 
according to performance; green - excellent (above 0.9), black – moderately well (0.9 to 
0.6), red – poor (less than 0.6).  Calculated p values are shown in parentheses in Table 
3.3.  At a significance level (α) of 0.05, p values less than 0.05 indicate significant 
improvement over random selection while p values greater than 0.05 indicate no 
significant difference over random selection.  It should be noted that, when creating the 
ROC curves, we used the total number of compounds in the validation set rather than 
total number of docked compounds to enable a more direct comparison of the 
performance of the docking and scoring algorithms.  This point has been discussed 
earlier with respect to enrichment values, but it is also relevant here.  As can be seen 
from Figure 3.11, when calculating the area under the ROC for Glide using both the total 
Schrödinger decoy set versus the total successfully docked, there is a small but 
noticeable difference.  This presents a problem when comparing results with a docking 
program such as Surflex that was able to dock the complete Schrödinger decoy set. 

 
Four observations can be made from these results.  First, unlike the enrichment 

results at 1% and 2%, there is little difference in the ROC results for docking programs 
when compared across decoy sets.  Generally, when a docking/scoring combination 
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Figure 3.8. Selected ROC Plots: Glide Docking of ZINC Decoy Set 
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Figure 3.9. Selected ROC Plots: Surflex Docking of Schrodinger Decoy Set 
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Figure 3.10. Selected ROC Plots: GOLD Docking of Schrodinger Decoy Set 
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Table 3.3. Calculated AU-ROC with p Values from ROC Curves for 5 Docking Programs, Native Score and Cscore Functions 
(Unrelaxed) 

Docking Program / 
Validation Set 

 
Native Scorea 

 
F-Score 

 
PMF-Score 

 
G-Score 

 
D-Score 

 
ChemScore 

DOCK - ZINC 0.835 (<.001) 0.804 (.001) 0.962 (<.001) 0.533 (.338) 0.721 (.007) 0.540 (.297) 
DOCK - Schrödinger 0.770 (<.001) 0.793 (.001) 0.932 (<.001) 0.584 (.110) 0.689 (.008) 0.538 (.271) 
DOCK - ACD 0.902 (<.001) 0.860 (<.001) 0.958 (<.001) 0.652 (.021) 0.794 (<.001) 0.633 (.010) 
FlexX - ZINC F-Score 0.813 (<.001) 0.932 (<.001) 0.394 (.854) 0.588 (.183) 0.317 (.998) 
FlexX - Schrödinger F-Score 0.746 (<.001) 0.889 (<.001) 0.386 (.887) 0.528 (.376) 0.289 ( .999) 
FlexX - ACD F-Score 0.891 (<.001) 0.915 (<.001) 0.491 (.534) 0.701 (.006) 0.506 (.461) 
Glide - ZINC 0.971 (<.001) 0.941 (<.001) 0.939 (<.001) 0.558 (.182) 0.666 (.039) 0.547 (.267) 
Glide - Schrödinger 0.982 (<.001) 0.947 (<.001) 0.889 (<.001) 0.709 (<.001) 0.654 (.004) 0.651 (.010) 
Glide - ACD 0.977 (<001) 0.975 (<.001) 0.936 (<.001) 0.588 (.029) 0.738 (<.001) 0.728 (<.001) 
Surflex - ZINC 0.985 (<.001) 0.980 (<.001) 0.956 (<.001) 0.189 (>.999) 0.436 (.755) 0.506 (.472) 
Surflex - Schrödinger 0.978 (<.001) 0.963 (<.001) 0.880 (<.001) 0.117 (>.999) 0.251 (.999)  0.360 (.966) 
Surflex - ACD 0.975 (<.001) 0.975 (<.001) 0.926 (<.001) 0.221 (>.999) 0.467 (.661) 0.508 (.448) 
GOLD - ZINC 0.763 (.002) 0.923 (<.001) 0.930 (<.001) 0.398 (.883) 0.401 (.862) 0.237 (>.999) 
GOLD - Schrödinger 0.778 (<.001) 0.846 (<.001) 0.827 (<.001) 0.345 (.993) 0.197 (>.999) 0.185 (>.999) 

 
a.  p values <.05 for AU-ROC values >.5 indicate statistically significant improvement over random selection, p values <.05 for AU-
ROC values <.5 indicate statistically significant decrement over random selection.  
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Figure 3.11. ROC Comparison of Docked versus Total Set, Schrodinger Decoy Set 
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performed well, it did so against all three decoy sets.  The opposite is also true, with 
poorly performing docking/scoring combinations consistent with all three decoy sets.  
One exception to this is the noticeable (although not statistically significant) decrease in 
performance of PMF-Score when rescoring docking output for the Schrödinger decoy 
set.  We also noted the improvement in performance of the D-Score function when 
rescoring DOCK output and attribute this to the fact that the D-Score function is based 
on the original DOCK scoring function by Kuntz, et al.212  Second, docking programs 
generally performed moderately to very well when paired with their own native scoring 
functions.  Glide with Glide-Score and Surflex with Surflex-Score performed 
exceptionally well, and no improvement to the AU-ROC values was seen when rescoring 
these poses.  DOCK, FlexX, and GOLD performed moderately well when scored with 
their native scoring functions, Grid-Score, F-Score, and GOLD-Score, respectively, but 
these showed significant improvement upon rescoring.  Specifically, AU-ROC values 
were markedly improved when DOCK results were rescored with PMF-Score, FlexX 
results with PMF-Score, and GOLD results with both F-Score and PMF-Score.  Third, F-
Score and PMF-Score generally performed well in rescoring.  Curiously, F-score only 
performed moderately well with its partner FlexX, but performed exceptionally well when 
used to re-score the outputs of Glide, Surflex, and GOLD.  Finally, we note the moderate 
to poor performance of G-Score, D-Score, and ChemScore when these functions were 
used to re-score docking output from all five docking programs.  Their performance 
ranged from moderate with DOCK and Glide, to exceptionally poor with Surflex and 
GOLD. 

3.3.4 SSLR Calculations 

The SSLR value reflects the ability of the docking and scoring combination to 
detect active compounds early and also their ability to correctly rank the active 
compounds according to their known inhibition constants.  Table 3.4 shows the 
calculated SSLR statistic and p values for each of the docking/scoring combinations 
evaluated in this study.  Lower values for SSLR are more desirable, and p values 
(shown in parentheses) of less than 0.05 indicate that the particular combination showed 
significant improvement over random selection and ordering.  Like the AU-ROC values, 
the SSLR values demonstrate a clear distinction between the performance of the native 
scoring functions, F-Score, and PMF-Score over G-Score, D-Score, and ChemScore.   
As was seen with the AU-ROC calculations, the latter three scoring functions performed 
very poorly when rescoring the poses from all five docking programs, while the former 
three functions generally performed well across the board.  We note that in three 
instances, D-Score was able to detect and rank the active compounds significantly better 
than random, as demonstrated by the p values for DOCK docking of the ZINC and ACD 
decoy sets and FlexX docking of the ACD decoy set.  These results follow very closely 
with the corresponding AU-ROC values.  In all cases the native scoring functions were 
able to detect and rank the actives significantly better than random selection and 
ordering.  Finally, when used to rescore docked poses, PMF-Score and F-Score each  
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Table 3.4. Calculated SSLR Statistics with p Values for 5 Docking Programs, Native Score and Cscore Functions 
(Unrelaxed) 

Docking Program / 
Validation Set 

 
Native Scorea 

 
F-Score 

 
PMF-Score 

 
G-Score 

 
D-Score 

 
ChemScore 

DOCK - ZINC 212.3 (<.001) 164.1 (<.001) 145.8 (<.001) 312.2 (.220) 265.6 (.006) 313.7 (.241) 
DOCK - Schrödinger 269.9 (.009) 211.9 (<.001) 201.7 (<.001) 309.4 (.186) 292.9 (.061) 322.2 (.382) 
DOCK - ACD 183.2 (<.001) 134.5 (<.001) 182.6 (<.001) 281.8 (.025) 251.2 (.002) 301.4 (.111) 
FlexX - ZINC F-Score 244.1 (.001) 151.3 (<.001) 331.2 (.568) 298.0 (.088) 354.1 (.960) 
FlexX - Schrödinger F-Score 270.3 (.009) 204.5 (<.001) 335.4 (.661) 316.9 (.290) 357.6 (.982) 
FlexX - ACD F-Score 213.7 (<.001) 190.3 (<.001) 306.9 (.160) 273.3 (.012) 326.7 (.470) 
Glide - ZINC 131.4 (<.001) 152.3 (<.001) 148.6 (<.001) 312.1 (.220) 297.3 (.084) 305.2 (.143) 
Glide - Schrödinger 125.9 (<.001) 166.7 (<.001) 192.7 (<.001) 300.3 (.103) 310.2 (.196) 305.5 (.145) 
Glide - ACD 141.1 (<.001) 141.3 (<.001) 188.0 (<.001) 312.0 (.219) 279.2 (.021) 279.5 (.021) 
Surflex - ZINC 112.1 (<.001) 121.1 (<.001) 140.0 (<.001) 360.9 (.993) 342.9 (.813) 324.1 (.417) 
Surflex - Schrödinger 116.4 (<.001) 134.4 (<.001) 205.0 (<.001) 370.0 (.999) 363.2 (.997) 346.7 (.878) 
Surflex - ACD 123.1 (<.001) 132.9 (<.001) 211.3 (<.001) 353.5 (.956) 333.0 (.607) 325.4 (.443) 
GOLD - ZINC 259.6 (.004) 169.5 (<.001) 153.4 (<.001) 349.6 (.916) 344.5 (.842) 358.6 (.986) 
GOLD - Schrödinger 254.6 (.002) 203.0 (<.001) 227.7 (<.001) 352.3 (.945) 365.2 (.999) 360.1 (.991) 

 
a. SSLR statistics with p values <.05 are considered to have significant improvement over randomselection and ordering.  
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performed exceptionally well, matching their performance when gauged with the AU-
ROC values. 
 

In order to compare scoring functions to each other within docking 
program/decoy set pairs, p values were calculated to detect statistically significant  
differences in scoring function performance.  Tables 3.5 through 3.7 show p value cross 
comparisons both for AU-ROC’s and SSLR values for each of the three representative 
pairs mentioned above.  These results are helpful in determining which, if any, of the top 
performing scoring functions significantly outperformed the other, or if there was no 
statistically significant difference.  For example, in Table 3.5 the results indicate that 
between Glide Score, F-Score, and PMF-Score, there was no significant difference in 
their performance when judged by either AU-ROC or SSLR.  Additionally, there is not a 
significant difference in the performance of D-Score, G-Score, and ChemScore when 
judged by either metric.  In contrast, the data shown in Table 3.6 indicates  
that for Surflex docking of the Schrödinger decoy set, there was a significant difference 
between the performance of Surflex Score and PMF-Score that was detected by both 
metrics, with Surflex scoring significantly outperforming PMF-scoring.  Additionally, it can 
be seen from Table 3.6 that a significant difference between PMF- and F-Score could 
not be detected from the AU-ROC values, but that a difference was detectable when 
comparing the two scoring functions with SSLR values.  The ability of the SSLR value to  
detect a difference in performance of two scoring functions that was not detected by AU- 
ROC is also demonstrated in Table 3.7 when comparing PMF-Score and GOLD-Score, 
with GOLD-Score showing clear superiority over PMF-Score when judged by SSLR 
values.   There are also instances where SSLR failed to detect a significant difference  
that was detectable by the AU-ROC method, as can be seen from the ChemScore/G-
Score results in Table 3.7. 
 

The results of a direct comparison of the native scoring functions to each other 
for each decoy set studied are given in Tables 3.8 through 3.10.   It can be seen from 
the p values that Glide with its native Glide-Score and Surflex with its native Surflex-
Score demonstrated a significant superiority over FlexX, GOLD, and DOCK with their 
own respective native scoring functions.  Additionally, a direct comparison of Glide-
Score and Surflex-Score shows that there is no significant difference between the results 
of the two scoring functions, both in terms of the AU-ROC and SSLR methods. 

3.3.5 Post-Docking Relaxation 

Several authors have recommended that, when rescoring poses with non-native 
scoring functions as reported here, the poses should first be optimized using the native 
scoring function before generating the score.183,197  This procedure was not applied to 
the enrichment and AU-ROC data reported above, and it may explain the poor results 
observed with the D-Score, G-Score, and ChemScore algorithms.  To investigate the 
effects of optimizing the ligand poses prior to rescoring, we applied the molecule 
relaxation function of Cscore to the docking output prior to rescoring with the five Cscore 
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Table 3.5. Glide Docking of the ZINC Decoy Set 

 
Docking 

Program / 
Validation Set 

 
Glide 
Score 

 
 

 
F-Score 

 
 

 
PMF-Score 

 
G-Score

 
D-Score 

 
Chem
Score 

Glide Score --- .364 .377 <.001 .001 <.001 
F-Score .674 --- .959 <.001 .006 <.001 

PMF-Score .717 .957 --- <.001 <.001 <001 
G-Score <.001 <.001 <.001 --- .281 .712 
D-Score <.001 .011 <.001 .496 --- .212 

ChemScore <.001 <.001 <.001 .454 .743 --- 
 
 

Table 3.6. Surflex Docking of the Schrödinger Decoy Set 

 
Docking 

Program / 
Validation Set 

 

Surflex 
Score 

 
 

 
F-Score 

 
PMF-Score 

 
G-Score

 
D-Score 

 
Chem
Score 

Surflex Score --- .267 .018 <.001 <.001 <.001 
F-Score .319 --- .059 <.001 <.001 <.001 

PMF-Score <.001 .003 --- <.001 <.001 <.001 
G-Score <.001 <.001 <.001 --- .035 <.001 
D-Score <.001 <.001 <.001 .042 --- .084 

ChemScore <.001 <.001 <.001 <.001 .215 --- 

 

Table 3.7. GOLD Docking of the Schrödinger Decoy Set 

 
Docking 

Program / 
Validation Set 

 

GOLD 
Score 

 
 

 
F-Score 

 
PMF-Score 

 
G-Score

 
D-Score 

 
Chem
Score 

GOLD Score --- .373 .297 <.001 <.001 <.001 
F-Score .112 --- .780 <.001 <.001 <.001 

PMF-Score .036 .501 --- <.001 <.001 <.001 
G-Score <.001 .003 <.001 --- .001 .009 
D-Score <.001 .001 <.001 .038 --- .829 

ChemScore <.001 <.001 <.001 .251 .916 --- 
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Table 3.8. Native Scoring Functions with the ZINC Decoy Set 

 
Docking 

Program / 
Validation Set 

 

Grid 
Score 

 
 

 
F-Score 

 
Glide 
Score 

 
Surflex 
Score 

 
GOLD 
Score 

Grid Score --- .822 .078 .042 .015 
F-Score .306 --- .019 .007 .659 

Glide Score .085 .030 --- .503 .031 
Surflex Score .050 .002 .676 --- .013 
GOLD Score .236 .647 .018 <.001 --- 

 
 

Table 3.9. Native Scoring Functions with the Schrödinger Decoy Set 

 
Docking 

Program / 
Validation Set 

 

Grid 
Score 

 
 

 
F-Score 

 
Glide 
Score 

 
Surflex 
Score 

 
GOLD 
Score 

Grid Score --- .808 .004 .004 .871 
F-Score .988 --- .001 .001 .689 

Glide Score <.001 <.001 --- .703 .003 
Surflex Score .003 .002 .829 --- .001 
GOLD Score .603 .714 <.001 <.001 --- 

 
 

Table 3.10. Native Scoring Functions with the ACD (Bissantz) Decoy Set 

 
Docking 

Program / 
Validation Set 

 

Grid 
Score 

 
 

 
F-Score 

 
Glide 
Score 

 
Surflex 
Score 

Grid Score --- .866 .146 .120 
F-Score .277 --- .043 .048 

Glide Score .317 .080 --- .888 
Surflex Score .160 .017 .707 --- 
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scoring functions. This relaxation function uses the Tripos Force Field to perform a 100 
iteration torsional minimization of the docked ligand.  Figure 3.12 and Figure 3.13 show 
the effects of this relaxation procedure on the rescored AU-ROC values for the poses 
scoring functions. This relaxation function uses the Tripos Force Field to perform a 100 
iteration torsional minimization of the docked ligand.  Figure 3.12 and Figure 3.13 show 
the effects of this relaxation procedure on the rescored AU-ROC values for the poses 
generated by Surflex docking of the ZINC decoy set.  There was little change in the 
calculated AU-ROC values for D-Score, some improvement for G-Score, and 
significantly decreased AU-ROC values for the F-Score, ChemScore, and PMF-Score 
functions.  Similar results were obtained for all the docking programs and decoy sets 
investigated in this study (data not shown). 

3.3.6 Consensus Scoring 

Consensus scoring has received mixed reviews in recent validation studies, with 
some authors reporting enhanced enrichment over single scoring functions85,86,92 and 
others reporting little to no improvement.184,191  To further investigate this in the DHPS 
system, we used the Cscore module of Sybyl 7.3 to generate consensus scores from the 
five Cscore functions.  We used the default settings, and investigated consensus score 
values generated from both unrelaxed and relaxed scores.  A score of 0 through 5 is 
generated for each ligand pose depending on the number of “good” scores received 
from each of the five C-score functions.  Table 3.11 gives the results of consensus 
scoring on enrichment (by calculated AU-ROC) for each of the five docking programs.  
Only the data from the ZINC decoy set are shown in the table, but the results were 
similar for the other two decoy sets.  Table 3.11 gives the results from the unrelaxed and  
relaxed poses for comparison.  Ideally, the majority of the known active compounds 
should give a high Cscore value of 4 or 5, while the majority of the decoy compounds 
should have low Cscore values.  However, consensus scoring resulted in only a modest 
enrichment, and it failed to significantly improve the enrichment results obtained when 
scoring with single scoring functions.  We saw no significant difference in the results 
when Cscore calculations were performed on the unrelaxed poses over the relaxed 
poses.  The best results (an AU-ROC value of 0.891) were seen with consensus scores 
generated from unrelaxed poses from the Glide docking. 

3.4 Discussion 

Our high resolution crystallographic studies of DHPS from Bacillus anthracis that 
includes substrate and inhibitor complexes has provided us with the opportunity of using  
virtual screening methods to identify novel inhibitory compounds that specifically dock 
into the well characterized binding determinants of the pterin pocket.  However, an 
to identify which compounds should be further pursued by in-depth biochemical, kinetic 
and structural studies.  We have therefore performed a thorough investigation of docking 
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Figure 3.12. Effect of Molecule Relaxation of Docking Output Prior to Rescoring with Cscore Functions (Unrelaxed) 

Surflex docking of the ZINC validation set is shown unrelaxed. 
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Figure 3.13. Effect of Molecule Relaxation of Docking Output Prior to Rescoring with Cscore Functions (Relaxed) 

Surflex docking of the ZINC validation set is shown relaxed.
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Table 3.11. Cscore AU-ROC Results for Docking of ZINC Decoy Set 

 
Docking Program / 

Validation Set 
 

 
Unrelaxed Relaxed 

 
 

DOCK .730 .734 
FlexX .722 .679 
Glide .891 .857 
GOLD .716 .658 
Surflex .622 .554 

 
 
and scoring methodologies to identify which combination would be expected to yield the 
best results when applied to this particular pocket in this particular enzyme.  As 
described in the introduction, we sought answers to eight specific questions and have 
successfully provided key insights into each of them. 
 

We first investigated pose selection and noted the overall good performance of 
all five docking programs.  Each program was able to generate a successful pose 
(RMSD less than 1.5 Å), and four of the five native scoring functions were able to rank a 
successful pose.  Additionally, when the poses were rescored with the five Cscore 
scoring functions, each one performed reasonably well.  The majority of the docking and 
scoring functions were able to generate and rank successful poses, and we therefore 
conclude that this method of evaluating docking/scoring combinations is useful for 
eliminating poorly performing combinations but not for selecting the optimal combination. 

 
We then addressed the question of how two commonly-used metrics, enrichment 

calculations at a given percent of decoy set screened (1% and 2%) and areas under 
receiver-operating characteristic curves (AU-ROC), compare when used for validation.  
Although both metrics were generated using the same data, it was easier to note a 
difference in performance when analyzing the enrichment values.  Using the AU- ROCs, 
we classified combinations as performing either well, moderately well, or poor, but within 
each classification, it was difficult to determine the best docking/scoring combination.  
Similar to the pose selection study, the AU- ROCs were most useful for eliminating 
poorly performing docking/scoring combinations rather than selecting the top performing  
combination.  In contrast, the enrichment calculations which reward early detection of 
active compounds appear to be more successful in distinguishing the top performing 
docking/scoring combinations for use against a specific target, based on our results.   

 
We next sought to answer the question of how important is the selection of decoy 

compounds for use in enrichment studies.  A recent study stressed the importance of 
selecting decoy set compounds that closely match the active compounds in terms of 
physico-chemical properties in order to avoid artificial enrichment.218  We selected three 
decoy sets that had previously been used to validate docking programs against a wide 
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variety of enzyme targets.  Each of the three decoy sets has slightly different 
characteristics, and differs in physico-chemical properties from the active compounds to 
varying degrees.  We compared the enrichment and AU-ROC results across decoy sets, 
and although there were detectable differences when comparing enrichment calculations 
at 1 and 2%, we were unable to correlate this trend with the degree of difference in 
physico-chemical properties of the active compounds from the decoy sets.  Significantly 
for our purposes, when comparing the AU-ROC calculations across decoy sets, we did 
not detect a significant trend either favoring or disfavoring one decoy set over another, 
and when a docking/scoring combination performed well, it generally did so against all 
three decoy sets and vice versa.  However, our results are not necessarily inconsistent 
with the previous study where a trend was observed.218  More likely, while our active 
compounds differed significantly in some physicochemical properties from the 3 decoy 
sets we selected, the decoy sets themselves did not differ enough between each other 
to make a clear distinction in performance.  This can be seen in Table 3.12, which shows 
the average molecular volume, atom count, cLogP, # of H-bond donors (HD), # of H- 
bond acceptors, and number of rotatable bonds (RB) for the active set and the three 
decoy sets.  It can be seen that the active compounds tend to be smaller and more 
hydrophilic than the decoy compounds, but the decoy sets themselves are very similar.  

 
The question of how to deal with docking failures was also specifically addressed 

because this issue has received little attention in previous studies.  In our study, the 
docking programs were frequently unable to return poses for some decoy compounds, 
and this led to a problem in directly comparing the programs.  For example, the program 
Glide in combination with the Schrödinger decoy set returned 607 successful poses 
while the Surflex program returned the full quota of 1010 poses (1000 decoys plus 10 
actives).  In the calculation of enrichment, we believe that it would have been an unfair 
penalty on programs that failed to dock decoy compounds had we selected % 
compounds docked rather than the % of the total number of compounds, and similarly in 
the calculation of AU-ROC and SSLR.  We therefore used the total number of 
compounds (decoy + active) to calculate enrichment at 1 and 2%, and assigned the 
worst reported score to all docking failures when calculating the ROC plots, AU-ROC’s, 
and SSLR values.  We recognize that this method may over-compensate because the 
failure of a program to dock an inactive compound may actually reflect superior 
performance.  Thus, in the event that the performance of two docking/scoring  

Table 3.12. Active and Decoy Compounds Average Characteristics 

 
Set 

 

 
Volume 

 
Atom Count 

 
cLogP 

 
HD 

 
HA 

 
RB 

Actives 211 37 0.29 3 7 5 
ACD 287 42 3.27 2 4 5 

Schrödinger 341 50 3.77 2 6 6 
ZINC 310 42 3.02 1 4 5 
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combinations are indistinguishable, we believe it is reasonable to use the number of 
docking failures for inactive compounds as a means for selecting one over the other. 

 
We next addressed the abilities of post-docking relaxation and consensus 

scoring to improve enrichment results by evaluating their effects on our AU-ROC 
metrics.  Cole and co-workers have stressed the importance of using scoring functions 
to optimize docking output prior to rescoring with that function197  and we attributed the 
poor performance of the D-Score, G-Score, and ChemScore functions to this deficiency 
in our analyses.  To test this, we performed molecule relaxation using a function that is 
available in the C-Score module of Sybyl (Tripos) prior to rescoring, and compared these 
results with the unrelaxed scores. The scoring results following relaxation were typically 
worse in terms of AU-ROC, and this may be due to the function’s use of the Tripos Force 
Field rather than the scoring functions themselves.  This is consistent with the findings of 
Cole and coworkers because the notable exception was the improved performance of G-
Score that actually uses the Tripos Force Field parameters.  Consensus scoring failed to 
improve upon the results we were able to obtain with single function scoring, and we 
believe that this can also be attributed the fact that the Cscore functions were not 
optimized with respect to the functions themselves.  We conclude that, when rescoring 
with non-native scoring functions, it is very important to optimize with respect to that 
scoring function.   

 
The known inhibitory constants of the active compounds seeded into the decoy 

sets represents important information that can be used to further evaluate the 
performance of docking and scoring combinations.  Thus, ideally, the active compounds 
should not only be identified early but also in the correct order according to inhibition 
constants.  In this study we have introduced a new method for interpreting enrichment 
study results that simultaneously rewards early detection of active compounds and 
correct ordering, the ‘sum of the sum of log rank’ or SSLR.   Although several methods 
have been reported that specifically reward early detection203,219, we believe that this is 
the first method that takes this approach.  The SSLR method was developed to help us 
distinguish between the top performing docking and scoring combinations that were 
statistically indistinguishable using traditional AU-ROC methods.  In the three 
representative examples given above, the SSLR method was able to distinguish 
between scoring functions in two cases where the differences in AU-ROC were not 
significant but, in general, the SSLR values closely correlated to the AU-ROC results in 
terms of statistical significance.  However, it is very straightforward to apply the SSLR 
method when relevant data are available, and we consider this a valuable method with 
potentially great utility for future virtual screening studies. 

 
The ultimate goal of this study was to determine which of the docking and scoring 

combinations evaluated would be expected to yield the best results in terms of 
enrichment when used against the pterin binding site of DHPS in a large scale, virtual 
screening study.  We noted the excellent performance of the native scoring functions 
when used with each of their respective docking programs in our enrichment studies.  
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We also noted the poor performance of the Cscore scoring functions when used to 
rescore docking output, and explained this by our inability to optimize the poses with 
respect to the scoring functions themselves.  While this may explain the poor 
performance of G-Score, D-Score, and ChemScore, it does not explain the good to 
excellent performance of F-Score and PMF-Score.  We believe that the nature of the 
pterin binding site may in part explain this observed phenomenon.  Ligand binding into 
the pterin binding site not only involves van der Waals packing interactions within the 
tight pocket but also polar hydrogen bonding and ionic interactions.154  Additionally, as 
can be seen from Figure 3.4, there is a clear preference for planar, aromatic compounds 
that can accommodate π-stacking with the side chain of Arg254.  Our results are 
consistent with those of Bissantz and co-workers who found that FlexX scores and PMF 
scores performed better against polar active sites, while DOCK scores were more 
reliable against non-polar active sites.196  There is also an explicit aromatic stacking term 
used in F-Score, unique to this scoring function, which may have also contributed to its 
good performance. 

3.5 Summary 

In order to select the best performing docking/scoring combination for virtual 
screening studies against the DHPS pterin binding site, we employed several validation 
methods.  Pose selection studies using a co-crystal structure with a known pterin-site 
inhibitor bound were useful in identifying docking/scoring combinations that performed 
poorly but were less helpful in selecting a top performing combination.  Similarly, the AU-
ROC values were also less helpful at selecting a specific top-performing docking/scoring 
combination, but clearly identified poorly performing combinations.  However, 
enrichment calculations at 1 and 2% percent of the decoy set screened proved very 
useful in identifying two top performing docking/scoring combinations, Glide with Glide 
Score and Surflex with Surflex Score.  Finally, we have developed a new metric that can 
be used as a validation method that we term SSLR.  The SSLR statistic not only takes 
into account early detection of active compounds from decoy sets, but also rewards for 
correctly ordering the active compounds by their known inhibitory constants.  We found 
that the results of the SSLR tests closely matched the AU-ROC results and in several 
cases were able to help us distinguish between docking/scoring combinations for which 
there was not a statistically significant difference using the latter method. 

 
We investigated three separate decoy sets and found a dependence on the 

decoy set used when calculating enrichment at 1% and 2%, with the ZINC decoy set 
yielding the highest enrichment values.  This dependence was not seen when comparing 
AU-ROC’s from ROC plots, which were generally comparable across validation sets.  
Our investigations also showed that relaxation of the poses prior to rescoring with the 
Cscore functions using the relaxation function of the Cscore module implemented in 
Sybyl 7.3 did not overall improve enrichment and in some cases was actually 
detrimental.  We believe this is due to the fact that the Cscore relaxation function does 
not use the scoring function to minimize the poses, but instead uses a different force 
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field.  No improvement over the best results seen with single scoring functions was 
observed when applying consensus scoring, with either the relaxed or non-relaxed 
poses.   Again, we postulate that this is due to the fact that the Consensus scoring 
functions were not optimized with respect to each function prior to scoring. 

 
We demonstrate considerable variability when using these various validation 

methods and identify clear winners.  Indeed, without these analyses, it would be virtually 
impossible to successfully use virtual screening in our studies.  Based upon the results 
from the enrichment studies, AU-ROC and SSLR calculations, we found that, of the 
docking programs and scoring functions we evaluated, the most appropriate combination 
for use in high-throughput virtual screening against DHPS would be Glide with the native 
Glide Score function or Surflex with the native Surflex Score function. 
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CHAPTER 4. HIGH-THROUGHPUT VIRTUAL SCREENING 
AGAINST DHPS 

4.1 Introduction 

The work presented in this chapter will complete my discussion of the DHPS 
virtual screening project that began in Chapter 2 and continued in Chapter 3.  Chapter 2 
discussed the crystal structure of B. anthracis DHPS and the molecular simulation 
studies that were performed to investigate the structure and function of the flexible loop 
regions surrounding the DHPS active site as well as to develop a complete screening 
structure for high-throughput virtual screening studies.  In Chapter 3, I presented the 
results of a large-scale, validation study that was performed to select the best docking 
and scoring combination for use in high-throughput docking studies against the pterin 
binding site of DHPS.  This chapter will introduce the methods that were utilized to 
screen several million compounds against the pterin site and the results of those 
investigations. 

4.1.1 The DHPS Pterin Binding Site 

We have solved several crystal structures of the B. anthracis DHPS enzyme with 
both substrate and product analogs as well as an inhibitor bound.154  These structures 
have shown that the active site can be separated into sub-sites for the binding of the 
pterin substrate and the pABA substrate, as shown in Figure 4.1.  The sulfonamide 
agents, as previously mentioned, bind to the pABA sub-site and inhibit product formation 
or combine with the pterin substrate to form “dead-end” products.  Mutations that confer 
sulfonamide resistance have been mapped to the DHPS enzyme and fall near the pABA 
binding site, as shown in Figure 4.2.  Theoretically, agents that inhibit the DHPS enzyme 
by binding to the pterin sub-site would be able to bypass the resistance mutations that 
have rendered the sulfonamide agents less useful for the treatment of infection.  Table 
4.1 lists the key binding residues in the pterin site and their corresponding residues in 
several common pathogenic bacterial organisms.  It can be seen that that there is a high 
degree of conservation among the key binding residues between these different species.  
This implies that inhibitors of the pterin binding site of DHPS may have low species 
specificity and could result in antibacterial agents with a broad spectrum of activity 
against many Gram positive and Gram negative bacterial species. 

4.1.2 Virtual Screening against DHPS 

As discussed in Chapter 1, virtual screening has been shown to be 
complementary to high-throughput screening as a method to identify lead compounds in 
a drug design project.11  Structure-based virtual screening involves the use of a 3D 
structure of the drug target, usually by X-ray crystallography or NMR studies, and  
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Figure 4.1. DHPS with Pteroate Product Analog Shown Bound 

DHPS with pABA and Pterin binding sites indicated using a pteroate product analog.  A. 
pABA binding site falls near the solvent exposed surface, enclosed by flexible loop 
regions.  B. Pterin binding site deep within enzyme in a highly conserved pocket. 

B 

A 
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Figure 4.2. The DHPS/Pterin-SMX Structure with Sulfonamide Resistance 
Conferring Mutation Sites Indicated 

Residues that confer resistance to sulfonamide antibiotics in several species (see 
discussion in Chapter 2) have been mapped to the B. anthracis DHPS structure and are 
shown here in red.  The mutation sites predominately fall on flexible loop regions near 
the pABA (sulfonamide) binding pocket.
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Table 4.1. DHPS Pterin Binding Site Residues 

 
B. anthracis 
 

 
Interaction Type 
 

E. coli 
 

S. aureus 
 

M. tuberculosis 
 

S. pneumoniae 
 

P. aeruginosa 
 

Thr67a n/a Thr62 Thr51 Ser53 Thr57 Ser49 
Arg68a n/a Arg63 Arg52 Arg54 Arg58 His50 
Asp101 vDw? no direct Asp96 Asp84 Asp86 Asp91 Asp82 
Asn120 H-Acceptor Asn115 Asn103 Asn105 Asn110 Asn101 
Ile122 vDw Ile117 Gln105 Val107 Ile112 Ile103 
Ile143 vDw Cys137 Val126 Val128 Val133 Val123 
Met145 Pi Electronic Met139 Met128 Met130 Met135 Met125 
Asp184 H-Acceptor Asp185 Asp167 Asp177 Asp201 Asp173 
Phe189 Pi Electronic Phe190 Phe172 Phe182 Phe206 Phe178 
Leu214 vDw Leu215 Leu197 Leu207 Phe231 Leu206 
Gly216 no direct Gly217 Ala199 Gly209 Gly233 Ser208 
Lys220 H-donor Lys221 Lys203 Lys213 Lys237 Lys212 
Arg254 Pi Electronic Arg255 Arg239 Arg253 Arg282 Arg246 

 

a.Residues which fall on mobile loop elements and have been modeled in to place.  Their position is uncertain or unknown in several 
species. 
 
Residues differing from B. anthracis target are colored in red.
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molecular docking experiments in which corporate or commercial libraries are docked 
and scored in the target’s active site to identify compounds with binding affinity.  
Because commercial libraries of screening compounds can be quite large, on the order 
of several million compounds for the larger libraries, the computational expense of 
docking the entire library can be significant, even with the most efficient docking 
programs.   For this reason, often specific constraints are applied to screening libraries 
prior to docking which may include 1D physicochemical property filters like the 
commonly used “Rule of Five” proposed by Lipinski and co-workers, which describes 
filters for oral, drug-like compounds.23 Another type of constraint that can be applied to 
limit the size of the screening library to be docked is the pharmacophore constraint.  This 
requires specific knowledge of key binding interactions that should be conserved for 
successful inhibitor binding, usually obtained from co-crystal structures with ligand or 
inhibitor bound.  Using this method, screening libraries can be filtered to only include 
compounds with specific numbers and locations of key binding elements such as 
hydrogen bond donors or acceptors, aromatic rings, lipophilic groups, etc.  Finally, 
fragment constraints can be applied using the “Rule of Three”, or a variation thereof, 
which filters for smaller, more fragment-like compounds.130 
 

The advantages of screening fragments over drug-like compounds were 
discussed in Chapter 1; most notable is the likelihood that the lead optimization process 
will result in a drug-like compound which has a greater chance of having good oral 
bioavailability and favorable ADME properties.  Additionally, a much smaller number of 
compounds are generally needed for successful fragment-based screening, usually on 
the order of a hundred to a few thousand.  This is because compounds of lower 
complexity have a greater chance of matching the target receptor site.  Fragment-based 
screening is not without its disadvantages.  Because of the lower molecular weight and 
complexity of the fragment compounds, they are expected to be less potent than a drug-
like compound. This means that specialized screening methods need to be employed to 
identify hit compounds.  Several methods have been used with success, including high 
concentration screening133 (up to mM concentration), X-ray crystallography or NMR 
screening,135 affinity detection by mass spectrometry,136 and surface plasmon 
resonance,137 and ITC.138  It should be noted that although the fragment hits will show a 
much lower potency, often high micromolar to low millimolar, in terms of binding 
efficiency (binding affinity normalized by molecular weight or heavy atom count), they 
are often on par with or exceed the efficiency of drug like compounds.139 

4.1.3 Research Goals and Design 

Utilizing an X-ray crystal structure from B. anthracis DHPS with an inhibitor 
bound into the pterin site, we performed several large-scale, high-throughput virtual 
screens using the docking methods validated in Chapter 3.  The virtual screening 
followed two strategies that we implemented in two successive rounds of high-
throughput docking.  In the first round, a pharmacophore filter based upon the key pterin 
site binding elements was applied to compounds from the ZINC databases.220  
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Compounds which passed the filter and a molecular weight cut-off were subsequently 
docked into the DHPS pterin site using our validated docking method, as described 
below.  In the second round, we forewent the pharmacophore filter and applied a 
molecular weight and rotatable bond constraint to a subset of the commercial libraries 
used in the first round.  The compounds passing this constraint were then docked into 
the pterin site using the validated docking method.  

 
The pharmacophore filter was removed from the second round of docking for 

several reasons.  First, we hoped that by removing the pharmacophore pre-docking step 
we could identify compounds that were unlike the pterin substrate in appearance and 
physical property.  The goal was to discover novel scaffolds with improved solubility that 
could be taken into subsequent lead optimization trials.  Second, removing the 
pharmacophore filter provided us with an opportunity to investigate the use of 
pharmacophore pre-processing of screening libraries versus simple high-throughput 
docking, in terms of hit rates, quality of hits, and computational expense.  Finally, the 
second round of docking allowed us to compare the two top performing docking 
programs from our validation study (presented in Chapter 3) in actual screening studies 
against the target enzyme. 

 
Hit compounds from both rounds of virtual screening were selected for testing in 

our enzyme assay.  Fragment hits which displayed greater than 30% inhibition of DHPS 
activity in our assay were selected for investigation in crystallography trials.  The results 
of the two rounds of virtual screening with hit compound inhibitory activities are 
presented herein. 

4.2 Computational and Experimental Methods 

4.2.1 The DHPS Screening Structure 

A crystal structure of the B. anthracis DHPS enzyme with an inhibitor known to 
bind the pterin site, AMPPD (Figure 4.3), has been solved and was used for all the 
molecular docking performed in this study.   Flexible loops 1 and 2 are highly mobile 
elements.  It is believed that the loops close over the active site after PtPP binding, 
forming the pABA binding pocket and facilitating enzymatic catalysis.153  As can be seen 
from Figure 4.2, the majority of sulfonamide resistance mutation sites fall on loops 1 or 
2.  Although visible in our crystal structure, the position of loop 1 is believed to be a 
crystallization artefact due to contact with a neighbouring monomer, rather than 
occupying a functional position (Figure 4.4, left).  The positions of several residues, 66-
74, in loop 2 are disordered and not visible in this crystal structure.  The missing or 
inaccurately positioned residues from loops 1 and 2 were investigated by homology 
modelling and extensive molecular dynamics simulations as discussed in Chapter 2.  
The initial positions for loops 1 and 2 for these docking studies were taken from the 
average structure obtained in our MD simulation series 2-17, which was performed using  
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Figure 4.3. AMPPD Structure 
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Figure 4.4. B. anthracis DHPS Before and After Flexible Loop Placement 

B. anthracis DHPS Structure is shown before and after preparation for docking.  The positions of mobile loops 1 and 2 were 
homology modeled from the M. tuberculosis and E. coli crystal structures and minimized by molecular dynamics and energy 
minimization methods, as discussed in Chapter 2 methods section.
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our crystal structure with the most residues from loop 2 visible to date.   Loops 1 and 2 
fall near the pABA binding pocket during catalysis and are not believed to play a large 
role in pterin substrate binding.  To prepare the enzyme for docking, hydrogens were 
added and AMBER FF99 charges were calculated for the protein.  A water molecule 
located near the pterin binding pocket is conserved in all the DHPS structures published 
thus far is believed to be structurally required.  Charges were loaded to the water and it 
was left in the active site for all docking runs performed.  Hydrogen positions were 
refined by performing a 1000 iteration minimization with heavy atoms constrained using 
the Powell method with initial Simplex optimization.221  Figure 4.4 shows the docking 
structure before and after placement of the flexible loops. 

4.2.2 The Docking Protocol 

The docking validation study reported in Chapter 3 concluded that for high-
throughput docking studies involving DHPS, Surflex-Dock and Glide-Dock perform 
exceptionally well.  In this study, 2 rounds of high-throughput docking were performed, 
one using each docking function.  The first round involved docking of the ZINC version 6 
(2006) databases after pre-filtering with molecular weight and pharmacophore 
constraints using the UNITY program available in Sybyl 7.3.  The ZINC databases 
contain over 4.6 million compounds, and include multiple tautomers and protonation 
states for the screening compounds.  In order to filter for fragment-like compounds and 
decrease the number of compounds requiring docking to a more manageable number, 
we used a molecular weight filter of 350 Daltons for the first round of screening and also 
employed pharmacophore filters as described below.  Compounds meeting the 
pharmacophore criteria were then docked and scored in the DHPS pterin binding site 
with the Surflex docking tool using the same docking methods described below.  The top 
2% of the Surflex-Score ranked compounds were selected for testing in the DHPS 
enzyme assay. 
 

Round 2 of the high-throughput virtual screening forewent the pharmacophore 
filters in an attempt to identify scaffold compounds that were not “pterin-like”.  Several 
commercial vendors were identified based upon the ease of acquisition of their 
compounds (from Round 1) as well as the availability of their screening sets in an easily 
obtainable format for screening.  The compound screening sets were obtained, filtered 
by modified “Rule of Three” criteria, and docked using the Glide-Dock program of 
Schrodinger, Inc.  The highest scoring compounds were selected by score and diversity 
for enzyme assay and crystallography using the methods described below. 

4.2.3 UNITY Database Preparation 

The screening compounds used in Round 1 were downloaded in .sdf format from 
the vendors located in the ZINC version 6 libraries.220  The libraries contained over 4.6 
million compounds including protonation variants and tautomers for the medium pH 
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range of 5.75 to 8.25 in 26 different vendor sets.  Additionally, these libraries have been 
pre-filtered to remove reactive and cytotoxic compounds as discussed in Chapter 1 (the 
ZINC database filtering rules can be found in Appendix D).  The .sdf files were converted 
to UNITY databases for pharmacophore screening using the UNITY program available in 
the Sybyl 7.3 molecular modeling suite of Tripos, Inc.222,223  During preparation, 2D and 
Macro fingerprints were created using Unity’s default settings.  The Concord program 
was used to generate 3D coordinates, when necessary.224  Default values were 
accepted for all other UNITY database preparation settings. 

4.2.4 Pharmacophore Filtering 

The pharmacophore filters utilized in the first round of virtual screening are 
shown in Figure 4.5.  They were created and applied to the ZINC screening sets using 
the UNITY program.  A surface volume constraint (Figure 4.5, top) was created using all 
pterin site residues falling within 8 Å of the AMPPD ligand with a VdW tolerance of 1 Å.  
Macros were created for 1 donor and 4 acceptor positions based upon the H-bonding  
patterns seen with the AMPPD ligand as well as the pterin substrate (Figure 4.5, 
bottom).  A spatial tolerance of 0.3 Å was used for each macro and 2 partial match 
constraints were applied to loosen the filter and remove false carboxylate and ester hits.   

 
The UNITY databases created from the ZINC screening libraries were screened 

against this pharmacophore model using a Flex search with modified “Rule of Three” 
search options specified.  The maximum molecular weight was 350 Daltons and the 
maximum number of rotatable bonds was five.  Flex ring search option was also 
enabled.  All other settings retained their default values. 

4.2.5 Docking Library Preparation 

For the first round of virtual screening, hitlists from the pharmacophore filtering 
stage were merged to eliminate duplicate compounds and then the converted to a multi- 
mol2 file for docking.  Charges were loaded to the compounds using the Gasteiger-
Huckel method.105  The compounds were docked using the Surflex docking function and 
scored with the Surflex scoring function as described below.65  The experimental docking 
methods for both Surflex and Glide docking (virtual screening round 2) were the same as 
used in our validation study discussed in Chapter 3. 

 
Compounds used in the second round of virtual screening were obtained directly 

from the chemical suppliers as .sdf files of their most updated collections, rather than  
downloaded as sets from the ZINC site.  The following chemical suppliers were used 
due to the ease of obtaining compounds, reliability (in terms of compound purity), or 
ease in obtaining their screening library in electronic format:  ASDI, ChemBridge, 
ChemDiv, InterBioscreen, Key Organics, Life Chemicals, MayBridge Ro3 screening set, 
Maybridge complete set, Nanosyn, Peakdale, Pharmeks, Ryan Scientific, Sigma Aldrich,  



115 
 

 

 

Figure 4.5. UNITY Pharmacophore Filters Applied to DHPS 

Top:  Active site surface  
Bottom: Hydrogen Bond donor and acceptor macro filters. 
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Specs, SynChem, Synthonix, and TimTec.  The .sdf files were converted to .mae files for 
Glide docking using the LigPrep program of Schrodinger, Inc.  Fragment filters included 
rotatable bond count of 5 and molecular weight of 300 Daltons.  Ionization states were 
built using Epik for a target pH range of 7.2 to 7.6.  The desalter function was employed 
to remove waters and counter ions and tautomers were generated.  Stereoisomerism 
was retained if specified and varied when not specified.  Low energy ring conformations 
were obtained, hydrogens added and 3D conformations generated using the OPLS 2005 
force field. 

4.2.6 Docking, Scoring, and Processing 

Surflex docking in the first round utilized the multi-mol2 files generated as 
described above and a protomol generated using a threshold of 0.50 and bloat of zero 
(default values).  These settings are the same as those used in the docking validation 
study discussed in Chapter 3.  An active site water (Figure 4.4, right) was retained for all 
docking runs.  The ring flexibility function was enabled; all other docking settings 
retained their default values.  Compounds docked with Surflex were scored with the 
native Surflex scoring function; the Cscore option was disabled.  The top 2% of the 
Surflex scored compounds were selected for procurement and testing in the enzyme 
assay described below. 

 
Glide docking of the fragment compounds in the second round of virtual 

screening utilized the .mae files generated for each supplier as described above.  The 
Glide receptor grid was generated using the B. anthracis DHPS structure described 
above and an active site defined by an 8 angstrom box around the AMPPD ligand.  
Default van der Waals radius scaling settings were employed for generation of the 
receptor grid.  No docking constraints were defined.  Compounds were docked using the 
standard precision setting with the flexible docking option enabled.  All other Glide 
docking settings used default values.  These settings are the same as those utilized 
during the validation of this docking method against the DHPS target.  The top 1% of 
docked compounds from each supplier were selected by Glide score and merged into a 
single file, resulting in a set of 2845 compounds.  Because the assay employed in this 
study is not a high-throughput assay (see assay methods below), it was not feasible to 
test all 2845 compounds in the assay within a reasonable amount of time.  Therefore a 
diversity filter was applied to the high-scoring compounds using the Selector program 
available in the Sybyl 7.3 molecular modeling suite.  The compounds were saved as a 
multi-mol2 file and imported as a Sybyl Molecular Spreadsheet.  The diversity metrics 
employed were 2D fingerprints and Atom Pairs with equal weighting.  The hierarchical 
clustering method was used to generate 54 clusters.  The highest scoring compound in 
each cluster was then selected for testing in the enzyme assay. 
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4.3 High-Throughput Virtual Screening: Results and Discussion 

4.3.1 Pharmacophore-Based Virtual Screen 

5,093 compounds from the ZINC screening libraries matched the pharmacophore 
requirements of the first round of virtual screening.  When the UNITY hitlists were 
merged, the total number of unique compounds was 3104, indicating a large degree of 
redundancy in the ZINC databases.  All 3104 compounds were successfully docked and 
scored by the Surflex docking tool and the top scoring  2%, 62 compounds, were 
selected for procurement and testing.  Of this number, 45 compounds have been 
obtained and tested, the remaining 17 compounds were no longer available from any 
supplier and have been slated for synthesis and testing in future studies.  The 
compounds were tested at 500 μM concentration (250 μM if very poorly soluble) and a 
percentage inhibition was obtained.  Compounds showing greater than 30% inhibition 
were taken into crystallography trials.  Although this level of activity is slight when 
considering a standard high-throughput screen, it is an acceptable standard when 
dealing with fragment-like compounds, as was the case in these studies.  As discussed 
in Chapter 1, with fragments it is more appropriate to consider binding efficiency rather 
than absolute binding affinity when determining which compounds to advance to further 
studies. 

 
Twelve compounds met the activity requirement for further investigation and are 

shown in Figure 4.6.  This corresponds to a hit rate of 26%, which is above average for a 
study of this nature.  The addition of a pharmacophore filter prior to docking is most likely 
responsible for the increased hit rate over standard high-throughput virtual screening 
studies.    All compounds shown in Figure 4.6 have been advanced to crystallography 
trials, the results of which are pending.  It is noted that the hit compounds from the first 
round of virtual screening bear a close resemblance to the pterin substrate.  Again, this 
can almost certainly be attributed to the pharmacophore filter employed prior to 
molecular docking.  Figure 4.7 shows one of the pharmacophore hits docked into the 
pterin binding site by Surflex.  The key pterin binding interactions are closely matched by 
the compound shown. 

4.3.2 Fragment-Based Virtual Screen 

Unfortunately, the hit compounds from the first round of virtual screening, most 
likely due to their planar structure and aromatic stacking ability, are poorly soluble; 
making testing in enzyme assay and crystallography studies difficult.  The low solubility 
of the hit compounds from round 1 was also felt to be a poor predictor for whole-cell 
biological activity and in vivo activity (studies not yet performed).   Additionally, the first 
round of virtual screening did not yield the novel scaffolds for pterin site binding agents 
that we had hoped to find, due to the high degree of similarity between these hit 
compounds and the pterin substrate.  For this reason, a second round of virtual  
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Figure 4.6. Hits from Pharmacophore-Based Virtual Screening with Enzyme 
Activity Shown 
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Figure 4.7. Pharmacophore Hit Shown Docked into DHPS Pterin Site 
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screening was performed, with tighter fragment constraints and no pharmacophore 
constraints. 
 

Due to computational limitations, the complete ZINC screening set could not 
feasibly be docked within a reasonable time frame.  Therefore, for this round of virtual 
screening, a subset of specific vendors was selected and their screening libraries were 
obtained and docked (see methods above).  The fragment constraints were tightened to 
a maximum molecular weight of 300 and no more than 5 rotatable bonds.  In an attempt 
to improve the successful acquisition rate, the most updated screening libraries from 
each vendor used were obtained directly from the vendors and built as described in the 
methods section.  The total number of compounds in the fragment sets docked was over 
300,000.  Using the Glide docking program, we successfully docked nearly 285,000 
fragment compounds into the DHPS pterin site.  A merged hit list of the top 1% of scored 
compounds from each supplier contained 2845 fragment compounds.  Diversity filtering 
using the methods described above resulted in 54 clusters.  The highest scoring 
compound was selected from each cluster for testing in the enzyme assay. 

 
  31 of the 54 fragment compounds from the second round of virtual screening 
have been successfully procured and tested to date.  An additional 9 compounds are 
available from the suppliers, but at significant expense and therefore have not yet been 
ordered and tested.  8 compounds were rejected for ordering and testing due to close 
similarity to compounds already tested, and 1 fragment compound was a duplicate hit 
from the first round of virtual screening.  5 compounds were no longer available from any 
supplier and have been slated for in-house synthesis and testing.  This corresponds to a 
10% acquisition failure rate for the second round of virtual screening, compared with the 
27% failure rate (15 or 62 compounds) for the first round.  This significant improvement 
in successful acquisition of screening compounds is probably due to our use of the most 
current screening libraries from each vendor as well as only screening libraries from 
vendors with a proven track record from the first round of virtual screening. 

 
Of the 31 fragment compounds tested for activity in the second round of virtual 

screening, 3 compounds showed activity above the cut-off of 30% inhibition at 500μM 
and have been advanced into crystallography trials.  This corresponds to a 10% hit rate, 
which is closer to the hit rates usually reported in high-throughput virtual screening 
studies.  The compounds with measured activity are shown in Figure 4.8.  These 
compounds bear much less resemblance to the pterin substrate and also have improved 
solubility over the hit compounds from the first round of virtual screening. 

4.3.3 Comparison of Screening Methods and Results 

In this study we compared two separate methods for the virtual screening of a 
large number of compounds, on the order of several million, against a target.  To 
compare the two methods we looked at several factors including: ease of use, 
computational expense and time requirements, and quality and character of the hit  
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Figure 4.8. Hits from Fragment-Based Virtual Screening with Enzyme Activity 

 
compounds.  The obvious advantage of the virtual screening method that employed 
pharmacophore filtering (round 1) is that a much larger number of compounds, in this 
case nearly 5 million, could be screened within a reasonable amount of time using the 
computational resources available to our lab (4 processor batching capabilities on a 
Linux workstation running RHEL v4).  A reasonable amount of time, in our case, was 2 
to 4 weeks.  This does not include the several weeks it took to create the Unity 
databases prior to the pharmacophore filtering step.  Another advantage is that the hit 
rate was greater with the pharmacophore filtering method over the full fragment library 
docking method (26% versus 10%).  The disadvantage, as mentioned above, to the 
pharmacophore filtering method is that, due to the nature of the pharmacophore filter, 
the hit compounds were all very similar to the pterin substrate.  This similarity, 
unfortunately, included poor solubility.  Another obvious ramification of this similarity is in 
terms of intellectual space and patentability. 

 
In contrast to the pharmacophore filtering method, the fragment method, which 

involved only the application of a molecular weight and rotatable bond filter, yielded hit 
compounds that were significantly different that the pterin substrate with improved  
solubility.  However, the elimination of the pharmacophore filtering step made this 
method more rigorous as we were required to explicitly dock and score all the 
compounds passing the fragment filter.  Even by eliminating unreliable overseas vendors 
and employing a stricter fragment filter (300 Daltons versus 350 Daltons), it was still 
necessary to dock nearly 300,000 compounds, nearly 2 orders of magnitude greater 
than the number of compounds we explicitly docked in the pharmacophore filtering 
method.  Obviously, this method requires a much longer period of time to complete, in 
our case nearly 8 weeks.  As mentioned above, we also observed a significantly lower 
hit rate with this method.  Finally, after successfully docking the fragments in round 2, 
the number of top scoring hits, even when selecting only 1% as opposed to 2% selected 
in round 1, was unmanageable in terms of our assay abilities as well as our acquisition 
budget, making it necessary to employ a further diversity filtering post-processing step. 
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4.3.4 Structure-Activity Relationship Studies 

An analysis of the hit compounds from the first round of virtual screening has 
allowed us to develop a preliminary structure-activity relationship.  The pharmacophore 
map shown in Figure 4.9 shows the observations that have been made based upon the 
activity of the pterin-like hits from the pharmacophore based search. 

4.4 Summary 

The results of two high-throughput fragment-based virtual screens against the 
bacterial target dihydropteroate synthase (DHPS) from B. anthracis have been reported.  
Molecular docking and scoring was performed in order to identify novel compounds and 
potential scaffolds targeting the pterin binding sub-site of DHPS.  Pharmacophore 
filtering prior to docking was employed in the first round of virtual screening and 
compared to hit results from the second round which did not involve pharmacophore 
filtering.  Although pre-filtering using pharmacophore constraints allowed the screening 
of compounds on the order of several million, the hit results were all limited to pterin-like 
compounds with limited solubility and little room for expansion into a novel scaffold area. 

 
The second round of fragment-based virtual screening was much more 

computationally intensive; having forewent the pharmacophore filter and limited the 
number of compounds that were able to be screened to several hundred thousand.  
However, the hit compounds were all unique when compared to the pterin scaffold and 
displayed much greater solubility.  Hit rates from the first round were much better than 
the second round (27% versus 10%), due to the pharmacophore match constraint 
applied in the first round.  We also noted a lower successful compound acquisition rate 
for the ZINC compounds used in the first round of virtual screening when compared to 
building screening sets obtained directly from the supplier, as was done in the second 
round of virtual screening.  Ultimately, 15 compounds met our activity cut-off from the 
enzyme assay employed in this study and were taken into crystallography trials. 
 

A preliminary structure-activity analysis of the compounds from Round 1 of the 
virtual screening has been presented.   Utilizing the activity information gained from the 
first round of virtual screening and the potentially novel scaffolds identified in the second 
round, we hope to develop a series of unique, DHPS pterin-site binding agents with 
potent activity against a broad range of gram-positive and gram-negative organisms. 
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Figure 4.9. Pharmacophore Map Based upon DHPS Screening Hit Activity
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CHAPTER 5. LIGAND-BASED DESIGN OF NOVEL 
ANTITUBERCULAR AGENTS1 

5.1 Introduction 

5.1.1 The Tuberculosis Bacilli as a Target for Antimicrobial Drug Design 

There is an urgent need today for new anti-tuberculosis agents with novel 
mechanisms of action.  The global incidence of tuberculosis continues to rise, with a 
third of the world’s population currently infected, yet there have been no new classes of 
antimycobacterial agents approved for use in forty years.225  The efficacy of the currently 
available agents used in standard Tuberculosis (TB) treatment regimens is severely 
limited by several factors; including long treatment regimens, multiple drug treatment 
regimens, drug interactions, and drug resistance.  The emergence of resistance, 
particularly Multi-Drug Resistant Tuberculosis (MDR-TB) and Extensively Drug Resistant 
Tuberculosis (XDR-TB), is particularly concerning.  A recent report released by the 
World Health Organization estimated that the incidence of TB drug resistance 
(resistance to one drug in standard TB regimen) was as high as 57% in some countries, 
while multi-drug resistance was 14%.226  Novel agents are needed that can bypass 
resistance mechanisms, that can treat the latent phase of infection shortening the 
duration of tuberculosis treatment, and that are compatible with HIV co-therapy by 
possessing low drug interaction rates.227,228 

5.1.2 Nitrofuran Antituberculosis Agents 

Toward these goals, our laboratory has been developing a series of nitrofuranyl 
compounds with potent whole-cell activity against M. tuberculosis.229-235  Figure 5.1 
shows the three major scaffolds in the nitrofuran series that have been examined so far. 
The series originated from a screen for TB cell wall inhibitors that produced a nitrofuran 
hit with a respectable MIC activity and low molecular weight.229  Subsequent lead 
optimization efforts led to compounds with activity against the tuberculosis bacilli falling 
into the nanomolar range.  Importantly, these compounds exhibit activity against both 
actively growing and latent bacilli, which is believed to be a beneficial attribute of 
potential new anti-tuberculosis agents.234  Although the in vitro activity looks very 
promising for this nitrofuran series, poor solubility and metabolic instability have 
necessitated the development of further generations of nitrofuran agents that can 
overcome these issues.  Ligand-based drug design techniques were employed to guide 
the synthesis of future generations of nitrofuran compounds, as described herein. 

                                                 
1 Adapted by permission. Hevener, K. E.; Ball, D. M.; Buolamwini, J. K.; Lee, R. E. 
Quantitative structure-activity relationship studies on nitrofuranyl anti-tubercular agents. 
Bioorg Med Chem 2008, 16, 8042-53. 
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Figure 5.1. Major Scaffolds of the Nitrofuran Compounds 

5.1.3 Nitrofuran QSAR Studies 

Quantitative Structure-Activity Relationship (QSAR) techniques are methods 
used to correlate physicochemical descriptors from a set of related compounds to their 
known molecular activity or molecular property values.30  QSAR models are a useful 
method of ligand-based drug design when the molecular target for the compounds being 
investigated is either unknown or has not been structurally resolved.  The descriptors 
used to develop QSAR models can range from molecular descriptors for lipophilicity 
(cLogP and LogD)31,32, steric bulk (Molar Refractivity, volume)33, and electrostatics (polar 
surface area, Coulombic charges, dipole moments)34 to 3-dimensional descriptors that 
involve alignment of the compounds, and calculating steric and electrostatic values using 
charged probe atoms at grid lattice points (CoMFA)35 or 3-D similarity indices 
(CoMSIA).36 Several quantitative structure-activity relationship models were developed 
in this study. Different molecular alignment rules were investigated in order to obtain 
models with high predictivity.  Compounds with ionizable functional groups were 
investigated in their charged and uncharged states. Descriptors including cLogP, LogD, 
molar refractivity (CMR), polar surface area (PSA), and 3D CoMFA and CoMSIA 
variables were investigated for their ability to predict and correctly rank whole cell MIC 
activity using the method of Partial Least Squares, PLS.41 

 
Since the activity data utilized in this 3D-QSAR study is whole cell activity 

expressed as the Minimum Inhibitory Concentration (MIC, see experimental section), it is 
assumed that the activity reflects several processes in addition to compound binding to 
the biomolecular target.  Compound solubility, mycobacterial cell entry (i.e. passive 
diffusion or active transport), and stability to TB metabolism may all contribute to the 
whole cell activity.  Additionally, these nitro-aromatic compounds are pro-drugs and must 
be metabolically activated by TB nitro reductase enzymes as already demonstrated for 
nitroimidazole agents PA824 and OPC67683 that are currently in clinical 
development.236-238  The activated form is then believed to interact with its ultimate 
molecular target.  Because of this multistep process, the development of reliable QSAR 
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models using whole cell activity is considered to be a difficult undertaking.  However, 
several groups have reported success in the development of 3D-QSAR models using 
whole cell antimicrobial and antitubercular activity recently.239-242  We have attempted to 
account for some of the processes mentioned above by investigating the addition of 
molecular descriptors that may be important factors for cell entry including lipophilicity 
and steric bulk to our 3D-QSAR models and testing the effects of ionized versus neutral 
compounds on the 3D-QSAR model’s validity and predictive power. 

5.2 QSAR Methods 

5.2.1 Training and Test Set Preparation 

Figure 5.2 graphically illustrates the general method followed for the 
development of the QSAR models in this study.  We began with an initial set of 110 
nitrofuran compounds with activity against M. tuberculosis (as determined by carefully 
standardized micro broth dilution MIC determination method, see experimental section).  
A test set of 15 compounds was selected from the remaining compounds for use in 
external validation.  These test set compounds were selected such that their activity and 
physical properties (MW and cLogP) were broadly reflective of the training set 
characteristics (see experimental section).  Tables 5.1 and 5.2 list the training set and 
test set nitrofuran compounds used in this study, respectively, along with their calculated 
molecular descriptors and biological activity.  MIC activity originally determined in μg/mL 
were converted to micromolar values (μM/mL) and then converted to a pMIC value by 
taking Log (1/MIC).  The pMIC values were used as the dependent variable in all PLS 
models subsequently developed. As a general rule, for a reliable 3D-QSAR model the 
spread of activity should cover at least 3 log units and there ideally should be a minimum 
of 15 to 20 compounds in the training set.243  The activity range of the nitrofuran 
compounds ranged from 0.73 to 5.73 pMIC units (see Table 5.1), a full 5 log activity 
distribution, and there were 95 compounds in the training set.  Figure 5.3 shows the 
training set and test set compounds distributed by their lipophilicity (cLogP) and 
molecular weight.  The compounds are colored by activity.  Importantly, it should be 
noted from this preliminary analysis that there is a correlation of increasing activity with 
molecular weight but no correlation with increasing cLogP, which may be expected for 
mycobacterial entry.  We attribute the correlation with increasing molecular weight to the 
non-random nature of the data set, as these compounds result from the systematic 
medicinal chemistry development of the series from a low molecular weight, lower 
potency screening hit to high potency, higher molecular weight optimized compounds. 

 
When designing a 3D-QSAR model using Comparative Molecular Field Analysis 

(CoMFA) or Comparative Molecular Similarity Indices Analysis (CoMSIA) the 
compounds in the training and test sets must share a common alignment, assumed to 
be the active conformation, and have the atomic charges loaded by a reliable method.244  
The compounds used in this study were built using the Sybyl Molecular Modeling  
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Figure 5.2. QSAR Project Flowchart 
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Table 5.1. Physicochemical Properties and Activity of Training Set Compounds 

 
Compound 
  

 
Molecular 
Weight 
 

 
PSAa(A2)

 
cLogPb 

 
LogD7.4

c 
 
CMRb 

 
MIC(μg/mL) pMICd 

 

 

L1 290.314 137.057 1.84 1.50 7.488 3.1 1.9715 
L2 232.192 155.828 1.68 1.95 5.893 0.8 2.4628 
L3 276.220 145.403 2.57 2.77 6.903 0.4 2.8392 
L4 517.454 172.693 5.84 6.19 12.725 0.025 4.3159 
L5 382.342 163.142 4.12 4.20 10.031 0.003 5.1053 
L6 400.306 130.996 3.39 3.33 8.852 0.0008 5.6993 
L7 341.361 152.959 3.43 3.61 9.398 0.00156 5.3401 
L8 252.266 146.082 1.89 1.70 6.451 3.1 1.9105 
L9 236.181 174.535 0.36 0.50 5.571 6.25 1.5774 
L10 257.202 218.788 1.71 1.76 6.371 0.8 2.5072 
L11 276.245 165.292 1.62 1.31 6.974 0.1 3.4413 
L12 280.664 153.319 2.30 2.08 6.849 1.6 2.2441 
L13 306.271 173.676 1.49 1.05 7.591 0.4 2.8840 
L14 306.271 164.455 1.49 1.05 7.591 0.2 3.1851 
L15 336.297 164.287 1.37 0.80 8.208 0.8 2.6236 
L16 286.283 142.587 2.54 2.41 7.571 3.1 1.9654 
L17 317.297 170.828 1.56 1.87 8.093 3.13 2.0059 
L18 330.339 157.250 1.72 1.43 8.772 12.5 1.4220 
L19 406.434 155.828 3.45 3.00 11.284 0.8 2.7059 
L20 405.446 155.828 4.63 4.88 11.379 3.13 2.1124 
L21 272.256 144.663 2.12 2.01 7.107 3.1 1.9436 
L22 330.339 157.180 1.72 1.44 8.772 12.5 1.4220 
L23 406.434 155.828 3.45 3.01 11.284 12.5 1.5121 
L24 405.446 155.828 4.63 4.88 11.379 12.5 1.5110 
L25 393.396 164.787 3.17 3.51 10.609 6.25 1.7989 
L26 234.168 203.256 -0.28 0.02 5.471 6.25 1.5736 
L27 314.336 110.259 2.82 2.70 8.500 0.4 2.8953 
L28 276.245 165.039 1.62 1.31 6.974 1.6 2.2372 
L29 306.271 164.057 1.84 1.02 7.590 1.2 2.4069 
L30 292.244 212.380 1.23 1.02 7.127 0.39 2.8747 
L31 288.255 171.250 1.17 0.94 7.261 9.38 1.4876 
L32 290.228 195.200 1.53 1.24 6.950 0.15 3.2866 
L33 332.308 136.172 2.06 1.59 8.341 0.1 3.5215 
L34 324.309 221.944 0.45 0.34 7.694 0.17 3.2805 
L35 331.323 168.233 1.63 1.48 8.557 0.4 2.9182 
L36 344.365 154.693 1.79 1.00 9.236 0.4 2.9350 
L37 420.461 153.312 3.52 2.56 11.747 0.0125 4.5268 
L38 344.365 154.388 1.79 1.00 9.236 6.25 1.7411 
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Table 5.1 (continued).      
        
 
Compound 
  

 
Molecular 
Weight 
 

 
PSAa(A2)

 
cLogPb 

 
LogD7.4

c 
 
CMRb 

 
MIC(μg/mL) pMICd 

 

 

L39 419.473 153.312 4.70 4.49 11.843 1.56 2.4296 
L40 260.245 155.967 2.03 1.81 6.821 1.6 2.2113 
L41 266.637 155.828 2.24 2.47 6.385 0.8 2.5228 
L42 419.473 153.312 4.7 4.49 11.843 0.8 2.7196 
L43 420.461 153.310 3.52 2.56 11.747 0.05 3.9248 
L44 331.323 172.571 1.35 1.31 8.557 1.56 2.3271 
L45 260.245 146.467 2.07 1.97 6.821 3.1 1.9240 
L46 289.287 153.314 2.03 1.83 7.654 0.4 2.8593 
L47 280.664 153.346 2.30 2.08 6.849 0.2 3.1472 
L48 320.297 166.871 1.77 1.31 8.055 0.4 2.9035 
L49 314.217 153.346 2.67 2.45 6.868 0.05 3.7983 
L50 264.209 153.346 1.90 1.70 6.373 1.56 2.2288 
L51 264.209 153.346 1.90 1.70 6.373 0.8 2.5189 
L52 347.389 181.002 2.35 2.06 9.210 1.56 2.3477 
L53 379.388 222.205 0.45 0.48 9.276 50 0.8801 
L54 330.339 185.480 1.41 -0.23 8.772 0.8 2.6159 
L55 384.429 153.312 2.51 1.08 10.490 0.05 3.8858 
L56 438.452 153.345 3.68 3.17 11.763 0.1 3.6419 
L57 362.356 155.962 1.95 1.55 9.252 1.56 2.3660 
L58 365.379 180.785 2.51 2.20 9.226 1.56 2.3696 
L59 319.292 117.883 2.16 2.13 7.960 0.2 3.2032 
L60 349.314 168.194 1.79 1.62 8.572 1.56 2.3501 
L61 437.463 153.312 4.86 4.63 11.858 0.4 3.0389 
L62 359.333 158.130 1.24 0.62 9.060 1.6 2.1907 
L63 248.192 211.631 1.29 1.64 6.047 0.2 3.2545 
L64 402.401 176.891 1.98 1.90 10.353 0.0062 4.8123 
L65 415.443 183.540 1.79 1.71 11.032 0.2 3.3175 
L66 415.443 175.337 1.62 1.67 11.032 0.8 2.7154 
L67 293.255 239.058 2.56 1.92 6.870 50 0.7698 
L68 267.236 196.771 2.94 2.38 6.293 50 0.7296 
L69 325.382 106.482 3.62 4.25 9.216 25 1.1145 
L70 446.498 119.369 3.73 2.81 12.498 0.0125 4.5529 
L71 388.375 178.977 1.64 1.55 9.889 0.05 3.8903 
L72 430.454 176.288 2.89 2.76 11.280 0.025 4.2360 
L73 430.454 176.353 2.87 2.77 11.280 0.025 4.2360 
L74 414.412 177.426 2.34 2.29 10.791 0.05 3.9185 
L75 444.481 160.475 2.62 2.44 11.744 0.1 3.6479 
L76 311.088 155.835 2.51 2.74 6.670 1.6 2.2888 
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Table 5.1 (continued).      
        
 
Compound 
  

 
Molecular 
Weight 
 

 
PSAa(A2)

 
cLogPb 

 
LogD7.4

c 
 
CMRb 

 
MIC(μg/mL) pMICd 

 

 

L77 338.314 156.451 3.28 3.47 9.022 12.5 1.4324 
L78 389.359 156.162 0.92 0.37 9.670 6.25 1.7945 
L79 431.442 171.924 1.90 1.75 11.069 0.0008 5.7318 
L80 357.380 141.100 2.41 2.57 9.283 6.25 1.7573 
L81 434.488 153.312 3.63 1.66 12.211 0.8 2.7349 
L82 416.428 170.810 2.09 1.95 10.816 0.1 3.6195 
L83 429.470 171.300 1.73 1.71 11.496 0.4 3.0309 
L84 421.449 162.679 2.90 2.23 11.536 0.0062 4.8324 
L85 403.389 183.649 1.36 1.26 10.142 0.05 3.9068 
L86 250.183 155.747 1.84 2.09 5.909 0.8 2.4952 
L87 262.218 164.178 1.55 1.69 6.510 0.8 2.5156 
L88 262.218 168.069 1.55 1.69 6.510 0.4 2.8166 
L89 373.426 146.915 2.57 2.30 9.960 0.4 2.9701 
L90 238.240 145.856 1.56 1.37 5.988 3.1 1.8857 
L91 246.219 114.858 1.91 1.72 6.357 3.125 1.8965 
L92 276.245 126.760 1.79 1.46 6.974 6.25 1.6454 
L93 258.229 115.575 1.89 1.70 6.644 0.8 2.5089 
L94 233.180 179.275 0.34 0.63 5.682 6.25 1.5718 
L95 233.180 179.120 0.34 0.63 5.682 3.125 1.8728 
 
a. Sybyl 8.0, Molecular Spreadsheet calculation, Tripos, Inc.245 
b. ChemBioOffice Ultra 2008, CambridgeSoft, Inc.246 
c. MarvinSketch, 4.1.13, ChemAxon, Inc.247 
d. pMIC calculated as Log(1/MIC), where MIC values have been converted to μM/mL 
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Table 5.2. Physicochemical Properties and Activity of Test Set Compounds 

 
Test 
Set 
 

Molecular 
Weight 
 

PSAa(A2)
 
 

cLogPb 

 

 

LogD7.4
c 

 

 

CMRb 

 

 

MIC(μg/mL) 
 
 

pMICd 

 

 

T1  334.325 153.027 4.09 4.31 9.399 0.025 4.1262 
T2 393.396 169.032 2.50 3.51 10.610 0.4 2.9928 
T3 247.207 169.364 0.83 0.39 6.146 0.8 2.4900 
T4 319.293 218.116 2.75 2.43 7.796 1.6 2.3001 
T5 264.194 200.702 1.05 0.96 6.088 1.6 2.2178 
T6 290.271 168.402 1.90 1.56 7.438 0.8 2.5597 
T7 260.245 140.827 2.07 1.97 6.821 1.6 2.2113 
T8 330.339 228.151 0.98 -1.41 8.772 0.8 2.6172 
T9 347.298 146.305 1.33 1.01 8.455 1.56 2.3476 
T10 279.272 208.089 1.88 1.99 6.894 50 0.7486 
T11 370.402 120.369 2.00 1.24 9.986 0.05 3.8697 
T12 341.381 122.884 2.36 2.28 9.249 6.25 1.7374 
T13 233.180 179.557 1.06 1.33 5.682 3.125 1.8728 
T14 222.158 231.397 0.49 0.97 5.112 6.25 1.5508 
T15 214.132 204.941 0.31 -0.47 4.499 0.4 2.7286 
 
a. Sybyl 8.0, Molecular Spreadsheet calculation, Tripos, Inc.245 
b. ChemBioOffice Ultra 2008, CambridgeSoft, Inc.246 
c. MarvinSketch, 4.1.13, ChemAxon, Inc.247 
d. pMIC calculated as Log(1/MIC), where MIC values have been converted to M/mL.
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Figure 5.3. Nitrofuran Training and Test Set Compounds by Physical Property and Activity
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Package of Tripos, Inc.245 The charges were loaded on all compounds in the training 
andtest sets using the PM3 semi-empirical method contained in the MOPAC suite.248  
Several of the nitrofuran compounds contained ionizable functional groups that would be 
expected to carry a charge at physiological pH.  In order to account for this and to 
investigate the effect of protonating or de-protonating these functional groups on model 
predictivity, two sets of models were built for each alignment rule utilized.  The first set of 
PLS models used all nitrofuran compounds in their neutral state and the cLogP 
molecular descriptor for lipophilicity (when a lipophilicity descriptor was used), the 
second set of PLS models used ionized nitrofuran compounds, as determined by a 
major microspecies calculation (discussed in the experimental section), and LogD as the 
lipophilic descriptor. Because the molecular target of the nitrofuran compounds is 
unknown and the active conformation remains unclear, multiple alignments for these 
compounds were studied in an attempt to generate the optimal PLS model in terms of 
activity prediction.   

Alignment rules were determined by calculating energy minima using the Grid 
Search function of Sybyl and 10 degree increments against the rotatable bonds in our 
most active nitrofuran compounds from each representative scaffold.  The first alignment 
method specified all nitrofuran compounds be aligned in the same orientation: a 
sterically unhindered trans-amide conformation shown in Figure 5.4, A. The second 
alignment method specified that the compounds were aligned to the minimum energy 
conformations of several of the more active nitrofuran compounds.  Due to differences in 
the side chains and steric hindrance factors, the second method actually consisted of 
separate alignment rules for phenyl substituted, benzyl substituted, and hindered tertiary 
amide nitrofurans.  Figure 5.4, B and C show the alignment rules adopted for unhindered 
phenyl and benzyl substituted nitrofurans.  Sterically hindered tertiary amide nitrofurans 
were aligned using the rules shown in Figure 5.4, A, which conform more closely to the 
minimum energy conformation seen with these compounds and is the same rule 
adopted for all compounds in the first alignment method.  We note that the selected 
conformation of our nitrofuran compounds in 5.4, B and C very closely aligns with the 
structure of PA824 determined in a recently solved crystal structure.249 

Global molecular and 3D physicochemical descriptors were calculated for all 
compounds in the training and test set and used to develop the QSAR models (see 
experimental section).  Lipophilicity descriptors included cLogP, LogD, and Polar 
Surface Area (PSA).  Molecular volume and steric bulk were also investigated using 
molar refractivity (CMR) as a molecular descriptor. 3D-QSAR methods utilized were 
CoMFA and CoMSIA.  The performance of the 3D models before and after the addition 
of various combinations of molecular descriptors was investigated. 

5.2.2 QSAR Model Development 

The QSAR models investigated in this study were built using the Molecular 
Spreadsheet tool in the Sybyl 8.0 suite of Tripos, Inc.245  3-dimensional descriptors were 
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Figure 5.4. Nitrofuran Alignment Rules Used for QSAR Studies 
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generated using both CoMFA and CoMSIA methods as described in the experimental  
section below.  The effect of outlier removal, number of components, and incorporation 
of molecular descriptors in the 3D models were investigated for the CoMFA and CoMSIA 
models generated.  The program SAMPLS was used to gauge the optimum number of 
components for each model during model development.250   In order to avoid over- fitting 
the models, a higher component was only accepted and used if it resulted in an increase 
of greater than 10% to the cross-validated r2 (q2) values. Progressive scrambling was 
performed to confirm the optimum number of PLS components and dependent variable 
scrambling was done to check for chance correlation within the models generated.251-253   

 
The best model was obtained using the following methodology: First, models 

were generated for each alignment and ionization rule using both CoMFA and CoMSIA 
fields without the addition of molecular descriptors or the removal of any outlier 
compounds.  Next, the molecular descriptors cLogP, LogD, CMR, and PSA were 
investigated for their ability to improve the best CoMFA and CoMSIA models.  Following 
this, the best performing CoMFA and CoMSIA models at this stage was optimized by the 
successive removal of outlier compounds (see discussion below) and finally by region 
focusing.254 

5.2.3 QSAR Model Validation 

The strength of all the models developed was evaluated by a number of 
validation methods, including internal cross-validation, and external test set predictions.  
The cross validation methods of Leave-One-Out (LOO) and Leave-Group-Out (10 
compound groups) were chosen to generate cross validated r2 (q2) values and Standard 
Errors of Prediction (SEP).  Bootstrapping (10 runs) was utilized to calculate confidence 
intervals for the r2 and Standard Errors of Estimate (SEE).  The equations for q2 and 
standard errors are given below.  Models generated were used to predict activity for the 
test set compounds and generate activity correlated r2 values.  Coefficient of 
determination, r2, values and standard errors were generated for the final models 
developed.  Models were considered questionable if the difference between cross-
validated r2 (q2) and non-validated r2 was > 0.3.255 

 q 1  ∑ Y  Y∑ Y  Y  Equation 5.1

 
where: Ypred = predicted activity, Yactual = experimental activity, and Ymean = the best 
estimate of the mean 
 SEE, SEP  PRESSn c 1 Equation 5.2

 
where: n = number of compounds, c = number of components, and: 
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PRESS  Y  Y  Equation 5.3

5.2.4 Experimental Methods 

Training and Test Set Preparation.  All nitrofuranyl compounds investigated in 
this QSAR study were originally synthesized and tested for activity in our lab.229-231  
Compounds were built using the Sybyl 8.0 molecular modeling package and charges 
were loaded using the PM3 semi-empirical method available in the MOPAC suite. The 
compounds were minimized using the Powell method with an initial Simplex optimization 
and gradient termination of 0.01 kcal/mol (500 maximum iterations).  The global 
molecular descriptors cLogP and CMR were calculated using ChemBioOffice 2008.246  
Polar surface area was calculated using the molecular spreadsheet application in Sybyl 
8.0.245  LogD was calculated for compounds at pH 7.4 using the calculator plugin tool in 
Marvin 4.1.13.247   Ionized compounds were identified by performing a major 
microspecies calculation on all compounds in the training and test set at pH 7.4 using 
the calculator plugin tool of Marvin 4.1.13.247  All compounds were aligned manually as 
discussed above. The 15 test set compounds were chosen from the 110 nitrofuran 
compounds by selecting for diversity using the program, Selector.256  Selector is an 
application available in the Sybyl 8.0 molecular modeling suite.245  Atom pairs and 2D 
fingerprints were used to form 15 diversity clusters by hierarchical clustering.  1 
compound was selected from each cluster, chosen to maximize the spread of activity 
data.   

 
QSAR Model Validation.  SAMPLS was used to initially select the optimum 

number of components used in the PLS models generated250; with the exception noted 
above that a higher component was selected only if it resulted in an increase in q2 values 
of at least 10%.  Group cross-validation used 10 groups in all cases.  Bootstrapped 
results were obtained using 10 bootstrapping runs.  The progressive scrambling stability 
test was performed up to 10 components using 50 scramblings, 10 maximum bins, and 2 
minimum bins.  The critical point was 0.85 and the seed was 12080.   

 
QSAR Model Development.  3-D CoMFA descriptors were generated using c.3 

probe atom with a +1 charge and a grid spaced at 2 Å and extending 4 Å beyond the 
compounds in all directions.  Tripos Standard CoMFA steric and electrostatic fields were 
generated using a distance dependent dielectric, no smoothing, and cutoffs of 30 
kcal/mol for each.   CoMSIA similarity fields were calculated for steric, electrostatic, 
hydrophobic, h-bond donor, and h-bond acceptor using the default attenuation factor of 
0.3.  Partial Least Squares analysis was used to build models correlating descriptors to 
the dependent variable, pMIC.  Optimum number of components was determined by 
SAMPLS, cross validation methods, and progressive scrambling. A column filtering 
value of 0.5 and CoMFA standard scaling was used in all PLS analyses.  Region 
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focusing was performed by applying a discriminant power weighting factor of 0.3 and 
new grid spacing equal to the original. 

 
Antituberculosis Activity Testing.  MIC values were determined using the 

microbroth dilution method and were read by visual inspection.  Two-fold serial dilutions 
of test compound were prepared in 96-well round bottom microtiter plates (Nunc, USA) 
in 100 µL of the 7H9 broth media (Difco Laboratories, MI, USA) supplemented with 10% 
Albumin-Dextrose Complex and 0.05% (v/v) Tween80.  An equivalent volume (100 µL) 
of broth inocula containing approximately 105 CFU/mL of M. tuberculosis H37Rv was 
added to each well to give final concentrations of test compound starting at 200 μg/mL.  
The plates were incubated aerobically at 37°C for 7 days and the MIC was recorded as 
the lowest concentration of drug which inhibited 90% of growth with respect to the no-
drug control. 

5.3. Results and Discussion 

5.3.1 General Validation and Predictivity Results 

Descriptions of the 3D-QSAR models built are given in Table 5.3; the validation 
data and predictive ability are shown in Table 5.4.  PLS models which used CoMFA 
generated 3D descriptors generally outperformed models using CoMSIA 3D descriptors. 
It should be noted that all 5 CoMSIA fields were used in the PLS (steric, electrostatic, 
hydrophobic, h-bond donor, and h-bond acceptor) built in this study.  The rules of 
alignment and ionization had a strong influence on the final performance of the models 
generated.  Models using ionized nitrofuran compounds, Figure 5.5, generally performed 
worse than the neutral compound models, with the exception of model 2 and 10, both of 
which had higher test set r2 and non-validated r2 values, but lower internal validation, q2, 
values.  This may be reflective of the need for neutral compounds to passively diffuse 
into the mycobacterial cell, or possibly the binding of the nitrofuran compounds to their 
biomolecular target in a neutral state.  Models generated using alignment 1, in which all 
nitrofuran compounds adopted the sterically unhindered trans-amide conformation, also 
performed significantly worse than those built using alignment 2, in which compounds 
adopted one of three minimum energy conformations.  Test set activity predictions were 
particularly poor for the alignment 1 QSAR models, and the cross-validation also 
demonstrated that these were much weaker models compared with alignment 2 models.  
In light of this data, the decision was made to advance model 3 (CoMFA, alignment 2, 
neutral compounds) and model 7 (CoMSIA, alignment 2, neutral compounds) into the 
next stage of model development, which involved the investigation of molecular 
descriptors ability to improve the model’s predictivity. 
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Table 5.3. QSAR Model Descriptions 

 
Model 
 

Description 
 

Alignment
 

Ionization 
 

# Components 
 

Outliers 
 

1 CoMFA 1 No 1 0 
2 CoMFA 1 Yes 2 0 
3 CoMFA 2 No 3 0 
4 CoMFA 2 Yes 3 0 
5 CoMSIA 1 No 2 0 
6 CoMSIA 1 Yes 2 0 
7 CoMSIA 2 No 3 0 
8 CoMSIA 2 Yes 2 0 
9 CoMFA, cLogP 2 No 3 0 
10 CoMFA, LogD 2 Yes 4 0 
11 CoMFA, PSA 2 No 3 0 
12 CoMFA, CMR 2 No 3 0 
13 CoMFA, cLogP, CMR 2 No 3 0 
14 CoMFA, cLogP, PSA 2 No 3 0 
15 CoMFA, PSA, CMR 2 No 4 0 
16 CoMFA, cLogP, PSA, CMR 2 No 4 0 
17 CoMSIA, cLogP 2 No 3 0 
18 CoMFA 2 No 3 3 
19 CoMFA 2 No 5 6 
20 CoMFA 2 No 5 7 
21 CoMFA 2 No 5 8 
22 CoMSIA 2 No 3 6 

23 
CoMFA (19) Region 
Focused 2 No 5 6 
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Table 5.4. QSAR Model Validation and Predictivity 

 
Model 

 
LOO Cross q2 / 
SEP 
 

 
Group Cross q2 / 
SEP 

 
Bootstrapped r2 

 
Bootstrapped 
SEE 

 
Non-Validated r2 / 
SEE 

 
Test Set r2 / 
SEE 

1 .166 / 1.009 .162 / 1.012 .414 ± .079 .886 ± .393 .294 / .928 .118 / .831 
2 .139 / 1.030 .130 / 1.036 .471 ± .047 .799 ± .326 .355 / .842 .293 / .750 
3 .286 / .935 .279 / .930 .741 ± .041 .564 ± .279 .650 / .655 .769 / .456 
4 .235 / .968 .236 / .974 .683 ± .050 .642 ± .340 .580 / .717 .648 / .591 
5 .167 / 1.014 .187 / 1.001 .523 ± .044 .728 ± .298 .425 / .842 .567 / .611 
6 .153 / 1.022 .127 / 1.038 .557 ± .044 .718 ± .301 .451 / .823 .417 / .613 
7 .240 / .964 .215 / 1.004 .690 ± .030 .637 ± .313 .588 / .710 .786 / .497 
8 .205 / .981 .203 / .982 .563 ± .071 .679 ± .285 .451 / .816 .441 / .667 
9 .326 / .908 .320 / .913 .683 ± .059 .636 ± .227 .558 / .735 .528 / .746 
10 .264 / .954 .238 / .971 .705 ± .065 .594 ± .293 .588 / .714 .697 / .556 
11 .265 / .949 .261 / .951 .645 ± .043 .640 ± .232 .559 / .735 .609 / .601 
12 .311 / .918 .314 / .916 .690 ± .034 .581 ± .204 .633 / .670 .737 / .498 
13 .304 / .923 .295 / .929 .632 ± .030 .674 ± .202 .552 / .740 .514 / .781 
14 .296 / .928 .305 / .922 .594 ± .048 .705 ± .242 .486 / .793 .525 / .757 
15 .284 / .941 .288 / .938 .742 ± .034 .549 ± .240 .636 / .671 .717 / .533  
16 .308 / .925 .326 / .913 .680 ± .045 .622 ± .242 .578 / .723 .419 / .836 
17 .402 / .855 .358 / .887 .627 ± .051 .674 ± .278 .601 / .698 .559 / .618 
18 .448 / .732 .420 / .750 .794 ± .023 .447 ± .175 .725 / .516 .756 / .474 
19 .530 / .664 .537 / .660 .923 ± .016 .251 ± .097 .856 / .368 .781 / .561 
20 .559 / .643 .588 / .621 .919 ± .015 .265 ± .116 .884 / .330 .734 / .612 
21 .581 / .631 .600 / .616 .926 ± .020 .250 ± .116 .896 / .315 .754 / .584 
22 .573 / .668 .589 / .607 .768 ± .041 .465 ± .149 .708 / .512 .781 / .493 
23 .585 / .625 .587 / .623 .903 ± .024 .305 ± .127 .845 / .381 .769 / .524 

 



140 
 

 

Figure 5.5. Nitrofuran Compounds with Predicted Charge at Physiological pHa,b 

a. As determined by major microspecies calculation using MarvinSketch, v. 4.1.13. 247     
b. Physiological pH, 7.4 
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5.3.2 The Effects of Adding Global Molecular Descriptors 

 Global molecular descriptors were added to the 3D-QSAR models developed in 
an attempt to account for factors contributing to the MIC including, solubility and cell 
entry.  The addition of cLogP to Model 3 led to a significant improvement in the cross-
validated r2 (internal validation), but a lower non-validated and bootstrapped r2 (model 9).  
A similar result was seen when cLogP was added to CoMSIA fields in a reflective PLS 
analysis (model 17); the cross validated r2 values were significantly higher, but the non-
validated and test set r2 values were not an improvement over model 7.  The addition of 
LogD values to model 4 (in order to investigate ionization) had negligible effect on the 
internal validity or test set prediction of that model.  Polar Surface Area (PSA) values 
added to model 3 had a negligible effect on internal validity of the model and worsened 
the predictivity, as seen by the decreased performance against the test set.  The 
addition of CMR as a measure of steric bulk of the nitrofuran compounds led to slight 
improvements in the cross-validated r2 values, but again, lower bootstrapped and testset 
r2 values.  Similarly, various combinations of the molecular descriptors, as shown in 
models 13 through 16, did not improve model 3 to any significant extent  Ultimately, the 
models selected to proceed to step 3 (outlier investigation) were models 3 and 7, which 
do not incorporate any global molecular descriptors. 

5.3.3 Outlier Compounds 

Figure 5.6 shows outlier nitrofuran compounds, the removal of which improved 
the CoMFA and CoMSIA models discussed herein.  Outlier compounds removed from 
each model were determined by analysis of a QQ plot generated by the QSAR analysis 
tool of Tripos, Inc.  The QQ plot is essentially a normal probability plot of residuals, 
which is a validated method specifically developed to detect outliers.255,257  Compounds 
with residuals that did not follow normal distribution were removed sequentially from the 
models developed, starting with the highest deviation from normal distribution.  Model 18 
was generated by removal of compounds L6, L64, and L79, all with under-predicted 
activity.  Model 19 was generated by removing 3 more compounds; L4, L53, and L49.  
Subsequent outlier removal (model 20 and model 21) did not result in the improvement 
of the CoMFA models to a significant extent.  It can be seen from the data given in Table 
5.4 that the removal of 6 outliers was optimal in terms of predictive ability of the CoMFA 
models as demonstrated by the test set r2 values.  Although there was modest 
improvement in the internal validity (seen by cross-validated r2 values for CoMFA) by 
removal of additional outlier compounds, there was negligible improvement to 
bootstrapping and non-validated r2 values.  CoMSIA model 22 was generated by 
removal of six compounds from CoMSIA model 7 again based upon the residual 
distribution.  The CoMSIA outlier compounds are shown in Figure 5.6.  Four of the six 
outlier compounds removed to generate CoMSIA model 22 were also outlier compounds 
from the CoMFA models (model 18 and model 19).  CoMSIA model 22 showed 
significant improvement to both cross-validated and non-validated r2 values but had little 
effect on the test set r2 values, indicating an improvement in validity without affecting  
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Figure 5.6. Structures of Outlier Compounds 

a. Outliers from CoMFA Model 19. 
b. Outliers from CoMSIA Model 22. 
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external predictivity.  This model had comparable internal validity and test set predictivity 
to our best CoMFA model (model 19), but the bootstrapped and non-validated r2 values 
were significantly lower.  For this reason, model 19 (CoMFA, 6 outliers) was chosen to 
take to the final step in the 3D-QSAR development, region focusing.   

 
The compounds in Figure 5.6 are sorted by whether their activity was over-

predicted or under-predicted.  Failure of these compounds to perform well in the QSAR  
models can be due to several factors, including inability to align correctly with the 
training set, inaccurate activity values, other processes not accounted for (i.e. active 
transport, prodrug activation, alternate metabolic routes, increased metabolic stability).  
Compounds with over-predicted activity may be subject to metabolic inactivation that 
can’t be accounted for in the QSAR models.  Further, we have demonstrated that L4 has 
poor solubility that may account for its over-predicted activity.233  Additionally, as can be 
seen from Figure 5.3, compound L4 has extreme values of molecular weight and 
lipophilicity which may explain the inability of the generated QSAR models predict its 
activity. The trifluoromethyl groups on compounds L49 and L6, both with under-predicted 
activity, block metabolism at this site and also increase lipophilicity of these compounds.  
This leads to enhanced metabolic stability and facilitated passive diffusion across the 
lipophilic mycobacterial cell wall.  These factors may have resulted in an improved MIC 
for these compounds which the QSAR model was not able to predict.  Compounds L64 
and L79 (CoMFA and CoMSIA outliers) both contain a metabolically labile carbamic ester 
functionality, cleavage of which could result in an active metabolite.  This process may 
account for the under-predicted activity of these two compounds.  Compound L84 is 
unique in that it had a high residual when activity predictions were performed using the 
CoMSIA model (model 7), but residuals that did not result in outlier removal from any 
CoMFA model.  As can be seen from Figure 5.6, for the most part the CoMFA and 
CoMSIA activity predictions were reasonably comparable; compounds L84 and L53 were 
the notable exceptions.  The reason for the poor activity prediction of this compound by 
the CoMSIA model is not readily apparent. 

5.3.4 Region Focusing 

One method of 3D-QSAR optimization is known as region focusing.254  It involves 
giving additional weight to the lattice points in a given CoMFA region to increase the 
contribution of those points in a further analysis.  Region focusing is used to suppress 
PLS contributions from minor descriptors.  The result is a new model with increased q2 
(cross-validated r2), tighter grid spacing, and greater stability at a higher number of 
components.  In this study, discriminant power was used to weight the lattice points by 
their contribution to the original model’s components (see experimental methods).  
Figure 5.7 shows the CoMFA fields for one of the more active nitrofuran compounds 
before and after region focusing.  As can be seen from the data for Model 23 in Table 
5.4, the application of region focusing to Model 19 resulted in a significant improvement 
to the internal validity of the model, with small to negligible effect to the non-validated r2 
and test set activity predictions.  Relative steric and electrostatic contributions were  
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Figure 5.7. QSAR Region Focusing 

The CoMFA field calculations are shown for L7 before (upper) and after (lower) region 
focusing.  Electrostatic fields (Left): Blue fields indicate electropositive groups favored, 
red fields indicate electronegative groups favored. Steric fields (Right): Green fields 
indicate steric bulk favored, yellow fields indicate steric bulk disfavored. 
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calculated from regression coefficients of the PLS models generated.  Steric 
contributions played a larger role than electrostatic in the final model (model 23). The 
steric and electrostatic field contributions to the final model were 74% and 26%, 
respectively.  Model 23 was selected as the best performing model in this 3D-QSAR 
study and will be used to predict the activity and guide future synthetic efforts on next 
generation nitrofuranyl compounds.  Figure 5.8 graphically represents the biological 
activity predictions of Model 23.  Figure 5.9 shows the CoMFA steric and electrostatic 
contour fields for the final model with the active compound, L37, overlaid.   Figure 5.10 
displays the CoMSIA fields for our best performing CoMSIA model (model 22).  The 
CoMFA fields indicate that the steric effects are mostly limited to the side chain, with 
clear areas seen where bulk is favored and disfavored. The CoMFA electrostatic fields 
show regions where positive and negative charges are favored on both the nitrofuran 
scaffold as well as the side chain.  The blue field near the nitro group seems to indicate 
that compounds with less negative charge near the one of the nitro oxygens are favored; 
this is most likely due to the contribution of the aryl sulfone and aryl sulfoxide 
substitutions at this position in our training set.  There is also a clear preference for a 
positively charged group at the terminal end of the side chain, which appears to 
correspond to basic amine groups at this position in several of the more active 
compounds in the training set.  The CoMSIA fields (Figure 5.10) show steric regions and 
electrostatic fields that correlate well with what is seen in the CoMFA fields.  Additional 
fields for hydrophobicity and H-bond donors and acceptors are shown; this information 
will be used for optimization of further generations of nitrofuran compounds. 

5.3.5 Progressive Scrambling and Dependent Variable Scrambling 

Cross-validation values must be interpreted with caution when building 3D-QSAR 
models with large training sets.  This is because redundancy in the data sets can 
confuse the Leave-One-Out and Leave-Group-Out validation techniques.252  The 
Progressive Scrambling method was developed to overcome this problem.251-253  This 
method checks the sensitivity of the PLS model developed to small changes in the 
dependent variable.  The values of Q2, cSDEP, and dq2/dr2

yy’ are returned and can aid in 
interpreting the predictivity of the model without the potentially confusing redundancy.  
The Q2 statistic returned is an estimate of the predictivity of the model after removing the 
effects of redundancy.  It is calculated by fitting the correlation of scrambled to 
unscrambled data (r2

yy’) to the cross-validated correlation coefficient (q2) (calculated after 
each scrambling performed) using a 3rd order polynomial equation.   The cSDEP statistic 
is an estimated crossvalidated standard error at a specific critical point (0.85 default 
used in this study) for r2

yy’, and is calculated from a 3rd order polynomial equation which 
fits the scrambled results.  The slope of q2 with respect to r2

yy’ is reported as dq2/dr2
yy’, 

and is considered the critical statistic.  It indicates to what extent the model changes with 
small changes to the dependent variable.  In a stable model, dq2/dr2

yy’ should not exceed 
1.2 (ideally 1).  This method was employed against the final model to verify the number 
of components used to build the model and to check the cross-validation against the 
possibility of such a redundancy in our training set.  Table 5.5 lists the results of the
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Figure 5.8. Model 23 Results: Actual versus Predicted Activity
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Figure 5.9. CoMFA Field Contour Maps for Model 23 with Active Compound, L37 

Electrostatic fields (Left): Blue fields indicate electropositive groups favored, red fields indicate electronegative groups favored. Steric 
fields (Right): Green fields indicate steric bulk favored, yellow fields indicate steric bulk disfavored. 
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Figure 5.10. CoMSIA Field Contour Maps for Model 22 with Active Compound, L37 

A. Steric Fields, Green indicates steric bulk favored, Yellow indicates bulk disfavored. B. 
Electrostatic fields, blue indicates positive charge favored, red indicates disfavored. C. 
Hydrophobic fields, Yellow indicates favored, gray indicates disfavored. D. H-bond donor 
and acceptor fields, Cyan indicates donor favored, Magenta indicates acceptor favored, 
and red indicates disfavored.a   
 
a.  H-bond donor disfavored fields were negligible at default energy values used for field 
generation and are not shown here. 
 
  

A B 

C D 
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Table 5.5. Progressive Scrambling Results, Model 23 

 
Components 
 

 
Q2 

 
cSDEP 

 
dq2’/dr2yy’ 

2 0.337 0.776 0.13 
3 0.387 0.750 0.52 
4 0.430 0.726 0.78 
5 0.432 0.728 1.15 
6 0.381 0.763 1.47 
7 0.424 0.741 1.48 
8 0.393 0.766 1.55 

 
 
progressive scrambling of Model 23.  For a valid model, as additional components are 
added, values of Q2 should be increasing while cSDEP is decreasing, the slope should 
fall near unity.  While the value of the Q2 statistic may seem low in comparison to the 
cross-validated r2 (q2) value, it must be noted that the introduced noise from scrambling 
renders this statistic very conservative.  Q2 values above 0.35 are reported to indicate 
that the original, unperturbed model is robust.251  For Model 23, based on the 
progressive scrambling results, 5 components was the optimum number for use. 

 
Another validation method that was employed in this study was Dependent 

Variable Scrambling (Y-scrambling).  This method involves scrambling the dependent 
data in the training set and then building a PLS model using this scrambled data.  The 
method is used to verify that the correlation in the original, unscrambled model is 
accurate and not a chance correlation.  Ideally, the cross-validated r2 (q2) values 
returned from the scrambled PLS will be very low, even negatively correlated.  Table 5.6 
shows the results of the Y-scrambling test run against model 19.  This model was 
chosen because model 23 was built by region focusing model 19, which was been built 
using unscrambled data. Therefore, Y-scrambling results against model 23 would not 
have been easily interpreted. 

5.4 Summary 

Using a series of nitrofuranyl compounds with known anti-tuberculosis activity, a 
predictive 3D-QSAR model has been developed.  The effects of compound ionization, 
multiple alignments, and the incorporation of global molecular descriptors for lipophilicity, 
polar surface area, and steric bulk were investigated for their ability to improve QSAR 
model predictivity. Our expectation was that the addition of a lipophilicity descriptor 
(cLogP or LogD) and steric bulk descriptor could improve the model’s predictivity by 
accounting for the cell entry contribution to the MIC of a given compound.  We also 
theorized that polar surface area and ionization could model the effects of solubility.   
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Table 5.6. Dependent Variable Scrambling Results, Model 19 

 
Components 
 

 
LOO q2 

 
SEP 

1 -0.260 1.210 
2 -0.546 1.349 
3 -0.498 1.335 
4 -0.833 1.486 
5 -0.863 1.507 
6 -0.827 1.501 
7 -0.765 1.485 
8 -0.791 1.505 

 
 

Interestingly, the addition of molecular descriptors for lipophilicity, polar surface 
area, and steric bulk did little to improve the predictive ability of the model.   While in 
most cases, the addition of the global molecular descriptors didn’t weaken the models 
significantly, they did little to benefit them either.  This may be due to the fact that most 
of the compounds in the training set had suitable physicochemical properties (cLogP 1-
5) to penetrate the TB cell wall.  As can be seen from Figure 5.3, although there is a 
clear trend of increasing activity with increased molecular weight, there is little 
correlation with cLogP in the range that our active compounds fall into.   This is reflected 
in the QSAR models built in this study. 

 
We noted above that the CoMFA steric field contribution of the final model (74%) 

greatly outweighed the electrostatic field contribution.  As can be seen from the CoMFA 
fields shown in Figure 5.9 as well as the CoMSIA fields shown in Figure 5.10, the steric 
effects were isolated to the side chain while electrostatic effects were contributed from 
both the side chain and the nitrofuran scaffold.  We believe this can be explained by the 
two processes discussed above, activation of the compounds by a nitro reducing 
enzyme (electrostatic effects, low steric contribution) and binding of the compound to its 
ultimate biological target (electrostatic and steric contribution).  The CoMFA and 
CoMSIA fields clearly indicate regions of interest (both to avoid and to target) that will be 
used when performing CoMFA and/or CoMSIA guided activity predictions of nitrofurans 
for proposed synthesis and testing. 

 
Another interesting result that we note is the improved performance of the QSAR 

models both in terms of internal validity and external (test set) predictivity when using 
alignment 2 versus alignment 1.   In alignment 2, the side chains of the tertiary amide 
nitrofuran compounds adopted a conformation that was significantly different when 
compared to the unhindered nitrofurans and fell into a region not occupied by the 
unhindered compounds (see Figure 5.4, A).  It is possible that this is reflecting the dual 
processes of compound activation and binding to the ultimate biomolecular target.  While 
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it may seem from initial inspection of the CoMFA and CoMSIA fields in Figures 5.9 and 
5.10 that these tertiary amide compounds contributed little to the final model, we point 
out that the test set included two such compounds whose activity was predicted with a 
fair degree of accuracy (within .5 pMIC units). 

 
Further experiments are ongoing to investigate if our best performing models can 

be expanded to examine the nitroimidazole class of anti-tuberculosis agents.  
Preliminary evidence indicates that CoMFA model 23, discussed here, is suitable to 
predict MIC activity of these compounds as demonstrated by the reasonably accurate 
predictions of MIC’s for PA824 (predicted 1.2 μg/mL, actual 0.5 μg/mL) and OPC67638 
(predicted 0.0075 μg/mL, actual 0.006 μg/mL).  This suggests that steric and electronic 
requirements for entry and nitro activation are shared by the nitrofuran and 
nitroimidazole anti-tuberculosis agents and are major contributors to this QSAR model. 

 
The final model was optimized by outlier removal and region focusing and 

validated by a variety of methods; including cross-validation, progressive scrambling, 
and test set predictions.  The model developed has high internal validity (cross-validated 
r2 (q2) above 0.5) and high predictive ability (test set r2 above 0.7).  It is being used to 
predict the anti-tuberculosis activity of proposed new compounds and to prioritize their 
synthesis by activity ranking.  We believe this is an new important tool for the 
development of next generation nitrofuranyl and related nitroaromatic anti-tuberculosis 
agents.233  
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CHAPTER 6. DISCUSSION AND CONCLUSIONS 

6.1 General Dissertation Overview 

This dissertation has presented my work on two research projects: the DHPS 
project focused on the identification of novel compounds that bind to the pterin subsite of 
dihydropteroate synthase and thereby inhibit enzyme activity; and the nitrofuran project 
focused on the advancement of a series of compounds with whole-cell activity against 
M. tuberculosis, both in terms of inhibitory activity and physical properties.  These two 
projects afforded me the opportunity to use and evaluate a variety of computational tools 
to accomplish these research goals.  

 
The availability of DHPS crystal structures with a variety of substrate and product 

analogs bound in the active site enabled the use of several structure-based drug design 
techniques, and were presented in chapters 2, 3 and 4.  In Chapter 2, I presented my 
studies on the structure and function of DHPS and the mechanism of acquired 
resistance to sulfonamide agents.  Using a series of molecular dynamics simulations, I 
was able to model the positions of loops that were either missing or incorrect from our 
crystal structures and visualize the locations of several residues that play key roles in 
both the reaction and resistance.  Additionally, key insights into the role of the pterin 
subsite residues in ligand binding and the implications of these binding determinants in 
the design of pterin site inhibitors was discussed.  An active site model was developed 
for use in subsequent high-throughput docking studies. 

 
Chapter 3 presented the results of an extensive validation study of docking 

programs and scoring functions for use in high-throughput docking against the pterin 
binding site of DHPS.  A variety of docking programs and scoring functions were 
thoroughly evaluated using several validation techniques including pose selection and 
scoring of a bound ligand, enrichment studies using receiver-operating characteristic 
curves, and a new metric designed specifically for this study, the SSLR statistic, which 
rewards both early enrichment and correct rank ordering by activity of known active 
compounds.  In addition to selecting the best performing docking/scoring combination for 
use against DHPS, I was able to make general observations on the utility of the different 
validation metrics for use in validating against a single target. 

 
Chapter 4 concluded my discussion of the DHPS virtual screening project by 

presenting the results of several large-scale, high-throughput molecular docking studies 
against the DHPS pterin site using fragment-based drug design concepts.  These 
studies were built upon the work presented in the previous two chapters.  Two 
successive rounds of docking were performed against the target using different 
screening techniques and the docking programs validated in Chapter 3.  The first round 
of virtual screening used pharmacophore pre-filters, which enabled the screening of a 
very large number of compounds.  Unfortunately, this led to “hit” compounds with 
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undesirable physico-chemical properties.  The pharmacophore filtering step was 
removed for the second round of virtual screening, and resulted in far fewer compounds 
that we were able to screen, but with improved properties and novel scaffolds when 
compared to the first round.  Ultimately, 15 fragment compounds were identified that had 
reasonable inhibitory activity against DHPS and they have been advanced to 
crystallography trials. 

 
The second project discussed in this work was the nitrofuran project, which was 

presented in Chapter 5.  This project used a series of compounds for which whole-cell 
activity against M. tuberculosis was known, but no structural target information was 
available.  In this case, ligand-based techniques were employed, specifically 3D-QSAR 
studies, to generate a model which could be used to predict the activity of similar 
compounds that have not been synthesized or tested.  The goal of these studies was to 
develop a model that can be used to advance the development of next generation 
nitrofuran compounds with improved physico-chemical properties and metabolic stability.  
The models developed in this study were generated using two new advanced 
techniques, Region Focusing and Progressive Scrambling, and were extensively 
validated.  The combined use of these two methods allowed us to develop models with 
excellent predictivity. 

6.2 Computational Medicinal Chemistry: A Diverse and Expanding 
Field 

When employed by a skilled researcher with training and experience, the 
methods discussed below have the capability to identify active compounds which can be 
advanced to the clinic.  This can be seen from the numerous examples of marketed 
drugs initially identified by these structure-based and ligand-based drug discovery 
methods (shown in Table 1.1).  The key to success when applying these methods to 
drug discovery is the user.  In addition to possessing expert skills in the use and function 
of the programs or algorithms which are being employed in the virtual screening study 
the Computational Medicinal Chemist should also be knowledgeable in four key 
complementary areas. 

 
First, a working knowledge of organic chemistry is very important, even if the 

user is not performing any chemical reactions themselves.  It is often necessary to filter 
out compounds from screening libraries that contain reactive or unstable functional 
groups.  When making these filtering decisions, a background or working knowledge of 
organic chemistry is advantageous.  Also, virtual libraries are often created using 
synthetic chemistry rules and building blocks available from commercial vendors.  When 
designing virtual screening libraries, knowledge of synthetic organic chemistry is 
extremely helpful.  Finally, the results of virtual screening studies are often used by 
synthetic chemists to either prioritize their synthesis projects or select compounds with 
high predicted activity for synthesis and testing.  It is an advantage if the computational 
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chemist is able to provide suggestions to the organic chemists that are synthetically 
feasible, and a working knowledge of synthetic organic chemistry is helpful in facilitating 
discussion and interaction between the computational and synthetic organic chemist. 

 
Second, knowledge of the basic principles of structural biology and the 

techniques used in the preparation of the atomic models that are used in structure-based 
drug design are absolutely essential.  Knowing the limitations and uncertainties of an X-
ray crystal or NMR structure being used for virtual screening is essential when preparing 
the structure for screening as well as when interpreting the results.  An excellent paper 
published by Davis, et al. in 2003 highlighted important considerations the computational 
chemist must consider when using an X-ray crystal structure for a structure-based 
design project.258  The biggest factor that must be understood is the uncertainty in the 
atomic positions of the structure being used and how to determine this uncertainty.  
Alternative side chain conformations and B factors can help the user identify areas of 
uncertainty in the atomic model.  Molecular modeling environments are often inadequate 
for identifying these areas and expert interpretation of the structural files is necessary.  
Additionally, the laboratory methods and the experimental conditions used for 
determining these structures can have an effect on the structural model obtained, and 
this must be clearly understood by the computational chemist. 

 
Third, an understanding of molecular biology techniques is also very important in 

terms of the experimental methods that are employed to measure the activity of any 
compounds being investigated.  It has been said that high-throughput screening is only 
as good as the experimental assay being used in the screen.  I would say that this is just 
as true when considering virtual screening because the “hit” compounds are typically 
intended to be tested for activity in an experimental assay.  Knowledge of the assay 
conditions and limitations can be very important when identifying hit compounds and 
selecting compounds for testing because the physico-chemical properties of the 
compounds may be incompatible with the assay or assay conditions.  In fact, a priori 
knowledge of the assay conditions and assay limitations can often influence the virtual 
screening parameters so as to select for compounds that are compatible with the assay.  
An understanding of other molecular biology techniques such as protein expression and 
isolation, gels, blotting, and arrays can also be useful to the computational medicinal 
chemist. 

 
Finally, other areas that can be equally important include Anatomy and 

Physiology, Pharmacology, Pharmacokinetics and Pharmacodynamics, and 
Microbiology.  Clearly, when attempting to discover compounds with biological activity 
for use in treating human disease, working knowledge of human pathophysiology and 
the molecular basis of drug action are very important.  Traditionally, the 
pharmacokinetics and pharmacodynamics of lead compounds were optimized after 
identifying compounds with potent activity against the molecular target.  However, due to 
the large number of clinical trial drug failures observed recently due to PK/PD issues and 
the exponential increase in the cost of bringing a drug to them market, these issues are 
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more frequently being addressed at earlier stages of drug discovery, even during hit and 
lead identification.  There are now multiple algorithms and programs that are being used 
with increasing frequency to identify and eliminate compounds during the initial 
screening which are predicted to have unfavorable ADME or toxicological properties.259  
An understanding of these programs and properties is obviously very important. 

6.3 Discussion of Methods 

The studies discussed in this dissertation describe the use of a variety of 
molecular modeling and computer-aided drug design techniques, ranging from ligand-
based methods of activity prediction to structure-based docking methods for hit 
compound identification.  Every technique discussed in Chapter 1 has been used in 
these studies to some degree.  These methods can be powerful tools to aid in the 
discovery, design and development of novel therapeutic agents, but it must be 
remembered that they are not without their limitations.  Their full potential is only realized 
when their use is supported by other experimental methods, such as structural biology, 
molecular biology, microbiology, and organic synthesis.  The studies presented here 
would not have been possible without contributions from researchers in each of these 
areas in multi-disciplinary, collaborative drug discovery projects.  In Chapter 1, I 
introduced the virtual screening methods and tools used in these studies and discussed 
their theory and application.  In this section, I present a critical assessment of the same 
by addressing their strengths and weaknesses in terms of their performance in these 
studies and discuss their future potential in more general terms. 

6.3.1 Molecular Dynamics Simulations 

When applied by a skilled user, molecular dynamics simulations can be 
employed to complement crystal studies by visualizing the motions of the atoms or 
residues of a biomolecular system.  A crystal structure is a snapshot of a system, which 
may or may not represent the biomolecule in its native or active state.  Simulations, on 
the other hand, can be used to visualize small scale movements such as loop 
movements, ligand binding, and possibly transition states.  However, MD is not without 
limitations, and the studies discussed in Chapter 2 have demonstrated several that merit 
discussion.  First and foremost, it must be remembered that MD simulations are just that: 
simulations.  The methods used to obtain the energies and atomic positions are often 
approximations of approximations, and the results obtained from these studies must 
always be interpreted with this in mind and with a fair amount of caution. 

 
MD simulations are time consuming and computationally expensive processes.  

In order to visualize loop movements (one of the goals of our simulations), an MD 
simulation must extend into the nanosecond range.  Even when using time-saving 
shortcuts such as the SHAKE algorithm, energy cut-offs, PME electrostatic calculations, 
periodic boundary conditions, and implicit solvation, a nanosecond simulation can take a 
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week or more to run across multiple processors.  A more rigorous simulation using 
explicit solvation can take up to several weeks.  Additionally, in order to validate the 
model and results, it is often necessary to run multiple simulations to demonstrate the 
reproducibility of the results obtained.  A project such as this can easily extend into 
months of work, as was the case in these studies.  Visualization of large scale protein 
movements, protein folding, and rare events would require simulations into the 
millisecond range, and this is not possible with the current technology and computing 
power available. 

 
 Perhaps the most important consideration when setting up MD simulations is the 
parameterization of the non-native residues (ligands, cofactors, etc) present in the model 
being investigated.  Most of the commonly used MD packages, such as the AMBER 
suite used in our studies, have developed parameters for the most common residues 
seen in biomolecules (amino acids, carbohydrates, nucleic acids, and even some 
commonly seen cofactors), and these have been extensively tested and validated.  
However, parameters (energy force constants and reference values for bond lengths, 
angles, torsions, etc.), must be developed, tested, and validated for any ligand or co-
factor for which these parameters are not available, as was the case in our studies.  We 
utilized the program Antechamber and the General Amber Force Field (GAFF) to derive 
parameters for non-native residues.  Although this process is quick and usually reliable, 
it does not remove the need for testing and validating the derived parameters.  This was 
the case for the parameters for our pyrophosphate ligand, which required extensive 
modification from those suggested by Antechamber before they could be used in our 
simulations to obtain reliable results. The main point here is that with molecular 
simulations, in order to obtain reliable results, both effort and skill are required to prepare 
the system prior to running any simulations.  The old computational adage applies: 
garbage in, garbage out. 
 

Finally, it should be mentioned that although the simulation methods employed in 
these studies are useful for visualizing small-scale protein movements and positions of 
ligands and side chains during binding, the force field methods used to obtain the 
energies are unable to show reactions, catalysis, or any process involving the flow of 
electrons.  New methods including polarizable force fields and  hybrid quantum 
mechanics/molecular modeling (QM/MM) methods have been recently reported that 
hope to address some of these deficiencies, but the methods still require extensive 
development and validation.  Notwithstanding the limitations mentioned above, MD is a 
powerful tool that can be used very effectively in projects such as the one reported in 
this work, if one has a clear understanding of the limitations of the methods and keeps 
these limitations in mind when interpreting their results. 

6.3.2 Structure-Based Drug Design 

In a virtual screening project it is a definite advantage to know the structure of the 
biomolecular target being investigated.  An X-ray, NMR, or even a homology modeled 
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structure makes a variety of structure-based design tools available to the researcher, 
most importantly docking and scoring techniques.  Although these methods have 
demonstrated utility in the identification of lead compounds (as discussed in Chapter 1), 
they are not without their limitations.  An understanding of these limitations is important 
to the successful application of these methods in a drug discovery project. 

 
An obvious advantage of using docking and scoring as a lead identification 

method is the larger number of compounds that can be screened when compared to 
traditional high-throughput screening.   Additionally, there is an added advantage in 
terms of both cost and time savings.  However, expert decision making is necessary for 
both the preparation of the receptor for docking and the screening library which will be 
docked.  Decisions regarding protonation states of ligands and side chains, charge 
calculation methods, and initial conformations must be made by the user prior to 
beginning the screen.  These decisions typically require significant expertise on the part 
of the user with the program or programs that are being used to perform the docking run.  
A very large number of docking programs are now available for use today and it is 
unreasonable to expect a computational medicinal chemist to have achieved a high 
degree of expertise with more than a small number.  Unfortunately, as has been 
demonstrated by several studies published to date, the performance of the docking 
program being used is at least partly dependent on the level of familiarity that the user 
has with the program.185  In many docking program validation studies, the developers of 
a docking program are able to achieve significantly greater enrichment rates over other 
users, even when using identical program versions, biological targets, and screening 
libraries.   

 
As mentioned in Chapter 3, not all docking programs and scoring functions will 

perform equally well when used to screen against a given target, regardless of the level 
of skill the user has with the programs.  This is because there is a dependence on the 
nature of the binding site on the performance of the docking programs and scoring 
functions.196  This can be attributed primarily to the functional form and parameterization 
of the scoring functions, with some performing better against polar active sites and 
others performing well against lipophilic sites.  A clear understanding of these limitations 
is essential when selecting the appropriate docking and scoring functions for use against 
the screening target. In the absence of a thorough validation study as was described in 
Chapter 3, the computational chemist should make every effort to select a 
docking/scoring function combination with a proven record against the class of receptor 
into which they are docking. 

 
Another limitation with structure-based virtual screening is the scoring functions 

themselves.  A docking score is essentially an approximation of the binding affinity of a 
ligand for the receptor and should theoretically scale well with the experimentally 
determined binding affinity (Kd or IC50).  However, although scoring functions have a 
demonstrated ability to identify active compounds from screening sets, they are nearly 
universal in poorly predicting the absolute binding affinity of active compounds.  This has 
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direct ramifications on the selection of compounds from a virtual screen for testing.  
Compounds are often selected in one of two ways, either by taking the top n% of scored 
compounds or by taking every compound scoring above a certain cut-off.  Either of these 
methods is acceptable, however the value selected (top n% or score cut-off) should be 
knowledge-based, that is based upon the results of a carefully designed validation study 
of the docking/scoring combination that was used against the target.  A recommendation 
would be to select the n% value based on enrichment factor studies such that 80 to 90% 
of the active compounds were selected at the given n% value.  Correspondingly, the 
score cut-off can be selected based upon receiver-operating characteristic curves by 
selecting the score above which 80 to 90% of the active compounds were identified.  
Beyond this, however, a testing priority for compounds based upon their actual score 
would be irrelevant. 

 
Because of these limitations, it is very important to perform extensive validation 

of the docking/scoring function to be used in a virtual screening project.  Additionally, a 
Medicinal Chemist who is performing molecular docking and scoring as part of their 
research should familiarize themselves with the functional form and parameterization of 
the scoring functions that are available for their use, and they should make every effort 
to obtain expertise with at least one docking program from each class (incremental 
construction, Monte Carlo, Genetic Algorithm, Tabu Search, etc.). 

 
A final issue that deserves mention is compound procurement.  Although not a 

direct limitation of a virtual screening project, the procurement of the “hit” compounds for 
testing is definitely a factor that requires consideration, as this process can require 
considerable expenditure of time and resources.  In Chapter 4, I discussed the 
acquisition failure rates from the two rounds of virtual screening.  Noticeable 
improvements to the failure rate were obtained when we selected only databases from 
reliable vendors, as determined from our experiences in the first round of virtual 
screening.  In the absence of favorable experience otherwise, I would recommend 
limiting database screening to U.S. suppliers due to the high cost of shipping from 
foreign countries, customs issues, and questions of compound purity.  In fact, although 
not specifically addressed in the research presented here, it is highly recommended to 
perform quality control analyses on all compounds ordered from any vendor.  In the 
absence of some independent rating system for chemical suppliers (which does not exist 
to my knowledge), following these recommendations may help to alleviate some of the 
frustrations that were experienced in our studies. 

6.3.3 Ligand-Based Drug Design 

A recent article by Johnson, et al. entitled “The trouble with QSAR (or how I 
learned to stop worrying and embrace fallacy)” proposed that QSAR has not met the 
expectations for predicting biological activity.260  The authors suggested that chance 
correlation, incorrect functional forms, and model overtraining have contributed to this 
problem and attributed the Cum Hoc, Ergo Propter Hoc fallacy (with this, therefore 
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because of this) to the poor prediction seen with many QSAR models.260  They conclude 
that the manner in which QSAR is applied is more responsible for its lack of success 
than any other cause.  The authors state their case convincingly and their paper 
correctly identifies issues and limitations with QSAR that must be addressed before any 
developed QSAR model can be used to make reliable activity predictions.  However, I do 
believe that it is possible to develop and utilize a predictive QSAR model in a ligand-
based drug design study if one understands the limitations mentioned above, takes them 
into account when developing the QSAR model, and extensively validates the model.   
 

A question that I feel should be answered here is: Is there an advantage of using 
a QSAR model in drug discovery over general structure-activity observations?  In other 
words, is QSAR a lesson in the obvious?  In the case where a QSAR model tells you 
what you already know, what it the utility?  The answer to these questions is that QSAR 
models do often tell us what we already know, a charged group favored in this position 
or steric bulk disfavored in that position.  However, the true utility of QSAR models is in 
virtual screening.  Knowing that a charged group is favored in this position and steric 
bulk disfavored in that is not helpful when predicting activities of a large number of 
compounds as a researcher cannot possibly be expected to visually inspect every 
compound for favored or disfavored groups within a reasonable period of time.  
However, a validated QSAR model can be used to screen very large libraries (of 
compounds covered by the physico-chemical space of the QSAR model) quickly and 
efficiently, providing the researcher a much more manageable number of “hit” 
compounds that can be visually inspected and ordered or synthesized. 

6.4 Overall Themes (“The Big Picture”) 

Throughout the research presented in this thesis, there have been several 
recurring “themes” which deserve special attention.   In this section I present a brief 
discussion of what I believe to be the two most important overall themes of the research 
I have conducted and the implications in virtual screening generally and with respect to 
the research projects discussed in this thesis. 

6.4.1 Method Validation 

The studies presented in this thesis predominately dealt with the use of 
computers, programs, and algorithms in the discovery of compounds with activity against 
our targets.  I have implied above that these programs are essentially only as good as 
the researcher who is using them and that, in addition to expertise with the individual 
programs, a competent researcher should possess skills or a knowledge base in several 
fields contributing to drug discovery.  In the previous section I highlighted and briefly 
discussed the multiple weaknesses of the methods used in these studies.  Considering 
the expertise required for using these programs and their inherent weaknesses, the 
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question may be asked: How can one rely on the results obtained from the application of 
these methods? 

 
The answer is perhaps the most important overall theme of this research: 

Validation.  Each of the methods used in these studies, molecular dynamics, docking 
and scoring, and QSAR must be extensively validated against the target or system of 
interest before any results from their application can be reliable interpreted.  It is not 
enough that the programs have been validated by their developers in a general sense; 
their use by a specific user against a specific target must also be validated.  Chapter 3 
presented an extensive validation of the docking and scoring methods we used in the 
virtual screening work presented in Chapter 4.  The results presented in Chapter 3 
highlight a key point that must be stressed here.  The results obtained by the 
computational methods employed here are dependent on three factors: the expertise 
and training of the user, the abilities and limitations of the programs themselves, and the 
targets or systems against which they are being employed.  This is demonstrated in 
Chapter 3 by the poor performance of several docking programs such as FlexX and 
GOLD when compared to others, although each of these programs has performed 
exceptionally well in other published studies.  The question may be asked, when 
validating using the methods employed in these studies, which of the factors mentioned 
above is being investigated, the human factor, the programming factor, or the target 
factor?  In many ways, the answer is all three.  This of course has potential implications 
if the person or persons performing the validation studies are not the same who will be 
using the validated programs in the performance of the virtual screening, for example.  
Fortunately this was not the case in these studies. 

 
Each of the computational techniques and programs used in these studies was 

validated using a variety of methods specific to the program or technique being utilized.  
For molecular dynamics simulations, validation methods include testing parameters by 
attempting to reproduce known experimental data such as thermodynamic properties, 
binding or conformational energies.  Additionally, it is often necessary to run multiple 
simulations, often from different starting conformations, to investigate whether final 
structures and positions obtained can be reproduced.  The results of a molecular 
dynamics simulation are questionable if they are not reproducible.  Chapter 3 discussed 
the different validation methods currently employed for docking and scoring functions, 
and we have even developed a new validation method which we hope will be well 
received by the modeling community.  The QSAR models developed in Chapter 4 were 
extensively validated by a variety of internal and external methods during and after their 
development. 

6.4.2 Filtering and Compound Selection 

The second general theme of this research that deserves special discussion is 
the selection of compounds for screening and testing.  This is actually two separate but 
somewhat related areas, whose application directly influences the results obtained from 
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a virtual screen.  In virtual screening, filters are frequently applied either before or after 
docking and scoring to minimize the computational expense and time required or the 
number of compounds required for testing.  In our studies, we have used 
pharmacophore filtering as a docking pre-filter and cluster analysis as a docking post-
filter.  Our results, as discussed in Chapter 4, highlight some important issues with the 
application of filtering and compound selection that will be addressed in this section. 

 
There are a variety of filters that can be employed for pre-filtering prior to 

performing a docking study, ranging from simple 2D filters for molecular weight or other 
physico-chemical properties, to advanced pharmacophore or SAR filters, such as those 
employed in our studies.  In the case of pharmacophore filtering, the filter can be created 
from the structures of known active compounds or from key binding features that are 
known in the active site.  These are known as ligand-based or receptor-based queries.  
In our case, we built a ligand-based query using the structural features of several 
compounds with DHPS inhibitory activity known to bind to the pterin site (crystal 
structures available).  The results from the docking performed using this pharmacophore 
filter highlighted an important issue.  Namely, the nature of the hit compounds from a 
virtual screen using this approach are dependent on how rigid the pharmacophore was 
that was employed as a pre-filter.  A receptor-based pharmacophore filter would 
theoretically not be as rigid a pharmacophore, and could potentially enable more 
diversity in the hit compounds. 

 
An alternative method would be to employ post-docking filters to minimize the 

number of compounds being sent for experimental assay studies.  The number of 
compounds being docked and scored as well as the number of compounds being 
assayed are dependent on the resources available to a given research group.  In our 
case, we decreased the number of compounds we docked by an order of magnitude and 
then applied cluster analysis to the results to select a manageable number of 
compounds for testing.  Cluster analysis is one method of post-docking filtering that 
ideally selects a small number of compounds with maximum diversity, with the hope that 
the chemical space of the high scoring compounds is being adequately covered.  The 
caveat with this method is that there is a greater chance of missing an active compound 
within the same bins.  Although the testing from our second round of virtual screening is 
ongoing, it is my recommendation that a final step be added once more activity data on 
the compounds sent for testing becomes available.  I suggest that, once a compound 
has been shown to have activity above our cut-off, then more compounds from the 
corresponding bin that compound was selected from should be procured and tested. 

 
Very often in virtual screening projects, simple 2D filters are applied such as the 

Rule of 5 and Rule of 3 filters discussed in Chapter 1 and reactive or cytotoxic functional 
group filters such as those employed by the ZINC database curators (listed in Appendix 
D.1).  These filters can be very useful in removing compounds that are not considered 
“drug-like” or “fragment-like”, have undesirable lipophilicity or electrostatic properties, or 
may react and interfere with experimental assays.  However, it must be considered that 



162 
 

applying these filters may remove compounds with good activity from consideration.  I 
will highlight this observation with two examples.  First, when screening compounds for 
use against bacterial, fungal, or viral targets the use of “drug-like” filters is probably not 
appropriate (as mentioned in Section 1.5.3), because many marketed agents in these 
classes far exceed the cut-off values.  Second, hits from a screen of fragment 
compounds are likely to be moved forward to an organic synthesis optimization project, 
and it may not be desirable to remove all compounds with reactive functional groups, as 
those groups may be advantageous for future synthesis and lead optimization.  
Obviously, the decision of what filters to employ and at what point to employ them will 
have to be made based upon a given projects goals and target. 

 
Unless one has unlimited computational and experimental resources, which is 

rarely the case, filtering and compounds selection methods will almost always have to be 
employed in a high-throughput virtual screening project.  Our studies have shown us that 
the filtering and selection rules employed in a virtual screening study are nearly as 
important as the docking and scoring functions in terms of the quality of the lead 
compounds obtained. 

6.5 Future Directions 

So, where do we go from here?  Although my contributions to both the DHPS 
project and the Nitrofuran project are nearly completed, there are several avenues that 
remain to be explored, some revealed by the work presented here.  Because both 
projects are still active, I present here some possible future directions that may be 
explored by DHPS and Nitrofuran researchers. 

6.5.1 DHPS Project 

The next logical step of this structure-based drug design project is the generation 
of co-crystal structures with the hit compounds from our VS studies that showed activity 
in our enzyme assay.  In addition to validating our VS methods, a co-crystal structure 
with one or more of the hit fragments bound into the pterin site could be used by our 
synthetic chemistry group to generate more potent binding agents based upon the 
observed interactions in the structure and would also feed back into the modeling project 
to be used in refining the VS for future rounds. 

 
Of course, virtual screening against the DHPS enzyme is far from complete.  

Although I have completed two extensive rounds of screening against B. anthracis, the 
DHPS project is also funded to investigate the enzyme from F. tularensis and Y. pestis.  
Crystal structures from these bacterial species were not available for my studies and I 
focused solely on B. anthracis.  However, they should be solved very soon and 
investigation of these two enzymes in a manner similar to my investigations of B. 
anthracis DHPS is a logical next step.  A very important prerequisite to high-throughput 
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docking against these enzymes is the development of a suitable assay for testing hit 
compounds.  Extensive validation of the enzyme assay we are currently using, not only 
for F. tularensis and Y. pestis, but also for B. anthracis is necessary.   

 
When we were validating docking programs and scoring functions for use in 

screening against DHPS, we investigated 5 commonly used docking programs and 9 
scoring functions, all available to our group through University of Tennessee licenses.  
There were several notable exceptions missing from the docking programs that were 
investigated, and a closer examination of these programs for use in docking against 
DHPS would be useful.   Two specific examples are the programs AutoDock and FRED, 
which are two of the most frequently used docking programs today for virtual screening 
studies (Figure 1.4).  This is likely due to their free access to academic researchers, 
although both programs have also performed very well in validation studies.  I was not 
able to investigate these programs due to “red tape” issues, but I feel that it is important 
to take a look at both AutoDock and FRED’s performance against DHPS in the future.  
Additionally, two general classes of docking programs were noticeably missing from our 
validation studies, Monte Carlo based programs and Tabu Search based programs.  The 
These were not available to our group at the time the studies were performed, but it 
would be very interesting to see how they compare with the programs that we did 
validate. 

 
The “high-throughput” docking studies presented here used a Linux workstation 

with the docking jobs run in parallel across 4 processors (the most our University of 
Tennessee licenses permit).  This enabled us to dock approximately 25,000 compounds 
per day.  Our collaborators at St. Jude Children’s Research Hospital have a 280-node 
Linux cluster and unlimited processor licenses available for their use.  Using these 
resources, we could theoretically dock the entire ZINC database collection, without any 
pre-filtering, in a matter of days or weeks.  Reports of this type of “ultra high-throughput 
docking” are scarce and this is definitely something that merits investigation by the 
group.  Of course, the important issues of validation and compound selection for testing 
would have to be addressed.  The top 1% of 5 million compounds is 50,000 compounds! 
 

In our docking validation study, we investigated nine different scoring functions 
for use in screening against the DHPS pterin site.  At least one scoring function was 
present from each major class of scoring functions: force-field based, knowledge-based, 
and empirical functions.  Of interest to me personally, and perhaps of utility to future 
virtual screening studies, is the use of solvation-based scoring functions.  At the most, 
each of the energy functions investigated in these studies very generally approximates 
the effects of solvation/desolvation on ligand binding, usually through the incorporation 
of a protein-ligand desolvation energetic penalty in the scoring function.  There are 
continuum based approaches that represent an intermediate approach to the 
incorporation of solvation effects in scoring, such as GB/SA scoring functions (not 
investigated in these studies).  The reason that a full solvation-based scoring approach, 
such as PB/SA scoring, was avoided here was due to the dramatic increase in time and 
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computing power that would have been required.  However, new techniques and 
increased ability to parallelize such docking and scoring jobs are now available.  It would 
be of interest to this study to use the Linux cluster at SJCRH with the latest version of 
the program DOCK, which is now highly parallelizable using MPI software freely 
available, and the PB/SA or AMBER GB/SA scoring function (or both) scoring function 
that comes with the DOCK package. 

 
With respect to the Molecular Dynamics simulations performed in this study, I do 

not feel that we learned as much as I had hoped.  After analyzing the results of multiple 
simulations, it seemed that there were more questions than answers.  Although, a few 
interesting observations were noted and theories proposed as to the nature of certain 
key interactions and resistance site mutations, ultimately our simulations failed to answer 
any of our research questions clearly.  Should any future researcher in this area decide 
to take another look at DHPS using Molecular Simulations I would recommend the 
following:  1. QM calculations to be used for the development of non-standard residue 
parameters.  This will avoid the time-consuming trial and error that was experienced in 
these studies.  2.  Extended duration simulations using product, substrate, and 
transition-state analogs using advanced MD techniques such as umbrella sampling261, 
replica exchange262, or multicanonical ensembles263, may enable us to visualize loop 
movements that were not seen with the 4 nanosecond timescale used in these studies.  
3.  The use of new Quantum Dynamics or QM/MM simulations to attempt to more 
accurately study the transition state and perhaps definitively answer the question of 
whether the reaction proceeds via an Sn1 or Sn2 mechanism.  
 

Lastly, there are two important areas that I think should be investigated closely in 
future studies.  The first is the conserved water binding site which falls deep within the 
DHPS active site, near the pterin binding site.  Although we avoided targeting this site in 
the docking studies presented here due to its conserved nature, this water site has 
potential to be displaced by a small molecule moiety to yield slow-, tight-binding 
inhibitors of DHPS which could lead to broad-spectrum antibiotics.  The displacement of 
a structural water has been reported to be one mechanism of slow-, tight-binding and 
could theoretically lead to inhibitors that are functionally equivalent to covalent, 
irreversible inhibitors with an extended pharmacokinetic half-life of days.264  The 
implications in antimicrobial drug design are obvious.  The second area is the phosphate 
binding site, which was also avoided in our docking studies.  There are two reasons for 
my belief that this is an area that should also be investigated in future virtual screens or 
synthetic efforts.  First, in our molecular dynamics simulations we noted a dependence 
of an anionic group in this site for stabilization of the pterin product and substrate ligands 
in the active site and a rapid ejection of products and substrates when the negatively 
charged group was absent.  Second, several of our most active hit compounds from the 
virtual screening studies and other preliminary studies contain a negatively charged 
group which could theoretically be falling near this anionic site.  It is very likely that the 
anion stabilizes a key arginine in an extended position that is necessary for binding of 
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pterin substrates.  Theoretically, inhibitory compounds containing a similar anionic group 
would have an increased binding affinity due to their ability to make similar contacts. 

6.5.2 Nitrofuran Project 

With the development and validation of a predictive QSAR model, the next 
obvious step is to utilize the model to predict activities of unknown compounds and to 
use this information to prioritize their synthesis and testing.  I suggest that the next 
researcher who is assigned to assist with modeling on this project develop a series of 
virtual nitrofuran (and related compound) libraries based loosely upon the scaffold of the 
compounds in our collection with potent activity.  I recommend that the modeler work 
closely with the synthetic group when preparing these libraries to facilitate the 
development of a library containing synthetically feasible compounds.  As new 
compounds are tested and activities measured, the QSAR model can be expanded to 
cover the additional chemical space.  Of course any new models developed will have to 
be extensively validated. 

 
Finally, the Nitrofuran project would benefit from the application of one or more 

lead-hopping techniques to identify novel scaffolds.  There are two methods that I would 
suggest be applied in this case: similarity searching and topomer searching, both of 
which are available through our Sybyl Molecular Modeling suite.  The first program I 
recommend be employed is Surflex-Sim, which bases similarity on the training set 
molecules’ shape, H-bonding, and electrostatic properties using molecular surfaces.  
The second is a new technique called topomer searching, which is an extremely fast tool 
for ligand-based VS and lead-hopping.  It uses topomer fields and pharmacophore 
properties of the training compounds to screen for whole molecules, groups, or 
scaffolds.  The application of either of these methods has the potential to take the 
nitrofuran project in exciting new directions. 

6.6 Conclusions 

I conclude this work by giving my best answer to the following question:  What 
place do I believe virtual screening has in the future of drug design? 
 

There are still several inadequacies with virtual screening methods that will need 
to be overcome before virtual screening can realize its full potential.  A key weakness is 
the inability of any computational method to accurately predict absolute binding affinity.  
Although VS has advanced to the point where it can be used to reliable identify active 
compounds from screening libraries, the functions themselves have a long way to go 
before they can be used to predict the absolute binding affinity of the compounds with a 
reliable degree of certainty.  This was demonstrated by our use of the new SSLR 
statistic in Chapter 4.  If the scoring functions were getting the ordering even close to 
correct, the SSLR metric should theoretically have statistically outperformed the AU- 
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ROC method.  The fact that the performance of these two methods was mostly 
indistinguishable reflects on the performance of the scoring functions rather than the 
utility of the SSLR method. 

 
However, I still firmly believe that virtual screening as a lead identification method 

has strong future in drug discovery.  In fact, as the techniques continue to be refined and 
improved and as computing power continues to exponentially increase, I believe that the 
deficiencies highlighted in this chapter will be resolved and that the role of virtual 
screening in drug discovery will continue to expand.  Eventually, it may even replace 
traditional high-throughput screening as the gold standard of lead identification.  
Computational medicinal chemistry, while still an emerging field, will play an increasing 
role in the discovery of future clinical drug candidates, not just as a lead identification 
tool but also as a lead optimization tool.  I foresee an increased demand for researchers 
with skill and training in these techniques.  
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APPENDICES 

A. Molecular Dynamics Force Field Parameter Files for Non-Standard Residues 

A.1 Pterin-SMX Parameter/Topology File 

 
    0    0    2 
 
This is a remark line 
molecule.res 
N5_    INT  0 
CORRECT     OMIT DU   BEG 
  0.0000 
   1  DUMM  DU    M    0  -1  -2     0.000      .0        .0      .00000 
   2  DUMM  DU    M    1   0  -1     1.449      .0        .0      .00000 
   3  DUMM  DU    M    2   1   0     1.522   111.1        .0      .00000 
   4  C13   ca    M    3   2   1     1.540   111.208   180.000  -0.00433 
   5  H8    ha    E    4   3   2     1.082    83.102   156.178   0.14046 
   6  C14   ca    M    4   3   2     1.399   105.293   -84.387  -0.21466 
   7  H7    ha    E    6   4   3     1.085   119.228   -91.706   0.11383 
   8  C9    ca    M    6   4   3     1.401   120.514    88.195   0.12742 
   9  N5    nh    B    8   6   4     1.358   120.417   178.992  -0.80927 
  10  H10   hn    E    9   8   6     1.030   120.607    -0.996   0.36522 
  11  H9    hn    E    9   8   6     1.031   120.529   179.754   0.36546 
  12  C10   ca    M    8   6   4     1.400   119.054    -1.033  -0.21394 
  13  H6    ha    E   12   8   6     1.085   120.403  -177.889   0.11437 
  14  C11   ca    M   12   8   6     1.398   120.440     1.908  -0.00262 
  15  H5    ha    E   14  12   8     1.084   120.606   179.160   0.14670 
  16  C12   ca    M   14  12   8     1.397   120.232    -0.948  -0.31054 
  17  S15   sy    M   16  14  12     1.772   119.270  -178.843   1.45835 
  18  O2    o     E   17  16  14     1.503   110.057    84.879  -0.69067 
  19  O3    o     E   17  16  14     1.494   110.394   -38.078  -0.69703 
  20  N7    ne    M   17  16  14     1.701   104.212  -156.868  -0.98682 
  21  C18   cc    M   20  17  16     1.357   122.568    80.430   0.59964 
  22  C19   cc    S   21  20  17     1.459   121.516   146.895  -0.36842 
  23  H1    ha    E   22  21  20     1.090   129.891    -0.290   0.15540 
  24  N10   nd    M   21  20  17     1.277   124.888   -33.961  -0.30744 
  25  O5    os    M   24  21  20     1.415   105.738  -179.774  -0.17914 
  26  C20   cd    M   25  24  21     1.327   105.707     0.559   0.19674 
  27  C21   c3    M   26  25  24     1.504   117.908   179.654  -0.11856 
  28  H4    hc    E   27  26  25     1.099   109.347    77.381   0.03945 
  29  H3    hc    E   27  26  25     1.100   110.775  -162.295   0.03653 
  30  H2    hc    E   27  26  25     1.100   109.848   -42.156   0.04387 
 
 
LOOP 
  C12  C13 
  C20  C19 
 
IMPROPER 
  C12  C14  C13   H8 
  C13   C9  C14   H7 
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  C10  C14   C9   N5 
   C9   H9   N5  H10 
  C11   C9  C10   H6 
  C10  C12  C11   H5 
  C11  C13  C12  S15 
  C19  N10  C18   N7 
  C18  C20  C19   H1 
  C21  C19  C20   O5 
 
DONE 
STOP 

A.2 Pterin-SMX Additional Parameters 

 
remark goes here 
MASS 
 
BOND 
ne-cc  381.80   1.414       same as ce-ne 
 
ANGLE 
ca-sy-ne   40.139      98.980   Calculated with empirical approach 
sy-ne-cc   62.900     114.810   same as c2-ne-sy 
ne-cc-cc   69.300     121.150   same as cc-cc-n2 
ne-cc-nd   78.000     113.820   same as n2-c2-n2 
 
DIHE 
sy-ne-cc-cc   1    0.800       180.000           2.000      same as X -ce-
ne-X  
sy-ne-cc-nd   1    0.800       180.000           2.000      same as X -ce-
ne-X  
cc-nd-os-cd   1    3.000       180.000           2.000      same as X -ne-
os-X  
cc-cd-os-nd   1    1.050       180.000           2.000      same as X -c2-
os-X  
nd-os-cd-c3   1    1.050       180.000           2.000      same as X -c2-
os-X  
 
IMPROPER 
ca-ca-ca-ha         1.1          180.0         2.0          General 
improper torsional angle (2 general atom types) 
ca-ca-ca-nh         1.1          180.0         2.0          Using default 
value 
ca-hn-nh-hn         1.1          180.0         2.0          Using default 
value 
ca-ca-ca-sy         1.1          180.0         2.0          Using default 
value 
cc-nd-cc-ne         1.1          180.0         2.0          Using default 
value 
cc-cd-cc-ha         1.1          180.0         2.0          Using default 
value 
c3-cc-cd-os         1.1          180.0         2.0          Using default 
value 
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NONBON 

A.3 pABA Parameter/Topology File 

 
    0    0    2 
 
This is a remark line 
molecule.res 
<1>    INT  0 
CORRECT     OMIT DU   BEG 
  0.0000 
   1  DUMM  DU    M    0  -1  -2     0.000      .0        .0      .00000 
   2  DUMM  DU    M    1   0  -1     1.449      .0        .0      .00000 
   3  DUMM  DU    M    2   1   0     1.522   111.1        .0      .00000 
   4  O23   o     M    3   2   1     1.540   111.208   180.000  -0.83558 
   5  C21   c     M    4   3   2     1.262    74.977    45.765   0.90932 
   6  O22   o     E    5   4   3     1.261   121.626    27.993  -0.83588 
   7  C20   ca    M    5   4   3     1.515   119.163  -152.033  -0.14721 
   8  C19   ca    M    7   5   4     1.399   120.483    -0.007  -0.08417 
   9  H13   ha    E    8   7   5     1.086   119.720     0.158   0.14961 
  10  C17   ca    M    8   7   5     1.398   120.495  -179.805  -0.20197 
  11  H11   ha    E   10   8   7     1.085   119.168   179.918   0.10509 
  12  C15   ca    M   10   8   7     1.400   120.554    -0.037   0.06798 
  13  N14   nh    B   12  10   8     1.356   120.602   179.891  -0.79670 
  14  H9    hn    E   13  12  10     1.031   120.600     0.120   0.35081 
  15  H8    hn    E   13  12  10     1.031   120.658  -179.768   0.35081 
  16  C16   ca    M   12  10   8     1.401   118.888    -0.172  -0.20256 
  17  H10   ha    E   16  12  10     1.085   120.283  -179.870   0.10494 
  18  C18   ca    M   16  12  10     1.398   120.504     0.160  -0.08410 
  19  H12   ha    E   18  16  12     1.085   119.770  -179.979   0.14961 
 
 
LOOP 
  C18  C20 
 
IMPROPER 
  C20  O23  C21  O22 
  C21  C18  C20  C19 
  C20  C17  C19  H13 
  C15  C19  C17  H11 
  C16  C17  C15  N14 
  C15   H9  N14   H8 
  C15  C18  C16  H10 
  C16  C20  C18  H12 
 
DONE 
STOP 
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A.4 pABA Additional Parameters 

 
remark goes here 
MASS 
 
BOND 
 
ANGLE 
 
DIHE 
 
IMPROPER 
ca-o -c -o          1.1          180.0         2.0          General 
improper torsional angle (1 general atom type) 
c -ca-ca-ca         1.1          180.0         2.0          Using default 
value 
ca-ca-ca-ha         1.1          180.0         2.0          General 
improper torsional angle (2 general atom types) 
ca-ca-ca-nh         1.1          180.0         2.0          Using default 
value 
ca-hn-nh-hn         1.1          180.0         2.0          Using default 
value 
 
NONBON 

A.5 DHPP Parameter/Topology File 

 
    0    0    2 
 
This is a remark line 
molecule.res 
PT1    INT  0 
CORRECT     OMIT DU   BEG 
  0.0000 
   1  DUMM  DU    M    0  -1  -2     0.000      .0        .0      .00000 
   2  DUMM  DU    M    1   0  -1     1.449      .0        .0      .00000 
   3  DUMM  DU    M    2   1   0     1.522   111.1        .0      .00000 
   4  N11   nh    M    3   2   1     1.540   111.208   180.000  -0.86704 
   5  H1    hn    E    4   3   2     1.031   150.274   -32.291   0.36913 
   6  H2    hn    E    4   3   2     1.029    68.154    78.161   0.35130 
   7  C7    cd    M    4   3   2     1.305    61.935  -132.431   0.56438 
   8  N9    nc    E    7   4   3     1.272   119.636   146.126  -0.69312 
   9  N4    n     M    7   4   3     1.308   119.085   -33.959  -0.49023 
  10  H5    hn    E    9   7   4     1.027   120.880    -0.133   0.30570 
  11  C2    c     M    9   7   4     1.305   121.610   179.827   0.71690 
  12  O1    o     E   11   9   7     1.220   119.655   179.814  -0.68699 
  13  C3    cd    M   11   9   7     1.477   120.189    -0.283  -0.06703 
  14  N6    nf    E   13  11   9     1.446   122.983  -178.373  -0.62161 
  15  C5    cc    M   13  11   9     1.336   117.276     0.945   0.33507 
  16  N8    nh    M   15  13  11     1.304   121.701   179.156  -0.67478 
  17  H6    hn    E   16  15  13     1.032   118.656   178.581   0.41204 
  18  C12   c3    M   16  15  13     1.466   122.289    -2.096  -0.04144 
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  19  H3    h1    E   18  16  15     1.102   110.446   129.399   0.20505 
  20  H4    h1    E   18  16  15     1.099   106.410  -111.398   0.18287 
  21  C10   c2    M   18  16  15     1.505   113.974     5.741   0.47902 
  22  C13   c3    M   21  18  16     1.508   119.414   173.133   0.14476 
  23  H7    h1    E   22  21  18     1.096   108.569   -90.894   0.13155 
  24  H14   h1    E   22  21  18     1.098   106.819   153.769  -0.00181 
  25  O38   os    M   22  21  18     1.437   116.106    36.793  -0.58527 
  26  P40   p5    M   25  22  21     1.606   135.494   -73.898   1.56950 
  27  O2    o     E   26  25  22     1.491   112.442    68.982  -0.91530 
  28  O3    o     E   26  25  22     1.492   104.553  -179.581  -0.90410 
  29  O4    os    M   26  25  22     1.606   116.062   -61.355  -0.82164 
  30  P44   p5    M   29  26  25     1.605   119.125    36.344   1.46331 
  31  O6    o     E   30  29  26     1.491   108.993   165.384  -0.95009 
  32  O7    o     E   30  29  26     1.490   113.198    45.487  -0.96046 
  33  O5    o     M   30  29  26     1.491   110.520   -77.439  -0.94965 
 
 
LOOP 
   C5   N9 
  C10   N6 
 
IMPROPER 
   C7   H1  N11   H2 
   N4   N9   C7  N11 
   C2   C7   N4   H5 
   C3   N4   C2   O1 
   C2   C5   C3   N6 
   C3   N9   C5   N8 
  C12   C5   N8   H6 
  C12  C13  C10   N6 
 
DONE 
STOP 

A.6 DHPP Additional Parameters 

 
remark goes here 
MASS 
 
BOND 
cd-nf  597.70   1.280       same as c2-nf 
 
ANGLE 
c -cd-nf   68.400     120.890   same as c -cd-n2 
cd-nf-c2   70.800     118.180   same as c2-n2-c2 
nf-cd-cc   71.300     126.010   same as c2-c2-n2 
nh-c3-c2   67.571     107.790   Calculated with empirical approach 
 
DIHE 
c -cd-nf-c2   1    4.150       180.000           2.000      same as X -c2-
nf-X  
cc-cd-nf-c2   1    4.150       180.000           2.000      same as X -c2-
nf-X  
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IMPROPER 
cd-hn-nh-hn         1.1          180.0         2.0          Using default 
value 
n -nc-cd-nh         1.1          180.0         2.0          Using default 
value 
c -cd-n -hn         1.1          180.0         2.0          General 
improper torsional angle (2 general atom types) 
cd-n -c -o         10.5          180.0         2.0          General 
improper torsional angle (2 general atom types) 
c -cc-cd-nf         1.1          180.0         2.0          Using default 
value 
cd-nc-cc-nh         1.1          180.0         2.0          Using default 
value 
c3-cc-nh-hn         1.1          180.0         2.0          Using default 
value 
c3-c3-c2-nf         1.1          180.0         2.0          Using default 
value 
 
NONBON 

A.7 PPi Parameter/Topology File 

 
    0    0    2 
 
This is a remark line 
molecule.res 
PPI    INT  0 
CORRECT     OMIT DU   BEG 
  0.0000 
   1  DUMM  DU    M    0  -1  -2     0.000      .0        .0      .00000 
   2  DUMM  DU    M    1   0  -1     1.449      .0        .0      .00000 
   3  DUMM  DU    M    2   1   0     1.522   111.1        .0      .00000 
   4  O1    o     M    3   2   1     1.540   111.208   180.000  -1.02198 
   5  P3    p5    M    4   3   2     1.489   128.443   117.576   1.49384 
   6  O10   o     E    5   4   3     1.485   111.856  -155.385  -1.02198 
   7  O11   o     E    5   4   3     1.487   111.295   -26.083  -1.02198 
   8  O3    os    M    5   4   3     1.647   101.563    87.357  -0.85581 
   9  PO4   p5    M    8   5   4     1.647   131.548   161.142   1.49384 
  10  O5    o     E    9   8   5     1.485   109.960    42.494  -1.02198 
  11  O6    o     E    9   8   5     1.487   106.882   -82.185  -1.02198 
  12  O4    o     M    9   8   5     1.489   101.559   161.071  -1.02198 
 
 
LOOP 
 
IMPROPER 
 
DONE 
STOP 
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A.8 SO4 Parameter/Topology File 

 

    0    0    2 
 
This is a remark line 
molecule.res 
SO4    INT  0 
CORRECT     OMIT DU   BEG 
  0.0000 
   1  DUMM  DU    M    0  -1  -2     0.000      .0        .0      .00000 
   2  DUMM  DU    M    1   0  -1     1.449      .0        .0      .00000 
   3  DUMM  DU    M    2   1   0     1.522   111.1        .0      .00000 
   4  O4    o     M    3   2   1     1.540   111.208   180.000  -0.88594 
   5  S     s6    M    4   3   2     1.420    97.201   111.356   1.54374 
   6  O2    o     E    5   4   3     1.423   119.786   -82.939  -0.88593 
   7  O1    o     E    5   4   3     1.410   118.162    43.175  -0.88596 
   8  O3    o     M    5   4   3     1.399   117.454   154.257  -0.88592 
 
 
LOOP 
 
IMPROPER 
 
DONE 
STOP 
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B. Chapter 2 Supplemental Material 

B.1 Molecular Dynamics Equilibrium Energy Plots 

 

 

Figure B.1. DHPS Pterin-SMX 4ns, Explicit Simulation Total Energy Plot 
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B.2 DHPS Molecular Dynamics RMSD Calculations 

 

Figure B.2. DHPS RMSD Calculation, Full Enzyme 

This is a standard RMSD calculation plot referenced to initial frame DHPS simulation 2-
17.  In this figure, RMSD is calculated for backbone atoms of the entire protein. 
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Figure B.3. DHPS RMSD Calculation, Loop 1  

This is a standard RMSD calculation plot referenced to initial frame DHPS simulation 2-
17.  In this figure, RMSD is calculated for all atoms of loop 1, from Val28 to Val40. 
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Figure B.4. DHPS RMSD Calculation, Loop 2 

This is a standard RMSD calculation plot referenced to initial frame DHPS simulation 2-
17.  In this figure, RMSD is calculated for all atoms of loop 2, from Glu65 to GLU77. 
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Figure B.5. DHPS RMSD Calculation, Helices and β Strands 

This is a standard RMSD calculation plot referenced to initial frame DHPS simulation 2-
17.  In this figure, RMSD is calculated for all backbone atoms of the helix and strand 
secondary structures and excludes all atoms in flexible loop regions. 
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Figure B.6. DHPS RMSD Calculation, Full Protein to Minimum Energy Structure 

This is a standard RMSD calculation plot referenced to the lowest energy conformation 
from DHPS simulation 2-17.  In this figure, RMSD is calculated for backbone atoms of 
the entire protein. 
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Figure B.7. DHPS RMSD Calculation, Full Protein to Average Structure 

This is a standard RMSD calculation plot referenced to the average conformation from 
DHPS simulation 2-17.  In this figure, RMSD is calculated for backbone atoms of the 
entire protein. 
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Table B.1. DHPS Average and Minimum Energy Structure RMSD Values 

 
DHPS MD Structure 

 

 
RMSD Calculation 

 
RMSD (Å) Value 

Minimum Energy Structure All Backbone Atoms 3.091 
 Loop 2 Backbone Atoms 3.017 
 Loop 2 All Atoms 

 
4.321 

Average Structure All Backbone Atoms 2.600 
 Loop 2 Backbone Atoms 3.055 
 Loop 2 All Atoms 4.388 
 

The RMSD values reported above are referenced to a DHPS crystal structure that was 
solved by our group after our MD studies were completed.  In this new structure, loop 2 
is visible in its entirety, although there is no ligand bound in the pterin binding site. Loop 
1 is missing from the new structure, indicating that the crystal contact has been lost and 
the loop is highly mobile.  
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B.3 Trajectory Analysis 

B.3.1 Phe33 Dihedral Analysis 
 

 

Figure B.8. Phe33 Phi Dihedral Map 

 
 

 

Figure B.9. Phe33 Psi Dihedral Map 
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Figure B.10. Phe33 Chi1 Dihedral Map 

 
 

 

Figure B.11. Phe33 Chi2 Dihedral Map 

  



204 
 

B.3.2 Thr67 Dihedral Analysis 
 

 

Figure B.12. Thr67 Phi Dihedral Map 

 
 
 

 

Figure B.13. Thr67 Psi Dihedral Map 
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Figure B.14. Thr67 Chi Dihedral Map 
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B.3.3. Pro69 Dihedral Analysis 
 

 

Figure B.15. Pro69 Phi Dihedral Map 

 
 

 
 

 

Figure B.16. Pro69 Psi Dihedral Map 
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B.3.4. Arg68 Dihedral Analysis 

 

Figure B.17. Arg68 Phi Dihedral Map 

 
 
 

 

Figure B.18. Arg68 Psi Dihedral Map 
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Figure B.19. Arg68 Chi1 Dihedral Map 

 
 
 

 

Figure B.20. Arg68 Chi2 Dihedral Map 
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Figure B.21. Arg68 Chi3 Dihedral Map 

 
 

 

Figure B.22. Arg68 Chi4 Dihedral Map 
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C. Chapter 3 Supplemental Tables and Figures 

Table C.1. DOCK Docking of the ACD Decoy Set 

 
Docking 

Program / 
Validation Set 

 

Grid 
Score 

 

 
 

F-Score 

 
 

PMF-
Score 

 
 

G-Score 

 
 

D-Score 

 
 

Chem-
Score 

Grid Score --- .748 .155 <.001 <.001 <.001 
F-Score .237 --- .298 .016 .551 .004 

PMF-Score .975 .154 --- <.001 .006 <.001 
G-Score <.001 .002 <.001 --- .004 .764 
D-Score <.001 .024 <.001 .008 --- .041 

ChemScore .001 .003 <.001 .265 .043 --- 

 

Table C.2. DOCK Docking of the Schrödinger Decoy Set 

 
Docking 

Program / 
Validation Set 

 

Grid 
Score 

 

 
 

F-Score 

 
 

PMF-
Score 

 
 

G-Score 

 
 

D-Score 

 
 

Chem-
Score 

Grid Score --- .762 .003 .002 .003 .007 
F-Score .161 --- .125 .005 .333 <.001 

PMF-Score <.001 .774 --- <.001 <.001 <.001 
G-Score .008 .002 <.001 --- .076 .422 
D-Score .056 .053 <.001 .267 --- .085 

ChemScore .047 <.001 <.001 .467 .165 --- 
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Table C.3. DOCK Docking of the ZINC Decoy Set 

 
Docking 

Program / 
Validation Set 

 

Grid 
Score 

 

 
 

F-Score 

 
 

PMF-
Score 

 
 

G-Score 

 
 

D-Score 

 
 

Chem-
Score 

Grid Score --- .862 .030 <.001 .002 .001 
F-Score .310 --- .119 .002 .515 .001 

PMF-Score <.001 .665 --- <.001 .001 <.001 
G-Score <.001 .002 <.001 --- .005 .924 
D-Score <.001 .077 <.001 .005 --- .074 

ChemScore .008 .001 <.001 .911 .162 --- 

 

Table C.4. FlexX Docking of the ACD Decoy Set 

 
Docking 

Program / 
Validation Set 

 

 
 

F-Score 

 
 

PMF-
Score 

 
 

G-Score 

 
 

D-Score 

 
 

ChemScore

F-Score --- .537 <.001 .019 <.001 
PMF-Score .485 --- <.001 .003 <.001 

G-Score .002 <.001 --- .005 .918 
D-Score .017 <.001 .001 --- .010 

ChemScore <.001 <.001 .331 .033 --- 
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Table C.5. FlexX Docking of the Schrödinger Decoy Set 

 
Docking 

Program / 
Validation Set 

 

 
 

F-Score 

 
 

PMF-
Score 

 
 

G-Score 

 
 

D-Score 

 
 

ChemScore

F-Score --- .032 <.001 .011 <.001 
PMF-Score .076 --- <.001 <.001 <.001 

G-Score .021 <.001 --- .023 .324 
D-Score .030 <.001 .049 --- .001 

ChemScore <.001 <.001 .184 .028 --- 

 

Table C.6. FlexX Docking of the ZINC Decoy Set 

 
Docking 

Program / 
Validation Set 

 

 
 

F-Score 

 
 

PMF-
Score 

 
 

G-Score 

 
 

D-Score 

 
 

ChemScore

F-Score --- .052 <.001 .017 <.001 
PMF-Score .051 --- <.001 <.001 <.001 

G-Score .010 <.001 --- .006 .471 
D-Score .042 <.001 .013 --- .001 

ChemScore <.001 <.001 .224 .028 --- 
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Table C.7. Glide Docking of the ACD Decoy Set 

 
Docking 

Program / 
Validation Set 

 

Glide 
Score 

 

 
 

F-Score 

 
 

PMF-
Score 

 
 

G-Score 

 
 

D-Score 

 
 

Chem-
Score 

Glide Score --- .909 .054 <.001 <.001 <.001 
F-Score .985 --- .027 <.001 <.001 <.001 

PMF-Score .142 .317 --- <.001 <.001 <.001 
G-Score <.001 <.001 <.001 --- .022 <.001 
D-Score <.001 <.001 <.001 .031 --- .870 

ChemScore .003 <.001 .002 <.001 .981 --- 

 

Table C.8. Glide Docking of the Schrödinger Decoy Set 

 
Docking 

Program / 
Validation Set 

 

Glide 
Score 

 

 
 

F-Score 

 
 

PMF-
Score 

 
 

G-Score 

 
 

D-Score 

 
 

Chem-
Score 

Glide Score --- .124 .021 <.001 <.001 <.001 
F-Score .371 --- .140 <.001 <.001 <.001 

PMF-Score .089 .529 --- <.001 <.001 <.001 
G-Score <.001 <.001 <.001 --- .338 .236 
D-Score <.001 <.001 <.001 .342 --- .966 

ChemScore <.001 <.001 .005 .625 .811 --- 
 
 

  



214 
 

Table C.9. GOLD Docking of the ZINC Decoy Set 

 
Docking 

Program / 
Validation Set 

 

GOLD 
Score 

 

 
 

F-Score 

 
 

PMF-
Score 

 
 

G-Score 

 
 

D-Score 

 
 

Chem-
Score 

GOLD Score --- .077 .029 <.001 <.001 <.001 
F-Score .005 --- .863 <.001 <.001 <.001 

PMF-Score .007 .708 --- <.001 <.001 <.001 
G-Score <.001 .002 <.001 --- .958 .024 
D-Score <.001 .002 <.001 .639 --- .010 

ChemScore <.001 <.001 <.001 .221 .012 --- 

 

Table C.10. Surflex Docking of the ACD Decoy Set 

 
Docking 

Program / 
Validation Set 

 

Surflex 
Score 

 

 
 

F-Score 

 
 

PMF-
Score 

 
 

G-Score 

 
 

D-Score 

 
 

Chem-
Score 

Surflex Score --- .963 .002 <.001 <.001 <.001 
F-Score .460 --- .008 <.001 <.001 <.001 

PMF-Score .003 <.001 --- <.001 <.001 <.001 
G-Score <.001 <.001 <.001 --- .001 <.001 
D-Score <.001 <.001 <.001  --- .460 

ChemScore <.001 <.001 <.001 <.001 .447 --- 
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Table C.11. Surflex Docking of the ZINC Decoy Set 

 
Docking 

Program / 
Validation Set 

 

Surflex 
Score 

 

 
 

F-Score 

 
 

PMF-
Score 

 
 

G-Score 

 
 

D-Score 

 
 

Chem-
Score 

Surflex Score --- .499 .172 <.001 <.001 <.001 
F-Score .475 --- .327 <.001 <.001 <.001 

PMF-Score .194 .472 --- <.001 <.001 <.001 
G-Score <.001 <.001 <.001 --- .006 <.001 
D-Score <.001 <.001 <.001 .021 --- .249 

ChemScore <.001 <.001 <.001 <.001 .258 --- 
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Figure C.1. DOCK - ACD Decoy Set, ROC Curves 
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Figure C.2. DOCK - Schrodinger Decoy Set, ROC Curves 
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Figure C.3. DOCK - ZINC Decoy Set, ROC Curves 
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Figure C.4. FlexX - ACD Decoy Set, ROC Curves 
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Figure C.5. FlexX - Schrodinger Decoy Set, ROC Curves 
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Figure C.6. FlexX - ZINC Decoy Set, ROC Curves 
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Figure C.7. Glide - ACD Decoy Set, ROC Curves 
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Figure C.8. Glide - Schrodinger Decoy Set, ROC Curves 
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Figure C.9. Gold - ZINC Decoy Set, ROC Curves 
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Figure C.10. Surflex - ACD Decoy Set, ROC Curves 
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Figure C.11. Surflex - ZINC Decoy Set, ROC Curves 
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Figure C.12. ZINC Decoy Set, Enrichment at 2% 
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Figure C.13. Schrodinger Decoy Set, Enrichment at 2% 
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Figure C.14. ACD Decoy Set, Enrichment at 2% 
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D. Chapter 4 Supplemental Material 

D.1 ZINC Databases Filtering Rules 

#special flags 
50.0 500.0 MOLWT 
STRIPSALTS yes 
0 10 CHIRALITY enumerate 
ALLOWED_ATOMS C N O S P Cl F Br I H 
   
# normal format is (min, max, name, SMARTS) 
 
#rules 
5 40 Non-Hydrogen_atoms [a,A] 
2 40 carbons [#6] 
1 20 N,O,S [#7,#8,#16] 
0 1 Sulfonyl_halides S(=O)(=O)[Cl,Br] 
0 1 Acid_halides [S,C](=[O,S])[F,Br,Cl,I] 
0 1 Alkyl_halides [Br,Cl,I][CX4;CH,CH2] 
0 0 Phosphenes cPc 
0 0 Heptanes [CD1][CD2][CD2][CD2][CD2][CD2][CD2] 
0 0 Perchlorates OCl(O)(O)(O) 
0 7 Fluorines F 
0 6 Cl,Br,I [Cl,Br,I] 
0 0 Carbazides O=CN=[N+]=[N-] 
0 0 Acid_anhydrides C(=O)OC(=O) 
0 0 Peroxides OO 
0 1 Iso(thio)cyanates N=C=[S,O] 
0 1 Thiocyanates SC#N 
0 0 Phosphoranes C=P 
0 0 P/S_halides [P,S][Cl,Br,F,I] 
#0 0 Carbodiimides N=C=N 
0 0 Cyanohydrines N#CC[OH] 
0 0 Carbazides O=CN=[N+]=[N-] 
0 1 Sulfate_esters COS(=O)O[C,c] 
0 1 Sulfonates COS(=O)(=O)[C,c] 
0 0 Pentafluorophenyl_esters C(=O)Oc1c(F)c(F)c(F)c(F)c1(F) 
0 0 Paranitrophenyl_esters C(=O)Oc1ccc(N(=O)=O)cc1 
0 0 HOBt_esters C(=O)Onnn 
0 0 Triflates OS(=O)(=O)C(F)(F)F  
0 0 Lawesson's_reagents P(=S)(S)S 
0 0 Phosphoramides NP(=O)(N)N 
0 0 Aromatic_azides cN=[N+]=[N-] 
0 2 Quaternary_C,Cl,I,P,S [C+,Cl+,I+,P+,S+] 
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0 2 Beta_carbonyl_quaternary_N C(=O)C[N+,n+] 
0 2 Acylhydrazides [N;R0][N;R0]C(=O) 
0 0 Chloramidines [Cl]C([C&R0])=N 
0 0 Isonitriles [N+]#[C-] 
0 0 Triacyloximes C(=O)N(C(=O))OC(=O) 
0 0 Acyl_cyanides N#CC(=O) 
0 0 Sulfonyl_cyanides S(=O)(=O)C#N 
0 0 Cyanophosphonates P(OCC)(OCC)(=O)C#N 
0 0 Azocyanamides [N;R0]=[N;R0]C#N 
0 0 Azoalkanals [N;R0]=[N;R0]CC=O 
0 2 (Thio)epoxides,aziridines C1[O,S,N]C1 
0 2 Benzylic_quaternary_N cC[N+] 
0 2 Thioesters C[O,S;R0][C;R0](=S) 
0 3 Diand_Triphosphates P(=O)([OH])OP(=O)[OH] 
0 2 Aminooxy(oxo) [#7]O[#6,#16]=O 
0 2 nitros N(~[OD1])~[OD1] 
0 2 Imines C=[N;R0]* 
0 2 Acrylonitriles N#CC=C 
0 2 Propenals C=CC(=O)[!#7;!#8] 
0 4 Quaternary_N [n+,N+] 
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D.2 Virtual Screen Round 1, All Compounds Selected for Screening 

 

 

Figure D.1. Virtual Screening, Round 1 Hits, Part 1 
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Figure D.2. Virtual Screening, Round 1 Hits, Part 2 
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Figure D.3. Virtual Screening, Round 1 Hits, Part 3 

  



235 
 

D.3 Virtual Screen Round 2, All Compounds Selected for Screening 

 

 

Figure D.4. Virtual Screening, Round 2 Hits, Part 1  
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Figure D.5. Virtual Screening, Round 2 Hits, Part 2 
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Figure D.6. Virtual Screening, Round 2 Hits, Part 3 
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