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Computers are routinely used in the 

modern drug discovery process. In 

virtual screening, the bioactivity of a 

compound is predicted in silico. The 

focus of this study has been in the 

development of novel rapid virtual 

screening software and acceleration 

of current methods. This dissertation 

describes new approaches for both 

protein- and ligand-based virtual 

screening.
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Kalliokoski, Tuomo. Accelerating Three-Dimensional Virtual Screening: New 
Software and Approaches for Computer-Aided Drug Discovery. Publications 
of the University of Eastern Finland. Dissertations in Health Sciences, 22. 2010. 
174 p. 
ABSTRACT 
Computers are routinely used in the drug discovery process. Virtual screening 
is defined to be the selection of compounds by evaluating their desirability in a 
computational model. Usually the predicted property is the bioactivity of a 
compound in an in vitro assay. Based on the classic Fischer lock and key-
model, virtual screening is either ligand- or structure-based. In three-
dimensional virtual screening, models of ligands and/or target proteins are 
used. In the ligand-based approach, the similarity of known ligands is used in 
the search for novel structures, whereas in structure-based virtual screening, 
compounds are docked into a protein model of the drug target. A 
consideration of all three-dimensions increases the computational expense of 
virtual screening considerably. The predictions need to be fast, as the 
commonly used data sets consist of many thousands, even millions of 
compounds. As virtual screening is a relatively new field of science, there is a 
need for novel methods and for the improvement of existing virtual screening 
protocols. In this thesis, a novel ligand-based virtual screening method called 
FieldChopper was developed. FieldChopper can be used when multiple, 
similarly binding active compounds are known. This novel method 
outperformed techniques based on single ligand similarities in a comparative 
study. In addition, the effects of tautomerism and protonation in structure-
based virtual screening were studied with large data sets. It does appear that 
current methods are not yet accurate enough for separating between different 
tautomers and protonation sets and therefore the use of multiple forms of 
molecules in structure-based virtual screening is simply a waste of resources. 
The effect of conformational analysis approaches on ligand-based virtual 
screening using shape-based overlay techniques was investigated. It was 
shown that with GPU computing and single conformation databases that even 
large databases can be screened on a regular desktop computer. 
 
National Library of Medicine Classification: QU 34, QV 26.5, QV 744 
Medical Subject Headings: Drug Discovery; Models, Molecular; Molecular 
Structure; Molecular Conformation; Ligands; Computer-Aided Design; 
Software; Software Design 
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Kalliokoski, Tuomo. Kolmiuloitteisen virtuaaliseulonnan nopeuttaminen: 
uusia ohjelmia ja lähestymistapoja tietokoneavusteiseen 
lääkeainesuunnitteluun. Itä-Suomen yliopiston julkaisuja. Terveystieteiden 
tiedekunnan väitöskirjat, 22. 2010. 174 p. 
TIIVISTELMÄ 
Virtuaaliseulonnalla tarkoitetaan yhdisteiden pisteyttämistä halutun 
ominaisuuden suhteen tietokoneen avulla. Yleensä ennustetaan yhdisteen 
biologista aktiivisuutta in vitro -kokeessa perustuen joko vertaamalla 
samankaltaisuutta tunnettuihin aktiivisiin yhdisteisiin (ns. ligandi-pohjainen 
virtuaaliseulonta) tai kohdeproteiiniin rakenteeseen telakoimalla (ns. rakenne-
pohjainen virtuaaliseulonta). 
Kolmi-ulotteisessa virtuaaliseulonnassa sekä pieniä molekyylejä että 
proteiineja käsitellään joustavina kolmiulotteisina rakenteina. Tämä lisää 
seulonnan laskennallista vaativuutta huomattavasti. Koska käsiteltäviä 
molekyylejä on yleensä tuhansia ja aikataulut lääkekehitysprojekteissa 
tiukkoja, on virtuaaliseulontamenetelmien oltava nopeita. 
Tässä väitöskirjatyössä kehitettiin uusi ligandi-pohjainen nopea 
virtuaaliseulontamenetelmä FieldChopper, jota voidaan käyttää, kun 
tunnetaan useita samaan sitoutumistaskuun vaikuttavia yhdisteitä. Alustavien 
tulosten mukaan FieldChopper voi olla hyödyllinen molekyyliseula. 
Uusia lähestymistapoja kehitettiin sekä rakenne- että ligandi-pohjaiseen 
virtuaaliselontaan. Ligandien tautomerian ja erilaisten protonaatiomuotojen 
vaikutusta molekyylitelakointiin on arvioitu aikaisemmin suureksi. Tässä 
tutkimuksessa havaittiin, että nykyisillä telakointiohjelmilla erot ovat luultua 
pienempiä ja seulontaprosessia voidaan yksinkertaistaa lisänopeuden 
saamiseksi. Viimeisessä osatyössä selvitettiin konformaatioanalyysin 
vaikutusta muotoon perustuvassa, ligandi-pohjaisessa virtuaaliseulonnassa. 
Yleisimmin käytetty menetelmä, jossa hakumolekyyliä käsitellään jäykkänä 
rakenteena ja tietokantamolekyylejä joustavina, ei tulosten mukaan ole 
välttämättä optimaalinen ratkaisu. 
 
Yleinen suomalainen asiasanasto: lääkkeet; lääkeaineet; molekyylit; rakenne; 
kolmiulotteisuus; tietokoneavusteinen suunnittelu; ohjelmistokehitys 
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Quantity has a quality all of its own.  
A remark usually attributed to Joseph Stalin (1878-1953) 
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1 Introduction 

Drug discovery and development is a long and expensive 
process, taking on average 12-15 years and costing 0.8-1.7 billion 
US dollars (DiMasi et al. 2003; Adams and Brantner 2006; Paul et 
al. 2010). The process is illustrated with a simplified flowchart 
on Figure 1.1. Initially, there must be a disease or symptom for 
which there is need for a novel drug. Since the drug 
development is so expensive, financial aspects must be also 
considered.  
The first step in the actual development process is the drug 
target identification and validation. Novel drug targets are often 
identified via basic research by analyzing various molecular 
pathways. After a potential drug target has been identified, a 
cell-based assay needs to be developed in order to measure the 
biological activity of chemicals for the target. 
Large chemical libraries have been created with combinatorial 
chemistry techniques. Natural sources like plants and bacteria 
provide also useful sources for drug molecules. The chemical 
libraries are evaluated for the drug target in a process called 
High-Throughput Screening (HTS), which is conducted by 
robots. An alternative to this rather laborious and expensive 
HTS method is to use computers for the prediction of biological 
activity (virtual HTS).  
When a biologically active compound is identified from the 
initial screening, it is then tested in more sophisticated assays 
and thus selected as a lead molecule for the drug development 
process. The lead molecule is modified into a drug candidate by 
improving its pharmacokinetic and pharmacodynamic 
properties by synthesizing numerous analogues of the main 
compound. After animal testing, the molecule is tested on 
human volunteers. The most expensive parts in the drug 
development are the clinical experiments that demonstrate the 
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efficacy of the new drug molecule. Finally, drug must pass 
through a rigorous regulatory procedure before it can reach the 
market. 
In addition to being an extremely expensive and long process, 
development of a new drug molecule is also risky as about nine 
out of ten candidate molecules fail to complete the course before 
they are accepted as drugs (Shah and Federoff 2009). The extra 
money spent in research and development has not increased the 
number of new chemical entities entering the market (Tralau-
Stewart et al. 2009). Therefore, novel and preferably cheap 
methods are urgently needed by the pharmaceutical industry in 
order to boost its productivity (Paul et al. 2010). Computer-
based methods are one such strategy. As the selection of a 
reasonable lead structure is a critical step for the successful 
development of a drug, the lead identification step has received 
considerable attention recently (Köppen 2009; Paul et al. 2010). 
International Union of Pure and Applied Chemistry (IUPAC) 
have defined virtual screening (also called in silico screening) as 
the “selection of compounds by evaluating their desirability in a 
computational model” (Maclean et al. 1999). In this thesis, it is 
assumed that the number of compounds screened will be large, 
from thousands to millions of molecules (virtual high-
throughput screening). The focus of this study has been in the 
development of novel rapid virtual screening software and the 
acceleration of current methods. 
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Figure 1.1: The drug development process (O'Driscoll 2004) 
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2 3D-Virtual Screening 

Most drug molecules act via interactions with the various target 
proteins that exist in the organism, e.g. receptors, ion-channels, 
enzymes and transport proteins. In modern drug discovery, 
these targets are typically identified by the genetic analysis of 
the molecular pathways involved in a disease state (Zhu and 
Cuozzo 2009).  
A compound that binds to a protein is called a ligand (Nelson 
and Cox 2005). It binds to the active site of the protein, which is 
complementary to the ligand in its steric and electrostatic 
properties. The specific nature of the binding can be compared 
to a key (ligand) and lock (protein), the model first proposed in 
the end of 19th century (Fischer 1894). The model is illustrated 
in Figure 2.1. It shows protein P, which has a triangular-shaped 
active site. The ligand A is a triangle, so it fits the active site and 
thus is able to bind to the protein. However, inactive compound 
B is a circle, so it will not fit. 
 

TARGET PROTEIN

PActive Site

A
LIGAND

B

INACTIVE COMPOUND

 
Figure 2.1: The Fischer’s key and lock model. Ligand A fits the active site of target 
protein P, whereas inactive compound B does not. 
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Fischer’s key and lock model is however overly simplistic, as it 
implies that ligands and proteins are rigid objects. The binding 
of a protein and ligand often induces a change in the binding 
site, which is called ”induced fit” (Koshland 1958; Koshland 
1996). Both the ligand and target protein adapt their 
conformation for better complementary (Jorgensen 1991; Nelson 
and Cox 2005). The induced fit theory is illustrated in Figure 2.2. 
At first, ligand C does not match the active site of protein P, but 
after undergoing induced fit, it is able to bind. There a better 
metaphor for the protein-ligand process is a hand (ligand) and 
glove (protein) instead of the rigid objects like a key and lock 
(Rao 2005). 
 

PGC PGC

 
Figure 2.2: The Koshland induced fit theory. The ligand C induces a change in protein 
P’s conformation, which makes the binding site more complementary to the ligand. 
 
The induced fit theory does not explain all observed phenomena 
relating to the protein-ligand binding and recently a theory 
called “conformational selection” has emerged (Bosshard 2001; 
Boehr et al. 2009). It is illustrated on Figure 2.3 as a 
thermodynamic circle. Protein P can exist in two conformations 
in solution (P1 and P2). The binding conformation P2 pre-exists 
in solution before the ligand D is added. The kinetic constants 
K1 and K2 define, in addition to thermodynamic factors, if the 
binding of ligand D is via induced fit or conformational 
selection. 
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D

P2

D

P1P1

D

P2

D

K1

K2

Conformational
changePre-equilibrium

Conformational
selection

Induced
fit

 
Figure 2.3: Conformational selection theory (adapted from Boehr 2009). The process 
can viewed as a simplified thermodynamic cycle. 
 
In virtual screening, often the simplest Fischer theory of a rigid 
protein is considered due to computational demands (McInnes 
2007). However, it has been recommended to be cautious and 
keeping the complexity of the biomolecular recognition process 
in mind in order not to over-interpret results from VS studies 
(Bissantz et al. 2010). 
The overall view of the virtual screening process is shown in 
Figure 2.4. Virtual screening can be divided into two major 
strategies: ligand-based virtual screening (LBVS) and structure-
based or target-based virtual screening (SBVS) (Rester 2008). 
Both approaches can be applied simultaneously provided that 
enough information is available. As with any modeling 
procedure, experimental data is required before predictions can 
be made. In LBVS, the information about other similarly 
bioactive compounds (“keys”) is used, whereas in SBVS 3D-
models of the target proteins (“locks”) are utilized. The 3D-
models of target proteins are either derived from X-ray 
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crystallography and Nuclear Magnetic Resonance (NMR) 
experiments or homology modeling, where the existing 
experimental data is used to build comparative models of 
proteins from their amino acid sequence. The chemical libraries 
that are screened are usually created using combinatorial 
chemistry techniques or they are built from natural products, 
such as chemicals extracted from plants. The result of a virtual 
screen is a hit list that is a prioritized list of compounds suitable 
for biological testing (in vitro evaluation). It is hoped that the top 
of the hit list contains more bioactive compounds than could be 
obtained from a random selection. 
 

Quick
filtering

Scoring

Hit list

In vitro
evaluation

Homology
modelling

Database
preparation

Structure-Based
Virtual Screening

(SBVS)

Ligand-Based
Virtual Screening

(LBVS)

X-ray/
NMR SequenceNatural

products
Combinatorial

chemistry

Biologically
active

compound(s)

Protein
model

Query
molecule(s) Database

DockingSimilarity
searching

 
Figure 2.4: Overview of virtual screening 
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Virtual screening has many attractive qualities. The number of 
compounds that can be screened is much larger than with 
biological screening (Figure 2.5). In an academic setting, usually 
only virtual screening is possible due to the high costs related to 
HTS. The size of medicinal chemistry space is almost infinite, 
estimated to be 1060 molecules (Nicholls 2008; Köppen 2009). 
This is truly a staggering number: for comparison NASA Glenn 
Research Center has estimated that the total mass of all the stars 
in the observable universe is 3 * 1052 kg (NASA 2009). In a 
typical academic virtual screening study, one to ten million 
compounds will be screened for their biological potential and 
approximately 100-1000 molecules are tested in vitro. The large 
number of compounds to be screened means that virtual 
screening methods need to be fast in order to be truly useful for 
drug development. 
As the price of high-performance computing has plummeted 
due to advances in both hardware and software, virtual 
screening costs only a small fraction of HTS. One can also 
predict bioactivity for molecules that can be readily made, but 
do not yet exist (virtual libraries). This strategy is often applied 
in the lead optimization phase. 
 

 
Figure 2.5: The numbers of molecules available from different sources (Köppen 2009). 
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Next, an overview for LBVS- and SBVS-methods is given with 
short introductions to high-performance computing (HPC) and 
database preparation. It should be noted that as there are 
thousands of different methods proposed in the literature 
(Todeschini and Consonni 2009); only some of the most used 
publicly available techniques are discussed. As the experimental 
part of this thesis is based on the acceleration of 3D-based 
virtual screening methods, the 2D-methods are only briefly 
mentioned. The different methods are viewed from 
practitioner’s view and not discussed in algorithmic detail. This 
literature review hopes to consider most of the readily available 
3D-virtual screening tools available on May 2010. 

2.1 HIGH-PERFORMANCE COMPUTING IN VIRTUAL 

SCREENING 

Since a large amount of data is processed in virtual screening, 
High-Performance Computing (HPC) is required for most real-
life applications. HPC is based on massively parallel computing 
using supercomputers and computer clusters. Most algorithms 
used in virtual screening are trivial to parallelize by splitting the 
data into smaller pieces. 
In the past, HPC required specialized and expensive hardware. 
Due to the availability of cheap multicore processors and free 
operating systems like Linux, this is no longer the case. Even a 
single person can build and maintain an HPC system with a 
small budget. The 56-CPU cluster located in University of 
Eastern Finland is an example of such a computer. It was built 
by the author without previous knowledge about how to set up 
such a system and it was ready for production in less than a 
month. 
Recently, the power of graphical processing units (GPUs) has 
become readily available for scientific computing via general-
purpose computing on graphics processing units (GPGPU). 
Originally developed for 3D graphics, the modern GPUs can 
perform parallel general-purpose calculations extremely fast 
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compared to regular CPUs. In addition to having high-
performance, GPU hardware is also cheap and readily available 
as it is used for computer gaming. The downside of GPUs is that 
they are difficult to program and achieving high performance 
requires a thorough understanding of hardware details. 
However, the hard work pays off. The higher throughput 
combined with the cheap price of GPU-hardware allows the 
screening of extremely large databases with regular desktop 
computers instead of supercomputers (Giupponi et al. 2008). 

2.2 LIGAND-BASED VIRTUAL SCREENING (LBVS) 

Ligand-based virtual screening is based on “the similarity 
principle” that states that similar molecules tend to have similar 
biological properties (Eckert and Bajorath 2007). Molecular 
similarity is a subjective concept like beauty and molecules can 
be “similar” in many different ways (Maggiora and 
Shanmugasundaram 2004; Sheridan and Kearsley 2002). 
Although the term “ligand-based virtual screening” has only 
recently appeared in the literature, the idea is not new (Bohm et 
al. 2004). For instance, bioisosteric modifications are small 
modifications to molecules that are based on rules like 
"hydrogen can be changed to fluorine without losing the 
biological activity" (Patani and LaVoie 1996). 
The aim of LBVS is usually scaffold hopping. LBVS methods can 
be also helpful in drug repurposing, where new targets and 
diseases are sought for existing drug molecules (Ashburn and 
Thor 2004). Scaffold hopping can be defined as the identification 
of isofunctional molecular structures with significantly different 
molecular backbones (Schneider et al. 1999). Although "scaffold 
hopping" is the most commonly used term (Fitzgerald et al. 
2007), "leapfrogging" (Stanton et al. 1999), "scaffold searching" 
(Hert et al. 2006) and "lead hopping" (Cramer et al. 2004) have 
also been used to describe this strategy.  
Some examples of different motivations and successes of 
scaffold hopping are presented in Table 2.1. Since peptides make 
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very poor drug molecules for various reasons (e.g. flexibility, 
proteolytic stability), it is desirable to replace the peptidic 
scaffold of a bioactive molecule (Bohm et al. 2004). Several 
successful cases have been published where peptides have been 
substituted by other structures (Ripka and Rich 1998).  
Poor absorption, distribution, metabolism, excretion and toxicity 
(ADMET) properties may also be the reasons for scaffold 
hopping (Rush et al. 2005). If a lipophilic scaffold can be 
changed to a more polar one, this will increase the solubility of 
the compound, which is often a major problem in contemporary 
drug discovery programs (Lipinski 2000; Paul et al. 2010).  
Scaffold hopping has also been used for intellectual property 
issues. When a “breakthrough-drug” is introduced onto the 
market by a pharmaceutical company, its competitors try to 
develop molecules with similar biological but a dissimilar 
chemical structure (“me-too” drugs). 
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Table 2.1: Some examples of different motivations and successes of scaffold hopping 
Target Issues with original ligand Reference 

Histamine H3 
Chemical/metabolic instability, 

hERG-channel inhibition 
Lau et al. 2006 

Activator protein-1 (AP-1) Peptide 
Tsuchida et al. 

2006 

HIV TAR RNA 
Pharmacokinetics (multiple 

charges, size) 

Renner et al. 

2005 

Cholecystokinin-2 (CCK2) 
High levels of biliary 

elimination 
Low et al. 2005 

HIV-1 reverse 

transcriptase 
Metabolic instability 

O’Meara et al. 

2007 

Sphingosine 1-phosphate-

3 Receptor (S1P3) 
Potency and selectivity Koide et al. 2007 

Glycogen Synthase 

Kinase-3 (GSK-3) 

Not suitable for further 

optimization 

Naerum et al. 

2002 

5-lipoxygenase (5-LO) Lack of selectivity 
Franke et al. 

2007 

Tau protein aggregation Toxicity, cell penetration Larbig et al. 2007 

Histamine H4 Very short half-life Smits et al. 2008 

Glutamate racemase 

(Murl) 

Restricted antibacterial 

spectrum 

Breault et al. 

2008 

Trypanothione Reductase Potency and selectivity 
Perez-Pineiro et 

al. 2009 

Kinases Undesirable thiourea linker Tasler et al. 2009 

 
Even though popular, scaffold hopping is an ill-defined term 
and highly subjective concept (Brown and Jacoby 2006; Bohm et 
al. 2004). There are various definitions for a scaffold (Roberts et 
al. 2000; Xu 2002; Jenkins et al. 2004; Krier et al. 2006; Barker et 
al. 2006; Wilkens et al. 2005). One of the first definitions of 
scaffold was made in a patent by Markush (Markush 1924; 
Brown and Jacoby 2006). It defined a set of dye 
chemicals:”…dyes which comprises coupling with a halogen-
substituted pyrazolone, a diazotized unsulphonated material selected 
from the group consisting of aniline, homologues of aniline and 
halogen substitution products of aniline”. Markush structures are 
used by drug companies to protect chemical series around a 
promising molecule, even though not all of the structures are 
even possible to synthesize, let alone having any biological 
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effect whatsoever. Therefore, Markush structures are more of a 
legal tool than a scientific concept (Brown and Jacoby 2006).  
The most commonly used scaffold concept is based on the work 
of Bemis and Murcko, where they analyzed the properties of 
known drugs using the Comprehensive Medicinal Chemistry 
(CMC) database (Bemis and Murcko 1996). These scaffolds are 
sometimes referred to as “Murcko’s scaffolds” or “molecular 
frameworks” (Krier et al. 2006; Lipkus et al. 2008). The 
classification is based on a hierarchical description of molecules, 
illustrated in Figures 2.6 and 2.7. A molecule consists of a 
scaffold that has side chains, whereas a scaffold consists of a 
ring system and linkers. Murcko’s scaffolds have the obvious 
pitfall that only cyclic scaffolds that were included in the CMC 
datasets can be detected. Recently, Lipkus and co-workers 
analyzed the scaffolds found in the CAS registry using a similar 
approach to Bemis and Murcko. They found out that half of the 
24 million organic compounds in CAS could be described by 
only 143 scaffolds. Other general classifications are the 
maximum common substructures (McGregor and Willett 1981), 
maximum rigid fragments (Su et al. 2001) and RECAP 
fragments (Lewell et al. 1998). The problem of scaffold definition 
has not yet been satisfactorily solved and it will be discussed 
also in Chapter 3.3. 
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Molecule

Sidechain Scaffold

Ring system Linker
 

Figure 2.6: Hierarchical description of molecules (adapted and modified from Bemis 
and Murcko 1996). 
 

Scaffold

Ring
systems

Sidechain

Linker

 
Figure 2.7: Detecting scaffolds using concepts of ring systems, linkers and side chains 
(adapted and modified from Bemis and Murcko 1996). 
 
One example scaffold hopping is shown in Figure 2.8, where 
there are the two similarly bioactive compounds that have 
completely different scaffolds. Hypothesis for their similar 
activity is based on matching three-dimensional shape of the 
molecules. 



15 
 

  
 

 
Figure 2.8: Example of scaffold hopping. NAADP and NED-19 have similar 
bioactivity even though their scaffolds are completely different. Both molecules are 
similar in their 3D surfaces (black and white shapes) (Connolly 1983). Analysis is 
based on the findings of Naylor and co-workers (Naylor et al. 2009). 
 
There are many similarity methods which have been developed 
for LBVS. Some of the commonly used approaches are 
presented in Table 2.2. For a comprehensive listing, the 
interested reader is referred to the recent book of Todeschini 
and Consonni (Todeschini and Consonni 2009). 
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Table 2.2: Some of the commonly used LBVS approaches (Eckert and Bajorath 2007; 
Poptodorov et al. 2006; Rester 2008) 
Method Example(s) Approach 

0D/1D descriptors Atom counts 
Generated from 

molecular graph 

2D fingerprints MACCS 

Quantitative 

comparison of bit 

strings 

3D descriptors 
UNITY3D, NPR, USR, 

ESshape3D, GRIND 

Generated using 

intramolecular 

distances 

Pharmacophores Catalyst 

Common 

features of active 

molecules are 

detected 

3D similarity based on 

pair-wise alignment 

ROCS/EON, BRUTUS, ShaEP, 

FlexS 

Comparison of 

superimposed 

molecules 

2.2.1 0D-2D descriptors 
 
The simplest ways of describing molecules are the one- and two-
dimensional descriptors like the number of carbon atoms or 
molecular indexes based on graph theory (Hall and Kier 1991). 
These kinds of descriptors are easy to calculate with modeling 
tools like MOE (Chemical Computing Group). Despite their 
simplicity, they have been shown to be surprisingly effective in 
virtual screening. For example, in the study of Bender and Glen, 
a large data set of over 100000 compounds containing 11 activity 
classes was screened using the number of atoms per chemical 
element as a molecular descriptor (Bender and Glen 2005). 
Enrichment factors over random selection of around four were 
achieved and also diverse chemical scaffolds were detected in 
the active group. 
The commonly used two-dimensional fingerprints are binary 
strings that encode the presence or absence of sub-structural 
fragments (Willett 2006). A set of chemical features is defined 
and then a bit is set to either zero (0) or one (1), depending on 
whether the substructure exists in the molecule or not. A 
fingerprint is a long bit string, which can also be expressed as an 
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integer. An example of a two-dimensional fingerprint is shown 
in Figure 2.9, which illustrates the MACCS-fingerprint for 
citalopram. 
 

F

O

N

N

citalopram

Bit 41: Carbon triple-bonded to nitrogen
Bit 156: Three bonds that end to nitrogen

Bit 161: Nitrogen

Bit 134: Halogen
Bit 162: Aromatic

Bit 165: Ring

Bit 74: Atom with two methyl groups
Bit 107: Three to four atoms long chain

Bit 158: Nitrogen single-bonded to carbon

00000001001000000000000000000000000000001100000000000000100001000100000001000000000
01010000010010001000000111011001101000100000110010100110001010011110110111101110110

40543750217144624702731259057311301010142489740416

BINARY FORM

INTEGER

 
Figure 2.9:  Example of 2D fingerprint: MACCS structural keys for citalopram. For 
clarity, only some of the defined bits are shown. Fingerprint generated with OpenBabel 
2.2.3 (Guha et al. 2006). 
 
There are many 2D fingerprint methods available but it is 
scientifically difficult to accept any 2D fingerprint as a golden 
standard (Eckert and Bajorath 2007). The most commonly used 
fingerprints are UNITY from Tripos Inc (for example, 
Schuffenhauer et al. 2000; Raymond and Willett 2002; Holliday 
et al. 2003), MACCS/MDL Keys from MDL (for example, 
Koehler et al. 1999; Wild and Blankley 2000; Durant et al. 2002) 
and Daylight from Daylight Chemical Information Systems (for 
example, Kogej et al. 2006; Capelli et al. 2006; Stiefl and Zaliani 
2006). 
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Usually a single fingerprint is compared with a database in 
order to retrieve similar compounds. However, it is also possible 
to form fusion fingerprints based on multiple fingerprints from 
several query molecules (Willett 2006). 
There are numerous similarity coefficients for measuring the 
similarity between two 2D fingerprints (Todeschini and 
Consonni 2009). For example, Holliday and co-workers have 
compared 22 different coefficients with UNITY fingerprints 
(Holliday et al. 2003). The most widely used similarity 
coefficient was formulated by Tanimoto in 1957 (Willett et al. 
1998): 
 

 

 
where a is the number of bits set to one in the first fingerprint, b 
is the number of bits set to one in the second fingerprint and c is 
the number of bits set at identical positions in both fingerprints. 
The Tanimoto coefficient is between 0 (completely different) and 
1 (completely similar). 
There has been much debate on the approriate value for the 
Tanimoto coefficient in similarity searching with some workers 
attempting to use a fixed threshold (0.85) for all screens 
(Patterson et al. 1996; Matter 1997). However, this has been 
proven to be an inefficient approach (Martin et al. 2002). It 
seems that compound class specific effects strongly affect 
fingerprint calculations and proper thresholds have to be set on 
a case-by-case basis (Godden et al. 2005). 
Even though 2D fingerprints have proved to be useful tools in 
drug discovery projects, they suffer from several drawbacks 
(Raymond and Willett 2002). For example, a single atom change 
in a ring structure may change the fingerprint from being nearly 
similar to almost completely different. Moreover, as is shown in 
Figure 2.8, two compounds that have very different topologies 
can nonetheless adopt a similar orientation and thus could have 
similar biological effects. Since this thesis is about 3D-virtual 
screening, the reader interested in 2D methods is referred to a 
comprehensive review on the subject (Willett 2006). 
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2.2.2 3D descriptors 
3D fingerprints (also known as pharmacophore keys) encode 3D 
relationships in a molecule as a bit string (Matter 1997; Good et 
al. 2004a; Leach 2001). An example of such an algorithm is the 
UNITY 3D fingerprints (Tripos 2009). The basic idea is 
presented in Figure 2.10, where there are two different 
conformations of disulfiram. The combinations of features are 
enumerated with the distances between them. In a 3D-
fingerprint, each bit encodes a distance between specific groups. 
For example, bit 0 could be ”donor-donor with distance 2-2.5” 
and bit 1 ”donor-donor with distance 2.5-3” etc. The number of 
features used in combinations varies from two up to nine 
(Martin and Hoeffel 2000). However, the size of a fingerprint 
increases rapidly with the number of features used. 
 

 
Figure 2.10: Two conformations of disulfiram. The three-point pharmacophoric feature 
is different in the two conformations. Conformations generated with OPLS_2005 force 
field implemented in MacroModel (Schrödinger Inc). Image created with Maestro 
(Schrödinger Inc). 
 
The basic problem with 3D fingerprints (and with other 3D 
methods as well) is of course conformational sampling, since the 
number of possible conformations N increases very rapidly with 
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the number of rotating bonds n (so called combinatorial 
explosion)  (Kitchen et al. 2004; Boström and Grant 2008): 
 

 

 
where m is the size of the rotational angle in degrees. For 
example, a molecule with six rotatable bonds has 2985984 
possible conformations with a rotational angle increment of 30 
degrees. It is therefore not possible to use all possible 
conformations in similarity calculations for most molecules. The 
problem of conformational analysis will be discussed more in 
Chapter 2.5.3. 
Shape-based descriptors encode the shape of the molecule into 
numbers. The shape complementarness of the ligand to the 
active site is a prerequisite for the drug action, so several 
approaches for describing this important feature have been 
developed (Putta and Beroza 2007). If compared to the 3D 
fingerprints, which describe molecules as sets of atoms, the 
shape-based descriptors consider molecules as volumes and 
surfaces (Nicholls et al. 2010). The normalized ratio of principal 
moments of inertia (PMI) is an example of a shape-based 
descriptor (Sauer and Schwarz 2003). PMIs are easily calculated 
with molecular modeling packages like SYBYL and they have 
been widely used to assess molecular shape, geometry and 
conformation. Three principal components are calculated and 
assigned by ascending order to I1, I2 and I3. These are normalized 
by dividing the lower values I1 and I2 by I3. The normalization 
eliminates the dependency on the size of the molecules. These 
normalized PMI ratios (NPRs) fulfill the following relation due 
to the intrinsic characteristic of the inertia tensor: 
 

 

 
Therefore, the resulting plot against each other is an isosceles 
triangle onto which all molecules can be placed. The three 
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corners correspond to archetype shapes of spheres, disks and 
rods (Figure 2.11). Compounds are mapped to different parts of 
the triangle according to their shape. 
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Figure 2.11: Some examples of normalized PMI ratios and corresponding structures 
(adapted from Sauer and Schwarz 2003). Conformations were calculated with 
CORINA (Molecular Networks GmBH) and NPRs were calculated with MOE 
(Chemical Computing Group). Molecules were visualized with Maestro (Schrödinger 
Inc) 
 
However, this methodology has obvious serious flaws. For 
example, completely different molecules like methane and 
fullerene would be classified as similar because they adopt a 
similar sphere-like conformation. 



22 
 

  
 

The shape-based descriptors that are more relevant to the virtual 
screening are ESShape3D (implemented in MOE by Chemical 
Computing Group) and Ultrafast Shape Recognition (USR). 
ESshape3D is formed by first measuring the Euclidean distance 
between all pairs of the heavy atoms in the molecule (Henry A, 
personal communication, Jan 12th, 2010; Ballester et al. 2009). 
Then, the eigenvalues are calculated from this distance matrix. 
The signed square roots of these eigenvalues are smoothened 
with a Gaussian function and stored in a histogram with 122 
bins containing values between -30 and 30. The similarity 
between two ESshape3D descriptors is calculated from the 
distance between the values for each of the histogram bins. For 
example, if we assume that there are two molecules with 
distances A and B (three bins instead of the 122 used for clarity): 
 

 
 

 
The difference between A and B would be [-20, 0, 20]. The 
distance D is the square root of the sum of the squared 
differences (√800). The similarity S is calculated from the 
distance D (S=0.714): 
 

 

 
USR is based on atomic intramolecular distances from four 
molecular locations that are used to form a 12 element vector 
(Ballester and Richards 2007a; Ballester and Richards 2007b). It 
is one order of magnitude faster to calculate than the 
ESShape3D descriptor (Ballester et al. 2009). The similarity 
between two descriptors A and B is calculated from: 
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USR is implemented in Chemical Development Kit (CDK) by 
Guha (DistanceMoment class). A command line user interface 
was written by the author to conduct a virtual screening and to 
calculate descriptors with USR (available via 
http://www.uku.fi/~tkalliok/usr). 
Since both steric and electrostatic properties are important in 
protein-ligand complementary, the accuracy of shape-based 
descriptors for virtual screening is limited (Nicholls et al. 2010). 
Examples of a descriptor that encodes both shape and 
electrostatic properties are Grid-Independent descriptors 
(GRIND) (Pastor et al. 2000). The descriptors are derived from a 
collection of GRID molecular interaction fields computed using 
different chemical probes based on the work of Goodford 
(Goodford 1985). These fields are then discretized by finding 
“the hot spots” of interactions. The relative position of “hot 
spots” is then encoded into descriptors called correlograms. 
Principal component analysis of the correlograms is then used 
for the similarity calculations. The algorithm for the calculation 
of GRIND descriptors has evolved over the years (Fontaine et al. 
2004; Durán et al. 2008; Durán et al. 2009). The most recent 
version of the method is implemented in Pentacle (available 
from Molecular Discovery Ltd). 

2.2.3 Pharmacophores 
The term pharmacophore was introduced by Paul Ehrlich in 
1909 (Ehrlich 1909; Triballeau et al. 2006). The modern IUPAC 
definition dates from 1998: "A pharmacophore is the ensemble of 
steric and electronic features that is necessary to ensure the optimal 
supramolecular interactions with a specific biological target structure 
and to trigger (or to block) its biological response." (Wermuth et al. 
1998) 
A pharmacophore is an abstract concept that describes the 
interaction capability of either one or a group of compounds 
toward a drug target instead of a real molecule or real 
association of functional groups (Wermuth 2006). 
Pharmacophores can be also constructed from protein models 
(Wolber and Langer 2005). The main advantage of 
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pharmacophore methods is that it is possible to find very 
diverse compounds. The early pharmacophores were 
constructed manually in the 1940’s with the knowledge of the 
bond lengths and the van der Waals radii of atoms (Figure 2.12). 
Such simple constraints could be used as a crude filtering 
criterion for large set of compounds to weed out clearly 
unsuitable molecules. 
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Figure 2.12: Two early pharmacophores with example molecules (adapted from 
Wermuth 2006) 
 
The pioneers in the modern computational pharmacophore 
identification are Marshall and co-workers who developed the 
so-called Active Analog Approach in the 1970’s (Marshall et al. 
1979). The core algorithm is illustrated in Figure 2.13. The 
number of conformations for a flexible molecule is reduced by 
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the geometry of a rigid reference molecule. Pharmacophores are 
then derived from these alignments. This approach forms the 
basis of many existing automated pharmacophore generation 
methods (van Drie 2004; Poptodorov et al. 2006). 
 

Molecule #2 Molecule #3

Molecule #1

X

 
Figure 2.13: The Active Analogue approach by Marshall and co-workers (adapted from 
van Drie 2004). The circles represent the available conformational space. The 
intersection X is the area from which the common pharmacophores will be found. 
 
The work flow for general pharmacophore modeling is 
presented in Figure 2.14. Several compounds that have similar 
biological activities are needed to form a hypothesis. Some 
methods also allow incorporation of activity data. An important 
assumption is that all compounds in the pharmacophore have a 
similar binding mode and thus they can be superimposed. After 
compounds are superimposed, common features of the 
molecules can be detected. A pharmacophore can almost always 
be generated, but it must be validated by using an external data 
set before use. After a reasonable pharmacophore is formed, the 
virtual screening step itself is fast. 
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Figure 2.14: General pharmacophore modeling workflow (adapted and modified from 
Poptodorov et al. 2006) 
 
To some extent, pharmacophores have been neglected and the 
development of new methods has been extremely slow (Langer 
and Hoffmann 2006). This might be due to the strong emphasis 
on SBVS in recent years. Since SBVS methods have not been as 
successful as was originally anticipated, there has been 
increasing interest in using the pharmacophore approach (Kolb 
et al. 2009; Leach et al. 2010). 
Geometry- and feature-based pharmacophore methods usually 
consider compounds as sets of connected features like 
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hydrophobic and H-bond acceptors/donors (Poptodorov et al. 
2006). These features are important for selective binding of drug 
molecules as they describe hydrogen bonding, electrostatics and 
hydrophobic interactions. As a practical example of these kinds 
of chemical function definitions, Greene et al. (1994) proposed a 
set of features based on atom types (Figure 2.15). A similar set is 
used in most modern pharmacophore programs. This set, 
originally implemented in Catalyst software, is not completely 
satisfactory, as for example it will describe incorrectly both 
oxygen atoms in esters as “hydrogen bond acceptors”. 
 

 
Figure 2.15: Pharmacophore features as proposed by Greene et al. (1994). 
 
The most widely used geometry- and feature-based 
pharmacophore elucidation method is Catalyst from Accelrys, 
which is currently a part of the Discovery Studio package (some 
recent applications of the methodology are presented in Table 
2.3). Catalyst is an integrated set of algorithms for conformation 
generation (ConFirm), molecular superimposition (HipHop), 
pharmacophore generation (HypoGen) and database searching 
(Info). HipHop and HypoGen provide two approaches for 
automatic pharmacophore generation. HipHop identifies 
pharmacophores by aligning the chemical features of active 
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molecules (Barnum et al. 1996). Each conformation of each 
molecule is used as a reference for alignment and every 
configuration is scored. HypoGen is designed to correlate 
structure and activity for automatic pharmacophore generation 
(Poptodorov et al. 2006), working in three steps. In the first step, 
common features are detected between the two most active 
compounds. In the second step, those features that are common 
between active and inactive compounds are removed from the 
pharmacophore. The last step is an optimization phase where 
simulated annealing is used to improve the predictive power of 
the pharmacophore. An exclusion volume can be added to 
HypoGen pharmacophores to filter out too large molecules from 
the search. For a more detailed description of Catalyst and other 
feature-based pharmacophore generation methods, the reader is 
referred to recent review articles (Poptodorov et al. 2006; Leach 
et al. 2010). 
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Table 2.3: Some recent examples of Catalyst-based pharmacophores for virtual 
screening 
Target Reference 

Human adenosine kinase Bhutoria and Ghoshal 2010 

Bovine viral diarrhea virus Tonelli et al. 2010 

11β-hydroxysteroid dehydrogenase 1 
Rollinger et al. 2010; 

Schuster et al. 2006 

Phosphodiesterase type-5 Chen 2010 

Peroxisome proliferator-activated receptor 

gamma 

Fakhrudin et al 2010; Markt 

et al. 2008; Markt et al. 

2007 

5-Lipoxygenase Aparoy et al. 2010 

Human tyrosyl-DNA phosphodiesterase Weidlich et al. 2010 

Plasmodium falciparum dihydrofolate 

reductase 
Adane et al. 2009 

Nuclear factor-kappa B Tsai et al. 2009 

ZAP-70 Sanam et al. 2009 

Transforming growth factor-β Type I 

Receptor (ALK5) 
Ren et al. 2009 

Caspase-3 Laksmi et al. 2009 

Various cancer cell lines Chiang et al. 2009 

Aromatase Neves et al. 2009 

Monoamine Oxidase B Boppana et al. 2009 

Spleen tyrosine kinase Xie et al. 2009 

Aurora B kinase Wang et al. 2009 

Cannabinoid receptor 2 Markt et al. 2009 

Raf-1 kinase Li et al. 2009 

Glycogen Synthase Kinase 3beta Vadivelan et al. 2009 

 
3D-Quantitative Structure Activity Relationships (QSAR) 
methods can be considered as field-based automatic 
pharmacophore generation methods (Poptodorov et al. 2006). 
The most frequently used 3D-QSAR method is Comparative 
Molecular Field Analysis (CoMFA) devised by Cramer and co-
workers (Cramer et al. 1988). Other widely used 3D-QSAR 
methods are CoMSIA (Klebe et al. 1994) and GRID/GOLPE 
(Cruciani and Watson 1994). 
Even though there are hundreds of CoMFA studies published 
(PubMed lists over 900 citations with keyword "CoMFA"), most 
of these studies are mostly retrospective analyses and have very 
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little predictive value that could be used in prospective virtual 
screening of new biologically active molecules (Doweyko 2004). 
Also, the superimposing step is a major limitation for virtual 
screening applications, as the compounds to be screened need to 
have a common scaffold to permit automatic alignment 
(Hillebrecht and Klebe 2008). It could be therefore concluded 
that CoMFA is more a tool for lead optimization rather than a 
virtual screening method for large databases. There is also 
Topomer-CoMFA available, which is easier to use than the 
traditional CoMFA (Cramer 2003). 
CoMFA has however inspired various other field-based virtual 
screening methods, including FieldChopper described in this 
thesis, and it has been used in conjunction with other methods 
to find novel compounds (for an example, see Zhang et al. 2007), 
so it serves as an example of a field-based virtual screening 
method. An outline of the method is presented in Figure 2.16. 
The molecular field is presented as a lattice. Compounds are 
superimposed and their activity values, steric and electrostatic 
potentials are recorded in the QSAR table. From this table, an 
equation is derived with Partial Least Squares (PLS) data 
analysis method (Wold et al. 1984). This equation can then be 
used in the prediction of activity for compounds outside the 
model. Although the basic idea is rather straightforward, the 
correct use of the method is difficult, as the results are critically 
dependent on conformation and superimposition of the 
compounds. Furthermore, the chemical parameters used to 
generate fields and the statistical evaluation methods have a 
large influence on the models. 
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QSAR Table
Compound

C1
C2

Activity

4.2
6.9

Steric 1..N Electrostatic
1..N

P
LS

Activity = y+a*S1+…+m*SN+n*E1+…+z*EN

 
Figure 2.16: Comparative Molecular Field Analysis (CoMFA) (adapted from Cramer 
et al. 1988). 

2.2.4 3D similarity based on pair-wise alignment 
In pharmacophore methods, a set of compounds is compared in 
order to find common features, which are then matched to a set 
of compounds in a database. One can also try to match the 
whole query molecule to database molecules by aligning them 
in a pair-wise manner. It is easier to find a reasonable alignment 
for a pair of molecules than for diverse set of molecules. Some of 
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the recent virtual screening successes using pair-wise alignment 
have been listed on Table 2.4. 
 
Table 2.4: Some recent examples of alignment-based virtual screening 
Target Reference 

ZipA-FtsZ protein-protein interaction Rush et al. 2005 

Biological role of NAADP Naylor et al. 2009 

CB1 receptor Boström et al. 2007 

Metabotropic glutamate receptor 2 Tresadern et al. 2010 

Nipah virus envelope protein Niedermeier et al. 2009 

Melanin Concentrating Hormone Oyarzabal et al. 2009 

Neurotensin NTS1 receptor Fan et al. 2008 

Androgen receptor Trump et al. 2007 

γ-secretase Gundersen et al. 2005 

 
The problem of molecular alignment is a complex issue due to 
the degrees of freedom involved and is comprehensively 
discussed in a recent doctoral dissertation (Rönkkö 2009). From 
a practical point of view, there are several high-throughput 
molecular alignment methods publicly available (Table 2.5). 
 
Table 2.5: High-throughput small molecule alignment-based similarity methods 
suitable for virtual screening. License abbreviations: O=Open Source, F=Free, 
FA=Free for Academic use and C=Commercial. 
Program Reference Lic. Website 

ROCS Grant et al. 1995 FA www.eyesopen.com 

EON Nicholls et al. 2004 FA www.eyesopen.com 

PAPER Haque and Pande 2009 O simtk.org/home/paper 

BRUTUS Rönkkö et al. 2006 C www.visipoint.fi 

ShaEP Vainio et al. 2009 F users.abo.fi/mivainio/shaep 

FlexS Lemmen et al. 1998b C www.biosolveit.de 

 
The most widely used molecular alignment method for virtual 
screening is Rapid Overlay of Chemical Structures (ROCS) from 
OpenEye Scientific Software (Grant et al. 1995; Kirchmair et al. 
2009). In this method, molecules are superimposed with a 
smooth Gaussian function representing the molecular volume. 
ROCS optimizes this function by rigidly translating and rotating 
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the molecule with respect to the query molecule. In the original 
version, optimization started with four initial orientations, but 
the current version has some undisclosed improvements for 
generating the starting positions (Nicholls et al. 2004).  
The similarity S between two molecules A and B is calculated 
from the volumes of the molecules (ShapeTanimoto score): 
 

 

 
where OAA is the volume of molecule A, OBB is the volume of 
molecule B and OAB is the overlapping volume between these 
molecules. 
In addition to shape, ROCS considers the electrostatic properties 
of molecules via “Color Force Field” (CFF). The CFF is based on 
1D-atom rules that define chemically important areas and has 
rules about how such centers should interact. The hydrogen-
bonding rules are derived from the crystal survey of the 
Cambridge Structural Database (Mills and Dean 1996). Usually, 
the Color Tanimoto value is used in combination with 
ShapeTanimoto (TanimotoCombo). 
EON from OpenEye Scientific Software is a more sophisticated 
electrostatic similarity method (Nicholls et al. 2004). It creates 
electrostatic fields around a pair of aligned molecules and 
calculates the similarity between the two fields. ShapeTanimoto 
is often combined with this electrostatic score. 
Recently an open-source, GPU-accelerated version of ROCS was 
developed called PAPER (Haque and Pande 2009). In addition 
to having the advantage of being free software, PAPER is over 
one order of magnitude faster on a single desktop PC than the 
commercial ROCS package due to the high performance of the 
GPU computing. It does not however have the CFF 
implemented. 
BRUTUS is an automated computer program for rigid-body 
molecular superimposition which considers molecular fields 
(Rönkkö et al. 2006; Rönkkö 2009). It is based on rotating and 
translating molecular fields instead of the molecules. This 
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removes the need to re-calculate the fields during the 
optimization process. In addition, BRUTUS uses a simple 
interpolation algorithm for estimating the energy between grid 
points and this allows the use of coarse energy fields for 
alignment. These factors make BRUTUS fast enough to screen 
large databases. The similarity between the molecular volume 
and electrostatic field is computed separately with the Hodgkin 
index (Hodgkin and Richards 1987). The volumic similarity SV 
and electrostatic similarity Se thus computed are combined to 
the total similarity S: 
 

 
 

where w is a weighting factor (0.5 is used by default). 
ShaEP is an alignment algorithm based on shape and 
electrostatic potential (Vainio et al. 2009). First, initial 
alignments are produced by a matching algorithm on graphs 
that represent the electrostatic potential of the molecule. Then, 
the alignments are optimized by maximization of the volumic 
overlap using Gaussian functions. It uses a similar total 
similarity score as BRUTUS. 
Incremental construction is implemented in FlexS (Lemmen et 
al. 1998b). Initially, molecules are partitioned into fragments and 
an anchor fragment for the incremental construction procedure 
is either selected by the program or manually by the user. The 
anchor fragment is then placed on the reference ligand and the 
remaining fragments are added iteratively. For virtual 
screening, FlexS uses the RIGFIT algorithm to place the base-
fragment onto the reference molecule (Lemmen et al. 1998a). 
FlexS also uses the Hodgkin index in order to compute the 
similarity between two molecules. 

2.3 STRUCTURE-BASED VIRTUAL SCREENING (SBVS) 

Structure-Based Virtual Screening (SBVS) is usually based on 
molecular docking (Kitchen et al. 2004; Moitessieri et al. 2008). 
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In molecular docking, a small molecule is fitted into the protein 
model’s active site. As an example, oseltamvir was docked into 
N1 neuraminidase with Glide (Figure 2.17). The binding mode 
predicted by docking calculation is remarkably close to the one 
observed in the crystal structure. Several successful virtual 
screening studies have been reported for various proteins (Table 
2.6). 
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Table 2.6: Some recent examples of successful SBVS studies 
Protein Reference 

β2-adrenergic receptor Kolb et al. 2009 

A2A-adenosine receptor Carlsson et al. 2010 

Histamine H4-receptor Kiss et al. 2008 

JAK2 kinase Kiss et al. 2009 

JAK3 kinase Kim et al. 2010 

Ubiquitin C-terminal hydrolase L1 Mitsui et al. 2010 

FGFR1 Ravindranathan et al. 2010 

Death-associated protein kinase 1 Okamoto et al. 2009 

B2 subunit of V-ATPase Ostrov et al. 2009 

Falcipain-2 Li et al. 2009 

Hepatitis C virus nonstructural protein 3 Chen et al. 2009 

Thermolysin Khan et al. 2009 

D-alanine:D-alanine ligase Kovac et al. 2008 

Mycobacterium tuberculosis APSR Cosconati et al. 2008 

SecA ATPase Li et al. 2008 

SRC Lee et al. 2009 

ATP-dependent Mur ligases MurD and MurF Turk et al. 2009 

Sarco/endoplasmic reticulum calcium ATPase Deye et al. 2009 

SARS-3CL(pro) Mukherjee et al. 2008 

E. coli enoyl-ACP-reductase Yao et al. 2010 

HSP90 Hong et al. 2009 

Cdc25B phosphatase Park et al. 2009 

Beta-secretase Xu et al. 2009 

Extracellular signal-regulated kinase 2 Park et al. 2008 

CK1 delta Cozza et al. 2008 

Phosphatase of regenerating liver-3 Park et al. 2008 

S. pneumoniae VicR/K Li et al. 2009 

PPARG Salam et al. 2008 

V. harveyi LuxP Li et al. 2008 

VHR Phosphatase Park et al. 2008 

ErmC Methyltransferase Feder et al. 2008 

Protein tyrosine phosphatase 1B Park et al. 2009 

Insulin-regulated aminopeptidase Albiston et al. 2008 

Human PEBP4 Qiu et al. 2010 

H. pylori UPPS Kuo et al. 2008 

Mammalian proteasome 20S Basse et al. 2010 

Aurora kinase A Coumar et al. 2009 
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Aldo-keto reductase 1C1 Brozic et al. 2009 

Chemokine receptor CCR4 Bayry et al. 2008 

 
The aim of docking is to predict the structure of the complex 
[P+L] = [PL] under equilibrium conditions in water and to 
estimate the Gibbs energy of binding ΔG. ΔG can be described 
by the equation ΔG=ΔH-TΔS (Whitesides and Krishnamurthy 
2005).  Enthalphic factors (ΔH) include steric and electrostatic 
complementary, hydrogen-bonding, protein strain and also 
ligand strain, if the ligand is flexible. Desolvation, rotational and 
translational entropy are important factors in entropy (ΔS). 
 

 
Figure 2.17: The concept of molecular docking. Ligand (L) is docked to the protein (P) 
to form a protein-ligand complex (PL). PDB-Complex 2HU4 (Russell et al. 2006) 
formed by oseltamivir and N1 neuraminidase is closely reproduced by a docking 
program. The docking programs best scored solution is shown in black and that 
experimentally observed in gray. Images created with GLIDE and Maestro 
(Schrödinger Inc). 
 
There are two major components in a docking program: a search 
algorithm that produces relevant binding modes (poses), and a 
scoring function, which should be able to predict the affinity of 
the docked compound to the protein i.e. estimate ΔG. The 
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searching problem has been basically solved, but the scoring 
problem persists. 
Due to the number of atoms involved in the protein-ligand 
interaction, the problem is extremely complex. A typical 
approximation in order to speed up the calculations is to use a 
rigid protein and torsionally flexible ligand instead of a fully 
flexible protein and ligand. Even with these simplifications, 
molecular docking is still a time consuming process compared 
to the ligand-based virtual screening methods. 
There are over 60 docking programs and more than 30 scoring 
functions described in the literature (Moitessier et al. 2008; Viji 
et al. 2009). However, only a fraction of the proposed methods 
are readily available for virtual screening studies. The currently 
available software is listed on Table 2.7 (the references on the 
table are to the latest versions of the programs). Most of the 
docking software is commercial, so licensing might represent a 
rate-limiting step in a virtual screening study even though 
supercomputing capability is available. Commonly used 
docking methods include AutoDock, DOCK, LigandFit, FlexX, 
FRED, GLIDE and GOLD. 
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Table 2.7: Currently available docking programs (adapted and modified from 
Moitessier et al. 2008). The most commonly used programs are shown in italics 
(McInnes 2007). License abbreviations: O=Open Source, F=Free, FA=Free for 
Academic use and C=Commercial. 
Program Reference Search 

algorithm 

Lic. Website 

AutoDock Morris et al. 2009 LGA O 
autodock.scripps.

edu 

AutoDock 

Vina 

Trott and Olson 

2010 

Gradient 

optimization 

based 

FA vina.scripps.edu 

CDOCKER of 

Discovery-

Studio 

Wu et al. 2003 

 

MD/simulated-

annealing 
C 

www.accelrys.co

m 

CHARMM 

(Galgor) 
Vieth et al. 1998 GA/MC C www.charmm.org 

DOCK Lang et al. 2009 Sphere matching FA 
dock.compbio.ucs

f.edu 

DockIt - Sphere matching C 
www.metaphorics

.com 

eHiTs 
Zsoldos et al. 

2006 

Rigid docking of 

fragments 
C 

www.simbiosys.c

om 

DAIM-SEED-

FFLD 

Kolb and Caflisch 

2006; Majeux et 

al. 2001; Budin 

et al. 2001 

Docking of 

fragments 
F 

www.biochem-

caflisch.uzh.ch 

FITTED 
Corbeil et al. 

2007 
GA FA www.fitted.ca 

LibDock of 

Discovery-

Studio 

Diller et al. 2001 

 

Pregenerated 

ligand 

conformations 

with gradient-

based 

optimization 

C 

 
www.accelrys.co

m 

LigandFit of 

Discovery-

Studio 

Venkatachalam 

et al. 2003 

 

Shape-based 

method with MC 

C 

 
www.accelrys.co

m 

FlexX 
Rarey et al. 1996 

 

Incremental 

construction 

C 

 
www.biosolveit.de 

FlipDock 

Zhao and Sanner 

2007 

 

GA 
FA 

 
flipdock.scripps.e

du 

FRED 

McGann et al. 

2003 

 

Gaussian docking 

function 

FA 

 
www.eyesopen.co

m 
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FTDock 
Gabb et al. 1997 

 

Fourier 

correlation 

algorithm 

O 

 
bmm.cancerresea

rchuk.org 

GEMDOCK 

Yang and Chen 

2004 

 

GA 
F 

 
gemdock.life.nctu

.edu.tw 

GlamDock 

Tietze and 

Apostolakis 2007 

 

MC 
FA 

 
www.chil2.de 

GLIDE 

Friesner et al. 

2004 

 

MC 
C 

 
www.schrodinger.

com 

GOLD 

Verdonk et al. 

2003 

 

GA 
C 

 
www.ccdc.cam.ac

.uk 

HADDOCK 

de Vries et al. 

2007 

 

Mainly for 

protein-protein 

docking 

FA 

 
www.nmr.chem.u

u.nl 

MolDock 

Thomsen and 

Christensen 2006 

 

Heuristic search 
C 

 
www.molegro.co

m 

PatchDOCK 

Schneidman-

Duhovny et al. 

2005 

Shape 

complementary 

FA 

 
bioinfo3d.cs.tau.a

c.il 

PLANTS Korb et al. 2009 
Ant colony 

optimisation 

FA 

 

www.tcd.uni-

konstanz.de 

ICM 

Abagyan et al. 

1994 

 

MC 
C 

 
www.molsoft.com 

rDock 

Morley and 

Afshar 2004 

 

MC 
F 

 
www.ysbl.york.ac

.uk/rDock 

ROSETTA-

LIGAND 

Meiler and Baker 

2006 

 

MC 
FA 

 
www.rosettacom

monds.org 

SLIDE 

Schnecke and 

Kuhn 2000 

 

Incremental 

construction 

FA 

 
www.bch.msu.ed

u/~kuhn 

SODOCK 
Chen et al 2007 

 

Particle swarm 

optimization for 

AutoDock 3.05 

F 

 
iclab.life.nctu.edu

.tw/sodock 

Surflex-Dock 
Jain 2007 

 

Incremental 

construction 

FA 

 
www.biopharmics

.com 

MOE-Dock - MC C 
www.chemcomp.c

om 

 



42 
 

  
 

In the following section, the different types of searching 
algorithms and scoring functions are described briefly. 
Computationally intensive simulation-based methods such as 
free energy perturbation or Molecular Mechanics/Poisson-
Boltzmann-Surface-Area (MM/PBSA) are not discussed here, as 
they cannot be used in high-throughput virtual screening (at 
least not yet). 

2.3.1 Searching algorithms 
Different approaches for the docking pose generation have been 
applied. The methods can be roughly divided into three main 
types: rigid-body, incremental construction and stochastic 
algorithms. 
 
Rigid-body docking 
 
Rigid-body docking algorithms use either single or multi-
conformation databases to account for ligand flexibility 
(Moitessier et al. 2008). The molecules are fitted into the binding 
sites of proteins by shape complementary or by interaction 
matching algorithms. These are the fastest structure-based 
virtual screening methods, but their accuracy may be limited 
due to the fact that ligand conformation is not refined at the 
binding site. They are also highly dependent on the method 
used to create the conformations (see Chapter 2.5). It has been 
suggested that these kinds of methods should be used only for 
initial screening of large libraries. 
An example of rigid-body docking software is FRED from 
OpenEye Scientific Software (McGann et al. 2003). It uses pre-
generated multi-conformation database as its input. First, all 
possible poses of the ligand around the active site are 
enumerated for each of the conformations. These poses are then 
filtered, based on the volume of the active site. The remaining 
poses are then scored with a scoring function. FRED is one the 
fastest docking program currently available, as it requires just a 
few seconds per ligand. Its performance was also comparable to 
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the more computationally intensive GLIDE in an 11 target study 
(McGaughey et al. 2007). 
 
Incremental construction docking 
 
There are also docking programs based on incremental 
construction algorithms. These programs build up the ligand in 
the active site. First, the ligand is fragmented and one fragment 
is selected as the anchor fragment. The anchor fragment is then 
rigidly docked into the active site and the other fragments are 
connected with the knowledge of preferred conformations. 
FlexX is an example of a program that is based on incremental 
construction (Rarey et al. 1996). It uses a pose-clustering 
technique similar to those used in pattern recognition.  
 
Stochastic docking  
 
Both multi-conformation and incremental construction docking 
algorithms are deterministic. There are also stochastic docking 
algorithms available that have a random element in them. 
Therefore, they do not usually produce exactly the same results 
in every run. The two most widely used stochastic approaches 
are Monte Carlo methods and genetic algorithms. 
Monte Carlo methods are based on repeated random sampling. 
The ligand to be docked is randomly rotated and translated one 
parameter at the time. The modified conformation is then 
evaluated by a scoring function. If the new conformation has a 
lower energy than the previous one, it is kept. The process is 
repeated until a satisfactory pose has been generated. A typical 
example of Monte Carlo docking method is ICM (Abagyan et al. 
1994). GLIDE has also a Monte Carlo element, as final poses 
from hierarchical filtering are generated by the Monte Carlo 
method (Friesner et al. 2004). 
Genetic algorithms are based on Darwin’s theory of evolution 
(Moitessier et al. 2008). A docking pose is stored in a data 
structure called a “chromosome”, which is made up of numbers 
called “genes” that store each translational angle, rotation and 
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translation of the ligand. Chromosomes then evolve through a 
process of reproduction and are altered by genetic operators like 
mutation and crossover. The next generation is then selected by 
the survival of the fittest, where the two lowest energy 
chromosomes are kept. Lamarckian Genetic Algorithm (LGA) is 
a modification of the genetic algorithm that is used in AutoDock 
(Morris et al. 2009). LGA is hybrid method which contains an 
adaptive global optimizer with a local search. The local search 
method uses a random search optimization, which is allowed to 
change the chromosome of the global optimizer. The use of LGA 
instead of the regular genetic algorithm increases the 
performance of AutoDock (Morris et al. 1998). 

2.3.2 Scoring functions 
The scoring functions can be roughly divided into force field-, 
empirical and knowledge-based (Kitchen et al. 2004; Moitessier 
et al. 2008). Scoring functions can be also hybrids of molecular 
mechanics and empirical terms (Table 2.8). 
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Table 2.8: Currently available scoring functions (adapted and modified from 
Moitessier et al. 2008). 
Scoring 

function 

Reference Type Software or 

website 

ChemScore 
Eldrige et 

al. 1997 
Empirical 

GOLD, FRED, CScore 

 

ShapeGauss 
McGann et 

al. 2003 
Empirical 

FRED 

 

ChemGauss3 - Empirical 
FRED 

 

eHiTs 
Zsoldos et 

al. 2006 
Empirical 

eHiTs 

 

GlideScore 
Friesner et 

al. 2004 
Empirical 

Glide 

 

FlexX 
Rarey et al. 

1996 
Empirical 

FlexX 

 

Hammerhead 
Pham and 

Jain 2006 
Empirical 

Surflex-Dock, 

DiscoveryStudio 

 

LigScore 
Krammer et 

al. 2005 
Empirical 

DiscoveryStudio 

 

PLP 
Verkivker et 

al. 2000 
Empirical 

DiscoveryStudio, FRED, 

DockIt 

 

RankScore 
Moitessier 

et al. 2006 
Empirical/FF 

FITTED 

 

ScreenScore 
Stahl and 

Rarey 2001 
Empirical/consensus 

FRED 

 

SLIDE SCORE 

Schnecke 

and Kuhn 

2000 

Empirical 
SLIDE 

 

X-Score 
Wang et al. 

2003 
Empirical/consensus 

sw16.im.med.umich.edu/soft

ware/xtool 

 

AutoDock4 SF 
Huey et al. 

2007 
FF/Empirical 

AutoDock, SODOCK 

 

DockScore 
Meng et al. 

1992 
FF 

DOCK, Cscore 

 

Zou GB/SA 

Score 

Liu et al. 

2004 
GB/SA 

DOCK 

 

GoldScore 
Jones et al. 

1997 
FF 

GOLD, Cscore 

 

HADDOCK 
van Dijk et 

al. 2006 
FF 

HADDOCK 

 

ICM 
Abagyan et 

al. 1994 
FF 

ICM 
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DrugScoreCSD 
Velec et al. 

2005 
Knowledge based 

pc1664.pharmazie.uni-

marburg.de/drugscore 

 

DrugScorePDB 
Gohlke et 

al. 2000 
Knowledge based 

pc1664.pharmazie.uni-

marburg.de/drugscore 

 

M-Score 
Yang et al. 

2006 
Knowledge based 

sw16.im.med.umich.edu/lab/

members/chaoyie 

 

PMF 
Muegge 

2006 
Knowledge based 

DiscoveryStudio, DockIt, 

Cscore 

 

Zapbind 
Grant et al. 

2001 
Empirical/PBSA 

FRED, DOCK 

 

Astex Scoring 

Potential 

Mooij and 

Verdonk 

2005 

Knowledge based 
GOLD 

 

Cscore 
Clark et al. 

2002 
Consensus 

SYBYL 

 

LUDI 

Böhm et al. 

1998 

 

Empirical 
DiscoveryStudio 

 

ASE - Gaussian 
MOE 

 

London dG - Empirical/FF MOE 

 
Force field-based scoring functions 
 
Molecular mechanics force fields are used in scoring functions to 
calculate the protein-ligand interaction energy and the internal 
ligand energy. The two factors contributing to the energy are 
van der Waals and electrostatic terms. van der Waals energy is 
most often described by a Lennard-Jones potential (also known 
as the 12-6 potential): 
 

 

 
where NA and NB are the number of atoms in molecules A and B, 
r is the distance between atoms i and j, σ is the collision 
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diameter between atoms i and j, and ε is the well depth of the 
potential.  
Different modifications of Lennard-Jones potential have been 
formulated. For example, the 12-10 potential is used in 
AutoDock to model hydrogen bonding (Morris et al. 2009). 
The electrostatic potential energy is calculated from a 
Coulombic equation: 

 

 
where Nx are the number of atoms in molecule x, ε0 the electric 
constant and qy is the charge of each atom y. 
These kinds of descriptions suffer from obvious serious 
limitations such as modeling protein-ligand binding in water, as 
they were originally formulated to model gas-phase interactions 
and do not take solvation or entropy into account. Furthermore, 
arbitrary cut-off values are required for modeling of non-
bonded interactions, which complicates the estimation of long-
distance interactions. 
Given these limitations, additional terms besides van der Waals 
and Coulombic energy have been added to the scoring 
functions. The AutoDock scoring function includes a 
desolvation potential Esol based on the general approach by 
Wesson and Eisenberg (Wesson and Eisenberg 1992; Huey et al. 
2007). It has an atomic solvation parameter Si and volume Vi of 
the atoms surrounding given atom i: 
 

 
 

 

 
where σ is a distance weighting factor, Ai and Q are atomic 
solvation parameters calibrated using six atom types.  
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Empirical scoring functions 
 
Scoring functions can also take advantage of existing 
experimental data (Kitchen et al. 2004; Moitessier et al. 2008). 
Empirical scoring functions are derived with regression analysis 
from determined binding energies and/or crystallography data. 
The concept was originally implemented in de novo design 
program LUDI (Böhm 1992) and since then, several empirical 
scoring functions have been proposed (Wang et al. 2002). 
Empirical scoring functions are very simple to calculate, but 
obviously their performance is highly dependent on the data set 
from which they are derived. 
 
Knowledge-based scoring functions 
 
Knowledge-based scoring functions are also very quick to 
calculate (Kitchen et al. 2004). They are designed to reproduce 
experimentally observer structures instead of devising 
predictions of affinity like empirical scoring functions. As the 
name implies, knowledge-based scoring functions use data 
about protein-ligand interactions. Pre-defined atom-pair 
interactions are used to evaluate the docking pose. Similar to 
empirical scoring functions, knowledge-based scoring functions 
are limited by the availability of experimental structures. 
Given the limitations of the current scoring functions (see 
Chapter 2.6), there have been many attempts made to combine 
several scoring functions to improve the accuracy (consensus 
scoring) (Clark et al. 2002). The debate still is on-going if 
consensus scoring is actually useful (Brooijmans and Humblet 
2010), as there are both positive (Charifson et al. 1999; Krovat 
and Langer 2004) and negative findings (Verdonk et al. 2004; 
Stahl and Rarey 2001). 
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2.4 DATABASE PREPARATION 

Whenever one chooses ligand- or structure-based approach for 
virtual screening, a molecular database of available compounds 
has to be prepared. While at first glance this step seems trivial, 
there are potential pitfalls for the unwary modeler. 
One must make sure that the molecular database to be screened 
is up-to-date and at least most of the compounds are readily 
available for purchase. It makes little sense to find an interesting 
molecule that one cannot acquire, as the chemical synthesis is 
usually extremely laborious and rarely justified simply on the 
basis of initial virtual screening results. 
A comprehensive and free source for virtual screening databases 
is ZINC, available at zinc.docking.org (Irwin and Shoichet 2005). 
It contains pre-processed databases from the most prominent 
chemical vendors. The current version 10 of ZINC has over 13 
million compounds that are readily available. 

2.4.1 Prefiltering 
Before embarking on computationally intensive 3D virtual 
screening, prefiltering of the database is useful. Simple 
properties like molecular weight or number of rotatable bonds 
can be used to remove compounds that are not wanted. The 
most famous of these simple filters is “the rule of five” (Lipinski 
et al. 1997), which is used to a evaluate compound’s so-called 
druglikeness. It states that an orally active drug should possess 
no more than one violation of the following criteria: 
- less than six hydrogen bond donors 
- less than 11 hydrogen bond acceptors 
- molecular weight below 500 Da 
- CLogP less than five 
It may not make sense to use “the rule of five” as a filter in the 
early lead discovery, as it has been shown that actual drug 
molecules are different from lead molecules (Teague et al. 1999; 
Ohno et al. 2010) and chemical probes (Oprea et al. 2007). A 
good lead needs to be less complex than the actual drug 
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molecule, so that there is room for optimization. Oprea and co-
workers have defined lead-like properties (Oprea et al. 2001): 
- molecular weight below 450 Da 
- ClogP between -3.5 and 4.5 
- less than five ring structures 
- less than 11 nonterminal single bonds 
- less than six hydrogen bond donors 
- less than nine hydrogen bond acceptors 
One should also remove promiscuous compounds (also known 
as “frequent hitters”), molecules that show up as false positives 
in HTS, independent of the target due to reasons not related to 
the protein-ligand interaction (Baell et al. 2010). Reactive and 
undesirable groups should be also removed in the database 
preparation phase (for example, see Lagorce et al. 2008). 

2.4.2 Tautomerism, protonation states and stereoisomerism 
Tautomerism also has an effect on molecular databases (Pospisil 
et al. 2003; Knox et al. 2005). Tautomerism is isomerism of the 
form: 
 

 
 

where the isomers are readily interconvertible (IUPAC 2010).  
This kind of isomer is called a tautomer. The atoms connecting 
groups X,Y,Z are usually carbon, hydrogen, oxygen or sulphur. 
Group G becomes an electrofuge or nucleofuge during 
isomerization. The most commonly known tautomeric 
phenomenon is the proton migration (prototropy), where the 
hydrogen atom moves between different sites on the same 
molecule. This is not to be confused with ionization or 
protonation where the hydrogen atom leaves or comes from 
another molecule. These different protonation states are 
sometimes called protomers in the virtual screening literature 
(not to be confused with the official definition of a protomer, 
which is a structural unit of an oligomeric protein). Other 
examples of tautomerism are keto-enol and ring-chain 
tautomerism.  
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An equilibrium exists between the different tautomeric forms. In 
the aqueous medium, several factors such as temperature and 
pH affect the tautomeric equilibrium. It is therefore non-trivial 
to predict the relative stabilities of different tautomers. Several 
programs are available for rapid tautomer and protonation state 
enumeration, such as QuacPac (OpenEye Scientific Software) 
and LigPrep (Schrödinger Inc.). QuacPac simply enumerates all 
reasonable tautomeric and protonation states in an aqueous 
solvent. LigPrep’s tautomer tool is also based on pre-defined 
tautomeric groups and their assumed probabilities. EpiK 
(Schrödinger Inc.) and MoKa Suite (Molecular Discovery Ltd) 
can also predict the most likely tautomeric and protonation state 
instead of simply enumerating all forms. EpiK is based on Taft 
and Hammett equation parameterized by values from the 
literature and proprietary data. In a comparative study on 
currently available pKa-prediction programs, it was postulated 
that the training set used in EpiK is too small for diverse set of 
predictions (Manchester et al. 2010). The MoKa Suite is based on 
recursive enumeration of tautomers and an empirical tautomeric 
stability prediction method (Milletti et al. 2009). First, tautomers 
are generated by knowledge and aromaticity rules. Then, the 
stability of different tautomers is predicted by using empirical 
data. The predictions are adjusted with pKa-values predicted by 
MoKa (Milletti et al. 2007). MoKa also generates the relevant 
protonation states over a given pH range. 
In addition to tautomerism and protonation states, there is 
stereochemistry to be considered. Normally the molecules that 
are purchasable from chemical vendors are racemic mixtures. 
Therefore, all stereoisomers need to be considered in docking as 
all forms will be present also in the bioassay (Brooks et al. 2008). 

2.4.3 Conformational analysis 
As previously stated, most small molecules are flexible and have 
several three-dimensional conformations. Conformation 
generators perform conformational analysis efficiently for 
virtual screening purposes. Efficiency in this context means that 
they produce a small total number of biologically relevant 
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conformations per molecule in a reasonable time for a large 
number of compounds (Sadowski and Gasteiger 1993; Watts et 
al. 2010). There are two possible outputs from a generator. 
Either it produces a single, low-energy conformation or an 
ensemble of diverse conformations. The selection of the virtual 
screening method then determines which kind of database one 
should use in the screening process. 
Several alternatives for rapid conformation analysis are publicly 
available (Table 2.9). Conformation generators are generally 
based on either numerical methods such as distance geometry 
or more commonly, empirical data (Sadowski and Gasteiger 
1993).
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Table 2.9: Publicly available conformation generators that are suitable for virtual 
screening studies. S=Single, E=Ensemble, L=License, F=Free, FA=Free for Academic 
use and C=Commercial. 
Program Ref. Algorithm S E L Website 

Catalyst 

(Discovery

Studio) 

 

 

- 

 

Systematic 

Search/MM/Random 

Search 
y y C 

www.accelrys.com 

 

OMEGA 

 

Hawkins 

et al. 

2010 

 

Fragment-

based/Torsion 

library/MM 

y y 
F

A 

www.eyesopen.com 

 

MOE/Conf 

 

- 

 

MM/Fragment-

based/Systematic 

Search 
y y C 

www.chemcomp.co

m 

 

Balloon 

 

Vainio 

and 

Johnson 

2007 

 

Distance 

Geometry/GA/MM 
y y F 

users.abo.fi/mivainio

/balloon 

 

CORINA 

 

Gasteiger 

et al. 

1990 

 

Fragment-based y n C 

www.molecular-

networks.com 

 

ROTATE 

 

Schwab 

2003; 

Renner et 

al. 2003 

 

Torsion library/MM y y C 

www.molecular-

networks.com 

 

ConfGen 

Watts et 

al. 2010 

 

MM/Empirical 

heuristics 
y y C 

www.schrodinger.co

m 

 

CONCORD 

 

- 

 
Empirical/MM y n C 

www.tripos.com 

 

CONFORT 

 

- 

 
MM n y C 

www.tripos.com 

 

DG-AMMOS 

 

Lagorce 

et al. 

2010 

 

Distance Geometry/MM y n F 

www.mti.univ-paris-

diderot.fr/fr/downloa

ds.html 

 

Multiconf-

DOCK 

Sauton et 

al. 2008 

Incremental 

construction, 

Systematic Search 
n y F 

www.mti.univ-paris-

diderot.fr/fr/downloa

ds.html 



54 
 

  
 

Balloon is an example of a modern conformation generator 
based on numerical methods (Vainio and Johnson 2007). It 
creates the initial conformation using distance geometry and 
additional conformations are generated with a genetic algorithm 
designed to preserve the diversity of conformations. In the 
postprocessing step, the conformations are relaxed using a 
MMFF94-like force field. Since Balloon does not utilize of any 
empirical data, it is rather slow compared to other conformation 
generators. 
OMEGA from OpenEye Scientific Software is a hybrid method 
combining empirical information about fragment conformations 
and calculations of molecular mechanics (Hawkins et al. 2010). 
First, the initial conformation is constructed with a fragment 
library. Then, all rotatable torsions are sampled using a 
knowledge-based list of reasonable angles. Finally, the set of 
conformations is sampled with geometric and molecular 
mechanics criteria. It is extremely fast, on average generating a 
conformation for a molecule in 0.2 seconds (Lagorce et al. 2009). 
ConfGen (Schrödinger Inc) is derived from the conformational 
analysis part of the docking program Glide (Watts et al. 2010). It 
uses a combination of molecular mechanics calculations and a 
set of empirical heuristic rules to generate diverse 
conformations. ConfGen has four different levels for 
conformational analysis: very fast, fast, intermediate and 
comprehensive. By default, the fast mode is used, which is 
designed for virtual screening purposes. The fast mode 
produced 13 conformations per molecule in approximately one 
second on average with a modern Intel Core2 2.4GHz system.  
Some comparison studies on conformation generators have been 
published (for example, see Kirchmair et al. 2006 and Chen et al. 
2008). However it is difficult to state with certainty which 
method is the best. There also seem to be some data issues in 
most studies published so far (Hawkins et al. 2010). Even 
though such studies are easy to conduct after a suitable 
benchmark set has been created, most conformation generators 
are commercial and licensing issues complicate those kinds of 
studies. 
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2.5 THE LIMITATIONS OF VIRTUAL SCREENING 

Even though virtual screening has been successful in drug 
discovery projects, there are some fundamental limitations in 
both LBVS and SBVS that are good to keep in mind when 
designing new experiments. The issues relating to the validation 
and benchmarking will be discussed in the next chapter, as they 
do not directly link to the virtual screening methods themselves. 

2.5.1 Limitations of LBVS 
The first limitation of LBVS is the classical chicken and an egg 
problem: at least one biologically relevant molecule must be 
identified before database can be screened. This is a major 
limitation as there are many potential targets for which there are 
known ligands available. 
It is unreasonable to expect something completely different from 
a methodology that is based on searching for similar molecules. 
The issue is illustrated on Figure 2.18, which shows two 
inhibitors for the catecholamine-O-methyltransferase (COMT) 
enzyme. They have both low 2D- and 3D-similarities even 
though they have similar biological activities. Total similarity 
based on a single molecule is therefore a relatively limited 
technique. This problem is alleviated by the fact that often 
several active molecules are known. 
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Figure 2.18: Global similarity metrics miss sub-structural similarity. The two ligands 
of the COMT-enzyme have both low 2D- and 3D-similarities. 
 
There is also a clear paradox in the whole fundamental idea of 
finding novel bioactive molecules from LBVS, since there is the 
similarity principle that states that structurally related 
compounds display similar biological activities (Eckert and 
Bajorath 2007). This of course means that the more different 
compounds that there are, the less likely they are going to have 
similar activity (Bohm et al. 2004). Even though there are 
various ways to measure the similarity between two molecules, 
there is always a tradeoff between scaffold hopping and the 
probability of finding an active compound (Figure 2.19). It 
depends on the project if one wishes to find rather similar 
compounds with a high probability of being active or simply a 
large number of diverse compounds (Triballeau et al. 2006). 
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Figure 2.19: The tradeoff between chemical similarity and the probability of finding an 
active compound. 
 
LBVS methods that require molecular alignment of multiple 
compounds, such as pharmacophores, assume that all of the 
active molecules bind in a similar conformation. Aligning 
several active conformations simultaneously is far from trivial, 
as the crystallized structures of protein-ligand complexes have 
well demonstrated. Two commonly used inhibitors of 
phosphodiesterase 5(PDE5), sildenafil and tadalafil, both have 
the same binding pocket, but the alignment is not obvious from 
the molecular structures alone (Figure 2.20). 
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Figure 2.20: The binding conformations of two inhibitors of PDE5-enzyme. Sildenafil 
is in gray (PDB 2H42) and Tadalafil in black (PDB 1XOZ) (Wang et al. 2006; Card 
et al. 2004). 

2.5.2 Limitations of SBVS 
X-ray crystallography is a rather difficult and laborsome science 
and therefore, it is not surprising that the crystal structures of 
most drug targets are not available. The structures of only a few 
G-protein Coupled Receptors (GPCRs) have been successfully 
solved, even though this class accounts for approximately 30% 
of targets of all marketed drugs (Sela et al. 2010). Homology 
modeling-based structures have been used instead, but it is still 
unclear if such models are truly suitable for virtual screening. In 
a recent GPCR modeling and docking contest, most of the 29 
homology models submitted were not accurate enough to 
permit virtual screening (Michino et al. 2009). 
A protein model based on X-ray crystallography is an 
interpretation of experimental data (Davis et al. 2008). Two 
crystallographers may reach different conclusions from the 
same diffraction data. For example, a functional group of the 
bound ligand might be confused with a water molecule. This 
subjective nature of X-ray crystallography is often ignored when 
utilizing structures from Protein Databank. 
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In addition to the issues related to X-ray crystallography, there 
are major problems with current docking methods. The 
assumption that there is a rigid protein over-simplifies the 
modeling of protein-ligand interaction. The inductive effects are 
rarely considered and therefore the binding pocket may be of 
the wrong shape. A greater problem is that a macromolecular 
complex is not a single structure, but an ensemble of structures 
(Bissantz et al. 2010). Changes in conformations of both ligand 
and protein during the binding have a significant impact on the 
binding energy. 
Scoring functions assume that binding free energy can be 
formulated by additive terms from various protein-ligand 
interactions. In reality, different molecular interactions are 
nonadditive and should be designated with different amounts 
of Gibbs energy in different contexts (Dill 1997).  
Another serious deficiency in docking is that it does not take 
enthalpy-entropy compensation properly into account 
(Whitesides and Krishnamurthy 2005). An increase in entropy 
can compensate for a loss in enthalphy (Krishnamurthy et al. 
2006; Ladbury et al. 2010). A good example of this phenomenon 
is the study of Christof and co-workers on a pair of thrombin 
inhibitors (Christof et al. 2007). The cyclopentyl group of the 
first compound was switched to cyclohexyl group in the second 
molecule. Both compounds had identical binding affinity even 
though X-ray crystallography indicated that the cyclopentyl 
group was located inside the binding pocket, whereas the 
cyclohexyl group was not. This similar binding affinity with a 
different binding mode was caused by enthalphy-entropy 
compensation as revealed by isothermal titration calorimentry. 
It is highly doubtful that this phenomenon would have been 
detected from molecular docking studies. 
One can indeed wonder how docking can work at all, given all 
of these problems (Whitesides and Krishnamurthy 2005; Kolb 
and Irwin 2009). There are successful structure-based virtual 
screening studies where novel biologically active compounds 
have been identified, but rarely has the docking pose been 
experimentally validated by comparing it to the crystallized 
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structure (Kolb and Irwin 2009; Bissantz et al. 2010). It is 
therefore possible that at least some of the reported findings are 
either based on crude features like molecular shape or just sheer 
luck. Indeed, for more sophisticated tasks like lead optimization, 
molecular docking does not seem to be a reliable enough 
technique (Warren et al. 2006; Tirado-Rivers and Jorgensen 2006; 
Leach et al. 2006; Enyedy and Egan 2008). 
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3 Validation and 
evaluation of VS methods 

"From combinatorial chemistry to genomics, new concepts or 
technologies that claim to help accelerate drug development have 
arguably been too rapidly embraced without true validation." 
(Quote from the Editorial of Nature Reviews Drug Discovery 6, 
3, 2007) 
 
There have been proposals about hundreds of different virtual 
screening methods. It is rather difficult to say which methods 
are truly useful in finding novel bioactive compounds. There are 
two approaches for validation. In retrospective validation, data 
from the literature is used to evaluate the performance of a 
method, whereas in a prospective validation, the method is 
validated by the discovery of novel bioactive compounds.  
In most cases, the methods have been validated by retrospective 
virtual screening and no prospective results are provided.  The 
risk of retrospective studies is that the method may work 
artificially well with certain data sets and that the results gained 
are not generally applicable. However, prospective studies are 
not conclusive either as active molecules can be found simply by 
luck. After all, history is filled with examples of serendipitous 
drug discovery (Ban 2006). 
When evaluating a virtual screening method, there are two 
points to consider (Sheridan and Kearsley 2002). First, how good 
the methods are at selecting active molecules from a database 
i.e. what is the quantity of hits? Secondly, how novel are the 
chemical structures of the molecules that are predicted to be 
active i.e. what is the quality of hits? This is not trivial matter 
because there is no standardized test set or even a metric 
available to measure the performance of a new method (Geppert 
et al. 2010; Triballeau et al. 2005; Edgar et al. 2000) and the 
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validation of new methods is often rather limited (Good et al. 
2004b; Kolb and Irwin 2009). To paraphrase Lord Kelvin (1824-
1907): one cannot improve current virtual screening methods if 
one cannot measure the performance. 
The output of a virtual screening method is a hit list, which 
contains the database molecules ordered according to their 
likeness to be active. Ideally, active and inactive molecules are 
separated by the score produced in the virtual screening method 
with some threshold T (Figure 3.1). A true positive is a molecule 
that was correctly predicted as being active, while a false 
positive is an inactive molecule that was predicted to be active. 
A true negative is a compound that was predicted correctly to 
be inactive and a false negative is an active compound that was 
predicted to inactive. Generally speaking, virtual screening 
methods tend to produce a high number of false positives. 
 

 
Figure 3.1: Idealized example of a virtual screening hit list (adapted from Triballeau et 
al. 2006) 

3.1 PUBLICLY AVAILABLE DATA SETS FOR VS EVALUATION 

Usually virtual screening methods are validated by 
retrospective screening of a data set, where a number of known 
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actives (ligands) are mixed with supposedly inactive 
compounds (decoys). This is very problematic, since the results 
depend strongly on the data set composition (van Drie 2004; 
Eckert and Bajorath 2007). Some targets are easier than others. 
Decoy molecules can be trivially different from ligands. For 
example, if decoy molecules are much larger than ligands, it is 
trivial to separate the two groups based on a simple descriptor 
like molecular weight. An imbalanced data set can be compared 
to a police identity parade with one black male suspect in a row 
otherwise filled with white females (Nicholls 2008). In addition, 
the different data set composition makes the reliable comparison 
of methods between different studies impossible. 
In order to tackle these problems, Huang and co-workers 
created a publicly available data set called the “Database of 
Useful Decoys” (DUD) (Huang et al. 2006). It contains a large 
and diverse test set of forty targets belonging to various protein 
families such as nuclear hormone receptors, kinases, serine 
proteases, metalloenzymes, folate enzymes, etc. Each target has 
a set of ligand and decoy molecules. 2950 ligands in total were 
gathered from the literature. The decoy molecules were selected 
from Lipinski-compliant subset of the ZINC database using 2D-
fingerprints. These molecules are assumed to be inactive due to 
their dissimilarity to the ligand set. From this set, 36 decoy 
molecules per ligand that had similar calculated physical 
properties were selected. Molecular weight, hydrogen bond 
acceptors, hydrogen bond donors, CLogP and the number of 
rotatable bonds were considered. DUD seems to provide a more 
stringent test than the previously commonly used MDL Drug 
Data Report (MDDR) and it has been utilized in numerous 
recent studies (for example: Faver et al. 2010; Cross et al. 2009; 
Venkatraman et al. 2009; Englebienne et al. 2009; Clark et al. 
2009; Cosconati et al. 2009; von Korff et al. 2009; Hartmann et al. 
2009; Pham and Jain 2008). 
Some important aspects of DUD have been raised after the 
publication of the data set. One of the authors of DUD explicitly 
stated afterwards that DUD is only for benchmarking molecular 
docking and nothing else (Irwin 2008). Indeed, as the DUD 
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decoys have been selected to be 2D-dissimilar from active 
compounds, DUD is clearly unsuitable for benchmarking 2D-
methods. It also produces overoptimistic results for 3D-
methods, since there are many targets where all active 
compounds are trivial analogs of a central structure. There is 
also an imbalance in formal charges between active and inactive 
molecules: 42% of active and 15% of inactive molecules is 
charged. This creates anomalies in enrichment studies.  
There is a filtered version of the DUD available called DUD LIB 
VS that is intended for benchmarking ligand-based virtual 
screening methods (Good and Oprea 2008; Jahn et al. 2009). A 
lead-like filter and a clustering algorithm were applied to 
remove trivial analogs and molecules that would not have 
passed a normal database preparation step. The imbalance 
between formal charges is however still present on the data set 
and the ligand chemical diversity of some targets is still rather 
modest. Since the original publication, DUD has been also 
clusterized for scaffold hopping analyses by Andrew Good. The 
scaffolds are detected with reduced graph assemblies using the 
method of Barker and co-workers (Barker et al. 2003). 
As there is clearly room for improvement in DUD, alternative 
benchmarking data sets have also been proposed. The 
Maximum Unbiased Validation (MUV) data set is based on 
PubChem bioactivity data for both ligands and decoys (Rohrer 
and Baumann 2009). In MUV, decoy molecules have been 
selected to resemble ligands on the basis of simple descriptors. 
These descriptors are vectors containing various atom counts 
combined with hydrogen-bond acceptors/donors, logP, the 
number of chiral centers and the number of ring systems. It has 
been proven extremely challenging for current ligand-based 
virtual screening methods (Tiikkainen et al. 2009). 
There is the recently published ChEMBL (available at 
http://www.ebi.ac.uk/chembldb), a database containing 
approximately 500 000 bioactive compounds, which should 
provide a good starting point for the building of future virtual 
screening benchmarking data sets. It contains information about 
bioactive compounds, their targets and screening data extracted 
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from various high-impact journals. All data is manually 
evaluated and is therefore of higher quality than the PubChem 
data used in MUV (Bender 2010). 

3.2 MEASURING THE QUANTITY: EVALUATING THE HIT RATE 

When measuring the quantity of active molecules from a virtual 
screening method, the recommended metric is the area under 
the curve for Receiver Operating Characteristic plot (ROC AUC) 
(Jain and Nicholls 2008).  ROC analysis was developed during 
World War II for radar applications and since then it has been 
applied in many fields of science. It is a visual as well as 
numerical method for evaluation of different virtual screening 
methods (Triballeau et al. 2005; Sonego et al. 2008). 
ROC analysis can be applied to any binary classification 
problem. In virtual screening, the compounds in the hit list must 
be assigned as being either active (1) or inactive (0). Many 
benchmarking sets already have this classification, as they are 
divided into ligands and decoys. A confusion matrix is 
generated for each threshold in the hitlist, from which 
sensitivity Se and specificity Sp are calculated (Figure 3.2). 
Finally, sensitivity is plotted as a function of 1-specificity to 
form the ROC curve. The integral of this curve (area under 
curve, AUC) is a single numerical measure of ranking 
performance (Sonego et al. 2008). Random ranking produces a 
diagonal curve with AUC of 0.5, while a perfect AUC is 1.0. 
There is no absolute AUC threshold for “good performance”, 
but a virtual screening method should at least produce AUC 
higher than the random ranking (0.5). 
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Figure 3.2: Generation of ROC curves for virtual screening (Triballeu et al. 2005). 
 
The application of ROC AUC to the evaluation of virtual 
screening methods has been criticized, because ROC AUC does 
not take the “early enrichment problem” into account (Truchon 
and Bayly 2007; Kirchmair et al. 2008). As only the top of the 
hitlist can be normally tested for biological activity, early 
enrichment is an important issue. The problem is illustrated on 
Figure 3.3, where there are two idealized curves with the same 
ROC AUC. Both curves have the same AUC of 0.5 even though 
the hitlists are clearly different. The dashed line is simply 
random and the solid line is from a hitlist where 50% of actives 



67 
 

  
 

are retrieved at the top and 50% at the bottom. It is however 
debatable if such extreme biphasic behavior could really be 
observed in real life virtual screening scenarios (Nicholls 2008). 
 

 
Figure 3.3: "The early enrichment" problem. Both solid and dashed curves have the 
same ROC AUC. 
 
The most common metric to measure the early enrichment is the 
Enrichment Factor (EF) (Jacobsson et al. 2003; Hecker et al. 2002; 
Diller et al. 2003; Triballeau et al. 2006): 
 

 

 
where Tp is the number of true positives, Nsubset the number of 
molecules in a given cutoff, Ldatabase the total number of actives in 
the data set and Ndatabase the total number of molecules in the data 
set. 
There are two problems associated with EF i.e. it relies on an 
arbitrary cutoff (the subset size) and it is dependent on the ratio 
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of the active molecules in the database, which makes 
comparisons between different studies impossible (Kirchmair et 
al. 2008; Nicholls 2008). The cutoff issue can be examined by 
calculating several EFs at different cutoffs, but this complicates 
the interpretation of the results. 
To reduce the effect of the arbitrary cut-off value, Robust Initial 
Enrichment (RIE) was developed by Sheridan and co-workers 
(2001): 
 

 

 

 
where Nactives is the number of active molecules in the hit list, Ri is 
the rank of the active compound I and <S> is the mean S 
calculated from 1000 trials where the ranks of active compounds 
are randomized. 
RIE has its own limitations, e.g. it is difficult to reliably compare 
two RIE values, and therefore a new metric called the 
Boltzmann-enhanced discrimination of the receiver operating 
characteristic (BEDROC) was developed (Truchon and Bayly 
2007). It is a weighted ROC AUC which means that the top of 
the hit list is weighted more than the rest. The mathematics 
behind BEDROC are complicated, but the authors provide C++ 
and Python codes for calculating BEDROC values from simple 
hit lists. However, it is not clear if the RIE or BEDROC provides 
any extra value over ROC AUC when evaluating virtual 
screening methods (Nicholls 2008; Geppert et al. 2010). 
The metrics used for measuring the retrieval effectiveness of 
information retrieval systems can be readily applied in virtual 
screening validation (Table 3.1) (Edgar et al. 2000; Triballeau et 
al. 2006). Similar to EF, these metrics suffer from the problem of 
an arbitrary cut-off for subset selection. 
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Table 3.1: Different metrics for the assessment of virtual screening performance (Edgar 
et al. 2000; Triballaeu et al. 2006; Bradley et al. 2000, 2003; Matthews 1975; Diller et 
al. 2001; Guha and Jurs 2005; Weston et al. 2003; Güner and Henry 2000).  The 
variables in the formulas:  the number of selected molecules Nsubset, the number of 
screened molecules Ndatabase, the number of active molecules in the database Ldatabase and 
the number of active molecules in the hit list Lsubset. 
Metric Formula 

Recall/sensitivity (R, Se) 

 
 

Precision/hitrate (P) 

 
 

Fallout (F) 

 
 

Generality (G) 

 
 

Vickery 

 

 

 

van Rijsbergern (α is the 

relative importance of the 

precision) 

 

 

Cosine coefficient 

 
 

Discrimination ratio 

 
 

Information content 

 
 

Matthews correlation 

coefficient 

 

 

GH score 

 
 

Ford’s M (ω is an weighting 

factor), “balanced labeling 

performance” when ω=0.5  

 

 

Statistical significance 

 
 

Analysis of efficiency (U is 

the n of mols. with unkown 

activity) 
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3.3 MEASURING THE QUALITY: EVALUATING THE CHEMICAL 

DIVERSITY AND SCAFFOLD HOPPING 

When evaluating if scaffold hopping has occurred or not, a well-
defined criterion for scaffolds should be available (Jenkins et al. 
2004; Brown and Jacoby 2006; Schneider et al. 2006; Mackey and 
Melville 2009). The scaffold criterion should also be independent 
of the algorithm used in the virtual screening. There are two 
aspects to this problem: first, the definition of a scaffold and 
secondly, the quantification of scaffold retrieval (Figure 3.4). 
Most publications seem to define scaffolds based on molecular 
frameworks – the concept introduced by Bemis and Murcko 
(Chapter 2.3). Original Bemis and Murcko molecular 
frameworks are simply graphs without any atom information, 
but often different heterocyclic structures are considered as 
different scaffolds (Lipkus et al. 2008). This makes sense from 
both the synthetic chemistry and chemical information point of 
view. Connecting two piperidine rings is different than 
connecting two cyclohexane rings. Both structures also have 
clearly different electrostatic properties and thus probably 
different biological properties. However, the heterocyclic 
scaffold definition introduces some new issues. For example, 
should piperidine and piperazine be considered as different 
scaffolds? 
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Figure 3.4: The two steps required in objective scaffold hopping quantification. 
 
Most of the current objective scaffold definition methods are 
based on 2D-properties and do not take 3D-similarity into 
account. Scaffolds are still often subjectively defined and not 
numerically measured (Bender et al. 2004; Jenkins et al. 2004; 
Zhang and Muegge 2006; Williams 2006; Good et al. 2004b). 
Some studies have calculated 2D-fingerprints and Tanimoto 
coefficients in order to show scaffold hopping (for example, 
Saeh et al. 2005), but there is the problem of choosing the 
optimal threshold value i.e. when the two scaffolds are different. 
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Clustering of 2D-properties has been used to define scaffolds in 
several recent studies (Stiefl et al. 2006; Vidal et al. 2006; Krier et 
al. 2006). Selector from Tripos (part of the SYBYL molecular 
modeling package) is one of the first classification programs for 
undertaking library diversity analysis (Martin 2001). Selector 
can use several diversity metrics such as UNITY 2D fingerprints, 
3DFlex fingerprints, atom pair distances, CLOGP, QSAR 
derived parameters, substituent constants and CoMFA columns. 
There are also three different classification algorithms 
implemented in Selector (hierarchical clustering, Jarvis-Patrick 
clustering and reciprocal nearest neighbor clustering). Other 
similar tools are available from ChemAxon (Borosy et al. 2001; 
Vargyas et al. 2006) and Simulations Plus (Krier et al. 2006). The 
problem with all automatic clustering programs is that two 
different similarity metrics define different scaffolds and the 
scaffolds may appear arbitrary (Medina-Franco et al. 2009). The 
issue of scaffold definition is clearly a complex subject which 
needs to be clarified. 
There is still the issue of quantification of the scaffold retrieval 
even if one uses pre-defined scaffold definitions. Such metric 
would be a very useful tool in the validation and evaluation of 
virtual screening methodologies (Good et al. 2004b). The 
intuitive “the fraction of retrieved scaffolds in the top of hitlist” 
has been used in most studies assessing scaffold hopping in 
virtual screening, but it also has some issues as recently pointed 
out (Mackey and Melville 2009). For example, the scaffolds that 
are present in a large number of compounds are more likely to 
be found by random than those scaffolds that are only in few 
molecules in the data set. Overall, there is still not any generally 
accepted metric available for the objective evaluation of scaffold 
hopping, but recently some metrics have been proposed that 
may perhaps represent at least a partial solution to the problem 
(Krier et al. 2006; Clark and Webster-Clark 2008; Mackey and 
Melville 2009; Medina-Franco et al. 2009).  
Krier and co-workers proposed a new metric called PC50C 
(Krier et al. 2006). It is computed from the percentage of scaffold 
classes accounting for 50% of the classified compounds. Medina-
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Franco and co-workers further developed this line of thought 
with scaffold retrieval curves and a metric called Scaled 
Shannon Entropy (Medina-Franco et al. 2009). The way that 
these methodologies could be applied to the virtual screening 
would be to analyze the diversity of the active molecules in the 
top of the hitlist selected. However, this strategy has not yet 
been investigated. 
Clark and Webster-Clark suggested the addition of weights to 
ROC curves accounting for the measurement of scaffold 
hopping (Clark and Webster-Clark 2008). Their idea was 
recently refined in a study by researchers at Cresset 
Biomolecular Discovery (Mackey and Melville 2009). In this 
study, scaffold hopping weighted ROC AUC, EF and other 
weightings for enrichment metrics were developed. It was 
shown that the difference between the DUD COX2 active 
molecules (relatively few scaffolds) and FXA active molecules 
(more diverse set) could be detected. These two extreme cases 
were easy to identify, but for other targets the quantification 
was not so clear. More studies will be required to confirm the 
usefulness of this interesting technique. As Mackey and Melville 
provide free software to calculate their metrics, conducting such 
a study might be rather straightforward. 
Given the controversial current status of scaffold hopping 
quantification (Geppert et al. 2010), pre-defined 2D-scaffold 
definitions with a simple metric “the fraction of retrieved 
scaffolds in the top of the hitlist” are used in assessing of early 
scaffold hopping in the experimental part of this thesis: 
 

 

 
where Sfound is the number of the scaffolds found out of all 
possible scaffolds Sall in the top X of the hit list. This metric is a 
”First Found” technique since each scaffold is counted only once 
(Mackey and Melville 2009). 
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4 Aims of the study 

The aim of study was to improve current 3D-virtual screening 
protocols by reducing the number of required calculations, 
while maintaining roughly the same accuracy as measured by 
enrichment and chemical diversity. The more specific aims of 
the study were: 
 
1. to develop a fast molecular field-based method for 
ligand-based virtual screening that could be used when multiple 
similarly binding ligands are known in order to overcome the 
limitations of total similarity (FieldChopper) 
2. to validate and benchmark FieldChopper with a diverse 
data set by retrospective virtual screening and apply the 
technique for ADMET-predictions 
3. to assess the impact of ligand-based tautomer and 
protonation state prediction on molecular docking in order to 
speed up the structure-based virtual screening 
4. to increase the throughput of shape-based virtual 
screening with GPU-computing and reduced conformational 
analysis 
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5 Development and 
validation of 
FieldChopper 

FieldChopper is a novel method for LBVS that can be used 
when multiple, similarly binding active ligands are known. 
Here, the algorithm is described and its performance is 
evaluated. For a more detailed description of the 
implementation, the reader is referred to the licentiate thesis 
(Kalliokoski 2008). The chapter is adapted with permissions 
from: Kalliokoski T, Rönkkö T, Poso A: FieldChopper, A New 
Tool for Automatic Model Generation and Virtual Screening 
Based on Molecular Fields. Journal of Chemical Information and 
Modeling 48: 1131-1137, 2008.  Copyright © 2008 American 
Chemical Society. 

5.1 INTRODUCTION 

Molecular fields describe the properties of a compound by the 
potential around the molecule. They have been applied for 
virtual screening. The seminal work in this area is CoMFA, 
which is the mostly commonly used 3D-QSAR method (see 
Chapter 2.3.3). Putta and co-workers (2002) developed a method 
in which molecules are represented in a binary shape-feature 
descriptor space as bit-strings and the molecule’s relative 
activity is used to identify the subset of the bit-string that is 
most relevant to that activity. This subset is then used as a 
model for virtual screening. The method was evaluated using 
two retrospective virtual screenings of thrombin inhibitors 
(Srinivasan et al. 2002). The model was constructed using 38 
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active molecules and 2418 inactive molecules. In the first virtual 
screening, this model was used to filter the MDDR database. 
MDDR was pre-filtered down to a set of 35462 molecules, which 
contained 540 known thrombin inhibitors. The shape-feature 
based method selected 507 compounds, from which 181 were 
known active molecules. The average enrichment was 2.7 times 
greater compared to 2D-fingerprints. In a second screening, the 
same model was used to screen a small, in-house synthetic 
library of 634 compounds, which contained 64 known active 
molecules. The shape-feature based method selected 109 
compounds, from which 15 were active. The enrichment ratio 
was 1.4 and considering that a random selection should on 
average result in enrichment of 1.0, one can conclude that these 
results are exploratory at the best. 
Jain (2004) has developed Surflex-Sim, a method for ligand-
based structural hypotheses for use in virtual screening. These 
hypotheses are built by aligning a set of active compounds by 
using a molecular fragmentation and incremental construction 
algorithm. The algorithm is rather computationally expensive, 
since it takes several hours on a modern desktop computer. 
Only two to three compounds are used to build a model. Virtual 
screening is done by superimposing the new compound against 
each active compound used in the model. The superimposition 
that has maximum mean similarity against all active compounds 
in the model is returned after being given a score from 0 to 1. 
Surflex-Sim was evaluated using a diverse test set of 22 targets 
(Cleves and Jain 2006). A total of 979 active drug molecules were 
mixed with 850 inactive molecules from Available Chemicals 
Directory. Models were built using one to three active 
compounds. The ability of the models to identify cognate drugs 
against a background of screening molecules showed excellent 
enrichment in 20 out of 22 cases. 
Comparative Molecular Active Site Analysis (CoMASA) uses a 
set of active compounds, which are used to generate a 3D map 
(Kotani and Higashiura 2004). This map can then be used for 
building of queries for virtual screening. CoMASA has not been 
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developed any further, but the method is conceptually similar to 
FieldChopper described in this chapter.  
An overview of FieldChopper is shown in Figure 5.1. First, a 
template molecule for superimposition is selected which is used 
in both model generation and scoring algorithms. A model is 
built by superimposing a set of bioactive molecules onto the 
template molecule and running the model generation algorithm. 
Then, a 3D multi-conformation database is screened by 
superimposing the compounds onto the same template and 
scoring them against the model. Finally, the scores are saved in 
a hit-list that can be used in the selection of compounds for in 
vitro testing. For practical purposes, the superimposing method 
has to be fast enough to handle thousands of molecules within a 
reasonable time. For example, the previously described ROCS 
and BRUTUS are these kinds of methods. 
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Figure 5.1: The overview of the FieldChopper method. 
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5.2 PREPARATION OF THE DATA SET 

The method was developed and validated by a data set 
prepared from the DUD. After the publication of this study, 
several issues have been raised concerning DUD (see Chapter 
3.1). With the benefit of hindsight, it is likely that the results 
obtained here are over-optimistic and lower enrichments would 
be observed in reality. However, the main conclusions of the 
original publication are still valid. 
 

5.2.1 Selection of targets 
Twelve targets from DUD’s 40 targets were selected for this 
study based on the number of ligands (Table 5.1), having at least 
50 active ligands. All other protein classes are included except 
for the metalloenzymes, which were excluded because there 
were not enough ligands in DUD for any of the metalloenzymes. 
 
Table 5.1: Selected Targets for Retrospective Virtual Screening and Number of 
Ligands and Decoys. The ligands used in the models (15 per target) are not included. 
Target Ligands Decoys 

ACHE 90 3714 

AR 59 2628 

COX2 333 12464 

DHFR 186 7145 

EGFR 429 14894 

ERagonist 52 2355 

FGFR1 103 4205 

FXA 127 5095 

GR 63 2797 

INHA 70 3035 

P38 241 8387 

SRC 140 5793 
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5.2.2 Decoy Sets 
As suggested in the original DUD paper, two decoy sets were 
created. The “own decoys” set contains the DUD decoys 
selected for the target, and the “combined decoys” set consists 
of all the decoys used in the selected 12 targets combined 
together. This “combined decoys” consists of about 60% of the 
DUD decoys, so direct comparisons cannot be made with the 
“amalgamated test set” in the original DUD paper. The 
“combined decoys” set is used to simulate a virtual screening 
scenario, where there would be a larger number of 
heterogeneous compounds available. 

5.2.3 Conformation Generation and Calculation of Partial 
Charges 
Since all the methods used in this study consider molecules as 
rigid structures, conformations had to be pregenerated using 
OMEGA (see Chapter 2.5.3) with the MMFF94s force field. The 
number of conformations was limited to ten for the virtual 
screening sets. Partial charges were assigned using the MMFF94 
method implemented in MolCharge from OpenEye Scientific 
Software. 

5.2.4 Molecule Superimpositioning 
To study the effect of different alignment algorithms on 
FieldChopper’s virtual screening accuracy, the alignments were 
produced with BRUTUS and ROCS (see Chapter 2.3.4). The 
three highest scoring molecular alignments for each 
conformation were included into the screening database for 
FieldChopper. As previously discussed, the main difference 
between these two alignment methods is the way that molecular 
energy fields are represented. ROCS employs a set of analytic 
Gaussian functions, while BRUTUS is a grid-based method. 
ComboScore with default ImplicitMillsDean force field was 
used to score the superimposed structures with ROCS and the 
default total score was used in scoring of BRUTUS alignments. 
Template molecules for alignment were taken in their bioactive 
conformation from the Protein Databank using the same crystal 
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structures as in the original DUD paper. Atom and bond types 
of template molecules were corrected with SYBYL version 7.1. 
Hydrogen atoms and partial charges with MMFF94 were added 
using the same software.  
The template molecule selected for alignment might not have 
been ideal in some of the cases studied here. For example, the 
template molecule for FGFR1 seems to be on average smaller 
than a molecule in the ligand set (Table 5.2). Most likely the 
prediction accuracy could have been improved by considering 
other ligands as template molecule for alignment. However, 
then the results would have been difficult to compare due to the 
arbitrary selection of the alignment template molecule. In 
general it seems that the template molecules being used are 
roughly of the same size or slightly larger than the ligand 
molecule on average. 
 
Table 5.2: Molecular weight (MW), surface area (SA) and number of heavy atoms 
(HA) for the alignment templates and ligand sets 
 Template molecule Ligand molecule average 

Target MW SA HA MW SA HA 

ACHE 393 684 28 344 613 25 

AR 284 494 21 327 509 23 

COX2 458 590 26 383 584 26 

DHFR 469 723 33 339 563 24 

EGFR 399 712 29 357 561 24 

ERagonist 333 527 24 286 286 21 

FGFR1 345 586 25 430 682 30 

FXA 470 683 31 452 711 33 

GR 392 546 28 384 585 27 

INHA 407 653 30 373 611 27 

P38 549 875 39 369 606 27 

SRC 506 770 36 411 649 28 

. 

5.2.5 Model building 
The active molecules that are selected have a large impact on the 
model and its performance. A FieldChopper model should have 
a diverse selection of active compounds with different chemical 
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scaffolds. They should also be superimposable into each other. 
Subjective selection of compounds by a human investigator 
would introduce significant bias into the study. To ensure 
objective selection of compounds for the FieldChopper models, 
the following semi-automatic protocol was applied. Since the 
activities for DUD ligands were not readily available, 
compounds were only considered to be either active or inactive. 
To maximize the chemical diversity of the model compounds, 
GRIND-descriptors for the ligands were calculated using three 
probes (DRY, O carbonyl, and N amide). Then, two-component 
principal component analysis was performed with ALMOND. 
From these analyses, 15 compounds were selected for each 
target using the Kennard-Stone uniform subset selection 
algorithm as implemented by Daszykowski and co-workers 
with GNU Octave (Daszykowski et al. 2002). The compounds 
used in the FieldChopper models were removed from all virtual 
screening data sets. 
BRUTUS was used to superimpose the compounds used in the 
model. Three possible solutions were generated for each 
molecule. From these superimpositions, the best one for the 
model was selected by visual inspection. 

5.3 ALGORITHMS 

The most important FieldChopper algorithms are those 
constructed for model generation and scoring. FieldChopper 
uses the electrostatic potentials and van der Waals volumes to 
describe molecules. One common way to represent these fields 
is to use a rectilinear 3D-lattice that is equally spaced and to 
calculate the interaction between the molecule and a probe atom 
in each grid point. This approach was utilized in the previously 
described CoMFA. FieldChopper uses grid-spacing of 1 Å by 
default and a sp3 carbon with a charge of +1.0 as a probe atom. 
The size of the grid is determined according to the molecules 
being examined in the model. 
The van der Waals volume is approximated as 
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where v is the van der Waals radius for the atom; and r is the 
distance between the grid point and the atom. 
The electrostatic potential can be calculated with the following 
equation based on Coulomb’s law (Dill and Bromberg 2002): 
 

 

 
where k is a conversion factor; Q is the partial charge on the 
atom; and r is the distance between the grid point and the atom. 

5.3.1 Model Generation Algorithm 
In standard pharmacophore methods that result in a model, all 
of the compounds used to form the hypothesis on the possible 
binding mode should have similar, high biological activity 
(Poptodorov et al. 2006), although it has been suggested that it 
might also be useful to use low activity compounds (Dixon et al. 
2006). On the other hand, 3D-QSAR methods (like CoMFA) 
require a diverse activity range for ligands contributing to the 
model (Höltje et al. 2008). FieldChopper considers molecules to 
be either active or inactive. The user must decide what 
an”active” compound is and thus what is an”inactive” 
molecule. For example, some kind of potency, e.g. an IC50 
value, could be used to distinguish between active and inactive 
compounds. 
A reference molecule to act as the template molecule for 
superimposition is needed. This molecule should be in the 
bioactive conformation and be large enough so that the whole 
set of active compounds can be superimposed onto it. The same 
molecule is used to superimpose molecules during the database 
screening phase. 
The model generation algorithm detects similar grid points 
between active compounds. Each grid point is analyzed one at a 
time. The values from active molecules are classified into three 
bins (Table 5.3) for each point. This results in the creation of a 
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three-class histogram from which the peaks are detected. If the 
class frequency is over one-third of the sum of classes, then it is 
classified as a peak. The amount of the peaks can vary from zero 
to two peaks within one histogram. 
 
Table 5.3: Classification limits for the van der Waals and Electrostatic Potentials 
Interaction Bin 1 Bin 2 Bin 3 

van der Waals inside (>=1) 

near 

(>=0.001, 

<=1.0) 

outside 

(<0.001) 

electrostatic negative (<-0.1) 

near zero 

(>=-0.1, 

<0.1) 

positive 

(>=0.1) 

 
The peaks are used in the scoring algorithm. Since most of the 
electrostatic grid is empty, important grid points for the activity 
are detected using the van der Waals histograms. The grid 
points having a peak in their “Near Molecule” bin are taken into 
the electrostatic scoring, and all other points are excluded. For 
the van der Waals volumes, all grid points are used in the 
scoring, since a van der Waals volume describes the overall 
shape of the binding site. Classification limits for the van der 
Waals histograms are selected so that compounds larger than 
those used in the model are punished in the scoring algorithm. 
In order to obtain an overview of the FieldChopper models, an 
analysis of peak distributions was performed. The numbers of 
different peaks are presented in Tables 5.4 and 5.5. The models 
displayed a very similar distribution of the van der Waals peaks. 
The reason for this phenomenon is that the template molecules 
used for alignment are roughly of the same size. The differences 
in “Outside” peaks in the van der Waals scoring are attributable 
to larger grid boxes for certain targets. No histograms with 
“Inside&Outside” or “None” peak cases were found in van der 
Waals material. With respect to the electrostatics, the nuclear 
hormone targets (AR, ERagonist, and GR) had distributions 
different from the other targets. This reflects their partial 
charges which are close to zero in most cases. Positive 
electrostatics seem to be dominant, which is due to the 
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positively charged nitrogen atoms in the original DUD data. 
This revealed the bias in the DUD data set, which was later also 
identified by others (Irwin 2008). 
 
Table 5.4: van der Waals Peak Distributions in Models (1Å Resolution). I=Inside, 
N=Near, O=Outside 
Target Points I I&N N N&O O 

ACHE 24025 272 272 4307 1191 17983 

AR 16675 240 200 3582 850 11803 

COX2 15341 243 238 3631 854 10375 

DHFR 15525 210 270 3586 1286 10173 

EGFR 18975 259 248 4035 1196 13237 

Eragonist 14283 235 191 3468 791 9598 

FGFR1 22599 256 301 4199 1535 16308 

FXA 27869 292 313 4442 1374 21448 

GR 16875 292 247 4029 969 11338 

INHA 19251 287 239 4084 1217 13424 

P38 22707 213 354 3825 1941 16374 

SRC 25839 220 316 3920 1656 19727 

. 
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Table 5.5: Electrostatics Peak Distributions in Models (1Å Resolution). Only those 
peaks are shown that are included in the scoring process (points near the surface). 
Target Points - - / 

0 

- / 

+ 

0 0 / + + N 

ACHE 24025 0 2 31 4 211 4791 1 

AR 16675 180 628 38 2123 857 211 21 

COX2 15341 262 321 287 1025 1313 920 42 

DHFR 15525 59 188 406 276 2175 1111 149 

EGFR 18975 20 28 231 27 2132 2238 9 

Eragonist 14283 95 333 79 2513 729 145 19 

FGFR1 22599 12 29 840 30 1149 3024 18 

FXA 27869 2 2 105 16 501 4604 3 

GR 16875 61 531 90 2833 700 265 20 

INHA 19251 128 135 272 106 3024 1096 8 

P38 22707 1 21 153 17 2633 2156 9 

SRC 25839 2 32 175 55 2349 2229 16 

 
Since there were positively charged compounds in the model, 
active and inactive compounds were mostly differentiated by 
fitting into “positive” peak. This is an anomaly caused by the 
careless preparation of the DUD set which biases all 
comparisons made with electrostatic methods and DUD. 

5.3.2 Scoring Algorithm 
The scoring algorithm requires a previously generated model 
and a superimposed 3D-molecule as input data. The van der 
Waals volume and the electrostatic potential are generated, and 
each grid point is scored. First, the grid point is classified into 
one of three classes described in the model generation 
algorithm. Then, this class is compared with the peaks in the 
model and scored using the scoring matrices (Tables 5.6 and 
5.7). The score for a field is simply the sum of values from the 
scoring matrices. The total score is defined as 
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where S is the total score; WV is the weight for the van der Waals 
score; PV is the van der Waals score; WE is the weight for the 
electrostatic score; and PE is the electrostatic score. 
 
Table 5.6: van der Waals Scoring Matrix. 
Model Molecule 

Peak(s) Inside Near Outside 

Inside 1 -5 -5 

Inside / Near 1 1 -5 

Inside & Outside 1 -5 1 

Near -10 1 -5 

Near / Outside -10 1 1 

Outside -10 -5 1 

None 1 1 1 

 
Table 5.7: Electrostatic Scoring Matrix. 
Model Molecule 

Peak(s) - 0 + 

- 2 0 -2 

- / 0 1 1 0 

- / + 1 0 1 

0 0 1 0 

0 / + 0 1 1 

+ -2 0 2 

None 0 0 0 

 
Since there are fewer points in the electrostatic score than in the 
van der Waals score, the latter score needs to be scaled down. In 
this study, arbitrary values of 0.2 for WV and 1.0 for WE were 
selected. It should be noted that these values are probably not 
optimal, and the weights should be modified according to the 
nature of the target. 
The effect of grid spacing was studied on one target from each 
protein family that had an ROC AUC value approximately 
equal to 0.8 or higher at 1 Å resolution (Table 5.8). It seems that 
the spacing of 1 Å or 2 Å is optimal for most cases. Surprisingly, 
grid spacing of 5 Å still yields high ROC AUC for COX2 and 
FXA. This illustrates the artificial nature of the DUD data set. 
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Also, such crude spacing leads to several ties in the hit-list and 
thus complicates the selection of the top compounds. 
 
Table 5.8: Effect of Grid Spacing on Selected Models: ROC AUCs for “Own Decoys” 
Sets. 
 Grid Spacing 

Target 0.5Å 1.0Å 2.0Å 5.0Å 

AR 0.802 0.803 0.807 0.640 

COX2 0.901 0.896 0.897 0.868 

DHFR 0.830 0.830 0.835 0.733 

EGFR 0.805 0.798 0.814 0.691 

FXA 0.914 0.915 0.915 0.907 

mean 0.851 0.849 0.853 0.768 

median 0.830 0.830 0.835 0.733 

 
The classification limits can also be adjusted. The default 
classification limits were used in retrospective screening, since 
they produced the highest average ROC AUC (Table 5.9). 
However, the differences in accuracy between different 
classification limits are small. It is possible that different limits 
should be used for different kinds of targets, but that would 
require undertaking a completely new study. 
 
Table 5.9: Different Classification Limits: ROC AUCs for “Own Decoys” Set. 
Target 0.5*limits Normal 2*limits 

AR 0.809 0.803 0.762 

COX2 0.879 0.896 0.903 

DHFR 0.797 0.830 0.833 

EGFR 0.738 0.798 0.810 

FXA 0.911 0.915 0.919 

mean 0.827 0.849 0.845 

median 0.809 0.830 0.833 

 
The orientation of molecules in the model is a critical step. This 
is illustrated in Figure 5.2, which shows two different 
FieldChopper models for AR. Both had the same crystal 
structure as a starting point. In one of the models, the 
coordinates of crystal structure were transferred to another 
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position. The two models have different performances, which is 
probably due to the differences in molecular alignments. This is 
a major problem with FieldChopper. However, a similar 
problem exists with other grid-based methods like CoMFA 
(Doweyko 2004). 
 

 
Figure 5.2: The effect of orientation of the molecules in the model. ROC curves for two 
different FieldChopper models (AR, own decoys set). The original model (solid line) 
outperforms the new model (dotted line). 

5.4 RETROSPECTIVE VIRTUAL SCREENING 

Since FieldChopper requires information on several active 
compounds instead of a single ligand, it should outperform 
similarity metrics which rely only on a single active 
conformation. EON (see Chapter 2.3.4) was selected for an 
example of this kind of ligand based-virtual screening method. 
EON has been successfully used in virtual screening to identify 
novel bioactive ligands (Muchmore et al. 2006; Naylor et al. 
2009) and its throughput is similar to FieldChopper. 
In this study, compounds were ranked with EON using the 
default ET_Combo score. The molecules used for alignment 
from Protein Databank were also used in the EON similarity 
calculations. 
The highest ranked alignment was used as a score for the 
compounds. ROC curves and ROC AUCs were calculated with 
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the ROCR package. The Wilcoxon signed ranks test was used to 
assess the statistical significance of the results (α = 0.05) (Demsar 
2006). In order to evaluate early enrichment in this study, 
enrichment factors at the top 1% of the hit-list (EF1) were 
calculated. Since the top 1% of the “own decoys” set is smaller 
than the number of active compounds, only the enrichment 
factors for the “combined decoys” set are presented. 
Perhaps more importantly than just producing simple 
enrichment is that virtual screening should reveal unique 
chemical structures for lead discovery i.e. be able to do scaffold 
hopping. However, as the ligands in the data set were not 
clustered, this kind of analysis was not feasible. The 
classification of Good cannot be applied here, as it is intended 
for a filtered subset of the original DUD. 
FieldChopper ROC AUC averages were quite similar with both 
BRUTUS and ROCS superimpositions, even though there is a 
statistically significant difference in the combined decoys set 
(Table 5.10). The difference in FieldChopper’s accuracy between 
the two algorithms could be explained by the fact that BRUTUS 
was used to produce the alignments for the models. It seems 
that FieldChopper could be used with both methods. This is not 
surprising, since both methods have been shown to produce 
reasonable molecular alignments. 
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Table 5.10: FieldChopper ROC AUCs with alignments from BRUTUS and ROCS. 
Wilcoxon signed pairs test: combined decoys set P = 0.01 < 0.05, own decoys set P = 
0.5186 > 0.05. 
 FieldChopper(combined) FieldChopper (own) 

Target BRUTUS ROCS BRUTUS ROCS 

ACHE 0.874 0.863 0.516 0.567 

AR 0.930 0.898 0.803 0.810 

COX2 0.909 0.867 0.896 0.891 

DHFR 0.860 0.939 0.830 0.957 

EGFR 0.822 0.732 0.798 0.777 

ERagonist 0.933 0.915 0.775 0.767 

FGFR1 0.620 0.472 0.585 0.515 

FXA 0.928 0.868 0.915 0.906 

GR 0.912 0.627 0.814 0.594 

INHA 0.804 0.767 0.832 0.826 

P38 0.777 0.740 0.735 0.801 

SRC 0.640 0.513 0.702 0.644 

mean 0.834 0.767 0.767 0.755 

median 0.867 0.815 0.801 0.789 

 
ROC curves for EON and FC sets are shown in Figures 5.3 and 
5.4. The early enrichment measured by enrichment factors at 1% 
(EF1) of a ranked database for FieldChopper and EON are 
shown in Tables 5.11 and 5.12. Both methods displayed a similar 
overall performance when one examines average and median. 
FieldChopper outperformed EON on nuclear hormone targets 
(AR, ERagonist, and GR), whereas EON exhibited higher 
enrichment on ACHE and INHA. There was high enrichment on 
COX2, which was also reported in the previous study on EON 
by Nicholls and co-workers (Nicholls et al. 2004). The huge 
difference in performance on FXA is caused by the bias in DUD. 
As the ligands are charged differently than the decoys, 
FieldChopper can easily distinguish the ligands and decoys due 
to the charge alone. 
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Table 5.11: ROC AUCs for FieldChopper and EON. FieldChopper outperforms EON 
in both data sets (Wilcoxon signed rank test: combined decoys P = 0.001465 < 0.05, 
own decoys P = 0.02100 < 0.05). 
 combined own 

Target FieldChopper EON FieldChopper EON 

ACHE 0.516 0.778 0.874 0.910 

AR 0.803 0.676 0.930 0.677 

COX2 0.896 0.884 0.909 0.878 

DHFR 0.830 0.769 0.860 0.767 

EGFR 0.798 0.702 0.822 0.713 

ERagonist 0.775 0.619 0.933 0.739 

FGFR1 0.585 0.456 0.620 0.298 

FXA 0.915 0.399 0.928 0.249 

GR 0.814 0.725 0.912 0.593 

INHA 0.832 0.758 0.804 0.715 

P38 0.735 0.596 0.777 0.572 

SRC 0.702 0.292 0.640 0.338 

mean 0.767 0.638 0.834 0.621 

median 0.801 0.689 0.867 0.695 
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Table 5.12: : Enrichment Factors at 1% of Ranked Database. Both methods have 
similar overall performance. FieldChopper outperforms EON on nuclear hormone 
targets (AR, ERagonist, and GR), while EON has a higher enrichment factor on ACHE 
and INHA. The maximum enrichment factor is 100. 
 combined 

Target FieldChopper EON 

ACHE 39.79 64.47 

AR 66.19 64.47 

COX2 54.41 45.69 

DHFR 1.08 3.76 

EGFR 9.10 10.73 

ERagonist 61.62 28.88 

FGFR1 0.00 0.00 

FXA 4.73 0.79 

GR 30.20 6.36 

INHA 11.43 28.57 

P38 0.42 3.32 

SRC 0.72 4.29 

mean 23.14 18.10 

median 10.26 8.55 

. 
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Figure 5.3: ROC curves for the own set. FieldChopper (solid line) outperforms EON 
(dotted line) in most cases. (1 of 2) 



95 
 

  
 

 
Figure 5.3: ROC curves for the own set. FieldChopper (solid line) outperforms EON 
(dotted line) in most cases. (2 of 2) 
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Figure 5.4: ROC curves for the combined set. FieldChopper (solid line) outperforms 
EON (dotted line) on most cases. (1 of 2) 
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Figure 5.4: ROC curves for the combined set. FieldChopper (solid line) outperforms 
EON (dotted line) in most cases. (2 of 2) 
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6 The effect of 
tautomerism and 
protonation on SBVS 

As tautomerism and ionization may significantly change the 
interaction possibilities between a ligand and a target protein, 
these phenomena could have an effect on structure-based 
virtual screening. However, there is very little information 
published on the effect of tautomeric and protonation state 
enumeration on the enrichment of active molecules in structure-
based virtual screening. In this next chapter, the impact of this 
database preparation step is examined with retrospective virtual 
screening. The chapter is adapted with permissions from: 
Kalliokoski T, Salo HS, Lahtela-Kakkonen M, Poso A: The Effect 
of Ligand-Based Tautomer and Protomer Prediction on 
Structure-Based Virtual Screening. Journal of Chemical 
Information and Modeling 49: 2742-2748, 2009. Copyright © 
2009 American Chemical Society. 

6.1 INTRODUCTION 

From the computational point of view, the different tautomers 
of the same compound are all different molecules. Tautomeric 
and protonation-state enumeration ensures that the state with 
optimal interaction possibilities is always included in the 
screening process, as the predicted state may not always be the 
optimal binder. However, the enumeration of all possible forms 
of a compound increases the computing time considerably with 
larger data sets as a significant proportion of molecules in 
chemical vendor databases are tautomeric. Milletti and co-
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workers analyzed four chemical databases containing 683,862 
molecules for tautomerism from which 29% were tautomeric 
(Milletti et al. 2009). 
In addition to tautomerism, protonation and ionization affect 
many drug molecules since many are either weak acids or bases. 
Predicting the correct protonation state (protomer) for a 
molecule is also not straightforward, as it requires estimation of 
pKa-values of acidic and basic functional groups in the 
molecule.  
An alternative to enumeration is to predict the most likely 
tautomeric form a molecule and to discard the other forms (see 
Chapter 2.5). The effect of the prediction of tautomers and 
protomers in the virtual screening context has been surprisingly 
little studied. Several articles emphasize the importance of 
tautomers (Pospisil et al. 2003; Kirchmair et al. 2008; Martin 
2009), but there are only a few studies where the effect of 
tautomerism on SBVS has been explicitly studied. Knox and co-
workers studied the impact of various aspects of database 
preprocessing to SBVS using ER-alpha antagonists as the target 
(Knox et al. 2005). They concluded that the enumeration of 
tautomers increased the number of false positive compounds. 
That study, as well as the other studies on tautomerism and 
SBVS, suffers from the small data set: only one target was used 
to study the phenomena. The performance of a docking 
program is however highly dependent on the target protein 
(Cross et al. 2009) and thus general conclusions can only be 
made from a diverse set of proteins. Polgár and co-workers 
studied the effect of ligand protonation with beta-secretase 
BACE1 using several docking programs (Polgár et al. 2007). 
Their conclusion was that consideration of all possible 
protomers does not necessarily increase screening efficiency and 
may be just a waste of computing resources. During the 
preparation of this thesis, ten Brink and Exner published a study 
on the influence of protonation, tautomeric, and stereoisomeric 
states on SBVS (ten Brink and Exner 2009). Their data set was 
also rather limited as well; only 15 active ligands seeded with 
735 properties matched decoys from ZINC. It was suggested 
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that enumeration of different forms was detrimental to the 
screening performance due to the creation of unreasonable 
protonation states.  
This present study is the first to investigate the issue of different 
tautomeric and protonation states in SBVS using a diverse, 
publicly available data set. 

6.2 PREPARATION OF THE DATA SET 

6.2.1 Target Selection and Protein Structure Preparation 
From the 40 targets in the original DUD data set, a subset of 28 
proteins was initially selected for this study. Metalloproteins as 
a group were excluded from this study, since for these targets, 
the binding site’s microenvironment for a ligand is clearly 
different from that of a solution or vacuum due to the presence 
of the metal ion (Pospisil et al. 2003; ten Brink and Exner 2009). 
No ligand-based tautomerism and protonation prediction 
method can make sensible predictions without taking into 
account the interaction of the protein with these targets. The 
current version of MoKa does not provide a solution for this 
problem, and thus, metalloproteins are clearly beyond the scope 
of this investigation. Other structures that were excluded 
displayed problems with the crystal structures, such as 
broken/missing ligands (CDK2, VEGFR2, HIVPR), covalent 
ligand binding (thrombin), or missing experimental details 
(DHFR, TK). There was also one homology model in the DUD 
data set (PDGFRB), which was removed from the data set.  
Protein structures were downloaded from the DUD Web site 
(http://dud.docking.org, accessed June 1, 2009). The structures 
were used as is, except for the addition of hydrogen atoms with 
the Protonate3D method implemented in MOE (Labute 2009). 
The temperature and pH parameters for Protonate3D were 
taken from the PDB file (values from the crystallization process). 
Protonate3D is a method for predicting hydrogen geometry, 
ionization, and tautomeric states of macromolecular structures. 
It uses a unary quadratic optimization algorithm to optimize the 
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Gibbs energy of the system and to find the optimal 
configuration of all possible tautomeric and ionization states. 
The energy model used in the optimization includes van der 
Waals, Coulomb, solvation, rotamer, tautomer, and titration 
effects. 

6.2.2 Ligand and Decoy Molecule Preparation 
The molecular databases used in this study were built using the 
DUD. As DUD ligands and decoys suffer from an imbalance 
between charged molecules (42% ligands are charged, as 
compared to 15% of decoys), only molecules that had multiple 
forms in the MoKa suite were selected for this study (Irwin 
2008). It was also expected that the effect of tautomer and 
protomer enumeration would be more clearly visible in this 
way. The disadvantage of this procedure was that it made it 
impossible to compare the results directly to other SBVS studies 
conducted on the DUD data set. 
Ligands and decoys were downloaded in single enantiomer 
SMILES format from the ZINC database (http://zinc.docking. 
org, accessed June 10, 2009) (Irwin and Schoichet 2005). Two sets 
of molecules were generated using the MoKa suite version 1.10 
(Molecular Discovery Ltd). The enumerated set contained all of 
the tautomeric and protonation states, whereas the predicted set 
included only a single form for each compound. The pH values 
for the MoKa predictions were taken from the PDB files. The 
initial three-dimensional (3D) conformations for the docking 
were calculated using CORINA version 3.20 (Molecular 
Networks GmBH). 

6.3 THE DOCKING PROTOCOL 

The AutoDock version 4.0 was used for docking (Huey et al. 
2004; Huey et al. 2007). The program is widely used in docking 
studies and can also be utilized for virtual screening, provided 
that supercomputing resources are available (Park et al. 2006; 
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Jacq et al. 2008; Trott and Olson 2010). AutoDock is described in 
Chapter 2.4. 
AutoDock is computationally exceedingly demanding for 
virtual screening of larger databases and, thus, requires 
extensive supercomputing resources. However, it is the only 
GNU General Public License (GPL) licensed docking program 
currently available. The license allows its use on both academic 
and commercial projects without limitations or fees. 
Proteins and small molecules were prepared for docking with 
AutoDockTools version 1.5.4 (Sanner 1999). The docking grid 
was centered on the cocrystallized ligand, and default values 
were used for docking.  
In order to validate the docking procedure, the cocrystallized 
ligand was redocked in a MoKa predicted form, and the RMSD 
between the docked and crystallized pose was calculated. The 
validation dockings were performed twice, since AutoDock uses 
a genetic algorithm which is prone to problems with sampling 
(ten Brink and Exner 2009). Targets that were not correctly 
docked were removed from the virtual screening phase. The 
limit for RMSD was set to 2 Å (Warren et al. 2006; Watts et al. 
2010) and no significant difference between the two runs was 
allowed.  
The results from the crystal structure dockings are presented in 
Table 6.1. The RMSDs of protein-ligand complexes for ACHE, 
AMPC, EGFR, FXA, HSP90, PARP, PPARG and trypsin were 
over 2 Å. GPB could not be reliably docked, as there was almost 
a 2 Å difference between the two runs. These targets were 
removed from the virtual screening phase. A total of 19 targets 
were selected for the SBVS phase. 
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Table 6.1: Root-Mean-Square Deviations (RMSD, Å) and Highest Ranking Energies 
(kcal/mol) from the docking validation step. The removal criteria values are in italics. 
Target RMSD (Å) energy 

(kcal/

mol) 

ΔRMSD (Å) Δenergy 

(kcal/mol) 

ACHE 4.44 -10.32 1.84 0.41 

ALR2 0.54 -7.52 0.68 0.20 

AMPC 2.09 -7.41 0.93 0.14 

AR 0.47 -10.60 0.04 0.00 

COX1 0.70 -8.31 0.17 0.01 

COX2 1.39 -10.24 0.13 0.02 

EGFR 3.56 -6.52 1.88 0.37 

ERagonist 0.70 -10.85 0.12 0.04 

ERantagonist 1.25 -13.10 0.28 0.14 

FGFR1 0.97 -7.05 0.04 0.07 

FXA 2.13 -10.11 0.33 0.91 

GART 1.54 -11.57 0.03 0.45 

GPB 0.62 -7.01 1.99 0.10 

GR 0.78 -11.12 0.06 0.02 

HIVRT 0.44 -9.00 0.33 0.02 

HMGR 1.44 -8.34 0.08 0.42 

HSP90 4.60 -7.12 1.81 0.03 

INHA 0.47 -11.98 0.09 0.11 

MR 0.58 -12.09 0.02 0.11 

NA 1.89 -13.00 0.07 0.12 

P38 0.95 -13.84 0.09 0.17 

PARP 2.04 -8.20 0.01 0.04 

PNP 0.42 -10.87 0.02 0.01 

PPARG 2.75 -10.34 0.26 1.19 

PR 0.87 -13.36 0.13 0.04 

RXRA 0.75 -14.04 0.02 0.02 

SAHH 0.65 -8.13 0.06 0.06 

Trypsin 2.52 -6.88 1.84 0.09 

. 
ten Brink and Exner have previously discussed  the effect of 
different protonated, tautomeric, and stereoisomeric forms on 
the pose prediction, using the high-quality CCDC/ ASTEX data 
set, thus the focus of this study was to evaluate enrichment on 
SBVS and therefore, the redocking results were not analyzed. 
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The issues relating to the SBVS have been discussed on Chapter 
2.6. 

6.4 RETROSPECTIVE VIRTUAL SCREENING 

The docking time per molecule was limited in order to keep the 
computational time feasible. The maximum time allowed was 
double the time used for the cocrystallized ligand. If the 
molecule was not docked within the time limit, then it was 
removed from the assessment. Each molecule was docked 10 
times to the protein, and the highest ranked pose (the one with 
the lowest energy) was used in the final hit list. For the 
predicted data set, only the predicted form was used. The 
dockings were calculated using a 2176 CPU Linux cluster. The 
numbers of molecules docked are shown in Table 6.2. 
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Table 6.2: Data Sets Used in Virtual Screening Experiments. Nlig is the number of 
ligand compounds, Ndec is the number of decoy compounds, Dlig is the number of 
different ligand forms docked, Ddec is the number of different decoy forms docked, Fenum 
is the fraction of ligands in the numerated set, and Fpred is the fraction of ligands in the 
predicted set 
Target pH T (K) Nlig Ndec Dlig Ddec Fen

% 

Fpr  

% 

ALR2 6.2 273 19 677 127 4168 3.1 2.8 

AR 7.9 93 63 2234 548 14465 3.8 2.8 

COX1 6.7 180 6 280 22 1180 1.9 2.1 

COX2 8.0 113 189 9174 610 48140 1.3 2.1 

ERagonist 8.8 103 62 1695 278 11004 2.5 3.7 

ERantagonist 7.0 100 16 896 69 3746 1.8 1.8 

FGFR1 6.5 110 107 3313 2383 31659 7.5 3.2 

GART 7.2 94 12 195 792 13775 5.8 6.2 

GR 8.0 100 67 2241 302 9834 3.1 3.0 

HIVRT 5.0 100 35 1083 197 6685 3.0 3.2 

HMGR 7.5 123 31 994 130 8337 1.6 3.1 

INHA 6.8 120 70 2450 279 14897 1.9 2.9 

MR 7.5 100 13 467 283 4366 6.5 2.8 

NA 7.8 100 48 1308 251 14066 1.8 3.7 

P38 7.4 100 230 6801 2271 45532 5.0 3.4 

PNP 8.0 140 22 639 834 18221 4.6 3.4 

PR 6.5 100 27 835 99 3570 2.8 3.2 

RXRA 7.0 93 18 463 57 2480 2.3 3.9 

SAHH 5.6 100 31 817 521 21343 2.4 3.8 

. 
The SBVS results were evaluated using two commonly used 
metrics: Enrichment factor (EF) and ROC AUC. ROC AUCs 
were calculated using ROCR (Sing et al. 2006). As there are 
relatively few decoys per ligand in the data set, the cutoff of 5% 
was selected as the enrichment factor. This means that the 
maximum enrichment factor is 20. 
The enrichment metrics are shown in Table 6.3, and the ROC 
curves are shown in Figure 6.1. There is no major difference 
between the enumerated and the predicted sets in terms of the 
enrichment metrics. This finding is in line with the previous 
SBVS studies on the effect of tautomerism and protonation that 
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used single targets (Pólgar et al. 2007; ten Brink and Exner 2009). 
However, there is a vast difference in computing time per 
compound. With a rather slow docking method, like AutoDock, 
the extra time spent in considering the enumerated tautomers 
and protomers becomes quickly very significant. The 
enumeration can also be an issue with large databases 
incorporating millions of compounds. Therefore, the use of a 
single, reasonable form of the molecule for structure-based 
virtual screening of molecular databases is recommended. 
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Table 6.3: ROC AUCs, EFs at 5% (EF5) and Mean Times Per Compound Used in 
minutes (t) for Docking Shown for the Enumerated and the Predicted Set. There is no 
statistical difference (as measured by Wilcoxon signed rank test) between ROC AUCs 
between the two sets (Demsar 2006). *=For GART, 255 runs was also used instead of 
the standard 10, illustrates the sampling problem. 
 Enumerated set Predicted set 

Target ROC 

AUC 

EF5 t ROC 

AUC 

EF5 t 

ALR2 0.516 1.05 50 0.538 3.14 8 

AR 0.712 4.44 46 0.719 4.12 8 

COX1 0.390 3.41 36 0.334 0 8 

COX2 0.851 8.36 52 0.877 9.95 10 

ERagonist 0.868 10.95 50 0.883 10.63 8 

ERantagonist 0.862 16.11 59 0.841 14.87 14 

FGFR1 0.321 1.12 132 0.381 1.12 14 

GART* 0.881 6.90 793 
0.639/ 

0.859 

5.18/

10.35 

17/ 

690 

GR 0.598 4.19 38 0.647 5.09 10 

HIVRT 0.363 2.28 55 0.395 1.71 9 

HMGR 0.886 5.84 106 0.829 5.19 13 

INHA 0.389 4.57 65 0.423 4.57 11 

MR 0.845 3.08 87 0.765 0 9 

NA 0.838 7.48 107 0.843 8.31 10 

P38 0.585 3.21 73 0.554 1.65 11 

PNP 0.528 4.55 248 0.516 4.55 9 

PR 0.630 7.43 36 0.634 5.20 9 

RXRA 0.969 11.13 65 0.967 11.13 12 

SAHH 0.418 0 216 0.548 0.65 9 

mean 0.655 5.58 122 0.649 5.11 11 

median 0.630 4.55 65 0.639 4.57 10 
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Figure 6.1: ROC curves for the enumerated (solid line) and predicted (dotted line) sets. 
For GART, the predicted set performance increased significantly (dashed line) with 
increased sampling. (1 of 4) 
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Figure 6.1: ROC curves for the enumerated (solid line) and predicted (dotted line) sets. 
For GART, the predicted set performance increased significantly (dashed line) with 
increased sampling. (2 of 4) 
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Figure 6.1: ROC curves for the enumerated (solid line) and predicted (dotted line) sets. 
For GART, the predicted set performance increased significantly (dashed line) with 
increased sampling. (3 of 4) 
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Figure 6.1: ROC curves for the enumerated (solid line) and predicted (dotted line) sets. 
For GART, the predicted set performance increased significantly (dashed line) with 
increased sampling. (4 of 4) 
 
There is a striking difference between the enumerated and the 
predicted set on GART. The potential reasons for this are 
inadequate sampling and exceptionally large numbers of 
different tautomers and protomers per compound on this target. 
In order to determine if this is really the case, the predicted set 
was redocked with an increased number of docking runs. The 
number of LGA runs was increased from 10 to 255. The ROC 
AUC of the predicted set rose from 0.639 to 0.859, which is much 
closer to the ROC AUC of the enumerated set (0.881). The 
enumerated set was not redocked with the new settings because 
this would have been computationally extremely demanding, 
requiring approximately 18 CPU years. 
Even though the data set used here is not the DUD itself, some 
rough comparisons can be made to other benchmarking studies 
which have utilized DUD. Cross and co-workers compared 
several commonly used docking methods with the whole 40 
protein data set from the DUD (Cross et al. 2009). The mean 
ROC AUC values for the whole 40 protein data set varied from 
0.55 to 0.77, depending on the docking method. As the mean 
ROC AUC for the data sets in this study is approximately 0.65, 
AutoDock’s performance seems to be typical for a docking 
program. There are 9 cases out of 19 where clear enrichment can 
be seen (ROC AUC > 0.70). ER, NA and RXRA have been shown 
previously to represent easy targets for docking programs, 
whereas the kinase targets FGFR1 and P38 are very challenging 
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for the current docking programs (Huang et al. 2006; Cross et al. 
2009). 
It has been suggested that the number of false positives may 
increase on the enumerated set due to the strongly charged and 
unlikely forms of decoy molecules that receive high scores (ten 
Brink and Exner 2009). The mean energies for ligands and 
decoys were calculated to verify this assumption (Table 6.4). It 
can be seen that the energy difference is usually larger for the 
decoys between the enumerated and the predicted sets than 
with that of ligands. The effect is more clearly visible on those 
targets where there is good enrichment (ERagonist, ERantagonist, 
COX2, GART, and RXRA).  However, this change in the energy 
differences is so small that it does not translate into any major 
differences between the ROC AUC values of the two sets. 
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Table 6.4: Average Energies from Docking Results. *=the predicted data set energies 
are from the 255 LGA run. 
 Enumerated set Predicted set   

Target Elig Edec Elig Edec ΔElig ΔEdec 

ALR2 -7.35 -7.53 -6.99 -7.07 0.36 0.46 

AR -9.44 -8.40 -9.08 -7.83 0.36 0.57 

COX1 -7.05 -7.42 -6.66 -7.18 0.39 0.24 

COX2 -9.79 -8.54 -9.60 -8.07 0.19 0.47 

ERagonist -8.63 -7.50 -8.35 -7.07 0.28 0.43 

ERantagonist -11.58 -9.32 -11.26 -8.83 0.32 0.49 

FGFR1 -7.20 -7.59 -6.47 -6.77 0.73 0.82 

GART* -11.33 -8.96 -11.54 -8.61 0.24 0.35 

GR -9.34 -8.79 -9.07 -8.34 0.27 0.45 

HIVRT -8.68 -8.96 -8.09 -8.39 0.59 0.57 

HMGR -7.96 -6.63 -7.19 -6.01 0.77 0.62 

INHA -8.67 -8.86 -8.43 -8.46 0.24 0.45 

MR -10.37 -8.91 -9.42 -8.46 0.95 0.40 

NA -8.43 -6.78 -7.87 -6.04 0.56 0.74 

P38 -9.78 -9.52 -9.26 -9.05 0.52 0.47 

PNP -7.56 -7.49 -6.83 -6.70 0.73 0.79 

PR -8.95 -8.34 -8.65 -8.03 0.30 0.31 

RXRA -12.20 -8.64 -11.98 -8.23 0.22 0.41 

SAHH -7.19 -7.57 -6.26 -6.03 0.93 1.54 

mean -9.03 -8.20 -8.38 -7.54 0.47 0.56 

median -8.68 -8.40 -8.35 -7.83 0.36 0.47 

 
As revealed in the study of Warren and co-workers (Warren et 
al. 2006), the docking programs may be capable of reproducing 
crystal structures and identifying active molecules from a pool 
of inactive molecules, but they are not able to rank properly 
closely related molecules. Tautomers and protomers of a 
molecule can be considered as closely related molecules from 
the docking program’s point of view. The accuracy of the 
scoring functions might not be sufficient to separate different 
tautomers and protomers in virtual screening programs. 
Todorov and co-workers studied the dependence of docking 
results on the tautomeric and protonation states of the ligand on 
three protein-ligand complexes (Todorov et al. 2006). The 
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differences in the protonation pattern occurred at positions 
where they only had a limited impact on the binding energy, 
and also the flexible bonding groups permitted a greater 
number of hydrogen bonds to be formed than were found in the 
crystal structures. It was concluded that ligand binding is rather 
insensitive to changes in the tautomeric and protonation states. 
This could also explain the small difference between the 
enumerated and the predicted set observed in this study. 
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7 GPUs and single 
conformation databases in 
LBVS 

Recently, a GPU-version called PAPER of widely-used ROCS 
algorithm was published (Paque and Hande 2010). In order to 
study the applicability of the PAPER algorithm to ligand-based 
virtual screening, a command line interface for the PAPER 
algorithm intended to facilitate virtual screening was developed 
and the effect of conformation analysis of both query and 
database molecules was investigated. The chapter is based on 
the following publication: Kalliokoski T, Rönkkö T, Poso A: 
Increasing the throughput of shape-based virtual screening with 
GPU processing and single conformation databases. Molecular 
Informatics 29: 293-296, 2010. Copyright Wiley-VCH Verlag 
GmbH & Co. KGaA. Reproduced with permission. 

7.1 INTRODUCTION 

Shape-based virtual screening is based on the ranking of 
molecules according to their shape similarity (see Chapter 2.3.2). 
As small molecules are typically flexible and can adopt several 
conformations, conformational analysis is required before the 
screening process. Usually a single conformation that is 
assumed to be the “bioactive” conformation i.e. the 
conformation observed in the protein-ligand crystal complex is 
used for the query, whereas a conformational ensemble is 
created for the database molecules. There are several arguments 
why this might not be the optimal approach for shape-based 
virtual screening. The use of an in silico conformation instead of 
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one from an X-ray crystallography model has been shown to 
produce equal results (Hawkins et al. 2007). However, as 
ligands and proteins are usually rather flexible structures, they 
often have several possible conformations and there is no simple 
way to say which of the conformations are bioactive from all the 
possibilities (Borodina et al. 2007; Watts et al. 2010). It is 
therefore reasonable to propose that multiple conformations for 
the query molecule could improve the results as the risk of 
overlooking the bioactive conformation would be decreased. On 
the other hand, virtual screening is simply similarity searching. 
The task is to find molecules that are similar to the query, not to 
predict how they might bind to the target protein. The use of 
single conformation databases might be also therefore feasible.  
Given that shape-based virtual screening is widely used in 
industry and academia, the effect of different conformational 
analysis approaches on accuracy has been surprisingly little 
studied. Tawa and co-workers proposed technique called 
CORAL (Conformational analysis, Rocs Alignment) (Tawa et al. 
2009). It is based on the assumption that the ligands share the 
same conformational space, which contains the bioactive 
conformations. This is illustrated in Figure 7.1, where the five 
compounds have different individual conformations, but they 
share the bioactive conformation space. 
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Figure 7.1: The idea of CORAL (adapted from Tawa et al. 2009). 
 
CORAL requires multiple known ligands. First, a 
conformational expansion of each ligand is performed. It is 
assumed that all ligands share the same binding mode. Then, 
every conformation of every ligand is superimposed with each 
other to form matrix O of the similarity scores: 
 

 

 
where the Oij is the similarity score (see Chapter 2.3.4) with 
between conformations i and j. Vector A is calculated from 
matrix O by averaging every row: 
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where N is the total number of conformations. CORAL query 
with index iCORAL is identified from vector A: 
 

 
 

The authors of CORAL compared the virtual screening 
performance of ROCS with minimum energy conformation 
against CORAL conformation using DUD as the data set. It was 
concluded that using CORAL conformation instead of minimum 
energy conformation could be beneficial, as, on average, ROC 
AUC increased from 0.835 to 0.842. The obvious disadvantage of 
CORAL is that it requires multiple known ligands that are 
assumed to bind in exactly same binding mode. When using 
each ligand separately as a single query, this assumption is not 
required and as since shape based virtual screening is quite fast, 
it is not computationally prohibitive strategy either. As an 
example, the 15 actives used in FieldChopper models were used 
as queries for EON and superior enrichments were observed 
compared to the single query results (Table 7.1). 
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Table 7.1: ROC AUCs for EON with 15 query molecules per target using the datasets 
from the FieldChopper study. 
Target ROC AUC 

ACHE 0.827 

AR 0.912 

COX2 0.968 

DHFR 0.977 

EGFR 0.922 

ERagonist 0.905 

FGFR1 0.972 

FXA 0.930 

GR 0.976 

INHA 0.942 

P38 0.981 

SRC 0.906 

mean 0.935 

median 0.936 

 
Also, if one assumes that several ligands can be superimposed 
meaningfully, then one could also use pharmacophore methods 
and overcome the limitations of total similarity scoring. 
Kirchmair and co-workers studied the effect of using 
conformational ensembles as queries using ROCS and the DUD 
data set (Kirchmair et al. 2009).  In this approach, all 
conformations of the query molecule are scored against the 
database molecule and the highest scored pair is retained. The 
40 targets in DUD were screened using the PDB co-crystallized 
ligand as the query molecule. One, three, five and ten 
conformations were used for each query molecule. It was 
concluded that the use of multiple query conformations did not 
increase the virtual screening accuracy of ROCS significantly, as 
the average ROC AUCs for the screens with different number of 
query conformations increased from 0.72 to 0.74. However, this 
study has some issues. Firstly, the use of fixed numbers of query 
conformations between one and ten for all query molecules is 
problematic, as the number of reasonable and diverse 
conformations per molecule is clearly different. This can be seen 
from the number of conformations generated by ConfGen using 
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the FAST-setting (see Chapter 2.5.3 for details).  As illustrated in 
Figure 7.2, for half of the queries, ten conformations per 
molecule might not be enough, while 25% of query molecules 
have less than ten reasonable conformations. This leads to 
situation where in most cases, the number of conformations for 
the query molecule might not optimal. One should use all of the 
query’s conformations and not use arbitrary cutoffs. Secondly, 
the query molecule from the PDB crystal structure in some cases 
produces extremely poor ROC AUC, which is related to the data 
set composition: the query is simply too different from the 
ligands. In such cases, it is unreasonable to expect the use of 
multiple query conformations to overcome this fundamental 
limitation of LBVS (see Chapter 2.6). It would be better to use all 
of the ligands as a query instead using just a single molecule 
when analyzing the effect of the number of query’s 
conformations. Obviously, addressing these two issues would 
increase the computing time considerably and supercomputing 
facilities would be required. 
There is also the question of whether or not the use of multiple 
conformations for the database molecules increases the accuracy 
of virtual screening. The use of single conformation databases 
would significantly reduce the computing time and permit the 
screening of larger databases compared to the multi-
conformation databases. This strategy has not been studied on 
shape-based virtual screening, but Renner and co-workers have 
compared single and multi-conformation databases with 
CATS3D descriptors (Renner et al. 2006). In their study, the use 
of multi-conformation database only slightly improved the 
virtual screening performance and therefore the extra effort of 
conformational analysis was not justified. 
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7.2 DEVELOPMENT OF COMMAND-LINE INTERFACE FOR 

PAPER 

Even though the source code for PAPER is freely available, the 
available version is not directly suitable for virtual screening, as 
it only outputs a 4x4 transformation matrix and does not handle 
multiple molecules.  Therefore, a user interface is required 
before the algorithm can be used for virtual screening. 
The PAPER GPU kernel was wrapped into a command-line 
interface named WeedyControl for PAPER (WCPAPER) without 
modifying the algorithm itself at all and by using as much as 
possible of the OpenBabel library. The simplified flowchart of 
the program is shown at Figure 7.3. First, the query molecule is 
loaded into RAM. Since the memory capacity varies between 
different GPU hardware, there is an adjustable parameter 
GPU_MOLS, which controls the number of molecules kept in 
VRAM at one time. After the template and database molecules 
have been read into VRAM, the molecules are aligned with 
PAPER. The overlap volumes and transformation matrices are 
copied from VRAM to RAM for similarity scoring and optional 
alignment output. ShapeTanimoto similarity S between 
molecules A and B is calculated from (Haque and Pande 2010): 
 

 

 
where Oxy is the overlap volume between molecules x and y, 
calculated by PAPER using a spherical Gaussian function. The 
4x4 transformation matrix M generated by PAPER contains both 
the translation and rotation (Haque and Pande 2010): 
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Rotation matrix R and translation vector T are formed: 
 

 

 
 

 
Matrix R and vector T are applied to every atom of the molecule 
using OpenBabel by first applying Rotate()-function and then 
the Translate()-function in OBMol-class. Finally, the 
ShapeTanimoto scores and aligned molecules are outputted. 
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Load query
molecule

Are all molecules
processed?STOP YES

Read molecule
from the database

NO

MOLs in
RAM==GPU_MOLS

or
EOF?

NO

Copy molecules
from RAM to

VRAM

YES

Align molecules
with GPU

Copy volumes and
transformation
matrices from
VRAM to RAM

Calculate and
Output

ShapeTanimoto

Output
alignments?

Apply transformation
matrix and write

molecules

YES

NO

 
Figure 7.3: Simplified flowchart of WCPAPER. 
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PAPER algorithm assumes that molecules have been previously 
oriented by the singular value decomposition of the point cloud 
made up of the atom centers. This SVD-based preprocessing 
step is handled externally in a Python script, as it is only 
required once for each of the database molecules. The script 
supplied with the public version of PAPER uses the commercial 
OEChem library. The code was modified to use OpenBabel 
instead.  
As the number of starting positions is directly linked to the 
execution time of optimization algorithm, a low number of 
diverse positions would be preferable. There are nine different 
modes implemented in the PAPER code with an increasing 
number of starting positions n, although only four of them are 
described in the publication (Table 7.2). The cyclic translations 
in modes seven and eight are determined by a procedure that 
first decomposes the molecule into cyclic and acyclic 
components. Then, the centroid of each cyclic component is 
used as a translational starting point. Mode 1 is used for the 
alignment process in WCPAPER, as was recommended for 
virtual screening applications by Haque and Pande. 
 
Table 7.2: Different initialization modes implemented in PAPER. The mode 1 is used 
in WCPAPER (the original mode proposed by Grant and co-workers). 
Mode n Description 

0 1 Inertial overlay 

1 4 Mode 0 + 180° degree rotations around each axis 

2 12 Mode 1 + 90° degree rotations around each axis 

3 68 
Mode 1 + moving the center of molecule of each molecule 

onto a corner of the bounding box of the other 

4 204 
Mode 2 + moving the center of molecule of each molecule 

onto a corner of the bounding box of the other 

5 30 30 random orientations 

6 12 12 random orientations 

7 4*RS 
180° degree rotations around each axis for each cyclic 

translation 

8 12*RS 
90° and 180°  degree rotations around each axis for each 

cyclic translation 
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In order to find the optimum for GPU_MOLS, COX2 data set 
was screened on two different computers with four different 
values (100, 1000, 5000 and 10000) using a typical query 
molecule with 22 heavy atoms (Table 7.3). The value of 1000 
seems optimal, as one must take into account the fact that some 
databases may have larger molecules that consume more 
memory than those in the COX2 data set. The value of 100 is 
recommended for graphics adapters with little memory, such as 
those found in laptop computers. 
 
Table 7.3: Running times in seconds for WCPAPER on two different systems and four 
GPU_MOLS values. There was not enough memory in 8800GT for 10000 molecules. 
OS=Operating System, GA=Graphics Adapter 
OS CPU GA Cores VRAM 100 1k 5k 10k 

Linux 

(CentOS 

5.4, 64bit) 

2.67 

Ghz 

Intel 

Core 

i5 

Nvidia 

GeForce 

295GTX 

2 x 

240 

2 x 

896 

MB 

273 158 158 159 

Mac OS X 

(10.6) 

2.8 

Ghz 

Intel 

Xeon 

Nvidia 

GeForce 

8800GT 

112 
512 

MB 
298 235 

 

230 

 
- 

 
CPU/GPU architecture, system libraries and compilers can 
influence virtual screening accuracy: sometimes even incorrect 
results are produced (Feher and Williams 2009). Since GPU 
computing has been only recently introduced and both 
hardware and software are changing very rapidly, it is likely 
that GPU applications will be especially vulnerable for such 
anomalies. The impact of the computing platform is visible on 
WCPAPER. The two different computers used in performance 
testing produced slightly different ShapeTanimoto values 
(Figure 7.4). Even though these differences are quite subtle, they 
clearly have an effect on the virtual screening performance 
(Figure 7.5). As the source code is exactly same in both cases, 
this difference originates from hardware, system software or 
compilers. It is therefore important to use the same platform in 
comparative studies. 
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Figure 7.4: The ShapeTanimoto values from two different computer platforms. Pearson 
correlation coefficient is 0.999481. 
 

 
Figure 7.5: ROC curves produced by the two computers. 
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7.3 PREPARATION OF THE DATA SET 

The data set used in this study was built from DUD LIB VS (see 
Chapter 3.1). The ligand and decoy molecules with just a single 
conformation were removed in order to amplify the effect of 
different conformational approaches. The number of 
conformations for the molecules is shown in Table 7.4. 
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Table 7.4: The number of molecules and conformations for each of the targets used in 
the study. 
Target S L LC C/L D DC C/D 

ACE 19 45 615 14 1722 25703 15 

ACHE 16 96 1458 15 3651 46685 13 

ADA 8 23 283 12 809 9483 12 

ALR2 13 21 123 6 847 6229 7 

AMPC 6 21 203 10 695 5136 7 

AR 6 37 163 4 2346 13590 6 

CDK2 31 46 431 9 1758 23900 14 

COMT 2 11 222 20 395 4122 10 

COX1 10 21 66 3 754 4189 6 

COX2 39 190 851 4 11375 105895 9 

DHFR 14 184 1383 8 7014 108543 15 

EGFR 40 348 2496 7 14297 164230 11 

ERagonist 10 60 275 5 2150 14874 7 

Erantagonist 8 18 317 18 1016 17401 17 

FGFR1 12 64 389 6 3186 61218 19 

FXA 19 64 1370 21 1883 44928 24 

GART 5 8 240 30 118 3641 31 

GPB 9 51 919 18 1824 27287 15 

GR 8 23 109 5 2233 14731 7 

HIVPR 3 4 73 18 9 253 28 

HIVRT 12 27 215 8 1388 13317 10 

HMGA 4 25 557 22 1192 22955 19 

HSP90 4 23 243 11 849 11475 14 

INHA 23 57 550 10 2436 24308 10 

MR 2 8 36 4 496 3525 7 

NA 7 49 402 8 1580 26406 17 

P38 19 114 862 8 5883 52815 9 

PARP 6 16 67 4 915 4550 5 

PDE5 21 25 163 7 1550 23591 15 

PDGFRB 21 102 627 6 5209 61716 12 

PNP 3 23 149 6 812 9050 11 

PPARG 6 6 97 16 38 716 19 

PR 3 19 60 3 772 4054 5 

RXRA 3 18 85 5 545 6077 11 

SAHH 2 33 390 12 1124 14393 13 

SRC 20 86 638 7 5206 86405 17 
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Thrombin 13 23 361 16 1059 27985 26 

TK 7 22 236 11 757 7373 10 

Trypsin 6 8 117 15 663 17795 27 

VEGFR2 25 40 408 10 2466 34805 14 

 
Four different conformational analysis approaches were 
investigated: single conformation query with single 
conformation database (SINGLE_SINGLE, SS), single 
conformation query with multi-conformation database 
(SINGLE_MULTI, SM), multi-conformation query with single 
conformation database (MULTI_SINGLE, MS) and multi-
conformation query with multi-conformation database 
(MULTI_MULTI, MM). From these, SINGLE_MULTI is the most 
commonly used methodology. Single conformations were 
generated with MacroModel version 9.7 using OPLS_2003 force-
field and multiple conformations were calculated with ConfGen 
version 2.1 using the ‘FAST’ preset and an energy cut-off of 
25kcal/mol was applied. 

7.4 RETROSPECTIVE VIRTUAL SCREENING 

Every ligand was used as a query one at a time for the 
screening. The query was removed from the ligands and the 
highest scored similarity value was used for each of the 
molecules in the database.  
ROC AUC values were used to measure the accuracy. As the 
ROC AUC measures overall performance and does not take into 
account the early enrichment or the chemical diversity of the hit 
molecules, the fractions of the possible scaffolds retrieved were 
also calculated (see Chapters 3.2 and 3.3). 
As the targets in DUD all have different molecules, the results 
were also analyzed by calculating median values for each of the 
targets. The median was used instead of average, because it was 
expected that there are some queries in every target that 
perform either exceptionally well or poorly compared to others. 
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Box plots of ROC AUCs of queries (Figure 7.6) and of target 
medians (Figure 7.7) show that the differences in screening 
accuracy between the conformational analysis approaches are 
negligible (the hinges in the figures are versions of the first and 
third quartiles). The values of different target ROC AUCs are 
shown in Table 7.5. 
 

 
Figure 7.6: Box plot of query ROC AUCs. 
 

 
Figure 7.7: Box plot of target median ROC AUC. 
 



132 
 

  
 

Table 7.5: Medians (Med) and averages (Avg) of target ROC AUCs. 
 SS SM MS MM 

Target Med Avg Med Avg Med Avg Med Avg 

ACE 0.52 0.47 0.67 0.48 0.47 0.45 0.46 0.45 

ACHE 0.69 0.64 0.75 0.68 0.71 0.64 0.73 0.66 

ADA 0.59 0.59 0.56 0.57 0.61 0.59 0.62 0.61 

ALR2 0.55 0.47 0.44 0.42 0.49 0.45 0.47 0.40 

AMPC 0.76 0.64 0.80 0.75 0.59 0.59 0.80 0.75 

AR 0.85 0.82 0.83 0.79 0.85 0.83 0.84 0.80 

CDK2 0.63 0.58 0.61 0.56 0.60 0.58 0.58 0.55 

COMT 0.60 0.51 0.58 0.50 0.60 0.49 0.59 0.49 

COX1 0.56 0.55 0.46 0.46 0.55 0.56 0.47 0.47 

COX2 0.90 0.86 0.88 0.81 0.93 0.88 0.91 0.84 

DHFR 0.66 0.65 0.68 0.67 0.74 0.73 0.80 0.77 

EGFR 0.70 0.67 0.67 0.62 0.73 0.69 0.70 0.65 

ERagonist 0.79 0.77 0.73 0.68 0.79 0.77 0.74 0.68 

ERantagonist 0.79 0.79 0.74 0.73 0.78 0.79 0.74 0.73 

FGFR1 0.76 0.68 0.62 0.57 0.76 0.69 0.63 0.58 

FXA 0.72 0.68 0.77 0.69 0.79 0.70 0.79 0.70 

GART 0.65 0.67 0.69 0.68 0.66 0.66 0.75 0.72 

GPB 0.76 0.66 0.75 0.66 0.75 0.65 0.75 0.64 

GR 0.75 0.72 0.70 0.64 0.75 0.70 0.68 0.63 

HIVPR 0.59 0.56 0.56 0.57 0.85 0.75 0.72 0.64 

HIVRT 0.46 0.49 0.54 0.52 0.49 0.49 0.54 0.51 

HMGA 0.61 0.60 0.63 0.62 0.67 0.64 0.74 0.70 

HSP90 0.74 0.73 0.72 0.71 0.76 0.76 0.69 0.72 

INHA 0.64 0.65 0.69 0.66 0.67 0.66 0.68 0.66 

MR 0.88 0.88 0.85 0.83 0.88 0.86 0.85 0.82 

NA 0.75 0.69 0.71 0.64 0.78 0.71 0.73 0.67 

P38 0.66 0.62 0.69 0.62 0.71 0.66 0.72 0.65 

PARP 0.54 0.53 0.55 0.55 0.54 0.53 0.57 0.57 

PDE5 0.83 0.79 0.82 0.74 0.88 0.83 0.85 0.78 

PDGFRB 0.72 0.70 0.63 0.61 0.71 0.68 0.62 0.60 

PNP 0.71 0.66 0.63 0.64 0.76 0.75 0.74 0.75 

PPARG 0.70 0.68 0.81 0.77 0.62 0.63 0.71 0.73 

PR 0.84 0.81 0.81 0.76 0.84 0.82 0.82 0.77 

RXRA 0.79 0.75 0.72 0.69 0.81 0.80 0.82 0.78 

SAHH 0.83 0.77 0.86 0.84 0.86 0.85 0.90 0.88 

SRC 0.64 0.66 0.54 0.55 0.69 0.68 0.57 0.58 
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Thrombin 0.72 0.67 0.62 0.62 0.70 0.64 0.66 0.61 

TK 0.57 0.53 0.64 0.63 0.60 0.58 0.63 0.62 

Trypsin 0.66 0.63 0.50 0.53 0.60 0.62 0.56 0.57 

VEGFR2 0.56 0.57 0.54 0.49 0.61 0.57 0.51 0.49 

average 0.69 0.66 0.52 0.64 0.70 0.67 0.69 0.66 

median 0.70 0.66 0.68 0.64 0.71 0.67 0.72 0.66 

 
As previously stated, the number of retrieved actives in the hit 
list is not as important in shape-based virtual screening as the 
chemical diversity of the top ranked compounds (Geppert et al. 
2010). All approaches yield the same chemical diversity of top 
hits (Figures 7.8 and 7.9, Table 7.6). 
 

 
Figure 7.8: Box plot of fraction of retrieved scaffolds. 
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Figure 7.9: Box plot of target median fraction of retrieved scaffolds. 
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Table 7.6: Medians (Med) and averages (Avg) of retrieved scaffolds. 
 SS SM MS MM 

Target Med Avg Med Avg Med Avg Med Avg 

ACE 0.16 0.17 0.16 0.16 0.16 0.16 0.16 0.15 

ACHE 0.25 0.25 0.31 0.29 0.31 0.29 0.31 0.29 

ADA 0.38 0.30 0.38 0.31 0.25 0.32 0.38 0.37 

ALR2 0.15 0.14 0.08 0.13 0.15 0.14 0.15 0.15 

AMPC 0.33 0.29 0.33 0.32 0.33 0.32 0.33 0.33 

AR 0.17 0.16 0.17 0.17 0.17 0.18 0.17 0.18 

CDK2 0.21 0.20 0.19 0.19 0.19 0.21 0.19 0.20 

COMT 0.50 0.41 0.50 0.46 0.50 0.41 0.50 0.46 

COX1 0.20 0.21 0.10 0.17 0.20 0.21 0.20 0.17 

COX2 0.36 0.35 0.39 0.36 0.41 0.38 0.44 0.39 

DHFR 0.29 0.31 0.29 0.27 0.36 0.34 0.36 0.34 

EGFR 0.33 0.31 0.35 0.34 0.38 0.36 0.40 0.37 

ERagonist 0.50 0.46 0.50 0.47 0.50 0.46 0.50 0.47 

ERantagonist 0.25 0.29 0.38 0.31 0.25 0.31 0.38 0.36 

FGFR1 0.33 0.30 0.25 0.28 0.33 0.34 0.25 0.29 

FXA 0.18 0.19 0.21 0.19 0.21 0.20 0.21 0.20 

GART 0.40 0.30 0.20 0.18 0.20 0.15 0.20 0.15 

GPB 0.22 0.26 0.33 0.28 0.22 0.25 0.33 0.29 

GR 0.25 0.21 0.25 0.22 0.25 0.20 0.25 0.24 

HIVPR 0.50 0.50 0.33 0.42 0.67 0.67 0.67 0.67 

HIVRT 0.17 0.13 0.08 0.12 0.08 0.12 0.08 0.14 

HMGA 0.50 0.45 0.50 0.45 0.50 0.54 0.50 0.57 

HSP90 0.50 0.46 0.50 0.52 0.50 0.51 0.50 0.51 

INHA 0.17 0.20 0.22 0.22 0.22 0.22 0.22 0.23 

MR 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

NA 0.29 0.27 0.29 0.28 0.29 0.31 0.29 0.32 

P38 0.37 0.31 0.32 0.31 0.37 0.34 0.37 0.34 

PARP 0.25 0.23 0.33 0.25 0.25 0.23 0.25 0.25 

PDE5 0.24 0.25 0.19 0.20 0.29 0.28 0.19 0.23 

PDGFRB 0.29 0.30 0.26 0.29 0.29 0.31 0.29 0.31 

PNP 0.67 0.70 0.67 0.58 0.67 0.75 0.67 0.75 

PPARG 0.42 0.36 0.50 0.44 0.33 0.33 0.58 0.53 

PR 0.33 0.32 0.33 0.32 0.33 0.33 0.33 0.32 

RXRA 0.67 0.61 0.67 0.57 0.67 0.57 0.67 0.61 

SAHH 1.00 0.76 1.00 0.77 1.00 0.83 1.00 0.85 

SRC 0.25 0.28 0.20 0.23 0.25 0.29 0.25 0.26 
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Thrombin 0.31 0.26 0.23 0.26 0.15 0.21 0.23 0.28 

TK 0.14 0.21 0.29 0.27 0.29 0.28 0.29 0.29 

Trypsin 0.25 0.23 0.17 0.21 0.17 0.19 0.17 0.19 

VEGFR2 0.08 0.10 0.08 0.09 0.08 0.12 0.08 0.11 

average 0.33 0.31 0.33 0.31 0.33 0.33 0.35 0.34 

median 0.29 0.31 0.30 0.28 0.29 0.31 0.30 0.30 

 
In order to investigate the differences between the different 
targets, average ROC curves (Nicholls 2008) were plotted. In ten 
cases, there is no difference or it is extremely small. The data set 
is too small for six targets (GART, HIVPR, MR, PPARG, RXRA 
and TRYPSIN). The remaining 24 ROC curves are shown in 
Figure 7.10. In DHFR, HMGA, PNP, SAHH data sets, the 
MULTI_MULTI approach clearly outperforms others. There are 
also some cases where the use of single conformation databases 
yields better results (ERagonist, FGFR1, PDGFRB and SRC). 
Overall, there is no clear pattern between target type and the 
approach with highest ROC AUC. 
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Figure 7.10: Average ROC curves for SINGLE_SINGLE (solid gray line), 
SINGLE_MULTI (solid black line), MULTI_SINGLE (dotted gray line) and 
MULTI_MULTI (dotted black line). (1 of 4) 
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Figure 7.10: Average ROC curves for SINGLE_SINGLE (solid gray line), 
SINGLE_MULTI (solid black line), MULTI_SINGLE (dotted gray line) and 
MULTI_MULTI (dotted black line). (2 of 4) 
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Figure 7.10: Average ROC curves for SINGLE_SINGLE (solid gray line), 
SINGLE_MULTI (solid black line), MULTI_SINGLE (dotted gray line) and 
MULTI_MULTI (dotted black line). (3 of 4) 
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Figure 7.10: Average ROC curves for SINGLE_SINGLE (solid gray line), 
SINGLE_MULTI (solid black line), MULTI_SINGLE (dotted gray line) and 
MULTI_MULTI (dotted black line). (4 of 4) 
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To determine whether the arbitrarily selected cutoff for the top 
molecules (two times the number of ligands per target) had any 
effect on the results, average curves of fraction of retrieved 
scaffolds in different cutoffs were plotted. The maximum curve 
in this plot is the case, where every unique scaffold is retrieved 
from the top of the hitlist. A random curve is generated from a 
shuffled hitlist. It can be concluded that the selection of the 
cutoff did not have any effect on the conclusions, as the graphs 
of different approaches are similar for most targets. Graphs for 
two targets (COX2 and EGFR) with large numbers of ligands 
and scaffolds are shown in Figure 7.11 as an example. 
 

 
Figure 7.11: Fraction of retrieved scaffolds represented as a function of fraction of 
screened database for COX2 and EGFR. SINGLE_SINGLE (solid gray), 
SINGLE_MULTI (solid black), MULTI_SINGLE (dotted gray) and MULTI_MULTI 
(dotted black) produce similar results. Maximum is drawn with dashed line and 
random with dashed dotted line. 
 
The small variation between the approaches might be related to 
the issue of the number of starting positions. Different 
conformations of the same molecule most likely have a similar 
effect on the results as increasing the number of starting 
positions, as there were minor differences found between 
various initialization modes in the PAPER article by Haque and 
Pande.  
Conformation generation revealed an imbalance in DUD LIB 
VS, as the ligands had fewer conformations (8.9) than the decoys 
(12.4) on average and it is possible that this has skewed the 
results. However, no correlation was found between the 
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difference in conformations per molecule and the target median 
ROC AUC of any of the conformational analysis approaches 
(Figure 7.12). 
 

 
Figure 7.12: Target median ROC AUC vs. the fraction between average number of 
ligand conformations and the average number of decoy conformations. 
 
Various query molecules for different targets produce extremely 
poor ROC AUC values, which are independent of the 
conformational analysis strategy. These ROC AUCs are often 
related to small query molecules. As previously discussed, it 
makes little sense to align a small query molecule against much 
larger molecules (see Chapter 2.6). Some kind of quick pre-
filtering step should be applied to the database before the actual 
shape-based virtual screening in order to eliminate these kinds 
of pairs, so that the computationally more intensive molecular 
alignment process could be omitted for these cases. 
Even though the ROC AUC values and fraction of retrieved 
scaffolds are rather similar, the ShapeTanimoto scores of 
different approaches are clearly different with different 
conformational analysis approaches (Table 7.7). The more 
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computation effort that is used, the higher are the 
ShapeTanimoto scores. However, the difference between ligand 
and decoy sets stays approximately the same, which explains 
the similar virtual screening accuracy (Table 7.8). Similar 
observations have been made when comparing simple shape 
descriptors like USR and ROCS (Nicholls et al. 2010). It is 
possible that the ligands and decoys are separated to some other 
factors that are not very sensitive to the shape of the molecules. 
Therefore enrichment metrics seem to be a poor measure of the 
quality of the alignment algorithm. 
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Table 7.7: Average ShapeTanimoto similarity for ligand (L) and decoy (D) sets. 
 SS SM MS MM 

Target L D L D L D L D 

ACE 0.49 0.48 0.57 0.56 0.56 0.56 0.62 0.62 

ACHE 0.56 0.49 0.64 0.56 0.64 0.58 0.70 0.63 

ADA 0.66 0.61 0.70 0.67 0.70 0.66 0.77 0.72 

ALR2 0.57 0.58 0.62 0.63 0.61 0.62 0.66 0.67 

AMPC 0.60 0.54 0.69 0.61 0.69 0.66 0.77 0.71 

AR 0.75 0.63 0.77 0.68 0.77 0.65 0.79 0.69 

CDK2 0.56 0.53 0.62 0.61 0.62 0.59 0.67 0.66 

COMT 0.53 0.55 0.57 0.59 0.57 0.60 0.61 0.63 

COX1 0.63 0.61 0.65 0.65 0.65 0.63 0.67 0.67 

COX2 0.64 0.50 0.69 0.57 0.69 0.53 0.73 0.60 

DHFR 0.59 0.54 0.69 0.64 0.68 0.62 0.76 0.69 

EGFR 0.63 0.57 0.68 0.64 0.68 0.61 0.72 0.68 

ERagonist 0.73 0.64 0.74 0.69 0.74 0.66 0.75 0.70 

ERantagonist 0.55 0.42 0.61 0.54 0.61 0.52 0.66 0.59 

FGFR1 0.55 0.48 0.60 0.57 0.59 0.52 0.64 0.60 

FXA 0.47 0.41 0.58 0.52 0.58 0.51 0.69 0.60 

GART 0.52 0.46 0.63 0.58 0.63 0.58 0.76 0.69 

GPB 0.66 0.59 0.71 0.65 0.71 0.65 0.75 0.69 

GR 0.60 0.53 0.63 0.58 0.63 0.56 0.66 0.61 

HIVPR 0.41 0.38 0.50 0.48 0.50 0.46 0.61 0.56 

HIVRT 0.51 0.52 0.59 0.59 0.59 0.59 0.66 0.65 

HMGA 0.50 0.45 0.57 0.53 0.57 0.53 0.66 0.59 

HSP90 0.57 0.49 0.66 0.58 0.66 0.56 0.73 0.64 

INHA 0.58 0.52 0.65 0.60 0.65 0.60 0.71 0.66 

MR 0.78 0.59 0.78 0.63 0.78 0.61 0.80 0.65 

NA 0.58 0.51 0.62 0.58 0.62 0.55 0.67 0.61 

P38 0.58 0.52 0.64 0.58 0.64 0.57 0.69 0.62 

PARP 0.66 0.63 0.70 0.67 0.69 0.67 0.72 0.70 

PDE5 0.54 0.45 0.60 0.53 0.59 0.50 0.64 0.57 

PDGFRB 0.63 0.56 0.67 0.63 0.66 0.60 0.69 0.66 

PNP 0.64 0.58 0.71 0.66 0.71 0.62 0.77 0.70 

PPARG 0.47 0.43 0.56 0.51 0.55 0.52 0.64 0.58 

PR 0.68 0.56 0.71 0.62 0.72 0.60 0.76 0.65 

RXRA 0.63 0.51 0.66 0.58 0.67 0.54 0.72 0.61 

SAHH 0.73 0.63 0.80 0.70 0.60 0.54 0.64 0.61 

SRC 0.55 0.49 0.60 0.58 0.60 0.54 0.64 0.61 
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Thrombin 0.52 0.44 0.57 0.53 0.57 0.52 0.64 0.60 

TK 0.68 0.65 0.75 0.71 0.75 0.71 0.80 0.76 

Trypsin 0.53 0.44 0.56 0.54 0.56 0.52 0.65 0.61 

VEGFR2 0.53 0.51 0.60 0.60 0.60 0.57 0.65 0.65 

mean 0.59 0.53 0.65 0.60 0.65 0.59 0.70 0.64 

median 0.58 0.52 0.64 0.59 0.65 0.58 0.69 0.64 
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Table 7.8: Average difference in ShapeTanimoto between ligand and decoy sets. 
Target SS SM MS MM 

ACE 0.008 0.003 0.001 -0.004 

ACHE 0.068 0.077 0.060 0.066 

ADA 0.050 0.032 0.034 0.050 

ALR2 -0.005 -0.019 -0.009 -0.016 

AMPC 0.062 0.073 0.024 0.060 

AR 0.118 0.095 0.119 0.097 

CDK2 0.032 0.019 0.027 0.018 

COMT -0.020 -0.023 -0.027 -0.021 

COX1 0.018 -0.008 0.017 -0.005 

COX2 0.142 0.118 0.156 0.129 

DHFR 0.050 0.050 0.063 0.071 

EGFR 0.062 0.042 0.067 0.048 

ERagonist 0.086 0.048 0.082 0.049 

ERantagonist 0.103 0.071 0.090 0.069 

FGFR1 0.075 0.032 0.074 0.038 

FXA 0.060 0.061 0.073 0.091 

GART 0.057 0.053 0.046 0.075 

GPB 0.071 0.056 0.059 0.053 

GR 0.071 0.051 0.068 0.052 

HIVPR 0.029 0.016 0.037 0.051 

HIVRT -0.003 0.000 0.003 0.007 

HMGA 0.044 0.041 0.048 0.066 

HSP90 0.083 0.077 0.095 0.089 

INHA 0.052 0.052 0.049 0.050 

MR 0.187 0.151 0.172 0.151 

NA 0.071 0.046 0.072 0.057 

P38 0.061 0.055 0.070 0.065 

PARP 0.025 0.025 0.022 0.025 

PDE5 0.087 0.066 0.097 0.074 

PDGFRB 0.074 0.038 0.067 0.036 

PNP 0.059 0.044 0.082 0.078 

PPARG 0.044 0.059 0.037 0.060 

PR 0.116 0.093 0.120 0.107 

RXRA 0.119 0.085 0.122 0.116 

SAHH 0.093 0.096 0.104 0.107 

SRC 0.058 0.020 0.058 0.027 

Thrombin 0.081 0.039 0.051 0.045 
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TK 0.031 0.042 0.033 0.044 

Trypsin 0.083 0.020 0.040 0.040 

VEGFR2 0.019 -0.001 0.021 0.002 

mean 0.063 0.047 0.061 0.055 

median 0.062 0.047 0.060 0.053 

 
A low ShapeTanimoto value does not necessarily mean an 
unreasonable alignment. This is illustrated in Figure 7.13, where 
there are two COX2 inhibitors superimposed with different 
conformational analysis approaches. Even though the 
SINGLE_SINGLE alignment looks reasonable enough, it has a 
low ShapeTanimoto score of 0.683 because the benzene rings are 
in different orientations on both molecules. 
 

 
Figure 7.13: Valdecoxib (black) superimposed to ZINC00006596 (gray). 
 
Although PAPER algorithm is extremely fast (0.1-0.3 ms per 
alignment), the large variations in the numbers of alignments 
create significant differences in the required computation time 
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between the different conformational analysis approaches 
(Table 7.9). By using a multi-conformation database with a 
single conformation query, one must align ten times more 
molecules than with single conformation database. The use of a 
multi-conformation query with multi-conformation database 
increases the number of alignments by almost two orders of 
magnitude compared to the simplest approach. The generation 
of multi-conformation databases also adds to the computational 
expense of SINGLE_MULTI and MULTI_MULTI approaches. 
 
Table 7.9: The number of alignments in this study for each conformational analysis 
approach. 
Approach Alignments Increase Factor 

SINGLE_SINGLE 13253166 1.0 

SINGLE_MULTI 144375674 10.89 

MULTI_SINGLE 97157157 7.33 

MULTI_MULTI 1114373810 84.08 
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8 Conclusions 

Ligand-based virtual screening based on alignment and 
simple models derived from molecular fields might be 
feasible. A novel virtual screening method called FieldChopper 
was developed. It is based on the discretization of the 
electrostatic and van der Waals field into three classes. The 
results from retrospective virtual screening experiments suggest 
that FieldChopper is competitive with more complex descriptors 
and could be used as a molecular sieve when multiple ligands 
are known. However, it is obvious that additional work would 
be required to make the software more relevant to drug 
discovery projects. A major obstacle to the further development 
of FieldChopper is the lack of high quality data sets that fulfill 
the requirement of similar ligand binding mode. This effectively 
prevented the study of using FieldChopper for the rapid 
prediction of ADMET-properties (notably metabolism), which 
was one planned application area of the original project. 
 
The use of several query ligands in alignment-based virtual 
screening improves results considerably. In the FieldChopper 
evaluation, it was discovered that by using several query 
molecules with EON, clearly superior results compared to single 
alignments with FieldChopper could be achieved. However, this 
strategy increased the computation time by approximately 
1500% i.e. it requires considerably more computing resources as 
the number of active compounds and the size of the database 
increase. After the publication of this study, Kirchmair and co-
workers reported that this observation applies to all targets in 
DUD (Kirchmair et al. 2009).  

 
Tautomerism prediction is not an issue in current structure-
based virtual screening. It was shown that more accurate 
treatment of tautomerism did not have a dramatic effect on a 
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current structure-based virtual screening method. The culprit 
for poor performance must be sought elsewhere. Given the 
limited accuracy of current scoring functions, the use of multiple 
tautomeric and protonation states of the ligands is simply a 
waste of time and resources.  
 
The use of single conformation databases may be feasible in 
shape-based virtual screening. The use of single conformation 
databases for the PAPER method yields comparable results to 
more elaborate multi-conformational virtual screening 
strategies, as measured by ROC AUC and the fraction of 
retrieved scaffolds. By using single conformation databases, one 
can significantly decrease the need for computing resources, 
especially when working with large databases containing very 
flexible molecules. This is however only an initial observation 
and needs to be investigated in more detail. During the 
preparation of this thesis, a perspective article by Nicholls and 
co-workers was published (Nicholls et al. 2010).  They showed 
that even though shape-descriptor USR and ROCS 
ShapeTanimoto had approximately the same ROC AUC values 
for DUD, the correlation between the two similarity scores was 
poor. It was suggested that there is some other feature in the 
data set in addition to the shape that differentiates ligands from 
decoys. Whatever the reality may be, new virtual screening 
benchmarks are urgently needed to study such peculiar 
observations. 
 
Enrichment metrics can be misleading in virtual screening 
method development. Although the aim of virtual screening is 
always to find active ligands from a large pool of inactive 
molecules, enrichment metrics are problematic in method 
development. The quality of alignments was significantly 
poorer when using single conformational databases with 
PAPER, but this was not evident from simply calculating the 
enrichments. In addition, the problem of analog bias and 
scaffold definitions should be investigated in more detail. 
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GPU-computing has a great potential for both ligand- and 
structure-based methods. As a side product from this study, a 
publicly available command line interface was developed for 
PAPER, which makes it possible for anyone to align large sets of 
molecules on regular desktop computers. At the time of writing 
of this thesis, GPU software for virtual screening was virtually 
unavailable. It is very likely that these kinds of programs will 
become commonly available in the near future. 
 
Structure-based virtual screening has serious limitations. The 
same issues remain in molecular docking from year to year, 
which can be seen by comparing review articles from the last 
eight years (Lyne 2002; Kitchen et al. 2004; Köppen 2009; Kolb 
and Irwin 2009). There is still the fundamental question if 
docking is actually useful or are the results obtained from 
prospective screens more or less due to chance, as the hits from 
the screens are rarely validated by experimental procedures 
(Leach et al. 2006; Nicholls 2008; Kolb and Irwin 2009). Perhaps 
the huge increase in parallel computing in recent years may 
alleviate this issue by allowing more sophisticated methods to 
be used than the current scoring functions. However, as the 
understanding of protein-ligand interactions is still rather 
limited (Whitesides and Krishnamurthy 2005), there is still 
much basic research to be done to overcome the current 
limitations. Given that docking is still a rather computationally 
intensive task, it might be wise to first to use ligand-based 
techniques if possible. 
 
3D-methods should be used evaluated more. There is still an 
on-going discussion about whether the computationally more 
demanding 3D methods can actually confer any extra value 
compared to simple 2D-methods like fingerprints (Eckert and 
Bajorath 2007; Zhang and Muegge 2006; Brown and Martin 1996, 
1997; Makara 2001; Sciabola et al. 2007; McGregor and Muskal 
1999, 2000; Jenkins et al. 2004; Good et al. 2004b; Nettles et al. 
2006; Tiikkainen et al. 2009).  It is clear that additional 
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investigations are needed to establish the putative benefits of 
3D-virtual screening. 
Finally, currently the development and evaluation of virtual 
screening methods is challenging due to the lack of standards. 
In order to improve current methods, it is imperative that such 
guidelines are quickly established by the scientific community. 
The author would like to end this thesis by quoting Anthony 
Nicholls of OpenEye Scientific Software: “Whether the modeling 
community has the will to enact such measures may well determine 
whether future generations of scientists look back and see a field that 
became essential to drug discovery or one that became a mere footnote” 
(Nicholls 2008). 



153 
 

  
 

9 References 

Abagyan RA, Totrov MM, Kuznetsov DA: ICM: A New Method For Protein 
Modeling and Design: Applications to Docking and Structure 
Prediction from the Distorted Native Conformation. J Comput Chem 
15:488-506, 1994. 

Adams CP, Brantner W: Estimating the Cost of New Drug Development: Is It 
Really $802 Million? Health Aff 25:420-428, 2006. 

Adane L, Bharatam PV, Sharma V: A common feature-based 3D-
pharmacophore model generation and virtual screening: 
identification of potential PfDHFR inhibitors. J Enzyme Inhib Med 
Chem doi: 10.3109/14756360903393817, 2009. 

Albiston AL, Morton CJ, Ng HL, Pham V, Yeatman HR, Ye S, Fernando RN, De 
Bundel D, Ascher DB, Mandelsohn FA, Parker MW, Chai SY: 
Identification and characterization of a new cognitive enhancer 
based on inhibition of insulin-regulated aminopeptidase. FASEB J 
22:4209-4217, 2008. 

Aparoy P, Kumar Reddy K, Kalangi SK, Chandramohan Reddy T, Reddanna P: 
Pharmacophore modeling and virtual screening for designing 
potential 5-Lipoxygenase inhibitors. Bioorg Med Chem Lett 20:1013-
1018, 2010. 

Ashburn TT, Thor KB: Drug repositioning: identifying and developing new 
uses for existing drugs. Nat Rev Drug Discov 3:673-683, 2004. 

Baell JB, Holloway GA: New Substructure Filters for Removal of Pan Assay 
Interference Compounds (PAINS) from Screening Libraries and for 
Their Exclusion in Bioassays. J Med Chem 53:2719-2740, 2010. 

Ballester PJ, Richards WG: Ultrafast shape recognition for similarity search in 
molecular databases. Proc R Soc A 463:1307–1321, 2007a. 

Ballester PJ, Richards WG: Ultrafast shape recognition to search compound 
databases for similar molecular shapes. J Comput Chem 28:1711–
1723, 2007b. 

Ballester PJ, Finn PW, Richards WG: Ultrafast shape recognition: Evaluating a 
new ligand-based virtual screening technology. J Mol Graph Model 
27:836-845, 2009. 

Ban TA: The role of serendipity in drug discovery. Dialogues Clin Neurosc 
8:335-344, 2006. 

Barker EJ, Gardiner EJ, Gillett VJ, Kitts P, Morris J: Further Development of 
Reduced Graphs for Identifying Bioactive Compounds. J Chem Inf 
Comput Sci 43:346-356, 2003. 

Barker EJ, Buttar D, Cosgrove DA, Gardiner EJ, Kitts P, Willett P, Gillet VJ: 
Scaffold Hopping Using Clique Detection Applied to Reduced Graphs. 
J Chem Inf Model 46:503–511, 2006. 

Barnum D, Greene J, Smellie A, Sprague P: Identification of Common 
Functional Configurations among Molecules. J Chem Inf Comput Sci 
36:563–571, 1996. 

Basse N, Montes M, Maréchai X, Qin L, Bouvier-Durand M, Genin E, Vidal J, 
Villoutreix BO, Reboud-Ravaux M: Novel organic proteoasome 
inhibitors identified by virtual and in vitro screening. J Med Chem 
53:509-513, 2010. 

Bayry J, Tchilian EZ, Davies MN, Forbes EK, Draper SJ, Kaveri SV, Hill AV, 
Kazatchikine MD, Beverley PC, Flower DR, Tough DF: In silico 
identified CCR4 antagonists target regulatory T cells and exert 



154 
 

  
 

adjuvant activity in vaccination. Proc Natl Acad Sci USA 105:10221-
10226, 2008. 

Bemis GW, Murcko MA: The properties of known drugs. 1. Molecular 
Frameworks. J Med Chem 39:2887–2893, 1996. 

Bender A, Mussa HY, Gill GS, Glen RC: Molecular Surface Point Environments 
for Virtual Screening and the Elucidation of Binding Patterns 
(MOLPRINT3D). J Med Chem 47:6569–6583, 2004. 

Bender A, Glen RC: A Discussion of Measures of Enrichment in Virtual 
Screening: Comparing the Information Content of Descriptors with 
Increasing Levels of Sophistication. J Chem Inf Model 45:1369-1375, 
2005. 

Bender A: Compound bioactivities go public. Nat Chem Biol 6:309, 2010. 
Bhutoria S, Ghoshal N: Deciphering ligand dependent degree of binding site 

closure and its implication in inhibitor design: A modeling study on 
human adenosine kinase. J Mol Graph Model 28:577-591, 2010. 

Bissantz C, Kuhn B, Stahl M: A Medicinal Chemist’s Guide to Molecular 
Interactions. J Med Chem doi: 10.1021/jm100112j, 2010. 

Boehr DD, Nussinov R, Wright PE: The role of dynamic conformational 
ensembles in biomolecular recognition. Nat Chem Biol 5:789-796, 
2009. 

Bohm HJ, Flohr A, Stahl M: Scaffold hopping. Drug Discovery Today: 
Technologies 1:217–224, 2004. 

Boppana K, Dubey PK, Jagarlapudi SA, Vadivelan S, Rambabu G: Knowledge 
based identification of MAO-B selective inhibitors using 
pharmacophore and structure based virtual screening models. Eur J 
Med Chem 44:3584-3590, 2009. 

Borodina YV, Bolton E, Fontaine F, Bryant SH: Assessment of Conformational 
Ensemble Sizes Necessary for Specific Resolutions of Coverage of 
Conformational Space. J Chem Inf Model 47:1428-1437, 2007. 

Borosy A, Csizmadia F, Volford A: Structure Based Clustering of NCI’s Anti-
HIV Library. EuroCombi-1, First Symposium of the European Society 
of Combinatorial Science, July 1-5, 2001. 

Bosshard HR: Molecular Recognition by Induced Fit: How Fit is the Concept? 
News Physiol Sci 16:171-173, 2001. 

Boström J, Berggren K, Elebring T, Greasley PJ, Wilstermann M: Scaffold 
hopping, synthesis and structure–activity relationships of 5,6-diaryl-
pyrazine-2-amide derivatives: A novel series of CB1 receptor 
antagonists. Bioorg Med Chem 15:4077-4084, 2007. 

Boström J, Grant A: Exploiting Ligand Conformations in Drug Design. In: 
Molecular Drug Properties, Ed. Mannhold R, Wiley-VCH Verlag GmbH 
& Co. KGaA, Weinheim, Germany, 2008. 

Bradley EK, Beroza P, Penzotti JE, Grootenhuis PDJ, Spellmeyer DC, Miller JL: 
A Rapid Computational Method for Lead Evolution:  Description and 
Application to α1-Adrenergic Antagonists. J Med Chem 43:2770-
2774, 2000. 

Bradley EK, Miller JL, Saiah E, Grootenhuis PDJ: Informative Library Design 
as an Efficient Strategy to Identify and Optimize Leads:  Application 
to Cyclin-Dependent Kinase 2 Antagonists. J Med Chem 46:4360-
4364, 2003. 

Breault GA, Comita-Prevoir J, Eyermann CJ, Geng B, Petrichko R, Doig P, 
Gorseth E, Noonan B: Exploring 8-benzyl pteridine-6,7-diones as 
inhibitors of glutamate racemase (MurI) in gram-positive bacteria. 
Bioorg Med Chem Lett 18:6100-6103, 2008. 

Brooijmans N, Humblet C: Chemical space sampling by different scoring 
functions and crystal structure. J Comput Aided Mol Des doi: 
10.1007/s10822-010-9356-2, 2010. 



155 
 

  
 

Brooks WH, Daniel KG, Sung SS, Guida WC: Computation validation of the 
importance of absolute stereochemistry in virtual screening. J Chem 
Inf Model 48:639-645, 2008. 

Brown N, Jacoby E: On scaffolds and hopping in medicinal chemistry. Mini 
Rev Med Chem 6:1217–1229, 2006. 

Brown RD, Martin YC: Use of Structure-Activity Data to Compare Structure-
Based Clustering Methods and Descriptors for Use in Compound 
Selection. J Chem Inf Comput Sci 36:572–584, 1996. 

Brown RD, Martin YC: The Information Content of 2D and 3D Structural 
Descriptors Relevant to Ligand-Receptor Binding. J Chem Inf Comput 
Sci 37:1–9, 1997. 

Brozic P, Turk S, Lanisnik TR, Gobec S: Discovery of new inhibitors of aldo-
keto reductase 1C1 by structure-based virtual screening. Mol Cell 
Endocrinol 301:245-250, 2009. 

Budin N, Majeux N, Caflisch A: Fragment-Based flexible ligand docking by 
evolutionary optimization. Biol Chem 382:1365-1372, 2001. 

Böhm HJ: LUDI: rule-based automatic design of new substituents for enzyme 
inhibitor leads. J Comput Aided Mol Des 6:593-606, 1992. 

Böhm HJ: Prediction of binding constants of protein ligands: a fast method 
for the priorization of hits obtained from de novo design or 3D 
database search programs. J Comput Aided Mol Des 12:309-323, 
1998. 

Capelli AM, Feriani A, Tedesco G, Pozzan A: Generation of a focused set of 
GSK compounds biased toward ligand-gated ion-channel ligands. J 
Chem Inf Model 46:659–664, 2006. 

Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, 
Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, 
Schlessinger J, Zhang KYJ: Catalytic domain of human 
phosphodiesterase 5A in complex with tadalafil. Structure 12:2233-
2247, 2004. 

Carlsson Y, Yoo L, Gao ZG, Irwin JJ, Shoichet BK, Jacobson KA: Structure-
based discovery of A2A adenosine receptor ligands. J Med Chem 
53:3748-3755, 2010. 

Charifson PS, Corkery JJ, Murcko MA, Walters WP: Consensus scoring: a 
method for obtaining improved hit rates from docking databases of 
three-dimensional structures into proteins. J Med Chem 42:5100-
5109, 1999. 

Chen CS, Chiou CT, Chen GS, Chen SC, Hu CY, Chi WK, Chu YD, Hwang LH, 
Chen PJ, Chen DS, Liaw SH, Chern JW: Structure-based discovery of 
triphenylmethane derivatives as inhibitors of hepatitis C virus 
helicase. J Med Chem 52:2716-2723, 2009. 

Chen CY: Virtual screening and drug design for PDE-5 receptor from 
traditional Chinese medicine database. J Biomol Struct Dyn 27:627-
640, 2010. 

Chen HM, Liu BF, Huang HL, Hwang SF, Ho SY: SODOCK: Swarm 
optimization for highly flexible protein-ligand docking. J Comput 
Chem 28:612-623, 2007. 

Chen IJ, Foloppe N: Conformational sampling of druglike molecules with MOE 
and Catalyst: Implications for pharmacophore modeling and virtual 
screening. J Chem Inf Model 48:1773-1780, 2008. 

Chiang YK, Kuo CC, Wu YS, Chen CT, Coumar MS, Wu JS, Hsieh HP, Chang 
CY, Jseng HY, Wu MH, Leou JS, Song JS, Chang JY, Lyu PC, Chao YS, 
Wu SY: Generation of ligand-based pharmacophore model and 
virtual screening for identification of novel tubulin inhibitors with 
potent anticancer activity. J Med Chem 52:4221-4233, 2009. 

Christof G, Smolinski M, Steuber H, Sotriffer CA, Heine A, Hangauer DG, 
Klebe G: Thermodynamic Inhibition Profile of a Cyclopentyl and a 



156 
 

  
 

Cyclohexyl Derivative towards Thrombin: The Same but for Different 
Reasons. Angew Chem Int Ed 46:8511-8514, 2007. 

Clark RD, Strizhev A, Leonard JM, Blake JF, Matthew JB: Consensus scoring 
for ligand/protein interactions. J Mol Graph Model 20:281-295, 2002. 

Clark RD, Webster-Clark DJ: Managing bias in ROC curves. J Comput Aided 
Mol Des 22:141-146, 2008. 

Clark RD, Shepphird JK, Holliday J: The effect of structural redundancy in 
validation sets on virtual screening performance. J Chemometr 
23:471-478, 2009. 

Cleves AE, Jain AN: Robust Ligand-Based Modeling of the Biological Targets 
of Known Drugs. J Med Chem 49:2921–2938, 2006. 

Connolly ML: Analytical molecular surface calculation. J Appl Crystallogr 
16:548-558, 1983. 

Corbeil CR, Englebienne P, Moitessier: Docking Ligands into Flexible and 
Solvated Macromolecules. 1. Development and Validation of FITTED 
1.0. J Chem Inf Model 47:435-449, 2007. 

Cosconati S, Hong JA, Novellino E, Carroll KS, Goodsell DS, Olson AJ: 
Structure-based virtual screening and biological evaluation of 
Mycobacterium tuberculosis adenosine 5’-phosphosulfate reductase 
inhibitors. J Med Chem 51:6627-6630, 2008. 

Cosconati S, Marinelli L, La Motta C, Sartini S, Da Settimo F, Olson AJ, 
Novellino E: Pursuing Aldose Reductase Inhibitors through in Site 
Cross-Docking and Similarity-Based Virtual Screening. J Med Chem 
52:5578-5591, 2009. 

Coumar MS, Leou JS, Shukla P, Wu JS, Dixit AK, Lin WH, Chang CY, Lien TW, 
Tan UK, Chen CH, Hsu JT, Chao YS, Wu SY, Hsieh HP: Structrure-
based drug design of novel Aurora kinase A inhibitors: structural 
basis for potency and specificity. J Med Chem 52:1050-1062, 2009. 

Cozza G, Gianoncelli A, Montopoli M, Caparrotta L, Venerando A, Meggio F, 
Pinna LA, Zagotto G, Moro S: Identification of novel protein kinase 
CK1 delta (CK1delta) inhibitors through structure-based virtual 
screening. Bioorg Med Chem Lett 18:5672-5675, 2008. 

Cramer RD, Patterson DE, Bunce JD: Comparative Field Analysis (CoMFA). 1 
Effect of shape on binding of steroids to carrier proteins. J Am Chem 
Soc 110:5959–5967, 1988. 

Cramer RD: Topomer CoMFA:  A Design Methodology for Rapid Lead 
Optimization. J Med Chem 46:374-388, 2003. 

Cramer RD, Jilek RJ, Guessregen S, Clark SJ, Wendt B, Clark RD: "Lead 
Hopping". Validation of Topomer Similarity as a Superior Predictor of 
Similar Biological Activities. J Med Chem 47:6777–6791, 2004. 

Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C: 
Comparison of Several Molecular Docking Programs: Pose Prediction 
and Virtual Screening Accuracy. J Chem Inf Model 49:1455-1474, 
2009. 

Cruciani G, Watson KA: Comparative Molecular Field Analysis Using GRID 
Force-Field and GOLPE Variable Selection Methods in a Study of 
Inhibitors of Glycogen Phosphorylase B. J Med Chem 37:2589–2601, 
1994. 

Daszykowski M, Walczak B, Massart DL: Representative subset selection. 
Anal Chim Acta 468:91-103, 2002. 

Davis AM, St-Gallay SA, Kleywegt GJ: Limitations and lessons in the use of X-
ray structural information in drug design. Drug Discovery Today 
13:831-841, 2008. 

Demsar J: Statistical comparisons on classifiers over multiple data sets. J. 
Mach. Learn. Res. 7:1-30, 2006. 

Deye J, Elam C, Lape M, Ratliff R, Evans K, Paula S: Structure-based virtual 
screening for novel inhibitors of the sarco/emdoplasmic reticulum 



157 
 

  
 

calcium ATPase and their experimental evaluation. Bioorg Med Chem 
17:1353-1360, 2009. 

de Vries SJ, van Dijk ADJ, Krzeminski M, van Dijk M, Thureau A, Hsu V, 
Wassenaar T, Bonvin AMJ: HADDOCK versus HADDOCK: New 
features and performance of HADDOCK2.0 on CAPRI targets. 
Proteins Struct Funct Bioinf 69:726-733, 2007. 

Dill KA: Additivity principles in biochemistry. J Biol Chem 272:701-704, 1997. 
Dill KA, Bromberg S: Molecular driving forces: Statistical thermodynamics in 

chemistry and biology, Garland Science, New York, USA, 2003. 
Diller DJ, Kenneth J, Merz M: High throughput docking for library design and 

library prioritization. Proteins: Struct Funct Genet 43:113-124, 2001. 
Diller DJ, Li R: Kinases, Homology Models, and High Throughput Docking. J 

Med Chem 46:4638-4647, 2003. 
DiMasi JA, Hansen RW, Grabowski HG: The price of innovation: new 

estimates of drug development costs. J Health Econ 22:151-185, 
2003. 

Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA: PHASE: 
a new engine for pharmacophore perception, 3D QSAR model 
development, and 3D database screening: 1. Methodology and 
preliminary results. J Comp Aided Mol Des 20:647-671, 2006. 

Dodds EC, Lawson W: Molecular structure in relation to oestrogenic activity. 
Compounds without phenanthrene nucleus. Proc R Soc Lond Ser B 
125:122-132, 1940. 

Doweyko AM: 3D-QSAR illusions. J Comp Aided Mol Des 18:587–596, 2004. 
Durant JL, Leland BA, Henry DR, Nourse JG: Reoptimization of MDL Keys for 

Use in Drug Discovery. J Chem Inf Comput Sci 42:1273–1280, 2002. 
Durán A, Martinez GC, Pastor M: Development and validation of AMANDA, a 

new algorithm for selecting highly relevant regions in Molecular 
Interaction Fields. J Chem Inf Model 48:1813-1823, 2008. 

Durán A, Zamora I, Pastor M: Suitability of GRIND-Based Principal Properties 
for the Description of Molecular Similarity and Ligand-Based Virtual 
Screening. J Chem Inf Model 49:2129-2138, 2009. 

Eckert H, Bajorath J: Molecular similarity analysis in virtual screening: 
foundations, limitations and novel approaches. Drug Discovery 
Today 12:225–233, 2007. 

Edgar SJ, Holliday JD, Willett P: Effectiveness of retrieval in similarity 
searches of chemical databases: A review of performance measures. 
J Mol Graph Model 18:343-357, 2000. 

Ehrlich P: Über den jetzigen Stand der Chemotherapie. Ber Dtsch Chem Ges 
42:17–47, 1901. 

Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP: Empirical scoring 
functions: I. The development of a fast empirical scoring function to 
estimate the binding affinity of ligands in receptor complexes. J 
Comput Aid Mol Des 11:425-445, 1997. 

Englebienne P, Moitessier N: Docking Ligands into Flexible and Solvated 
Macromolecules. 5. Force-Field-Based Prediction of Binding Affinities 
of Ligands to Proteins. J Chem Inf Model 49:2564-2571, 2009. 

Enyedy IJ, Egan WJ: Can we use docking and scoring for hit-to-lead 
optimization? J Comput Aided Mol Des 22:161-168, 2002. 

Fakhrudin N, Ladurner A, Atanasov AG , Heiss EH, Baumgartner L, Markt P, 
Schuster D, Ellmerer EP, Wolber G, Rollinger JM, Stuppner H, Dirsch 
VM: Computer-aided discovery, validation and mechanistic 
characterization of novel neolignan activators of PPARγ. Mol Pharm 
doi: 10.1124/mol.109.062141, 2010. 

Fan Y, Lai MH, Sullivan K, Popiolek M, Andree TH, Dollings P, Pausch MH: The 
identification of neurotensin NTS1 receptor partial agonists through 
a ligand-based virtual screening approach. Bioorg Med Chem Lett 
18:5789-5791, 2008. 



158 
 

  
 

Faver J, Merz KM: Utility of the Hard/Soft Acid-Base Principle via the Fukui 
Function in Biological Systems. J Chem Theory Comput doi: 
10.1021/ct9005085, 2010. 

Feder M, Purta M, Koscinski L, Cubrilo S, Vlahovicek GM, Bujnicki JM: Virtual 
screening and experimental verification to identify potential 
inhibitors of the ErmC Methyltransferase responsible for bacterial 
resistance against macrolide antibiotics. ChemMedChem 3:316-322, 
2008. 

Feher M, Williams CI: Effect of Input Differences on the Results of Docking 
Calculations. J Chem Inf Model 49:1704-1714, 2009. 

Fischer E: Einfluss der Konfiguration auf die Wirkung der Enzyme. Ber Dtsch 
Chem Ges 27:2985-2993, 1894. 

Fitzgerald SH, Sabat M, Geysen HM: Survey of the diversity space coverage 
of reported combinatorial libraries. J Comb Chem 9:724-734, 2007. 

Fontaine F, Pastor M, Sanz F: Incorporating molecular shape into the 
alignment-free Grid-Independent Descriptors. J Med Chem 47:2805-
2815, 2004. 

Franke L, Schwarz O, Muller-Kuhrt L, Hoernig C, Fischer L, George S, 
Tanrikulu Y, Schneider P, Werz O, Steinhilber D, Schneider G: 
Identification of Natural-Product-Derived Inhibitors of 5-
Lipoxygenase Activity by Ligand-Based Virtual Screening. J Med 
Chem 50:2640–2646, 2007. 

Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky 
MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS: 
Glide: a new approach for rapid, accurate docking and scoring. 1. 
Method and assessment of docking accuracy. J Med Chem 47:1739-
1749, 2004. 

Gabb HA, Jackson RM, Sternberg JME: Modelling protein docking using shape 
complementarity, electrostatics and biochemical information. J Mol 
Biol 272:106-120, 1997. 

Gasteiger J, Rudolph C, Sadowski J: Automatic generation of 3D-atomic 
coordinates for organic molecules. Tetrahedron Comput Methodol 
3:537-547, 1990. 

Geppert H, Vogt M, Bajorath J: Current Trends in Ligand-Based Virtual 
Screening: Molecular Representations, Data Mining Methods, New 
Application Areas, and Performance Evaluation. J Chem Inf Model doi: 
10.1021/ci900419k, 2010. 

Giupponi G, Harvey MJ, De Fabritiis G: The impact of accelerator processors 
for high-throughput molecular modeling and simulation. Drug 
Discovery Today 13:1052-1058, 2008. 

Godden JW, Stahura FL, Bajorath J: Anatomy of fingerprint search 
calculations on structurally diverse sets of active compounds. J 
Chem Inf Model 45:1812–1819, 2005. 

Gohlke, Hendlich M, Klebe G: Knowledge-based scoring function to predict 
protein-ligand interactions. J Mol Biol 295:337-356, 2000. 

Good AC, Cho SJ, Mason JS: Descriptors you can count on? Normalized and 
filtered pharmacophore descriptors for virtual screening. J Comput 
Aided Mol Des 18:523–527, 2004a. 

Good AC, Hermsmeier MA, Hindle SA: Measuring CAMD technique 
performance: A virtual screening case study in the design of 
validation experiments. J Comp Aided Mol Des 18:529–536, 2004b. 

Good AC, Oprea TI: Optimization of CAMD Techniques 3. Virtual Screening 
Enrichment Studies: a Help or Hindrance in Tool Selection? J Comput 
Aided Mol Des 22:169-178, 2008. 

Goodford PJ: A computational procedure for determining energetically 
favorable binding sites on biologically important macromolecules. J 
Med Chem 28:849-857, 1985. 



159 
 

  
 

Grant JA, Gallardo MA, Pickup BT: A fast method of molecular shape 
comparison: a simple application of a Gaussian description molecular 
shape. J Comp Chem 17:1653–1666, 1995. 

Grant JA, Pickup BT, Nicholls A: A Smooth Permittivity Function for Poisson-
Boltzmann Solvation Methods. J Comput Chem 22:608-640, 2001. 

Greene J, Kahn S, Savoj H, Sprague P, Teig S: Chemical Function Queries for 
3D Database Search. J Chem Inf Comput Sci 34:1297–1308, 1994. 

Guha R, Jurs PC: Determining the Validity of a QSAR Model − A Classification 
Approach. J Chem Inf Model 45:65-73, 2005. 

Guha R, Howard MT, Hutchison GR, Murray-Rust P, Rzepa H, Steinbeck C, 
Wegner JK, Willighagen: The Blue Obelisk – Interoperability in 
Chemical Informatics. J Chem Inf Model 46:991-998, 2006. 

Gundersen E, Fan K, Haas K, Huryn D, Jacobsen JS, Kreft A, Martone R, 
Mayer S, Sonnenberg-Reines J, Sun SC, Zhou H: Molecular 
modeling-based design, synthesis, and activity of substituted 
piperidines as γ-secretase inhibitors. Bioorg Med Chem Lett 
15:1891-1894, 2005. 

Güner OF, Henry DR: Metric for Analyzing Hit Lists and Pharmacophores. In: 
Pharmacophore Perception, Development, and Use in Drug Design, 
pp. 193-210. Ed. Güner OF, International University Line, La Jolla, 
U.S.A, 2000. 

Hall LH, Kier LB: The molecular connectivity chi indexes and kappa shape 
indexes in structure-property modeling. Reviews in Computational 
Chemistry, 2:367–415, 1991. 

Haque IS, Pande VS: PAPER – Accelerating Parallel Evaluations of ROCS. J 
Comput Chem 31:117-132, 2010. 

Hartmann C, Antes I, Lengauer T: Docking and scoring with alternative side-
chain conformations. Proteins: Struct Funct Bioinf 74:712-726, 2009. 

Hawkins PCD, Skillman AG, Nicholls A: Comparison of Shape-Matching and 
Docking as Virtual Screening Tools. J Med Chem 50:74-82, 2007. 

Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MA: Conformer 
Generation with OMEGA: Algorithm and Validation Using High 
Quality Structures from the Protein Databank and Cambridge 
Structural Database. J Chem Inf Model doi: 10.1021/ci100031x, 
2010. 

Hecker EA, Duraiswami C, Andrea TA, Diller DJ: Use of Catalyst 
Pharmacophore Models for Screening of Large Combinatorial 
Libraries. J Chem Inf Comput Sci 42:1204-1211, 2002. 

Hert J, Willett P, Wilton DJ: New methods for ligand-based virtual screening: 
use of data fusion and machine learning to enhance the 
effectiveness of similarity searching. J Chem Inf Model 46:462-470, 
2006. 

Hillebrecht A, Klebe G: Use of 3D QSAR Models for Database Screening: A 
Feasibility Study. J Chem Inf Model 48:384-396, 2008. 

Hodgkin EE, Richards WG: Molecular Similarity Based on Electrostatic 
Potential and Electric Field. Int J Quantum Chem 32:105-110, 1987. 

Holliday JD, Salim N, Whittle M, Willett P: Analysis and Display of the Size 
Dependence of Chemical Similarity Coefficients. J Chem Inf Comput 
Sci 43:819–828, 2003. 

Hong TJ, Park H, Kim YJ, Jeong JH, Hahn JS: Identification of new Hsp90 
inhibitors by structure-based virtual screening. Bioorg Med Chem 
Lett 19:4839-4842, 2009. 

Huang N, Schoichet BK, Irwin JJ: Benchmarking Sets for Molecular Docking. J 
Med Chem 49:6789–6801, 2006. 

Huey R, Goodsell DS, Morris GM, Olson AJ: Grid-based hydrogen potentials 
with improved directionality. Lett Drug Des Discovery 1:178-183, 
2004. 



160 
 

  
 

Huey R, Morris GM, Olson AJ, Goodsell DS: A semiempirical free energy force 
field with charge-based desolvation. J Comput Chem 28:1145-1152, 
2007. 

Höltje HD, Sippl W, Rognan D, Folkers G: Molecular modeling: basic 
principles and applications, 3rd edition, Wiley-VCH Verlag GmbH & 
Co, Weinheim, Germany, 2008. 

Irwin JJ, Schoichet BK: ZINC – Free Database of Commercially Available 
Compounds for Virtual Screening. J Chem Inf Model 45:177-182, 
2005. 

Irwin JJ: Community benchmarks for virtual screening. J Comput Aided Mol 
Des 22:193-199, 2008. 

IUPAC: Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). 
doi: doi:10.1351/goldbook, 2010. 

Jacobsson M, Lidén P, Stjernschantz E, Boström H, Norinder U: Improving 
Structure-Based Virtual Screening by Multivariate Analysis of Scoring 
Data. J Med Chem 46:5781-5789, 2003. 

Jacq N, Salzemann J, Jacq F, Legré E, Montagnat J, Maaβ A, Reichstadt M, 
Schwichtenberg H, Sridhar M, Kasam V, Zimmermann M, Hoffmann 
M, Breton V: Grid-enabled Virtual Screening Against Malaria. J Grid 
Comput 1:29-43, 2008. 

Jahn A, Hinselmann G, Fechner N, Zell A: Optimal assignment methods for 
ligand-based virtual screening. J Cheminf 1:14, 2009. 

Jain AN: Ligand-Based Structural Hypotheses for Virtual Screening. J  Med 
Chem 47:947–961, 2004. 

Jain AN: Surflex-Dock 2.1: robust performance from ligand energetic 
modeling, ring flexibility, and knowledge-based search. J Comput 
Aided Mol Des 21:281-306, 2007. 

Jain AN, Nicholls A: Recommendations for evaluation of computational 
methods. J Comput Aided Mol Des 22:133-139, 2008. 

Jenkins JL, Glick M, Davies JW: A 3D Similarity Method for Scaffold Hopping 
from known drugs or natural ligands to new chemotypes. J Med 
Chem 47:6144–6159, 2004. 

Jones G, Willett P, Glen RC, Leach AR, Taylor: Development and validation of 
a genetic algorithm for flexible docking. J Mol Biol 267:727-748, 
1997. 

Jorgensen WL: Rusting of the lock and key model for protein-ligand binding. 
Science 254:954-955, 1991. 

Kalliokoski T: Ligand-based virtual screening using molecular fields. 
Licentiate Thesis in Pharmacy, University of Kuopio, Finland, 2008. 

Kalliokoski T, Rönkkö T, Poso A: FieldChopper, a New Tool for Automatic 
Model Generation and Virtual Screening Based on Molecular Fields. J 
Chem Inf Model 48:1131-1137, 2008. 

Kalliokoski T, Salo HS, Lahtela-Kakkonen M, Poso A: The Effect of Ligand-
Based Tautomer and Protomer Prediction on Structure-Based Virtual 
Screening. J Chem Inf Model 49:2742-2748, 2009. 

Kalliokoski T, Rönkkö T, Poso A: Increasing the throughput of shape-based 
virtual screening with GPU processing and single conformation 
databases. Mol Inf 29:293-296, 2010. 

Khan MT, Fuskevåg OM, Sylte I: Discovery of potent thermolysin inhibitors 
using structure based virtual screening and binding assays. J Med 
Chem 52:48-61, 2009. 

Kim BH, Jee JG, Yin CH, Sandoval C, Jayabose S, Kitamura D, Bach EA, Baeg 
GH: NSC114792, a novel small molecule identified through 
structure-based computational database screening, selectively 
inhibits JAK3. Mol Cancer 9:36, 2010. 

Kirchmair J, Wolber G, Laggner C, Langer T: Comparative Performance 
Assessment of the Conformational Model Generators Omega and 



161 
 

  
 

Catalyst: A Large-Scale Survey on the Retrieval of Protein-Bound 
Ligand Conformations. J Chem Inf Model 46:1848-1861, 2006. 

Kirchmair J, Markt P, Distinto S, Wolber G, Langer T: Evaluation of the 
performance of 3D virtual screening protocols: RMSD comparisons, 
enrichment assessments, and decoy selection-What can we learn 
from earlier mistakes? J Comput Aided Mol Des 22:213-228, 2008. 

Kirchmair J, Distinto S, Markt P, Schuster D, Spitzer GM, Liedl KR, Wolber G: 
How To Optimize Shape-Based Virtual Screening: Choosing the Right 
Query and Including Chemical Information. J Chem Inf Model 
49:678-692, 2009. 

Kiss R, Kiss B, Könczöl Á, Szalai F, Jelinek I, Lásló V, Noszál B, Falus A, 
Keseru GM: Discovery of novel human histamine H4 receptor ligands 
by large-scale structure-based virtual screening. J Med Chem 
51:3145-3153, 2008. 

Kiss R, Polgár T, Kirabo A, Sayyah J, Figueroa NC, List AF, Sokol L, 
Zuckerman KS, Gali M, Bisht KS, Sayeski PP, Keseru GM: 
Identification of a novel inhibitor of JAK2 tyrosine kinase by 
structure-based virtual screening. Bioorg Med Chem Lett 19:3598-
3601, 2009. 

Kitchen DB, Decornez H, Furr JR, Bajorath J: Docking and scoring in virtual 
screening for drug discovery: methods and applications. Nat Rev 
Drug Discov 3:935–949, 2004. 

Klebe G, Abraham U, Mietzner T: Molecular Similarity Indices in a 
Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and 
Predict Their Biological Activity. J Med Chem 37:4130–4146, 1994. 

Knox AJS, Meegan MJ, Carta G, Lloyd DG: Considerations in Compound 
Database Preparation – “Hidden” Impact on Virtual Screening 
Results. J Chem Inf Model 45:1908-1919, 2005. 

Koehler RT, Dixon SL, Villar HO: LASSOO: A Generalized Directed Diversity 
Approach to the Design and Enrichment of Chemical Libraries. J Med 
Chem 42:4695–4704, 1999. 

Kogej T, Engkvist O, Blomberg N, Muresan S: Multifingerprint based similarity 
searches for targeted class compound selection. J Chem Inf Model 
46:1201–1213, 2006. 

Koide Y, Uemoto K, Hasegawa T, Sada T, Murakami A, Takasugi H, Sakurai A, 
Mochizuki N, Takahashi A, Nishida A: Pharmacophore-Based Design 
of Sphingosine 1-phosphate-3 Receptor Antagonists That Include a 
3,4-Dialkoxybenzophenone Scaffold. J Med Chem 50:442–454, 2007. 

Kolb P, Caflish A: Automatic and efficient decomposition of two-dimensional 
structures of small molecules for fragment-based high-throughput 
docking. J Med Chem 14:7384-7392, 2006. 

Kolb P, Ferreira RS, Irwin JJ, Shoichet BK: Docking and chemoinformatic 
screens for new ligands and targets. Curr Opin Biotechnol 20:429-
436, 2009. 

Kolb P, Irwin JJ: Docking screens: right for the right reasons? Curr Top Med 
Chem 9:755-770, 2009. 

Kolb P, Rosenbaum DM, Irwin JJ, Fung JJ, Kobilka BK, Shoichet BK: 
Structure-based discovery of beta2-adrenergic receptor ligands. Proc 
Natl Acad Sci USA 106:6843-6848, 2009. 

Korb O, Stützle T, Exner TE: Empirical Scoring Functions for Advanced 
Protein-Ligand Docking with PLANTS. J Chem Inf Model 49:84-96, 
2009. 

Koshland DE, Jr.: Application of a Theory of Enzyme Specificity to Protein 
Synthesis. Proc Natl Acad Sci U. S. A. 44:98-104, 1958. 

Koshland DE, Jr.: How to Get Paid for Having Fun. Annu Rev Biochem 65:1-
13, 1996. 



162 
 

  
 

Kotani T, Higashiura K: Comparative Molecular Active Site Analysis (CoMASA). 
1. An Approach to Rapid Evaluation of 3D QSAR. J Med Chem 
47:2732-2742, 2004. 

Kovac A, Konc J, Vehar B, Bostock JM, Chopra I, Janezic, Gobec S: Discovery 
of new inhibitors of D-alanine:D-alanine ligase by structure-based 
virtual screening. J Med Chem 51:7442-7448, 2008. 

Krammer A, Kirchhoff PD, Jiang X, Venkatachalam CM, Waldman M: LigScore: 
a novel scoring function for predicting binding affinities. J Mol Graph 
Model 23:395-407, 2005. 

Krier M, Bret G, Rognan D: Assessing the Scaffold Diversity of Screening 
Libraries. J Chem Inf Model 46:512–524, 2006. 

Krishnamurthy VM, Bohall BR, Semetey V, Whitesides GM: The Paradoxical 
Thermodynamic Basis for the Interaction of Ethylene Glycol, Glycine, 
and Sarcosine Chains with Bovine Carbonic Anhydrase II: An 
Unexpected Manifestation of Enthalpy/Entropy Compensation. J Am 
Chem Soc 128:5802-5812, 2006. 

Krovat EM, Langer T: Impact of scoring functions on enrichment in docking-
based virtual screening: an application study on renin inhibitors. J 
Chem Inf Comput Sci 44:1123-1129, 2004. 

Kuo CJ, Guo RT, Lu IL, Liu HG, Wu SY, Ko TP, Wang AH, Liang PH: Structure-
based inhibitors exhibit differential activities against Helicobacter 
pylori and Escherichia coli undecaprenyl pyrophosphate synthases. J 
Biomed Biotechnol 2008:841312, 2008. 

Köppen H: Virtual screening – What does it give us? Curr Opin Drug 
Discovery Dev 12:397-407, 2009. 

Ladbury JE, Klebe G, Freire E: Adding calorimetric data to decision making in 
lead discovery: a hot tip. Nat Rev Drug Discov 9:23-27, 2010. 

Labute P: Protonate3D: assignment of ionization states and hydrogen 
coordinates to macromolecular structures. Proteins 75:187-205, 
2009. 

Lagorce D, Sperandio O, Galons H, Miteva MA, Villoutreix BO: FAF-Drugs2: 
Free ADME/tox filtering tool to assist drug discovery and chemical 
biology projects. BMC Bioinformatics 9:396, 2008. 

Lagorce D, Pencheva T, Villoutreix BO, Miteva MA: DG-AMMOS: A New tool to 
generate 3D conformation of small molecules using Distance 
Geometry and Automated Molecular Mechanics Optimization for in 
silico screening. BMC Chemical Biology 9:6, 2009. 

Lakshmi PJ, Kumar BV, Nayana RS, Mohan MS, Bolligarla R, Das SK, Bhanu 
MU, Kondapi AK, Ravikumar M: Design, synthesis, and discovery of 
novel non-peptide inhibitor of Caspase-3 using ligand based and 
structure based virtual screening approach. Bioorg Med Chem 
17:6040-6047, 2009. 

Lang PT, Brozell SR, Mukherjee S, Pettersen EF, Meng EC, Thomas V, Rizzo 
RC, Case DA, James TL, Kuntz ID: DOCK 6: combining techniques to 
model RNA-small molecule complexes. RNA 15:1219-1230, 2009. 

Langer T, Hoffmann RD: A personal foreword. In: Pharmacophores and 
pharmacophore searches, p. 15. Eds. Langer T, Hoffman RD, Wiley-
VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2006. 

Larbig G, Pickhardt M, Lloyd DG, Schmidt B, Mandelkow E: Screening for 
Inhibitors of Tau Protein Aggregation into Alzheimer Paired Helical 
Filaments: A Ligand Based Approach Results in Successful Scaffold 
Hopping. Curr Alzheimer Res 4:315-323, 2007. 

Lau JF, Jeppesen CB, Rimvall K, Hohlweg R: Ureas with histamine H3-
antagonist receptor activity, a new scaffold discovered by lead-
hopping from cinnamic acid amides. Bioorg Med Chem Lett 
16:5303–5308, 2006. 

Leach AR: Molecular modelling: Principles and Applications. Prentice Hall, 2nd 
edition, 2001. 



163 
 

  
 

Leach AR, Shoichet BK, Peishoff CE: Prediction of Protein-Ligand Interactions. 
Docking and Scoring: Successes and Gaps. J Med Chem 49:5851-
5855, 2006. 

Leach AR, Gillett VJ, Lewis RA, Taylor R: Three-dimensional Pharmacophore 
Methods in Drug Discovery. J Med Chem 53:539-558, 2010. 

Lee K, Kim J, Jeong KW, Lee KW, Lee Y, Song JY, Kim MS, Lee GS, Kim Y: 
Structure-based virtual screening of Src kinase inhibitors. Bioorg 
Med Chem 17:3152-3161, 2009. 

Lemmen C, Hiller C, Lengauer T: RigFit: A new approach to superimposing 
ligand molecules. J Comput Aided Mol Des 12:491-502, 1998a. 

Lemmen C, Lengauer T, Klebe G: FLEXS: A Method for Fast Flexible Ligand 
Superposition. J Med Chem 41:4502–4520, 1998b. 

Lewell XQ, Judd DB, Watson SP, Hann MM: RECAP-Retrosynthetic 
Combinatorial Analysis Procedure: A Powerful New Technique for 
Identifying Privileged Molecular Fragments with Useful Applications 
in Combinatorial Chemistry. J Chem Inf Comput Sci 38:511–522, 
1998. 

Li H, Huang J, Chen L, Liu X, Chen T, Zhu J, Lu W, Shen X, Li J, Hilgenfeld R, 
Jiang H: Identification of novel falcipain-2 inhibitors as potential 
antimalarial agents through structure-based virtual screening. J Med 
Chem 52:4936-4940, 2009. 

Li HF, Lu T, Zhu T, Jiang YJ, Rao SS, Hu LY, Xin BT, Chen YD: Virtual 
screening for Raf-1 kinase inhibitors based on pharmacophore model 
of substituted ureas. Eur J Med Chem 44:1240-1249, 2009. 

Li M, Huang YJ, Tai PC, Wang B: Discovery of the first SecA inhibitors using 
structure-based virtual screening. Biochem Biophys Res Commun 
368:839-845, 2008. 

Li M, Ni N, Chou HT, Lu CD, Tai PC, Wang B: Structure-based discovery and 
experimental verification of novel Al-2 quorum sensing inhibitors 
against Vibrio harveyi. ChemMedChem 3:1242-1249, 2008. 

Li N, Wang F, Niu S, Cao J, Wu K, Li Y, Yin N, Zhang X, Zhu W, Yin Y: 
Discovery of novel inhibitors of Streptococcus pneumoniae based on 
the virtual screening with the homology-modeled structure of 
histidine kinase (VicK). BMC Microbiol 9:129, 2009. 

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ: Experimental and 
computational approaches to estimate solubility and permeability in 
drug discovery and development settings. Adv Drug Deliv 23:3-25, 
1997. 

Lipinski CA: Drug-like properties and the causes of poor solubility and poor 
permeability. J Pharmacol Toxicol Methods, 44:235–249, 2000. 

Lipkus AH, Yuan Q, Lucas KA, Funk SA, Bartelt WF, Schenck RJ, Trippe AJ: 
Structural Diversity of Organic Chemistry. A Scaffold Analysis of the 
CAS registry. J Org Chem 73:4443-4451, 2008. 

Liu HY, Kuntz ID, Zou X: Pairwise GB/SA Scoring Function for Structure-
based Drug Design. J Phys Chem B 108:5453-5462, 2004. 

Low CMR, Buck IM, Cooke T, Cushnir JR, Kalindjian SB, Kotecha A, Pether MJ, 
Shankley NP, Vinter JG, Wright L: Scaffold Hopping with Molecular 
Field Points: Identification of a Cholecystokinin-2 (CCK2) Receptor 
Pharmacophore and Its Use in the Design of a Prototypical Series of 
Pyrrole- and Imidazole-Based CCK2 Antagonists. J Med Chem 
48:6790–6802, 2005. 

Lyne PD: Structure-based virtual screening: an overview. Drug Discovery 
Today 7:1047-1055, 2002. 

Mackey MD, Melville JL: Better than Random? The Chemotype Enrichment 
Problem. J Chem Inf Model 49:1154-1162, 2009. 

Maclean D, Baldwin JJ, Ivanov VT, Kato Y, Shaw A, Schneider P, Gordon M: 
Glossary of Terms Used in Combinatorial Chemistry. Pure Appl Chem 
71:2349-2365, 1999. 



164 
 

  
 

Maggiora GM, Shanmugasundaram V: Molecular Similarity Principles. In: 
Methods in Molecular Biology vol. 275: Chemoinformatics: Concepts, 
Methods, and Tools for Drug Discovery, pp. 1-49. Ed. Bajorath J, 
Humana Press, New Jersey, U.S.A., 2004. 

Majeux N, Scarsi M, Caflisch A: Efficient electrostatic solvation model for 
protein-fragment docking. Proteins: Struct Funct Genet 42:256-268, 
2001. 

Makara GM: Measuring Molecular Similarity and Diversity: Total 
Pharmacophore Diversity. J Med Chem 44:3563–3571, 2001. 

Manchester J, Walkup G, Rivin O, You Z: Evaluation of pKa Estimation 
Methods on 211 Druglike compounds. J Chem Inf Model doi: 
10.1021/ci100019p, 2010. 

Markt P, Petersen RK, Flindt EN, Kristiansen K, Kirchmair J, Spitzer G, 
Distinto S, Schuster D, Wolber G, Laggner C, Langer T: Discovery of 
novel PPAR ligands by a virtual screening approach based on 
pharmacophore modeling, 3D shape, and electrostatic similarity 
screening. J Med Chem 51:6303-6317, 2008. 

Markt P, Feldmann C, Rollinger JM, Raduner S, Schuster D, Kirchmair J, 
Distinto S, Spitzer GM, Wolber G, Laggner C, Altmann KH, Langer T, 
Gertsch J: Discovery of novel CB2 receptor ligands by a 
pharmacophore-based virtual screening workflow. J Med Chem 
52:369-378, 2009. 

Markt P, Schuster D, Kirchmair J, Laggner C, Langer T: Pharmacophore 
modeling and parallel screening for PPAR ligands. J Comput Aided 
Mol Des 21:575-590, 2007. 

Markush EA: Pyrazolone Dye and Process of Making the Same. U.S. Patent 
1506316, 1924. 

Marshall GR, Barry CD, Bosshard HE, Dammkoehler R, Dunn DA: The 
conformational Parameter in Drug Design: The Active Analog 
Approach. In: Computer-Assisted Drug Design, pp.205-226. Eds. 
Olson E, Christoffersen RE, American Chemical Society, Columbus, 
U.S.A., 1979. 

Martin EJ, Hoeffel TH: Oriented Substituent Pharmacophore PRopErtY Space 
(OSPPREYS): A substituent-based calculation that describes 
combinatorial library products better than the corresponding 
product-based calculation. J Mol Graph Model 18:383–403, 2000. 

Martin YC: Diverse Viewpoints on Computational Aspects of Molecular 
Diversity. J Comb Chem 3:231–250, 2001. 

Martin YC, Kofron JL, Traphagen LM: Do structurally similar molecules have 
similar biological activity? J Med Chem 45:4350–4358, 2002. 

Martin YC: Let’s not forget tautomers. J Comput Aided Mol Des 23:693-704, 
2009. 

Matter H: Selecting Optimally Diverse Compounds from Structure Databases: 
A Validation Study of Two-Dimensional and Three-Dimensional 
Molecular Descriptors. J Med Chem 40:1219–1229, 1997. 

Matthews BW: Comparison of the predicted and observed secondary 
structure of T4 phage lysozyme. Biochim Biophys Acta 405:442-451, 
1975. 

McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK: Gaussian docking 
fuctions. Biopolymers 68:76-90, 2003. 

McGaughey GB, Sheridan RP, Bayly CI, Culberson JC, Kreatsoulas C, Lindsley 
S, Maiorov V, Truchon JF, Cornell WD: Comparison of Topological, 
Shape, and Docking Methods in Virtual Screening. J Chem Inf Model 
47:1504-1519, 2007. 

McGregor JJ, Willett P: Use of a maximum common subgraph algorithm in the 
automatic identification of ostensible bond changes occurring in 
chemical reactions. J Chem Inf Comput Sci 21:137–140, 1981. 



165 
 

  
 

McGregor MJ, Muskal SM: Pharmacophore Fingerprinting. 1. Application to 
QSAR and Focused Library Design. J Chem Inf Comput Sci 39:569–
574, 1999. 

McGregor MJ, Muskal SM: Pharmacophore Fingerprinting. 2. Application to 
Primary Library Design. J Chem Inf Comput Sci 40:117–125, 2000. 

McInnes C: Virtual screening strategies in drug discovery. Curr Opin Chem 
Biol 11:494-502, 2007. 

Medina-Franco JL, Martínez-Mayorga KM, Bender A, Scior A: Scaffold 
Diversity Analysis of Compound Data Sets Using an Entropy-Based 
Measure. QSAR Comb Sci 28:1551-1560, 2009. 

Meiler J, Baker D: ROSETTALIGAND: Protein-small molecule docking with full 
side-chain flexibility. Proteins: Struct Funct Bioinf 65:538-548, 2006. 

Meng EC, Shoichet BK, Kuntz ID: Automated docking with grid-based energy 
evaluation. J Comp Chem 13:505-524, 1992. 

Michino M, Abola E, Brooks CL, Dixon JS, Moult J, Stevens RC: Community-
wide assessment of GPCR structure modeling and ligand docking: 
GPCR Dock 2008. Nat Rev Drug Discov 8:455-463, 2009. 

Milletti F, Storchi L, Sforna G, Cruciani G: New and Original pKa Prediction 
Method Using Grid Molecular Interaction Fields. J Chem Inf Model 
47:2172-2181, 2007. 

Milletti F, Storchi L, Sforna G, Cross S, Cruciani G: Tautomer Enumeration 
and Stability Prediction for Virtual Screening on Large Chemical 
Databases. J Chem Inf Model 49:68-75, 2009. 

Mills JEJ, Dean PM: Three-dimensional hydrogen-bond geometry and 
probability information from a crystal survey. J Comp Aided Mol Des 
10:607-622, 1996. 

Mitsui T, Hirayama K, Aoki S, Nishikawa K, Uchida K, Matsumoto T, Kabuta T, 
Wada K: Identification of a novel chemical potentiator and inhibitors 
of UCH-L1 by in silico drug screening. Neurochem Int 56:679-686, 
2010. 

Moitessier N, Therrien E, Hanessian S: A method for induced-fit docking, 
scoring, and ranking of flexible ligands. Application to peptidic and 
pseudopeptidic β-secretase (BASE 1) inhibitors. J Med Chem 
49:5885-5894, 2006. 

Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR: Towards the 
development of universal, fast and highly accurate docking/scoring 
methods: a long way to go. Br J Pharmacol 153:S7-S26, 2008. 

Mooij WTM, Verdonk ML: General and targeted statistical potentials for 
protein-ligand interactions. Proteins: Struct Funct Bioinf 61:272-287, 
2005. 

Morley SD, Afshar M: Validation of an empirical RNA-ligand scoring function 
for fast flexible docking using RiboDock. J Comp Aided Mol Des 
18:189-208, 2004. 

Morris GM, Goodsell DS, Halliday RD, Huey R, Hart WE, Belew RK, Olson AJ: 
Automated Docking Using a Lamarckian Genetic Algorithm and an 
Empirical Binding Free Energy Function. J Comput Chem 19:1639-
1662, 1998. 

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson 
AJ: AutoDock4 and AutoDockTools4: Automated docking with 
selective receptor flexibility. J Comput Chem 30:2785-2791, 2009. 

Muchmore S, Souers AJ, Akritopoulou-Zanze I: The use of three-dimensional 
shape and electrostatic similarity searching in the identification of a 
melanin-concentrating hormone receptor 1 antagonist. Chem Biol 
Drug Des 67:174-176, 2006. 

Muegge I: PMF scoring revisited. J Med Chem 49:5895-5902, 2006. 
Mukherjee P, Desai P, Ross L, White EL, Avery MA: Structure-based virtual 

screening against SARS-3CL(pro) to identify novel non-peptidic hits. 
Bioorg Med Chem 16:4138-4149, 2008. 



166 
 

  
 

Naerum L, Norskov-Lauritsen L, Olesen PH: Scaffold hopping and 
optimization towards libraries of glycogen synthase kinase-3 
inhibitors. Bioorg Med Chem Lett 12:1525–1528, 2002. 

NASA: On the expansion of the Universe. NASA Glenn Research Centre, 
U.S.A., 2009. http://www.grc.nasa.gov/WWW/K-
12/Numbers/Math/documents/ON_the_EXPANSION_of_the_UNIVER
SE.pdf. 

Naylor E, Arredouani A, Vasudevan SR, Lewis AM, Parkesh R, Mizote A, Rosen 
D, Thomas JM, Izumi M, Ganesan A, Galione A, Churchill GC: 
Identification of a chemical probe for NAADP by virtual screening. 
Nat Chem Biol 5:220-226, 2009. 

Nelson DL, Cox MM. Lehninger Principles of Biochemistry, 4th edition. pp. 
157-158. W.H. Freeman and Company, New York, U.S.A., 2005. 

Nettles JH, Jenkins JL, Bender A,  Deng Z,  Davies JW, Glick M: Bridging 
Chemical and Biological Space: "Target Fishing" Using 2D and 3D 
Molecular Descriptors. J Med Chem 49:6802–6810, 2006. 

Neves MA, Dinis TC, Colombo G, Sá e Melo ML: An efficient steroid 
pharmacophore-based strategy to identify new aromatase inhibitors. 
Eur J Med Chem 44:4121-4127, 2009. 

Nicholls A, MacCuish NE, MacCuish JD: Variable selection and model 
validation of 2D and 3D molecular descriptors. J Comput Aided Mol 
Des 18:451-474, 2004. 

Nicholls A: What Do We Know and When Do We Know It? J Comput Aided Mol 
Des 22:239-255, 2008. 

Nicholls A, McGaughey GB, Sheridan RP, Good AC, Warren G, Mathieu M, 
Muchmore SW, Brown SP, Grant JA, Haigh JA, Nevins N, Jain AN, 
Kelley B: Molecular Shape and Medicinal Chemistry: A Perspective. J 
Med Chem doi: 10.1021/jm900818s, 2010. 

Niedermeider S, Singethan K, Sebastian G, Matz M, Kossner M, Diederich S, 
Maisner A, Schmitz J, Hiltensperger G, Baumann K, Holzgrabe U, 
Schneider-Schaulies J: A small-molecule inhibitor of Nipah virus 
envelope protein-mediated membrane fusion. J Med Chem 52:4257-
4265, 2009. 

O’Driscoll C: A Virtual Space Odyssey. In: The 4th Horizon Symposium, 
U.S.A., 2004. 
www.nature.com/horizon/chemicalspace/background/pdf/odyssey.p
df. 

Ohno K, Nagahara Y, Tsunoyama K, Orita M: Are There Differences between 
Launched Drugs, Clinical Candidates, and Commercially Available 
Compounds? J Chem Inf Model doi: 10.1021/ci100023s, 2010. 

Okamoto M, Takayama K, Shimizu T, Ishida K, Takahashi O, Furuya T: 
Identification of death-associated protein kinases inhibitors using 
structure-based virtual screening. J Med Chem 52:7323-7327, 2009. 

O’Meara JA, Jakalian A, LaPlante S, Bonneau PR, Coulombe R, Faucher AM, 
Guse I, Landry S, Racine J, Simoneau B, Thavonekham B, Yoakima 
C: Scaffold hopping in the rational design of novel HIV-1 non-
nucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 
17:3362–3366, 2007. 

Oprea TI, Davis AM, Teague SJ, Leeson PD: Is There a Difference between 
Leads and Drugs? A Historical Perspective. J Chem Inf Comput Sci 
41:1308-1315, 2001. 

Oprea TI, Allu TK, Fara DC, Rad RF, Ostopovici L, Bologa CG: Lead-like, drug-
like or “Pub-like”: how different are they? J Comput Aided Mol Des 
21:113-119, 2007. 

Ostrov DA, Magis TA, Wronski TJ, Chan EK, Toro EJ, Donatelli RE, Sajek K, 
Haroun IN, Nagib MI, Piedrahita A, Harris A, Holliday LS: 
Identification of Enoxacin as an Inhibitor of Osteoclast Formation 



167 
 

  
 

and Bone Resorption by Structure-Based Virtual Screening. J Med 
Chem 52:5144-5151, 2009. 

Oyarzabal J, Howe T, Alcazar J, Andrés JI, Alvarez RM, Dautzenberg F, 
Iturrino L, Martínez S, Van der Linden I: Novel approach for 
Chemotype Hopping Based on Annotated Databases of Chemically 
Feasible Fragments and a prospective case study: new melanin 
concentrating hormone antagonists. J Med Chem 52:2076-2089, 
2009. 

Park H, Lee J, Lee S: Critical assessment of the automated AutoDock as a 
new docking tool for virtual screening. Proteins 65:459-554, 2006. 

Park H, Bahn YJ, Jeong DG, Woo EJ, Kwon JS, Ryu SE: Identification of novel 
inhibitors of extracellular signal-regulated kinase 2 based on the 
structure-based virtual screening. Bioorg Med Chem Lett 18:5372-
5376, 2008. 

Park H, Bhattarai BR, Ham SW, Cho H: Structure-based virtual screening 
approach to identify novel classes of PTP1B inhibitors. Eur J Med 
Chem 44:3280-3284, 2009. 

Park H, Jung SK, Jeong DG, Ryu SE, Kim SJ: Discovery of novel PRL-3 
inhibitors based on the structure-based virtual screening. Bioorg 
Med Chem Lett 18:2250-2255, 2008. 

Park H, Jung SK, Jeong DG, Ryu SE, Kim SJ: Discovery of VHR phosphatase 
inhibitors with micromolar activity based on structure-based virtual 
screening. ChemMedChem 3:877-880, 2008. 

Park H, Li M, Choi J, Cho H, Ham SW: Structure-based virtual screening 
approach to identify novel classes of Cdc25B phosphatase inhibitors. 
Bioorg Med Chem Lett 19:4372-4375, 2009. 

Pastor M, Cruciani C, McLay I, Pickett S, Clementi S: Grid-Independent 
descriptors (GRIND): a novel class of alignment-independent three-
dimensional molecular descriptors. J Med Chem 43:3233-3243, 
2000. 

Patani GA, LaVoie EJ: Bioisosterism: A Rational Approach in Drug Design. 
Chem Rev 96:3147–3176, 1996. 

Patterson DE, Cramer RD, Ferguson AM, Clark RD, Weinberger LE: 
Neighborhood Behavior: A Useful Concept for Validation of 
"Molecular Diversity" Descriptors. J Med Chem 39:3049–3059, 1996. 

Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, 
Schacht AL: How to improve R&D productivity: the pharmaceutical 
industry’s grand challenge. Nat Rev Drug Discov 9:203-214, 2010. 

Pham TA, Jain AN: Parameter estimation for scoring protein-ligand 
interactions using negative training data. J Med Chem 49:5856-
5868, 2006. 

Pham TA, Jain AN: Customizing scoring functions for docking. J Comput Aided 
Mol Des 22:269-286, 2008. 

Perez-Pineiro R, Burgos A, Jones DC, Andrew LC, Rodriguez H, Suarez M, 
Fairlamb AH, Wishart DS: Development of a novel virtual screening 
cascade protocol to identify potential trypanothione reductase 
inhibitors. J Med Chem 52:1670-1680, 2009. 

Poptodorov K, Luu T, Hoffman RD: Pharmacophore Model Generation 
Software Tools. In: Pharmacophores and Pharmacophore Searches, 
pp. 17-47. Eds. Langer T, Hoffmann RD, Wiley-VCH Verlag, 
Weinheim, Germany, 2006. 

Pospisil P, Ballmer P, Scapozza L, Folkers G: Tautomerism in Computer-Aided 
Drug Design. J Recept Signal Transduction Res 23:361-371, 2003. 

Pólgar T, Magyar C, Simon I, Keserü GM: Impact of Ligand Protonation on 
Virtual Screening against β-Secretase (BACE1). J Chem Inf Model 
47:2366-2373, 2007. 



168 
 

  
 

Putta S, Lemmen C, Beroza P, Greene J: A novel shape-feature based 
approach to virtual library screening. J Chem Inf Comput Sci 
42:1230-1240, 2002. 

Putta S, Beroza P: Shapes of Things: Computer Modeling of Molecular Shape 
in Drug Discovery. Cutt Top Med Chem 7:1514-1524, 2007. 

Qiu J, Xiao J, Han C, Li N, Shen X, Jiang H, Cao X: Potentiation of tumor 
necrosis factor-alpha-induced tumor cell apoptosis by a small 
molecule inhibitor for anti-apoptotic protein hPEBP4. J Biol Chem 
285:12241-12247, 2010. 

Rao DG: Introduction to Biochemical Engineering. pp. 84-86. Tata McGraw-
Hill Publishing Company Limited, New Delhi, India, 2005. 

Rarey M, Kramer B, Lengauer T, Klebe G: A fast flexible docking method 
using an incremental construction algorithm. J Mol Biol 261:470-489, 
1996. 

Ravindranathan KP, Mandiyan V, Ekkati AR, Bae JH, Schlessinger J, 
Jorgensen WL: Discovery of novel fibroblast growth factor receptor 1 
kinase inhibitors by structure-based virtual screening. J Med Chem 
53:1662-1672, 2010. 

Raymond JW, Willett P: Effectiveness of graph-based and fingerprint-based 
similarity measures for virtual screening of 2D chemical structure 
databases. J Comput Aided Mol Des 16:59-71, 2002. 

Ren JX, Li LL, Zou J, Yang L, Yang JL, Yang SY: Pharmacophore modeling and 
virtual screening for the discovery of new transforming growth 
factor-beta type I receptor (ALK5) inhibitors. Eur J Med Chem 
44:4259-4265, 2009. 

Renner S, Ludwig V, Boden O, Scheffer U, Gobel M, Schneider G: New 
Inhibitors of the Tat-TAR RNA Interaction Found with a "Fuzzy" 
Pharmacophore Mode. ChemBioChem 6:1119–1125, 2005. 

Renner S, Schwab CH, Gasteiger J, Schneider G: Impact of Conformational 
Flexibility on Three-Dimensional Similarity Searching Using 
Correlation Vectors. J Chem Inf Model 46:2324-2332, 2006. 

Rester U: From virtuality to reality – Virtual screening in lead discovery and 
lead optimization: A medicinal chemistry perspective. Curr Opin 
Drug Discovery Dev 11:559-568, 2008. 

Ripka AS, Rich DH: Peptidomimetic design. Curr Opin Chem Biol 2:441–452, 
1998. 

Roberts G, Myatt GJ, Johnson WP, Cross KP, Blower PE: LeadScope: Software 
for Exploring Large Sets of Screening Data. J Chem Inf Comput Sci 
40:1302–1314, 2000. 

Rohrer SG, Baumann K: Maximum Unbiased Validation (MUV) Data Sets for 
Virtual Screening Based on PubChem Bioactivity Data. J Chem Inf 
Model 49:169-184, 2009. 

Rollinger JM, Kratschmar DV, Schuster D, Pfisterer PH, Gumy C, Aubry EM, 
Brandstötter S, Stuppner H, Wolber G, Odermatt A: 11β-
Hydroxysteroid dehydrogenase 1 inhibiting constituents from 
Eriobotrya japonica revealed by bioactivity-guided isolation and 
computational approaches. Bioorg Med Chem 
doi:10.1016/j.bmc.2010.01.010, 2010. 

Rush TS, Grant JA, Mosyak L, Nicholls A: A shape-based 3-D scaffold hopping 
method and its application to a bacterial protein-protein interaction. 
J Med Chem 48:1489–1495, 2005. 

Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, 
Gamblin SJ, Skehel JJ: The structure of H5N1 avian influenza 
neuraminidase suggests new opportunities for drug design. Nature 
443:45-49, 2006. 

Rönkkö T, Tervo AJ, Parkkinen J, Poso A: BRUTUS: optimization of a grid-
based similarity function for rigid-body molecular superposition. II. 



169 
 

  
 

Description and characterization. J Comput Aided Mol Des 20:227–
236, 2006. 

Rönkkö T: Brutus – A Molecular Energy Field Superposition Algorithm for 
Virtual Screening. Doctoral Dissertation, University of Kuopio, 
Finland 2009. 

Sadowski J, Gasteiger J: From Atoms and Bonds to Three-Dimensional 
Atomic Coordinates: Automatic Model Builders. Chem Rev 93:2567-
2581, 1993. 

Saeh JC, Lyne PD, Takasaki BK, Cosgrove DA: Lead hopping using SVM and 
3D pharmacophore fingerprints. J Chem Inf Model 45:1122–1133, 
2005. 

Salam NK, Huang TH, Kota BP, Kim MS, Li Y, Hibbs DE: Novel PPAR-gamma 
agonists identified from a natural product library: a virtual screening, 
induced-fit docking and biological assay study. Chem Biol Drug Des 
71:57-70, 2008. 

Sanam R, Vadivelan S, Tajne S, Narasu L, Rambabu G, Jagarlapudi SA: 
Discovery of potential ZAP-70 kinase inhibitors: pharmacophore 
design, database screening and docking studies. Eur J Med Chem 
44:4793-4800, 2009. 

Sanner MF: Python: a programming language for software integration and 
development. J Mol Graph Model 17:57-61, 1999. 

Sauer WHB, Schwarz MK: Molecular Shape Diversity of Combinatorial 
Libraries: A Prerequisite for Broad Bioactivity. J Chem Inf Comput 
Sci 43:987–1003, 2003. 

Sauton N, Lagorce D, Villoutreix BO, Miteva MA: MS-DOCK: Accurate multiple 
conformation generator and rigid docking protocol for multi-step 
virtual ligand screening. BMC Bioinformatics 9:184, 2008. 

Schuffenhauer A, Gillet VJ, Willett P: Similarity Searching in Files of Three-
Dimensional Chemical Structures: Analysis of the BIOSTER Database 
Using Two-Dimensional Fingerprints and Molecular Field Descriptors. 
J Chem Inf Comput Sci 40:295–307, 2000. 

Sciabola S, Morao I, de Groot MJ: Pharmacophoric Fingerprint Method (TOPP) 
for 3D-QSAR Modeling: Application to CYP2D6 Metabolic Stability. J 
Chem Inf Model 47:76–84, 2007. 

Schnecke V, Kuhn LA: Virtual screening with solvation and ligand-induced 
complementary. Persp Drug Discov Des 20:171-190, 2000. 

Schneider G, Neidhart W, Giller T, Schmid G: "Scaffold-Hopping" by 
topological pharmacophore search: a contribution to virtual 
screening. Angew Chem Int Ed 38:2894–2896, 1999. 

Schneider G, Schneider P, Renner S: Scaffold-Hopping: How Far Can You 
Jump? QSAR Comb Sci 12:1162-1171, 2006. 

Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ: PatchDock and 
SymmDock: servers for rigid and symmetric docking. Nucleic Acids 
Res 33:W363-W367, 2005. 

Schueler FW: Sex hormone action and chemical constitution. Science 
103:221-223, 1946. 

Schuster D, Maurer EM, Laggner C, Nashev LG, Wilckens T, Langer T, 
Odermatt A: The Discovery of New 11β-Hydroxysteroid 
Dehydrogenase Type 1 Inhibitors by Common Feature 
Pharmacophore Modeling and Virtual Screening. J Med Chem 
49:3454-3466, 2006. 

Schwab CH: Conformational Analysis and Searching. In: Handbook of 
Chemoinformatics, pp. 262-301, Ed. Gasteiger J, Wiley-VCH, New 
York, U.S.A, 2003. 

Sela I, Golan G, Strajbl M, Rivenzon-Segal D, Bar-Haim S, Bloch I, Inbal B, 
Shitrit A, Ben-Zeev E, Fichman M, Markus Y, Marantz Y, Senderowitz 
H, Kalid O: G Protein Coupled Receptors - In Silico Drug Discovery 
and Design. Curr Top Med Chem 10:638-656, 2010. 



170 
 

  
 

Shah S, Federoff, HJ: Drug discovery dilemma and Cura Quartet collaboration. 
Drug Discovery Today 14:1006-1010, 2009. 

Sheridan RP, Singh SB, Fluder EM, Kearsley SK: Protocols for Bridging the 
Peptide to Nonpeptide Gap in Topological Similarity Searches. J 
Chem Inf Comput Sci 41:1395-1406, 2001. 

Sheridan RP, Kearsley SK: Why do we need so many chemical similarity 
search methods? Drug Discovery Today 7:903-911, 2002. 

Sing T, Sander O, Beerenwinkel N, Lengauer T: ROCR: visualizing classifier 
performance in R. Bioinformatics 21:3940-3941, 2006. 

Smits RA, de Esch IJ, Zuiderveld OP, Broeker J, Sansuk K, Guaita E, Coruzzi 
G, Adami M, Haaksma E, Leurs R: Discovery of quinazolines as 
histamine H4 receptor inverse agonists using a scaffold hopping 
approach. J Med Chem 51:7855-7865, 2008. 

Sonego P, Kocsor A, Pongor S: ROC analysis: applications to the classification 
of biological sequences and 3D structures. Brief Bioinform 9:198-
209, 2008. 

Srinivasan J, Castellino A, Bradley EK, Eksterowicz JE, Grootenhuis PD, Putta 
S, Stanton RV: Evaluation of a novel shape-based computational 
filter for lead evolution: application to thrombin inhibitors. J Med 
Chem 45:2494-2500, 2002. 

Stahl M, Rarey M: Detailed Analysis of Scoring Functions for Virtual Screening. 
J Med Chem 44:1035-1042, 2001. 

Stanton DT, Morris TW, Roychoudhury S, Parker CN: Application of Nearest-
Neighbor and Cluster Analyses in Pharmaceutical Lead Discovery. J 
Chem Inf Comput Sci 39:21–27, 1999. 

Stiefl N, Watson IA, Baumann K, Zaliani A: ErG: 2D Pharmacophore 
Descriptions for Scaffold Hopping. J Chem Inf Model 46:208–220, 
2006. 

Stiefl N, Zaliani A: A knowledge-based weighting approach to ligand-based 
virtual screening. J Chem Inf Model 46:587–596, 2006. 

Su AI, Lorber DM, Weston GS, Baase WA, Matthews BW, Shoichet BK: 
Docking molecules by families to increase the diversity of hits in 
database screens: Computational strategy and experimental 
evaluation. Proteins 42:279–293, 2001. 

Tasler S, Müller O, Wieber T, Herz T, Krauss R, Totzke F, Kubbutat MH, 
Schächtele C: N-substituted 2'-(aminoaryl)benzothiazoles as kinase 
inhibitors: hit identification and scaffold hopping. Bioorg Med Chem 
Lett 19:1349-1356, 2009. 

Tawa GJ, Baber JC, Humblet C: Computation of 3D queries for ROCS based 
virtual screens. J Comput Aided Mol Des 23:853-868, 2009. 

Teague SJ, Davis AM, Leeson PD, Oprea T: The Design of Leadlike 
Combinatorial Libraries. Angew Chem Int Ed 38:3743-3748, 1999. 

ten Brink T, Exner TE: Influence of Protonation, Tautomeric, and 
Stereoisomeric States on Protein-Ligand Docking Results. J Chem Inf 
Model 49:1535-1546, 2009. 

Thomsen R, Christensen MH: MolDock: A New Technique for High-Accuracy 
Molecular Docking. J Med Chem 49:3315-3321, 2006. 

Tietze S, Apostolakis J: Glamdock: Development and validation of a new 
docking tool on several thousand protein-ligand complexes. J Chem 
Inf Model 47:1657-1672, 2007. 

Tiikkainen P, Markt P, Wolber G, Kirchmair J, Distinto S, Poso A, Kallioniemi O: 
Critical Comparison of Virtual Screening Methods against the MUV 
Data Set. J Chem Inf Model 49:2168-2178, 2009. 

Tirado-Rivers J, Jorgensen WL: Contribution of Conformer Focusing to the 
Uncertainty in Predicting Free Energies for Protein−Ligand Binding. J 
Med Chem 49:5880-5884, 2006. 

Todeschini R, Consonni V: Molecular Descriptors for Chemoinformatics. 
Wiley-VCH Verlag, Weinheim, Germany, 2009. 



171 
 

  
 

Todorov NP, Monthoux PH, Alberts IL: The Influence of Variations of Ligand 
Protonation and Tautomerism on Protein-Ligand Recognition and 
Binding Energy Landscape. J Chem Inf Model 46:1134-1142, 2006. 

Tonelli M, Boido V, La Colla P, Loddo R, Posocco P, Paneni MS, Fermeglia M, 
Pricl S: Pharmacophore modeling, resistant mutant isolation, 
docking, and MM-PBSA analysis: combined experimental/computer-
assisted approaches to identify new inhibitors of the Bovine Viral 
Diarrhea Virus (BVDV). Bioorg Med Chem In press, 2010. 

Tralau-Stewart CJ, Wyatt CA, Kleyn DE, Ayad A: Drug discovery: new models 
for industry–academic partnerships. Drug Discovery Today 14:95-
101, 2009. 

Tresadern H, Cid JM, Macdonald GJ, Vega JA, de Lucas AI, García A, 
Matesanz E, Linares ML, Oehlrich D, Lavreysen H, Biesmans I, 
Trabanco AA: Scaffold hopping from pyridines to imizao[1,2-
a]pyridines. New positive allosteric modulators of metabotropic 
glutamate 2 receptor. Bioorg Med Chem Lett 20:175-179, 2010. 

Triballeau N, Acher F, Brabet I, Pin JP, Bertrand HO: Virtual Screening 
Workflow Development Guided by the “Receiver Operating 
Characteristic” Curve Approach. Application to High-Throughput 
Docking on Metabotropic Glutamate Receptor Subtype 4. J Med 
Chem 48:2534-2547, 2005. 

Triballeau N, Bertrand HO, Acher F: Are You Sure You Have a Good Model? In: 
Pharmacophores and Pharmacophore Searches, pp. 325-364. Eds. 
Langer T, Hoffmann RD, Wiley-VCH Verlag, Weinheim, Germany, 
2006. 

Tripos: UNITY Manual (SYBYL-X). 2009. www.tripos.com. 
Trott O, Olson AJ: AutoDock Vina: improving the speed and accuracy of 

docking with a new scoring function, efficient optimization and 
multithreading. J Comp Chem 31:455-461, 2010. 

Truchon JF, Bayly CI: Evaluating Virtual Screening Methods: Good and Bad 
Metrics for the "Early Recognition" Problem. J Chem Inf Model 
47:488-508, 2007. 

Trump RP, Blanc JBE, Stewart EL, Brown PJ, Caivano M, Gray DW, Hoekstra 
WJ, Willson TM, Han B, Turnbull P: Design and synthesis of an array 
of selective androgen receptor modulators. J Comb Chem 9:107-114, 
2007. 

Tsai KC, Teng LW, Shao YM, Chen YC, Lee YC, Li M, Hsiao NW: The first 
pharmacophore model for potent NF-kappaB inhibitors. Bioorg Med 
Chem Lett 19:5665-5669, 2009. 

Tsuchida K, Chaki H, Takakura T, Kotsubo H, Tanaka T, Aikawa Y, Shiozawa 
S, Hirono S: Discovery of Nonpeptidic Small-Molecule AP-1 Inhibitors: 
Lead Hopping Based on a Three-Dimensional Pharmacophore Model. 
J Med Chem 49:80–91, 2006. 

Turk S, Kovac A, Boniface A, Bostock JM, Chopra I, Bianot D, Gobec S: 
Discovery of new inhibitors of the bacterial peptidoglycan 
biosynthesis enzymes MurD and MurF by structure-based virtual 
screening. Bioorg Med Chem 17:1884-1889, 2009. 

Vadivelan S, Sinha BN, Tajne S, Jagarlapudi SA: Fragment and knowledge-
based design of selective GSK-3beta inhibitors using virtual 
screening models. Eur J Med Chem 44:2361-2371, 2009. 

Vainio MJ, Johnson MS: Generating Conformer Ensembles Using a 
Multiobjective Genetic Algorithm. J Chem Inf Model 47:2462-2474, 
2007. 

Vainio MJ, Puranen JS, Johnson MS: ShaEP: molecular overlay based on 
shape and electrostatic potential. J Chem Inf Model 49:492-502, 
2009. 



172 
 

  
 

van Dijk M, van Dijk AD, Hsu V, Boelens R, Bonvin AM: Information-driven 
protein-DNA docking using HADDOCK: it is a matter of flexibility. 
Nucleic Acids Res 34:3317-3325, 2006. 

van Drie JH: Pharmacophore discovery: A critical review. In: Computational 
Medicinal Chemistry for Drug Discovery, pp. 437–455. Eds. Bultinck 
P, De Winter H, Langenaeker W, Tollenare JP, Marcel Dekker, New 
York & Basel, U.S.A., 2004. 

Vargyas M, Papp J, Csizmadia F, Csepregi S, Allardyce A, Vadasz P: Maximum 
Common Substructure Based Hierarchical Clustering. American 
Chemical Society National Meeting, 11-14 September, 2006. 

Velec HFG, Gohlke H, Klebe G: DrugScoreCSD-knowledge-based scoring 
function derived from small molecule crystal data with superior 
recognition rate of near-native ligand poses and better affinity 
prediction. J Med Chem 48:6296-6303, 2005. 

Venkatachalam CM, Jiang X, Oldfield T, Waldman M: Ligandfit:  A Novel 
Method for the Shape-Directed Rapid Docking of Ligands to Protein 
Active Sites.  J Mol Graphics Model 4:289-307, 2003. 

Venkatraman V, Chakravarthy PR, Kihara D: Application of 3D Zernike 
descriptors to shape-based ligand similarity searching. J Cheminf 
1:19, 2009. 

Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD: Improved 
protein-ligand docking using GOLD. Proteins: Struct Funct Bioinf 
52:609-623, 2003. 

Verdonk ML, Berdini V, Hartshorn MJ, Mooij WT, Murray CW, Taylor RD, 
Watson P: Virtual screening using protein-ligand docking: avoiding 
artificial enrichment. J Chem Inf Comput Sci 44:793-806, 2004. 

Verkivker GM, Bouzida D, Gehlaar DK, Rejto PA, Arthurs S, Colson AB, Freer 
ST, Larson V, Luty BA, Marrone T, Rose PW: Deciphering common 
failures in molecular docking of ligand-protein complexes. J Comput 
Aid Mol Des 14:731-751, 2000. 

Vidal D, Thormann M, Pons M: A novel search engine for virtual screening of 
very large databases. J Chem Inf Model 46:836–846, 2006. 

Vieth M, Hirst JD, Dominy BN, Daigler H, Brooks III CL: Assessing search 
strategies for flexible docking. J Comput Chem 19:1623-1631, 1999. 

Viji SN, Prasad PA, Gautham N: Protein−Ligand Docking Using Mutually 
Orthogonal Latin Squares (MOLSDOCK). J Chem Inf Model 49:2687-
2694, 2009. 

von Korff M, Freyss J, Sander T: Comparison of ligand- and structure-based 
virtual screening on the DUD data set. J Chem Inf Model 49:209-
231, 2009. 

Wang H, Liu Y, Huai Q, Cai J, Zaraghi R, Francis SH, Corbin JD, Robinson H, 
Xin Z, Lin G, Ke H: Multiple conformation of phosphodiesterase-5: 
implications for enzyme function and drug development. J Biol Chem 
281:21469-21479, 2006. 

Wang HY, Li LL, Cao ZX, Luo SD, Wei YQ, Yang SY: A specific pharmacophore 
model of Aurora B kinase inhibitors and virtual screening studies 
based on it. Chem Biol Drug Des 7:115-126, 2009. 

Wang R, Lai L, Wang S: Further development and validation of empirical 
scoring functions for structure-based binding affinity prediction. J 
Comput Aided Mol Des 16:11-26, 2002. 

Wang R, Lu Y, Wang S: Comparative Evaluation of 11 Scoring Functions for 
Molecular Docking. J Med Chem 46:2287-2303, 2003. 

Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, 
Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, 
Woolven JM, Peishoff CE, Head MS: A critical assessment of docking 
programs and scoring functions. J Med Chem 49:5912-5931, 2006. 



173 
 

  
 

Watts KS, Dalal P, Murphy RB, Sherman W, Friesner RA, Shelley JC: ConfGen: 
A Conformational Search Method for Efficient Generation of Bioactive 
Conformations. J Chem Inf Model doi: 10.1021/ci100015j, 2010. 

Weidlich IE, Dexheimer T, Marchand C, Antony S, Pommier Y, Nicklaus MC: 
Inhibitors of human tyrosyl-DNA phospodiesterase (hTdp1) 
developed by virtual screening using ligand-based pharmacophores. 
Bioorg Med Chem 18:182-189, 2010. 

Wermuth CG: Pharmacophores: Historical perspective and viewpoint from a 
medicinal chemist. In: Pharmacophores and Pharmacophore 
Searches, pp. 3-13. Eds. Langer T, Hoffmann RD, Wiley-VCH Verlag, 
Weinheim, Germany, 2006. 

Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA: Glossary of terms used in 
medicinal chemistry. Pure & Appl Chem 70:1129–1143, 1998. 

Wesson L, Eisenberg D: Atomic solvation parameters applied to molecular 
dynamics of proteins in solution. Protein Sci 1:227-235, 1992. 

Weston J, Perez-Cruz F, Bousquet O, Chapelle O, Elisseef A, Scholkopf B: 
Feature selection and transduction for prediction of molecular 
bioactivity for drug design. Bioinformatics 19:764-771, 2003. 

Whitesides GM, Krishnamurthy VM: Designing ligands to bind proteins. Q Rev 
Biophys 38:385-395, 2005. 

Wild DJ, Blankley CJ: Comparison of 2D fingerprint types and hierarchy level 
selection methods for structural grouping using Ward’s clustering. J 
Chem Inf Comput Sci 40:155–162, 2000. 

Wilkens SJ, Janes J, Su AI: HierS: Hierarchical Scaffold Clustering Using 
Topological Chemical Graphs. J Med Chem 48:3182–3193, 2005. 

Willett P, Barnard JM, Downs GM: Chemical similarity searching. J Chem Inf 
Comput Sci 38:983–996, 1998. 

Willett P: Similarity-based virtual screening using 2D fingerprints. Drug 
Discovery Today 11:1046-1053, 2006. 

Williams C: Reverse fingerprinting, similarity searching by group fusion and 
fingerprint bit importance. Mol Divers 10:311–332, 2006. 

Wolber G, Langer T: LigandScout: 3-D pharmacophores derived from protein-
bound ligands and their use as virtual screening filters. J Chem Inf 
Model 45:160-169, 2005. 

Wold S, Ruhe A, Wold H, Dunn WJ: The colinearity problem in linear 
regression: the partial least squares (PLS) approach to generalised 
inverses. SIAM J Sci Stat Comput 5:735–743, 1984. 

Woods DD, Fildes P: The anti-sulphanilamide activity (in vitro) of p-
aminobenzoic acid and related compounds. Chem Ind 59:133-134, 
1940. 

Wu G, Robertson DH, Brooks CL, Vieth M: Detailed analysis of grid-based 
molecular docking: A case study of CDOCKER - A CHARMm-based 
MD docking algorithm. J Comput Chem 24:1549-1562, 2003. 

Xie HZ, Li LL, Ren JX, Zou J, Yang L, Wei YQ, Yang SY: Pharmacophore 
modeling study based on known spleen tyrosine kinase inhibitors 
together with virtual screening for identifying novel inhibitors. Bioorg 
Med Chem Lett 19:1944-1949, 2009. 

Xu J: A New Approach to Finding Natural Chemical Structure Classes. J Med 
Chem 45:5311–5320, 2002. 

Xu W, Chen G, Liew OW, Zuo Z, Jiang H, Zhu W: Novel non-peptide beta-
secretase inhibitors derived from structure-based virtual screening 
and bioassay. Bioorg Med Chem Lett 19:3188-3192, 2009. 

Yang CY, Wang R, Wang S: M-Score: a knowledge-based potential scoring 
function for protein atom mobility. J Med Chem 49:5903-5911, 2006. 

Yang JM, Chen CC: GEMDOCK: A generic evolutionary method for molecular 
docking. Proteins: Struct Funct Bioinf 55:288-304, 2004. 



174 
 

  
 

Yao J, Zhang Q, Min J, He J, Yu Z: Novel enoyl-ACP reductase (Fabl) potential 
inhibitors of Escherichia coli from Chinese medicine monomers. 
Bioorg Med Chem Lett 20:56-59, 2010. 

Zhang Q, Muegge I: Scaffold Hopping through Virtual Screening Using 2D 
and 3D Similarity Descriptors: Ranking, Voting and Consensus 
Scoring. J Med Chem 49:1536–1548, 2006. 

Zhang QY, Wan J, Xu X, Yang GF, Ren YL, Liu JJ, Wang H, Guo Y: Structure-
Based Rational Quest for Potential Novel Inhibitors of Human HMG-
CoA Reductase by Combining CoMFA 3D QSAR Modeling and Virtual 
Screening. J Med Chem 9:131–138, 2007. 

Zhao Y, Sanner MF: FLIPDock: Docking flexible ligands into flexible receptors. 
Proteins: Struct Funct Bioinf 68:726-737, 2007. 

Zhu Z, Cuozzo J. High-Throughput Affinity-Based Technologies for Small-
Molecule Drug Discovery. J Biomol Screen 14:1157-1164, 2009. 

Zsoldos Z, Reid D, Simon A, Sadjad SB, Johnson AP: eHiTS: A new fast, 
exhaustive flexible ligand docking system. J Mol Graph Model 
26:192-212, 2006. 



Publications of the University of Eastern Finland

Dissertations in Health Sciences

isbn 978-952-61-0181-1

Publications of the University of Eastern Finland
Dissertations in Health Sciences

Computers are routinely used in the 

modern drug discovery process. In 

virtual screening, the bioactivity of a 

compound is predicted in silico. The 

focus of this study has been in the 

development of novel rapid virtual 

screening software and acceleration 

of current methods. This dissertation 

describes new approaches for both 

protein- and ligand-based virtual 

screening.

d
issertatio

n
s | 022 | T

u
o

m
o

 K
a

llio
k

o
sk

i |  A
cceleratin

g T
h

ree-D
im

en
sion

al V
irtu

al S
creen

in
g - N

ew
 S

oftw
are an

d A
p

p
roach

es ...

Tuomo Kalliokoski
Accelerating

Three-Dimensional
Virtual Screening

New Software and Approaches for

Computer-Aided Drug Discovery

Tuomo Kalliokoski

Accelerating
Three-Dimensional
Virtual Screening
New Software and Approaches for Computer-Aided 

Drug Discovery



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Europe ISO Coated FOGRA27)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.16667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.08333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /PDFXOutputConditionIdentifier (FOGRA27)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <FEFF004b006f00700069006a0079007600e4006e0020007000610069006e006f006b0065006c0070006f0069006e0065006e0020007000640066002d0074006900650064006f00730074006f>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
      /DestinationProfileSelector /WorkingCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice




