11,684 research outputs found

    Scanning from heating: 3D shape estimation of transparent objects from local surface heating

    Get PDF
    Today, with quality becoming increasingly important, each product requires three-dimensional in-line quality control. On the other hand, the 3D reconstruction of transparent objects is a very difficult problem in computer vision due to transparency and specularity of the surface. This paper proposes a new method, called Scanning From Heating (SFH), to determine the surface shape of transparent objects using laser surface heating and thermal imaging. Furthermore, the application to transparent glass is discussed and results on different surface shapes are presented

    A 3D scanner for transparent glass

    Get PDF
    Many practical tasks in industry, such as automatic inspection or robot vision, often require the scanning of three-dimensional shapes by use of non-contact techniques. However, few methods have been proposed to measure three-dimensional shapes of transparent objects because of the difficulty of dealing with transparency and specularity of the surface. This paper presents a 3D scanner for transparent glass objects based on Scanning From Heating (SFH), a new method that makes use of local surface heating and thermal imaging

    Recovery of surface orientation from diffuse polarization

    Get PDF
    When unpolarized light is reflected from a smooth dielectric surface, it becomes partially polarized. This is due to the orientation of dipoles induced in the reflecting medium and applies to both specular and diffuse reflection. This paper is concerned with exploiting polarization by surface reflection, using images of smooth dielectric objects, to recover surface normals and, hence, height. This paper presents the underlying physics of polarization by reflection, starting with the Fresnel equations. These equations are used to interpret images taken with a linear polarizer and digital camera, revealing the shape of the objects. Experimental results are presented that illustrate that the technique is accurate near object limbs, as the theory predicts, with less precise, but still useful, results elsewhere. A detailed analysis of the accuracy of the technique for a variety of materials is presented. A method for estimating refractive indices using a laser and linear polarizer is also given

    Light microscopy of organized monolayers

    Get PDF
    corecore