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o Introduction 
The research investigations of the Vision/Robotics 

Laboratory at Columbia University reflect the diversity of 
interests of its four faculty members, two staff programmers. 
and 15 Ph.D. students. Several of the projects involve either a 
visiting computer science post-doc. other faculty members in 
the department or the university. or researchers at AT&T Bell 
laboratOries or Philips laboratories. We list below a summary 
of our interest and results. together with the principal 
researchers associated with them. Since it is difficult to 
separate those aspects of robotic research that are purely 
visual from those that are vision-like (for example, tactile 
sensing) or vision-related (for example, integrated vision­
robotic systems), we have listed all robotic research that is n~ 
purely manipulative. -

0.1 Low-level Vision 

0.1.1 TheorlH Involving Stereo 
1. A unified theory of generalized stereo vision 

(Larry Wolff [45. 49, 50]). 

2. The derivation of shape from polarizing surfaces 
(Larry Wolff [46, 47, 48]). 

3. Optimal estimators for stereo trlangulatlon error 
(Ken Roberts, Dr. S. Kicha Ganapathy of AT&T 
Bell Laboratories (34]). 

0.1.2 Data Repre .. ntatJon8 
1. A new representation for a line in three-space 

(Ken Roberts [35]). 

2. Smooth interpolation of rotational motions (Ken 
Roberts, Drs. S. KJcha Ganapathy and Garry 
Bishop of AT&T BeN laboratories [36]). 

0.1.3 Application. to GrIIphIca 
1. Realistic rendering of scenes uslng polarization 

properties (LatTy Wolff, Dave Kur1andef [51 D. 
2. A new data structure and a1gortthm for the 

mapping of arbitrary shapes (George 
Wolberg [43. 44D. 

'This worX was supported in part by !he Defense Advancad R~ 
Projects Agency under cootrw:u NOOO3~' 65 and DACA76-8&­
C-0024. 

0.2 Middle-level VIsIon 

0.2.1 Regularized Surface Reconstruction and Stereo 
1. A critical study of regularization methodology 

(Terry Boult [4, 10]). 

2. Regularized surface reconstruction and 
segmentation based on smoothness energy 
(Terry Boult. lJang-Hua Chen [11]). 

3. Integrated stereo matching, surface 
reconstruction, and surface segmentation (Terry 
Boult, lJang-Hua Chen [12. 16, 17]). 

0.2.2 5ell8Ory Fusion 
1. Fusion of muttiple Shape-from-texture methods 

(MarX Moerdler, John Kender [30, 31]). 

2. Fusion of texture and stereo (Mark Moerdler. 
Terry Boult [5. 32. 33)). 

0.2.3 Shape from Dynamic Shadowing 
1 . A discrete method for deriving surfaces from 

dynamic shadows (John Kender, Ear1 
Smith [26. 29)). 

2. An optimal algorithm for shape from continuous 
shadows (Mlchalls Hatzitheodorou. John 
Kender [22. 23D· 

0.2..4 Application to Range Data 
1. Recovery of superquadrlc parameters (Terry 

Boult, At1 Gross [6, 7, 13)). 

2. Spline-based recovery of smooth oceanographic 
positional information (Terry Boult, Dr. Barry 
Allen of Columbia University's Lamont-Doherty 
Geological Observatory [8)). 

0.3 Spatial R.'atlon. 

0.3.1 RepreMntatJoM of ObJects and Spaat 
1. Analysis and extension of issues in aspect 

graphs (John Kender, David Freudenstein on 
leave, Prof. Jonathan Gross [27D. 

2. Survey of algorithms for the representation of 
space (Monnett Hanvey [21 J). 
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3. Efficient updating of digital distance maps in 
dynamic environments(Terry Boult (9». 

0.3.2 Theory and Practice of Navigation 

1. Landmark definition and the representation and 
complexity of custom maps (John Kender, 
Avraham Leff (2B». 

2. Systems issues in practical real-time robotic 
navigation (Monnett Hanvey, Drs. Bob Lyons 
and Russ Andersson of AT&T Bell Laboratories). 

0.4 Parallel Algorithms 

0.4.1 Low- and Mlddle-level VIsion Theory 
1. Depth interpolation using optimal numerical 

analysis techniques on a pyramid machine 
(Dong Chol, John Kender (1 B, 19)). 

2. Determination of surface orientation from 
foreshortened texture autocorrelations (Usa 
Brown, Dr. Haim Shvaytser of Weizmann 
fellowship (14, 15]). 

0.4.2 Research and Appllcatlo~ on Tree Machines 
1. Simulators and programming environments for 

Non-Von and for the Connection Machine 
(Hussein Ibrahim, Usa Brown (20, 24, 25». 

2. Stereo. texture, and other pyramid-based 
algorithms (Hussein Ibrahim, Usa Brown). 

0.4.3 Research and Applications on Plpellned Machines 
1. Implementing basic real-time Image algorithms 

for pipelined processors (Alit Singh, Peter 
Allen (37, 38, 41 j). 

2. Sensor fusion of correlation and of spatia­
temporal approaches to optic flow (Ajit Singh, 
Peter Allen, Dr. Surendra Ranganath of Philipe 
Laboratories (39, 40, 42». 

3. Real-time object tracking and interception 
algorithms (Peter Allen (2D. 

0.5 Robotics and Tactile SensIng 

0.5.1 System Oevelopment 
1. Carteslan-based control of the newty-acqulred 

Utah hand (Ken Roberts, Peter Allen). 

2. Interlacing proprietary skin-like tactile sensors 
(Peter Allen). 

0.5.2 Multl-flngered Obfect Recognltlon 
1. Sensor models and CAO/CAM object models 

(Peter Allen, Dino Tarabanis [1 ,3D. 
2. Haptic recognition via active exploration with a 

Instrumented robot hand (Ken Roberts, Peter 
Allen) 

We now detail these efforts, many of which are 
documented by full papers in these proceedings. We also 
Include short discussions of work in progress. 
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1 Low-level Vision 
We have extended our work on a generalized 

framework for the perception of physical surface properties. 
and have formalized the conditions under which image 
measurements can break certain symmetries of observation in 
order to uniquely define depth-related object values. We have 
applied this general theory to the specific case of the 
derivation of surface orientation from differences in the 
polarization of reflected light, and have shown that only two 
settings of a linear polarizer placed before the camera are 
necessary for uniqueness. In other work. we have analyzed 
the error in traditional two-camera parallax stereo using a 
Bayesian statistical approach, and have computed optimal 
estimators that are extensible to multi-camera imaging 
configurations. 

Some of our work has lead to economies of data 
representation; in particular. we have discovered a new way of 
representing lines in three-space that requires only four 
parameters and is totally free of annoying special cases. In 
work on rotational motions, we have defined an efficient. 
closed form way of interpolating their representations as 
quatemions over the associated three-sphere; the method 
leads to surprisingly smooth animations. 

Work on low-level vision often leads to corresponding 
results In graphics. We have empirically validated that our 
theory of polarization adds striking realism to the computer 
graphic generation of certain types of scenes involving 
reflections. Lastly, in the course of investigating efficient 
object tracking algorithms, we have devised and implemented 
a general but fast method for mapping arbitrary planar shapes 
onto each other, based on a new skeletonization data 
structure. 

1.1 TheorIes InvolvIng Stereo 

1.1.1 Generalized Stereo VISion 
Generalized stereo begins as an abstract unification of 

two distinct exiting stereo techniques: traditional parallax: 
stereo. which calculates surface depth by varying the camera 
focal point, and photometric stereo, which calculates surface 
orientation by varying the light positions. A generalized stereo 
method calculates atbitrary visual object features (world 
coordinate position. local surface orientation. Gaussian 
curvature, color reflectivity. etc.) by varying related physical 
imaging parameters (position of focal point, orientation of 
incident light source, polarization of incldent light source, etc.) 
The object feature is determined by the intersection. in a 
parameter feature space. of sclution loci generated from a 
system of equations relating features to 
parameters (45, 49, 50J. 

We have shown that In its formalized axiomatic 
deflnltlon, a generalized stereo method is characterized by 
four things: a visual object feature to be measured, a 
functional way of converting image observables such as image 
intensity into other ob6ervables such as image gradient, a set 
of variable imaging parameters, and the equations relating all 
three. We have illustrated the theory with many examples. 

AddtionaJly, we have characterized the error intrinsic to 
this family of methods by noting that the dimension of 
measurement ambiguity is readily determined by the implicit 
function theorem applied to the equations at the point of 
intersection. Mont aca.Jrately, erTOf can be characterized in 
terms of symmetries of solution loci using the theory of groups. 
We have established two theorems which state the precise 
conditions under which the intersection of solution loci can be 
further disambiguated. 
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1.1.2 Polarlza1lon Stereo 
We have investigated several applications of the 

generalized stereo theory. We have analyzed how surface 
~rlentation can be calculated by varying the wavelength andlor 
linear polarization of a slngle incident light source [46]. More 
practically, we have also proposed a new technique to 
measure local surface orientation based on a more complete 
theory of reflection of light. This theory combines the 
Torrance-Sparrow theory of reflection with the Wolf 
polarization theory of ·quasi-monochromatic· 
(monochromatically filtered) light [47, 48]. The technique 
enables surface orientation to be uniquely measured in 
arbitrary lighting by placing a simple monochrome filter and a 
linear polarizer in front of the sensor; two images taken at two 
orientations of the polarizer suffice. The equations that govem 
the calculations, called the polarization state matrix equations. 
are elaborate. but they are only a special case of the larger 
family of generalized stereo imaging equations. 

1.1.3 Optimal Stereo Trtangulatlon Techniques 
We have analyzed the positional error in stereo 

triangulation using a Bayesian statistical approach. and have 
derived optimal estimators based on several different selS of 
imaging assumptions [34]. One assumption models the 
~era error function in a new and more general way. by 
Including a depth-sensitive (1/z"n) factor. Our techniques are 
elegantly extended to the case of more than two cameras. 

Intuitively, we prove that the following methods are 
optimal. For a given stereo pair, reject any errors 
perpendicular to the epipolar line. Weight each camera's 
estimate of source point position by the reciprocal of the 
variance of ilS error function and the square of the depth of the 
source point from it. For more than two Images, compute the 
results taking the Images pairwise, then combine them by 
weighting each result by the square of the pair's baseline. 

1.2 Data Representations 

1.2.1 Representation of Three-Space Unes 
We have constructed a new representation for a line in 

Euclidean three-space which uses only four parameters. the 
minimal number allowable, and stili avoids singularities and 
special cases [35]. Therefore, wi!hoU1 sacrificing convenience 
of computation, it is no longer necessary to represent lines in 
the more traditional six-parameter forms (such as Plucker 
coordinates, or point-and-orientation foon), although the new 
representation has the added advantage that it is easy to 
convert to those forms. The representation, involving two 
parameters for position and two for orientation, readily 
generalizes to Euciidean n-space. where it uses 20-2 
parameters. 

1.2.2 Interpolation of Rotational Motion 
Smooth interpolllllon of rotational motion (as in a 

"perfect spiraJ· football pass) is important in computer 
animation, robot control. and hypothesis~uided compU1er 
vision. We have implemented a new. closed form algorithm 
for doing so. based on representing motions as quatemions on 
the unit three-sphere [36]. Resulting displays of interpolated 
values. and the computer animation sequences based on 
them, are smoother and more perceptually realistic than two 
existing methods. . 
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1.3 Applications to Graphics 

1.3.1 Rendering Using Polarization Properties 
We have applied the more complete theory of reflection 

developed in the work described above to ray tracing 
algOrithms in computer graphics. We report striking 
differences in the rendering of certain scenes involving 
reflections when the phenomenon of polarization is 
included [51]; the differences are preferred by observers. This 
lends some evidence to the belief that the reflection model is 
at least qualitatively very correct. 

1.3.2 Mapping of Arbitrary Planar Shapes 
In attempting to analyze and track objects between 

images, we discovered that the literature was silent on the 
problem of efficiently and smoothly mapping between two 
image regions which are delimited by arbitrary dosed curves; 
such regions do not have the universally assumed four 
corners. We have specified and verified an algorithm that 
instead treats an image region as a collection of interior layers 
around a skeleton (similar to that in [43]). These layers 
impose a type of local polar coordinate system which allows 
each shape to be ·unwrapped· into a tree-like representation. 
Region-to-region warping is then defined by a natural mapping 
between the two resulting trees [44]. Although there is no a 
priori way of defining quality of mapping. the results are 
esthetically pleasing. 

2 Middle-level Vision 
We have presented a critical overview of the 

regularization methodology, and have demonstrated new 
means of spedtying the function ciass and its stabilizing 
functional that, although non-traditional. give qualitatively 
better results. We have exploited one of these ways, which is 
heavily dependent on the use of reproducing kemel-based 
splines, to surface segmentation: the method computes upper 
and lower boonds on local surface energy prior to surface 
labeling, and demonstrates good results on synthetic and real 
image and range data, and even on some transparent 
surfaces. Fur1tler, we have incorporated this energy-based 
approach Into a system that integrates the formerly separate 
middle-level vision stages of stereo matching, surface 
reconstruction. and segmentation Into a more straightforward 
one-step surface labeling based on a single measure of 
ambiguity; quantitatively, it results in a significantly higher 
percentage ot correct matches. 

We have designed. built. and verified on synthetic. and 
real Imagery, a bladlboard-basad system that fuses the 
independent and occaslonally conflicting Information from 
multiple (tour or more) texture cues into a integrated method 
for surface segmentation and orientation determination: it is 
organized around a new image data structure, the augmented 
texel. and achieves sensor fusion via a Hough-like method on 
a trixelated Gaussian sphere. We have extended the method 
to a design and preliminary system (tested on a real image) 
that fuses the resulting surface orientation with the results of 
the one-step stereo method described above; this design thus 
coordinates the two Intra-modality integrations with an Inter­
modality relaxatlon-based fusion of Information through a 
weighted averaging, according to a non-traditional 
·smoothness norm", of zero-crossing and texel-centroid data 



Our worX on the derivation of surface information from 
self-shadowing has resulted in a patent application for the 
discrete case. Additionally, we have analyzed the continuous 
case according to methods of functional analysis and have 
devised a provably optimal algorithm for surface recovery that 
is grounded in an unusual family of basis-like splines and an 
unusual iterative procedure for handling the non-linearity of the 
mutual illumination constraints; we have demonstrated a high 
degree of surface reconstructive accuracy on one-dimensional 
data 

Using a nonlinear least square minimization technique 
on the so-called inside-out function, we have designed and 
demonstrated a system for the robust recovery of 
superquadric parameters from both noisy synthetic and actual 
range data imagery, including even the case of a 
superellipsoid with negative volume (a construct used in solid 
modeling). Transferring our middle-level vision technology to 
a real world problem, we have begun to analyze various 
methods for inferring the geological structures below the 
surface of the ocean by first fuSing several noisy sources of 
ship-board sensory data, such as satellite, dead reckoning, 
and gravitational information; this system for position tracking 
is now in regular field use. 

2.1 Regularized Surface Reconstruction and Stereo 

2.1,1 CrttJcaJ AnalyaJ. of Regularization 
We have presented a survey of some of the benefits 

promised by the regularlzatlon framework, and also of some of 
its difficulties, particularly the problems of determining 
appropriate functional classes, norms, and regularization 
stabilizing functionaJs (4~ When we subjectively tested (via 
established procedures of psychology) the results of the 
methodology applied to the surface reconstruction problem, 
we found that non-traditional formulations provided better 
results. It is not surprising that we were then able to document 
the lack of development of most of the promises of 
regularization theory, finding only three actual ex~ of Its 
fruitful realization [10). 

2.1.2 Energy-bUecl Surface Segmentation 
Although current surface reconstruction aIgortttlma have 

strong foundations in mathematics, the segmentation aapecta 
of the worX are purely heuristic. We have developed and 
tested a non-heuristic algori1hm which a1moitaneouaJy 
reconstructs surfaces and segments the undertylng data 
according to the same energy-baaed smoothness 
measure (11). It is founded on the use of reptOdudng kemel­
based splines, which allow efficient caJculation of upper and 
lower bounds on ttle energy. The sys18m naturally deals with 
occluded objects, and also wl1h sharply slanted surfaces. such 
as roads as seen from a vehicle. We have vertfied the system 
on a gamut of artiflclalll1d natural data, Including transparent 
surfaces. 

2.1.3 One-.tep Sterlo Matching, Reconatructlon, and 
Segmentation 
Traditional stereopsis is done in three phases: 1) 

suitable features are detected in each image, 2) corresponding 
features are matched and disparity is determined, and 3) a 
complete depth map is approximated and segmented. We 
have extended our wof1( on non-heuristlc segmentation by 
developlng a new. one-step approach to stereopsis that unifies 
the stereo matching criteria with our already combined 
reconstnJctlon and segmentation aiteria [12. 16, 17). The 
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criteria is exploited in the form of a measure of match 
ambiguity, which is used to rank order all potential matches. 
The method results in fewer un matchable features than the 
Marr-Poggio-Grimson method. 

2.2 Sensory Fusion 

2.2.1 Fusing Shape-from-Texture Methods 
We continue to augment and refine our system for 

integratlng various modalities for determining surface 
orientation from multiple, independent, conceptually parallel, 
and possibly conflicting textural cues. The system uses a new 
data structure, the augmented texel, which combines multiple 
constralnts on orientation, each with its own assurity 
weightlng. in a compact notation for a single surface 
patch [30.31]. 

We have demonstrated the system using four texture 
modules (shape from spaclng, eccentricity, orientation, and 
size), on both synthetic and real imagery of surfaces, some of 
them curved or transparent, with robust results: slant and tilt 
are usually recovered within a few degrees. We have shown 
examples of real surfaces for which individual texture methods 
fail to determine surface orientation accurately because of 
noise, but for which their fusion succeeds. Part of the noise 
tolerance of the system is derived from the relaxation 
refinement of Initial hypotheses about surface orientation and 
extent. which themselves are derived from a (nOise tolerant) 
Hough accumulation array on the surface of the trixelated 
Gaussian sphere. 

2.2.2 Fusing Stereo with Texture 
Having found ways of integrating into two separate 

processes the three steps of stereo perception and at least 
four methods of texture perception, we have combined our 
results In a single system that fuses stereo and texture 
together [5. 32. 33). Although It is stlll under development (it 
has pro<:essed only a single real image), it is uniquely 
structured to provide two qualitatively different means of 
information fuslon, namely. intra-process and inter-process 
integration. The latter incorporates a priori assumptions about 
surfaces. such as degrees and measures of smoothness, and 
communicates such data via a blackboard organization. Such 
a two-stage organization does not appear inconsistent with 
what is known about human visual modularization. 

In particular. the stereo process uses the relative 
accuracy and sparseness of the centroid of texels to begin 
feature localization. latar switching to traditional zero­
crossings. The wof1( is further characterized by the choice of 
smoothness meastJre; roughly it minimizes variation in the 1.5 
derivative. not the second. Flnal Integration is done by 
weighting the significance of a surface constraint produced by 
sittler process inversety proportionally to the total number of 
constraints the procea outputs (otherwise stereo would 
always outweigh texture processing). 

2.3 Shape from Dynamic Shadowing 

2.3.1 The Dlecrete Cae: Shape from Darkneu 
We have analyzed and validated on synthetic data a 

new method. called shape from dariu1ess, for extracting 
surface shape information based on object self-shadowing 
under moving light sources [26). Unlike most shape-from 



methods. it does not require a reflectance map. and it works 
on non-smooth surfaces. Shadow information is stored in a 
novel data structure called the suntrace. which records the 
quantized angle of illumination at Which a given Image point 
was first illuminated. Given n points. the surface 
reconstruction problem becomes the satisfaction of 8n 
constraint equations in 2n unknowns. one unknown each for 
the upper and lower surface bound for each image point An 
unusual form of relaxation. in which pixels can affect other 
pixels at a great distance. quickly converges to the solution. 
Columbia University has applied for a patent on the 
method [29]. 

2.3.2 The Continuous case: Optimal Shape from Shadows 
We have analyzed the same problem in the continuous 

set!lng. decomposing the two-dimensional problem into a 
~enes of one-dimensional slices in the plane of the moving 
Ilgh.t source. Casting the problem in a Hilbert space. we 
denved a provably optimal algorithm which involves 
interpolating splines of an unusual piecewise linear 
!orm [22: 23]. A side system of inequalities is optionally 
~nVO~ed In order to preserve the implicit information that points 
Intenor to a shadowed region must lie below that shadow line. 
The problem has a natural parallelization. not only into slices. 
but alSO into hill-and-valley segments. Our implementation 
has demonstrated high accuracy using few light sources on 
even badly nondifferentiable test functions. We are now 
attempting to analytically determine optimal light source 
placement 

2.4 Application to Range Data 

2.4.1 Recovery of Superquadrlca 
Many have noted the simultaneous descriptiveness and 

compactness that superquadrlcs offer as a volumetric model; 
noted. too. is their well-defined inside-out functions needed in 
parameter recovery. However. we have determined that the 
primary concem in superquadric parameter estimation 18 the 
proper choice of the error-of-fit measures that control the 
nonlinear least square minimization techniques. We have 
explored the effectiveness of several such measures on many 
examples using noisy synthetic data and actual range images. 
including multiple views of the same object and a 
superellipsoid with negative volume. the latter being an 
important primitive lor constructlve solid geometry-based 
modeling. We have concluded that existing measures of fit 
are inadequate. and have proposed ones that perfonn 
better [6. 7. 13J. 

2.4.2 Recovery of Oceanographic PoeftlONlllnformatlon 
We have investigated the problem of integrating 

different types of poeItIonal Information. such as various 
satellite and Inertial data. In order to reconstruct the path taken 
by an exploratory geologlcaJ ocean vessel. Typical paths are 
piecewise very smooth except at turns; the problem is 
therefore a one-dlmensional analogue of the middle-levef 
vision problem of smooth surface recovery from sparse depth 
data [8]. We further Investigated the related two-dimensional 
analogue problem: the Inference of the geological struct1Jres 
below the surface of the ocean floor from gravitational 
information. The problem was solved by again uslng 
smoothing splines. baCked bya clever heuristic to ignore faulty 
outliers In the data. The system. with some amount of human 
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intervention. has been put into regular use by the researchers 
at Columbia's Lamont-Doherty Geological Observatory. 

3 Spatial Relations 
We have extended the semantics of an object 

representation. called the aspect graph. to the more realistiC 
imaging environments having finite camera precision; we fixed 
several definitional problems in the process. Having surveyed 
60 papers on representations of navigational space. we have 
taxonomized the main approaches to the problem: they use 
dehydrated free space. Simple mosaics. or reconstituted free 
space representations. We extended the path-planning 
representation. called the digital distance map. to dynamiC 
environments. and presented an efficient algorithm for its 
maintenance under object movement. 

We defined a model of landmarks and map-making. and 
showed that the problem of providing a navigator with a list of 
directions is. even In the simplest case. an NP-¢Omplete 
problem; nonetheless. heuristics exist to help cut down search 
in creating "good" maps (defined as being either "short" or 
"easy"). We have been programming a mobile robot platform, 
attempting to have it navigate topologically via landmarks such 
as corridor intersections. 

3.1 Representations of Objects and Space 

3.1.1 Aspect Graphs and Degenerate Views 
An aspect graph is a representation of the effed that 

viewing angle has on an object's observable features. While 
attempting to extend this concept to formations of objects. we 
discovered several inadeQuacies and errors in its current 
definition and use [27]. We demonstrated that the key concept 
of "characteristic view" is not well defined; in fact. it rarely is 
defined at all. The problem becomes more acute under finite 
camera resolution. where idealized aspect graphs become 
more like spatial maps: both nodes and arcs now have width. 
Given camera resolution and object size. we were able 
associate probabilities of observation to certain "degenerate 
views' of some simple objects. 

Our most recent work has noticed a close connection 
between the aspect graph and the so-called first barycentric 
subdivision of standard graphs in graph theory; we are 
attempting to exploit this and other formal similarities. 

3. 1.2 Representation of (Un)Occupled Space 
We have completed a survey of some 60 papers dealing 

wtItl environmental representations of mobile robots. Most of 
them assume a static two-dimensional world. and a complete 
bird's-eye knowMKige of free space and obstacles. We have 
given a taxonomy of map prtmitives. such as frames of 
reference and map symbols. and a taxonomy of 
representations. such dehydrated free space (mixed 
polyhedra. and vertex graphS). simple mosaics (tessellations. 
distance maps. and Quadtrees) , and reconstituted tree space 
(convex celis. and freeways). We have also noted the relative 
paucity of results on Qualitative. topological navigation via 
landmarks. 

3. 1.3 Dynamic Digital Distance Mapa 
A digital distance map contalns in each of its cells 

information about the distance and/or direction to some pre­
spedfied goal set; If the environment is static. it makes path 
planning trivial. We have developed an algorithm that extends 
the utility of these maps to dynamic environments. such as 



robotic assembly domains [9]. The algorithm is efficient. in 
that it only updates those cells of free space that are in the 
moving object's "shadow", where a shadow Is defined 
according to a precise but tricky grammar. The algOrithm is 
two-phase: shadow calculation followed by map update; if the 
robot can avoid shadows, this allows some paraJlelizatJon of 
robot movement with map updatJng. We have observed 
speedups of 25 times over brute force update. We are now 
extending the method to higher dimensions, such as 
configuration spaces, and investigating the use of multi­
resolution techniques. 

3.2 Theory and Practice of Navigation 

3.2.1 The Computatlonal Complexity of Map-Making 
We h~ve formalized a model of topological navigation in 

one::JlmenSlonal spaces. such as along slngle roads. 
corridors. or transportation routes, and have shown that the 
problem Is surprisingly difficult computationally [28]. In our 
model, we carefully discriminated between the concepts and 
representations of the world itself (a version of "Uneland"), the 
wo~ ~ abstracted into symbols and landmarl<s by an 
ommsClent map-maker, and the world as experienced by a 
limited navigator who follows the map-makers directions. 
Having also modeled the navigator's sensors in a primitive 
way (a sensor here being more like a feature detector), we 
proved that the problem of choosing an effective and efficient 
subset of sensors for navigation via landmarks is NP· 
complete. 

However, the A' search procedure does apply; we also 
gave a simplifying heuristic evaluation function ('most new 
eliminated objects1 for use with It. Having selected the proper 
sensor subsets, Dijkstra's shortest path algorithm gives the 
optimal set of directions for the navigator, where we deflned an 
optimal map to be one that minimizes length of directions, cost 
of sensing, or some combination. 

3.2.2 Drtvlng the AT&T Mobile Robot 
In worX jointly supported by AT&T 8ell LaboratDries, we 

are investigating several systems issues In navigation by using 
their mobile robot platform. As an early exper:ment in 
landmark recognition, we have programmed it to track walls 
with its sonar; the robot notlce8 Intersections and dead ends. 
which are potentially significant external environmental cues 
for self·positioning. In related wor1<, we have tactded the 
problem of calculating ranges to visuaJly perceived vertical 
edges by using a simplified Kalman fllter. SInce the 8fTO( 

introduced by quantization and other factors is not gaussian 
this fitter produces accurate estimates only at sele<:ted points~ 
however, these estimates can be strategically combined using 
triangulation to inCf8U8 accuracy. We are testing this 
filterfngArlangulation system on the robot. aiming for 60 Hz 
cycle time. 

4 Parallel Algorithm. 
We have analyzed the performance of the parallellzation 

of several computationally optimal aIgorfttlma for depth 
interpolation, and have found that on a 'Mde variety of 
synthetic and real range data the adaptive Chebyshev is the 
most efficient. even when implemented In a muiligrid fashion. 
We have invented a partlcularly slmple, accurate, and robust 
shape-from-texture algorithm based on image autocorrelation 
that outperforms human observation on real scenes of roads. 
dirt, and grass. 
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In our Strategic Computing worK, we have designed and 
implemented three related programming environments for 
validating parallel pyramid-based SIMD algorithms; the third 
one elegantly exploits the Connection Machine's hypercube 
network to efficienlly emulate a library of image functions for a 
virtual pyramid machine. at a fixed low overhead. We have 
also implemented, on simulators or the emulator. parallel 
pyramid·based stereo, segmentation. and Hough algorithms. 
as well as our new autocorrelation texture algorithm. 

On our PIPE, we have built up a basic library of 
pipelined low·level image processing functions. We are 
implementing a system for optic flow determination that fuses 
the results of intensity correlation methods and spatiotemporal 
energy methods; the latter Is based on a novel image structure 
called the pyramid of oriented edges. The PIPE Is fast enough 
to provide real·time robot arm control information. which we 
are preparing to demonstrate by the dynamic grasping of 
moving objects. 

4.1 Low- and Middle-level ViSion Theory 

4.1.1 Optimal Depth Interpolation 
Many constraint propagation problems in early vision, 

including depth interpolation, can be cast as solving a large 
system of linear equations where the resulting matrix is 
symmetric, positive definite, and sparse. We have analyzed 
and simulated several numerical analytic solutions to these 
equallons for a flne grained SIMD machine with local and 
global communlcallon networks (e.g., the Connection 
Machine); the methods are provably optimal in tenns of 
computational complexity. We have established that fO( a 
variety of synthetic and real range data, the adaptive 
Chebyshev acceleration method executes faster than the 
conjugate gradient method. if near-optimal values for the 
minimum and maximum eigenvalues of the iteration matrix are 
available [18]. 

We then extended these iterative methods by 
implementing them in a pyrmidal multigrid (coarse-medium­
fine) fashion. Again we showed that, when used with a fixed 
mu ItlIeYe I coordination strategy, the multigrid adaptive 
Chebyshev acceleration method executed faster than the 
multigrld conjugate gradient method [19]. Further, we 
demonstrated that because an optimal Chebyshev 
acceleration method requires local computations only, it in rum 
executes taster than either adaptive Chebyshev acceleration 
or conjugate graclent methods. both of whIdl require global 
computationa. We continue to validate these algorithms on 
Utah laser range data. 

4,1.2 Shape from Texture Autocorrelation 
We have developed a new method for determining local 

surface orientation from rotationally Invariant text\Jres based 
on the twcHimenaionai two-polnt autocorrelation of an 
image [14, 15]. This method is computationally simple and 
easily parallelizable. U888 information from all parts of the 
image. assumes only texture isotropy. and requires neither 
taxe" nor edges in the texture; it Is thus more widely 
applicable than the method of Wilkin. We have demonstrated 
that when applied to locally planar patches of real textures 
such as roads. dirt. and grass, the results are highly accurate, 
even In cases where human perception Is so difficult that 
people must be assisted by the presence of an artificially 
embedded circular object. 

Along the way. we have proven that the algorithm has 
several exploitable mathematical elegancies. For example, 



the autocorrelation of an isotropic texture will always be 
entirely composed of concentric scaled elliptic iso-cont~urs; 
this makes the extraction of slant and tilt values from ellipse 
parameters nearly trivial. Secondly, because the 
autocorrelation has such robust structure, it is easy to filter out 
from it spurious noise such as that commonly generated by the 
hOrizontal smearing of pixels In typical CCO cameras. 

4.2 Research and Applications on Tree Machines 

4.2.1 Simulators and Programming Environments 
As part of our efforts under Strategic Computing, we 

have developed three programming environments that support 
our research on stereo and texture algorithms, in parallel 
image pyramid style [20]. Our first environment assisted work 
on the fine-grained tree-structured SIMO Non-Von 
supercomputer (now discontinued) [24], and it conSisted, of 
simulators of various grain sizes. As Non-Von began wmdlng 
down we constructed a second, more abstract environment of 
imag~ function primitives for general pyramid machine vision 
work; this environment was necessarily a transitional one for 
the preservation of the prior work. For our third and current 
programming environment, we have designed, installed, and 
documented a highly effident pyramid machine emulator that 
executes those image function primitives on the University of 
Syracuse Connection Machine [25]. 

This third environment cleverty reduces communication 
contention by an elegant embedding of the pyramid within the 
hypercube network. Mesh operations take only a small fixed 
amount of overhead proportional to the size of the hypercube; 
parenVchild operations run in a smaller fixed time independent 
of hypercube size. The image functions allow the user to 
create pyramid data structures, to load/unload various pyramid 
levels, to move data up/down, and to perform several 
operations such as convolution and hierarchical operators on 
the created data structures. Both our texture and stereo work 
will benefit from the muitiresolution capabilities: texture 
algorithms will adjust to texel size, and stereo will use feature­
matching based on hierarchical correlation. Most recently. we 
are upgrading our environment to run on the CM2. 

4.2.2 Pyramld-baaed Stereo and Tex1ure 
Our main objective under Strategic Computing Is to 

develop. implement, and integrate parallel multi-resolution 
stereo and texture algorithms fOf' determining local surface 
orientation and depth. to be used by autonomous land vehicle 
navigation systems. 

We have Implemented on the Non-Von simulator a 
straightforward parallelization of a multi-resolution version ot 
the MatT-Peggio stereo algorithm. which achieves some 
economies on the SIMD architecture by exploiting the elght­
fold symmetries of d1g1t1ud laplacian of Gaussian masks. We 
are parallelizing our new autocorrelation-based shape-from­
texture technique tOf' the Connection Machine. where it 
becomes technically even more elegant Using image shilts to 
compute a finite window of the autocorrelation. we can 
compute surface ortentation fOf' surface patches in constant 
time. 

In service to both of the above algorithms. we have 
implemented two parallel texture-based image segmentation 
algorithms and tested them on ERIM ALV road data. The first 
algorithm uses micro-edgedensity counts in dynamically 
varying windows that attempt to track the road edge from 
image to image; success has been limited by the low textlJre 
resolution. A second algorithm is both parallel and pyramid 
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based. and is more successful. It constructs up-down Ii~ks in 
the multi-resolution pyramid between nOde,S on adjacent 
levels. aCCOrding to similarities of spatial ~rey level 
dependence statistics. By top-down iterative refinement of 
these links, the pyramid and hence the ima~~ is segmented; 
basically this is a parallel form of region-splitting. Lastly, ,!,e 
have Implemented the generalized Hough transform. Including 
the parallel creation of the reference tables. 

4.3 Research and Applications on Plpellned 
Machines 

4.3.1 Real-time AlgOrithm Ubrary . 
We are developing real-time "pixel-parallel' versions of 

a variety of image processing algorithms for our PIPE 
architecture. Based on our past experience with pipe lined 
processors [41]. we have already installed algorit~ms for 
spatial filtering, spatlotemporal filtering. and pyramid-based 
spatial processing [37]. Representative examples incl~de 
edge preserving smoothing. generalized n-by-n convolution, 
normal optic·flow. thinning and morpological operators. and 
the pyramid representations of Burt. Mallat. and Singh and 
Ranganath [38]. 

4.3.2 Motion Perception Sensor Fusion , . 
In worX that is jointly supported by Phll~ps 

Laboratories [39]. we are implementing a multi-sensor fusl~n 
approach to the robust measurement of optic flow. ~Ia 
confidence measures. we are integrating intenSity correlation 
methods. which worX best in structured scenes. and 
spatiotemporaJ energy methods. which are more suited for 
textured scenes f40, 42]. 

The spatio-temporal frequency approach is implemented 
on the PIPE using a pyramid image structure. called Pyramid 
of Ortented Edges; the POE is a logical extension of Burt's and 
of Mallat's pyramids. both of which we have also implemented. 
Using the POE. we have extracted coarse optic flow fields for 
a number of real images. We plan to extend the method by 
developing a hierarchical set of spatio-temporal frequency­
tuned filters which will extract true optic flow from the POE 
data. and then integrate the results with our implementation of 
an Intensity correlation-based model similar to that of 
Anandan. 

4.3.3 RleJ-Urne Motion Tracking 
The 60 Hz frame-rate image processing abilities of our 

PIPE enable it to generate visual tracking information fast 
enough to be coordinated with the motion control of a roootic 
arm. We have implemented pipe lined algorithms to perform 
motion detection. thinning. and reglon-ot-interest segmentation 
in order to track objects with a wrist-mounted camera in 
real-time [2]. Most of the processing is pyramid-based. and 
uses spatio-temporal filters. We have also implemented a 
motion-control process that concurrentiy calculates on the 
Masscomp host the predicted trajectory for the moving part. in 
order for the arm to Intercept it for grasping. 

5 Robotics and Tactile Sensing 
We have recently acquired a UtahlMlT dextrous hand. 

fOf' which we are developing tactile control algorithms. Having 
also recently acquired proprietary sensing 'skin", we are also 
building its interface electronics and software. Through low­
level sensor models and CAD/CAM object models, we 
continue 10 pursue the automatic generation of senSing 



constraints and strategies. We have begun to investigate the 
features. representations. and primitive operations necessary 
!o~ the recognition of objects under multi-fingered and multl­
JOinted active haptic exploration. 

5.1 System Development 

5.1.1 Low-level Control 
The Utah/MIT dextrous hand has provided us with a 

new set of tools to continue our study of intelligent touch and 
grasping. We are implementing Cartesian·based low level 
control algorithms for the hand. and extending them to a more 
hybrid scheme using both tendon force and tactile contacts. 

5.1.2 Conformable Tactlle Pads 
We are currently implementing tactile sensors for each 

of the hand's fingers. using a proprietary piezoelectric 
polymeric material similar to that used on electronic drum 
pads. This responsive. conformable skin·like material can be 
deposited on arbitrary surfaces. and has extraordinarily good 
signal isolation and hysteresis characteristics. We are building 
a multiplexor for the sensor signals. in the hope of achieving 
real-time integration of the tactile sensor feedback into the low 
level hand control loop. 

5.2 Multl-flngered Object Recognition 

5.2.1 CAD/CAM and Sensor Models 
Our experience with merging multiple sensor data 

sources [1. 31 has led us to examine the sensor modeling 
problem from the perspective of the automatic generation of 
viewpoint. geometric. and sensing constraints. We assume an 
assembly or an inspection domain, and our analysis is based 
on both CAD/CAM object models and low-level sensor 
models. The emphasis is on the automatic and intelligent 
handling of partial object descriptions and partial or total 
sensor occlusions. The sensors we model are, among others, 
monocular and binocular camera systems, laser range finders. 
and several types of active touch sensors. 

5.2.2 ActIve Haptlc Exploratlon 
We have begun to analyze active multi·finger touch 

strategies to recognize objects hapticaJly: that is, by only using 
extemal tactile sensors and Intemal force and position 
sensors. We are investigating the ~ data structures, 
procedural organiZations, object moc:iels, and feature 
constraints that are the necessary prerequisites to active 
exploratIon; they may overlap with tools and methods In vision. 
We propose to demonstrate our haptic understanding of an 
object by establishing a secure enough grip to lift it. 
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