265 research outputs found

    Smart Textiles Production

    Get PDF
    The research field of smart textiles is currently witnessing a rapidly growing number of applications integrating intelligent functions in textile substrates. With an increasing amount of new developed product prototypes, the number of materials used and that of specially designed production technologies are also growing. This book is intended to provide an overview of materials, production technologies, and product concepts to different groups concerned with smart textiles. It will help designers to understand the possibilities of smart textile production, so that they are enabled to design this type of products. It will also help textile and electronics manufacturers to understand which production technologies are suitable to meet certain product requirements

    Interfacial and Mechanical Properties of Carbon Nanotubes: A Force Spectroscopy Study

    Get PDF
    Next generation polymer composites that utilize the high electrical conductivity and tensile strength of carbon nanotubes are of interest. To effectively disperse carbon nanotubes into polymers, a more fundamental understanding of the polymer/nanotube interface is needed. This requires the development of new analytical methods and techniques for measuring the adhesion between a single molecule and the sidewalls of carbon nanotubes. Atomic Force Microscopy is an integral tool in the characterization of materials on the nanoscale. The objectives of this research were to: 1) characterize the binding force between single molecules and the backbone of a single walled carbon nanotube (SWNT), and 2) measure and interpret the mechanical response of carbon-based nano-objects to compressive loads using an atomic force microscope. To identify chemical moieties that bind strongly to the sidewall of the nanotubes, two experimental approaches have been explored. In the first, force volume images of SWNT paper were obtained using gold-coated AFM tips functionalized with terminally substituted alkanethiols and para-substituted arylthiols. Analysis of these images enabled quantification of the adhesive interactions between the functionalized tip and the SWNT surface. The resultant adhesive forces were shown to be dependent upon surface topography, tip shape, and the terminal group on the alkanethiol. The mechanical response of several single- and multi-walled carbon nanotubes under compressive load was examined with an AFM. When the scanner, onto which the substrate has been mounted, was extended and retracted in a cyclic fashion, cantilever deflection, oscillation amplitude and resonant frequency were simultaneously monitored. By time-correlating cantilever resonance spectra, deflection and scanner motion, precise control over the length of nanotube in contact with the substrate, analogous to fly-fishing was achieved. This multi-parameter force spectroscopy method is applicable for testing the mechanical and interfacial properties of a wide range of nanoscale objects. This research has led to a clearer understanding of the chemistry at the nanotube/polymer interface, as well as the mechanical response of nanoscale materials. A new force spectroscopic tool, multi-parameter force spectroscopy, should be extremely helpful in characterizing the mechanical response of a myriad of nanoscale objects and enable nanoscale devices to become a reality.Ph.D.Committee Chair: Lawrence A. Bottomley; Committee Member: Boris Mizaikoff; Committee Member: F. Levent Degertekin; Committee Member: Jiri Janata; Committee Member: Robert L. Whetten; Committee Member: Thomas M. Orland

    Nanoscale Solutions to Tailor Fiber Architectures for Realizing Composites with Triumvirate Properties

    Get PDF
    The paramount need for the development of multifunctional, smart and adaptive material systems for application in industries like automobile, aeronautical and aerospace is undeniable. Polymer composites are fast becoming the primary material options to this demand in light of their superior mechanical properties, low density, high corrosion resistance and easy manufacturability. The design flexibility offered in terms of achieving higher specific properties and light weighting is the key reason behind their success. Among all the properties that composites possess, it is the stiffness, strength and toughness that most applications mandate. These properties however, provide complimentary and contrasting characteristics for composites thereby limiting them for wide variety of applications. Hence it is critical to design composites with these triumvirate properties, which are capable of producing superior performance over their conventional counterparts. This research aims at providing solutions to this problem by altering the constituent material architectures. ‘Roding’ architecture, innovated via this study, is an integration between ‘Rod’ and ‘Dampening’ elements. This is an ingenious design capable of realizing the above mentioned triumvirate properties, comprising of ‘Rod’ elements that are capable of improving the strength and stiffness and ‘Dampening’ elements that can enhance the toughness. This overarching goal of realizing these triumvirate properties in a composite material system can be achieved through various methods like iterating the combinations and modifications of the nanofiller’s shape, size, topology, chemical composition and even the surface charge. In this thesis however, this concept was proven via realizing the ‘Roding’ architecture at a nanoscale by covalently coupling ‘Rod’ like single walled carbon nanotubes and ‘Damper’ like hyperbranched polymers. This concept can potentially be translated into micro and macro scales to suit the mass production needs of the transportation industry. The catch here is not to restrict ourselves to a particular morphology but to explore the possibilities of customizing the composite material’s morphology, as per application needs. Nanofillers with ‘Roding’ architecture were synthesized by optimizing the interplay between the individual nanoparticle’s shape, dimension, composition and interface. Integrating the triumvirate properties of strength, stiffness and toughness into the matrix by controlling the architecture of these nanofillers is the essence of this attempt. Once nanofillers with ‘Roding’ structure have been successfully synthesized, they were embedded into a thermoset matrix called ‘Diglycidyl ether of bisphenol-A’ (DGEBA). Techniques like FTIR, Raman, XPS, XRD, TGA, Gel Fraction, ATR and FE-SEM, have been used to characterize the physical, chemical and structural aspects of the hybrid ‘Roding Nanofillers’. This composite material then was also tested for its performance using standard tensile tests in order to analyze the properties of the material and the optimum loading ratios of the nanofillers. As expected the material exhibited increased strength and stiffness as well as mechanical toughness. A comprehensive study of potential applications of ‘Roding’ nanofillers into the more processable thermoplastic resins is presented. ‘Roding’ Nanofillers are but an example of the materials that can be custom made by engineering their morphology, to suit customer needs. In a gist, advanced nanocomposites with higher order smart architectures that have the potential to exhibit triumvirate properties of strength, stiffness and toughness have been synthesized and tested for performance

    Large Wind Energy Converter: Growian 3 MW

    Get PDF
    The final report on the projected application of larger-scale wind turbine on the northern German coast is summarized. The designs of the tower, machinery housing, rotor, and rotor blades are described accompanied various construction materials are examined. Rotor blade adjustment devices auxiliary and accessory equipment are examined

    Index to NASA Tech Briefs, 1972

    Get PDF
    Abstracts of 1972 NASA Tech Briefs are presented. Four indexes are included: subject, personal author, originating center, and Tech Brief number

    Preserving Venice’s Bells and Their Towers

    Get PDF
    In Venice, where Catholic Church attendance has declined, bells and bell towers have lost their purpose. Their neglect has left them vulnerable to decay and structural stresses. This project involved complex onsite surveys of 20 bell towers and 69 bells. Condition, accessibility, and safety were documented for each tower. Two thirds of the towers are in poor to only fair condition, but some percentage can be made safe with proper repairs. Photos, dimensions and other bell tower data were documented in an online application. Recommendations and concept designs for merchandise were also researched in order to establish an outline for preservation

    Small-Scale Testing to Study Mitigation of Acceleration on Simulated Vehicles

    Get PDF
    This dissertation investigates various means for mitigating acceleration experienced by passengers on vehicles subjected to blast loading. In order to complete this study, small-scale testing of simulated vehicles was used. The explosives designated for this research are exclusively buried in saturated sand, which will act as the loading media for the simulated vehicles. In addition to explosive testing, various tests were performed dynamically using a high-pressure gas gun. Initially, tests were performed to better understand the effects of vehicle mass and stand-off distance on vehicle acceleration due to blast loads; after which, studies were conducted to mitigate the acceleration. Test plates used in this study vary in both size and geometry. When necessary, simple plate geometries are employed to investigate various mitigation parameters. Ultimately, much of the testing was conducted on simplified scaled versions of vehicles likely to be subjected to attack. This paper focuses mainly on mitigation through crushing of thin-walled cylinders, but also investigates the advantages of applying polymeric coatings to dynamically loaded structures. Piezoelectric accelerometers are used in conjunction with high speed videography to collect test data. In addition to acceleration, impulse and kinetic energy of each test plate is examined. This research, though funded by the US Army, will be of use to all branches of the armed forces utilizing Mine-Resistant Ambush-Protected vehicles. The ultimate goal of this research is to help create a vehicle that will increase the probability that the passengers will survive a blast event with minimal long-term damage to the brain

    Interleaved array antenna technology development

    Get PDF
    This is the third phase of a program to establish an antenna concept for shuttle and free flying spacecraft earth resources experiments using Synthetic Aperture Radar. The feasibility of a plated graphite epoxy waveguide for a space antenna was evaluated. A quantity of flat panels and waveguides were developed, procured, and tested for electrical and mechanical properties. In addition, processes for the assembly of a unique waveguide array were investigated. Finally, trades between various configurations that would allow elevation (range) electronic scanning and that would minimize feed complexity for various RF bandwidths were made

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 23)

    Get PDF
    Abstracts are cited for 129 patents and patent applications introduced into the NASA scientific and technical information system during the period January 1983 through June 1983. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application

    Proceedings of the 5th Baltic Mechatronics Symposium - Espoo April 17, 2020

    Get PDF
    The Baltic Mechatronics Symposium is annual symposium with the objective to provide a forum for young scientists from Baltic countries to exchange knowledge, experience, results and information in large variety of fields in mechatronics. The symposium was organized in co-operation with Taltech and Aalto University. Due to Coronavirus COVID-19 the symposium was organized as a virtual conference. The content of the proceedings1. Monitoring Cleanliness of Public Transportation with Computer Vision2. Device for Bending and Cutting Coaxial Wires for Cryostat in Quantum Computing3. Inertial Measurement Method and Application for Bowling Performance Metrics4. Mechatronics Escape Room5. Hardware-In-the-Loop Test Setup for Tuning Semi-Active Hydraulic Suspension Systems6. Newtonian Telescope Design for Stand-off Laser Induced Breakdown Spectroscopy7. Simulation and Testing of Temperature Behavior in Flat Type Linear Motor Carrier8. Powder Removal Device for Metal Additive Manufacturing9. Self-Leveling Spreader Beam for Adjusting the Orientation of an Overhead Crane Loa
    • …
    corecore