2,286 research outputs found

    GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Full text link
    We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate γ\gamma-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic Vision 2010; 25 p., 25 figs; see also www.grips-mission.e

    A relativistic navigation system for space

    Get PDF
    We present here a method for the relativistic positioning in spacetime based on the reception of pulses from sources of electromagnetic signals whose worldline is known. The method is based on the use of a fourdimensional grid covering the whole spacetime and made of the null hypersurfaces representing the propagating pulses. In our first approach to the problem of positioning we consider radio-pulsars at infinity as primary sources of the required signals. The reason is that, besides being very good clocks, pulsars can be considered as being fixed stars for reasonably long times. The positioning is obtained linearizing the worldline of the observer for times of the order of a few periods of the signals. We present an exercise where the use of our method applied to the signals from four real pulsars permits the reconstruction of the motion of the Earth with respect to the fixed stars during three days. The uncertainties and the constraints of the method are discussed and the possibilities of using mov- ing artificial sources carried around by celestial bodies or spacecrafts in the Solar System is also discusse

    The Use of X-Ray Pulsars for Aiding GPS Satellite Orbit Determination

    Get PDF
    This research proposes the use of an existing signal of opportunity - namely x-ray pulsars - to improve the accuracy and robustness of the GPS satellite and clock estimation algorithm. Improvement in satellite and clock accuracy results in a direct benefit to the user. A simulation has been developed to determine the effects of using x-ray pulsar measurements on the GPS Operational Control Segment. The epoch-specific position, velocity, and clock errors of all GPS satellites in the constellation were estimated using both pseudoranges and time-difference-of-arrival (TDOA) measurements from pulsars. The primary measure of accuracy is a constellation Signal-In-Space Range Error (SISRE). Results indicate that marginal SISRE improvements (approximately 1%) can be achieved if the x-ray detector is accurate to an order of approximately 40 m for the strongest pulsar. Increasing the accuracy of the x-ray detector by a factor of 100 can yield accuracy improvements up to 26% over the pseudorange-only based GPS system. Additionally, results show that using only 1 strong pulsar to create TDOA observations, may be comparable to using tens of weakly timed pulsars. Pulsar geometry analysis showed that the geometry does have a significant impact on the overall system performance. Results indicate that using TDOAs in the absence of pseudoranges may aid the OCS in keeping track of the GPS satellites until the ground station links can be reestablished

    A relativistic positioning system exploiting pulsating sources for navigation across the Solar System and beyond

    Get PDF
    We introduce an operational approach to the use of pulsating sources, located at spatial infinity, for defining a relativistic positioning and navigation system, based on the use of null four-vectors in a flatMinkowskian spacetime. We describe our approach and discuss the validity of it and of the other approximations we have considered in actual physical situations. As a prototypical case, we show how pulsars can be used to define such a positioning system: the reception of the pulses for a set of different sources whose positions in the sky and periods are assumed to be known allows the determination of the user's coordinates and spacetime trajectory, in the reference frame where the sources are at rest. In order to confirm the viability of the method, we consider an application example reconstructing the world-line of an idealized Earth in the reference frame of distant pulsars: in particular we have simulated the arrival times of the signals fromfour pulsars at the location of the Parkes radiotelescope in Australia. After pointing out the simplifications we have made, we discuss the accuracy of the method. Eventually, we suggest that the method could actually be used for navigation across the Solar System and be based on artificial sources, rather than pulsar

    Pulsar Timing with the Parkes Radio Telescope for the Fermi Mission

    Full text link
    We report here on two years of timing of 168 pulsars using the Parkes radio telescope. The vast majority of these pulsars have spin-down luminosities in excess of 10^34 erg/s and are prime target candidates to be detected in gamma-rays by the Fermi Gamma-Ray Space Telescope. We provide the ephemerides for the ten pulsars being timed at Parkes which have been detected by Fermi in its first year of operation. These ephemerides, in conjunction with the publicly available photon list, can be used to generate gamma-ray profiles from the Fermi archive. We will make the ephemerides of any pulsars of interest available to the community upon request. In addition to the timing ephemerides, we present the parameters for 14 glitches which have occurred in 13 pulsars, seven of which have no previously known glitch history. The Parkes timing programme, in conjunction with Fermi observations, is expected to continue for at least the next four years.Comment: Accepted for publication in PASA.12 page

    Systematic and Stochastic Variations in Pulsar Dispersion Measures

    Get PDF
    We analyze deterministic and random temporal variations in dispersion measure (DM) from the full three-dimensional velocities of pulsars with respect to the solar system, combined with electron-density variations on a wide range of length scales. Previous treatments have largely ignored the pulsar's changing distance while favoring interpretations involving the change in sky position from transverse motion. Linear trends in pulsar DMs seen over 5-10~year timescales may signify sizable DM gradients in the interstellar medium (ISM) sampled by the changing direction of the line of sight to the pulsar. We show that motions parallel to the line of sight can also account for linear trends, for the apparent excess of DM variance over that extrapolated from scintillation measurements, and for the apparent non-Kolmogorov scalings of DM structure functions inferred in some cases. Pulsar motions through atomic gas may produce bow-shock ionized gas that also contributes to DM variations. We discuss possible causes of periodic or quasi-periodic changes in DM, including seasonal changes in the ionosphere, annual variation of the solar elongation angle, structure in the heliosphere-ISM boundary, and substructure in the ISM. We assess the solar cycle's role on the amplitude of ionospheric and solar-wind variations. Interstellar refraction can produce cyclic timing variations from the error in transforming arrival times to the solar system barycenter. We apply our methods to DM time series and DM gradient measurements in the literature and assess consistency with a Kolmogorov medium. Finally, we discuss the implications of DM modeling in precision pulsar timing experiments.Comment: 24 pages, 17 figures, published in Ap

    Micro-Arcsecond Radio Astrometry

    Full text link
    Astrometry provides the foundation for astrophysics. Accurate positions are required for the association of sources detected at different times or wavelengths, and distances are essential to estimate the size, luminosity, mass, and ages of most objects. Very Long Baseline Interferometry at radio wavelengths, with diffraction-limited imaging at sub-milliarcsec resolution, has long held the promise of micro-arcsecond astrometry. However, only in the past decade has this been routinely achieved. Currently, parallaxes for sources across the Milky Way are being measured with ~10 uas accuracy and proper motions of galaxies are being determined with accuracies of ~1 uas/y. The astrophysical applications of these measurements cover many fields, including star formation, evolved stars, stellar and super-massive black holes, Galactic structure, the history and fate of the Local Group, the Hubble constant, and tests of general relativity. This review summarizes the methods used and the astrophysical applications of micro-arcsecond radio astrometry.Comment: To appear in Annual Reviews of Astronomy and Astrophysics (2014
    corecore