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ABSTRACT

We analyze deterministic and random temporal variations in the dispersion measure (DM) from the full three-
dimensional velocities of pulsars with respect to the solar system, combined with electron-density variations over a
wide range of length scales. Previous treatments have largely ignored pulsars’ changing distances while favoring
interpretations involving changes in sky position from transverse motion. Linear trends in pulsar DMs observed
over 5-10 year timescales may signify sizable DM gradients in the interstellar medium (ISM) sampled by the
changing direction of the line of sight to the pulsar. We show that motions parallel to the line of sight can also
account for linear trends, for the apparent excess of DM variance over that extrapolated from scintillation
measurements, and for the apparent non-Kolmogorov scalings of DM structure functions inferred in some cases.
Pulsar motions through atomic gas may produce bow-shock ionized gas that also contributes to DM variations. We
discuss the possible causes of periodic or quasi-periodic changes in DM, including seasonal changes in the
ionosphere, annual variations of the solar elongation angle, structure in the heliosphere and ISM boundary, and
substructure in the ISM. We assess the solar cycle’s role on the amplitude of ionospheric and solar wind variations.
Interstellar refraction can produce cyclic timing variations from the error in transforming arrival times to the solar
system barycenter. We apply our methods to DM time series and DM gradient measurements in the literature and
assess their consistency with a Kolmogorov medium. Finally, we discuss the implications of DM modeling in
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precision pulsar timing experiments.
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1. INTRODUCTION

Free electrons in the interstellar medium (ISM) affect pulsar
signals by introducing a frequency-dependent dispersion delay.
Dispersion delays need to be removed as part of search
algorithms in pulsar surveys and for precision time-of-arrival
(TOA) measurements that are used for determinations of orbital
elements, tests of General Relativity and other theories of
gravity, and the detection of long-wavelength gravitational
waves (GWs). Besides being used for correction, dispersion
measures (DMs) are the the primary means of determining
electron column densities on Galactic and, in some cases,
extragalactic lines of sight (LOSs). They serve as important
input data for Galactic models of the electron density and in
studies of stochastic variations in electron density on length
scales ~1-100au. Dispersion and scattering, a related fre-
quency-dependent phenomenon due to multi-path propagation,
are assumed to result from cold plasma in the high-frequency
limit with negligible contributions from magnetic fields (see
Cordes 2002 or Lorimer & Kramer 2012 for a review).

In this paper, we discuss the inferences that can be made
about the ISM using epoch-dependent DM measurements. We
analyze DMs in terms of the full three-dimensional motions of
pulsars, the changes in electron density along the entire LOS,
and the solar system motion through the ISM. The DM is the
LOS integral

D@ A
DM() = j; ds n,(sh (1), 1), (1)

where D(¢) is the pulsar’s distance, n, is the electron density,
and 7 (¢) is a unit vector from the observer to the pulsar, with all
three quantities generally being epoch-dependent. Many
pulsars have much higher velocities than bulk ISM motion,

and so variations in DM are usually dominated by the changing
LOS, including both the distance and direction. Therefore, we
generally drop the explicit time dependence of the electron
density, though we will show that this assumption does not
hold within the solar system. While epoch-dependent distances
are an obvious consequence of high velocities, most quantita-
tive analyses of DMs have focused on how the LOS changes
from transverse motions.

We report on measured DM variations in the literature in
Section 2. In Section 3, we develop the formalism for DM
variations from changing LOS integrals through electron-filled
media and we discuss the resulting linear trends in DM time
series in Section 4. We consider the DM struture function (SF)
and contributions to it from stochastic DM variations in
Section 5. In Section 6, we discuss the impact of refraction on
timing delays and subsequently the measured DM. We interpret
the causes of linear and non-monotonic trends seen in several
pulsars in the literature in Section 7 and periodic DM variations
in Section 8. In Section 9, we report the impact of DM
variations on ISM study and on timing precision. We
summarize our findings and conclusions in Section 10. A list
of symbols and acronyms used throughout the paper can be
found in Table 1.

2. MEASURED DM VARIATIONS

Time variability in DM is a well-known phenomenon in
pulsar timing. Epoch-dependent variations were first detected
in the Crab Pulsar (Rankin & Roberts 1971). Isaacman &
Rankin (1977) measured DM variations in the Crab Pulsar over
a five-year span and suggested that the changes in DM come
from within the Crab Nebula. Hamilton et al. (1985) found a
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Table 1 Table 1
Symbols and Acronyms Used (Continued)
Characteristic Characteristic
Symbols  Definition Units Symbols  Definition Units
a Characteristic scale of ISM structure Length 7, Shock compression factor
A Spectral C(?efﬁcient » 0; Incidence angle rad
¢ Spe?d of light . cm s 0, Refraction angle rad
C Arbitrary .amphlude‘ 0, Zenith angle deg
G Cotl.lZ;an; mAuncenalniy éela- A v Electromagnetic wavelength and frequency cm, GHz
C? Coéfﬁ;:iezt iZlZiz:rso;-delnsity wavenumber Length ~9+3 Aes e Ecliptic coordinates (longitude, latitude) deg
" spectrum s B Heliographic coordinates (longitude, latitude) deg
D Earth-Pulsar distance kpc P Mass density gem™
gﬁ/l g;piiiz?u?:iz?crgon [gz CCE: 33]2 ZHI ;r;ll(s)toionoization cross section for neutral cm 2
D, Time structure function s? .hydrogen .
D, Phase structure function radians? i Time lflg . Time
E Pulsar energy loss rate erg g1 58 Scattering tlmefcale~ L. 1s
¥ Spectral frequency Time~! ¢ Phase pertu.rballon from refractive index rad
fif Lower and upper spectral cutoffs of Spm Time ™ penurb'fitlons . . .
£ Numerical factor in DM structure function By Ag Geographic coordinates (latitude, longitude) deg
h Planck constant erg s 4 Sinusoidal phase rad
hy Height above Earth’s surface km w Sinusoidal angular frequency Angle/Time
H Characteristic thickness of ionospheric layer km
k Boltzmann constant erg K!
K Dispersion constant (=cr/2m) ms large gradient in the DM of the Vela Pulsar over 15 years and
Glez , attributed it to the LOS changing with the transverse velocity of
. pe cm the pulsar relative to the supernova remnant. Spatial variations
! Characteristic scale of ISM structure Length in DM on sub-parsec scales have also been seen (see
lg,bg Galactic coordinates (longitude, latitude) deg . .
It Mean free path for neutral-hydrogen-ionizing om Manches.ter et al. 199.1 and Freire et al. ZOO!, who discuss
radiation changes in DM over different LOSs to pulsars in the center of
m, Proton mass e the globular cluster 47 Tucanae).
n, Electron density cm™3 Published time series of DM in the literature show several
Ny Effective hydrogen density cm™3 types of behavior. Some show deterministic linear trends
ny Proton density em™? superposed with correlated, stochastic variations. A few show
N, Electron column density em™ piecewise linear variations that signify change points in the
N Hydrogen column density . om* , time derivative JDM /dt associated with structure in the ISM on
Fone Wavenumber spectrum for the electron density Length ™ scales of 1-100 au. Many also show periodic variations, either
d Wavenumber ) Length™ smoothly sinusoidal or sharp with distinct features, often with a
a4 Lov_w_:r and upper wavenumber cutoffs of £y, Length period of roughly one year. The amplitudes of these variations
: z(l)::sliz[;l electron radius Le:n%[h have also been seen to change with time. In some cases, both
r: Bow-shock standoff radius om linear and periodic variations are seen. Others show only
7o Earth-Sun distance au correlated, stochastic variations without an obvious trend.
Rupwsa:  ratio of linear trend to rms linear trend from a Phillips & Wolszczan (1991) reported results on five pulsars,
Kolmogorov medium four of which show long-term trends with slopes
R ratio of rms DM after and before a linear trend is |dDM/d[| ~ 1073 pc cm 3 yI’7l (increasing: PSRs BO0823
removed +26, B0834+006, and B1237+25; decreasing: PSR B0919
s Represents a generic position along the LOS Length +06). They assert that the rms of the DM variations is
$ Power spectrum e correlated with the average DM but with significant scatter
tSM i?i:;ermg Measure kp CTTm(; about a best-fit relation opy oc DM"H“: A trend of this type
T Total observing span Time wquld generally signify that the DM variations are assoc?latgd
v Velocity km s~ with accumulated effects along the LOS, but the correlation is
x Position Length affected by long-term trends that may be due to parallel motion
b4 Represents a position along the LOS Length through ionized gas near the pulsars.
a Arbitrary spectral index Keith et al. (2013, see also You et al. 2007; Petroff
Qs G Equatorial coordinates (RA, declination) deg et al. 2013) give DM(¢) time series over roughly ~6 yr for 20
B Exponent in wavenumber spectrum for n, millisecond pulsars (MSPs) that were monitored in the Parkes
r Gamma function ) Pulsar Timing Array (PPTA) program. Of these, 11 show
Z ED)i(fP} Z?:If:el/nl rf)c (;Zrirerll‘tlw of red noise process prevailing trends of increasing DM (PSRs J1024—0719, J1730
Aviss Scintillation bandwidth MEz —2304, J1732—-5049, and J1857+40943) or decreasing DM
Ar Time delay Time (PSRs J1045—4509, J1600—3053, J1643—1224, J1744—1134,
Atss Scintillation timescale S J1909—-3744, 1193942134, and J2129-5721). Two others

show overall trends but with a localized DM “event” that
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Figure 1. DM offsets 6DM(1) = DM(z) — DMomina for PSR J1909-3744,
reported in Arzoumanian et al. (2015b, red circles), Keith et al. (2013, blue
squares), and Demorest et al. (2013, black triangles).
DMominat = 10.394680, 10.392717, 10.392031 pc cm™?, respectively. The
nominal DM differs due to different methods to account for frequency-
dependent pulse shape changes in the timing models.

breaks the trend (PSRs J1603—7202 and J1824—2452). The
remaining seven objects show non-monotonic variations with
various degrees and timescales of temporal correlation. Rear-
don et al. (2016) find evidence for significant linear trends in 13
pulsars and sinusoidal, annual variations in four pulsars in the
extended PPTA data release 1. The approximate derivative for
PSR J1939+2134 (B1937+21) is about half the value of the
20 year trend reported by Ramachandran et al. (2006) and is
consistent with changes in slope seen in the 20 year time series.

Demorest et al. (2013) present DM(¢) time series for 14 out
of 17 pulsars that were part of the first data release of the North
American Nanohertz Observatory for GWs (NANOGrav),
based on five years of data. Of these, the seven objects that
overlap with the Keith et al. (2013) sample show consistent
trends. Of the others, several objects show very weak DM
variation while two pulsars, PSRs B1855+09 and J2317
+1439, show strong trends superposed with correlated,
stochastic variations.

PSR J1909—3744 exemplifies several types of variations in
DM that motivate our study. Demorest et al. (2013) see a
monotonic decrease in DM over 5 years. Keith et al. (2013)
also note the linearity of DM(#), with a change in
1.85 x 1073 pc cm~3 over 6 years, and find that the SF of
their time series exceeds, for every lag, the SF prediction from
dynamic spectrum estimates by a factor of ~5. They suggest
that the SF excess implies an electron-density wavenumber
spectrum steeper than that of a turbulent, Kolmogorov medium.
Recently, the NANOGrav Nine-Year Data Release (Arzouma-
nian et al. 2015b; hereafter NG9) showed that the decreasing
trend continued, spanning all nine years of data, along with a
superposed annual variation. Figure 1 shows the DM offsets
ODM (1) = DM(t) — DM, jominal @s presented by the three data
sets, where DMomina = 10.394680 pc cm™3 for Demorest
et al. (2013), 10.392717 pc cm 3 for Keith et al. (2013), and
10.392031 pc cm~3 for NG9. Differences in the absolute DM
are caused by different methods of frequency-dependent pulse
shape variation removal from the TOAs. An in-depth analysis
of the DM variations of all of the MSPs in NG9 will be
presented in the future (M. L. Jones et al. 2016, in preparation).

Fonseca et al. (2014) present DM(¢) for the relativistic
binary PSR B1534+12 and fit for derivatives dDM/dr in five
separate time blocks. The overall trend is a decrease with time
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Figure 2. Geometry showing the change in LOS due to motion of the pulsar p
and observer 0. DM is calculated by integrating along the z-axis taking into
account the change in LOS.

that is interrupted by episodic flattenings or increases in DM.
The variation of DM(¢) from 1990 to 2012 is dominated by
five piecewise linear segments lasting three to five years
with slopes dDM/dt = {—3.16, —0.43, —2.94, 10.1, —0.1}
x10~*pc cm 3 yr~'. The DM SF scales as 7370004 for Jags
between 70 and 90 days, consistent with a Kolmogorov
scaling. The best-fit SF implies a diffractive scintillation
timescale of Afgg = 3.0 = 0.8 minutes at 0.43 GHz, which
is considerably smaller than the range of 11 + 3 minutes
directly measured by Bogdanov et al. (2002) from two-
dimensional (2D) autocorrelation functions of dynamic spectra.
While epoch-dependent scintillation may play a role in this
difference, the shorter timescale inferred from the SF fit is
consistent with the presence of contamination from non-
Kolmogorov fluctuations on length scales relevant to the DM
variations.

3. LINE OF SIGHT INTEGRALS

In the following, we will develop the mathematical frame-
work for variations in DM that we will use in following
sections. Consider changes in DM that result from the relative
motion of the pulsar and observer, which changes both the
distance to the pulsar and the direction of the LOS, as shown in
Figure 2. For an initial pulsar position X,, and Earth position
X.o, the initial distance Dy = |x,;, — Xeo| increases (to first
order in time) as

D(t) ~ Dy + (Vp —V) - Aot =Dy + AVHI, )

where v, and v, are the pulsar and Earth velocity vectors,
respectively, #g = Axg/Dy = (Xp, — Xe0)/Do is the unit
vector to the pulsar at £ = 0, and Ay is the apparent velocity
of the pulsar parallel to the LOS. The next, quadratic term,
(Av, 1)*/2Dy, where Av, is the apparent velocity of the pulsar
perpendicular to the LOS, is a factor of Av, t/Dy ~ 10~ times
smaller than the linear term for typical parameters of Av ~
100 km s~' (Faucher-Giguére & Kaspi 2006), timespan
T ~ 10 years, and D ~ 1 kpc (Cordes & Lazio 2002), and
therefore can be ignored when calculating the distance.
Conversely, the change in direction is determined by the
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transverse velocity
i(t) = fg + Dy 'Av, 1. (3)

Let the initial LOS at # = 0 be the z-axis and integrate over
the locations x((z) = zZ to get the initial DM,

Zpo
DM, = f dz n,(x0(2)). @)
Zeg
For t > 0 we integrate over a new interval [z, z,], where

Ze = Zeg + veH 1, Zp = Zpﬂ + Vle‘. (5)

The sampled locations are now x(z, t) = r(z, t) + zZ, where
r(z, t) is transverse to Z,

r(z, 1) = vesy, (2)t 6)

veftl(z) =V, + (VpL - Vel)( £ Ze ] 7
Zp — Ze
The locations z, and z,, are evaluated at time ¢ and it is assumed
that there is no significant acceleration correction over the times
of interest (weeks to decades). The effective transverse
velocity, v, 1s a weighted sum of the velocities of the pulsar
and Earth. This is consistent with that given in Equation (3) of
Cordes & Rickett (1998), which also includes a term —V,, for
the velocity of the medium, and also with Equation C15 of
Gupta et al. (1994).
The simplest approach is to evaluate the electron density for
the # > 0 LOS in terms of its values for the initial LOS:

e (x(z, 1)) = ne (X0 (2)) + [ne(x (2, 1)) — ne(xo(2))]
=n.(x0(2)) + An(x(z, 1)). (®)

The DM integral over [z, z,] can be expanded into integrals
over the three intervals [z, Zpl, [2e Zel, and [z, 2,] to get

DM(;):ff” dz n,(x(z. 1)) :fz'"’ dz o (x 2, 1))

Zeg

Z, Ze

—i—f " dzn.(x(z 1) — f dzn.(x(z,1). (9)
Zpo Zeq

For the first integral, we expand the integrand using

Equation (8) to get

i "4z n, (e (2, 1)) = DM+ Il "z An,(x(z, 1), (10)

Zeg Zeg

This gives

Zp, 2
DM() :DMo—i—f dz Any(x(z, 1)) +f dz n,(x (2, 1))
Zeg z

Po

_ fzedz n.(x(z, 1)).

e8Y)

DM is the DM measured at time ¢ = 0, the first integral is the
change in DM over the initial LOS (density fluctuation term),
the second integral is the change in DM due to the pulsar’s
motion through its local environment (pulsar term), and the
third integral is the change in DM due to the Earth/solar
system motion through its local environment (Earth term).
The integrand An, (x(z, #)) of the density fluctuation term
needs to be considered only if electron-density variations are
significant on length scales of the order of the offset between

LAM ET AL.

the LOS at ¢ and the initial LOS at ¢t=0, ie.,
|[Ax (z, )] = |x(z, 1) — x¢(z)] < Dy. For example, this offset
£ ~ 20 au vegr, ;o tyr for a fiducial velocity of 100 km s'and a
year-long timespan. All of the evidence from the last few
decades of interstellar scintillation studies are consistent with
there being variations on these (multiples of au) and smaller
scales (Coles et al. 1987; Armstrong et al. 1995; Rickett
et al. 2000). However, the detailed spectrum of variations on au
scales is not well known and appears to differ between the
LOSs to different pulsars (Stinebring et al. 2000).

The pulsar and Earth terms in Equation (11) are over small
intervals, z, — z,, = Vp  and z, — z¢, = Vg1, 50 to first order
in these intervals, the two terms give 7, (fp)vput and 71, (%,) v, 1,
where 7, (¥,) and 7, (X,) are the averages over the respective
intervals  centered on X, =x, + (vat /2)ﬁ(t) and
X, = X¢ + (vgII t/Z)ﬁ(t), respectively. Unless there are large
variations over the intervals, these average locations can be
taken as the initial ones at t = 0. The DM variations from these
two terms are a simple consequence of the change in pulsar
distance due to parallel motion because, as noted earlier, the
transverse velocities enter only to second order and therefore
are negligible in these terms.

We assume that true temporal changes in electron density are
negligible. This is often a good assumption because turbulent
ISM velocities (of the order of a few kms ') are typically
much smaller than pulsar velocities (Faucher-Giguere &
Kaspi 2006; Frisch et al. 2011). For slow pulsars and fast
plasma screens (e.g., shock fronts), the ISM velocity needs to
be included and adds a term —v,, (z) (with m for medium) to the
effective velocity defined in Equation (7). For a purely
turbulent medium, the velocity is stochastic and would depend
on wavenumber. However, a moving screen is easily described
by a translational velocity.

4. LINEAR TRENDS IN DM

For a perfectly uniform medium with density n,., the
difference An,(x(z, t)) vanishes and the total DM (found by
combining Equations (5) and (11)) is

DM(r) = DM + 1 (v, — ve)t, (12)

giving a time derivative of

dDM

o e (Vp, = Ve) = 1072 vigone,, pc cm 3 yr~!,  (13)

where the approximate estimate uses a fiducial relative velocity
of 100 km s~' and an electron density of 0.1 cm™3 (Frisch
et al. 2011). Observed DM derivatives range from approxi-
mately the nominal value in Equation (13) up to values as large
as 0.01 pc cm3 yr ', indicating that if the changing distance
is the primary contribution to the observed trend, then the
product vigon,,, is as large as 1000.
A slightly different form results for a medium with changes
in density only on large length scales > vaH — Ve,
A )V, — eV, (14)
dt
which indicates that changes in DM are affected by the local
electron density on both ends of the LOS. For similar electron
densities at the two locations, we expect the pulsar term to
dominate because pulsar velocities are typically much larger
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than the Earth’s orbital motion and the Sun’s peculiar motion
through the Local Interstellar Cloud (LIC), with the latter being
about 28 km s~ ' (Faucher-Giguere & Kaspi 2006; Frisch
et al. 2011). There will be exceptions, of course, for pulsars
with low velocities or with small parallel velocity components.

The LIC is about 2.5 pc across and has an internal gas
density of ~0.1-0.2 cm 3 at a temperature of 7000 K (Frisch
et al. 2011). Assuming a completely ionized, uniform medium,
the total DM through the «cloud 1is at most
DM; ;¢ ~ 0.5 pc cm~3, and the maximum derivative is

dDMLIC
dt

The Earth’s orbital motion is not relevant for the calculation
of DM variations due to parallel motions because Earth resides
inside the heliosphere. A simplified form of Equation (11) is
therefore

DM(Z) = DMO + [ne (xpo)VpH — N, (er)VeH]t

+f"° dz An, (x (2, 1)). (16)

~ 5.7 x 107%pccm™3 yr~ L. (15)

However, Earth’s motion will matter when we later consider
the interplanetary medium. In addition, the Earth term raises
the interesting possibility that DM variations are partially
correlated between different LOSs with an angular dependence
that depends on the local ISM and on the direction of the Sun’s
peculiar velocity.

While linear trends in DM (¢) have been recognized for many
years, it is not a priori obvious whether they should be
associated with the explictly linear term or with the density
fluctuation term, which may quantify gradients transverse to the
LOS. Some pulsars will show DM (¢) variations where parallel
motion is more important than transverse motion, and
vice versa. The two kinds of variations may be distinguishable.
If gradients and transverse motion are dominant, then there
should also be epoch-dependent refraction and flux-density
variations on the same timescales. However, parallel-motion
effects need not be accompanied by strong modulations of
scintillation parameters and flux densities because the structure
of the ISM along the LOS will remain the same. We note that
DM(¢) will vary with time from parallel motion alone
regardless of whether or not the ISM is uniform; no gradients
in electron density n, are needed. The variations will be
monotonically increasing or decreasing with time if there is no
transverse motion (of the pulsar, solar system, or medium).
However, DM variations from transverse motion alone require
gradients in n, that have components transverse to the LOS,
ie., Vn, - r(z, t) = 0. Any gradients in n, will generally be
manifested from both parallel and transverse motion. DM
variations from parallel motion do not depend on the pulsar
distance, but the transverse change in LOS does depend on the
location along the LOS, therefore influencing the observable
effect from a transverse gradient. When the Earth’s orbital
velocity is important, such as for an MSP with low translational
velocity, the contribution to DM(¢) depends on Vn, - v, (2, t)
and therefore will show a sinusoidal variation.

5. STOCHASTIC VARIATIONS IN DM

Electron-density variations in the ISM can cause fluctuations
in DM(r) that combine with the DM variations previously
discussed. Many DM (¢) time series have been shown to be
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consistent with purely stochastic variations in electron density;
a list of references for epoch-dependent DM variations can be
found in Lam et al. (2015). Following their treatment, we can
describe the stochastic variations by a power-law wavenumber
spectrum:

Py, (q) = Ciq 7,

where the wavenumber cutoffs, related to the inner and outer
physical scales ¢, and ¢, respectively, are g, = 27/f; and
g, = 2m/t,, and C? is the spectral coefficient. Equation (17)
assumes that the scattering irregularities are isotropic and the
spectrum depends only on the magnitude of the wavenumber.
Evidence for anisotropic scattering exists along certain LOSs
(e.g., Brisken et al. 2010) but the analysis is accordingly more
tedious. The rms electron density is dominated by the largest
scales (~1 — 100 pc, except in dense, compact regions) for
8>3 and ¢q; < g,. For a Kolmogorov medium, 8 = 11/3
(Rickett 1990).

One useful statistic for quantifying DM variations is the DM
structure function (SF),

G <9< (17)

Dpm() =([DM(r + 7) — DM(1)F)
= (|AYDM(1, TF), (18)

where ADDM(t, 7) is the first-order DM increment, because it
removes any constant term and is closely related to the spectral
index of the wavenumber spectrum when [ is in the
scintillation regime (for wavenumbers ¢, < ¢ < ¢, and
2 < 3 < 4; Lam et al. 2015). We can relate it to similar SFs
found in the literature for the electromagnetic phase perturba-
tion imposed by the interstellar plasma ¢ and for the resulting
dispersive time delay, ¢ These are, respectively,
¢ = —cr,v~'DM, where r, is the classical electron radius,
and t = d¢/2ndv = Kv~>DM with K = c1,/2m. We thus have

D, (1) = K2 *Dpum(7) = (271'1/)’2D¢ (7). (19)

The DM SF includes the effects of the systematic DM term due
to the change in distance as well as the term involving the
integrated difference An, (x (r)). Small-scale, discrete structures
on au scales can contribute to An, (x (¢)) along with stochastic
variations.

Together, discrete structures and the changing distance will
produce contributions to the SF that are quadratic in T and will
contaminate the SF of the stochastic variations. A general
feature of SFs is that they are quadratic when the lag 7 is
smaller than any characteristic timescale in the time series. So
for structures in the ISM with scale sizes ¢ of tens of au that
have characteristic crossing times of £/ve ~ many years,
quadratic SFs will be seen for lags of a few years or less. For
the case where only the distance-change term is relevant,
DM(t + 7) — DM(¢) x T, it is easy to show that the SF is

DDM(T) = [n. (xpO)VpH — N (xeo)veH ]27_2- (20)

More generally, if DM variations are dominated by a linear
gradient dDM/dt, then the SF is

2
dl;tM] 72, @21

oo - |
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The SF of purely periodic variations in DM of the form
DM(#) = C cos(wt + ¢) can easily be calculated as

DED(T) = C2[1 — cos(wr)]. (22)

While the DM SF is typically calculated with time lags of
days to years, it can be related to the implied phase SF on the
diffractive interstellar scintillation (DISS) timescale of minutes
to hours. To do so, we use Equation (19) along with the fact
that the scintillation timescale Afgs corresponds to
D,(Afss) = 1 rad®. The corresponding DM SF value (using
A=c/v)is

Dpm(Atiss) = (v/27K)? Dy (Atiss) = (Ar,) 2
=1.47 x 10 50y, (pc cm3)?, (23)

Similarly,
D, (Atiss) = (2mv)2 = 0025315, ns?. (24)

The SF can be extrapolated to larger time lags, and for the
stochastic, Kolmogorov medium where 3 = 11/3,

DY) = (W) > (7/Atiss)*/? (25)
Dt(sto)(,r) _ (27TV)72 (T/AtISS)5/3‘ (26)

In general, the total DM SF can be written as the sum of the
contributions from the systematic term and from the extra-
polated stochastic term:

DS () = DEY (1) + DS (7). 27)

However, the systematic term cannot be separated as it will
contain cross-terms if two or more components (e.g., linear
plus periodic) are added together. For cases where the
systematic term is significant, the time series for DM could
be de-trended before calculating the SF, though de-trending can
remove variance due to the electron-density wavenumber
spectrum. Similar to other discussions in the literature, when a
power-law wavenumber spectrum dominates electron-density
variations, the SF is essentially the SF of the density fluctuation
term given in Equation (11).

We can relate the the DM SF from the random component to
the rms of the DM variations. For a power-law wavenumber
spectrum, the DM SF is

Pow() =f; [ dz G @ver @712, (28)

Ze

where (Cordes & Rickett 1998, Equation (B6))

_ 82 T@-5/2)
B-22"2 TB/2)

£y (29)

The numerical factor is f,,; = 883 for a Kolmogorov
wavenumber spectrum. Using the effective velocity of
Equation (7) evaluated for the case where it is dominated by
the pulsar velocity, and assuming that C? is constant along the
LOS, the DM SF yields an rms DM on a timescale 7 for a
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Kolmogorov medium,
| 2 (B
opm () = [EDDM (ﬂ] = [—4”/ > |SM2(v, 7)3/6
=19 x 107* pc cm™3
1/2
SM
‘ (104 kpc m20/3] V100 Tyr) ™
(30)

where the scattering measure (SM) is the LOS integral (Cordes
& Lazio 1991):

SszD ds C2(s). 31)
0

When the effective velocity is instead dominated by the Earth’s
velocity, as can be the case for some slow-moving MSPs, the
same expression applies but with v, replaced by v, . If both
velocities are important, then the integral in Equation (28)
needs to be evaluated explicitly.

Following Equation (30), an estimate of the rms DM
gradient is

O4DM /i A oom(7) _ 1.9 x 107*pcecm 3 yr!
1/2
SM 5/6, —1/6
" (104 kpc m 2/ 3] P G2

The rms can be evaluated by using scintillation measurements
to evaluate the SM (Cordes & Lazio 1991) and by using
proper-motion measurements with distance estimates (from
parallaxes or from DM and a Galactic electron-density model)
to estimate the pulsar velocity.

One approach for comparing the measured DM gradients
with those expected from a Kolmogorov medium with no
change in distance is to calculate the signal-to-noise-like ratio

|dDM /dt|

JdDM /dt

Rapmyar = (33)

When the gradient exceeds the prediction for a Kolmogorov
model by a large factor, one of two interpretations may apply.
First, the medium may not have a Kolmogorov spectrum that
encompasses both the small length scales that cause scintilla-
tion and the large 1-100au scales associated with DM
variations. Alternately, the excess derivative amplitudes can
be caused by the changing pulsar distance as described above.
Identifying which of these interpretations apply requires
consideration of other factors. Transverse motions of the
pulsar that cause the LOS to sample different irregularities will
yield DM derivatives that are correlated with the absolute DM
value, whereas parallel motions that change the distance
will not.

Another approach compares the rms of the DM time series
before and after the removal of a linear trend. Letting
o2, = 0%, + 0%, be the total variance of the time series, we
can define the ratio of rms after the removal of a linear trend to
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the rms before the removal as

Rips = M, (34)
Otot
where 4. is the estimated variance of the linear trend. This
definition restricts 0 < R, < 1. Realizations of DM time
series will appear more linear when the wavenumber spectral
index (3 is large and the removal of the best-fit line for the time
series will absorb low-frequency power from the frequency
spectrum of the DM. Conversely, when (3 is low, the time series
will appear closer to a white noise process, and the removal of a
best-fit line will not change the resultant time series greatly.
We can solve for how oy, and oy, scale with observing
timespan 7. Let the stochastic DM variation be a power
spectrum Spv (f) = Af ™7, where A is a spectral coefficient
related to Anss and v = G — 1 (see Appendix A for more
details). The variance is then

PO b
o2, = j; Som (f)df = ff AFdf, (35)

where f; and f, are the low- and high-frequency cutoffs,
respectively, related to the wavenumber cutoffs ¢; and g,. In
the scintillation regime with 1 <y <3, assuming
Sl < 1/T < f,, the integral can be approximated as

A
y—1

ol ~ T (36)

which for the Kolmogorov case implies oy, T5/6. The
variance from a deterministic, linear trend is

7/2 2
ol = lf (dDMt) dr

TJ-12\ dt
2
:%(dl;—tM) T2, 37)

Therefore oy, < T, and if a deterministic, linear trend is
present, then oy, will increase over oy, and Ry, will increase
for longer observing timespans.

In addition to single, linear trends in DM, we can test for
discrete changes in underlying linear trends in DM, such as
from an ionizing bow shock (see Section 7.2.1), versus
stochastic changes from the turbulent medium by calculating
the second-order increments of DM(2),
ADDM(t, 7) = DM(t — 7) — 2DM(¢) + DM(t + 1), which
remove linear components and relate to the curvature of the
time series. The increments at a given 7 will have a Gaussian
distribution and deviations from this distribution will be
indicative of structure other than from a turbulent medium.
We can determine the variance in the distribution of increments
at a given T, 02A<2)DM (1), from the second-order DM SF, which
can be written as

DY) = (IA®DM(, )]). (38)

For a Kolmogorov wavenumber spectrum, the second-order SF
is related to the first-order SF, as well as the variance in the
second-order increments, by

D]()zl\)/[(T) = O-ZA(Z)DM (1) =~ 0-8252D1()11\)/I(T)' (39

The derivation is provided in Appendix A. We can use
Equations (25) and (39) to analytically estimate the rms of the
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second-order DM increments given Afgg, which we use to
analyze the slope changes in DM(¢) for PSR B1534+12 in
Section 7.

6. REFRACTION EFFECTS AND TIMING

Refraction of a radio point source by a high-density region in
the ISM has been known to cause irregularities in electron-
density time series. See Clegg et al. (1998) and references
therein for the case of a Gaussian plasma lens, to be considered
shortly, and Coles et al. (2015) for recent evidence of scattering
events in pulsar timing data. One of the timing delays
associated with refraction scale as v~2 and is therefore
degenerate with the dispersion delay, causing changes in the
estimated DM. Consider a single ionized cloud that has
characteristic scales a| parallel and a, transverse to the LOS
and with a column density of DM, = N, ~ n,_a through the
cloud along the LOS. The maximum phase change due to the
clump is |¢.| ~ Ar,N,, and the dispersion delay is

N N,
Al‘DMc = Zi = L

40
% 2me “40)

The phase gradient across the LOS is then [V, ¢| ~ Ar.N, /a,
and the refraction angle is

ANVl XN,
2T 2ma; a

CAIDML‘

0. (41)
There are two time delays introduced by refraction into the
barycentric arrival times. The first is associated with the
translation of the topocentric TOAs by the propagation delay
from the geocenter to the solar system barycenter. The direction
to the pulsar is a key part of the translation, and refraction will
induce an error in the barycentered arrival times. Chromatic
refraction causes the angle of arrival to differ from an assumed
direction, implying a delay (Foster & Cordes 1990) that varies
sinusoidally with an annual period and an amplitude

}’/‘\9r Iy Atpm
Atharyc ~ % ~ (aﬁ) Atpme ~ a—c’ 42)
a Lau

where r; = 1 au. The second delay is the geometric increase in
propagation path that is roughly

DQi eD(Atpme)? D [ Atom, )
Atgeoc ~ ~ ~

— .3
2¢ 2a,° 2r2 ) @

alau

For a single clump, Equations (42) and (43) indicate that the
barycentric delay Atbalyc and geometric delay Atgeoc are linear
and quadratic, respectively, in the dispersion delay, Afpm,
(ocv~? and v~*, respectively). The barycentric and geometric
delays are comparable for pulsars within about 1 kpc because
0, ~ 1 mas and D6, ~ 1 au, although there are wide variations
of these values.

Numerically, the refraction and dispersion delays are
comparable for nominal parameter values, but any one of the
three delays can dominate the other two for reasonable
distances and transverse scale lengths:

AlDMc,us) (44)

Aalau

Atbary, ~ 1 /1,3(
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Figure 3. Refraction delays plotted against DM delay from a single cloud at a
distance D = 1 kpc. (Top) The barycentric delay for two clump scale sizes, as

labeled. (Bottom) The geometric delay for the same two clump sizes.

and

2
Atgeo, ~ 0.2 pis ka(%] : 45)
dlau

Figure 3 shows Afpry, and Atgeo, plotted against Atp, for
D = 1kpc and for two transverse scale lengths (a, =1
and 10 au).

A final consideration is multiple imaging. Clegg et al. (1998)
analyze flux variations and caustics for an interstellar Gaussian
plasma lens, ie., a cloud with a Gaussian electron-density
profile. The focal distance Dy of a clump is the minimum

distance from the clump at which rays can cross,

2
Dy~

~ 2.4 kpc a2, AtpMe . 46
9,[ CA[DMC P + PMe ( )

We therefore do not expect ray crossing and multiple images
from nearby pulsars unless a clump is small and dense.

We can solve for the three time delays associated with
refraction (dispersion, barycentric, and geometric) by consider-
ing rays traveling through a Gaussian lens in the ISM.
Following the treatment in Clegg et al. (1998), for a thin-
screen approximation of the lens, the column density in two
dimensions can be written as

Ne.(x) = Noexp (—[x — x.|/al), (47)

where Ny is the maximum central column density and a is the
characteristic size of the lens. The screen phase ¢ is related to
the electron density by

0@ =N [ dine, )= -MN@.  @8)
screen
For the Gaussian cloud, we therefore have
¢, (x) = —Ar.Noexp (—[lx — x.|/al). (49)
Using Equation (41), the refraction angle is
0,0 = N0y e (—lhe — xel/aP), (50)

In general, the location of the incident ray paths on the Earth at
location x, intersecting the cloud at x,. from a pulsar at x,, must
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satisfy the equation
xe =xc — [0,,(xc) + 6;(xp)1D, (G
where 6; is the incidence angle of the pulsar rays on the screen.

7. INTERPRETATION OF OBSERVED PULSAR
PHENOMENA

7.1. Linear Trends Versus Stochastic Variations

We look at several examples of deterministic, linear DM
trends seen in the literature below. To test our interpretations,
we compare the time series against simulated DM variations
with a Kolmogorov wavenumber spectral index following the
same procedure as described in Lam et al. (2015) by
transforming scaled, complex white noise in the frequency
domain to the time domain. The power spectrum of the
electron-density variations, Spyv (f) o f~7, has a spectral index
of v = 8 — 1 = 8/3 for the Kolmogorov case. The scalings of
the coefficient of the power spectrum are consistent with the
extrapolation of the SF Dpy by the scintillation timescale (see
Equation (25)).

7.1.1. PSR J1909—-3744

As described in Section 2, the DM time series shows a
decreasing, linear trend (Demorest et al. 2013; Keith
et al. 2013; Arzoumanian et al. 2015b) over a ~9year
timespan. Keith et al. (2013) compare SFs of dispersion delay
D, on long timescales with the extrapolations from the DISS
timescale assuming a Kolmogorov spectrum. In several cases,
they find that the actual measurements exceed the extrapolation
by large factors and that the slope of D, is larger than the
Kolmogorov slope of 5/3. They conclude that the wavenumber
spectrum is steeper than Kolmogorov. In the case of J1909
—3744, they find that the value of the DM SF for measured lags
is about a factor of five higher than the extrapolation from the
DISS timescale using a Kolmogorov scaling.

We present an alternative interpretation that recognizes that
the contribution to DM(#) from Kolmogorov fluctuations
combined with the transverse motion of the LOS can be
contaminated by the changing distance between the pulsar and
Earth from parallel motion, as discussed previously (see
Equation (27)). This contamination contributes a term to the
SFs that scales as 72, i.e., steeper than Kolmogorov, which can
dominate the overall amplitude of the SFs.

The top left panel of Figure 4 is identical to Figure 1 and
shows the time series of the DM offsets, DM (¢), as reported in
Demorest et al. (2013), Keith et al. (2013), and Arzoumanian et
al. (2015b, NG9). Again, the total measured DM is found by
adding a constant DMomina to the DM offsets, although the
values will still differ due to other frequency-dependent
parameters included in the timing models in each paper. Since
the SF removes the mean, the differences are not important
here. The bottom left panel shows 6DM(¢) after a linear trend
has been removed. A periodic trend remains in the time series
with a roughly one-year period. The panels on the right show
the corresponding DM SFs of the time series on the left. In the
top right, we show the extrapolation of Dpy; assuming a purely
Kolmogorov medium and using a scintillation timescale of
2258 s at 1.5 GHz (solid black line; Keith et al. 2013) and note
that all three SFs lie well above this extrapolation. We calculate
the SF for the Keith et al. (2013)DM (¢) with lag bins that are
multiples of 0.25 yr (91.3 days), which is equal to the



THE ASTROPHYSICAL JOURNAL, 821:66 (23pp), 2016 April 10

Year
220004 2006 2008 2010 2012 2014
1. = J1909—-3744
_ Df {  Arzoumanian+|]
Too10f % ‘*,g { Keith+ |
= o=, I Demorest+
o 05 I x = &,% .
o} 0.0 III‘II =
= 0.5 . T T
— —0.0F r= s 8
— Ii ItIII %
10k :2 l
% Yy 5
—1.5F ﬁ% B
—2.0 } } }
0.6} i
T
T4} i ]
3)
(&)
2 0.2+ .
=
= 0.0} .
%
w —0.2} .
_04 C 1 1 1
53000 54000 55000 56000
MJD

57000

LAM ET AL.

Lag [years]
0.1 1 10
1075 ' '

Dpu [(pe em™3)?]

1077}

1078

Dpum [(pec em™3)?]

1079k : : :
10 10°
Lag [days]

Figure 4. Analysis of DM time series and SFs for PSR J1909—3744. Top left: DM offsets §DM () reported in Arzoumanian et al. (2015b, red circles), Keith et al.
(2013, blue squares), and Demorest et al. (2013, black triangles); see Figure 1 for more details. Top right: DM SFs for the three time series in the top left (with
matching colors). The solid black line indicates the value of the SF inferred from the scintillation timescale and assuming DM variations only from a Kolmogorov
wavenumber spectrum for the ISM. The light gray, hatched region shows nominal errors on the inferred SF from a multiplicative factor of V2 error on the scintillation
timescale. The dark gray region indicates the 10 deviations from the mean SF for simulations of DM variations over nine years that include a Kolmogorov medium,
a linear component from motion parallel to the LOS, a sinusoidal component, and measurement errors (see text for more information). Bottom left: DM offsets of the
time series in the top left after a linear trend has been removed. Bottom right: DM SFs for the three time series in the bottom left. The gray region indicates the same as
in the top right, except that the best-fit linear trend has been removed from the simulated time series before calculating the SF.

minimum sampling time for Keith et al. (2013). For the other
two SFs, we use bins that are multiples of 30 days. The light
gray, hatched region denotes nominal errors in the extrapola-
tion from a multiplicative error of +/2 on the scintillation
timescale, known for PSR B1937421 (Cordes et al. 1986,
1990; Keith et al. 2013). The dark gray region shows the =10
deviations from the mean DM SF for simulations of nine years
of DM variations that include the following: a Kolmogorov
wavenumber spectrum; the best-fit linear trend of the data
(dDM/dt = —2.27 £ 0.04 x 10~*pccm 3 yr 1), a sinusoid
with a one-year period and an amplitude of 5 x 107 pc cm™3;
and white, Gaussian noise with an rmms of
0, =24 x 10pcem™ in the first five years and
1.2 x 109 pc cm™3 in the last four years, which is equal to
the median error corresponding to each of the backends used in
the NG9 data set. The DM SF from NG9 is consistent with
these simulations. In the bottom right, we show the results of
simulations when all of the above are included but a linear
trend is fit and subsequently removed from the time series
before computing the SF, which can remove power from both
the linear component and some low-frequency structure in a

given time series. The shape of the gray region matches some
of the shape present in the SF, although the position indicates
that the sinusoidal term should possibly have a smaller
amplitude with a more peaked shape. Few numbers of DM
increments in bins at large time lags lead to deviations from the
mean SF. A more detailed analysis of the DM time series for
J1909—3744 will be presented by M. L. Jones et al. (2016, in
preparation).

Using Equation (14) and its assumption of density changes
occurring at large length scales only, we can use our measured,
best-fit dDM/dt to infer the electron density at the pulsar,
ne(xp,). The transverse components of the velocity are
= -50.61 £0.01 kms ' and wvs= —192.32 %+ 0.01
km s~ with a distance of 1.147003 kpc (Jacoby et al. 2005;
Antoniadis 2013). The barycentric, systemic radial velocity is
37+ 11 kms! (J. Antoniadis 2016, private communica-
tion). We find the pulsar parallel velocity component Vp,
by removing the local solar motion and correcting for
differential Galactic rotation. We take the local solar
motion to be 180+09kms ' in the direction
(lg, by) = (47°9 £ 320, 2328 4+ 2°0) and assume a locally
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Figure 5. Analysis of DM time series and SFs for PSR B1937+-21. The format is the same as in Figure 4. The dots are from Kaspi et al. (1994) while the crosses and
diamonds are from Ramachandran et al. (2006) for the Green Bank (GB) 140-foot telescope and the Arecibo Observatory (AO), respectively.

flat, galactic rotation curve (Frisch et al. 2011). J1909—-3744
lies nearly in the direction of the Galactic center with
(lg, by) = (35927, —1976) and therefore the change in the
velocity vector due to differential galactic rotation are
negligible and we can ignore transverse components in our
calculation. Taking the electron density of the LIC to be
n,(x,,) ~ 0.15 £ 0.05 c¢cm 3 (Frisch et al. 2011), we find
ne(xp) =76+ 29 cm~>, which is about two orders of
magnitude greater than the average local electron density of the
galaxy in that region (Cordes & Lazio 2002; Frisch et al. 2011).

7.1.2. PSR B1937+21

Ilyasov et al. (2005) show a long-term trend in a 20 year DM
time series extending to ~2003.5 (MJD 52800) that has a
strong, decreasing trend with an average derivative of
dDM/dt ~ —1.14 £ 0.03 x 103 pc cm 3 yr ', Ramachan-
dran et al. (2006) show similar results. Long-term correlated
variations are superposed with the linear trend. The best-fit line
of the SFis § = 3.66 £ 0.04, although the analysis from Kaspi
et al. (1994) on DM variations up to 1993 alone suggests
0 = 3.874 + 0.011. Both Kaspi et al. (1994) and Ramachan-
dran et al. (2000) fit the D, (7) to determine Afgs, which will
be a biased estimator if a deterministic, linear trend is present.

10

We repeat our SF analysis as before, shown now in Figure 5,
using the Ramachandran et al. (2006) data. They include the
time series from Kaspi et al. (1994, circles), measured at 1400
and 2200 MHz. The crosses are measurements from the Green
Bank (GB) 140-foot telescope between 800 and 1400 MHz,
and the diamonds are measurements from the Arecibo
Observatory (AO) between 1400 and 2200 MHz. Differences
in the DM estimation and the frequency-dependent delays that
we used mean that we currently cannot align the Ramachan-
dran et al. (2006) time series with the Keith et al. (2013) time
series measured at later epochs. Therefore, we ignore the latter
time series here and in subsequent analyses.

We measure
dDM/dt = —8.39 & 0.14 x 10~* pcem=3 yr ' for the Rama-
chandran et al. (2006) data, suggesting that a long-term linear
trend remains present in the time series. We again simulate a
Kolmogorov medium with Afgs = 327 s at 1.5 GHz (Keith
et al. 2013) and include a linear trend with slope measured
above and additive, Gaussian white noise. The varying
scintillation timescale over years is not included in the
realizations and biases our overall results, but not the
conclusions. We find the rms of the noise by modeling the
SF as Dpu(t) = Ct%* + 20,21 (see Appendix B for more
details) and find 0, = 1.3 x 107*pc cm 3. Again, the mea-
sured SF shows good agreement with our realizations.
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Figure 6. Analysis of DM time series and SFs for PSR B1821—24. The format is the same as in Figure 4. The squares show measurements from the Green Bank (GB)
140-foot telescope (Backer et al. 1993) while dots show measurements from the Nangay radio telescope (NCY; Cognard & Lestrade 1997).

7.1.3. PSR B1821—-24

Cognard & Lestrade (1997, see also Backer et al. 1993)
show a DM time series with a long-term increasing trend with
dDM/dt ~ 0.005 pc cm™3 yr ' over a six-year period. Again,
we ignore the DM variations from Keith et al. (2013) because
of the absolute DM difference. Using measurements from GB
and the Nancay radio telescope, Cognard & Lestrade (1997)
find that the spectral index of the wavenumber spectrum is
B = 3.727 £ 0.211. Figure 6 shows our SF analysis, with red
noise realizations with Agfgs = 75s at 1.5GHz (Keith
et al. 2013) and an estimated g, = 2.1 x 1073 pc cm3. The
LOS to PSR B1821—24 is also consistent with a Kolmogorov
medium.

7.1.4. Deterministic Linear Trends from DM Derivatives

We calculate Rypm/q for pulsars in the literature with
measured dDM/dt. To calculate oypm /4, We use pulsars with a
measured scintillation bandwidth Awvqgg or those that can be
estimated from the scattering timescale 7gg using
2w AvissTiss = G, where C = 1.16 for a uniform medium
with a Kolmogorov wavenumber spectrum. Assuming such a
medium, we estimate the SM using Equation (10) of Cordes &
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Lazio (2002) as

SM = 7.15 x 10~* kpc m~2%/3

x (Avissmuz Vi *Dipe)™/°. (52)
We either use parallax distances or binary orbital period
derivative (B,) distances to estimate SM when available, and
otherwise use DM distances from NE2001 (Cordes & Lazio
2002). We convert proper-motion measurements into pulsar
perpendicular velocities assuming that v, dominates v,
(which may not be true for slow moving MSPs) and differential
galactic rotation is negligible, both of which may contribute
systematic uncertainties in our analysis. However, under these
assumptions, we combine SM, Yy, and the total observing span
T to calculate oypmyar, and thus Rypmyar-

Table 2 lists the pulsar values we use from the literature in
our analysis and the results. Figure 7 shows [dDM/dt| versus
oapm,a: for slow-period canonical pulsars (CPs, red triangles)
and MSPs (black circles). We also highlight the five linear
trends of the MSP B1534+12 (blue squares; discussed in the
following section) and J1909—3744 (blue star). The lines
represent Rypmyqa = 1 (solid) and 5 (dashed), where higher
Rgpmyar (increasing exponentially to the top left) represents
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Table 2
Measurements of DM Derivatives and Rypw/ar

LAM ET AL.

Pulsar Parameters

Scintillation Parameters®

DM Derivatives”

Derived Results

Pulsar DM® PM® D? v Aviss Atiss T dDM/dt* OuDM/dt RapM/di
pcem™3 mas yr~' kpc GHz MHz S yr 1073 pc cm™? yr!
J0358-+5413 57.14 123+ 0.3 1.1 +£0.2 1.0 0.789 16.4 —2.6 + 0.8 0.24 11.1
J0543+2329 77.71 22 £8 2.06 1.0 0.069 20.7 —4.9 + 0.6 1.3 3.7
J0835—4510 67.99 57.98 + 0.08 0.29 + 0.02 0.61 1.5x 107 3 5.7 5418 94 0.53
J1024—-0719 6.49 59.7 £ 0.3 0.53 = 0.22 1.5 268 4180 15.1 0.22 + 0.06 0.047 4.7
J1045—-4509 58.17 8.0+0.2 0.30 £ 0.17 1.5 0.094 119 17.0 —-3.66 + 0.13 0.90 4.1
B1534+12" 11.62 25.328 +£ 0.012 1.051 + 0.005 043 1.1 660 33 —0.316 £ 0.010 0.081 3.9
5.0 —0.043 £+ 0.008 0.076 0.57
4.7 —0.294 £+ 0.007 0.077 3.8
2.3 1.01 £ 0.03 0.086 11.7
2.3 —0.01 £ 0.05 0.086 0.12
J1543+0929 35.24 8.13 £ 0.07 77+ 12 1.0 0.299 21.4 26 + 5" 0.54 48.5
J1600—3053 52.33 72 +03 5.0+ 3.8 1.5 0.09 271 9.1 —0.63 £ 0.3 0.50 1.3
J1643—1224 62.41 73 +£0.3 0.45 £+ 0.08 1.5 0.022 582 17.0 —1.23 £0.05 0.24 5.2
J1730—2304 9.62 20.27 4+ 0.06 0.53 1.5 124 1615 16.9 0.56 4+ 0.05 0.10 5.5
J1732-5049 56.82 99 +03 1.41 1.5 54 1200 8.0 —0.88 + 0.12 0.15 6.0
J1744—1134 3.14 21.02 £+ 0.03 0.42 £+ 0.02 1.5 60 2070 16.1 —0.132 £ 0.018 0.084 1.9
J1833-0827 411 3446 4.5 1.0 1.6 x 1074 5.7 —130 + 20® 40.6 3.2
J1909+1102 149.98 948 4.8 1.0 0.012 15.1 —158 £ 1.2 1.9 8.3
J1909—-3744 10.39 37.10 + 0.02 1.27 £ 0.03 1.5 37 2258 8.2 —0.297 £ 0.006 0.087 34
J1935+1616 158.52 16.13 £ 0.15 4.55 0.61 0.002 18 34.1 23+ 03" 1.6 1.5
B1937+21 71.02 0.421 £ 0.003 7.7 £ 3.8 1.5 1.2 327 15.5 —0.59 £+ 0.03 0.39 1.5
J2129-5721 31.85 13.3 £ 0.1 0.53 +£0.25 1.5 171 3060 15.4 —0.16 + 0.04 0.061 2.6
Notes.
 Parameters for v = 0.43 GHz measurements from Bogdanov et al. (2002), for v = 0.61 GHz measurements from Stinebring et al. (2000), for v = 1.0 GHz

measurements from PSRCAT (Manchester et al. 2005, using 2rAvss7iss = G = 1.16), and for v = 1.5 GHz measurements from Keith et al. (2013). The number of
significant digits are provided by the individual references.

® Timespan and dDM/dr references match.

¢ Column data from PSRCAT (Manchester et al. 2005) unless otherwise marked.

4 Distances with errors from parallax measurements (http: / /www.astro.cornell.edu /research /parallax/ and references therein), distances without errors from NE2001
(errors are ~20%), and distance for PSR B1534+12 from binary orbital period derivative (Fonseca et al. 2014).

c_ Values from Reardon et al. (2016) unless otherwise marked.

 Hobbs et al. (2004).

€ Petroff et al. (2013).

B All values from Fonseca et al. (2014) except the scintillation parameters (Bogdanov et al. 2002).

dependent owing to motions of the shock front through
neutral gas. Bow shocks produced by the pulsars themselves
may ionize atomic (and, less likely, molecular) structures as
they move through the ISM.

Backer et al. (1993) proposed that plasma wedges are
responsible for linear trends in DM(#). A plasma wedge has
linearly increasing column density N, (x) transverse to the
LOS. As the LOS moves across it, DM (¢) will change linearly
until the wedge boundary is reached, if there is one. The
wedge will also refract by a constant refraction angle. Unlike
other structures, however, a wedge of this type will have a
zero transverse second derivative (except at the boundaries)
and therefore will not cause changes in the measured flux
density.

The effects of different geometries include the following.

greater inconsistency with a Kolmogorov medium. J1909
—3744 shows some evidence for deviations from a Kolmo-
gorov medium. Several other pulsars show marginal or large
deviations, including some MSPs with known chromatic timing
noise such as PSR J1643—1224 in NG9 (see also Arzoumanian
et al. 2015a). Figure 8 shows the ratio R, (Equation 34) for
the DM time series of the pulsars examined so far, with
J1909-3744 showing the most deviation (more toward the left)
from a Kolmogorov spectral index, consistent with the
conclusion from the R;pm/q metric.

7.2. Non-monotonic Trends from Electron-density Structures in
the ISM

DM(z) time series from pulsars show a combination of
linear trends, stochastic variations, and, in a few cases, fast
changes in slope that are both positive and negative.
Apparent slope changes can appear in particular realizations
of a stochastic process with a red power spectrum. However,
they can also result from slab-like structures if they are
suitably oriented relative to the LOS and the pulsar velocity.
Such slabs may represent static increases and deficits over the
local mean electron density that contribute as the LOS
changes with time. Alternatively, they could be time-

Transverse motion (v,,H = 0): for a density
enhancement that is aligned with the LOS,
DM, () will consist of a positive-going
“pulse” with a duration equal to the pulsar travel
time across the slab thickness. For a density
deficit (e.g., from encountering a slab of atomic
gas), the pulse will be negative-going. To first

12
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Figure 7. DM time derivative dDM/dr vs. the rms DM gradient ozpm/a-
Canonical pulsars (CPs) are shown in red triangles and MSPs in black circles.
We highlight the linear DM segments of the MSP B1534+-12 in blue squares
and the blue star for MSP J1909—3744. Two of the blue squares for B1534+12
closely overlap with J1909—3744. The solid line represents Rgpm/ar = 1,
whereas the dashed line represents Rspm/ar = 5, exponentially increasing to
the top left.
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Figure 8. Top: histograms of the ratio R.,s for 10,000 red noise process
realizations with spectral index v = 3 — 1. Bottom: cumulative distribution
functions of the histograms. The value of the Ry is shown for the three pulsars
in our analysis with single, linear trends. Lines toward the left indicate potential
deviations from a wavenumber spectrum with spectral index (.

order, the pulsar distance does not change, and
so the unperturbed DM is constant in time.

Pulsar velocity component along the LOS
(va = 0) and aligned slabs: when the density
slabs are aligned with the LOS, DM(¢) again
show square-wave-type pulses. The prevailing
trend is for DM(¢) to decrease as the pulsar
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Figure 9. Two cartoon geometries for a pulsar p moving in different directions
with respect to the line of sight between the pulsar at p and the observer at o.
Blue reprents high-density structures and white represents low-density
structures. The bottom graphics show DM variations, éDM(¢), that are
monotonic on long timescales.

distance gets smaller, but this is interrupted by
the density deficits and enhancements.

Pulsar velocity component along the LOS
(va = 0) and slanted slabs: when the density
slabs are slanted from the LOS, DM(¢) can
show a saw-tooth pattern where it has a larger
slope than the prevailing trend or a slope with
opposite sign. As in the previous case, the pre-
vailing trend is for DM(¢) to decrease as the
pulsar distance becomes smaller, but this is

interrupted by the density deficits and
enhancements.
Pulsar  velocity toward the observer

(v, = 0): in this case, the pulsar can ionize
atomic hydrogen as it passes into the slab. The
DM can increase even if the pulsar moves
toward the observer and the prevailing trend is
for a declining DM.

Some examples of the geometries can be seen in Figure 9.

7.2.1. Ionized Bow Shocks

So far, we have assumed that ISM structures are static.
However, the pulsar can actively modify its local environment.
An extreme case is where the pulsar’s motion toward the
observer takes it through atomic hydrogen (H1) structures on
scales of tens ofau and larger, including filaments, with a
typical column density of the order of Ny, ~ 1072 cm~2 (e.g.,
Gibson 2007; McClure-Griffiths et al. 2007; Stanimirovic¢ et al.
2007). As the pulsar nears a filament, it will ionize the atomic
gas through a combination of radiation from the neutron star/
magnetosphere and shock heating. The standoff radius of the
bow shock is given by the balance of ram pressure and the
pulsar’s relativistic wind,

N2
E S1/2 _y

~ 266 au E33 Mgy vplOO’

(53)

ry =
2
4mpv,c

for £ =10%3Es; ergs ', a pulsar velocity in units of
100 km s~ ', and an effective hydrogen density ny, cm 3.
For the measured ranges of pulsar velocities, energy loss rates
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(E), and ISM densities, the standoff radius of the bow shock is
tens of au to ~0.1 pc. Therefore, DM(#) can show temporary
increases even though the prevailing trend would be a decrease
because of the decreasing distance.

Bow shocks will cause changes in DM only if the pulsar
moves through a changing gas density (see, for example, PSRs
J2124-3358 and B22244-65; Gaensler et al. 2002; Chatterjee &
Cordes 2004). For completely ionized gas, there may be a weak
effect from the shock-enhanced gas density. A much larger
effect will occur from neutral gas that is shock-ionized or pre-
ionized by radiation from shocked gas. The mean free path for
ionizing radiation with hv = 13.6eV for a cross section
onr = 63 x 1071 cm? is

4

Ity = (on )71~1'1X1O au

‘H1 Hi17tH1 ~ 5
NH ,cm™3

(54

which is much larger than both the nominal standoff radius and
the distance traveled by a pulsar in one year. However, for
anticipated gas densities and temperatures (e.g., a shock
temperature 7; ~ 3mpv§/k ~ 3.6 x 10°K; m,, = proton mass,
v, = pulsar velocity, k¥ = Boltzmann constant), there are
insufficient photons to ionize a region of this size. This is why
Ha bow shocks are seen around some pulsars (e.g., PSRs
B1957+20, B2224+65, and J0437—4715; Brownsberger &
Romani 2014) in thin shells of pre-shocked atomic hydrogen
that define the bow-shocks contours. For velocities
~100 km s~! and densities ny; &~ 1 to 10 cm~3, the distance
traveled by the pulsar over years is less than or comparable to
the standoff radius. The DM increment associated with shock
ionized atomic gas is roughly

6DMbow N N FsNH

~13 x 103 pcem 3 v, | (nw1E3)' /%, (55)
where 7, ~ 4 is a factor that takes into account the compression
of interstellar gas and its distribution inside the termination
shock (Clegg et al. 1988, p. 174). The nominal value of
ODM,,y is sufficiently large to be interesting. Given the phase
structure of the ISM, we expect that most pulsars will not reside
in atomic gas, but perhaps 40% will (Draine 2011).

7.2.2. Small-scale Electron Density Variations

Because the ionized ISM contains a wide range of length
scales (Armstrong et al. 1995), the density fluctuation term in
Equation (11) involving An, (x (t)) also needs to be considered.
Its contribution to DM is

oOM() = [ dz An(x (2. 1), (56)

Zeg

Typical scales transverse  to the LOS are
[F| ~ vt~ 20auv jgoty,. The relevant velocity vy (z) is
largest at the pulsar position (c.f. Equation (7)) for cases where
the proper-motion velocity is larger than the Earth’s velocity.
Elsewhere along the LOS and for slowly moving MSPs, the
transverse scale can be substantially smaller.

There is evidence for individual structures in the ISM on au
scales based on refraction effects in pulsar dynamic spectra,
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extreme scattering events, and intraday variable sources. These
are likely confined to a small fraction of the LOS and will
produce maximum contributions to DM of the order of
101,49 oo pc cm™3, where £,, is the path length through
the structure. The timescale for changes depends on the density,
size, and velocity of the structure, and so the derivative JDM/
dt can be comparable to or much smaller or larger than the
contribution from the changing distance analyzed in the
previous subsection.

7.2.3. Implications for PSR B1534+12

We make use of the second-order SF approach developed in
Section 5 to analyze the DM time series presented in Fonseca
et al. (2014). While they note five significant linear trends in
DM, they have no temporal information in the first block, and
so we remove it from our analysis.

Figure 10 shows the DM time series along with the second-
order increments of DM, which we use to indicate the presence of
discrete changes in linear trends over the expectation from a
purely Kolmogorov medium. To account for the unequal
sampling in {DM(r), we calculate increments as a function of
7 by finding two points separated from the central time #, one
within the range 7 + 7/2 and the other within —7 + 7/2.
Increasing 7 by 30 days at a time, we plot the second-order
increments in the top right panel. Combining Equations (25) and
(39), the probability distribution of the increments will be a
Gaussian function. Using Afigs = 660 + 180 s measured at
430 MHz (Bogdanov et al. 2002), the lo and 20 expected
regions are shown in the gray bands. The points in the top right of
the plot outside of the bands and at 7 > 500 days all result from
the concave upward turnover between the second and third linear
components and represent a ~7-140 deviation from the
expectation of a purely Kolmogorov medium. Points well below
the bands come from either of the other two change points. The
points deviating from zero at low lags are purely from the noise
in the measurements, not accounted for in the gray bands. The
bottom left shows 100 realizations of DM purely from
Kolmogorov power-law wavenumber spectra, and the full range
(minimum to maximum value) of second-order increments for
each 7 is shown on the bottom right for all 10,000 realizations.
We show the results of our simulations to demonstrate that there
is good agreement between the rms of the second-order
increments from simulations and the analytic solution. Again,
the fact that several measured increments for PSR B1534-+12,
notably those associated with the second change points, fall
outside of the expectations from simulations implies that the
upturn in DM cannot be due to a purely Kolmogorov medium.
The time series is similar to those shown in Figure 9 after a linear
trend has been removed, suggesting that there are interleaved
density structures along the LOS. Contemporaneous scintillation
parameters and pulsar flux-density measurements would be
valuable for testing whether or not the DM time series is at all
contaminated by diffraction and refraction effects.

8. PERIODIC VARIATIONS IN DM

In this section, we determine how periodic trends can appear
in DM time series. DM(z) will vary as the LOS passes across
spatial gradients in the electron density. Local electron-density
variations in time will also cause DM variations. We assess the
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Figure 10. Analysis of DM time series and SFs for PSR B1534+12. Top left: the DM offsets §DM (¢) from Fonseca et al. (2014, the first, isolated epoch has been
removed) with their best-fit linear trends overplotted. Top right: second-order increments of DM, A®DM(z, 7). The gray regions indicate the 1 and 20 expected
regions in Equation (39) assuming a Kolmogorov wavenumber spectrum and the appropriate scintillation timescale, Afigs = 660 s. Bottom left: 100 realizations of
6DM(t) from a Kolmogorov medium scaled to the appropriate scintillation timescale. Bottom right: the second-order increments of the DM realizations in the bottom
left. The shaded regions are the same as in the top right. The black bars indicate the range of increments as calculated from all of the realizations, with the blue circles

indicating the 1o bounds, matching the expectation.

periodicites and phases associated with each periodic contribu-
tion to DM.

8.1. lonosphere

Changes in the electron-density within the ionosphere can
cause differences in the DM between observatories. The
changes correlate with the incident solar flux at a particular
location. Variations are known to occur daily from Earth’s
rotation, yearly due to Earth’s orbital motion, and on 11-year
cycles due to changes in solar magnetic activity (see Huang &
Roussel-Dupré 2006, for an ionospheric electron-density model
over a specific LOS). Measurements of the electron density can
be peformed by satellite, rocket, incoherent scatter radar, and
ionosonde.

The ionosphere can be represented as a series of semi-
Epstein layers (Rawer 1982) with electron density as a function
of the normalized distance parameter z,

4}’10

(1 +exp()F oD

n.(z) = exp (z)

with the peak electron density of the layer, ny, and
z = (hy — hg)/H, where h, is the height above the Earth’s
surface, hg is the height of the peak electron density, and H is
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the characteristic thickness of the layer. Note that as i, > hq,
n.(z) tends toward zero.

Nava et al. (2008, NeQuick 2) model” the E, F1, and F2
ionospheric layers using one semi-Epstein layer to describe the
bottom and top sides of each layer. They introduce a “fadeout”
function that multiplies z in the E and F1 layer functions to
prevent secondary maxima around the F2 peak height. The
peak heights, peak electron densities, and thicknesses of each
layer change as a function of the latitude and longitude,
(¢g, Ag), over Earth’s surface due to the structure of its time-
varying magnetic field. There are additional time-dependent
factors regarding the incident solar flux at a given (¢,, A,),
including the change in the Sun’s zenith angle over a day, the
change in the seasons for a given latitude ¢,, and the variable
solar flux that changes both daily and over a solar cycle.
Therefore, the three layer parameters, ng, hy, and H, are all
complex functions of longitude, latitude, and time.

In general, the DM is the integral of the electron density over
some path s through the atmosphere that depends on the
geographic coodinates of the observatory and the apparent
coordinates (i.e., altitude and azimuth) of the pulsar, which in
turn depend on the equatorial coordinates of the source (v, &)

4 http://t-ict4d.ictp.it/nequick2
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and time ¢ The path to integrate over 1is then
5(¢,» Mg, %, 0, 1), and the total ionospheric contribution to
DM is simply the line integral

DMion,NeQuick(z, ¢,» )\g» Qe, 66’)

= [ a5 6 A 0 b0). 6 A 15 (58)

i=E,F1,F2

up to some maximum distance s;,x Where we sum the total
electron over each layer.

We study the variations of electron density in the ionosphere
using two methods. The first estimates the ionospheric
contribution to DM using global navigation satellite system
(GNSS) measurements from the International GNSS Service
(IGS; Dow et al. 2009). The total electron content (TEC) is
measured via frequency-dependent signal propagation delays,
which are similar to pulsar timing delays but between a ground
receiver and a transmitting satellite along a given LOS. Using
multiple LOSs at a given time, the IGS constructs a 2D surface
map of the ionospheric electron density. These maps typically
have time resolution of two hours and spatial resolution of
2.5 x 5.0 degrees in latitude and longitude, respectively. We
linearly interpolate intermediate-TEC values in both space and
time. While the original measurements between receiver and
satellite are along some altitude and azimuth, the reported TEC
values are in the zenith direction. Therefore, we must adjust the
measurements for a particular LOS. To simplify, we approx-
imate the ionosphere as a uniform slab of electrons with an
inner (Spyi, ) and outer (Syax ) height of 60 and 600 km above
Earth’s surface, respectively. Therefore, we can estimate the
TEC along a LOS by multiplying the zenith TEC by a
geometric factor G (6;) that accounts for the increase in path
length through the ionosphere and depends only on the zenith
angle 0, to the pulsar,

DMiOn,IGS(ts ¢ s Ag» Qe, 66) = n€(¢ 5 Aga t)(smax - smin)
X G(91(¢ ’ )\gy e, 66" t))
(59)

Figure 11 shows our daily estimates of DM;,,(¢) along the
LOS to J1909—3744 from both the Green Bank Telescope
(GBT, black) in the Northern Hemisphere and the Parkes
Telescope (PKS, blue) in the Southern Hemisphere using the
method in Equation (59). The top panel shows the DM
measurements at transit on each day. Error bars come from the
GNSS measurement errors alone, multiplied by the same
geometric factor dependent on the zenith angle. The overall
amplitude shift is a result of the constant difference in the
zenith angle of the pulsar at transit between the two sites.
Differences in DM between GBT and PKS are shown in the
sub-panel beneath. The right panel shows the estimated DM
observed with PKS versus GBT, with the solid gray line
representing the ratio of the geometric factors. For reference,
the median DM measurement error at the GBT for this pulsar is
~1 x 1073 pcem 3 for the latest backends (see NG9 for
information on the GUPPI backend), whereas the value at
PKS is ~3 x 107 pccm 3. Variations in the DM annually
and over the solar cycle are visible. The bottom panels of
Figure 11 show the result of simultaneous observations of the
pulsar at low elevation angles at both telescopes, such that the
ratio of the geometric factors is 1:1, i.e., variability is due solely
to differences in the ionosphere at different local times. Such an
observation occurs 110 minutes after the pulsar transits the
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GBT when the zenith angle is ~80°3, yielding a geometric
factor of ~3 increase over the zenith TEC measurement. The
sites are separated by ~112° of longitude and observe the
pulsar at nearly opposite local times. As the Earth’s orbital
position shifts, the local observing times shift, producing a
phase difference between the two time series. Smaller peaks
separated from the yearly peaks by approximately six months
are visible as the solar cycle maximum is approached just past
the end of the time series (again see Huang & Roussel-
Dupré 2006, for this intra-annual variability). Again, the right
panel shows the PKS-estimated ionospheric DM versus the
GBT-estimated DM, where the estimates in DM can differ by
measurable amounts even when observed at the same time. The
bimodality results from ionospheric differences between day
and night between the sites.

The second method used to study the ionospheric DM
variations employs the mathematical description above,
implemented in the NeQuick 2 model (Nava et al. 2008).
NeQuick 2 uses ionosonde measurements to determine the
parameters of the semi-Epstein layers (Equation (57)), along
with solar radio flux measurements and a model for the
magnetic inclination that describes the shape of Earth’s
magnetic field lines as a function of latitude, longitude, and
time. For more details on the implementation, we refer readers
to Report ITU-R P.2297-0 (2013). By default, NeQuick 2
contains parameters with a monthly time resolution, and a time
series for J1909—3744 is shown in comparison to the DM
contribution from the solar wind, discussed in the following
subsection, in Figure 12.

8.2. Solar Wind

Particles from the solar corona have enough kinetic energy to
escape the Sun’s gravity, becoming part of the interplanetary
medium. The speeds and compositions of these particles are not
uniform, and measurements of the electron density are carried
out both from ground-based observing and in situ. Splaver et al.
(2005) model the electron density along the LOS to PSR J1713
40747 due to the solar wind as a power law
n.(r) = ny (1 au/r)> cm=3, where ng is the electron density
in cm 3 at Earth, based on measurements from the Ulysses
spacecraft (Issautier et al. 2001). They note that while the
scaling holds over a large range of heliocentric latitudes, it does
not consider spatial variations with ecliptic latitude (., namely
the higher-density slow wind at lower latitudes and the lower-
density fast wind at higher latitudes, nor does it consider
temporal variations. They find that ng = 5 &4 cm™3. You
et al. (2007) present a generic two-piece model that accounts
for the positional variations using daily solar magnetic field
maps from the Wilcox Solar Observatory but do not consider
temporal variations; the coefficients for their power-law
components come mostly from observations taken at minima
in the solar cycle. See the references cited by You et al. (2007)
for more details.

Sokét et al. (2013; see also Provornikova et al. 2014) find
that the total number density of solar wind protons is ~2—-10
cmat 1au over a range of heliolatitudes (3, and over the
course of a solar cycle. The highest densities come from
|8il < 20°. At solar cycle maxima, the total density at 1 au is a
weak function of heliolatitiude with a value of ~6 cm™3.
Heading toward solar cycle minima, the proton density
becomes more peaked at central heliolatitudes, although the
overall quantity drops. We follow the methods in Sokét et al.
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Figure 11. Estimates of the ionospheric contribution to DM from interpolated global navigation system satellite measurements along the LOS to J1909—3744 from
Green Bank Telescope (GBT, black) and the Parkes Telescope (PKS, blue) daily over nine years. Top left: measurements of DM computed daily when J1909—3744
transits each telescope. The difference between the GBT and PKS DM estimates are shown in the panel beneath. Top right: DM estimated from Parkes at transit vs.
from GBT at transit. The dashed, diagonal line represent the same value at both sites while the solid line is the difference in the geometric factor G (6;) between both
sites. Bottom: similar to the top except that DM estimates were determined simultaneously, approximately two hours after transit at GBT so that G (67) was the same at

both sites.

(2013) to create an empirical model of Carrington rotation-
averaged (one period is 27.2753 days) proton density as a
function of heliolatitude and time spanning from 1990 to 2011.
We linearly interpolate in both heliolatitude and time for
smoother sampling of the proton density. Inspection of the time
series from the Solar Wind Observations Over the Poles of the
Sun (SWOOPS®) experiment on the Ulysses spacecraft show
that n, ~ n,, which we will assume to obtain the electron
density at 1au, ng(0y, t) (Bame et al. 1992). The model
assumes an n, < r~> dependence, which is supported else-
where in the literature (e.g., Issautier et al. 1998). Therefore, we
can write the solar wind DM in the direction of the pulsar as

DMy (¢, 3y) = 4.848 x 10~ pc cm 3
1o (B, t))(l au )2
X —— || —| ds,
f( cm 3 r

http:/ /spdf.sci.gsfc.nasa.gov/pub/data/ulysses/plasma/swoops /ion/
hires/

(60)

5

where the integration path s = s(8;, r). We limit the integra-
tion to within 100 au of the Sun. The typical solar wind speed is
of the order of several hundred kilometers per second, and so
the propagation time to the integration boundary is of the order
of one year (Sokét et al. 2013). However, because of the r—2
factor, only the electron density within the inner <10 au
contributes to any currently measurable DM variation, which
has a propagation time of approximately one Carrington
rotation. Since the intrinsic time-averaging with the model is
of this order, exclusion of the time-varying mean speeds of the
electrons should not greatly affect our results. We note that
Equation (60) only accounts for the average behavior of the
solar wind over Carrington rotations and does not include
components from transient events such as solar flares or
coronal mass ejections.

Figure 12 shows the model solar wind DM and the
ionospheric DM from the NeQuick 2 model along the LOS
to J1909—3744. For the ionospheric component, we set the
observation during pulsar transit once per month. Again, the
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Figure 12. Comparison between the solar wind and ionospheric DM variations,
the latter as computed by the NeQuick 2 model.
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Figure 13. Time series of DM for J1909—3744 from NG9 after a weighted,
quadratic trend has been removed as in Figure 1. The solid gray line shows the
model DMy, (t) from Figure 12 with an arbitrary vertical offset added. The
dashed gray line shows the model shifted forward in time by 11 years (one
average solar cycle) to provide a comparison of the periodicity and shape of the
model time series with the data at later times.

51000

median error on DM for J1909—3744 measured with GBT is
~1 x 107 pcem ™3, which implies that the ionospheric
contribution is marginally detectable in the time series, whereas
the solar wind contribution is significantly measurable.
Figure 13 shows the predicted solar wind contribution plotted
against the J1909—3744 time series with the best-fit quadratic
trend removed for clarity. The vertical offset of the predicted
time series was set arbitrarily to roughly match the DM offsets
(as the nominal DM has already been removed). Even without
including transient solar events, our model agrees with the
overall periodic trend in the time series, both in the phase and
peakedness of the yearly maxima.
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Figure 14. Maximum change in model solar wind DM centered around a one-
year smoothing window at each given epoch for a pulsar at a given ecliptic
latitude.

Figure 14 shows the peak-to-peak change in the DM
contribution from the solar wind model in a given one-year
smoothing window as a function of ecliptic latitude. Pulsars
lying closer to the ecliptic plane will have a much greater peak
DM since the LOS will cross near the Sun and the electron-
density scales as r~2. Pulsars observed far out of the plane will
show minimal amounts of solar wind DM variations. For
reference, J1909—3744 has 3, ~ —15°2 with a mean peak-to-
peak change around 1.45 x 10~* pccm ™3, which can also be
seen as the predicted amplitude of variations in Figure 13.

8.3. Heliosphere

Particles comprising the solar wind interact with the
surrounding ISM at the heliospheric boundary. As the Sun
moves through the ISM, it creates a bow shock toward the nose
(upwind) direction with a long tail opposite the direction of the
solar system’s motion. Turbulence generated at the interface
creates spatial and temporal variations in electron density. In
general, the DM for a specific LOS can be written as

DMy (1, Ber Ae) = f Menet (5t Ber Ao), D)ds,  (61)

where (., (,) are the ecliptic longitude and latitude. The path s
depends on the position of the Earth in its orbit. For reference,
the nose direction of the heliosphere is roughly ()., (5.) =
(254°, 5°) (Kurth & Gurnett 2003), which is equivalent to
(0, 6) & (25323, —1725) or (I, by) = (296, 16°4).

Opher et al. (2015) simulate the heliosphere region
extending from 30 to 1500 au. They assume a spherically
symmetric solar wind flow at the inner boundary with a given
speed, number density, and temperature, along with a radial
and azimuthal solar magnetic field. The outer boundary
interacts with the ISM and also has a relative velocity, number
density, and temperature. The interstellar magnetic field is
slanted with respect to the downwind direction. They find that
the solar magnetic field forces the solar wind plasma into jets
which are then blown into the tail direction by the interstellar
wind. Turbulent instabilities form into two tails and the
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Figure 15. Top: map of DMy, (A,, 5.). The nose direction is in the center of
the left half of the image, whereas the tail direction is in the center of the right
half. Bottom: maximum change in DM due to Earth’s orbital motion around the
Sun. Note the different scales between the two panels. The thin, ringed
structures visible in the nose direction (not the broad ringed structure) are a
result of sampling errors in the 3D grid.

heliosphere retains a two-lobed structure as the tails remain
separated.

Figure 15 shows the electron density from simulations in
Opher et al. (2015) integrated out to a distance of 1500 au
from the Sun. The heliosphere is several times denser through
the bow shock region in the nose direction than through the
tail direction. The bottom panel shows the peak-to-peak
variations in DM due to the changing LOS from Earth orbiting
the Sun to the stationary pulsar. The maximum change is
~1078 pccm 3 when looking at turbulence through the tail.
The effect of the heliosphere, therefore, is approximately three
orders of magnitude smaller than the current sensitivity (for
J1909—3744 in NGY) and requires ~0.05 ns timing precision
to measure. While the heliosphere does change over time, the
overall structure remains similar. Since the crossing time for
solar wind particles through the heliosphere is of the order of
years, changes in the electron density along a given LOS will
be small from epoch to epoch. Given that the overall
amplitude of the heliospheric DM is below the current
sensitivity to DM, we do not consider temporal variations in
the heliosphere.

8.4. Gaussian Plasma Lens in the ISM

Using the formalism in Section 6, we simulate a Gaussian,
electron-density cloud and solve Equation (51) to trace incident
rays back from Earth to the pulsar. We show an example
calculation of the ray paths through a cloud with central
column density Ny = 0.0lpccm3and size a = lau in
Figure 16. The pulsar is at a distance of 1 kpc and the cloud
is halfway in between.

We numerically integrate through our example cloud and
show the delays in the top right panel of Figure 16. The bottom
right panel shows the DM delay purely as the integral of the
electron density along the ray path (i.e., proportional to Afpy
alone; solid line) as well as the estimated DM when all three
delays are summed together (dotted line). In our example, both
the amplitude and phase change significantly.

To explore the possible parameter space of Ny and a, we
place a pulsar at (1 au, 2 au, 1 kpc), directly in line with the
Gaussian cloud at (0 au, 0 au, 0.5 kpc). The Sun is located at
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(1au, —1au, 0 kpc) with Earth orbiting in the z = 0 plane.
Figure 17 shows the peak-to-peak variations in the time delays
separately and then when all three are added together.

While we consider the case of the LOS crossing through a
Gaussian cloud periodically, the same formalism can be applied
to single crossing events (Clegg et al. 1998). Clouds with a
small perpendicular velocity will cause periodic DM variations
modulated by an envelope with width equal to the timescale of
the cloud crossing. In general, the phase of DM,(¢) can be
arbitrary with respect to previously mentioned periodic
contributions.

9. IMPLICATIONS FOR ISM STUDY AND PRECISION
TIMING

Analysis of DM variations can enable the study of the
electron density along the entire LOS to a pulsar. While we see
that the ISM is consistent with a Kolmogorov medium,
interpretations of DM SFs could be used to search for a
different wavenumber spectral index or anisotropies along
certain LOSs. Measurements of DMs coming from an array of
pulsars distributed across the sky have the potential to probe
the structure of the ISM and solar wind. Changing DMs due to
pulsar motion through the ISM can also be valuable inputs to
large-scale electron-density models of the Galaxy.

Assuming that the only chromatic effect on pulses is the
dispersive delay, DM can be estimated on a per-epoch basis
using a wide range in frequency coverage. In that case,
variations in DM will not affect the pulsar TOAs used for
precision timing experiments. Numerous chromatic effects are,
however, known to exist.

1. Frequency-dependent variations of the pulse profile will
change the measured TOAs by a constant offset per
frequency and lead to a large error in DM if not globally
fit over a many-epoch data set (Liu et al. 2012; Pennucci
et al. 2014). Profile evolution is assumed to be time-
independent in many pulsars (see Lyne et al. 2010 for
counterexamples). A simultaneous fit over parameters
that describe the profile evolution and the DM will
reduce their covariance. Profile evolution coupled with
amplitude modulation from interstellar scintillation will
cause an effective shift in the reference frequency that
changes the estimated DM on the order of a diffractive
timescale.

2. Estimates of DM will be contaminated by other chromatic
timing effects that result from refraction and multi-path
propagation. As shown by Foster & Cordes (1990), if
refraction is allowed to contaminate DM estimates, then
the SF will show excess amplitude over long times
compared to extrapolation from the diffraction timescale
and will also lead to an overestimated wavenumber
spectral index. Multipath propagation causes temporal
broadening of the pulse shapes that increase with lower
frequency. Pulse broadening will couple with intrinsic
profile shape changes, adding additional time-dependent
TOA errors, and thus producing apparent DM changes
(Levin et al. 2016).

3. Scattering causes spatial averaging over the ISM in any
single-epoch measurement of DM (Cordes et al. 2015).
DM is therefore a function of frequency.

4. DM measured with asynchronous multi-frequency mea-
surements will be mis-estimated because the LOS integral
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will change due to stochastic changes in the ISM and to
systematic effects such as the increasing Earth-pulsar
distance (Lam et al. 2015).

20

5. Even simultaneous measurements from different loca-
tions on Earth can result in different observed values of
DM due to separate LOSs through the ionosphere.

High-precision timing experiments require the minimization of
all possible TOA errors, especially those correlated in time.
Therefore, the combination of data from multiple telescopes
will require care to avoid contamination from the various
achromatic effects listed.

The inclusion of DM terms that describe linear or periodic
variations can reduce the number of model parameters in a
timing fit but will also be highly covariant with other
parameters included in the fit (Splaver et al. 2005). Linear
terms for DM evolution in a timing model are covariant with
pulsar spin and spin-down parameters. In a pulsar timing array
experiment intended to detect and study GWs, such terms also
remove sensitivity to the lowest-frequency GWs. Annual and
semi-annual variations will be covariant with astrometric
parameters and GWs with the same frequencies.

The removal of frequency-dependent terms in a timing
model other than the DM, such as profile evolution parameters
or scattering delays, will change the absolute DM measured.
The absolute differences must be taken into account when
combining DM measurements obtained by different methods;
TOAs incur additional errors otherwise. In addition, even with
the same frequency-dependent terms included, different
methods exist for DM estimation and removal from TOAs.
Keith et al. (2013) utilize information regarding the correlations
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between epochs in their DM determination; Demorest et al.
(2013) do not. Since DM is not independent from epoch to
epoch, timing models should account for the correlations
between measurements. However, due to the stochastic
component of the DM variations, it may be impossible to
completely remove per-epoch DM determination from a timing
model. Optimal DM estimation and removal strategies are
therefore necessary to minimize TOA uncertainties.

10. SUMMARY AND CONCLUSIONS

DM time series show a wide range of correlated variations.
We model the possible contributions to DM variations as the
sum of systematic and stochastic effects along the LOS through
the media between the observatory and the pulsar. Linear
trends arise from the average motion of the LOS through the
ISM, and the full three-dimensional (3D) motion of the pulsar
should be taken into consideration when studying linear trends
in DM time series. Disentangling the effects of changing
distance and changing LOS from parallel and transverse
motion, respectively, is possible if scintillation parameters
(including flux density) are also measured. The change in
distance over a few years will have no effect on these
parameters, whereas transverse gradients in the ISM den-
sity will.

Changes in the LOS due to Earth’s annual motion, coupled
with a variety of effects that will be weighted differently for
different pulsars, result in periodic variations in DM. Any DM
contribution from the ionosphere, solar wind, or heliosphere
will be correlated across pulsars depending on their sky
positions and the relative position of the Sun. The relative
phases of the three contributions may be misaligned, again
depending on the specific positions of the pulsars, and so it is
possible to disentangle the effects for a subset of pulsars. In the
case of the ionosphere, the periodicity may be semi-annual. In
general, both types of variations, linear and periodic, will
contrbute to DM time series, along with a stochastic component
resulting from the turbulent ISM. The relative importance of
each component can only be determined on a pulsar-by-pulsar
basis.

SFs are useful statistics for analyzing DM variations. DM
time series will generally include systematic trends along with
stochastic variations from density variations on a wide range of
scales (e.g., Kolmogorov-like variations). The stochastic term
can be contaminated by any systematic trend in the time series,
and so time series should be de-trended before using DM(¢) to
infer the properties of the ISM along the LOS. Estimates of the
wavenumber spectral index or the scintillation timescale from
the SF should also include realization errors. We show that
once the linear trends and realization errors are taken into
account, PSRs J1909—-3744, B1937+21, and B1821—24 show
time series consistent with a Kolmogorov electron-density
wavenumber spectra. PSR B15344-12, with its non-monotonic
trends in DM, is inconsistent with a simple Kolmogorov ISM.

Decomposition of DM time series into known, deterministic
causes will allow for the study of the local and interstellar
electron density. Future studies of DM time series should
model known components to further probe the relative
contributions of DM fluctuations along the LOS. Pulsars in a
pulsar timing array with many LOSs will see correlated DM
variations from the ionosphere and solar wind. As we have
shown with J1909—-3744, we can probe the local electron
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density around a pulsar after careful determination of its radial
velocity.

Differences in DM correction methods will become increas-
ingly important in the near future. Optimal correction methods
must be implemented for the proper combination of multi-
telescope data. By appropriately removing the effects of DM
variations from TOAs, we will be able to maximize pulsar
timing array sensitivity.
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APPENDIX A
FUNCTIONAL FORMS FOR STRUCTURE FUNCTIONS
OF A POWER-LAW WAVENUMBER SPECTRUM

We will consider the relationships between different SFs of a
time-varying DM(z#). By taking the Fourier transform of the
first-order increment ADDM(¢, 7) = DM(¢) — DM(f + 1),
we can write the ensemble-averaged SF in terms of the power
spectrum Spy (f) (see Equation (15) of Lam et al. 2015),

D) = ([ADDM(1, T P)

=4 [ dfSpn(Psin (xfr). (62)
A wavenumber spectrum (Equation (17)) with spectral index 3
will be a red noise process DM(f) with an associated power-
law spectrum that scales as Spy (f) = Af =7, wherey = 3 — 1
and A is a spectral coefficient. For a wavenumber spectrum in
the scintillation regime 2 < 8 < 4, 1 < v < 3), the integral
can be solved as

4A f " sin? (nfr)
0
= —2AT(—[vy — 1])cos (ﬂ’YT_]])(Zﬂ'T)V’I, (63)

where I' is the Gamma function (Gradshteyn et al. 2007,
Equation (3.823)). We can relate the spectral coefficient A to
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the scintillation timescale Afgg by equating this to Equa-
tion (23),

2

 2(cr)’T(=[y — WDcos(n [y — 11/2)@rAnss)
(64)

Therefore, a Kolmogorov wavenumber spectrum with
G =11/3 and a time-series power-law spectral index of
~v = 8/3 will have an SF equal to

DN(T) = AT (—5/3)J/3 2n7)°/3 65)

with

2

A= — s 66
(cr)? T (—5/3)33 2rAnss)*/? (©0)

which reduces to Equation (25) when combined. In general, the
scintillation timescale will vary with frequency as
Atgs x v2/#B-2 5o that the SF, proportional to
V2 [Atgs @)]7P2, will always be independent of frequency
in the scintillation regime (2 < 3 < 4; Lam et al. 2015).
Following a similar procedure using the second-order
increment
ADDM(t, 7)=DM(t — 7) — 2DM(t)+DM(t + 7), the sec-
ond-order SF can be written as (Equation (21) of Lam
et al. 2015)

DZ(r) = ([AYDM(, 7))

=16 f dfSpp () sin* (7fr). (67)
Using trigonometic identities, we can write
sin*(0) = sin?(0) — (1/4)sin?(20) and then solve using similar
integrals to before. The second-order SF can then be related to
the first-order SF for a power-law spectrum

DY) = — (8 — 2AT(—( 1))cos(@)

x el =4 — 2771)D](3|1\)4(7'),
(68)

which is roughly 0.8252D,(7) for the Kolmogorov case. This
is equal to the variance of the second-order increments,
UzA(g)DM (7). Thus, for a pulsar with scintillation timescale
Atnss () measured at frequency v, the second-order increments
at a given 7 will be drawn from a Gaussian distribution with

standard deviation
oaopm(T) = [DSY(M1/2 = V4 — 271 [DGy(M)]/2
(3-2)/2
—J4 =252 (L)[;] ,
Atiss (V)

Cle

(69)

While Equation (30) has the variance of DM(¢) equal to half
the DM SF, we note that the variance of the DM increments
will be equal to the SF only, which is defined as the expectation
value of the square of the increments.
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APPENDIX B
STRUCTURE FUNCTION SLOPE MIS-ESTIMATION
FROM ADDITIVE NOISE

The presence of additive noise will also bias the slope « of a
power-law SF, D, (1) = Ct?, for a time series x(f). Assuming
for now that a linear trend has been removed, since the SFs
listed above all have the same slope for a Kolmogorov medium,
we let y(t) = x(¢t) + n(¢) be the measured values of a generic,
random process, where x(¢) is the random process of interest
(e.g., DM variations) and n(f) is the measurement error with
rms o;,. The SF of y(7) is then

Dy(1) = (1 = 6:9)207; + Dy(7) (70)
where 0. is the Kronecker delta. The slope of the SF of y might
be used as an estimate for o. For 7 > 0, it can be shown that
the estimated slope is

dlnDy(t) 71
dint _Dy(T)

dDy (1)
dr

@:

a[TCT“‘] a . an
Dy(7) 1 + 202/D. (1)

Therefore, we see that « is always underestimated if the
additive noise contribution to the SF is significant. One method
for mitigatng the bias is to use a model for the SF that includes
a constant term, 13), (1) = c7® + b, where estimates of the three

parameters of the least-squares fit would correspond to «, 202,
and C. It is better to perform the fit in log—log space because
the dynamic ranges of 7 and D, (7) can be large. The estimated
slope & will take a more complicated form if the linear trend
has not been removed.
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