3,985 research outputs found

    GPS-derived geoid using artificial neural network and least squares collocation

    Get PDF
    The geoidal undulations are needed for determining the orthometric heights from the Global Positioning System GPS-derived ellipsoidal heights. There ore several methods for geoidal undulation determination. The paper presents a method employing the Artificial Neural Network (ANN) approximation together with the Least Squares Collocation (LSC). The surface obtained by the ANN approximation is used as a trend surface in the least squares collocation. In numerical examples four surfaces were compared: the global geopotential model (EGM96), the European gravimetric quasigeoid 1997 (EGG97), the surface approximated with minimum curvature splines in tension algorithm and the ANN surface approximation. The effectiveness of the ANN surface approximation depends on the number of control points. If the number of well-distributed control points is sufficiently large, the results are better than those obtained by the minimum curvature algorithm and comparable to those obtained by the EGG97 model

    Algorithm for Determining the Parameters of a Two-Layer Soil Model

    Get PDF
    —The parameters of a two-layer soil can be determined by processing resistivity data obtained from resistivity measurements carried out on the soil of interest. The processing usually entails applying the resistivity data as inputs to an optimisation function. This paper proposes an algorithm which utilises the square error as an optimisation function. Resistivity data from previous works were applied to test the accuracy of the new algorithm developed and the result obtained conforms significantly to results from previous works

    Monte Carlo Simulation Approach to Soil Layer Resistivity Modelling for Grounding System Design

    Get PDF
    Soil layer resistivity modelling is a vital component of grounding system design. Grounding system for facility, equipment, power station and general system protection purposes must be designed to be able to handle the anticipated level of fault current. To achieve this; the earth rods, mats and any other equivalent alternatives deployed must be adequately sized in terms of the physical dimensions and the number of such rods required in order to achieve the desired low, overall grounding system resistance. The resistance to earth of a grounding system is a function of the resistivity of the soil in concern, and to ensure appropriate design, the resistivity profile of the soil must be determined via appropriate soil modelling. This paper presents a Monte Carlo simulation approach to two layer soil modelling using the square error as an optimization function. The result of the simulation shows an improvement in model accuracy, and it also conforms significantly with the results of published works that applied genetic algorithm

    Non-Gaussian Hybrid Transfer Functions: Memorizing Mine Survivability Calculations

    Get PDF
    Hybrid algorithms and models have received significant interest in recent years and are increasingly used to solve real-world problems. Different from existing methods in radial basis transfer function construction, this study proposes a novel nonlinear-weight hybrid algorithm involving the non-Gaussian type radial basis transfer functions. The speed and simplicity of the non-Gaussian type with the accuracy and simplicity of radial basis function are used to produce fast and accurate on-the-fly model for survivability of emergency mine rescue operations, that is, the survivability under all conditions is precalculated and used to train the neural network. The proposed hybrid uses genetic algorithm as a learning method which performs parameter optimization within an integrated analytic framework, to improve network efficiency. Finally, the network parameters including mean iteration, standard variation, standard deviation, convergent time, and optimized error are evaluated using the mean squared error. The results demonstrate that the hybrid model is able to reduce the computation complexity, increase the robustness and optimize its parameters. This novel hybrid model shows outstanding performance and is competitive over other existing models

    Storage Capacity Estimation of Commercial Scale Injection and Storage of CO2 in the Jacksonburg-Stringtown Oil Field, West Virginia

    Get PDF
    Geological capture, utilization and storage (CCUS) of carbon dioxide (CO2) in depleted oil and gas reservoirs is one method to reduce greenhouse gas emissions with enhanced oil recovery (EOR) and extending the life of the field. Therefore CCUS coupled with EOR is considered to be an economic approach to demonstration of commercial-scale injection and storage of anthropogenic CO2. Several critical issues should be taken into account prior to injecting large volumes of CO2, such as storage capacity, project duration and long-term containment. Reservoir characterization and 3D geological modeling are the best way to estimate the theoretical CO 2 storage capacity in mature oil fields. The Jacksonburg-Stringtown field, located in northwestern West Virginia, has produced over 22 million barrels of oil (MMBO) since 1895. The sandstone of the Late Devonian Gordon Stray is the primary reservoir.;The Upper Devonian fluvial sandstone reservoirs in Jacksonburg-Stringtown oil field, which has produced over 22 million barrels of oil since 1895, are an ideal candidate for CO2 sequestration coupled with EOR. Supercritical depth (\u3e2500 ft.), minimum miscible pressure (941 psi), favorable API gravity (46.5°) and good water flood response are indicators that facilitate CO 2-EOR operations. Moreover, Jacksonburg-Stringtown oil field is adjacent to a large concentration of CO2 sources located along the Ohio River that could potentially supply enough CO2 for sequestration and EOR without constructing new pipeline facilities.;Permeability evaluation is a critical parameter to understand the subsurface fluid flow and reservoir management for primary and enhanced hydrocarbon recovery and efficient carbon storage. In this study, a rapid, robust and cost-effective artificial neural network (ANN) model is constructed to predict permeability using the model\u27s strong ability to recognize the possible interrelationships between input and output variables. Two commonly available conventional well logs, gamma ray and bulk density, and three logs derived variables, the slope of GR, the slope of bulk density and Vsh were selected as input parameters and permeability was selected as desired output parameter to train and test an artificial neural network. The results indicate that the ANN model can be applied effectively in permeability prediction.;Porosity is another fundamental property that characterizes the storage capability of fluid and gas bearing formations in a reservoir. In this study, a support vector machine (SVM) with mixed kernels function (MKF) is utilized to construct the relationship between limited conventional well log suites and sparse core data. The input parameters for SVM model consist of core porosity values and the same log suite as ANN\u27s input parameters, and porosity is the desired output. Compared with results from the SVM model with a single kernel function, mixed kernel function based SVM model provide more accurate porosity prediction values.;Base on the well log analysis, four reservoir subunits within a marine-dominated estuarine depositional system are defined: barrier sand, central bay shale, tidal channels and fluvial channel subunits. A 3-D geological model, which is used to estimate theoretical CO2 sequestration capacity, is constructed with the integration of core data, wireline log data and geological background knowledge. Depending on the proposed 3-D geological model, the best regions for coupled CCUS-EOR are located in southern portions of the field, and the estimated CO2 theoretical storage capacity for Jacksonburg-Stringtown oil field vary between 24 to 383 million metric tons. The estimation results of CO2 sequestration and EOR potential indicate that the Jacksonburg-Stringtown oilfield has significant potential for CO2 storage and value-added EOR

    PROPOSED METHODOLOGY FOR OPTIMIZING THE TRAINING PARAMETERS OF A MULTILAYER FEED-FORWARD ARTIFICIAL NEURAL NETWORKS USING A GENETIC ALGORITHM

    Get PDF
    An artificial neural network (ANN), or shortly "neural network" (NN), is a powerful mathematical or computational model that is inspired by the structure and/or functional characteristics of biological neural networks. Despite the fact that ANN has been developing rapidly for many years, there are still some challenges concerning the development of an ANN model that performs effectively for the problem at hand. ANN can be categorized into three main types: single layer, recurrent network and multilayer feed-forward network. In multilayer feed-forward ANN, the actual performance is highly dependent on the selection of architecture and training parameters. However, a systematic method for optimizing these parameters is still an active research area. This work focuses on multilayer feed-forward ANNs due to their generalization capability, simplicity from the viewpoint of structure, and ease of mathematical analysis. Even though, several rules for the optimization of multilayer feed-forward ANN parameters are available in the literature, most networks are still calibrated via a trial-and-error procedure, which depends mainly on the type of problem, and past experience and intuition of the expert. To overcome these limitations, there have been attempts to use genetic algorithm (GA) to optimize some of these parameters. However most, if not all, of the existing approaches are focused partially on the part of architecture and training parameters. On the contrary, the GAANN approach presented here has covered most aspects of multilayer feed-forward ANN in a more comprehensive way. This research focuses on the use of binaryencoded genetic algorithm (GA) to implement efficient search strategies for the optimal architecture and training parameters of a multilayer feed-forward ANN. Particularly, GA is utilized to determine the optimal number of hidden layers, number of neurons in each hidden layer, type of training algorithm, type of activation function of hidden and output neurons, initial weight, learning rate, momentum term, and epoch size of a multilayer feed-forward ANN. In this thesis, the approach has been analyzed and algorithms that simulate the new approach have been mapped out
    corecore