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ABSTRACT 
 
The geoid heights are needed for determining the orthometric heights from the Global Positioning 
System (GPS) ellipsoidal heights. There are several methods for geoid height determination. The paper 
presents a method employing the Artificial Neural Network (ANN) approximation together with the 
Least Squares Collocation (LSC). The surface obtained by the ANN approximation is used as a trend 
surface in the least squares collocation. In numerical examples four surfaces were compared: the global 
geopotential model (EGM96), the European gravimetric quasigeoid 1997 (EGG97), the surface 
approximated with minimum curvature splines in tension algorithm and the ANN surface 
approximation. The effectiveness of the ANN surface approximation depends on the number of control 
points. If the number of well distributed control points is sufficiently large, the results are better than 
those obtained by the minimum curvature algorithm and comparable to those obtained by the EGG97 
model. 
 

INTRODUCTION 
 

The task of height determination presents one of the most compelling research areas 
related to GPS. The computation of orthometric heights with GPS (the so called GPS-
levelling) is only possible with the knowledge of the ellipsoidal (GPS) heights and the 
geoid heights.  
Nowadays, the gravimetric method is most commonly used technique for precise 
determination of the geoid. The necessary condition for its use is existence of high 
resolution gravity data sets. With the lack of gravity data the geoid determination is 
possible by means of various geometric methods, the astrogeodetic method and the 
method of determining the geoid heights from GPS in combination with geometric 
levelling. 

The well known equation relates these three quantities: 
 H = h – N (1) 
where N is either the geoid height or the quasigeoid height (height anomaly) and H the 
orthometric or the normal height; h is the ellipsoidal height. 

In general, the shape of the geoid is very complex and the task of approximating the 
geoid surface by a relatively simple mathematical expression is hardly easy. For the 
local geoid approximation various interpolation surfaces may be used, e.g., low-order 
polynomials or even more complex surfaces, such as trigonometric functions and 
various spline functions, respectively. Alternatively, ANN used as an approximator is 
introduced [1]. 

In this paper a method using ANN for approximation of the local geoid surface is 
employed. This approximation surface is further refined by using the LSC approach. 

Various types of ANNs are used for solving a large variety of problems. So far 
ANN was implemented in various scientific earth-science disciplines, such as in 
oceanography (sea level forecast), cartography (pseudocolor photomap production), 
remote sensing (e.g., classification of remotely-sensed multi-spectral imagery), GIS, 
GPS-positioning in integration with other sensors, seismology, and geodesy for solving 
problems in coordinate transformation, and in predicting Earth orientation parameters. 



Some of the recent publications [8], [9], [18] deal with the use of ANN in geoid 
approximation. 

 
LEAST SQUARES COLLOCATION 

 
If a fairly large number of well distributed points with known ellipsoidal and 

orthometric heights is available for an area, then the so called GPS-derived geoid can 
be determined. The method involves the development of a local geoid surface model 
using a surface fitting procedure. The local geoid surface fitting model is accomplished 
by taking N as a function of the position of each point in the area under consideration: 
 N = N(φ,λ) (2) 
where variables φ and λ represent geodetic coordinates of points with known geoid 
heights, i.e. control points. 

The artificial neural network (ANN) is employed in order to approximate this 
functional relation (Equation 2) by a trend surface. Unmodelled fine structure of the 
local geoid surface is further estimated by the least squares collocation (LSC). 

The LSC is represented by the following equations [14], [15]: 
 

 v = l – BΔ,  v =  s + r (3) 
where l consists of the geoid height values at control points, Δ are the parameters of 
approximation, i.e. the ANN approximation surface, the design matrix B includes 
geodetic coordinates of control points, whereas v, s, and r are residuals, signal and 
random noise, respectively. 

The geoid heights on the new points – where only the GPS-height is known – can 
be calculated by the ANN approximation surface. The unmodelled part of the geoid 
height (signal) in the new points representing the fine relief of the local geoid may be 
afterwards predicted by the means of the LSC: 

 
 s = CD–1(l – BΔ) (4) 
 
The matrix C contains covariances between the geoid heights on new and control 
points in the area. The matrix D is the covariance matrix of observations l, i.e., geoid 
heights, and it contains covariances between geoid heights at all control points. The 
matrix D is sum of the covariance matrix of the signal in control points and the 
covariance matrix of the random measuring errors (noise) taken as diagonal and 
constant. 

For the computation of covariances the well-known autocorrelation function known 
as the third-order Markov undulation model was used [11]: 
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where r is the distance between points under consideration. The free parameters in 
models are the variance of the geoid height C0 and the characteristic distance D of the 
covariance function. For the purpose of predicting the signal component of the geoid 
height, the correlation distance is of interest. The correlation distance ξ is the value of 
the argument of which C(r) has decreased to half of its value at r = 0 [15]: 

 02
1)( CC =ξ  (6) 

In order to determine the optimal solution empirical covariances were computed and 
the model (6) was fitted to them. 

 



ARTIFICIAL NEURAL NETWORKS 
 
The basic idea and the motivation for the early development of ANNs was the study 

of the structure and processes in human brain that is in several aspects similar to ANN. 
An ANN and the human brain both have units called neurons which are 
interconnected. Similarly to a human brain, ANN has to be taught or trained. There are 
two types of learning procedures: supervised learning, in which questions and answers 
are known and where the ANN learns the correct answers; and unsupervised learning 
where the answers are not known. ANN is a network of simple units operating locally. 
The units are connected by connections reducing or amplifying the signal from one 
unit to another. Each unit receives signals from other units, processes these signals and 
transmits the signals to further units. 

There are several types of ANN geometry. A review of different ANNs is given in 
several papers, books and internet sites e.g., [13], [17]. Usually, if functional 
approximation is sought, the multi-layer feed-forward network is chosen. Since it is 
our aim to approximate the geoid heights, the multi-layer feed-forward network trained 
by the supervised learning was chosen in this research. 

 
 

MULTI-LAYER FEED-FORWARD NETWORK 
 
The geometry of a multi-layer feed-forward neural network is shown in Figure 1. 

Input units (neurons) are connected to the first layer of hidden units that are further 
connected to the units of the second hidden layer. The units of the last hidden layer are 
connected to the output units. The multi-layer feed-forward networks are usually 
employed as the approximators of the unknown functional relation. In fact, it was 
shown by [4] and [7], that any continuous function may be accurately approximated by 
the multi-layer feed-forward neural network. 

 

 
 

Fig. 1. The geometry of a multi-layer feed-forward neural network 
 

The input units represent the input data, and the output units represent the output 
data. The hidden layers and all the connections between the units may be considered as 
a black box performing the necessary transformations of the input data so that the 
target output data are obtained. 



Each unit is represented by its value yi
k, and each connection between the units is 

represented by its weight wij
k. The index i corresponds to the unit number of the kth 

layer, while index j corresponds to the unit number of the (k−1)th layer. The input layer 
is denoted by 0, and the output layer is denoted by nl. The signals travel in one 
direction only, i.e., from the input layer toward the output layer. The value of a unit  
yj

k-1 is multiplied by the corresponding weight wij
k and added to the value of the signal 

in the unit of the next layer. In addition, the value of bias neuron or threshold ϑi
k is 

added to the equation: 
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This equation is illustrated in Figure 1. Activation function f(.) enables the modelling 
of an arbitrary non-linear relation between input and output variables. Different 
functions could be used as an activation function, the usual choices of the activation 
function are a sigmoid function: 
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tanh y, or Gaussian. The behaviour of the neural network depends on the values of the 
weights wij

k and thresholds ϑi
k that have to be determined by the learning (training) 

procedure. 
The set of known input and output values is termed an input-output pair. All input-

output pairs are usually divided into three sets. The first is termed as learning or 
training set used to determine the connection weights wij

k and thresholds ϑi
k. When the 

learning procedure ends, i.e., when the neural network performs adequately for all 
input-output pairs in the learning set, the neural network is assessed on the validation 
set of input-output pairs and the optimal neural network is chosen. Finally, the chosen 
and taught neural network is tested, using the testing set of data. 

In some cases the training procedure becomes ill-conditioned, i.e., if the input 
and/or output data are not normalized , see, e.g., [17]. Therefore, for numerical reasons 
the values of input and output units have to be normalized. The normalization of the 
values of output units depends on the range of activation function. Usually, the linear 
transformation works well, however if the data are clustered a non-linear 
transformation may help. 

The supervised learning is in fact a general optimization problem in which the 
minimum of error Ep is sought: 
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where tpi are the target output values, ln
piy are the values of neurons in the output layer 

nl, i.e., the output values evaluated by ANN, no is the number of neurons in the output 
layer, i.e., the number of output variables. 

This problem is numerically very demanding since there is usually a large number 
of local minima. There are two essentially different approaches: the error back-
propagation algorithms that are basically a gradient method, and the genetic algorithm 
approach, which is in fact a stochastic search [5]. There are many variations and 
combinations of the above mentioned methods [20]. If the number of weights is 
relatively small, the gradient method is a favourable. The error back-propagation (or 
the generalized delta rule – as termed by [16] is a gradient method in which the 
weights are changed for a chosen step size in the direction of the maximum descent for 
each input-output pair. However, there is always the possibility of finding only a local 
minimum, which may be unable to provide a satisfactory set of weights. One solution 



for the problem is simply running the error back-propagation procedure from different 
starting points and then single out the best result. 

In the error back-propagation approach the weights are changed in the direction of 
maximum descent of each input-output pair p 
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where Δw is the step size defining the rate of changing the weights wij
k , and Δϑ is the 

step size defining the rate of changing the thresholds ϑi
k. The derivatives in Equation 

(10) are determined consecutively from the weights between the output layer and the 
last hidden layer towards the weight between the input layer and the first hidden layer, 
i.e., by the chain rule 
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The derivatives ∂ypi
k/∂wij

k and ∂ypi
k/∂ϑi

k are obtained from Equation (7) 
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In the case of output layer neurons the derivatives ∂Ep/∂ypi
k are determined by the 

following equation stemming from (9) 
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In the case of all other neurons the derivatives are obtained from Equation (7) 
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The process is repeated for each input-output pair p until the error is smaller than 
prescribed for all input-output pairs. If the prescribed error is too small, overfitting 
may occur. Overfitting means that the neural network may reproduce input-output 
pairs used in the learning procedure, but fails to generalize them and may as a 
consequence produce erroneous results, i.e. if some values of the input units are 
changed. 

There are two major difficulties with using the error back-propagation: it is almost 
impossible to choose the optimal step size, and, additionally, quite often the procedure 
converges to a local minimum. If the step size is too large, we may overshoot the 
minimum. On the other hand, if the step size is too small, the convergence is very 
slow. Both difficulties may be overcome by different procedures with adaptive step 
size [10], or with the introduction of the inertial term [13]. 

The parameters, i.e., the number of hidden layers and the number of hidden 
neurons, of the optimal neural network are problem dependent. One of the methods for 
choosing the right network is using the validation set to determine which network 
performs best. However, some general guidelines can be given. If the number of units 
is large, the learning procedure may be slow, since each forward calculation needs a 
substantial computational effort. Although larger networks are usually able to learn the 
sought relationship, this may sometimes present a drawback. A large network may 
easily reproduce the training set of input-output pairs but fails to generalize, yielding to 
a poor testing performance. Networks with insufficient units may have problems with 
learning properly during the learning procedure. 

 
 



APPLICATION OF MULTI-LAYER FEED-FORWARD NETWORK  
IN GEOID HEIGHT DETERMINATION 

 
In the case of geoid height determination the two input units represent the 

coordinates of the control point, whereas the only output unit represents the quasigeoid 
height of the control point. These three values constitute one input-output pair. 

In the training procedure the weights wij
k and the treshold ϑi

k are determined so that 
the geoid height determined by the ANN does not differ from the target value of the 
geoid height by more than a required value for all control points, i.e. for all input-
output pairs. When the training procedure is completed the geoid height can be 
determined by the Equation (7) for any point inside the area under consideration. 

Since there are two input units and only one output unit, the geometry of the neural 
network can be denoted by: 2 × n1 × n2 × · · · × 

1−lnn  × 1, denoting that there are 2 input 
units, n1 units in the first hidden layer, n2 units in the second hidden layer, . . ., 

1−lnn   
units in the last hidden layer and only a single unit in the output layer. Several 
geometries were tried and the optimal ones (for our specific application) are shown in 
Table 1. 
 
 

NUMERICAL EXAMPLES 
 
The method ANN-LSC was assessed for the data of the German Baden-Württemberg 
state area, where a GPS/levelling data set consisting of 125 points with known 
quasigeoid heights is available [21], (see Figure 2). In order to validate the proposed 
method, all results were compared to two different quasigeoid solutions: the global 
geopotential model EGM96 [12] and the European Gravimetric quasigeoid 1997 
(EGG97) [3]. Because the ANN is of the type of a non-parametric interpolation 
method, it was also compared against one such interpolation technique, i.e. minimum 
(continuous) curvature splines in tension surface (MC), [19]. 
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Fig. 2. Quasigeoid in Baden-Württemberg area 

 
In the computation process the following two testing strategies were applied. In the 

first one quasigeoid heights were interpolated at the GPS/levelling points from the 



global EGM96 and continental EGG97 models, respectively. The ”ANN surface” was 
determined using the described ANN algorithm. These three solutions were treated as a 
trend part of the quasigeoid surface. So it was possible to form residuals on height 
control points in the sense of: 

 
 vi = ζi

GPS – ζi
M = (hi – Hi) – ζi

M = si +  ri,   i = 1,....n (15) 
 
where ζi

M is model quasigeoid undulation (ANN, EGM96 or EGG97), and si and ri are 
signal and nosie, respectively (see Equation (3)). 

In the case of EGM96 and EGG97 solutions, the trend component was further 
modelled by a 3-parameter datum shift ΔX, ΔY, ΔZ determined from the residuals vi on 
the height control points. This model is described by the equation [2]: 

 
 vi = cosφicosλiΔX + cosφisinλiΔY + sinφiΔZ,   i = 1,...n (16) 
 
where n is the number of control points. 

Afterwards, the signal part of the GPS/leveling quasigeoid undulation s was det 
ermined using the LSC algorithm. 

On the contrary the minimum curvature interpolation method yields final solution 
which is then compared against other solutions. The interpolated surface generated by 
the minimum curvature is analogous to a thin, linearly plastic plate passing through 
each of the data values with a minimum amount of bending. For the computation we 
used the SURFER 8.0 software package [6]. The algorithm implements the concept of 
tension and also includes the regional trend approximation by removing a least-squares 
plane from the data [19]. The only parameter that can be varied in the data 
combination is the internal tension factor T. In all results, MC-interpolated surface is 
generated with internal tension factor set to zero (T = 0), giving the minimum standard 
deviation of residuals in comparison to actual quasigeoid undulations ζGPS (see next 
section). 

Four different numerical tests were performed with respect to the number of control 
(training) points used. In each test computation, the complete set of 125 points (input-
output pairs) was divided into two subsets: the training set (input height control points) 
and the validation set. The basic data on the four test computation are summarized in 
Table 1. 

 
Table 1. Training sets and optimal ANN geometry 

Test No. of training 
inp.-output pairs 
(control points) 

No. of validation 
inp.-output pairs 

(new points) 

Optimal ANN 
geometry 

No. of iterations 
in ANN training 

1 25 100 2 × 30 × 30 × 1 10857 
2 50 75 2 × 25 × 30 × 1 11806 
3 75 50 2 × 25 × 20 × 1 47352 
4 99 26 2 × 20 ×15 × 1 26677 

 
The error relative to the span of the target output values allowed in the ANN 

training process was set to 5%, which is relatively large. This high value was chosen in 
order to avoid overfitting which could result in poor generalization. 

Unfortunately, we could not include any reliable accuracy estimatations regarding 
the quantities involved in the computation. Documentation of the GPS/leveling data set 
in Baden-Württemberg provides no information about its accuracy. Since this is a local 
geoid analysis, levelling can be considered nearly error free, so the major part comes 



from the errors in GPS-heights. It was such decided to set the noise variance equal to 
(1.5)2 cm2 which is nowadays easily achieved by GPS-measurements. 

 
 

RESULTS OF THE NUMERICAL TESTS 
 
Signal variance C0 was estimated from the detrended residuals on control points and 

was set equal to the standard deviation squared of the residuals. Empirical and 
analytical covariances of the detrended residuals for ANN surface and EGG97 
quasigeoid of the fourth test (99 control points) are shown in Figure 3. The covariances  
were plotted to a distance of 150 km and a step of 10 km was used as the interval. 
Covariances are in [cm]2 and distances are in kilometers. The results are presented in 
Table 3 and correlation distance was estimated at ξ = 17 km. 
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Fig. 3. Empirical covariances for ANN-surface and EGG97 
 

The estimated quasigeoid undulations ζEST without and with the LSC on validation 
points were compared with the actual quasigeoid undulations ζGPS. The mean, the 
standard deviation, the minimum and the maximum of differences between ζEST and 
ζGPS, together with the correlation coefficients between them were computed in each 
test. In Table 2 the ANN approximation is compared to EGM96, EGG97 and MC 
models, while the effects of LSC using the ANN, EGM96 and EGG97 as trend 
functions are shown in Table 3. 

The comparison shown in Tables 2 and 3 reveals that the EGG97 in each test gives 
the minimum standard deviation and the highest correlation coefficient. Even without 
the LSC, the EGG97 gives the quasigeoid heights with cm-level accuracy (see also 
[2]). If the number of control points is low, the effect of the LSC on the ANN 
approximation is not critical. If the number of control points is higher, the results of the 
ANN approximation improve considerably. Not surprisingly, this is because the more 
training points there are, the better is the learning process and the estimated values for 
trend in validation points. In these cases the LSC improves the results of the ANN 
approximation as well. In the case of the MC-solution, the number of control points 
does not considerably effect the final results. In the fourth test with 99 control points 
the standard deviation of the MC-solution even decreases. The reason may be in the 
low number of validation points (26 compared with 50 in the third test). 

The number of control points does not have the same effect when either the EGM96 
or the EGG97 model is used as a trend surface. In the case of the EGG97 the 
contribution of the interpolated residuals is negligible (Table 2), confirming the 
statistical statement about low number of validation points in each consecutive test 
(100, 75, 50, 26). 



 
Table 2. Comparison of ζGPS and ζEST (without LSC) 

Number of control points: 25 
Solution Mean St. Dev. Min. Max. Correl. 

ANN –0.006 0.171 –0.703 0.349 0.97830 
EGM96 0.019 0.229 –0.527 0.556 0.95350 
EGG97 –0.001 0.022 –0.052 0.074 0.99961 

MC 0.003 0.165 –0.745 0.331 0.97717 
Number of control points: 50 

Solution Mean St. Dev. Min. Max. Correl. 
ANN –0.010 0.127 –0.305 0.360 0.98701 

EGM96 0.006 0.220 –0.562 0.515 0.95893 
EGG97 –0.001 0.021 –0.054 0.072 0.99963 

MC 0.005 0.095 –0.294 0.280 0.99252 
Number of control points: 75 

Solution Mean St. Dev. Min. Max. Correl. 
ANN –0.001 0.079 –0.197 0.148 0.99495 

EGM96 0.012 0.235 –0.572 0.487 0.95372 
EGG97 –0.002 0.021 –0.043 0.059 0.99967 

MC –0.003 0.069 –0.204 0.128 0.99637 
Number of control points: 99 

Solution Mean St. Dev. Min. Max. Correl. 
ANN 0.001 0.067 –0.126 0.113 0.99633 

EGM96 0.036 0.218 –0.344 0.519 0.96224 
EGG97 0.007 0.023 –0.021 0.076 0.99964 

MC –0.011 0.083 –0.140 0.298 0.99435 
 
 

Table 3. Comparison of ζGPS and ζEST (LSC included) 
Number of control points: 25 

Solution Mean St. Dev. Min. Max. Correl. 
ANN –0.011 0.179 –0.742 0.389 0.97715 

EGM96 –0.010 0.148 –0.518 0.464 0.98094 
EGG97 –0.002 0.018 –0.066 0.057 0.99972 

Number of control points: 50 
Solution Mean St. Dev. Min. Max. Correl. 

ANN –0.010 0.123 –0.321 0.394 0.98810 
EGM96 –0.003 0.080 –0.312 0.173 0.99473 
EGG97 –0.001 0.015 –0.048 0.060 0.99980 

Number of control points: 75 
Solution Mean St. Dev. Min. Max. Correl. 

ANN –0.011 0.055 –0.144 0.135 0.99756 
EGM96 –0.010 0.067 –0.171 0.110 0.99721 
EGG97 –0.002 0.013 –0.028 0.026 0.99988 

Number of control points: 99 
Solution Mean St. Dev. Min. Max. Correl. 

ANN –0.008 0.043 –0.094 0.061 0.99849 
EGM96 –0.011 0.067 –0.149 0.236 0.99634 
EGG97 0.002 0.018 –0.022 0.067 0.99975 

 



For the two tests with 50 control points and 99 control points contour plots of the 
differences are presented (Figure 4 and Figure 5).  
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Fig. 4. Differences between control and validation points (50 control points) 
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Fig. 5. Differences between control and validation points (99 control points) 
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Fig. 6. Correlation coefficents in ANN-LSC approximation 
 

In the case of the EGG97-LSC, there is almost a lack of improvement in spite of an 
increased number of control points. In the case of the EGM96-LSC the results slightly 
improve by increasing the number of control points. As seen from Figures 4, 5 and 6 
the results obtained with the ANN-LSC model improve considerably when increasing 
the number of training (control) points. 

 
 

CONCLUSION 
 
The ANN approach of determining the GPS-derived quasigeoid heights is 

completely different from EGM96 and EGG97 geoid models but in some way similar 
to the minimum curvature splines in the tension algorithm. This is why it is not 
surprising that the MC an the ANN give similar results. However, unlike MC, the 
results with ANN-LSC improve with the increasing number of height control points. 

If a fairly large number of control points is available, the ANN-LSC method can 
effectively be used. This may be considered as an advantage, if the geoid or quasigeoid 
model in the area of interest has not been validated yet. The ANN-LSC method would 
give optimal results if the control points were well distributed over the area. From the 
results obtained it can be concluded that the ANN-LSC approximation gives as 
accurate results as the MC-surface and fairly better results when a higher number of 
control points is available. 

The global geopotential model EGM96 should be used only if there are no 
alternatives. Undoubtedly, for the area under consideration the EGG97 model is a 
highly accurate model, and recommended, since for the test area a large amount of 
gravimetric data was used for its determination. 

Thus, the ANN-LSC method could be a valid alternative to the existing geoid or 
quasigeoid models, specifically for the areas with no accurate models available. The 
GPS-derived geoid heights with the ANN-LSC will provide additional reliable 
information about the geoid shape. 
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